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Abstract 

Safety concerns for fetus development of zidovudine (AZT) administration as prophylaxis 

of vertical transmission of HIV persist. We evaluated the participation of the ATP-binding 

cassette efflux transporter ABCG2 in the penetration of AZT into the fetal brain and the 

relevance for drug safety. Oral daily doses of AZT (60 mg/kg body weight) or its vehicle 

were administered between post gestational days 11 (E11) and 20 (E20) to Sprague-Dawley 

pregnant rats. At E21, animals received an intravenous bolus of 60 mg AZT/kg body 

weight in the presence or absence of the ABCG2 inhibitor gefitinib (20 mg/kg body weight, 

ip) and AZT in maternal plasma and fetal brain were measured by HPLC-UV. ABCG2 

protein expression in placenta and fetal brain, as well as mitochondrial function and 

ultrastructure in fetal brain were also analyzed. In utero chronic exposure to AZT markedly 

induced ABCG2 expression in placenta and fetal brain whereas did not significantly alter 

mitochondrial functionality in the fetal brain. The area-under-the-concentration-time-curve 

of AZT significantly decreased in fetal brains isolated from AZT-exposed fetuses compared 

to control group, but this effect was abolished by ABCG2 inhibition. Our results suggest 

that the absence of mitochondrial toxicity in the fetal brain after chronic in utero 

administration of AZT could be attributed to its low accumulation in the tissue caused, at 

least in part, by ABCG2 overexpression. We propose that any interference with ABCG2 

activity due to genetic, pathological or iatrogenic factors would increase the amount of 

AZT reaching the fetal brain, which could increase the risk of toxicity of this drug on the 

tissue. 

Keywords: HIV; ABCG2; zidovudine; bioavailability; placenta; fetal brain 
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Introduction 

The nucleoside analog reverse transcriptase inhibitor (NRTI) zidovudine (AZT) continues 

to play a key role as a drug for the prevention of maternal-fetal transmission of HIV. 

Prophylactic administration of AZT in combination with a second NRTI and a viral 

protease inhibitor reduces the mother-to-child HIV transmission to 1–2% in developed 

countries (HIV/AIDS, 2013). Unfortunately, exposure to AZT in utero encompasses the 

risk of long term mitochondrial-related toxicity that might be linked to hematological and 

cardiac tissue alteration in children (Barret et al., 2003; European Collaborative Study, 

2004; Pacheco et al., 2006; Sibiude et al., 2015).  

 

Transplacental kinetics of drugs are frequently mediated by ATP-binding cassette (ABC) 

efflux transporters embedded in the maternal face of the placenta (Staud et al., 2012). P-

glycoprotein (ABCB1), multidrug resistance-associated protein 2 and 5 (ABCC2, ABCC5), 

and breast cancer resistance protein (ABCG2) are well-described placental transporters 

affecting the passage of their substrates into the fetal circulation (Ceckova-Novotna et al., 

2006; Hahnova-Cygalova et al., 2011; Meyer zu Schwabedissen et al. 2005a; 2005b). In 

fact, a recent work reported in an in situ model of dually perfused rat placenta showed that 

ABCG2, and at lesser extent ABCB1, could be relevant for the passage of AZT from fetal 

to maternal side (Neumanova et al., 2015). Even though fetal-to-maternal plasma ratio of 

AZT is high (0.63-1.0) in Rhesus macaques and rats (Brown et al., 2003; Patterson et al., 

1997), the transplacental passage of AZT markedly decreases whether AZT is co-

administered with a BCRP substrate as acyclovir (Brown et al., 2003). Furthermore, it has 

been observed in Rhesus macaques that the accumulation of AZT is lower in fetal tissues 
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expressing ABC transporters from early stages of morphogenesis, such as the brain 

(Saunders et al., 2013, 2012), compared to other fetal organs (Patterson et al., 1997). In 

fact, the central nervous system displays a relative resistance to nucleoside analogs such as 

AZT, in both treatment and toxicity when compared to other organ systems even 

considering that the developing brain is particularly sensitive to mitochondrial damage 

(McCann et al., 2012). In support of a possible participation of ABCG2 in this 

phenomenon, experimental evidence has pointed out that this transporter is expressed at 

higher levels and is functionally more active in the developing than in the adult brain (Ek et 

al., 2012). Additionally, ABCG2 expression has also been found in the fetal brain 

endothelium as early as post-gestational day 12 (E12) in rats (Kalabis et al., 2007).  

 

Moreover, it was shown that the efflux of antiretroviral drugs by ABCG2 seems to become 

of relevance whether a high density of molecules are present in the cell membrane, as 

occurred either in transfected or transformed cell lines (Pan et al., 2007; Wang et al., 2004, 

2003; Weiss et al., 2007) or under in vivo repeated exposure to a substrate as efavirenz 

(Peroni et al., 2011; Roma et al., 2015).  

 

We propose that the low incidence of neurological damage associated with mitochondrial 

dysfunction in children exposed in utero to AZT (Ek et al., 2010) could be related, at least 

in part, to the restriction of AZT passage across both the placenta and the developing blood-

brain barrier by induction of ABCG2. The aim of this study was to analyze whether 

ABCG2 restricts the accumulation of AZT in fetal brain after chronic in utero exposure in 

pregnant rats protecting against mitochondrial toxicity. We developed a model of chronic 
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AZT administration leading to overexpression of ABCG2 in placenta and fetal brain that 

induced the efflux of AZT out of the fetal brain.  

 

1. Materials and methods 

1.1.  Materials 

AZT was provided by Laboratorios Richmond (Buenos Aires, Argentina). Gefitinib was 

obtained from Astra-Zeneca (Chesire, UK). Protease inhibitor cocktail (Complete mini, 

Roche Applied Science, Mannheim, Germany) and phenylmethylsulfonyl fluoride (PMSF, 

Sigma-Aldrich, St. Louis, MO) and every other chemical not listed here were of the highest 

purity available and were used as received.  

