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ABSTRACT

Major histocompatibility complex (MHC) molecules
are expressed on the cell surface, where they present
peptides to T cells, which gives them a key role in
the development of T-cell immune responses. MHC
molecules come in two main variants: MHC Class I
(MHC-I) and MHC Class II (MHC-II). MHC-I predom-
inantly present peptides derived from intracellular
proteins, whereas MHC-II predominantly presents
peptides from extracellular proteins. In both cases,
the binding between MHC and antigenic peptides
is the most selective step in the antigen presen-
tation pathway. Therefore, the prediction of pep-
tide binding to MHC is a powerful utility to pre-
dict the possible specificity of a T-cell immune re-
sponse. Commonly MHC binding prediction tools are
trained on binding affinity or mass spectrometry-
eluted ligands. Recent studies have however demon-
strated how the integration of both data types can
boost predictive performances. Inspired by this, we
here present NetMHCpan-4.1 and NetMHCIIpan-4.0,
two web servers created to predict binding between
peptides and MHC-I and MHC-II, respectively. Both
methods exploit tailored machine learning strate-
gies to integrate different training data types, result-
ing in state-of-the-art performance and outperform-
ing their competitors. The servers are available at
http://www.cbs.dtu.dk/services/NetMHCpan-4.1/ and
http://www.cbs.dtu.dk/services/NetMHCIIpan-4.0/.

INTRODUCTION

The Major histocompatibility complex (MHC) is a funda-
mental cell surface protein of the cellular immune system of
vertebrates. The primary function of MHC is to bind to pep-
tides (small protein fragments) derived from the digestion
of intracellular or extracellular proteins and display them
to the intercellular space. If T cells recognize and bind to a
peptide–MHC complex, an immune response can be trig-
gered and the compromised cell will undergo lysis. Given
this, the binding of antigenic peptides to MHC molecules
represents a necessary step for cellular immunity, and un-
derstanding the rules of this event has large and valuable
potential in human health applications.

MHC comes in two main variants: MHC Class I (MHC-
I) and MHC Class II (MHC-II). MHC-I binds peptides
from intracellular proteins after these undergo proteaso-
mal degradation, and serves as a control mechanism for
antigenic variations in the self-peptidome repertoire. On
the other hand, the MHC-II binds peptides generated by
protease-digestion of extracellular proteins; with this, both
MHC systems can exert control over foreign organisms via
the presentation of non-self proteins to T cells (1). In view of
this fact, important efforts have been committed to develop-
ing computational methods capable of accurately predicting
peptide binding to both MHC-I and MHC-II (reviewed in
(2)).

Different types of experimental data have been used to
train these methods. According to the nature of such train-
ing data, we can classify peptide-MHC binding predictors
in three main categories. The first category corresponds to
predictors trained on binding affinity (BA) data (3–6). This
type of data imposes a substantial limitation on predic-
tion performances, since it only models the single event of
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peptide-MHC binding, and neglects any other biological
feature involved in the process. The second category cov-
ers methods that are either trained with data retrieved from
mass spectrometry (MS) experiments, known as eluted lig-
ands (EL) (7–11), or trained integrating both BA and EL
data (5,12–15). This latter data type incorporates informa-
tion not only related to the peptide-MHC binding event, but
also information about prior steps in the biological antigen
presentation pathway processes. However, except for genet-
ically engineered cells, cellular MHC expression profile is
very diverse due to the multiple MHC allelic variants. Also,
antibodies employed to purify peptide–MHC complexes in
MS EL pipelines are mostly pan- or locus-specific, leading
to inherently poly-specific (or Multi Allelic, MA) data (i.e.,
the data contains peptides matching multiple cognate MHC
binding motifs). Thus, a prior, user biased peptide-MHC
annotation criteria are, in general, needed in order to inter-
pret such EL MA data, transform them to Single Allelic (EL
SA, or single peptide-MHC annotations) and employ them
for the training of MHC-specific binding predictors (16).

The third and last category of algorithms seeks to re-
solve this limitation of the second type of models, and in-
corporates, together with the training of a prediction algo-
rithm, the capability of annotating EL MA sequences to sin-
gle MHC restrictions (17,18). One such method is termed
NNAlign MA (17), which during the training process can
cluster EL sequences with ambiguous cognate MHCs into
single MHC specificities, using a strategy called pseudo-
labeling. This enables not only the possibility of novel motif
discovery, but also a considerable expansion of the train-
ing set size, and therefore an overall improvement of the
method’s predictive power.

In this work, we deploy NNAlign MA to update
NetMHCpan and NetMHCIIpan, augmenting their train-
ing capabilities and also increasing their predictive perfor-
mance. We do this by incorporating NNAlign MA to the
core of the new models, allowing us to expand their train-
ing sets greatly. Moving further, we perform a full indepen-
dent epitope evaluation on both models and show how the
updated methods outperform other current state-of-the-art
algorithms.

