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Abstract

One-dimensional free boundary problem for a nonlinear diffusion - convection
equation with a Dirichlet condition at fixed face # = 0, variable in time, is
considered. Throught several transformations the problem is reduced to a
free boundary problem for a diffusion equation and the integral formulation is
obtained. By using fixed point theorems, the existence of at least a solution,
for small time, to a system of coupled nonlinear integral equations is obtained.

Keywords: Diffusion-convection equation, free boundary problem,
nonlinear integral equation
MSC: 35R35 45D05 35K55

1. Introduction

Free boundary problems (FBP) are of great importance, both physically
and mathematically. FBP are boundary value problems for partial differ-
ential equations where an unknown moving boundary must be determined
[1, 8, 19, 21]. In this paper, we formulate a FBP for a nonlinear diffusion-
convection equation namely Rosen-Fokas-Yorstos equation [11, 14]. This
equation describes fluid diffusion with convective effects in porous media and
has multiple applications, for example, to ground water hydrology, oil reser-
voir engineering and other biological applications as the drug propagation in
the arterial tissues.
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In [5, 7] a FBP on a finite interval is formulated and solved for a nonlinear
diffusion-convection equation which describe drug diffusion in arterial tissues
after the drug is released by an arterial stent and the problem is reduced to
a system of nonlinear integral equations.

We will study a one-dimensional FBP for the diffusion-convection equa-
tion with a variable Dirichlet condition(which is the one novelty with respect
to [5, 7]) at the fixed face x=0 and a Stefan like condition on the free bound-
ary which has a convective term. The present paper is organized as follows:
In Section 2, we introduce the FBP and through several transformations we
map the FBP for the nonlinear diffusion-convection equation into an equiv-
alent FBP for the linear heat-diffusion equation. In Section 3, we give an
equivalent integral formulation to problem which requires to solve a system
of three coupled nonlinear Volterra integral equations. Section 4 is subdi-
vided into two subsections: in subsection 4.1 , fixed one unknown, we prove
existence and uniqueness of the solution, local in time, by using Banach fixed
point theorem, in subsection 4.2 we use the Schauder fixed point theorem to
prove that there exists at least one solution of this unknown.

We can remark that sequential transformations used on Section 2 have
been previously used in different physical context as modelled, in particular,
by moving boundary problems, for example [2, 3, 9, 10, 14, 16, 17, 18]

2. Free boundary problem

We consider the free boundary s = s(¢) > 0, defined for ¢ > 0, and u(z, t)
which satisfy a diffusion-convection equation with the following conditions:

up = u*(Dugy —uy) , 0<xz<s(t), t>0,

(2,0) =up(z) >p, 0<x<b,
s(0)=b

where D is the diffusivity, ug is the initial concentration and f = f(¢) is the
concentration in the fixed face £ = 0. We assume that:

I~

(1)
(2)
(3)
Duy(s(t),t) —u(s(t),t) = —s(t), t>0, (4)
(5)
(6)

fecioo], uye o8], uo(0) = f(0), wuo(b) =45, ft) > (1)



Following [5, 7, 14] we will transform this problem in the one which is gov-

erned by the Burgers equation. We have:

Lemma 1. A) If u = u(x,t), s = s(t) is a solution to the problem (1)-(6)

then v = v(z,t), 20(t), z1(t) defined by:

v(z,t) = u(z,t),

where
z(z,t) = Cy + /Ot (u(0,7) — Dug(0,7)) dr + /Ol al t)d"
2o(t) = 2(0,t) = C, + /Ot (f(T) — DW) dr

D(B+1)

z1(t) = z(s(t), 1) = Co + (B + 1)t — —5

(8)

(9)

(10)

/0 () Ddr (1)

with Cy an arbitrary constant, is a solution to the problem given by the Burg-

ers equation
v =Duv,, —2vv, |, z(t)<z<z(t), t>0,
with the following initial and boundary conditions:
v(z(t),t) = f(t), t>0,

U(Zl(t)at)zﬂa t>0 )

M — U2 _
Da,0 (21(1),1)

0(z,0) =v9(2), C1 <2<Cy
Zo(O) = 01 s 21(0) = Cg

zl@)a t>07

where

v(2) = uo(97(2)), g(x) =C1+ /OgC dn

uo(n)
b1
02201+U0201+/ —dn
o Uo(n)

3
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and the constants b, Cy and Cy satisfy the following relation
Ca
b= / vo(2)dz (20)
Ch

