
Arboricity, h-Index, and Dynamic AlgorithmsI

Min Chih Lina,2, Francisco J. Soulignacb,3, Jayme L. Szwarcfiterc,4

aCONICET and Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales,
Instituto de Cálculo and Departamento de Computación, Buenos Aires, Argentina.

bUniversidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento
de Computación, Buenos Aires, Argentina.

cUniversidade Federal do Rio de Janeiro, Instituto de Matemática, NCE and COPPE,
Caixa Postal 2324, 20001-970 Rio de Janeiro, RJ, Brasil.

Abstract

We propose a new data structure for manipulating graphs, called h-graph,
which is particularly suited for designing dynamic algorithms. The structure
itself is simple, consisting basically of a triple of elements, for each vertex
of the graph. The overall size of all triples is O(n + m), for a graph with n
vertices and m edges. We describe algorithms for performing the basic oper-
ations related to dynamic applications, as insertions and deletions of vertices
or edges, and adjacency queries. The data structure employs a technique
first described by Chiba and Nishizeki [Chiba and Nishizeki: Arboricity and
Subgraph Listing Algorithms, SIAM J. Comput. 14(1), pp. 210–223 (1985)],
and relies on the arboricity of graphs. Using the proposed data structure,
we describe several dynamic algorithms for solving problems as listing the
cliques of a given size, recognizing diamond-free graphs, and finding sim-
ple, simplicial and dominated vertices. These algorithms are the first of their
kind to be proposed in the literature. In fact, the dynamic algorithms for the

I c© 2012. This manuscript version is made available under the CC-BY-NC-ND 4.0 li-
cense http://creativecommons.org/licenses/by-nc-nd/4.0/ DOI: 10.1016/j.tcs.2011.12.006

Email addresses: oscarlin@dc.uba.ar (Min Chih Lin), fsoulign@dc.uba.ar
(Francisco J. Soulignac), jayme@nce.ufrj.br (Jayme L. Szwarcfiter)

1Partially supported by UBACyT Grants X456 and X143, and PICT ANPCyT Grant
1562.

2Partially supported by UBACyT Grant X456 and PICT ANPCyT Grant 1562.
3Partially supported by the Conselho Nacional de Desenvolvimento Cient́ıfico e Tec-

nológico, CNPq, and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro,
FAPERJ, Brasil.

Preprint submitted to Theoretical Computer Science April 29, 2017

above problems lead directly to new static algorithms, and using the data
structure we also design new static algorithms for the problems of count-
ing subgraphs of size 4, recognizing cop-win graphs and recognizing strongly
chordal graphs. The complexities of all of the proposed static algorithms
improve over the complexities of the so far existing algorithms, for graphs of
low arboricity. In addition, for the problems of counting subgraphs of size 4
and recognizing diamond-free graphs, the improvement is general.

Keywords: arboricity, cop-win graphs, data structures, diamond-free
graphs, dynamic algorithms, h-index, strongly chordal graphs.
2010 MSC: 68P05, 05C85

1. Introduction

We describe a variation of a technique by Chiba and Nishizeki [4], leading
to a data structure for graph algorithmic problems, called the h-graph data
structure. It supports operations of insertion and removal of vertices, as well
as insertion and removal of edges. Although the data structure can be used
for general purpose, it is particularly suitable for applications in dynamic
graph algorithms.

As an application of this data structure, we describe dynamic algorithms
for several graph problems. We remark that no previous dynamic algorithms
exist so far in the literature for the considered problems. On the other hand,
in most cases, the proposed dynamic algorithms are also competitive as static
algorithms, in the sense that there is also an improvement in time complexity
(relative to the existing static graph algorithms) for graphs of low arboricity.

Basically, the proposed data structure consists of a triple for each vertex
v of the graph. The first element of the triple is the degree of v, while the
other two form a partition of the neighbors of v. The second element consists
of a family of non-empty subsets of vertices, each one corresponding to the
neighbors of v having degree exactly i, for each i less than the degree of v. The
last element of the triple is the set of neighbors of v, having degrees at least
the degree of v. The contents of each of the triples is maintained throughout
the process, while vertices and edges are being inserted or removed. We show
that the complexity of performing the dynamic operations of insertions and
removals is strongly related to the arboricity and to the h-index of a graph.

A dynamic data structure designed for graphs with low h-index has been
first defined by Eppstein and Spiro [8]. Such a data structure keeps, for

2

each graph G with h-index h, the set of vertices with degree at least h,
and a dictionary that indicates the number of two-edge paths between any
pair of vertices, for all those vertices at distance 2. The total size of the
data structure is O(mh) bits. Our h-graph data structure follows a different
approach. First, we store no more than the adjacency lists of G in a special
format, using O(n+m) bits. Second, we do not compute the h-index of G.

In order to have an idea of the differences between these two data struc-
tures, refer to the problem of listing the triangles of a graph G. Using the
data structure of [8], Eppstein and Spiro show that it is possible to maintain
the family of triangles of G in O(h) randomized amortized time while edges
are inserted or removed. They also show how to keep other statistics of G
with this data structure. By employing the data structure proposed in the
present paper, we can maintain the family of triangles of G in O(dh) deter-
ministic worst case time per vertex insertion or removal, where d is the degree
of the vertex. Furthermore, the time required by this algorithm when applied
to all the vertices of the graph, so as to compute the family of triangles of
G, is O(αm), where α ≤ h is the arboricity of G. The disadvantage is that
we can no longer maintain the triangles as efficiently as Eppstein and Spiro
when edge operations are allowed. So, though both data structures have
some similarities in their conceptions, they are better suited for different ap-
plications. In particular, our data structure allows efficient examination of
the subgraph of G induced by the neighborhood of an inserted or removed
vertex.

One of the similarities between the h-graph data structure and the data
structure by Eppstein and Spiro, is that both differentiate between low and
high degree vertices. The technique of handling differently vertices of high
and low degree has been first employed by Alon et al. [1], and since then
many other works made use of this technique (e.g. [8, 11]). In the present
paper, we employ a variation of it, in the sense that the classification of each
vertex into low or high is local. So, some vertices can be considered as both
high and low depending on the local classification of each of its neighbors.

In the present paper, we apply the proposed data structure to formulate
algorithms for the following seven problems.

1. Listing all the cliques of size k.

2. Counting the number of induced subgraphs, isomorphic to any desired
graph having four vertices.

3. Counting the number of K4’s, diamonds, paws and claws, containing a

3

given vertex.

4. Recognizing diamond-free graphs and finding the maximal cliques of
diamond-free graphs.

5. Finding simple, simplicial and dominated vertices of a graph.

6. Recognizing cop-win graphs, and finding a dismantling ordering of the
vertices of a graph.

7. Recognizing strongly chordal graphs, and finding a simple elimination
ordering of a graph.

For Problems 1 and 3–5, we propose dynamic algorithms, obtained by
employing the h-graph data structure. The dynamic algorithms are the first
in the literature for the considered problems. The degree of dynamics varies
from application to application. For instance, for the problem of listing
subgraphs of size k, we only consider insertion of vertices (in a sense, this
is the natural case), whereas for the recognition of diamond-free graphs, we
describe a fully dynamic algorithm, with insertions and deletions of both
vertices and edges.

Table 1 describes the time complexities of the dynamic updates of the
proposed dynamic algorithms, after the insertion or removal of a vertex v of
degree d, of a graph G with n vertices, m edges, arboricity α and h-index h.
For instance, if all the cliques of size k of G have already been listed, then
O(kdhαk−3) time is required to include all cliques of size k containing v, of
the graph G ∪ {v}, into the list. Also, if G is diamond-free, then we can
decide in O(dh) time whether G ∪ {v} remains diamond-free.

We have also employed the h-graph data structure to design new static
algorithms for all the applications above enumerated. Table 2 describes the
time complexities of the proposed static algorithms to solve these problems,
for connected graphs with n vertices, m edges, arboricity α and where nω is
the time required for multiplying two n × n matrices. The table compares
the complexities of the new algorithms, with those of the currently best
static algorithms existing. It shows that the algorithms here proposed are
competitive with the existing ones. That is, for graphs with low arboricity
the new algorithms improve the complexity for all the considered problems,
except for that of listing cliques, where the complexity matches. In some
cases, the new algorithms actually decrease the complexities of the existing
ones.

