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Abstract 
Aims 

Cells limit the cell number of dense biofilms by releasing self-inhibitory molecules. Here, we aim to 

assess the effectiveness of yeast quorum sensing (QS) molecules and the antifungal agent natamycin 

against yeast biofilms of strains commonly isolated from fruit juice ultrafiltration membranes. 

Methods and results 

Yeast QS molecules such as tyrosol, 2-phenylethanol and farnesol were detected by solvent 

extraction and HS SPME GC-MS in C. tropicalis cultures. The effect of quorum sensing (QS) molecules 

on mono and multi species biofilms formed by Rhodotorula mucilaginosa, Candida tropicalis, 

Candida krusei and Candida kefyr was evaluated by plate count and epifluorescence microscopy. 

Farnesol caused a decrease in cell number and disrupted mono and multispecies yeast biofilms 

during adhesion (0.6 mmol l-1).  2-phenyl ethanol 1.2 mmol l-1 stimulated biofilm density and 

increased cell number in both mono and multispecies biofilms, while tyrosol did not show effects 

when tested against C. tropicalis biofilms (0.05-1.2 mmol l-1). Natamycin caused a strong decrease on 

cell number and disruption of biofilm structure in C. tropicalis biofilms at high concentrations (0.3 to 

1.2 mmol l-1). The combination of farnesol 0.6 mmol l-1 and natamycin at 0.01 mmol l-1, the 

maximum concentration of natamycin accepted for direct addition into fruit juices, effectively 

reduced cell counts and disrupted the structure of C. tropicalis biofilms.  
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Conclusion 

Farnesol 0.6 mmol l-1 significantly increased the inhibition exerted by natamycin 0.01 mmol l-1 (∼5 

ppm) reducing biofilm development from juice on stainless steel surfaces. 

Significance and impact of the study 

These results support the use of QS molecules as biofilm inhibitors in beverages and would certainly 

inspire the design of novel preservative and cleaning products for the food industry based on 

combinatory approaches. 

 

Keywords: quorum sensing, biofilm, juice, farnesol, Candida spp., natamycin  

 

Introduction 

Yeasts predominate among microbial communities as spoilage microorganisms, particularly in acidic 

food products like apple juice, due to their ability to grow at low pH, high sugar concentration and 

low water activity conditions and to resist inactivation by heat processing (Stratford et al. 2000). 

Yeasts attach and develop biofilms on ultrafiltration (UF) membranes used in beverage clarification 

(Tarifa et al. 2013) and in pre and post-UF processing equipment (Brugnoni et al. 2007). Candida spp. 

are among the most common yeast species associated to UF membranes in fruit juice processing 

plants (Tarifa et al. 2018). C. tropicalis L5, a strain previously isolated from UF membranes, strongly 

adheres to the surface of stainless steel, forming resistant biofilms which may confer a competitive 

advantage over other yeasts (Brugnoni et al. 2014; Tarifa et al. 2013; Tarifa et al. 2015). As cleaning 

procedures cannot easily remove yeast in such sites (Brugnoni et al. 2012; Tarifa et al. 2013), it was 

assumed that this community is able to persist over time on food production surfaces.  
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Among new approaches to eradicate biofilms, targeting the quorum sensing (QS) mechanism is 

being evaluated as a promising alternative against bacterial biofilms (Coughlan et al. 2016). The 

ability of these molecules to disrupt yeast biofilms is currently being studied in the clinical field 

(Wongsuk et al. 2016). Additionally, the combination of antifungals with QS molecules has been 

studied especially against Candida albicans biofilms (Cordeiro et al. 2015; Katragkou et al. 2015; 

Bozó et al. 2016; Kóvacs et al. 2016; Shanmughapriya et al. 2014). To the best of our knowledge, 

there is no information available about the effectivity of combinatory treatments against yeast 

biofilms inhabiting food and food processing devices.  

Currently, there is no antifungal in use in the food industry with a demonstrated effectiveness 

against biofilms. Among antimicrobials for the food industry, natamycin has been widely used to 

control fungal development in dairy-based food products and is considered safe for human use 

when applied on food surfaces (Reps, et al. 2002; Gallo and Jagus 2006; El-Diasty et al. 2008). 