 

1.2. Methods 

 

1.2.1. Animals and treatments 

Female Sprague-Dawley rats (8 weeks, 150-200 g body weight) were housed under a 

12:12-h light:dark cycle, at controlled room temperature with food and water ad libitum. 

All procedures involving animals were conducted in accordance with NIH guidelines for 

the Care and Use of Laboratory Animals (Institutional Animal Care and Use Committee 

Guidebook, 2nd ed., 2002). The 3Rs principle of Reduction, Refinement, and Replacement 

was considered in the design of the animal experiment and applied when possible. Animal 

treatment was carried out in accordance with the guidelines of the 6344/96 regulation of the 

Argentinean National Drug, Food and Medical Technology Administration (ANMAT). 

Pregnancy was confirmed by the presence of sperm in the vaginal smear the morning after 

matting and was considered post gestational day 0 (E0). Control pregnant rats at E11, E13, 
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E15, E18 or E21 (n=3 per group) were used in this study.  The day of the assay, rats were 

anaesthetized with 1.2 g/kg urethane (i.p.) and subsequent doses of anesthesia were 

administered as needed. A laparotomy was performed and a small incision was made in the 

uterine wall to allow for sampling of the pups.  

Treatments: Twenty-four pregnant rats were randomly divided into two groups, given either 

60 mg / kg body weight zidovudine (AZT) or vehicle (0.05% ethanol in saline solution) 

from E11 to E20 orally by esophageal catheter. In E21, the animals from each group were 

again divided into two subgroups for the administration of the selective inhibitor of 

ABCG2 gefitinib (GFT, 20 mg/kg) or vehicle (dimethyl sulfoxide:propylene glycol:saline 

solution, in a 2:2:1 ratio), respectively, 30 min before the onset of pharmacokinetic assays. 

In this way, 4 groups were constituted: VEH / VEH, AZT / VEH, VEH / GFT, and AZT / 

GFT (n = 6 per group). 

 

2.2.3. ABCG2 protein expression levels and localization 

2.2.3.1. Western Blot in placenta and fetal brain 

Placenta (at E11, E15, E18, and E21) and fetal brain (E18 and E21) were collected from 

pregnant rats within 30 min of surgery and immediately stored at -70° C. To prepare 

samples for western blotting analysis, total protein was obtained from tissues defrosted on 

ice and measured with bovine serum albumin (BSA, A7906 Sigma-Aldrich, USA) as 

standard (Lowry et al., 1951) and analyzed as previously described (Peroni et al., 2011). 

Briefly, placenta from E11 and E15 (pool of three, 30 μg of protein per line), E18 and E21 

(30 μg of protein per line), and fetal brain from E18 and E21 (pool of three; 50 μg of 

protein per line) were loaded onto 8 % SDS-polyacrylamide gels, subjected to 

electrophoresis and transferred to nitrocellulose membranes. After blocking, membranes 
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were cut at molecular mass 52 kDa, based on the Kaleidoscope molecular weight standards 

(Bio-Rad, Hercules, CA, USA). The upper and lower portions were then incubated 

overnight at 4° C with anti-rat ABCG2 antibody (M-70, 1:400; Santa Cruz Biotechnology, 

Santa Cruz, CA, USA) or mouse anti-ABCG2 antibody (BXP-21 clone 1/400, Santa Cruz 

Biotechnology, CA, USA, SC-58222) and anti-actin antibody (A2066, 1:1000; Sigma-

Aldrich, USA), respectively. The immune complex was detected by incubation with the 

horseradish peroxidase-linked anti-rabbit antibody (sc-2004, 1/2000; from Santa Cruz 

Biotechnologies) or horseradish peroxidase-linked goat anti-mouse IgG (sc-2031, 1/2000; 

from Santa Cruz Biotechnologies) during 90 min. The bands were detected by 

chemiluminescence (Amersham ECL Biosciences, Amersham, UK) and quantified by 

densitometric analysis using ImageJ software (1.34S, US National Institutes of Health, 

Bethesda, MD, USA). 

 

2.2.3.2. Immunofluorescence in fetal brain tissue 

Fetus obtained by cesarean surgery on E21 were decapitated and the brain were carefully 

removed from skull, washed in cold 0.1 M K2HPO4/KH2PO4, pH 7.4 (PB), placed in a pre-

chilled glass platen, and cleaned to remove meninges and choroid plexus. One hemisphere 

of each brain was postfixed in 4% paraformaldehyde / PB at 4 °C for 24 h, cryoprotected 

overnight in 30% sucrose/PB. Four serial hemi-coronal slices (20-μm thickness) at 3 mm 

(striatal level) from the frontal tip were performed with a rotary microtome cryostat 

(Thermo Scientific), mounted in gelatinized glass slides and stored at −20°C until use. Two 

section of each series was stained with hematoxylin and eosin (H&E) according to standard 

protocols and observed at under low as well as 200 × magnification. For 

immunofluorescence, another two section of each series were blocked with 5% fetal calf 
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serum (FCS) in phosphate saline buffer (PBS) for 1 h prior incubation with mouse anti-

ABCG2 antibody (BXP-21 clone 1/100, Santa Cruz Biotechnology, SC-58222) overnight 

at 4 °C. The BXP-21 antibody clone has previously been shown to specifically react with a 

72 kDa protein in rat fetal brain (Ek et al., 2010). Slides were incubated with goat anti-

mouse IgG (Fc specific)–biotin antibody (1/250 Sigma Aldrich, B7401) overnight at 4 °C, 

followed by 1 h incubation with DTAF-streptavidin (1/500 Jackson ImmunoResearch 

Laboratories Inc, TechFAQ #6) at room temperature. All antibodies were diluted in 3% 

FCS/0.3% Tween20 PBS and three washes with 0.3%-Tween20 PBS were performed 

between each step. Tissues were mounted with Mowiol and coverslipped. Control sections 

omitting primary antibody were prepared in each slide and were always blank. Photographs 

were taken with an optical microscope (Nikon Eclipse) equipped with fluorescent optics 

and a camera connected to a monitor and computer. Digital images were color balanced 

with Adobe Photoshop 8.0 (Adobe Systems). The average intensity value of each particle 

was background subtracted using the average intensity of an adjacent region of comparable 

size.  