The paper is organized as follows. There are two distinct parts. In the
first part, we describe the data structure, while the second one is devoted

4

Problem Inserting vertex v Removing vertex v
Listing all cliques
of size 4 O(kdhαk−3) -
Recognizing
diamond-free graphs O(dh) O(dh)
Finding dominated
vertices O(dh) O(dh)
Finding simplicial
vertices O(dh) O(dh)
Finding simple
vertices O(m) O(m)

Table 1: Time complexities of the dynamic updates.

to various applications. In the next section we introduce the notation and
terminology employed. In Section 3 we present the lemmas related to the
complexity analysis of the basic operations of the h-graph data structure.
The h-graph data structure itself is described in Section 4, together with the
operations that it supports. Section 5 contains a more detailed description
of the operations supported by the data structure, some implementation de-
tails and the complexity analysis of these operations. The remaining sections
describe the applications. The problems above enumerated are then respec-
tively solved in Sections 6 through 10. Some additional remarks, including
the description of other applications form the last section.

2. Preliminaries

We work with undirected simple graphs. Let G be a graph with ver-
tex set V (G) and edge set E(G), and call n = |V (G)| and m = |E(G)|.
Write vw to denote the edge of G formed by vertices v, w ∈ V (G). For
v ∈ V (G), represent by NG(v) the subset of vertices adjacent to v, and let
NG[v] = NG(v) ∪ {v}. The set NG(v) is called the neighborhood of v, while
NG[v] is the closed neighborhood of v. The edge-neighborhood of v, denoted
by N ′G(v), is the set of edges whose both endpoints are adjacent to v. Simi-
larly, the neighborhood NG(vw) of an edge vw is the set of vertices that are
simultaneously adjacent to both v and w. All the vertices in NG(vw) are said
to be edge-adjacent to vw. The degree of v is dG(v) = |NG(v)|, the degree

5

Problem Existing algorithms Proposed algorithms
Listing
all cliques O(kαk−2m) [4] O(kαk−2m)
of size k
Counting
subgraphs O(nω +min{m1.61, α2m}) [11] O(min{m1.61, α2m})
of size 4
Recognizing
diamond-free O(m3/2) [7] O(αm)
graphs
Finding Simple
simplicial and O(m1.41) [11] O(αm)
dominated vertices
Recognizing
cop-win O(nm) [19] O(αm)
graphs O(n3/ log n) [19]
Recognizing
strongly chordal O(n2) [17] O(αm)
graphs O(m log n) [14]

Table 2: Complexities of the static algorithms for connected graphs.

of vw is dG(vw) = |NG(vw)|, and the edge-degree of v is d′G(v) = |N ′G(v)|.
When there is no ambiguity, we may omit the subscripts from N and d.

For W ⊆ V (G), denote by G[W] the subgraph of G induced by W , and
write EG(W) to represent E(G[W]). As before, we omit the subscript when
there is no ambiguity about G. A clique is a set of pairwise adjacent vertices.
We also use the term clique to refer to the corresponding induced subgraph.
A clique of size k is represented by Kk, and the graph K3 is called a triangle.
We shall denote by O(nω) the time required for the multiplication of two n×n
matrices. Up to this date, the best bounds on nω are n2 ≤ nω < n2.376 [6].
The arboricity α(G) of G is the minimum number of edge-disjoint spanning
forests into which G can be decomposed. The h-index h(G) of G is the
maximum h such that G contains h vertices of degree at least h.

The following lemma relates these parameters.

6

Lemma 1. For every non-trivial graph G, with minimum degree δ,

δ

2
<

m

n− 1
≤ α(G) ≤ h(G) ≤

√
2m

Proof. The inequalities δ
2
< m

n−1 ≤ α(G) and h(G) ≤
√

2m are straightfor-
ward. Let d be the degeneracy of G, i.e.,

d = max min
w∈V (H)

{d(w) | H is an induced subgraph of G.}

It is well known that α(G) ≤ d (see e.g. [3]). We show that d ≤ h(G).
Consider an induced subgraph H of G with minimum degree δH . Clearly, if
H contains a vertex that has degree at most h(G) in G, then δH ≤ h(G). On
the other hand, if all the vertices in H have degree at least h(G) in G, then
H has at most h(G) vertices, by the definition of the h-index. Therefore,
δH < |V (H)| ≤ h(G), and so d ≤ h(G). �

For each vertex v of a graph G, define N(v, i) = {w ∈ N(v) | d(w) = i},
i.e., N(v, i) is the set of neighbors of v with degree i. Denote by L(v) the set
of neighbors of v of degree at most d(v) − 1, and H(v) the set of neighbors
of v of degree at least d(v), i.e., L(v) = N(v, 1) ∪ . . . ∪ N(v, d(v) − 1), and
H(v) = N(v, d(v)), . . . , N(v, n − 1). We use `(v) and h(v) to respectively
denote |L(v)| and |H(v)|. Write

N (v) = {N(v, i) | N(v, i) 6= ∅ and 1 ≤ i < d(v)}.

Observe that v can have at most h(G) neighbors of degree at least d(v) + 1.
Consequently, h(v) ≤ h(G), meaning that the number of nonempty sets that
belong to N (v) is at most 2h(G).

3. Basic Propositions

In this section, we present the main propositions, which are basic for the
complexity analysis of the algorithms, throughout the paper.

The first lemma was employed by Chiba and Nishizeki, in their algorithm
for listing the triangles of a graph.

Lemma 2 ([4]). For every graph G,∑
vw∈E(G)

min{d(v), d(w)} ≤ 2α(G)m.

7

The next two lemmas and corollaries are employed in the algorithms we
propose.

Lemma 3. Let e1, . . . , em be an ordering of E(G) for a graph G, and set
ei = viwi. Denote by hi(v) the value of h(v) in the spanning subgraph of G
that contains the edges e1, . . . , ei, for every 1 ≤ i ≤ m. Then,

m∑
i=1

(hi(vi) + hi(wi)) ≤ 4α(G)m.

Proof. Denote by Gi the spanning subgraph of G that contains only the
edges e1, . . . , ei, and let di(v) = dGi

(v) and Hi(v) = HGi
(v), for every v ∈

V (G). For every vw ∈ E(G), define the values fi(v, w), fi(w, v), F (v, w),
and F (w, v) such that

fi(x, y) =

{
1 if (i) ei is incident to x and (ii) y ∈ Hi(x)

0 otherwise,

and F (x, y) =
∑m

i=1 fi(x, y). By (i), there are at most dG(v) edges ei such that
fi(v, w) = 1, thus F (v, w) ≤ dG(v). On the other hand, by (ii), fi(v, w) = 1
only if dG(w) ≥ di(w) ≥ di(v) = |{j ≤ i | ej is incident to v}|. It is clear
that if ei and ej are both incident to v and j < i, then dj(v) < di(v). Thus,
at most dG(w) edges ei hold condition (ii), which implies that F (v, w) ≤
min{dG(v), dG(w)}. Also, observe that fi(v, w) + fi(w, v) ≥ 1 if only if one
of the vertices v, w, say x, incides in ei while the other belongs to Hi(x). In
other words, Hi(vi) = {w ∈ NG(v) | f(vi, w) + f(w, vi) ≥ 1}, Hi(wi) = {v ∈
NG(wi) | f(v, wi) + f(wi, v) ≥ 1}, and fi(v, w) = 0 when {v, w} ∩ {vi, wi} =
∅. Finally, observe that fi(vi, wi) + fi(wi, vi) = 2 when vi ∈ Hi(wi) and
wi ∈ Hi(vi). Therefore, by Lemma 2,

m∑
i=1

(hi(vi) + hi(wi)) ≤
m∑
i=1

∑
vw∈E(G)

(fi(v, w) + fi(w, v))

≤
∑

vw∈E(G)

(Fi(v, w) + Fi(w, v))

≤
∑

vw∈E(G)

2 min{dG(v), dG(w)} ≤ 4α(G)m

�

8

Lemma 4. For every graph G,
∑

vw∈E(G)

(h(v) + h(w)) ≤ 4α(G)m.

Proof. The proof is similar to the one of Lemma 3. Just replace Hi with
H in the definition of fi and follow the same proof. �

The next corollaries are also relevant for the h-graph data structure to
be presented.

Corollary 5. Let v1, . . . , vn be an ordering of V (G), for a graph G. Denote
by hi(v) the value of h(v) in the subgraph of G induced by v1, . . . , vi, for every
1 ≤ i ≤ n. Then,

n∑
i=1

∑
w∈N(vi)

hi(w) ≤ 4α(G)m.

Corollary 6. For every graph G,
∑

v∈V (G)

∑
w∈N(v)

h(w) ≤ 4α(G)m.

4. The h-Graph Data Structure

In this section, we present a new data structure, called the h-graph data
structure, which has been designed having in mind dynamic algorithms. It
is well suited for graphs with low arboricity. We apply it in the next sections
to solve some different graph algorithmic problems. The purpose of the data
structure is to efficiently handle some typical operations of dynamic algo-
rithms, as vertex and edge insertions, vertex and edge removals, adjacency
queries, finding some desired subsets of vertices or edges, and constructing
subgraphs induced by vertex neighborhoods.

For a given graph G, the h-graph data structure consists of one triple for
each vertex v, defined as follows

(d(v),N (v), H(v)).