The NNAlign MA machine learning framework

The updated versions of NetMHCpan and NetMHCIIpan
differ from their predecessors in two critical aspects: the
training data and the machine-learning modeling frame-
work. The training data have been vastly extended by accu-
mulating MHC BA and EL data from the public domain.
In particular, EL data were extended to include MA data.
The combined dataset used for training of NetMHCpan-
4.1 consists of 13 245 212 data points covering 250 dis-
tinct MHC class I molecules, and the combined dataset
used for training of NetMHCIIpan-4.0 consists of 4 086
230 data points covering a total of 116 distinct MHC class
II molecules. For specific details on the training sets and
data partitioning refer to Supplementary Materials. The
machine learning framework was updated from NNAlign
to NNAlign MA to allow for effective handling of these
MA data. In short, the NNAlign framework is a single-
allele framework permitting the integration of mixed data

types (BA and EL) in the model training, which allows in-
formation to be leveraged across the different data types, re-
sulting in a boosted predictive power (12,13). NNAlign MA
extends this training framework to allow for the incorpora-
tion of EL MA data. This is achieved by iteratively annotat-
ing the best single-allele to the MA data during the model
training, effectively deconvoluting the MA binding motifs
(17). For specific details on the model hyper-parameters and
cross-validation training performance, please refer to Sup-
plementary Material.

WEB INTERFACE

Submission page

Input data. Both servers accept two different types of in-
put; FASTA and PEPTIDE. The input data can be directly
pasted into a submission box or uploaded from the user’s
local disk. For FASTA input, the user can specify the pep-
tide length(s) to be included in the predictions (for class I,
the length range goes from 8 to 14 amino acids, default is
8–11; for class II only one length is admitted with 15 being
the default value).

Also, for Class II, one can specify if CONTEXT encod-
ing (13) is to be used. This context consists of amino acids
spanning the source protein N and C terminal parts of the
ligand.

The submission page includes examples of input data for
all accepted formats and provides buttons to upload sample
data automatically.

MHC selection. Next, the servers provide a drop-down
menu in order to select which MHC family and molecule(s)
to be used. NetMHCpan-4.1 covers more than 11 000 MHC
molecules, spanning human (HLA-A, HLA-B, HLA-C,
HLA-E, HLA-G), mouse (H-2), cattle (BoLA), primates
(Patr, Mamu, Gogo), swine (SLA), equine (EQCA) and dog
(DLA), and NetMHCIIpan-4.0 covers a total of close to
1000 human (HLA-DR, HLA-DQ, HLA-DP) and mouse
(H-2) MHC alleles. For DQ and DP, the user can make com-
binations of the covered alpha and beta protein chains. Fur-
thermore, given the pan-specific nature of both methods,
predictions can be run for any MHC molecule of known se-
quence by uploading a full-length MHC protein sequence
in FASTA format.

Additional configuration. Both NetMHCpan methods in-
form if a sequence is a strong MHC binder (SB) or a
weak MHC binder (WB) based on a %Rank score. Briefly,
%Rank is a transformation that normalizes prediction
scores across different MHC molecules and enables inter-
specific MHC binding prediction comparisons. %Rank of
a query sequence is computed by comparing its prediction
score to a distribution of prediction scores for the MHC
in question, estimated from a set of random natural pep-
tides. Given this, a %Rank value of 1% means that a queried
sequence obtained a prediction score that corresponds to
the top 1% scores obtained from random natural peptides.
The %Rank values for detecting SBs and WBs can be modi-
fied by specifying the corresponding thresholds (by default,
%Rank < 0.5% and %Rank < 2% thresholds are consid-
ered for detecting SBs and WBs for class I and %Rank <
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Figure 1. Example outputs for the NetMHCpan-4.1 and NetMHCIIpan-4.0 tools. (A) Example output for NetMHCpan-4.1, using as input the web server’s
FASTA sample data and the HLA-A*30:01 allele, with a peptide length of nine and other options set to default. (B) Example output for NetMHCIIpan-
4.0, using as input the web server’s FASTA sample data and the DRB1*04:34 allele, with all other options set to default. By default, prediction scores are
for both methods displayed in terms of a Score EL (the likelihood of a peptide being an MHC ligand) column and a ‘%Rank EL’ column (the EL percentile
Rank score); if the user selects to include BA predictions, such values are reported as well. The ‘BindLevel’ column displays the presence of Strong Binders
(SB) or Weak Binders (WB) amongst the queried peptides. ‘Peptide’ informs the list of peptides that have been interrogated against the selected MHC
molecule(s) (exhibited in the ‘MHC’ column). The ‘Pos’ entry refers to the queried peptide’s position in the selected FASTA input, and ‘Core’ refers to
such peptide’s identified binding core. ‘Identity’ is an automatically generated ID that is assigned to the input. Other columns refer to specific properties
that depend on the MHC class being employed. For additional details on the interpretation of the different columns of the output, refer to the ‘output
format’ page on both web servers homepages.