 

2.2.4.  Mitochondrial function and structure  

2.2.4.1. Isolation and preparation of mitochondrial membranes 

Mitochondrial purified fractions from fresh fetal brain homogenates isolated from E21 pups 

treated with AZT or its vehicle (n=4 per group) were obtained by differential centrifugation 

in a Sorvall RC5C centrifuge (Sorvall, Buckinghamshire, England). Five fetal brains were 

pooled, washed, and minced in ice-cold STE buffer [250 mM sucrose, 5 mM Tris-HCl, and 

2 mM EGTA (pH 7.4)]. Samples were homogenized in 1:10 STE buffer and centrifuged at 

700g for 10 min. The sediment was discarded and mitochondria were pelleted from the 
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supernatant by a second centrifugation step at 8000g for 10 min. Finally, the pellet was 

washed, rinsed, and resuspended in 500 μL of STE buffer. The whole procedure was 

carried out at 0-4 °C (Mela and Seitz, 1979). Mitochondrial membranes were obtained by 

three freeze-thaw cycles of the mitochondrial preparation, followed by a homogenization 

step by passage through a 29G hypodermic needle (Boveris et al., 2002).  

 

2.2.4.2 Mitochondrial respiration  

Mitochondrial oxygen consumption was assessed by polarography using a Clark-type 

oxygen electrode (Hansatech Oxygraph, Hansatech Instruments Ltd, Norfolk, England) for 

high resolution respirometry at 30 °C. Freshly isolated brain mitochondria (1 mg 

protein/mL, n=4 per group) were incubated in respiration buffer [120 mM KCl, 5 mM 

KH2PO4, 1 mM EGTA, 3 mM HEPES, and 1 mg/mL fatty acid-free BSA (pH 7.2)] 

supplemented with 2 mM malate and 5 mM glutamate, or 8 mM succinate. An initial rest 

state respiration (state 4) was established under these conditions, which was then switched 

to active state respiration (state 3) by the addition of 1 mM ADP. Respiratory control ratio 

(RCR) was calculated as state 3/state 4 respiration rates. Results were expressed as ng-at 

O/min mg protein (Boveris et al., 1999). 

 

2.2.4.3. Mitochondrial respiratory chain complexes activity 

 The enzymatic activity of mitochondrial respiratory complexes was evaluated by a 

colorimetric assay in a Beckman DU 7400 diode array spectrophotometer (Beckman 

Coulter Inc., CA, USA). Mitochondrial membranes (0.25 mg protein/mL) were incubated at 

30 °C in 100 mM PBS (pH 7.2). For complexes I and II, reaction x was supplemented with 

0.2 mM NADH or 5 mM succinate as substrates, respectively, plus 25 μM cytochrome c3+ 
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and 0.5 mM KCN. Cytochrome c3+ reduction rate was followed at 550 nm (ε = 19 mM-1 

cm-1) and results were expressed as nmol reduced cytochrome c3+/min mg protein. For 

complex IV, reaction buffer was instead supplemented with 60 μM cytochrome c2+. In this 

case, cytochrome c2+ oxidation rate was calculated from the pseudo-first reaction constant 

(k´) and expressed as k´/mg protein (Yonetani, 1967). 

 

2.2.4.4. Mitochondrial membrane potential 

Freshly isolated brain mitochondria (25 μg protein/mL, n=4 per group) were incubated with 

the potentiometric cationic probe 3,3′-dihexyloxacarbocyanine iodide (DiOC6) (30 nM) in 

respiration buffer. The procedure was performed in the dark at 37 °C for 20 min. After the 

incubation period, mitochondria were acquired in a FACSCalibur flow cytometer (BD 

Biosciences, San Jose, CA, USA). To exclude debris, samples were gated based on light-

scattering properties and 20,000 events per sample within this gate were collected. 10-N-

nonyl acridine orange (NAO) (100 nM) was used to selectively stain mitochondria and to 

evaluate their purity, due to its ability to selectively bind to cardiolipin at the inner 

mitochondrial membrane (Haines and Dencher, 2002). Samples were analyzed in the FL-1 

channel with FlowJo software (Tree Star, Ashland, OR, USA), and the arithmetic mean 

values of the median fluorescence intensities (MFI) were obtained. Autofluorescence 

(negative control) was evaluated in isolated brain mitochondrial samples without DiOC6. 

Total depolarization induced by carbonyl cyanide m-chlorophenyl hydrazine (m-CCCP) (2 

μM) was used as a positive control. Mitochondrial preparations that showed no changes in 

membrane potential under this condition were discarded (Marchini et al., 2013). 