Although natamycin effectively reduces the viability of Saccharomyces in whey cheese (Gallo and 

Jagus 2006; Ollé Resa et al. 2014), there are no reports testing this antifungal against Candida spp. in 

beverages.  

With the aim of finding effective treatments against biofilms developed in the fruit industries, we 

identified Candida spp. quorum sensing molecules in C. tropicalis cultures and evaluated the 

antibiofilm properties of three selected alcohols. We also compare for the first time the effects of 

natamycin against biofilms developed from juice, and the effects of the combination of natamycin 

with one of the identified alcohols showing antibiofilm activity. Cell number and biofilm morphology 

were evaluated at different concentrations, in mono and multispecies biofilms growing over 

stainless steel surfaces at different stages of biofilm development.  
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Materials and methods 

 Materials  

Alcohols were dissolved in sterile water immediately before testing excepting farnesol, which was 

dissolved in dimethyl sulfoxide (DMSO). The toxicity of DMSO was previously assessed. Neither cell 

number nor morphology were affected by DMSO at the highest concentration used 0.08 % v/v. 

Tyrosol, farnesol and 2-phenylethanol were from Sigma Aldrich (St. Luis, Mo, USA) and commercial 

natamycin was kindly provided by Ing. Jesica Ostapchuk (Biotec S.A., Argentina). 

 

Microorganisms and culture conditions 

Candida tropicalis L5, Candida krusei L9, Candida kefyr L11, and Rhodotorula mucilaginosa L1 were 

previously isolated from the surfaces of polyvinylidene–fluoride ultrafiltration (UF) membranes, 

obtained from a large-scale apple juice processing industry located in Villa Regina, Río Negro, 

Argentina (Tarifa et al., 2013). Stock cultures of yeasts were stored at -70°C in yeast extract glucose-

chloramphenicol (YGC, Biokar) broth supplemented with 20% v/v glycerol. A loop of frozen cells of 

yeasts was suspended in YGC broth at 25± 1°C until reaching the stationary phase (48h). Cultures 

were then harvested by centrifugation at 1200 g for 5 min (Labofuge 200, Kendro, Germany) and 

washed twice with Phosphate-Buffered Saline (PBS). Pellets were subsequently resuspended in 

sterile clarified 12 °Brix apple juice to achieve a population of ca. 6.0 log Colony Forming Units (CFU) 

mL-1. The 12 °Brix clarified apple juice used in the successive assays was prepared from 72 °Brix 

concentrated apple juice obtained from a large-scale apple juice processing industry located in 

Argentina and sterilized by microfiltration (pore size 0.45 μm). The major components of apple juice 

are carbohydrates, acids, nitrogen compounds, polyphenols, minerals and vitamins; mean 

composition: fructose: 70 g l-1, glucose: 35 g l-1, sucrose: 16 g l-1, malic acid: 0.4 - 3.4 g l-1, citric acid: < 
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1 g l-1, ascorbic acid: < 40 mg l-1, potassium: 1 g l-1, calcium: 0.05 - 0.4 g l-1, phosphorus 70 - 100 mg l-1, 

sodium: 20 mg l-1, free aminoacids: 1 - 5 g l-1 (Lozano 2006), pH: 4.0 ± 0.2, ionic strength 0.023 mol l-1.  

 

Culture conditions for identification of volatiles 

The system used to obtain the supernatant consisted of beakers in which stainless steel (SS) disks 

(50 mm diameter, 0.5 mm thickness; AISI 304 2B, food grade) were placed. Previously, the disks and 

the beakers were soaked for 15 min with 2% v/v of a detergent solution (Extran MA 02 neutral, 

Merck KGaA, Darmstadt, Germany) at 50°C, and rinsed with hot tap water, followed by autoclaving 

for 15 min at 120°C.  

To allow attachment, the beakers were filled with the C. tropicalis culture suspension, with a 

working volume of 25 ml per beaker. Initially, the suspension was deposited on the SS disk surfaces 

for 24 h at 25 ± 1°C. Afterwards, the food matrix was replaced at 24 h with sterile juice to provide 

fresh nutrients for the cells. At the selected times, cultures were centrifuged at 1200 g for five min 

and the cell-free supernatants were filter sterilized (0.22-µm pore size).  