B) Conversely if v = v(z,t), 20(t), z1(t) is the solution to the problem (12) —
(17) then u = u(x,t), s = s(t) given by

u(z,t) = v(z,t), (21)
with B
r(z,t) = v(n,t)dn, 22
(2,1) /Zo(t) (n, 1) (22)
z1(t)
s(t) = x(z1(t),t) = v(n,t)d 23
(t) = 2= (). 1) /ZO@ (. ) (23)

is a solution to the problem (1) — (6).
Proof. A) From (8), (9) and by (1) we have

2y = 1 — 1 ’ 2 = u(xjt) —— Dux<x,t) = ’U(Z’t) - Di;z((;,tt))y

and

vz (2, Vzz\Z, ”g )
Uz<$,t) = ﬁ? ufﬂfﬂ<x7t) = vQ((z,tt)) B ’U352737

(@, t) = vz, t) + v, <v(z,t) — DZ}SQ) .

Then, from (1) we get (12) which is the Burgers equation for the dependent
variable v(z, ).

Taking into account (9) the domain D = {(z,t)/0 < z < s(t),t > 0} for
u(z,t) is transformed into the domain D* = {(z,t)/20(t) < z < z1(¢t),t > 0)}
for v(z,t), where zy(t) and z{(t) are given by

20(t) = 2(0,t) = Cy —i—/o (u(0,7) — Du,(0,7)) dr

t s(t)
a(t) = 2(s(t),t) = Ci + / (u(0,7) = Duy (0, 7)) dr + / u<$ e




If we derivate z; respect to variable ¢ and we use (1) and the conditions
(2)-(6), we obtain the follow relation

21 (t) = %81(2&)

Then, from (4) we have (15) and the expression (11) for z1(¢), where z1(0) =
C + fo e d77 = (. Equations (13) and (14) follows inmediatly from (2)
and (3) respectlvely

For ¢ = 0 we have that

o1
z=C +/ ——dn = g(z),
1 0 UO<77) n g( )

then (5) is equivalent to v(z,0) = ug (¢g7'(z)) for C; < z < Cy where Cy =
Ci + fob #(n)dn. Therefore (16) holds.

To prove B) we consider (21), (22) and the (12) — (17) which are satisfied
by v =v(z,t), 20(t), 21(t). We have

v, =v(z,t), x=Duv, —v*(2,1).

Moreover, for z = zy(t) isx = 0 and for 2 = 2 (t) isx = le ®) n,t)dn = s(t).
Since
= Dulu — ugu® + U, V. = Upl,  Van = UppU® + uu
then (12) yields (1).
The conditions (2), (3) and (5) follows inmediatly from (13), (14) and
(16) respectively.
To prove (4), from (23) we calculate $(¢) and use (12) and (14). We have

21 (t)

5(t) = v(=z1(b), t)zl(t)—v(zo(t),t)zo(t)+/(t) ve(n, t)dn

:5_D%E%£9:5—D%@@¢)

and (4) holds.

[
Remark 1. Eq. (9) is equivalent to the relations
1
2y = WD) 2z = u(x,t) — Dug(x,t). (24)



Eq. (22) is equivalent to
r. =v(z,t), x=Duv, —v*(z,1). (25)
Now we introduce the Galilean Transformation given by
V(y,t) =v(z,t) — B, y=z—-2p6t t>0 (26)
to obtain de following result:

Lemma 2. Under the transformation (26) the problem (12)-(19) is equivalent
to the following FBP:

Vi=DV,, —2VV, , yl(t) <y <wn(), t>0, (27)
Viyo(t),t) = f(t) =B, t>0, (28)
Vin(t), 1) =0, t>0 (20)

Vyy (), 1) — B —B) = Bin(t)
D R L L t>0 (30)
V(y,0)=W(y), Ci<y<Cy, (31)
Y0(0) =C1, 1(0) = Cs (32)

where

Voly) = vo(y) — B (33)

yo(t) = Cy — 26t + /Ot (f(T) — DM) dr (34)

D(B+1)
32
Proof. The Galilean transformation (26) leaves invariant the Burgers equa-
tion (12). The free boundaries yo(t) and v (¢) given by (34)-(35) are obtained

from (10)-(11). The conditions (28)-(32) follows from (13)-(17).
Conversely, if we define

b (t) = Cot (1= B)t / V, (o (7),7)dr. (35)

u(z,t) =V(y,t) + 5, z=y+26t >0,

from (27)-(35) we obtain (12)-(19) with z¢(t) and z(t) given by (10) and
(11) respectively. O