 

2.2.4.5. Ultrastructural analysis of fetal brain mitochondria 
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2.2.4.5.1.  Tissue preparation for transmission electron microscopy 

 

Fetus removed by cesarean surgery on E21 were decapitated and brains were carefully 

removed, washed in chilled PB and placed in a pre-chilled glass platen. Four pieces of 1-2 

mm3 were obtained from four different areas of the cerebral cortex and fixed with 2.5% 

glutaraldehyde/PB for 4 h. Samples were postfixed in 1% osmium tetroxide/PB for 1.5 h at 

0 °C. Samples were contrasted with 5% uranyl acetate for 2 h at 0 °C, dehydrated, and 

embedded in Durcupan resin (Fluka AG, Switzerland) for 72 h at 60 °C. Ultrathin sections 

were cut and observed with a Zeiss EM 109 transmission electron microscope 

(Oberkochen, Germany). Representative digital images were captured using a CCD 

GATAN ES1000W camera (CA, USA). 

 

2.2.4.5.2.  Electron microscopic evaluation 

Random sections were selected for analysis by an electron microscopy technician blinded 

to the treatments. Using the “point counting grids” methodology (Vanasco et al., 2014), 

mitochondrial density was determined. For each sample, 10 photomicrographs at 85,000X, 

were evaluated for mitochondrial morphology. The degree of mitochondrial pathology was 

scored by two different investigators, all of whom were given coded photomicrographs to 

eliminate bias. Scoring paradigm for mitochondrial status in brain cortex is detailed in 

legend at Figure 3.  

 

2.2.5. Thiobarbituric acid reactive substances (TBARS) assay in fetal brain 

homogenate 
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 The TBARS assay is the classical approach in order to evaluate the extent of lipid 

peroxidation processes in biological samples (Yagi, 1976). Briefly, 100 μL of brain 

homogenates were mixed with 200 μL 0.1 N HCl, 30 μL 10% (w/v) phosphotungstic acid 

and 100 μL 0.7% (w/v) 2-thiobarbituric acid, and incubated at 95 °C for 60 min. 

Afterwards, samples were cooled and TBARS were extracted in 1 mL of n-butanol. After a 

10 min centrifugation at 800 g, the fluorescence of the butanol layer was measured in a 

Perkin Elmer LS 55 luminescence spectrometer (Perkin Elmer, MA, USA) at 515 nm 

(excitation) and 553 nm (emission). A calibration curve was prepared using 1,1,3,3-

tetramethoxypropane as standard. Results were expressed as nmol TBARS/mg protein.  

 

2.2.6.  Pharmacokinetic analysis 

 2.2.6.1. Sample collection 

For pharmacokinetic assays, rats were anaesthetized with urethane (1.2 g/kg, i.p and 

supplemented to loss of reflexes). Prior to dosing, a laparotomy was performed and a small 

incision was made in the uterine wall to allow for sampling of the pups, and cannulas were 

surgically implanted in the right femoral vein and in the carotid artery 

The pharmacokinetic study consisted of an intravenous administration through the femoral 

vein of 60 mg / kg AZT (0.05% ethanol in saline solution) and its concentration in maternal 

blood and fetal brain was determined at times 0, 1, 2, 5, 10, 15, and 30 min. The dose was 

selected on the basis of a previous study that shows quantifiable values of AZT in placenta, 

amniotic fluid as well as in total fetal tissue homogenates (Brown et al., 2003). For each 

point, 150 µl of heparinized maternal blood was collected by carotid artery and 1 fetal sac. 

Body temperature was maintained by heated surgical pads and incandescent lights. The 

blood supply to the individual fetus was tied off prior to removal to minimize bleeding. 
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Blood was placed into heparinized tubes. Fetal brains were isolated from the pups and 

homogenized in 2 volumes of deionized water (wt/vol). Proteins were precipitated by 

addition of 15% trichloroacetic acid on ice for 15 min with vortex and then centrifuged 10 

min at 5000g. Supernatants were stored at 70°C until analysis.  

 

2.2.6.2. Quantification of AZT in biological samples: Instrumentation: The HPLC system 

consisted in a Spectra series P100 pump (Thermo separation products, Virginia, USA), with 

a 20 μL injection loop. Separation was performed using a Luna C8 column (250 X 4.6 mm, 

5 μm particle size, Phenomenex, CA, USA) for AZT samples. 

Chromatographic conditions: Isocratic elution at room temperature; flow rate: 1.2 ml/min. 

UV Detection: 266 nm for AZT. Mobile phase: 20 mM sodium phosphate buffer 

(containing 8 mM 1-octanesulfonic acid sodium salt)–acetonitrile (86:14, v/ v) with pH 

adjusted to 3.2 with phosphoric acid (Fan and Stewart, 2002). Samples were injected in 

duplicate into the HPLC column.  

Pharmacokinetics analysis: All data were analyzed using the freely available menu-driven 

add-in program for Microsoft Excel PKsolver (Zhang et al., 2010). A non-compartamental 

analysis was performed for concentration-time profiles data and area under the curve of 

AZT from 0 to infinity (AUC AZT0∞) for each sample were extracted. 

 

2.2.7. Statistical analyses 

 Data are presented as the mean ± S.E.M. (n = 4 to 6) analyzed with Graph Pad Prism 5 

(Graph Pad Software). Pharmacokinetic assays were analyzed by two-way analysis of 

variance followed by Bonferroni's ad hoc post test. AUC and western blot assays were 
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analyzed by one-way analysis of variance followed by Bonferroni's multiple comparison 

test. TBARS assay, mitochondrial respiration, respiratory complexes activities, 

mitochondrial potential and mitochondrial ultrastructure were analyzed by Student t-test. 

 

3. Results 

3.1. Effect of AZT on the expression of ABCG2 in placenta and fetal brain  

To validate our experimental model, a time course of ABCG2 protein expression in 

placenta was performed in control Sprague-Dawley rats from middle to term gestation 

covering the period in which the animals would be subsequently treated with AZT (E11 to 

E21). A band of approximately 72 kDa corresponding to the molecular weight of the 

monomer of ABCG2 was observed in placenta. As shown in Supplemental File 1A, 

ABCG2 showed maximal expression at E15 although the difference failed to reach 

statistical significance respect to E11. From E15 to hereinafter ABCG2 significantly 

decreased becoming almost undetectable in E21 (Supplemental File 1A and B). Moreover, 

a significant decreased in ABCG2 expression was also observed in fetal brains between 

E18 and E21 (Supplemental File 1A and B). 