 

Identification of volatiles from cultures of C. tropicalis  

Identification by solvent extraction and Gas Chromatography – Mass Spectrometry (GC-MS) 

Production of volatiles was followed in cultures of C. tropicalis for four weeks. An aliquot of 15 ml of 

fresh supernatant was extracted three times with an equal volume of ethyl acetate. The extracts 

were concentrated under reduced pressure at 45°C and stored at -20°C until use. Before injection, 

the final volume of each extract was adjusted to one ml with ethyl acetate. 
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GC-MS analyses were performed with a GC MS 7890B chromatograph equipped with a 5977A mass 

spectrometer (Agilent Technologies). The ionization was performed by electron impact with an 

ionization energy of 70 eV. Samples (one μL, ethyl acetate) were injected in the splitless mode into a 

HP-5Ms capillary column (30 m × 0.25 mm i.d. × 0.25 μm film thickness). Temperatures were 

programmed from 50°C to 250°C at a rate of 5°C min−1, then increased to 280°C at a rate of 120°C 

min−1 and held at the final temperature for 5 min. The injector and detector temperature were held 

at 250°C, and the carrier gas was helium at a flow rate of 1 mL min−1. The solvent delay was 4.5 min. 

The MSD transfer line was maintained at 250°C; the ion source temperature was 230°C; the 

quadrupole temperature was 150°C. Based on the mass scan range of 50–550 atomic mass units 

(a.m.u.) with SCAN mode, retention times of compounds were determined by comparing the MS 

fragmentation pattern of the standards and the National Institute of Standards and Technology 

(NIST) 2.0 GC-MS library. 

 

Identification of volatiles by Head Space Solid Phase Microextraction (HS-SPME) and GC-MS 

Cultures of C. tropicalis were incubated for five days and supernatants were immediately subjected 

to extraction. Volatiles were extracted from the supernatant using headspace-solid-phase 

microextraction (HS-SPME) and analysed by gas chromatography-mass spectrometry (GC-MS). The 

fiber was purchased from Supelco (Aldrich, Bellefonte, PA, code 57328-U). This SPME fiber assembly 

consists of a 50/30 µm Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS) with L=1 

cm coating bonded to a flexible fused silica core, with a needle size of 24 ga. This coating is 

recommended for detection of volatiles and semi-volatiles with number of carbons between 3 and 

20 and molecular weights in the range of 40-275. The SPME fiber was conditioned at 250°C for 15 

min in the GC injector port. For headspace sampling, 16 ml of each supernatant fraction was 

introduced into a 30-ml glass vial. The vial was capped with a headspace septum and an aluminium 

cap after addition of 3.2 g of NaCl and agitation at 250 rev min-1 in a thermostatically controlled bath 
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adjusted to 40°C for 30 min. Following this step, the SPME fiber was manually inserted into the 

sample vial headspace for 30 min and then introduced into the GC injection port at 250°C and kept 

for 20 min for alcohol thermal desorption. The oven temperature was programmed from 35°C to 

150°C at 2°C/min, raised again to 220°C at 10°C/min and held at this final temperature for 15 min. 

Masses were scanned in the range of 50 to 300 m/z. The identification of C. tropicalis metabolites 

was achieved by comparing the mass spectra with those of the data system library and 2-

phenylethanol and farnesol retention times were compared with those of reference substances. A 

comparable analysis was done with juice supernatants (growth medium).  Otherwise stated, the gas 

chromatograph was operated as described above. 

 

Microbiological assays. Testing of selected alcohols on biofilms 

 

Effect of chemicals on adherent cells and subsequent biofilm formation 

Assays were carried out on stainless steel coupons (SSC) (25 x 15 x 1 mm) type AISI-304. The coupons 

were degreased and sterilized according the protocol described in Brugnoni et al. (2007). A coupon 

was placed into each well of a sterile 24 well plate. Adjusted yeast suspensions (OD550=0.125 ∼ 106 

CFU mL-1) with the corresponding amount of alcohols were poured into each well to achieve yeast 

attachment to the SSCs at 25°C. The effect of the tested molecules was assessed both in mono and 

multi species biofilms. The same suspension containing mono or multispecies without the testing 

substances was poured into the well as a control for each assay, and, in the successive, treated in 

the same manner as the cultures containing the tested substances. After the first two hours, the SSC 

were cleaned once with sterile water, and juice with tested molecules and without tested molecules 

for controls was renewed. Effects were evaluated at 2, 6, 24 and 48h. Coupons were carefully 

removed after the incubation period using sterile forceps and rinsed by immersing in five ml sterile 
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water for one min to remove the loosely attached cells. The colonized coupons were used for viable 

counts and epifluorescence microscopy. All experiments were run at least per duplicate. 