Let us now transform problem (27) — (35) in the one which is governed
by a heat-diffusion equation using the Hopf Cole transformation given by

w(y,t) =COV(y, On(y,t), yt) <y <wu() . t>0, (36)
with .
Clt)=1— /0 wy (g1 (7), 7)dr, (37)
and t
1y, t) = eap (% / " V<£,t>dé> . (39)

We have the following result:

Theorem 1. Under transformation (36) — (38) problem (27) — (35) is equiv-
alent to the free boundary problem (39) — (47) given by:

wy = Dwy, , yo(t) <y<wn(t) , t>0, (39)
(1o(),1) = (£(t) — B) (O(t) 5] e t)d€> £>0,  (40)
o Dy ’ ’ ’
w(y(t),t)=0, t>0, (41)
Duw,(y1(t),t) _ B(1—B) — Biu(t)
5 511 , t>0, (42)
w(y,0)=F(y), Ct<y<Cy (43)
Z/U(O) =C1, 1 (O) = (% (44)
where
Ca
F(y) = Voly)exp (%/ Vo(&)d ) (1 w(E, O)dg) (45)

and the free boundaries yo = yo(t) and y; = y1(t) are given by:
Yo

— - 5/f—Td7 D/ wyly ;)’T 1= ) dr, (46)

nty= ot =9+ 28 iy (1= [ miar).
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Proof. To prove the equivalence of the two problems we will deduce the
inverse transformation to the relation(36) by considering the definition (38),
we have

y1(t)
log (n(y,1)) = & / V(e t)de

then

mlrt) =~V (s tnly, 1) = 52’

Integrating on variable y, it follows that

C(t)+ 5 [ w(g, t)de
n(y,t) = 0

Therefore, we have that the inverse relation to the generalized Hopf-Cole
transformation (36) is expressed by:

w(y,t) .
C(t)+ 5 [ w(g, t)de

V(y,t) = (48)

Under transformation (48) the Burgers equation (27) is mapped into the lin-
ear heat-diffusion equation (39). The initial and boundary conditions (40) —
(44) are easily obtained from (28) — (32). The expressions (46) and (47) for
the free boundaries are obtained from (34) and (35) respectively.

The converse is proved analogously. O]

3. Integral formulation

In this section, we give an integral formulation of the free boundary prob-
lem (39) — (47). We have the following equivalence theorem.

Theorem 2. Let (7) and 0 < D < 2 be. The solution to the free boundary
problem (39) — (47) has the following integral representation

Co

w(y,t) = G(y7t;§,0)F(§)d§+D/o ¢1(T)G(y, Ly (r), T)dr (49)

C1
T e[
i [ F5c tn). =08 [ Z e ).

f



—D/ y;t yO )dTv

with
y1(t)
h(t) = (f(t) — B) <C(t) + % w(E, t)d€> : (50)
yo(t)
=y - B2 / 7(17— / 20 (1- %) dr. (51)
y(t) =Cy+ (1= Bt + W)zn (1— /O ¢1(7)d7> (52)
and ¢1, ¢ are defined by
o ()= 22 wi0).t) . ()= 2 (). ) (53)
dy ’ Oy ’

if and only if it satisfies the following system of two Volterra integral equa-
tions:

2 Cs t
n(t)=5—p% { N(yi(t),t; €, 0)F'(£)ds + D/O G1(T)Gy (Y1 (1), t;yu (), T)dT

C1
+52/ f: 7), 5 yo(7), )dT—DB/O qu(g))Gy(yl(T),t;yo(T),T)dﬂ
- /O h’(T)N(?ﬂ(t),t;yo(T)aT)dT}’ (54)
2t k() [ e
CCR et A ARG LD

+D/ Gy(yo(t)J;yl(T)aT)¢1(T)d7+52/0 %Gy(yo(t)atyo(ﬂaT)(T)dT

_05/ ¢2 t),t;yo(7), )(T)dT—/O hI(T)N(yo(t),t;yo(r),T)(T)dT},

(55)
where G, N are the Green and Neumann functions respectively, and K is the
fundamental solution to the heat equation, defined by

G(z,t,&6,7) =K (z,t,&§,7) — K (—x,t,§,7), (56)