To evaluate the effect of chronic exposure to AZT, pregnant rats were treated with 60 

mg/kg body weight AZT or its vehicle (0.05 % ethanol in saline solution) daily by gavage 

from E11 to E20. Expression of ABCG2 in the placenta and fetal brain of vehicle-treated 

animals was not significantly different from that found in control animals (Figure 1A and 

B). A significant induction of ABCG2 protein in both tissues was observed in rats 

chronically exposed to AZT compared to vehicle-treated animals (Fig. 1B). When we 

performed a histological analysis in fetal brain slices from both groups by the H&E 

technique, we observed that both the architecture and the number of cells at the level of the 
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developing striatum did not show differences between those tissues obtained from rats 

treated with vehicle compare with those treated with AZT (Fig. 1C and F). 

Immunofluorescence for ABCG2 performed in the same area of the brain showed a higher 

immunoreactivity for the protein in fetal brains isolated from rats chronically exposed to 

AZT (Fig. 1D) respect to vehicle-treated ones (Fig. 1 G). At higher magnification (Fig. 1E 

and H), it could be observed that immunoreactivity for ABCG2 in the fetal brain cortex was 

exclusively localized to blood vessels structures in accordance to that observed by Ek et al 

(Ek et al., 2010). 

 

3.2. Effect of chronic oral administration of AZT in the functionality and 

ultrastructure of fetal brain mitochondria  

Since AZT causes alterations in the mitochondrial energy-generating mechanism 

(Szewczyk and Wojtczak, 2002), we analyzed oxygen consumption in freshly isolated 

mitochondria from fetal brain. We did not observed modifications in the respiratory 

consumption ratio (RCR) using malate plus glutamate, or succinate, as respiratory 

substrates in brain mitochondria isolated from pups exposed in utero to AZT respect to the 

vehicle-treated ones (Table 1). In addition, as shown in Table 2, no changes were detected 

when the activity of the respiratory chain complexes I or II were assessed, whereas a slight 

but no significant increase in Complex IV was found in the AZT-exposed group.  

Mitochondrial membrane potential comprises another key feature of mitochondrial 

function. Isolated brain mitochondria were selected from background based on light-

scattering properties (SSC vs FSC, Fig. 2A) and gated events were chosen for analysis. In 

every analyzed preparation, >95% of gated events were NAO-positive compared with 

unstained control samples (Fig. 2B), indicating that contamination with other subcellular 
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constituents throughout the isolation procedure was kept at minimum. Moreover, no 

significant differences were observed in NAO MFI between control and AZT-exposed pups 

(Fig. 2C). Regarding mitochondrial membrane potential, as it is shown in DiOC6 overlaid 

histograms (Fig. 2D) and quantification as MFI (Fig. 2E), no significant differences were 

also observed between control and AZT-exposed pups.  

We also analyzed the mitochondrial ultrastructure of the fetal cerebral cortex in E21. 

Several parameters of mitochondrial damage were observed in tissues isolated from 

animals treated either with vehicles (Fig. 3A-E) or chronically exposed to AZT (Fig. 3F-J), 

such as those detailed in the legend of Figure 3. The results of mitochondrial damage score 

quantification, performed by two investigators on a total of 10 tissue photomicrographs at 

85000x magnification (Fig. 3E and J) and in turn in duplicate, showed that there were no 

significant differences in the mitochondrial status of the cerebral cortex between the treated 

and vehicle groups (Fig. 3K). 

 

3.3. Lipidic peroxidation in fetal brain homogenate 

Another parameter of mitochondrial damage is the over production of reactive species of 

oxygen that leads to oxidative damage to lipids. Furthermore, in our experimental 

conditions, no significant changes in TBARS levels were observed in fetal brain 

homogenate of fetuses isolated from mothers treated with AZT respect to the animals 

receiving vehicle (Fig. 3L) precluding an over extent of lipid peroxidation processes. 

 

3.4. Effect of chronic oral administration of AZT on its accumulation in the 

distribution to the fetal brain 
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In order to evaluate the passage of AZT to fetal brain in our model and the participation of 

ABCG2, we proceeded to administer an i.v. dose of 60 mg AZT/kg body weight in term-

pregnancy rats chronically exposed to either the drug or the vehicle in control conditions of 

after a 30 min-pre administration of the selective inhibitor of ABCG2 gefitinib [20 mg/kg 

i.p.; (Roma et al., 2015)]. Drug levels were quantified in maternal blood as well as in fetal 

brain at different times by HPLC-UV. No detectable levels of AZT were found at time 0 in 

either maternal blood or fetal brain in samples obtained from animals chronically treated 

with AZT. No differences were found in the concentration-versus-time curves for AZT in 

maternal blood between vehicle groups and chronically exposed to AZT (Fig 4A), even in 

the presence of the inhibitor of ABCG2 gefitinib (Fig 4B). In addition, Figure 4C shows 

that inhibition of ABCG2 does not modify AZT levels in maternal blood, as no changes 

were observed in the corresponding area under the curve from 0 to infinite in maternal 

plasma (AUC 0∞ plasma; Fig. 4C).  