Recall that d(v) is the degree of v, N (v) is the family of subsets N(v, i) 6=
∅, 1 ≤ i < d(v), and H(v) is set of neighbors of v having degree at least d(v).

9

4.1. Operations supported by the h-graph data structure

Table 3 lists the operations that the h-graph data structure supports,
for a graph G having n vertices, m edges, arboricity α and h-index h. To
simplify notation, we write d with the meaning of d(v). The third column
shows the complexity of performing the corresponding operation once, while
the last column illustrates the complexity when the operation is applied for
all the vertices or edges. For instance, the insertion of one vertex takes O(dh)
time, while inserting all the vertices of the graph requires O(αm) time.

Operation Description Complexity
One All

Vertex insertion Inserts new vertex v
with given N(v) O(dh) O(αm)

Vertex removal Removes vertex v O(dh) O(αm)

Edge insertion Inserts new edge vw O(h) O(αm)

Edge removal Removes edge vw O(h) O(αm)
Adjacency Queries if two vertices
query v, w are adjacent O(h) -

Finding H(v) Returns set H(v) O(1) -

Finding N ′(v) Returns set N ′(v) O(dh) O(αm)
Constructing Constructs the
G[N(v)] graph G[N(v)] O(dh) O(αm)

Table 3: Operations supported by the h-graph data structure

4.2. Brief description of the operations supported by the h-graph structure

Next, we give a brief outline of how the operations of Table 3 are per-
formed. Some implementation details, together with the complexity analysis,
appears in Section 5.

Insertion of edges. The algorithm for inserting a new edge vw into G has
two phases. In the first one, we update the families N (z), for every

10

z ∈ N [v]∪N [w]. On the other hand, the second phase actually inserts
the new edge into the sets N(w, dG(v) + 1) and N(v, dG(w) + 1), while
updating the values of d(v) and d(w).

Insertion of vertices. For inserting a new vertex v, with given neighbor-
hood N(v), first, insert v as an isolated vertex, and then add the edges
vw, for each w ∈ N(v).

Removal of edges. For removing an edge vw, we undo the insertion pro-
cess. But, this time, we start by the computations corresponding to the
second phase. That is, first we physically remove the edge vw. Then
we proceed to undoing the first phase. In this case, we need to update
the families Nz, for every z ∈ NG(v) ∪NG(w).

Removal of vertices. Similarly as before, remove vertex v by removing all
its incident edges first. At the end, remove v after becoming an isolated
vertex.

Adjacency query. Querying whether two vertices v and w are adjacent is
straightforward. Simply, traverse the set H(z), where z is the vertex
of least degree, between v and w.

Finding H(v). Trivial, since in the data structure H(v) belongs to the triple
of v

Finding N ′(v). To construct N ′(v), we ought to traverse N(v) and then
H(w), for each w ∈ N(v).

Constructing G[N(v)]. Clearly, the subgraph of G induced by N(v) is just
the graph whose vertex set is N(v), which is obtained from N (v) and
H(v), and whose edge set is N ′(v), which can be determined as above.

5. Complexity of the h-graph Basic Operations

In this section, we describe some implementation details employed in the
algorithm for performing the basic operations illustrated in Table 3. The
complexity analysis is done over the more detailed algorithms.

Recall that the h-graph data structure consists of a triple (d(v),N (v), H(v)),
for each vertex v of G. In the implementation, we represent d(v) and H(v)
by the objects d(v) and H(v), respectively, while N(v, i) is represented by the

11

object N(v, i). The family N (v) is stored as a double linked list, containing
one object N(v, i), for each non-empty set N(v, i), 1 ≤ i < d(v). This list is
ordered, so that N(v, i) appears in increasing values of i. On the other hand,
each N(v, i), for any i, is also stored as a doubly linked list that contains one
object for each w ∈ N(v, i).

Finally, we mention that throughout the process, we maintain direct
pointers to objects representing vertices, edges and lists. To make this state-
ment more precise, suppose that v belongs to a list L of N (w) ∪ H(w), for
some w ∈ N(v). Then, the appearance of w in N(v) is associated with a
pointer p referencing the appearance of v inside L, a pointer l referencing L,
and a pointer n(v, w) referencing v (see Figure 2).

b
v1

b
v2

b
v5

b
v6

b
v3

b
v4

Figure 1: Example graph used to describe the h-graph data structure.

The implementation of the data structure is now complete. Next, we
proceed to the implementation and complexity of the basic operations.

5.1. Insertion of vertices and edges

First, consider the insertion of an edge vw. Recall that we divide it into
two phases. In the first phase, create the set N(v, dG(v)), move the vertices
with degree dG(v) from H(v) to N(v, dG(v)), and move v from N(z, dG(v)) to
N(z, dG(v) + 1), for every z ∈ H(v). Next, apply the analogous operations
for w. In the second phase, insert v at the end of N(w, dG(v) + 1) and w at
the end of N(v, dG(w) + 1), update the values of d(v) and d(w).

Discuss the time complexity of the above algorithm. For the first phase,
apply Algorithm 1 twice, once for v and once for w. Recall that this algorithm
is applied before incrementing d for v and w, thus d(z) is the degree of z
before the insertion of vw. Note that each iteration of the main loop can
be implemented so as to run in O(1) time, by using the associated pointers.

12

v1 1 =


d = 1
N = ∅
H 7 = [v2 8 : p = 10, l = 9, n = 2]

v2 2 =


d = 4

N =

{
N(1) 9 = [v1 10 : p = 8, l = 7, n = 1],
N(2) 11 = [v3 12 : p = 17, l = 16, n = 3, v4 13 : p = 20, l = 19, n = 4]

H 14 = [v5 15 : p = 28, l = 27, n = 5]

v3 3 =


d = 2
N = ∅
H 16 = [v2 17 : p = 12, l = 11, n = 2, v5 18 : p = 25, l = 24, n = 5]

v4 4 =


d = 2
N = ∅
H 19 = [v2 20 : p = 13, l = 11, n = 2, v5 21 : p = 26, l = 24, n = 5]

v5 5 =


d = 4

N =

{
N(1) 22 = [v6 23 : p = 30, l = 29, n = 6]
N(2) 24 = [v3 25 : p = 18, l = 16, n = 3, v4 26 : p = 21, l = 19, n = 4]

H 27 = [v2 28 : p = 15, l = 14, n = 2]

v6 6 =


d = 1
N = ∅
H 29 = [v5 30 : p = 23, l = 22, n = 5]

Figure 2: Snapshot of the variables used by the h-graph data structure for the graph of
Figure 1. An object representing each vertex vi is shown to the left of an equal sign,
for i = 1, . . . , 6. The positions of these objects in the main memory are shown inside a
box, e.g., the object representing v1 occupies the cell number 1 of the memory. The data
maintained for each vertex is shown to the right of the equal sign. Again, the position of
each object in the main memory is shown in a box, but only for those objects that can be
referenced by a pointer. For instance, variable H for v1 occupies the cell number 7 of the
main memory. Symbols p, l, and n represent the various pointers that are kept through
the process. Observe that the total space required is O(n+m) bits.

Thus, the update of N (z), for every z ∈ N [v] ∪N [w], takes O(h(v) + h(w))
time. For the second phase, traverse the family N (w) until the first set
N(w, d) with d > dG(v) is reached. Then, create the set N = N(w, dG(v) + 1),
if d > d(v) + 1, and insert v into N. Next, traverse N (v) so as to find the set
that ought to contain w, and insert w. Recall that there are at most 2h(G)
sets inside each of the families N (v) and N (w). So, the time required by
these steps is O(min{d(v), d(w), h(G)}), while the creation of the pointers

13

Algorithm 1 Update of N (z) for every z ∈ N [v].

Input: the h-graph data structure representing G, and v ∈ V (G)
Output: none. The h-graph data structure is modified.

1. Insert a new empty set N(v, d(v)) at the end of N (v).

2. For each z ∈ H(v):

3. If d(z) = d(v), then move z from H(v) to N(v, d(v)).

4. Move v from N(z, d(v)) to N(z, d(v) + 1). If N(z, d(v)) = ∅, then delete
N(z, d(v)).

5. If N(v, d(v)) = ∅, then delete N(v, d(v)).

and the increase of d take O(1) time. Therefore, the insertion of vw requires
time

O (min{d(v), d(w), h(G)}+ h(v) + h(w)) = O(h(G))

As for the insertion of a new vertex v, it follows directly that we require
O(1 + d(v)h(G)) time. If we use the above algorithm for building G from
scratch, then the total time is O(n+ α(G)m), by Lemma 3.

Corollary 7. The time required for inserting the vertices and edges of a
graph G, one at a time in no particular order, into an initially empty h-
graph data structure is O(n+ α(G)m).