2% and %Rank < 10%, for SBs and WBs for class II). In
addition, an option is available to only report sequences
with a lower than a defined %Rank threshold, and for class
II to print only the strongest binding peptide overlapping
a given binding core if FASTA was selected as the input
format.

Additionally, the user may opt to get the BA prediction
scores of input sequences together with the EL likelihood,
and to sort the output according to the corresponding EL
predicted values (from high to low). In addition, and for
user convenience, the possibility to save the output as a *.
XLS file (readable to most spreadsheet software) is also pro-
vided.

Output page

The output from both servers details the binding pre-
diction values of the provided input sequence(s) for the
selected MHC molecule(s), together with additional in-
formation to guide the interpretation of results. As seen
in Figure 1, NetMHCpan and NetMHCIIpan output
consist of several plain text columns, which exhibit dif-
ferent pieces of information regarding the prediction
outcome.

EVALUATION AND EXAMPLES

As independent validations, the models were benchmarked
on sets of T-cell epitope data and for class I also EL SA data.

For MHC class I the epitope dataset was taken from Jurtz
et. al (12) combined with a comprehensive set of MHC mul-
timer validated epitopes obtained from the IEDB and for
MHC class II from Reynisson et al. (19). The EL SA data
were obtained from (20). In all cases, the data were filtered
to ensure no overlap with the training data (for further de-
tails on the data sets refer to Supplementary Material). For
the epitope data, the predictive performance was estimated
in terms of FRANK (12). That is, for each epitope-HLA
pair, binding to the HLA was predicted for all overlapping
peptides of the source protein using the eluted ligand likeli-
hood prediction score and the FRANK value was reported
as the proportion of peptides with a prediction score higher
than that of the epitope. Using this measure, a value of 0
corresponds to a perfect prediction (the known epitope is
identified with the highest predicted binding value among
all peptides found within the source protein), while a value
of 0.5 corresponds to a random prediction. Further, was
the corresponding AUC for each epitope reported, again as-
signing all overlapping peptides in the source protein except
the epitope as negatives. For further details on the CD8 epi-
tope benchmark, refer to Supplementary Table 7. For the
EL SA dataset, negative decoy peptides were added as de-
scribed in the “Training and Test data” section of the Sup-
plementary Material in ‘Materials and Methods’ and the
performance evaluated in terms of AUC, AUC0.1 and PPV.
Here, PPV was estimated from the fraction of positive pep-
tides within the top N predictions, where N is equal to the
total number of ligands times 0.95 (to account for potential
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Figure 2. Epitope benchmark results for the NetMHCpan-4.1 and NetMHCIIpan-4.0 web servers. (A) Performance results for the CD8+ epitope bench-
mark. Median FRANK values for the different methods are: NetMHCpan-4.1, 0.00220; NetMHCpan-4.0, 0.00230; MixMHCpred, 0.00264; MHCFlurry,
0.00383; and MHCFlurry EL, 0.00386. (B) FRANK performance results for the CD4+ epitope benchmark. The median FRANK for the different meth-
ods are: NetMHCIIpan-4.0, 0.0351; NetMHCIIpan-3.2, 0.04825; MixMH2Cpred, 0.0513; MHCnuggets, 0.1219; and DeepSeqPanII, 0.1767. (C) PPV
performance results for the MS MHC class I eluted ligand benchmark. Median PPV values for the different methods are: NetMHCpan-4.1, 0.8291;
NetMHCpan-4.0, 0.7940; MixMHCpred, 0.7911; MHCFlurry, 0.7256; and MHCFlurry EL, 0.7144. P-values are shown as * P < 0.05, ** P < 10−6 and
*** P < 10−9. All p-values were calculatated using a two-tailed binomial test. The plotted boxes extend from the lower to upper quartile values of the data
(25th to 75th percentile), with a line at the median; whiskers extend from the box to show the range of the data to the most extreme, non-outlier data points.

MS contaminants). For additional information on the EL
SA benchmark, refer to Supplementary Table 8.

The results of these benchmarks are shown in Figure
2. Here, NetMHCpan-4.1 was compared to NetMHCpan-
4.0 (12), MixMHCpred (18,21), MHCFlurry (5) and
MHCFlurry EL (an unpublished version of MHCFLurry
trained with EL SA data, available at GitHub (22)). For
this benchmark, because MixMHCpred cannot make pre-
dictions for peptides containing ‘X’ (wildcard amino acid
symbol), such peptides were removed from the benchmark
dataset. NetMHCIIpan-4.0 was compared in a similar
manner to NetMHCIIpan-3.2 (23), MixMHC2pred (11),
MHCnuggets (24) and DeepSeqPanII (25).