Unlike what was observed in maternal plasma, Fig. 5A, the kinetic profile and the AUC0∞ 

of AZT in fetal brains from pups chronically exposed in utero to AZT was significantly 

reduced with respect to the vehicles in control conditions (Fig. 5A). Nevertheless, this 

difference disappeared after ABCG2 inhibition (Fig. 5B), which was also reflected in 

changes in the accumulated amount of drug in the tissue represented as the area under the 

curve (AUC0∞) in Fig. 5C, suggesting that induction of ABCG2 have a relevant 

participation in limiting the penetration of AZT in the fetal brain. 

Moreover, the concentration of AZT in fetal brain and maternal blood showed no difference 

when analyzed in E11 (data not shown). 
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4. Discussion 

The goal/aim of this study was to evaluate the in vivo contribution of the efflux transporter 

ABCG2 to the delivery of the substrate AZT towards the fetal brain using a model of 

chronic oral administration of the drug in pregnant rats. We have found that sustained 

exposure to AZT induced ABCG2 in placenta and fetal brain. Moreover, decreased 

accumulation of AZT in fetal brain, because of an efflux mechanism due to the induction of 

ABCG2, would account for the absence of mitochondrial toxicity that we found in this 

tissue. Our results are in accordance with the low prevalence of adverse neurologic effects 

compared to other organs, such as heart, muscle, and blood cells, in infants exposed to the 

NRTIs in utero (King, 2004). In this sense, it has been shown that high experimental AZT 

doses are required to cause neurologic abnormalities in fetuses chronically exposed to AZT 

(McCann et al., 2012). 

ABC transporters collaborate with the elimination of lipophilic compounds that reach the 

fetal compartment (Figueroa et al., 2010; Löscher and Potschka, 2005). ABCG2 is highly 

expressed in placenta in several species (Maliepaard et al., 2001), but it undergoes 

substantial changes during normal placental development (Hahnova-Cygalova et al., 2011). 

From E11 to E21 in rats, that could be extrapolated to the time window in which AZT is 

recommended for the prophylaxis of vertical transmission of HIV in women, we found that 

placental ABCG2 gradually decreased to become almost undetectable near to parturition 

(Figure 1A, 1B). This is in agreement with previous works in rats, mice and humans (Wang 

et al., 2006; Yasuda et al., 2005). In turn, the present observation that ABCG2 in fetal brain 

decreased from E18 to E21 (supplemental file 1) is in accordance with previous reported 

evidences (Cygalova et al., 2008). Moreover, ABCG2 seems to localize to the blood-facing 
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side of epithelial cells of brain in early fetal stages at higher levels than in postnatal days 

giving additional neuroprotection to that provided by the placenta (Ek et al., 2010). 

 

AZT disposition between mother and fetus have shown to be poorly modulated by ABCG2 

when tested in rat term placenta (Neumanova et al., 2016) with almost undetectable levels 

of the transporter as previously reported (Mao, 2008) and in the present work (Figure 1). 

Even so, pharmacokinetics of AZT in near-term pregnant rats adjusted to a two-

compartment model with first order elimination, but when it is co-administered with the 

ABCB1/ABCG2 substrate acyclovir (Gunness et al., 2011), an increased access of both 

drugs to fetal tissues is observed (Brown et al., 2003), suggesting that ABC transporters 

could act as fetal barriers mechanisms (Brown et al., 2003). Since AZT is both substrate 

and modulator of ABCG2 in vitro (Wang et al., 2004, 2003), it could be possible that in 

conditions coursing with higher levels of ABCG2, this transporter could restrict AZT 

disposition. In this sense, no histologic alterations, at least at striatal level, were found in 

fetal brains exposed in utero to AZT in our model (Fig 1 C and F).  An induction of 

ABCG2 could be attained by sustained substrate exposure, as we previously observed for 

the overexpression of ABCG2 in small intestine and blood-brain barrier caused by 

efavirenz (Peroni et al., 2011; Roma et al., 2015) as well as in the placenta and in the fetal 

brain (present work, Fig 1A and 1B). Moreover, immunofluorescence showed that an 

specific mark for ABCG2 localized in blood vessels structures in the cortex fetal brain (Fig 

1C-F; (Ek et al., 2010) confirms the presence of this transporter in the developing brain-

barrier exerting efflux mechanisms.  
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The amount of AZT that can cross placenta and reaches fetal circulation is relevant for 

mitochondrial function. It was reported that AZT alters the enzymes involved in 

mitochondrial energy production by a short-term oxidative stress-mediated mechanism 

(Szabados et al., 1999) and affects mitochondrial proteins synthesis through long-term 

damage of mitochondrial DNA (Szewczyk and Wojtczak, 2002). In our model, in utero 

exposure to AZT during the second half of gestation did not cause alterations in 

mitochondrial function assessed through mitochondrial oxygen consumption, respiratory 

chain complexes activity, and inner membrane potential (Table 1, Table 2 and Figure 2). In 

addition, the absence of AZT exposure-related alterations of mitochondria ultrastructure in 

fetal brain found reported here (Fig 3A-K) is consistent with findings in primates exposed 

to AZT in utero, where mitochondrial brain compromise is observed only whether AZT is 

associated to other NRTIs perinatally (Divi et al., 2010; Gerschenson et al., 2000). The 

present findings that show preserved functionality and structure in mitochondria, are in 

agreement with previously published studies designed to examine neurodevelopment in 

infants born to HIV-1–infected mothers, since it has not been reported 

neurodevelopmental/cognitive compromise that is due only to HAART exposure (Alimenti 

et al., 2006). In turn, the absence of alterations in the lipidic peroxidation parameters in the 

brain tissue of fetuses exposed in utero to AZT with respect to the vehicles (Fig. 3L) is 

another present finding that reinforces the absence of fetal brain damage observed in our 

model and which may be related to low tissue exposure to the drug. Supporting this 

observation, is the present finding showing a marked decrease of AZT concentrations in 