Proof. The insertion of the n vertices takes O(n) time. Let e1, . . . , em be
an ordering of E(G), denote by di(v) and hi(v) the values of d(v) and h(v) in
the graph prior the insertion of ei. By the analysis above, the time required
for the insertion of ei = vw is

O(min{di(v), di(w), h(G)}+ hi(v) + hi(w)).

Thus, by Lemmas 2 and 3, the total time required for the insertion of all the
edges is∑
vw∈E(G)

O(min{di(v), di(w), h(G)}) +
∑

vw∈E(G)

O(hi(v) + hi(w)) = O(α(G)m)

�

14

5.2. Removal of vertices and edges

For removing an edge vw, assume dG(v) ≤ dG(w), i.e. w ∈ H(v). Recall
that we undo the process of insertion, starting by the second phase of the
insertion. That is, we ought to physically remove edge vw. With this purpose,
traverse H(v) so as to locate and remove the object that represents w in H(v).
Using the associated pointers, we can easily remove v from N(w, dG(v)) in
O(1) time. Since v has h(v) neighbors in H(v), this phase takes O(h(v)) =
O(h(G)) time. To undo the first phase, we need to update the families N (z)
for every z ∈ NG(v) ∪ NG(w). For this, we move v from N(z, dG(v)) to
N(z, dG(v) − 1) for every z ∈ HG(v), and then we remove N(v, dG(v) − 1)
from N (v) so as to append it to H(v). Next, we should apply the same
operations for w. This phase is rather similar to the one for edge insertion
and it also takes time

O(hG\{vw}(v) + hG\{vw}(w)) = O(h(G)).

It then follows that the removal of a vertex requires O(d(v)h(G)). Finally,
if we use the above algorithm for decomposing G, then the time required for
removing all the edges is O(n+ α(G)m), by Lemma 3.

Corollary 8. The time required for removing the vertices and edges of a
graph G, one at a time and in no particular order, from an h-graph data
structure is O(n+ α(G)m).

5.3. Adjacency query

To check whether vertices v, w are adjacent, we traverse set H(z), where z
is the vertex of least degree between v and w. Clearly, this requires O(h(v)+
h(w)) = O(h(G)) time.

5.4. Finding N ′(v)

To compute the set N ′(v) for a vertex v, first mark each z ∈ N(v) with
1. Following, traverse each z ∈ H(w) for every w ∈ N(v) and, if z is
marked with 1, then insert it into N ′(v) and mark it with 2. Since each w
is traversed in O(h(w)) = O(h(G)) time, the algorithm takes O(d(v)h(G))
time. Furthermore, the time required to find {N ′(v)}v∈V (G), by applying this
algorithm to all the vertices in the graph, is O(α(G)m), by Corollary 6.

15

5.5. Constructing G[N(v)]

Recall that the subgraph of G induced by N(v) is just the graph whose
vertex set is N(v) and whose edge set is N ′(v). Thus, the graph G[N(v)],
implemented with adjacency lists, can be computed in O(d(v)h(G)) time,
while the family {G[N(v)]}v∈V (G) can be computed in O(α(G)m) time.

In the next few sections we list several problems that can be improved by
using the technique implicit in Lemma 3 and Corollary 5. These algorithms
build upon the h-graph data structure, and serve as examples of its applica-
bility. One of the most appealing aspects of some of these algorithms is that
they are simple to obtain from the definitions of the problems.

6. Listing the Cliques of Size k of a Graph

In this section, we show a simple modification of Chiba and Nishizeki’s
algorithms for listing the cliques of size k of a graph, that transforms it into
a dynamic algorithm, while preserving its complexity.

First, consider the problem of finding all the cliques of size k > 2 that
contain a given vertex v. As in [4], this problem is solved by computing all
the Kk−1’s in G′ = G[N(v)] and listing v plus these cliques. By [4] all cliques
of size k − 1 of G′ are obtained in time

O(|V (G′)|+ (k − 1)α(G′)k−3|E(G′)|).

Note that

|E(G′)| ≤
∑

w∈N(v)

min{d(v), d(w)} ≤

≤
∑

w∈N(v)
d(w)≤h(G)

d(w) +
∑

w∈N(v)
d(w)>h(G)

d(v) = O(d(v)h(G)),

thus the time required to find all the Kk’s that contain v is

O
(
d(v)h(G) + |V (G′)|+ kα(G′)k−3|E(G′)|

)
= O

(
kd(v)h(G)α(G)k−3

)
.

The total time required for listing all the cliques, by iteratively executing
the above algorithm for each vertex v (and then removing v), is

O
(
n+ α(G)m+ kα(G)k−3

∑
v∈V (G)

∑
w∈N(v) min{d(v), d(w)}

)
=

O
(
n+ kα(G)k−2m

)
,

matching the time complexity of the algorithm by Chiba and Nishizeki.

16

7. The 4-Subgraph Counting Problem

The 4-subgraph counting problem is the problem of counting how many
copies of some graph H on four vertices appear as induced subgraphs of a
given graph G. The connected graphs on four vertices are six: the complete
graph K4, the diamond K4 \ {e} for e ∈ E(K4), the square C4, the path P4,
the paw P3 ∪K1, and the claw K3 ∪K1. The disconnected graphs on four
vertices are five: K4, K4 \ {e}, C4, P3 ∪K1, and K3 ∪K1. In [11], Kloks et
al. showed a system of linear equations that solves the 4-subgraph counting
problem for connected graphs. Specifically, Kloks et al. proved the following
theorem.

Theorem 9 ([11]). Let H̃ be a connected graph on four vertices such that
there is an O(t(G)) time algorithm counting the number of induced H̃’s in a
graph G. Then, there is an O(nω+t(G)) time algorithm counting the number
of induced H’s of G for all connected graphs H on four vertices.

Since the number of K4’s can be computed in either O(n + m(ω+1)/2) =
O(n+m1.61) or O(n+α(G)2m) time [4, 11], solving the 4-subgraph counting
problem for connected graphs takes O(nω + min{m1.61, α(G)2m}) time.

In this section, we improve the above results in two ways. First, we formu-
late a system of equations, which also includes all disconnected graphs with
4 vertices. Furthermore, by employing the h-graph data structure, we show
that the time complexity can be decreased to O(n+ min{m1.61, α(G)2m}).

The new system of linear equations appears in the proof of the next
theorem.

Theorem 10. Let H̃ be a graph on four vertices such that there is an O(t(G))
time algorithm counting the number of induced H̃’s in a graph G. Then, there
is an O(n + α(G)m + t(G)) time algorithm counting the number of induced
H’s of G for every graph H on four vertices.

Proof. Let k, d, s, p, q, and y denote the number of induced K4’s, dia-
monds, squares, P4’s, paws, and claws in G, respectively. Similarly, let k̄, d̄,
s̄, q̄ and ȳ be the number of induced complements of K4’s, diamonds, squares,
paws, and claws in G, respectively. Define m =

(
n
2

)
−m, d(v) = n− d(v)− 1

for v ∈ V (G), and δ(v, w) = d(v) − d(vw) for vw ∈ E(G). That is, m is
the number of edges of G, d(v) is the degree of v in G, and δ(v, w) is the
number of vertices that are adjacent to v and not w. Finally, let S be the

17

set obtained after executing the algorithm C4 in [4]. In S, each element is a
triple (v, w, L) where v, w ∈ V (G) and L is a set of vertices. Then, G fulfills
the system of linear equations shown in Figure 3.

∑
(v,w,L)∈S

(
|L|
2

)
= 3k + d+ s (1)

∑
vw∈E(G)

(
d(vw)

2

)
= 6k + d (2)

∑
vw∈E(G)

δ(v, w)δ(w, v) = 4s+ p (3)

∑
vw∈E(G)

((
δ(v, w)

2

)
+

(
δ(w, v)

2

))
= q + 3y (4)

∑
vw∈E(G)

(
d(v) + d(w)− d(vw)− 2

2

)
= 6k + 5d+ 4s+ p+ 3q + 3y (5)

∑
v∈V (G)

d′(v)(n− 3) = 12k + 6d+ 3q + 3ȳ (6)

∑
v∈V (G)

(
d(v)

2

)
(n− 3) = 12k + 8d+ 4s+ 2p+ 5q + 3y + q̄ + 3ȳ (7)(

m

2

)
−
∑

v∈V (G)

(
d(v)

2

)
= 3k + 2d+ 2s+ p+ q + s̄ (8)

(
m

2

)
−
∑

v∈V (G)

(
d(v)

2

)
= s+ p+ 3k̄ + 2d̄+ 2s̄+ q̄ (9)(

n

4

)
= k + d+ s+ p+ q + y + k̄ + d̄+ s̄+ q̄ + ȳ (10)

Figure 3: Equations for Theorem 10

Equations (2)–(4) correspond to the first, third and fifth equations of [11],
respectively. For the translation between them, observe that if A is the
adjacency matrix of G and C is the adjacency matrix of the complement
of G, then A2

v,w = d(vw) and ACv,w = δ(v, w). Thus, G satisfies these

18

equations [11].
Each triple of S represents a set of non induced cycles of G in the following

way. Let v1, . . . , vn be an ordering of V (G) in non increasing order of degree.
Then (vi, vj, L) is a triple of S if and only if i < min{j, k, l}, L ⊂ N(vi)∩N(vj)

and |L| ≥ 2. Therefore,
(|L|

2

)
counts the number of non induced 4-length

cycles that contain vi and vj and such that vivj is not an edge of the cycle.
Such cycles count three times each K4, and once each diamond and each
square. Thus, (1) is fulfilled by G.