 

Quantification of single and mixed cultures 

To determine the composition of the resulting surface attached cultures, the cell number was 

estimated by placing the SSC into a test tube with glass beads. Each suspension was sonicated once 

for two min at 20°C (Digital Ultrasonic Cleaner, PS-10A). To remove the adherent microorganisms, 

each tube with the coupon was sonicated for two min at 20°C (Digital Ultrasonic Cleaner, PS-10A) 

and vortexed at full speed for two min (Lindsay and von Holy 1997). Then, samples were serially 

diluted with sterile deionized water and counts determined by spread plate technique on 

CHROMAgar Candida and YGC agar, by triplicate. Samples were incubated for 24-48 h. The results 

were expressed as CFU cm-2. 

 

Epifluorescence microscopy 

Biofilms formed on stainless steel were observed by regular epifluorescence microscopy (Carl Zeiss, 

Primo Star). After incubation of the sample, the coupons were rinsed two times with sterile water to 

remove planktonic cells and stained with Live/Dead BacLight (Molecular Probes, USA). The stain 

package consisted of a mixture of two nucleic acid-binding stains: SYTO 9 and propidium iodide. 

These stains differed both in their spectral characteristics and in their ability to penetrate viable 

bacterial cells. SYTO 9 stains cells green, while propidium iodide penetrates cells whose cell 

membrane has been damaged, staining them red. Stains were mixed together in equal amounts (1.5 

µL + 1.5 µL), diluted in distilled water (1000 µL) and vortexed in the dark. 10 µL of the mixture were 

used for covering the coupon surface and incubated in the dark at room temperature for 20 min. 

Two washes were carried out with distilled water to remove residues of the dyes. Biofilms on 
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stainless steel coupons were observed using an epifluorescence microscope equipped with a Carl 

Zeiss camera (AxioCam ERc5s) and filters to detect Syto 9 and PI, and software for microscopy 

imaging (ZEN core, Carl Zeiss). 

 

 Statistical analysis 

Cell counts were converted to decimal logarithmic values (log CFU cm-2) to nearly match the 

assumption of a normal distribution. In all analyses, triplicate tests were performed under identical 

conditions in two independent trials and the results expressed as means and standard deviations 

(mean ± SD). When appropriate, Student’s t-test was used for comparison of means. Confidence 

level equal or higher than 95% was considered statistically significant (*p<0.05, **p< 0.01, ***p< 

0.001). 

 

Results  

 Identification of volatiles from cultures of C. tropicalis 

As shown in Table 1, differences were found between the two methods employed. Regarding 

solvent extraction, the most abundant compound from day 2 to day 21 was 2-phenylethanol. After 

incubation for 28 days, the relative percentage of 2-phenylethanol considerably decreased, whereas 

tyrosol, which was among the minority during the first three weeks, increased. Other molecules 

detected at almost all times in supernatants but not present in juice where N-acetyl tyramine and 

prenol. Volatiles of juice detected by HS-SPME were a mixture of 94 % furfural and 6% methoxy 

phenyl oxyme. Volatiles of C. tropicalis cultures detected by this technique were mainly a mixture of 

amyl alcohols. Although at very low percentages, 2-phenylethanol and farnesol were also detected 

by HS-SPME. Since 2-phenylethanol, tyrosol and farnesol have been previously identified as QS 
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molecules in other strains of Candida spp., we selected these molecules to further assess their 

potential as biofilm inhibitors. 