fetal brain in chronic-exposed animals (Fig. 5) without changes in the levels of AZT in 

maternal blood (Fig 4). In accordance with this, a low penetration of the ABCG2 substrate 

cimetidine to the fetal brain was also reported (Cygalova et al., 2008). Furthermore, our 
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hypothesis that induction of ABCG2 restrict the access of AZT to fetal brain was confirmed 

by the significant increase (nearly 70 %) in AZT levels in fetal brains from chronically-

treated drug pregnant rats, that equated those found in vehicles, when ABCG2 was 

inhibited by gefitinib (Fig 5B and 5C). Moreover, this increase in AZT levels in fetal brain 

occurred at the expense of an inhibition of ABCG2 at both the placenta and fetal brain since 

maternal blood concentrations remained unchanged, as demonstrated by increased AUC fetal 

brain /AUC maternal blood ratio (Fig. 5D). On the other hand, the absence of changes in the 

animals treated with vehicles could likely be due to the almost null expression of ABCG2 

in the placenta and the fetal brain of these animals. Still, it is not excluded that there is 

another efflux transporter that regulates the AZT passage through the placenta or the blood-

brain barrier. 

 

The relevance of ABCG2 on AZT fetal disposition seems to be dependent on variables that 

affect the transporter expression levels or activity. Possible scenarios are the combination 

of AZT with either the ABCG2 inhibitor ritonavir (Bierman et al., 2010) or the ABCG2 

substrates nitrofurantoin and sulfasalazine, which are commonly prescribed for pregnant 

women that  have been shown to have ABCG2 activity-depending pharmacokinetics 

(Goldberg et al., 2015; Lee et al., 2015; Ni et al., 2010) as well as ABCG2 gene 

polymorphisms (Mao, 2008).  

We consider that to be able/in order to minimize the risk of toxicity affecting newborns, it 

is of interest to understand all factors potentially affecting AZT disposition in fetus. , Co-

administration of AZT with other ABCG2 substrates or inhibitors with narrow therapeutic 

range might interfere with ABCG2 activity due to genetic, pathological or iatrogenic 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

24 

 

factors that would increase the amount of AZT reaching the fetal brain, increasing  the risk 

of toxicity of this drug on target tissues. 
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Figures and Table legends 

 

Figure 1. Effect of chronic AZT on the expression of ABCG2 in placenta and fetal 

brain 

(A) Representative immunoblots for ABCG2 and actin performed in placenta (left) or fetal 

brain (right) at post gestational day E21 isolated from control pregnant rats or after chronic 

oral administration of either AZT (60 mg/kg) or vehicle (0.05% ethanol). (B) 

Corresponding semi quantification for control (white bars, n=3), vehicles (VEH, squared 

bars, n=6) or AZT (stripped bars, n=6) in placenta (left) or fetal brain (right). Data are 

presented as media ± S.E.M relative densitometric units calculated as ratio between optical 

density of ABCG2 (mouse anti-ABCG2 antibody; BXP-21 clone, 1/400) and actin (n=6 

different litters for each group). Statistically significant difference (**p<0.001 for placenta; 

*p<0.01 for fetal brain) between AZT and either CONTROL or VEH. Histology: 

Representative images of H&E-stained hemi-coronal sections at the striatal level from fetal 

brain at E21 isolated from animals chronically exposed either to vehicle (0.5% ethanol, C) 

or to 60 mg/kg AZT (F), n=4 per group. The scale bar in the inset represents 1 mm, whereas 

the area delimited by the black box is shown amplified to 200x magnification. 

Immunofluorescence of ABCG2: Representative photomicrographs of 20 µm-thickness 

cryosections from fetal brain at E21 isolated from VEH (D, E) or AZT (G, H), n=4 per 

group. Photomicrographs of the striatal region are shown at 100X (D and G) and 

magnifications (1000X) of the boxes marked in D and G are shown (G and H, 

respectively). 
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Table 1. Effect of chronic oral administration of AZT in mitochondrial function in 

fetal brain. Oxygen consumption rates were evaluated by high-resolution respirometry in 

isolated mitochondria from fetal brain. 2 mM Malate plus 5 mM glutamate, or 8 mM 

succinate, were used as respiratory substrates to establish state 4 respiration. Afterwards, 1 

mM ADP was added to archive state 3 metabolic state. RCR was calculated as state 3/state 

4 respiration rates. RCR: respiratory control ratio 

 

Table 2. Effect of chronic oral administration of AZT in mitochondrial respiratory 

chain complexes activity. Colorimetric assessment of mitochondrial respiratory chain 

complexes activity, based on cytochrome c3+ reduction for Complexes I and II, and on 

cytochrome c2+ oxidation for Complex IV, in mitochondrial membranes isolated from fetal 

brains of either vehicle (VEH, white bars) or AZT (stripped bars) treated pregnant rats in 

E21. 

 

Figure 2. Evaluation of isolated brain mitochondrial membrane potential by flow 

cytometry.  

(A) Mitochondria were selected based on light scattering properties and 20,000 gated 

events were collected. (B) Overlaid histograms and (C) fluorescence quantification of gated 

mitochondrial events for NAO, indicating purity of the mitochondrial preparations and 

cardiolipin oxidation. Autofluorescence (grey), control (light orange), AZT (dark orange). 

(D) Overlaid histograms and (E) fluorescence quantification of gated mitochondrial events 

for DiOC6, indicating mitochondrial inner membrane potential. Autofluorescence (grey), 

control (light green), AZT (dark green). 
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Figure 3. Effect of chronic AZT on mitochondrial ultrastructure and lipid oxidation in 

fetal brain.  