9



N<a:’ t? 5’ T) = K(I7 t7 57 T) + K<_x7 t7 67 T) ) (57)
1 (z—£)?
1 S Gl Yl B
K (2,1,6,7) = { o/mDin) P ( 4D(t—f>> =T (58)
0 t<rT

and yo , y1 are given by (51) and (52) respectively. Moreover, function h(t) =
w(yo(t),t) must satisfy the integral relation

y1(t)

ht) = (f(£) — B) (1 _ /O () + % w(y, t)dy) o (59)

yo(t)

Proof. Let w(y,t), yo(t), y1(t) be the solution to the problem (39) — (47).
We integrate on the domain

Die={(&7) [y(r) <&<uy (1), e<T <t—¢€} (e>0),
the Green identity
D (Gue — wGe), — (Gw), =0 (60)

and we let € — 0, to obtain the integral representation for w(y, ) [12, 19]

Cy t
U)(y,t) = o G(y,t,f,O)UJ(f(])df + D/() wé(yl(T)>T>G<y7t;yl(T>77-)dT
t 1 t <61>
+52/0 —w@;g T>G(y, tyolT), T)dT — Dﬁ/O —wﬁ(?((:))’ T)G(y, t;yo(T), 7)dT

—i—D/{J w(yo(7), 7)Ge(y, t;yo(T), T)dT.

By using the definitions of ¢; and ¢ given by (53), the definition of h and
boundary conditions we have (49). If we differentiate (61) in variable y and
we let y — yg (t) and y — y; (¢), by using the jump relations [12] we obtain
the system of integral equations (54) and (55) for ¢; and ¢5. Moreover, from
(37) and (50) we have the equation (59).

Conversely, the function w(y,t) defined by (49), where ¢, and ¢, are the
solutions of (54) and (55) , satisfies the conditions (39), (42) - (44). In order
to prove the conditions (40) and (41) we define

i1 (£) = w(yn (£),£) and piz (1) = h(t) — w(yo(t), £).

10



If we integrate the Green identity (60) over the domain D, . (¢ > 0) and we
let € — 0, we obtain that

Cs t
w(y,t) = / Gy, 1 €,0)w(E,0)dé + D / Gyt 50 (7)i7) s (r)dr

C1
—D/O Gy(y,t;yl(T),T)w(yl(T),T)dTJr/o G(y, t;y1(7), Tw(ys (), )y, (T)dr

~ [ 6.0, 7) [w(un(r). i) = ()]

0

+D/0 Ge(y, t;y0(7), T)w(yo(7), 7)dT. (62)

Then, if we compare this last expression (62) with (49) we deduce that

5 Dén(r) (. wlge(), ™) (F(7) - B)
7@ T T (5 4 h(r)

p2(7)

[ cttinnn | )+ Destr)| ar

t t
+D/ Gy(y,t;yo(T),T)uz(T)dT+D/ Gy(y, t; 1 (1), 7)pa (7)d7
0 0

_ Dou(7)(B +1

PO } dr=0.  (63)

-/ Gt (). )ym(7) - 5)

By taking y — y; (t) and y — yg (¢) in (63), and the jump relations we
obtain that py and ps must satisfy the following system of Volterra integral
equations:

mi =75 / { DGy (), (7). 7) = Gly, (7). 7) (1= B) = 22D (),
(64)
+ {DGy(yl(t)atQZ/O(T)aT) + G(y1(t), t;y0(7), 7) [% — Dey(7) (% _ ﬁ)} } o (7)dr

pia(t) = % +/0 {DGy(yo(t), t;y0(T), 7) — G(yo(t), t;yo(T), T) (65)

11



75— Doaln) (£ = 35) |} 1)

+4 D6, 0(0 531 (7),7) = G0t (r),7) [ (1= 9) = 22

Following [13], it’s easy to see that there exist a unique solution p; = ps =0
to the system of Volterra integral equations (64)-(65). Then (40) and (41)
are verified and the result holds. O

4. Existence of the solution

In order to prove existence of solution w = w(y,t), y = yo(t) and y = y; ()
of (39) — (47) and taking into account the result of Theorem 3.1 we will
demonstrate that there exists at least a local solution ¢1,¢o and h to the
coupled nonlinear integral equations (54), (55) and (59).