 

Effects of low molecular weight alcohols on C. tropicalis biofilms and monospecies biofilms of other 

yeast isolated from ultrafiltration membranes 

We first tested the effects of increasing concentrations of farnesol, 2-phenylethanol and tyrosol at 

different times during C. tropicalis biofilm development (Fig. 1). Regarding cell number, farnesol 

(0.05-1.2 mmol l-1) caused a significant decrease at 2h, 24h and 48h. This effect was evidenced 

specially at adhesion (2h, 0.6 mmol l-1) and at 24h (0.05 mmol l-1), when reductions surpassed the 

logarithmic unit (p<0.001). Effects of 2-phenylethanol on C. tropicalis biofilms were not dose 

dependent (0.05-1.2 mmol l-1), while cells treated with tyrosol at the same concentrations did not 

differentiate from controls for which this molecule was not further tested. We further explored the 

effects on the morphology of monospecies biofilms of C. tropicalis and monospecies biofilms of 

three other yeasts isolated from the same source (Fig. 2). Effects were only evident at 2h (adhesion). 

Here, 0.6 mmol l-1 farnesol and 1.2 mmol l-1 2-phenylethanol showed contrary effects regarding 

morphology and pseudohyphae production, being farnesol inhibitory and 2-phenylethanol 

stimulatory for all Candida species. Under the microscope, R. mucilaginosa showed no differences 

between treatments.  

 

 Effects of farnesol and 2-phenylethanol on multispecies biofilms 

To simulate processing conditions in the industry, we further evaluated the effects of 0.6 mmol l-1 

farnesol and 1.2 mmol l-1 2-phenylethanol on multispecies biofilms (Fig. 3). During adhesion (2h), 2-

phenylethanol significantly increased the cell number of all yeast strains. The effect of farnesol 

became evident in mature biofilms (48h), significantly reducing the number of viable cells of all 
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strains when compared with respective controls. Regarding morphology (Fig. 4), the stimulatory 

activity of 2-phenylethanol on multispecies biofilms became evident at 6h and persisted over the 

time, while the inhibition exerted by farnesol was clearly observed during adhesion with persistence 

of disruption zones in mature biofilms (24h and 48h).  

 

Effects of natamycin and combinations with farnesol  

Facing the lack of a commonly accepted positive control of biofilm inhibition and aiming to compare 

the effect of the alcohols produced by C. tropicalis against juice biofilms simulated in the laboratory, 

we assessed the effect of natamycin, an antifungal traditionally used as food preservative. As 

expected, a strong reduction in cell number (Fig. 5) and disruption of biofilm structure (not shown) 

were observed at all concentrations tested (0.3-1.2 mmol l-1) during all the stages of biofilm 

development. At 24h and concentrations of 0.6 and 1.2 mmol l-1, natamycin was able to reduce the 

cell number of C. tropicalis biofilms by more than five logarithmic units (Fig. 5).  The combination 

with farnesol 0.6 mmol l-1 did not cause mayor inhibition at these high concentrations of natamycin. 

We further tested the combination of farnesol 0.6 mmol l-1 and natamycin 0.01 mmol l-1, a 

concentration of natamycin that is near the maximum accepted for direct addition into juices 

according to the FDA 

(https://www.accessdata.fda.gov/scripts/fdcc/?set=GRASNotices&id=578&sort=GRN_No&order=DE

SC&startrow=1&type=basic&search=578,[2019.02.19]). Here, farnesol 0.6 mmol l-1 clearly 

contributed to a better reduction on biofilm cell density from six hours on in co-treatment with 

natamycin 0.01 mmol l-1 (Fig. 6). Regarding biofilm cell number, farnesol significantly enhanced the 

effects exerted by natamycin at all incubation times (Fig. 7).  If the log number of CFU in controls is 

considered as 100% growth at each incubation time, natamycin alone caused a reduction of 12%, 

20%, 35% and 60% at 2h, 6h, 24h and 48h, respectively. The addition of farnesol caused an 
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additional reduction of 9%, 30%, 23% and 12% respectively. While the effects of natamycin 

increased with time, the additional effects attributed to the combination with farnesol reached a 

maximum at 6h. However, only the combination caused a log reduction of 5 log units (48h). 