The remaining equations follow analogously, by observing that: (5) counts,
for each edge vw, the number of pairs of vertices that are adjacent to at least
one of v and w; (6) counts, for each vertex v, the number of triangles of v
plus one vertex; (7) counts those graphs on four vertices where v has degree
at least 2; (8) and (9) count the number of pair of disjoint edges on G and
G, respectively; and (10) counts the number of induced graphs on 4 vertices
of G.

There are 10 equations and 11 variables to be determined

k, d, s, p, q, y, k, d, s, q, y.

If we add an 11th equation, fixing a given value for k, then the system of
equation becomes triangular. In this case the values of the variables can be
easily determined, as each one becomes uniquely determined by the values of
the variables that precede it in the above sequence of variables. This implies
that these 11 equations are linearly independent, and so are equations (1)-
(10). Consequently, by fixing the number of subgraphs H̃, we can solve the
system.

As for the time complexity of computing the constant terms of the system
(i.e. appearing at the left sides of the equations), those corresponding to
equations (1)-(7) can all be found in O(n + α(G)m) time, while those of
equations (7)–(10) are computed in O(n+m) time. �

Corollary 11. The number of diamonds, paws and claws of a graph can be
computed in O(n+min{m1.61, α(G)2m}).

We now consider a slight modification of the 4-subgraph counting prob-
lem. Given a vertex v, the goal is to count the number of graphs on 4 vertices
that contain v. We focus our attention on four types of connected graphs:
K4’s, diamonds, paws, and claws. For i ∈ {1, 2, 3}, define ki(v), di(v), qi(v),
and yi(v) as the number of K4’s, diamonds, paws, and claws that contain a

19

given vertex v, where the degree of v in such an induced subgraph is i. In
the previous section we saw that k3(v) can be computed in O(d(v)h(G)α(G))
time. The following theorem shows that we can compute di(v), qi(v), and
yi(v), once k3(v) is given.

Theorem 12. There is a dynamic graph data structure, requiring O(n+m)
space, with the following properties:

• Both the insertion and the removal of a vertex v take O(d(v)h(G)) time.

• The time required for inserting the vertices of G, one at a time, into
an initially empty instance of the data structure is O(n+ α(G)m).

• Given k3(v), the values of di(v), qi(v), and yi(v) can be determined in
time O(d(v)h(G)), for every v ∈ V (G) and i ∈ {1, 2, 3}.

• If k3(v) is given for every v ∈ V (G), then the number of diamonds,
paws, and claws can be found in O(n+ α(G)m) time.

Proof. Fix a vertex v and let ki = ki(v), di = di(v), qi = qi(v), and
yi = yi(v), for i ∈ {1, 2, 3}. Define δ as in Theorem 10. Then, v fulfills the
system of linear equations shown in Figure 4.

These equations are similar to those in Theorem 10, e.g.,
(
d(vw)

2

)
counts

the number of pairs of vertices x, z that are both adjacent to v and w, thus∑
w∈N(v)

(
d(vw)

2

)
counts three times each K4 that contains v, and one time

each diamond that contains v with degree 3. The other equations follow
analogously.

The dynamic data structure is just the h-graph data structure with the
addition that d(wz) is stored in a pointer, for every edge wz. This value can
be easily updated in O(d(v)h(G)) time when a vertex v is either inserted
or removed. Indeed, according to whether v is inserted or removed, we can
increase or decrease in 1 the value of d(wz) for every wz ∈ N ′(v) with a
single traversal of N ′(v). On the other hand, the value of d(vw) is simply
the degree of w in G[N(v)], for every w ∈ N(v). Then, the values of di(v),
qi(v), and yi(v) can be obtained in O(d(v)h(G)) time by solving the system
of equations above, once k3(v) is given. �

8. Dynamic Recognition of Diamond-Free Graphs

Recall that the graph obtained by removing one edge from a complete
graph of four vertices is called a diamond. A diamond-free graph is a graph

20

d3 =
∑

w∈N(v)

(
d(vw)

2

)
− 3k3

d2 =
∑

wz∈N ′(v)

(d(wz)− 1)− 3k3

2q3 =
∑

w∈N(v)

d(vw)δ(v, w)− 2d3

q2 =
∑

w∈N(v)

d(vw)δ(w, v)− 2d2

q1 =
∑

w∈N(v)

(d′(w)− d(vw))− 3k3 − 2d2

3y3 =
∑

w∈N(v)

(
δ(v, w)

2

)
− q3

y1 =
∑

w∈N(v)

(
δ(w, v)

2

)
− q1

Figure 4: Equations for Theorem 12

that contains no induced diamond. Diamond-free graphs appear in many
contexts; for example in the study of perfect graphs [5, 10, 22].

In [11], Kloks et al. showed how to find an induced diamond in O(m3/2 +
nω) time, if one exists. The fast matrix multiplication algorithm is used in
one of the steps of this algorithm, which explains why nω is a term of the
complexity order. However, the fast matrix multiplication can be avoided
improving the time complexity to O(m3/2) time, as shown by Eisenbrand
and Grandoni [7]. Talmaciu and Nechita [21] devised a recognition algo-
rithm based on decompositions, but they claim that in the worst case the
time required by their algorithm is not better than the one by Kloks et al.
Note that Theorem 10 implies that there is an O(α(G)2m) time algorithm
for recognizing whether a graph is a diamond-free graph, improving over pre-
vious algorithms for some sparse graphs. Finally, Vassilevska [23] used the
algorithm by Eisenbrand and Grandoni to find an induced Kk \ e in a graph.
A Kk \e is a complete graph on k vertices, minus one edge. For every even k,
the algorithm by Vassilevska takes O

(
d(n,m)m(k−4)/2) time, where d(n,m)

21

is the time required to find a diamond in a graph with n vertices and m
edges. Thus, this algorithm is implicitly improved with each improvement
on d(n,m).

The algorithm by Kloks et al. is based on the fact that a graph G is
diamond-free if and only if G[N(v)] is a disjoint union of maximal cliques,
for every v ∈ V (G). Testing whether a graph is a disjoint union of cliques
takes linear time, and we saw in Section 5 how to compute the family
{G[N(v)]}v∈V (G) in O(α(G)m) time. Therefore, by using the h-graph data
structure, the algorithm by Kloks et al. can be implemented so as to run in
O(α(G)m) time, improving over the algorithm by Eisenbrand and Grandoni
and the algorithm implied by Theorem 10. (Further discussion about this
approach is given in Section 11.)

In this section we employ the h-graph data structure for dynamically
maintaining diamond-free graphs. The data structure can also be used to find
an induced diamond of a static graph G in O(α(G)m) time, if one exists. As
a by-product, the data structure can be used to query the maximal cliques
of the dynamic diamond-free graph in constant time. The data structure
is based on this well known theorem about diamond-free graphs (see for
instance [12]).

Theorem 13. A graph is a diamond-free graph if and only if every edge
belongs to exactly one maximal clique.

We assume a dynamic context, in which vertices and edges can be inserted
or removed from the graph.

8.1. Insertion of vertices

Start by examining the insertion of vertices. Suppose thatG is a diamond-
free graph and v 6∈ V (G) is to be inserted into G. We want to know whether
G ∪ {v} is still diamond-free. The following definitions are useful.

Say that v is edge-adjacent to a clique C of G when E(C) ∩ N ′(v) 6= ∅,
while v is fully edge-adjacent to C when E(C) ∩ N ′(v) = E(C). Applying
these concepts, the effect of inserting v into G is shown by the next theorem.

Theorem 14. The graph G∪{v} is diamond-free if and only if the following
two statements hold for every maximal clique C to which v is edge-adjacent.

1. v is fully edge-adjacent to C, and

22

2. if v is edge-adjacent to a maximal clique C ′ 6= C, then V (C ′)∩V (C) =
∅.