We will proceed in the following way: Fixed positive constants H,R, S and
o we define the set I =II(H, R, S, o) given by

IT:= {h € C'[0,0]/h(t) = H,[|h]| < R,[|W|| < S} (66)

where ||h|| = m[gmx] |h(t)|. Clearly II is a compact and convex set in C'[0, o].
te|0,0

For each fixed function h € I, = {h € C'[0,1]/h(t) > H, ||h|]| < R, |W|| < S}
we will use the Banach fixed point Theorem in order to prove that there exist
unique solutions ¢;, ¢, € CY[0,0] to the system of two Volterra integral
equations (54) and (55). Then for suitable H, R, S and o, by using Shauder’s
fixed point Theorem we will demonstrate that there exists at least a solution
h € I1; of (59).

4.1. Ezxistence and uniqueness of ¢1, ¢

We consider the Banach space

Cl0,0] = {ﬁ: (z:)/ ¢i:[0,0] = R, 1=1,2, continuous}

with the norm
—

¢>k

= t t
tIGII[(E)Lir(] lp1(t)] + tfél[gf} 92(t)]

12

_ Don(7)(B + 1} } (7).



and the subset:

—

¢*

<}
with ¢ and M positive numbers to be determinate.
We define the map x : Cyro — Crp, such that

(7)) 0= (ot oon)

x1(01(t), ¢2(t) = 725 { 2 N(yi(t),t;€,0)F'(§)dg + D/t G1(T)Gy(yi(t), t; 91 (), T)dT

ot = {ﬁe Clo. 0]/

where

/ f: 7).t o), 7)dr — D / @ Gy (1 (7), : o(r), ),
—/0 h/(T)N(yl(t)at?yO(T)vT)dT}7 (67)

Co
elon(0,6a0) = e s LB [ Nt e 0P €ae

+D/ Gy(yo(t),t;yl(T),T)¢1(T)dT+B2/O %Gy(yo(t),t;yO(T),T)(T)dT

t
~05 [ 20, o).t s = [ WEIN ot ot )}
0
(68)
We will prove that for suitable M and o, the map x is well defined and it
is also a contraction, therefore by the Banach fixed point Theorem it has a

unique fixed point.
Firstly, we give some preliminary results

Lemma 3. Let f(t) > %, 0 <D< 2and¢p €CY [0,0],m[gmx]|gbi(t)| <
te|0,0
M, (i=1,2). If
M MD

13



then yo and y1 defined by (51) and (52) satisfies

w0(t) = wo(7)] < (B+28) [t 7|, ¥r,te0,0], (69)
G < yolt) <3GVt € [0,0], (70)

@ - <+ 8 (14 %) k-1 L vrieloe], ()
G <u(t) <3%, Vre(oo]. (72)

Proof. 1t follows inmediatly from definitions (51)-(52) and assumptions on
data. O

To prove the following Lemmas we need to use the classical inequality

2
eXp(%) 5
(tﬁ) S(noz) ,a,x>0,t>7,neN. (73)
(t—7)2 2ex?

Lemma 4. Let 0 < 1. For each function h € Iy under the hypothesis of

Lemma 3 and C; < % we have that following properties are satisfied

Ca
/ [F' (O] IN(y1(t),£:€,0)[ d§ < || F'[| < Av(uo, Up, B, D), (74)

C1

D/O Gy (1 (t), ty (1), 7)1 (7)| dT < Ao(M, D, Uy, C1) Vo, — (T5)
# |
o0 | t

Gy<y1<t>,t;yo<f>m>%\ dr < Ay(R, D, 3,Co,C1) VG, (76)

Ga(T)
f(7)

G, (1), £: yo(r), ) ‘dTSAz;(M,D,Cz,Q)\/E, )
/0 W ()] IN (a8 £ 30(r). 7)] dr < As(S. D)Va, (78)

Co
/C [ (O] IN (yo(t), 1 €,0)[ d€ < ||F'|| < Av(uo, Us, 8, D), (79)

14



D / G, (olt). £ (7), T)bn(7)| dr < Au(D, M, Cu, Co)v/a,
ﬁ2/t Gy (yo(t), t;yo(T), )ﬁ dr < A¢(R, M, D, 3,Cs, C1) \/o,