Representative electron microscopy photomicrographs (30,000X) of fetal brain cortex at 

E21 after in utero chronic exposure to 60 mg/kg body weight AZT (F-I) or vehicle (0.05% 

ethanol, A-D). Boxes in B and G are shown at greater magnification (85,000X) in F and J, 

respectively. The photos show swelling of mitochondria (blue arrow), dissolution of some 

cristae (violet arrow) or light matrix (red arrow) and disruption of mitochondrial 

membranes (green arrow). (K) Quantification of mitochondrial damage in brain cortex from 

VEH (white bar) or AZT (stripped bar) groups. Ten photomicrographs per sample (n=3 per 

group by duplicated) were analyzed based on the followed scoring: 0- Mitochondrion with 

intact membrane, compact, well-defined cristae, and a dark matrix. 1- Mitochondrion with 

light matrix. 2- Mitochondrion with cloudy swelling. 3- Amorphous material collection 

inside the mitochondrion. 4- Mitochondrion membrane rupture. (L) Lipid oxidation was 

evaluated by the TBARS assay in fetal brain homogenates, from either vehicle (VEH, white 

bars) or AZT (stripped bars) treated pregnant rats in E21.  

 

Figure 4. Effect of chronic oral administration of AZT on its pharmacokinetic in 

maternal blood  

Kinetics of AZT in maternal blood after an i.v. administration of 60 mg AZT/kg body 

weight to pregnant rats at E21 after repeated oral administration of AZT (black circles) or 

its vehicle (VEH, open circles) from t1 to t30 min. Assays were onset after 30 min of an i.p. 
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administration of the ABCG2 inhibitor gefitinib (20 mg/kg body weight; GFT; B) or the 

corresponding vehicle (dimethyl sulfoxide:propylene glycol:saline solution, in a 2:2:1 ratio, 

respectively; VEH; A). Data are presented as mean ± SEM of the μg AZT/ml for each time 

point. (C) Area under the curve of AZT from 0 to infinite in maternal blood (AUC AZT0∞ 

plasma) after repeated oral administration of AZT or its vehicle in the presence (AZT / GFT 

and VEH / GFT, respectively) or absence (AZT / VEH and VEH / VEH, respectively) of 

gefitinib. Data is presented as mean ± SEM of the μg. ml-1 min-1 of AZT for 6 animals per 

group. 

 

Figure 5. Effect of chronic oral administration of AZT on its accumulation in the 

distribution to the fetal brain 

Kinetics of AZT in fetal brain after an i.v. administration of 60 mg AZT/kg body weight to 

pregnant rats at E21 after repeated oral administration of AZT (black circles) or its vehicle 

(open circles) from t1 to t30 min. Assays were onset after 30 min of an i.p. administration 

of the ABCG2 inhibitor gefitinib (20 mg/kg body weight; GFT; B) or the corresponding 

vehicle (dimethyl sulfoxide:propylene glycol:saline solution, in a 2:2:1 ratio, respectively; 

VEH; A). Data are presented as mean ± SEM of the μg AZT/ml for each time point, 

*p<0.05; **p<0.01 between VEH / VEH and AZT / VEH for each time point in control 

conditions. (C) Area under the curve of AZT from 0 to infinite in fetal brain (AUC AZT0∞ 

fetal brain) after repeated oral administration of AZT or its vehicle in the presence (AZT / GFT 

and VEH / GFT, respectively) or absence (AZT / VEH and VEH / VEH, respectively) of 

gefitinib. Data is presented as mean ± SEM of the μg. ml-1 min-1 of AZT for 6 animals per 

group. ap<0.001 between VEH / VEH and AZT / VEH groups; bp<0.001 between AZT / 
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VEH and AZT / GFT groups. (D) AUC AZT0∞ fetal brain/ AUC AZT0∞ plasma ratio. 

ap<0.001 between VEH / VEH and AZT / VEH groups; bp<0.001 between AZT / VEH and 

AZT / GFT groups. 

 

Supplemental File 1. 

(A) Representative immunoblot for ABCG2 (72 kDa) and actin (42 kDa) performed in 

placenta at E11, E15, E18 or E21 (left) and fetal brains at E18 or E21 (right) from 

control pregnant rats. (B) Corresponding semi-quantification presented as media ± 

S.E.M relative densitometric units calculated as ratio between optical density of 

ABCG2 (polyclonal anti-rat ABCG2 antibody M-70, 1/400) and actin (n=3 pregnant 

rats for each gestational day). For placenta (left): a= different from E11 with p<0.001, 

b= different from E15 with p<0.001; for fetal brain (right): *=p<0.01 between E18 and 

E21. For details see Methods.  
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Table 1. Mitochondrial oxygen consumption 

 

 VEH AZT 

Malate + Glutamate   

State 4 11 ± 1 13 ± 2 

State 3 55 ± 4 58 ± 14 

RCR 5,1 4,2 

   

Succinate   

State 4 23 ± 4 26 ± 6 

State 3 69 ± 10 71 ± 20 

RCR 3,0 2,7 

 

RCR=  Respiratory control ratio 
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Table 2. Mitochondrial respiratory chain complexes activity. 

 

 

 

Complex I 

(nmol/min mg 

prot) 

Complex II 

(nmol/min mg 

prot) 

Complex IV 

(k´/mg prot) 

VEH 203 ± 8 60 ± 4 113 ± 10 

AZT 207 ± 13 62 ± 7 150 ± 17 
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Highlight 

 -AZT induced the expression of ABCG2 in the placenta and the fetal brain.  

 -Induction of ABCG2 restricted AZT disposition in the fetal brain. 

 -Induction of ABCG2 did not modify AZT levels in maternal blood. 

 -Chronic in-utero exposure to AZT did not alter mitochondria function. 

 -Chronic in-utero exposure to AZT did not alter mitochondria ultrastructure. 
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