Proof. If v is not fully edge-adjacent to C, then there is some vertex u ∈ C
which is not adjacent to v. Since v is edge-adjacent to C, then there is an
edge wz ∈ N ′(v)∩E(C). But then, u, v, w, z induce a diamond in G. Suppose
now that v is edge-adjacent to a maximal clique C ′ 6= C that contains some
vertex u ∈ C. Since C and C ′ are maximal cliques, it follows that there is
some vertex w ∈ C which is not adjacent to a vertex z ∈ C ′. Thus, u, v, w, z
induce a diamond.

For the converse, suppose that G∪{v} is not a diamond-free graph. Since
G is diamond-free, then there are three vertices u,w, z such that together with
v induce a diamond in G. If u and v are not adjacent, then u,w, z belong
to some maximal clique C of G. Since v is adjacent to w, z but not to u, we
obtain that v is edge-adjacent but not fully edge-adjacent to C. So, we may
assume that v is adjacent to u,w, z, and that w and z are not adjacent. But
then, uw and uz belong to different maximal cliques C and C ′. Thus, v is
edge-adjacent to C and C ′ and u ∈ V (C) ∩ V (C ′). �

We remark that part 2 of the above theorem is somehow similar to a
proposition contained in [11].

Algorithm 2, which is obtained from Theorem 14, can be used to decide
whether G ∪ {v} is a diamond-free graph.

Algorithm 2 Insertion of a vertex v into a diamond-free graph G

Input: a diamond-free graph G, a vertex v 6∈ V (G), and a set N(v) ⊆ V (G).
Output: a message indicating whether G ∪ {v} is diamond-free or not.

1. Unmark all previously marked vertices w ∈ V (G).

2. For each maximal clique C of G to which v is edge-adjacent:

3. If v is not fully edge-adjacent to C, then output “G∪{v} is not diamond-free”
and stop.

4. For each maximal clique C of G to which v is edge-adjacent:

5. If there is some marked w ∈ C, then output “G ∪ {v} is not diamond-free”
and stop. Otherwise, mark every w ∈ C.

6. Output “G ∪ {v} is a diamond-free graph”.

23

Observe that after G ∪ {v} is claimed to be a diamond-free graph in
Step 6, all the vertices of every edge-adjacent maximal clique C have a mark,
and every vertex w ∈ C was traversed and marked only once. Then, v is
fully-adjacent to C and no vertex of C belongs to other clique to which v is
edge-adjacent. Therefore, by Theorem 14, the algorithm is correct.

Discuss the implementation of Algorithm 2. The input of the algorithm
is formed by the graph G, the vertex v, and the set N(v) of neighbors of v
in G. An h-graph data structure is used to represent graph G. Also, the
family of non singleton maximal cliques of G is stored in the dynamic data
structure, each one having its own pointer. For a diamond-free graph G,
denote by Cwz the maximal clique of G containing edge wz. For each wz,
we keep a direct pointer to Cwz. Finally, each clique C is also associated to
a variable c(C), which counts the number of neighbors of v inside C, when a
vertex v is inserted into G.

Before traversing each edge-adjacent maximal clique in Steps 2 and 4,
we compute N ′(v), in O(d(v)h(G)) time, as in Section 5. The family C =
{Cwz}wz∈N ′(v) is computed by iteratively inserting Cwz into C, for every wz ∈
N ′(v). While C is generated, the value |N ′(v) ∩ E(Cwz)| can be computed
by increasing c(Cwz) by 1 when wz is first traversed. This operation takes
O(1) time per wz ∈ N ′(v), thus it takes O(d(v)h(G)) total time. Once C is
computed, each maximal clique C ∈ C is traversed.

If c(C) = |N ′(v) ∩ E(C)| 6= |E(C)|, then v is not fully edge-adjacent to
C and the algorithm stops with a failure message in Step 3.

Summing up, the computations involved in Algorithm 2 can be imple-
mented so as to run in O(d′(v) = O(d(v)h(G)) time. On the other hand, the
data structure that represents the graph has to be also updated, and such
operations also require O(d(v)h(G)) time. The implementation details are
omitted.

Observe that ifG∪{v} is a diamond-free graph, then its family of maximal
cliques is obtained in O(1) time and the maximal clique to which an edge vw
belongs can be queried in O(1) time.

Algorithm 2 can also be modified so as to output an induced diamond
in O(d(v)h(G)) time, when G ∪ {v} is not diamond-free. Consider the two
alternatives for the algorithm to stop in failure. First, if v is not fully edge-
adjacent to C ∈ C, then there is some vertex w ∈ C that is not adjacent
to v. In this case, v, w and the endpoints of an edge in N ′(v) ∩ C induce a
diamond. To find w, traverse the edges of C and query if each endpoint is
adjacent to v. The first vertex that is not adjacent to v is taken as w. To find

24

an edge in N ′(v) ∩ C, traverse N ′(v) until some edge of C is reached. Thus,
the certificate in this case can be found in O(d′(v)) time. The second reason
for the algorithm to stop in failure is that v is fully edge-adjacent to C and
C ′, and vw is marked with C ′ while trying to mark it with C 6= C ′. In this
case, we ought to find two non adjacent vertices of C ∪ C ′. As in the proof
of Theorem 14, these two vertices together with v and w induce a diamond.
To find the two vertices observe that w is the unique vertex in C ∩ C ′ and
that all the vertices of C \ {w} are not adjacent to the vertices of C ′ \ {w}.
Thus, the two non adjacent vertices of C ∪C ′ can be found in O(1) time by
traversing at most one edge of both C and C ′.

8.2. Removal of vertices:

For the removal of a vertex v, note that G \ {v} is always a diamond-
free graph. Thus, all we need to do is to remove v from the h-graph data
structure, and to remove vw from Cvw, for every w ∈ N(v). As explained
in Section 5, the former operation takes O(d(v)h(G)) time, while the latter
takes O(d(v)) time.

8.3. Insertion of edges:

With respect to the insertion of an edge vw, graph G∪{vw} is diamond-
free if and only if |N(v)∩N(w)| ≤ 1 and, if there is some z ∈ N(v)∩N(w),
then dG(vz) = dG(wz) = 0.

We can compute |N(v) ∩ N(w)| in O(d(v) + d(w)) time, while, for z ∈
N(v) ∩N(w), we decide in O(1) time whether the maximal cliques Cvz and
Cwz have exactly one edge. If so, these cliques have to merged, again in O(1)
time. Thus the insertion of vw takes O(d(v) + d(w)) time.

8.4. Removal of edges:

It remains only to examine the removal of an edge vw from the diamond-
free graph G.

Clearly, the graph G \ {vw} is diamond-free if and only if d(vw) ≤ 1, i.e.,
if Cvw has at most three edges. If d(vw) = 1, then Cvw has to be split into
two maximal cliques of G \ {vw} in O(1) time. Therefore, the removal of an
edge takes O(min{di(v), di(w)}+ hi(v) + hi(w)) because we need to remove
vw from the h-graph data structure.

Finally, we mention that the diamond-free data structure can be used
in a static algorithm to test whether a graph G is diamond-free, just by
iteratively inserting the vertices of G into the data structure. At each step,

25

the operations of greater complexity are the insertion of a new vertex into the
h-graph data structure, and the computation of N ′(v). As we have discussed
in Section 5, the total time cost for these operations is O(α(G)m). Thus,
this algorithm runs as fast as the improvement of the algorithm by Kloks et
al. discussed before.

Corollary 15. Diamond-free graphs can be recognized in time O(n+α(G)m).

9. Finding Simple, Simplicial, and Dominated Vertices

In this section, we describe dynamic algorithms for finding all the simple,
simplicial and dominated vertices of a graph.

A vertex v is dominated by a vertex w if N [v] ⊆ N [w]. Equivalently, v
is dominated by w ∈ N(v) if d(v) − d(vw) = 1. We say that v and w are
comparable if either v is dominated by w or w is dominated by v. If v is
dominated by all its neighbors, then v is a simplicial vertex, while if v is
a simplicial vertex and every pair of neighbors are comparable, then v is a
simple vertex.

In [11], Kloks et al. showed how to compute the set of simplicial vertices
in O(n+m2ω/(ω+1)) = O(n+m1.41) time, using the fast matrix multiplication
algorithm.

First, we mention that with the h-graph data structure, we can find all
the simple, simplicial, and dominated vertices in O(α(G)m) time, as follows.
First, find the degree d(vw) for every vw ∈ E(G) in O(n+ α(G)m) time, as
discussed in Section 4. Next, for each vertex v, find the set of vertices D(v)
that dominate v, by testing whether d(v)− d(vw) = 1, for every w ∈ N(v).
Clearly, if D(v) 6= ∅, then v is a dominated vertex, while if |D(v)| = d(v),
then v is a simplicial vertex. To determine if a simplicial vertex v is simple, it
is enough to check whether z ∈ D(w), for each edge wz ∈ N ′(v) with d(w) ≤
d(z). As discussed in Section 5, we can traverse all the edge-neighborhoods
of G in O(α(G)m) time, thus simple, simplicial, and dominated vertices can
be found in O(α(G)m) time.