(7
el G

dr S A7(M7 D7CI) \/6:7

/0 ()] 1N (olt). £ 30(r), )| dr < As(S, D)W,

where

1(U0, 075? ) 61‘p< D ) o

3/2
M~D oy 3 (2D |
2/ C2 \ 3¢

T
As(R, D, B, Cy, Cy) = —L2_
3(F, D, 8, Co, C1) = 2o=

[[uoll + 8
5|

AQ(M7 D7 UO: Ol) -

(Az1 + Asy),

Nl

Ay — 3Cy — Cy ( 24D ) Ay — 18v/6
2 e(Cy —3C1)2%)

M+/D

PN

S

NG

3/2
A6<R7 A:LD)/87CI) B-sz\\fl/_ [2M C (23-5) ] )
1

3 /2D\*?
2+ 5 (_) ]

Ay(M,D,Cy,Cy) = (A31+A32));

A5(S,D) =2

A?(‘A[a Daﬂa Cl)) =DM

15
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Proof. To prove (74) we consider

Co 00
/ F()] IN((8), 6,0 de < ||| / NG (1), £:€,0)  de < | ']

C1

From (45) we have

F'(y) = exp (% /ch Vo(i)di) {Vo/(y) - %V(?(y)}

then
IF'|| < exp (nv*o\\(%z—cl)) [HVO

< exp ((Iluo\\;ﬁ)Uo> [
Uo

Following the proof given in [4, 6] and taking C < 3 we obtain (75), (76),
(77),(80), (81) and (82).
To prove (78) we take into account that

+ 51Vl

I
Yo
uo

+ W} = Al(uo,UO7ﬁ?D)'

1

IN(y1(t), t590(7).7)| < N

so, we obtain

[ ]Vt s <2y s

The inequalities (79) and (83) are proved in the same way as (74) and
(78) respectively. O

Lemma 5. Let yg1 and yoo be the functions corresponding to ¢o1 and ¢og in

C°[0, 0] respectively, and vy, and yi2 be the functions corresponding to ¢

and ¢15 in C°[0, a] respectively with m[ax} |0i(t)] < M, 4,5 =1,2. Under
te|0,0

hypothesis Lemma 3 we have
Y01 () — Yoo (t)| < %0 |11 — P12l ,
o1 (t) — yoo ()| < (B+2B) [t — 7], i =1,2, (85)
G <uuit) <3 VEe(0,0], i=1,2,

16



and 41
y11(t) — Y2 ()] < Fr o [|dar — b2,

) =g < A+ 8) (1+4) [t =7l, i=12,  (86)

& <yy(t) <32Vt e [0,0], i =1,2.

Proof. 1t follows inmediatly from definitions (51)-(52) and assumptions on
data. O

Lemma 6. If we take o < 1, % (,8+%)0 < 1 and we assume the

hypothesis of Lemma & then we have

Ca
L@ en.se0 - Nuno.pcolee 57)
< il DT/% Cal P11 — 12|, Vo < P, (ug, D, B, Up) ‘ ¢1 53
D / (612(7)Gy (a0, £ 11 (1), 7) — G10(7) Gy (ia(0), £ y1o (7). ) dr - (88)
< Py(M, D, Cy)o ||p11 — ¢12ll < Poy(M, D, Cy) ’ _:k—¢_'§ ;

52/0 73 Gy (v (0,901 (1), 7) = Gy (ya(t), £ oo (1), 7)  dr - (89)

< Py(R,B3,Cy,Cs) || 6% — 65| /o,

Dﬁ/ |¢21 Gy (6), 65901 (1), 7) — d22(T) Gy (y12(1), L5 Yoo (7), 7) | dT
(90)
< Py(D,M,Cy,Ch) H&f — &

/D (W (PN (y11(t), 8 901 (1), 7) — N(y12(t), , Yoo (7), 7)| dT (91)

SPS(SaDvch?)‘ _;_Q%
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Ca
L |F @ .60 - Numo. 601 (@)
< 2 D‘\|/C_102] |21 — P22, Vo < Pi(ug, D, 5»UO)‘ —
D/ |61 (T) Gy (o1 (1), £ 311 (7), T) — 12(7) Gy (Yo2 (), tiypa(7), 7) | dT (93)

< Pu(D, MG, Cy) (6 - 33| Vo,

5 /0 @ Gy (Yo1 (8), 6901 (7), 7) — Gy(yoa(t). £ yoo(T), )| dT (94)

Spﬁ(D?[—LRaM?C’l)‘Qﬁ_@ \/Ea

D / (691(7)Gy (or (), £ o1 (1), 7) — Gaa(7) Gy (oa(0), £ oo (7)) d - (95)