 

Discussion 

Highly polar compounds such as free acids were only detected by solvent extraction, while all 

molecules detected by HS-SPME were alcohols, esters and less polar molecules (Table 1). It is 

expected that extraction with ethyl acetate would led to more polar compounds with higher 

molecular weights than HS-SPME. In the latter method, molecules must be in the vapor phase to be 

extracted, which depends on molecular properties such as molecular weight and polarity (Vas and 

Vékey 2004). Furfural derivatives were observed in the juice where they are known to be produced 

under certain processing and storage conditions (Gökmen and Acar 1999), for which these 

compounds may not be biosynthesized by C. tropicalis. Among detected molecules, farnesol, 2-

phenylethanol and tyrosol function as quorum sensing molecules in C. albicans, as reported by some 

previous studies. In 1969, Lingappa et al. identified molecules such as tyrosol and 2-phenylethanol in 

cultures of C. albicans that functioned as “auto-inhibitors”. Tyrosol was later identified as a quorum 

sensing molecule of C. albicans by Chen et al. (2004). Farnesol is another QS alcohol released by 

different Candida species with inhibitory effects on yeast (Alem et al. 2006; Weber et al. 2008; 

Martins et al. 2010, Monteiro et al. 2017). C. albicans sessile cells also produce farnesol and 2-

phenylethanol, both molecules being associated to modulation of biofilm development (Martins et 

al. 2007, 2010; Johansen and Jespersen 2017). 

Among the three molecules tested only farnesol showed a clear inhibitory effect on C. tropicalis 

biofilms (Fig. 1 and 2) and biofilms of other yeast isolated from the juice filters, in both mono (Fig. 2) 

and multispecies systems (Fig. 3 and 4). The inhibitory effects on biofilm morphology were more 
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evident at adhesion (2h). This has been previously observed on studies on C. albicans, showing that 

the effect of farnesol is evident during adhesion, when pseudohyphae inhibition is clearly observed 

(Ramage et al. 2002). The reduction in cell number in multispecies biofilms was not evident at 

adhesion but in mature biofilms instead (Fig. 3). The presence of other yeast may have protected the 

biofilm against farnesol at early stages of biofilm development. However, in mature biofilms farnesol 

0.6 mmol l-1 caused a decrease in cell number on C. tropicalis both monospecies (Fig. 1) and 

multispecies biofilms (Fig. 3). Although statistically different from controls, the decrease in cell 

number was not greater than one log unit. In accordance with previous studies (Weber et al. 2010; 

Han et al. 2012), farnesol clearly affected cell morphology more than cell number. Monteiro et al. 

(2017) also reported a decrease of around one log unit in dual biofilms of C. albicans and C. glabrata, 

but at 60 mmol l-1 farnesol, a concentration 100 times higher than the one used in this study. A 

higher potency of farnesol in the present study may be explained by differences in methodology or 

different susceptibility to farnesol between species. Fleishmann et al. (2017) found that C. krusei 

exhibits communal interactions forming mycelia towards itself and towards C. albicans and C. 

glabrata, but the opposite did not occur although all species produced farnesol. This supports that 

susceptibility or intensity of response to farnesol and other alcohols may be different between 

species. 

The effect of natamycin on C. tropicalis biofilms depended on exposure time and concentration. The 

dependence of such variables is in accordance with one study on inactivation of S. cerevisiae cultures 

(Gallo and Jagus 2006). The addition of farnesol to cells co-treated with natamycin slightly 

stimulated the cell number during the first six hours of biofilm formation (Fig. 5). However, this was 

only evident for biofilms treated with high concentrations of natamycin, while in mature biofilms no 

significant differences were found. Natamycin is an antifungal polyene which binds specifically to 

ergosterol (te Welscher et al. 2010). Contrary to other antifungal agents like nystatin, it does not 

cause membrane permeabilization but rather inhibits glucose and aminoacid protein transporters in 

the membrane by a sterol dependent mechanism (te Welscher et al. 2012). Farnesol inhibits germ 
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tube formation and upregulates many metabolic pathways in C. albicans (Han et al. 2012, Polke et 

al. 2017). Cells that were submitted to the pressure of both inhibitors, would hypothetically have 

experienced a blockade of protein transporters and inhibition of germ tube formation, together with 

an upregulation of metabolism. When surviving cells were released from the inhibitors, probably the 

upregulation exerted by farnesol would have prevailed, causing the increase in viable counts at 2H 

and 6H (Fig. 5). These experiments showed that the potency of farnesol was clearly inferior to that 

shown by natamycin. However, the highest concentration of natamycin in beverages allowed by the 