Next, we consider dynamic algorithms. Our aim is to show how can the
h-graph data structure can be used to maintain the simple, simplicial, and
dominated vertices, while vertices are inserted to or removed from a dynamic
graph. Let G be a graph implemented with the h-graph data structure.

26

9.1. Insertion of vertices

Start by analyzing the operation of inserting vertices.
First, consider finding dominated vertices. Let D be the family of domi-

nated vertices of graph G. Suppose that a new vertex v with neighborhood
N(v) ⊆ V (G) is to be inserted into G, and that we want to update D so as
to store the dominated vertices of G ∪ {v}. The next lemma shows how to
find the new dominated vertices.

Lemma 16. A vertex w 6= v is dominated in H = G ∪ {v} if and only if at
least one of the following statements is true:

• w 6∈ N(v) and w is dominated in G,

• dH(w)− dH(vw) = 1, or

• dH(w)− dH(wz) = 1, for some wz ∈ N ′H(v).

The first step is to insert v into G and to compute d(vw) for every w ∈
N(v). Both steps take O(d(v)h(G)) time, as discussed in Section 5 and
Theorem 12. Next, we update the set D. By the lemma above, we need
not consider the vertices outside N(v). To find those w ∈ N(v) that are
dominated by v, we traverse N(v) while checking whether d(w)−d(vw) = 1.
Next, we find all the other dominated vertices, by checking the values of
d(w) − d(wz) and d(z) − d(wz), for every wz ∈ N ′(v). Finally, we remove
from D those neighbors of v that are no longer dominated, and we insert v
if there is some w such that d(v) − d(vw) = 1. Since N ′(v) is computed in
O(d(v)h(G)) time, the whole procedure takes O(d(v)h(G)) time.

Next, consider finding the simplicial vertices. A similar procedure, as
above, can be used to update the family S of simplicial vertices of G when
v is inserted into G. In this case, the simplicial vertices are found as in the
next lemma.

Lemma 17. A vertex w 6= v is simplicial in H = G∪ {v} if and only if one
of the following statements is true:

• w 6∈ N(v) and w is simplicial in G, or

• w is simplicial in G, and d(w)− d(vw) = 1.

27

Again, begin with the insertion of v into G and the computation of d(vw)
for every w ∈ N(v), in O(d(v)h(G)) time. In this case, we update S by first
traversing each w ∈ N(v) and checking whether w ∈ S and d(w)−d(vw) = 1.
On the other hand, we insert v into S if and only if d(v) − d(vw) = 1 for
every w ∈ N(v). The time required by these operations is O(d(v)), once v
was inserted into G. Thus, the update of S takes O(d(v)h(G)) time.

Next, consider finding simple vertices.
We remark that updating the family Q of simple vertices is not as simple

as updating the families D and S. The reason is that we can no longer skip
the vertices outside N(v). To provide an efficient update of Q, we store for
each vertex x, the number µ(x) of edges wz ∈ N ′(x) such that w and z are
not comparable. So, x is simple if and only if x is simplicial and µ(x) = 0.

We can find out the value of µ(v) in O(d(v)h(G)) time, by traversing
every wz ∈ N ′(v) and checking whether min{d(w), d(z)} − d(wz) = 1. The
update of the values of µ is based on the following lemma.

Lemma 18. Two vertices w and z of G are comparable in G∪{v} if and only
if they are comparable in G and either {w, z} ⊆ N(v) or {w, z} ∩N(v) = ∅.

The update of µ(x) for every x 6= v is done as in Algorithm 3.

Algorithm 3 Update of µ after the insertion of v.

Input: the h-graph data structure of G ∪ v and the function µ of G.
Output: none; µ is updated to be the function µ of G ∪ {v}.

1. For each w ∈ N(v):

2. For each z ∈ H(w):

3. If z 6∈ N(v), dG(w) − dG(wz) = 1 and dG(z) − dG(wz) > 1, then set
µ(x) = µ(x) + 1, for every x ∈ N(wz).

In Algorithm 3, the actual update of µ occurs when w, z were comparable
before inserting v, but ceased to be so after the insertion. It requires O(m)
time in the worst case.

Next, suppose we want to iteratively apply Algorithm 3 for computing
the simple vertices. Algorithm 4 describes such a procedure.

In the above algorithm, the condition of the inner loop of Algorithm 3
is executed at most once for each edge wz. Indeed, if w and z are not

28

Algorithm 4 Iterative update of µ for a graph G.

Input: a graph G represented with adjacency lists.
Output: the function µ of G.

1. Let v1, . . . , vn be an ordering of V (G), and G′ be an empty graph.

2. For i = 1, . . . , n: insert vi into G′ while executing Algorithm 3.

comparable prior the insertion of v, then they are not comparable after the
insertion of v. On the other hand, when wz meets the condition of the inner
loop, we know that dG(w) ≤ dG(z). Hence, as discussed in Section 5, the
time required by Algorithm 4 is O(n+α(G)m) for the update of the h-graph
data structure and d(vw). On the other hand, for the update of µ, we require
time

O

n+
∑

wz∈E(G)

min{d(v), d(z)}

 = O(n+ α(G)m)

Corollary 19. Simple, simplicial, and dominated vertices of a graph G can
be found in O(n+ α(G)m) time.

9.2. Removal of vertices

Next, we consider the removal of vertices.
The process for updating the sets of simple, simplicial, and dominated

vertices when a vertex is removed is similar. First, consider dominated and
simplicial vertices. When v is removed, again we should not consider those
vertices outside N(v) for the update of the sets D and S, of dominated and
simplicial vertices, respectively. A vertex in N(v) is dominated in G \ {v}
if, in G \ {v}, d(w)− d(wz) = 1 for some z ∈ H(w), while it is simplicial in
G \ {v}, if L(w) = ∅ and d(w) − d(wz) = 1 for every z ∈ H(w). Thus, we
can update D and S in O(d(v)h(G)) time.

Finally, consider simple vertices. For updating the set Q of simple ver-
tices, apply Algorithm 5, below.

The above algorithm in fact performs the inverse operations of Algo-
rithm 3. In this case, the actual update of µ occurs precisely when w and z
were not comparable before removing v, but turned comparable after after
the removal. It requires O(m) time for completion.

29

Algorithm 5 Update of µ after the removal of v.
1. For each w ∈ N(v):

2. For each z ∈ H(w):

3. If z 6∈ N(v), dG(w) − dG(wz) = 2 and dG(z) − dG(wz) > 1, then set
µ(x) = µ(x)− 1, for every x ∈ N(wz).

As for the iterative complexity, using arguments similar to those of Algo-
rithm 4, it is straightforward to conclude that the overall time complexity of
Algorithm 5 is O(n+mα(G)) when it is applied while vertices are removed.

Corollary 20. The sets of simple, simplicial and dominated vertices of a
graph can be found in time O(n+ α(G)m)

10. Recognizing Cop-Win and Strongly Chordal Graphs

In this section, we describe static algorithms for recognizing cop-win
graphs and strongly chordal graphs.

The vertex removal operations described in Section 9 can be used to
improve the best known algorithms for the recognition these classes.

10.1. Cop-win graphs

A cop-win order of a graph G is an ordering v1, . . . , vn of V (G) such that
vi is dominated in the subgraph induced by vi, . . . , vn, for 1 ≤ i ≤ n. A
graph that admits a cop-win order is a cop-win graph. The cop-win name
comes from the fact that cop-win graphs are precisely the graphs in which a
cop can always catch the robber in a pursuit game [13]. This class has been
introduced in [15], cf. [2]. Cop-win graphs are also known in the literature
under the name of dismantlable graphs [16], and they form an important
tool in the study of clique graphs [20]. The currently best algorithms for
recognizing cop-win graphs run in O(nm) time or in O(n3/ log n) time [19].

A dismantling of a graph G is a graph H obtained by iteratively removing
one dominated vertex of G, until no more dominated vertices remain. It is
not hard to see that all the dismantlings of G are isomorphic. Using the
h-graph data structure, we can compute the dismantling of a graph, and
the cop-win order of a cop-win graph, in O(α(G)m) time easily. First, find
the set D of dominated vertices in O(n + α(G)m) time (cf. above). Then,
while D 6= ∅, choose a vertex D, and remove it from G while updating D as

30

explained above. The graph obtained after this procedure is the dismantling
H of G. If H has a unique vertex, then G has a cop-win order, given by the
order in which the vertices were removed by the algorithm. This algorithm
takes O(n+ α(G)m) time, as discussed above.

Corollary 21. Cop-win graphs can be recognized in time O(n+ α(G)m).