With the exception of NetMHCpan-4.1 and
NetMHCpan-4.0 when tested on the epitope benchmark,
all three benchmarks confirmed a significantly superior per-

formance of NetMHCpan-4.1 and NetMHCIIpan-4.0 over
all other methods included in the respective benchmarks.
For the class I epitope benchmark, NetMHCpan-4.1
and NetMHCpan-4.0 were found to share comparable
predictive performance. For NetMHCpan-4.1 a consis-
tent improvement was found for HLA-B and HLA-C
molecules for both the epitopes and ligand benchmarks
when compared to NetMHCpan-4.0 (consistent with
the very large increased coverage of these loci by the
EL dataset used for the training of NetMHCpan-4.1).
Note, also that in contrast to what was observed when
evaluating the performance on eluted ligand data (19),
but in line with earlier works (13,19,26), a drop in
the performance of NetMHCIIpan-4.0 was observed
when including context information (Supplementary
Figure S3).
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DISCUSSION

Over the last years, large amounts of novel MS-eluted MHC
ligand data have become available, enabling a highly en-
riched characterization of the MHC-presented ligandome.
Here, we have benefitted from this data, and combining it
with an extensive set of MHC peptide-binding data avail-
able in the IEDB, have developed updated versions of the
NetMHCpan and NetMHCIIpan tools. Both methods are
capable of predicting a peptide’s likelihood of antigen pre-
sentation (and BA) to MHC class I and class II molecules.
Both tools were trained using the NNAlign MA machine
learning framework, which enables the integration of MS
ligand datasets obtained from cell lines expressing multiple
MHC alleles. The benchmarking of these methods against
other available state-of-the-art algorithms exhibited a sig-
nificantly improved predictive power for the prediction of
MHC ligands and T-cell epitopes.

For both NetMHCpan-4.1 and NetMHCIIpan-4.0, the
performance gain was found most pronounced for predic-
tion of MS identified MHC ligands. This in particular for
class I, where the NetMHCpan-4.1 method on the epitope
benchmark was found to perform at par with its most re-
cent ancestor NetMHCpan-4.0. Many possible reasons for
this limited impact on the performance for epitope predic-
tion exists, including biases in the epitope data currently
available toward past prediction methods and in-vitro ex-
perimental validation techniques, and biases in the MS EL
data not shared with T-cell epitopes. Future work will re-
solve the impact and importance of these biases, and allow
us to access to what degree the improved power for predic-
tion of MS MHC ligands translates into an improved power
also for prediction of T-cell epitopes.

Benchmark evaluation of the tools demonstrated an over-
all robust power of the NNAlign MA machine learning
framework to perform motif deconvolution across all MHC
molecules included in the training data. However, results
also pointed to a lower performance for MHC molecules
characterized by limited ligand datasets such as HLA-C and
HLA-DQ. While this low number of ligands annotated to
MHC from these two loci in part can be explained from
their relative low protein expression, other causes could in-
clude differences in the HLA-loci specificities of the anti-
bodies used for immunoprecipitation (IP) when purifying
MHC molecules prior to running MS experiments. Future
work may tell if working with antibodies with improved
HLA-DQ specificities or using engineered cell lines with,
for instance, tagged HLA molecules as suggested by (8) can
help resolve this.

Even though one of the main contributions to the im-
proved performance of the prediction methods proposed
here (and other recently published methods) is the integra-
tion of MS derived EL data, MS data itself contains an in-
herent bias imposed resulting in for instance overrepresen-
tation of ‘flyable’ (27) and neglecting cysteine-containing
peptides (7). These biases impose limitations on the set of
ligands detectable in MS and hence subsequent limitations
on the learned binding motifs. Given this, further comple-
mentary technological platforms for high throughput detec-
tion of MHC peptide interactions might be warranted to
complete our understanding of HLA antigen presentation.

Both NetMHCpan and NetMHCIIpan have an easy to
use user interface, allowing for simple uploads of query se-
quence data, and a selection of MHC alleles to be inter-
rogated for binding. As the only current publicly available
tools, both methods demonstrate a truly pan-specific ca-
pability, allowing users to make predictions for all MHC
molecules, including those not previously characterized by
binding data. The output from the tools is provided in sim-
ple text format with guided information, aiding the user to
select relevant epitope/MHC-ligand candidates.

Given the demonstrated high performances and their
ease of use, we expect the updated web servers to become
relevant tools to guide future rational epitope discovery
projects.

DATA AVAILABILITY

The two web servers described in this work are hosted at
http://www.cbs.dtu.dk/services/NetMHCpan-4.1 and http:
//www.cbs.dtu.dk/services/NetMHCIIpan-4.0. The servers
will likewise be made available from the IEDB analysis re-
source.
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