FDA is 5 ppm (∼0.01 mmol l-1), which is lower than the concentrations used for comparison with 

farnesol (0.3-1.2 mmol l-1, Fig. 5). When tested in combination with natamycin 0.01 mmol l-1, the 

inhibitory effects of this alcohol improved natamycin performance against biofilms (Fig. 6 and 7). The 

combination of natamycin 0.01 mmol l-1 and farnesol 0.6 mmol l-1 caused a clear disruption of the 

biofilm structure in comparison with cells treated with natamycin 0.01 mmol l-1 alone from early 

stages (6h) of biofilm formation on.  The combination of farnesol and natamycin at these 

concentrations significantly enhanced the inhibitory effects exerted by natamycin at all incubation 

times, causing an additional reduction of 0.5, 2.0, 1.7 and 0.9 log numbers at 2h, 6h, 24h and 48h 

respectively. Similar effects are observed when comparing the results of natamycin at 0.6 and 1.2 

mmol l-1 24h and 48h (Fig. 5) with those of natamycin 0.01 mmol l-1 plus farnesol 0.6 mmol l-1 at 48h 

(Fig. 7). At these points the maximal effect is shown, corresponding to a reduction of 5 log units. This 

suggests that the concentration of natamycin could be reduced when combined with farnesol 

without affecting the performance of natamycin against yeast. 

Farnesol, tyrosol and 2-phenylethanol were detected in C. tropicalis cultures. From these, only 

farnesol exerted inhibition against C. tropicalis and other yeast isolated from fruit juice filtration 

membranes in mono and multispecies biofilms.  Natamycin efficiently inhibited C. tropicalis biofilms 

in concentrations between 0.6 mmol l-1 to 1.2 mmol l-1.  By adding farnesol, the dose of natamycin 

can be reduced 100 times with no detrimental effects on biofilm inhibition. If intended to be added 

to a 12 °Brix apple juice to prevent biofilm formation and to avoid exceeding approved limits, 
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natamycin could be used in combination with farnesol, a food additive permitted for direct addition 

to food for human consumption 

(https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=172.515&SearchTerm

=farnesol, [2019.02.19]). This combination could also be used to design preservatives and cleaning 

products to prevent the formation of biofilms in juice processing plants. 
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Figure captions 

 

Fig. 1 Cell counts of C. tropicalis biofilms treated with farnesol ●, 2-phenylethanol □ and tyrosol ◊ 

(0.05-1.2 mmol l-1, logarithmic scale) at different stages of biofilm development (2, 6, 24 and 48h). 

Cell numbers of controls are those values at 0 mmol l-1 for each incubation time. Farnesol caused a 

significant reduction in cell number at 2h, 24h and 48h at all concentrations, exceeding one log unit 

reduction at 2h (0.6 mmol l-1) and 24h (0.05 mmol l-1).  

Fig. 2 Monospecies biofilm structure at adhesion (2h) in the presence of farnesol 0.6 mmol l-1 (left) 

and 2-phenylethanol 1.2 mmol l-1 (right). For all Candida species, farnesol exerted a disruption on 

biofilm structure, while 2-phenylethanol increased biofilm density when compared with controls.  

Fig. 3 Effects of farnesol 0.6 mmol l-1 (black) and 2-phenylethanol 1.2 mmol l-1 (grey) on cell counts 

of multispecies biofilms at different stages of biofilm development (2-48h). Cell numbers of controls 

at each incubation time are highlighted in white. Farnesol affected significantly the cell number of 

mature biofilms (48h). The stimulating effect of 2-phenylethanol was predominantly observed at 

adhesion (2h). (*p <0.05, **p < 0.01 ***p < 0.001). 

Fig. 4 Multispecies biofilms at different stages of development (2-48h) in the presence of farnesol 

0.6 mmol l-1 (left) and 2-phenylethanol 1.2 mmol l-1 (right). The inhibitory effect of farnesol was 

clearly observed at adhesion (2h). 