§P7(M7D701) ‘@ilk_qb_‘; \/Ea

/0 W) IN(a(8), £901(7)o7) — Ngaa(8), b yoalr), )| dr - (96)
vz,

< Py(S, D, 0y, Cy) || 6% — &

where

Py(wo, D, 5,Un) = 52z [(Juoll+ B) exp (% (ol + 5)) + L2l (97)

Py(M,D,Cy) = Y2 [6M +5 (2 + Y (;)3/2] , (98)
Py(R, 3,C1,Cq) = RB(P31 + Ps), (99)
with
Co—C1)?
P31(Clac2) fe3/2 [\1/66((22_301))3 2741/5 + (C. 12})€1)3 + (026$) ] (100)
_ 126 1 (3C2—C1)?
P (Ch, Cy) = Vme3/2 [(02 3C1)? + + (cg2 3011)3 + (C’2+C’1) ] (101)

Py(D,M,Cy,Cy) = D[M(Ps; + Ps2) + Py, (102)

18



where

A6 1 1
P41<Cl 02) \/ﬁ |:(Cz 3C1)2 + (C2+C1)2 } (103)

P5(S; D, 01, 02) = (’jﬁfﬁ

{( 3C, — C 3 } (104)

Gy —3C1F | (Ca 102
Py(D, H, R, M, Cy) = BR{(2D) (D)2 |22 4 2 (8.+ 20)*|  (105)

3/2 18C7+14D
2 4T H (>

(eC
Pi(M,D.Cy) = Y2 [6M + & (2)"* + 2 (9)™*]. (106)

and (95)-(96) are obtained following [6].

1
Proof. The inequalities (87)-(93)
f (94), following [20]. We write

We will show the proof o
|Gy (Y1 (), t:yo1(7), 7) — Gy(yoa(t), £ Yoo (7), 7))

S |Ky(y01 (t)v t; Yo1 (T)’ T) - Ky<y02(t)7 t? yOQ(T)7 T)|
+ ’Ky(—ym (t)v t; Yo1 (T)a 7—) N Ky<_y02(t)a t§ y02(7_)7 7—)‘ .

Taking into account that
| Ky (yo1 (1), £ 901(7), 7) — Ky(yo2(t), £ yoa (1), 7)|
< (2Dt — 7)) K (yor (1), £ 901 (1), 7) (W01 (8) — yo1 (7)) — (o2 () — yo2(T))]
+ [K (yor (1), &5 901 (7), 7) = K (Y2 (), £ o2 (1), T)] (Y02 (t) — yo2(7))]
| )

< (2Dt — 7)) K (o1 (), 5 yor (7), 7) | [(wo1 (£) — yo1(7)) — (42 () — yo2(7))]
+[1 —exp(m(t, 7)] (yo2 (t) — Yoo (7)),

where
ity = 500) = 3 () — (t) = ()
Q AD(t — )
(o1 (8) = 901(7)) = (w02 () — g2 (7))] [(yo1 () — yo1(7)) + (Yo2(t) — yo2(7))]
4D(t — ) '
We have

001(®) () = (alt) = vl <D [ 1= 5 16 () = )l

19



and

[(Wor (1) = you (7)) + (yoa(t) — yoa (7)) < 2 (B + 2F7) (t—7) <4 (B + 23%) o,

then

im(t,7)] < 77 |97 — 93

¢1 — 93

(ﬁ‘i‘ 2DM)

and taking into account that ‘

Im(t, )| < %L (6+28M) 0

If we assume that o satisfies

we obtain that

1= eap(m(t,7)] < 2|m(t, )| < & (6 +282) |65 — 63| o

Therefore
[y (you (£), £ 901 (7), 7) = £y (yo2 (£), £ Yo (7), 7)| <
< D) K (yon (8): i (7),7) |22 + 3 (8+ 224 o] |6
< (UD) (DRt =) [+ & (B+ 2BM)%0 |
Using the mean value theorem we may write
[ Ky (=901(0), 5 901(7), 7) — Ky (=yo2(2), 5 yo2 (7), 7))

< Kttt .0) (05 ~ 55 =) | B+ () = se®) ~ )