10.2. Strongly chordal graphs

A simple elimination ordering of a graph G is an ordering v1, . . . , vn
of V (G) such that vi is a simple vertex in the subgraph of G induced by
vi, . . . , vn. The family of graphs that admit a simple elimination ordering is
precisely the family of strongly chordal graphs [9]. Strongly chordal graphs
were introduced as a subclass of chordal graph for which the domination prob-
lem is solvable in polynomial time [9]. The best known algorithms for com-
puting a simple elimination ordering run in either O(n2) or O((n+m) log n)
time [14, 17, 18]. These algorithms work by finding a doubly lexical ordering
of the adjacency matrix of the graph, and then testing if this sorted matrix
contains some forbidden structure. Our approach, instead, is based on it-
eratively finding a simple elimination ordering by iteratively removing the
simple vertices.

Every strongly chordal graph G has at least one simple vertex, and G\{v}
is strongly chordal for every v ∈ V (G) [9]. Thus, we can compute a simple
elimination ordering of G by removing the simple vertices in any order. That
is, first find the set Q of simple vertices in O(n + α(G)m) time (cf. above).
Then, while Q 6= ∅, choose a vertex in Q, and remove it from G while
updating Q with Algorithm 5. If all the vertices are removed from Q, then
the removal order given by the algorithm is a simple elimination ordering of
G. As discussed for Algorithm 4, the inner loop of Algorithm 5 is executed
at most once for each edge (cf. above). Therefore, the simple elimination
ordering is computed in O(n + α(G)m) time, improving the previous best
algorithms for graphs with low arboricity.

Corollary 22. Strongly chordal graphs can be recognized in time O(n +
α(G)m).

11. Conclusions

We have described a new data structure that is especially suitable for
handling dynamic algorithms on graphs when the edge-neighborhood of each

31

inserted or removed vertex has to be examined. In a sense, it represents
a compromise between the time required for the insertion and removal of
vertices and edges, and the time required for the examination of the edge-
neighborhoods. The complexity of the operations is based on concepts as the
arboricity and the h-index of graphs. The data structure can also be used in
static algorithms whose outputs depend on an examination of the subgraphs
induced by the neighborhoods of each vertex. The paper describes several
applications of the new data structure, leading to dynamic algorithms for the
corresponding problems. The dynamic algorithms proposed in the paper are
the first of their kind in the literature. On the other hand, the data structure
has been employed also to formulate new static algorithms for the considered
problems. Most of these new static algorithms improve the complexity of the
existing algorithms, for graphs having low arboricity.

Besides the applications that have been considered in the paper, there
are several others in which the h-graph data structure can be employed in
order to formulate new dynamic and static algorithms. In particular, we
mention that the data structure can be employed to obtain new algorithms
some different recognition problems. These algorithms would be suited for
graphs with low arboricity. A class of these recognition problem is as follows.

Let C be any class of graphs. Say that some graph G is locally C, whenever
all vertex neighborhoods of G induce graphs belonging to C.

The theorem below follows from Section 3.

Theorem 23. Let C be a class of graphs which can be recognized in O(m)
time. Then, locally C graphs can be recognized in O(α(G)m) time.

We already used this theorem in Section 8 to conclude that diamond-free
graphs can be recognized inO(α(G)m) time because the class of diamond-free
graphs is precisely the class of locally “disjoint union of cliques” graphs. The
above theorem also implies, for instance, that the classes of gem-free graphs,
i.e. locally cographs, wheel-free graphs, i.e. locally forests, and {Wk}k≥4-free
graphs, i.e. locally chordal graphs, can all be recognized in O(α(G)m) time
(see Figure 5).

Finally, we mention that the h-graph data structure can be extended so
as to handle directed graphs as well. Using this extension, and considering
that a transitive orientation of a directed graph is a property that can be
formulated only terms of the neighborhoods of its vertices, it follows that we
can recognize transitive orientations in O(αm) time. Consequently we can
recognize comparability graphs in O(αm) time.

32

b b b b

b
(a)

b b b b

b
(b)

Figure 5: (a) The gem graph and (b) the wheel graphs. Wheel graphs have at least 4
vertices. The wheel graph with k + 1 vertices is denoted by Wk, for k ≥ 3.

NOTE ADDED TO THE REVISED VERSION

A referee has pointed out that similar equations to those presented in Section 7, for count-
ing the number of 4-subgraphs of a graph, have been also recently and independently pro-
posed in two papers due to appear in conferences, one by D. Eppstein, M. T. Goodrich,
D. Strash, and L. Trott (COCOA’ 2010), and the other by M. Kowaluk, A. Lingas, E. Lun-
dell (SODA’ 2011).

[1] N. Alon, R. Yuster, U. Zwick, Finding and counting given length cycles, Algorithmica
17 (3) (1997) 209–223.

[2] H.-J. Bandelt, E. Prisner, Clique graphs and Helly graphs, J. Combin. Theory Ser.
B 51 (1) (1991) 34–45.

[3] B. Bollobás, Extremal graph theory, Dover Publications Inc., Mineola, NY, 2004,
reprint of the 1978 original.

[4] N. Chiba, T. Nishizeki, Arboricity and subgraph listing algorithms, SIAM J. Comput.
14 (1) (1985) 210–223.

[5] M. Conforti, (K4−e)-free perfect graphs and star cutsets, in: B. Simeone (Ed.), Com-
binatorial optimization (Como, 1986), Vol. 1403 of Lecture Notes in Math., Springer,
Berlin, 1989, pp. 236–253.

[6] D. Coppersmith, S. Winograd, Matrix multiplication via arithmetic progressions, J.
Symbolic Comput. 9 (3) (1990) 251–280.

[7] F. Eisenbrand, F. Grandoni, On the complexity of fixed parameter clique and domi-
nating set, Theoret. Comput. Sci. 326 (1-3) (2004) 57–67.

[8] D. Eppstein, E. S. Spiro, The h-index of a graph and its application to dynamic sub-
graph statistics, in: F. K. H. A. Dehne, M. L. Gavrilova, J.-R. Sack, C. D. Tóth (Eds.),
Algorithms and Data Structures, 11th International Symposium, WADS 2009, Banff,
Canada, August 21-23, 2009. Proceedings, Vol. 5664 of Lecture Notes in Computer
Science, Springer, 2009, pp. 278–289.

33

[9] M. Farber, Characterizations of strongly chordal graphs, Discrete Math. 43 (2-3)
(1983) 173–189. doi:10.1016/0012-365X(83)90154-1.
URL http://dx.doi.org/10.1016/0012-365X(83)90154-1

[10] J. Fonlupt, A. Zemirline, A polynomial recognition algorithm for perfect K4\{e}-free
graphs, Rev. Maghrébine Math. 2 (1) (1993) 1–26.

[11] T. Kloks, D. Kratsch, H. Müller, Finding and counting small induced subgraphs
efficiently, Inform. Process. Lett. 74 (3-4) (2000) 115–121.

[12] N-V. R. Mahadev and T. M.-Wang, On uniquely intersectable graphs, Discrete Math.
207 (1999), 149-159.

[13] R. Nowakowski, P. Winkler, Vertex-to-vertex pursuit in a graph, Discrete Math.
43 (2-3) (1983) 235–239.

[14] R. Paige and R. E. Tarjan, Three partition refinement algorithms, SIAM J. on Com-
puting 16 (6) (1987), 973-989.

[15] T. Poston, Fuzzy Geometry, Ph.D. thesis, University of Warwick (1971).

[16] A. Quilliot, Homomorphismes, points fixes, rétractions et jeux de poursuite dans les
graphes, les ensembles ordonnés et les espaces métriques, Ph.D. thesis, Université de
Paris VI, France (1983).

[17] J. P. Spinrad, Doubly lexical ordering of dense 0-1 matrices, Information Proc. Letters
45 (1993), 229-235.

[18] J. P. Spinrad, Efficient graph representations, Vol. 19 of Fields Institute Monographs,
American Mathematical Society, Providence, RI, 2003.

[19] J. P. Spinrad, Recognizing quasi-triangulated graphs, Discrete Appl. Math. 138 (1-2)
(2004) 203–213.

[20] J. L. Szwarcfiter, A survey on clique graphs, in: C. Linhares Sales, B. Reed
(Eds.), Recent Advances in Algorithms and Combinatorics, Vol. 11 of CMS Books
Math./Ouvrages Math. SMC, Springer, New York, 2003, pp. 109–136.

[21] M. Talmaciu, E. Nechita, Recognition algorithm for diamond-free graphs, Informatica
(Vilnius) 18 (3) (2007) 457–462.

[22] A. Tucker, Coloring perfect (K4 − e)-free graphs, J. Combin. Theory Ser. B 42 (3)
(1987) 313–318.

[23] V. Vassilevska, Efficient algorithms for path problems in weighted graphs, Ph.D.
thesis, School of Computer Science, Carnegie Mellon University (August 2008).

34