Fig. 5 Cell number reduction on C. tropicalis biofilms treated with natamycin (0.3-1.2 mmol l-1) alone 

● and in combination with farnesol 0.6 mmol l-1 □ at different stages of development. Cell numbers 

of controls are those values at 0 mmol l-1 for each incubation time. Natamycin deeply altered biofilm 

cell number at all stages. The addition of farnesol did not cause a major inhibition but rather 

increased cell number at early stages of biofilm development. (*p<0.05, **p< 0.01 ***p< 0.001). 
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Fig. 6 Epifluorescence microscopy of C. tropicalis biofilms after treatment with natamycin 0.01 mmol 

l-1 (left) and combination with farnesol 0.6 mmol l-1 (right) at each stage of biofilm development (2-

48h). Both treatments strongly disrupted the biofilm architecture. Differences in biofilm cell density 

between treatments were evident after addition (2h), showing that farnesol clearly enhanced 

biofilm inhibition exerted by natamycin at 48h.  

Fig. 7 Number of C. tropicalis cells attached to stainless steel after treatment with natamycin 0.01 

mmol l-1 (― grey narrow line) and co-treatment with farnesol 0.6 mmol l-1 (― black wide line) at 

different stages of biofilm development (2-48h) in comparison with controls (∙∙∙∙∙ dashed line). 

Significant differences were found between treatments at all time points (p<0.001). Natamycin 

caused a decrease of more than four log numbers at 48h. Farnesol enhanced the inhibitory effect of 

natamycin by around one log number.  
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Table 1. Identification of volatiles from cultures of C. tropicalis in apple juice 12 ºBx* 

  By solvent extraction  By HS-SPME 

    Incubation [d] 

 Rt 

(min) 
juice 2 7 14 21 28 

 Rt 

(min) 
5 

5-methylfurfural 6.5 - 18.5 17.3 8.0 8.1 13.7 isoamyl alcohol 4.1 54.2 

isobutyl formate 7.7 - - - - - 6.9 amyl alcohol 4.2 16.0

succinic anhydride 7.9 - - 9.8 - 5.2 - furfuryl alcohol 8.4 5.2 

sorbic acid 9.1 - - 3.7 5.5 2.2 3.6 isoamyl acetate 8.9 1.6 

2-furoic acid methyl 
ester 

9.5 4.3 - - - 0.6 - styrene 9.3 1.7

2-phenyl ethanol 10.3 - 34.0 43.3 50.8 39.7 3.6 methoxy phenyl 
oxyme‡  

11.5 2.4 

2-furoic acid 10.5 20.5 16.2 - 8.6 - - 2-ethyl hexanol 17.9 0.8 

pyranone 11.3 1.4 - - - 1.6 1.5 dimethyl octenol 20.7 0.3 

p-vinyl anisole 11.4 - 0.4 - - - - 2-phenyl etanol 22.5 0.5 

prenol 12.3 - - - 2.9 1.4 1.9 camphor 25.1 0.8 

butenylmethylether 12.4 - 5.1 - - - - cytronellal 
dimethyl acetal 

27.4 4.2 

5-hydroxymaltol 12.5 1.4 - 0.9 - 1.3 - farnesol 45.6 0.1

5-methyl-2-
furanmethanol 

13.5 - 1.4 - - - - farnesene 45.9 0.6 

5-
hydroxymethylfurfural 

13.7 65.3 - - - - - squalene 46.3 0.1

2´-furanyl-1,2-
ethanediol 

13.9 - - - - 20.1 33.1 nerolidol 52.1 3.1 

10-dodecen-1-ol 
propionate 

14.1 - 1.2 - - - - trimethyl 
pentanediol 

54.0 1.2 

methyl 2-
phenylethanoate 

14.2 - - - 3.0 - - isopropyl 
myristate 

60.9 0.8

chavicol 14.3 - 0.7 - - - -    

1,3-octanediol 14.4 5.9 5.1 2.6 3.4 4.9 6.3   

butanedioic acid 17.2 - 2.7 0.9 0.5 - -    

tyrosol 18.9 - 4.8 14.2 5.8 6.4 14.1    
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nerolidol acetate 19.3 - 0.4 - - - -   

N-acetyl tyramine 20.9 - 5.3 5.2 11.4 8.2 7.8    

betulin 21.7 - 0.9 - - - -    

Total  98.8 96.9 98.0 99.8 99.7 92.6   93.6 

NI†  1.2 3.1 2.0 0.2 0.3 7.4   6.4

* Values are expressed as relative percentages and compounds are listed by elution order according to GC-
MS analyses. † Not identified. ‡ This compound was also detected in juice by the same method. 
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