— —
* *

where n = n (t,7) is between yo;1(t) + yo1(7) and yoo(t) + yo2 (7).
Since

P17 — P3|

[yor () + 1101 (7) — o2(t) — yoa(7)] < %g |

20



and
Cl S?’L(t,T) §601,

by using (73) we have

n2(t, 7) 1 6 \*?18C2+1
K(n(t t; 7 — <

(nlt, 7). :0,7) (4D2(t —2  2D(i - T)> ‘ = (wg) /7

then
: . 6 \?1sctiap |5 o
1Ky (=01 (6, 301 (7), 7) = K (=), 6 0a(r), 7] < (5 ) T B 420 |63 - 63
Collecting the results we have
|Gy(yor(t), £ yo1(7), 7) — Gy(yoa(t), £ Yo2(T), 7))

3/2 L
< {aD)y om0 [+ 2 5+ 207 + ()" 2540 ot - )
then

2 " h(7) : 4 .
B ) |Gy (yor(t), t:yo1(7), 7) — Gy(yo2 (1), t: Yoo (T), T)| dT
0
< Py(D, H,R, M. C\ ||¢; — 65 v/,
where
Py(D, H, R, M,Cy) = BR{(2D) " (Dm) /2 |22 + 2 (5 + 2)1)?]
3/2 180211
F(d) R
Then, (94) has been proved
]

Theorem 3. Let hypothesis (7) be. Fized 0 < C} < % and h € 1. If o
satisfies the following inequalities

<1, 20+ 5) (1+%>J§C§, (107)
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(5‘1‘2]\21))0501’ M (34 2DMY) 5 <, (108)
Hl (Clac’QaUmMaDaﬁa R7 Sa 0) S 17 (109)
H2<017027U0>M7D757R7 S? U) S 17 (110)
where M 1s given by
_ 1 /1] Al 5
M (uo U, f, D, 5, R) =1+ (2—D+B(3—D) 2A, +23 D (111)
and
H, (Cy,Uy, f,M,D,B,R,S,0) = 2 A+A+A+25
1 1,%Y05 /> y s Py 4,0,0) = 2_D 2 3 4 \/E
2[|.f1] { 25”
+ As+ A5+ Ag + o, 112
TGy [+ At Aot | VB (12)

2
H2<017U07f7M7D75aR7S>U):{2_D[P1+P2+P3+P4+P5]

+% P +P4+P5+P6+P7]}\/E, (113)

then the map x : Cyre — Chure @5 well defined and it is a contraction map.
Therefore there exists a unique solution @7, ¢5 on Cy, to the system of
integral equations (54) and (55).

Proof. Firstly, we demonstrate that x maps C)y, into itself, that is

()

Taking into account Lemma 4 we have

= max Ix1(01(1), Pa(t))] —1—5611[32(} Ix2(1(t), pa(t))| < M

. teloo]

a0 o)1 < 525 L [ v ace 22 3l

lonttnen(0)] < 53 >{5R+A1+ [A4+A5+A6+jf_D] ﬁ},
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and then

(#)

where H; is given by (112).

<o [ L] 2L

2-D  B(B-D)| (3-D)

+H1(017027U07M7 D767Ra 870))

g

N
Selecting M by (111) and o such that (116) holds, we obtain HX (gb*) <
M. ’
Now, we will prove that
— — —  —
HX (QST) — X (¢;) S H2 (017027U07M7 D)BaRa S’ J) ¢>{ - ¢;
h _*>: 11 —;: 21 C
where ¢} (¢12) , 05 (¢22) € Crro-
Taking into account Lemma 6 we have
— —
HX <¢T) - X <¢§) = nax X1 (611 (£) ; P12 (1)) — X1 (P21 (1), P2 (2))]
+tr€ﬂ[g§} Ix2 (P11 (1), P12 (1) — x2 (@21 (1), P22 (1))
2
S {E[P1+P2+P3+P4+P5]
+M[P1+P4+P5+P6+P7]}\/E o — 4 (114)
6(3_D> o
— —
:H2 (017027U07M7D7B7R7570-) (b; - (ﬁ{

By hypothesis (107)-(111) we have that y is a contraction and therefore,
there exists a unique fixed point ¢* = (i;) such that y(¢*) = ¢* this is

X1(01(t), 42(t)) = é1(2), X2(91(t), 2(t)) = ¢da(t).
O

Theorem 4. For each h € 11, under hypothesis of Theorem 3 there exists
a unique integral representation for w, yo and y; given by (49),(51) and (52)
respectively, where ¢, and ¢o are the unique solutions of (54) and (55)
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4.2. Existence of at least a solution of wp(yon(t),t) = h(t)

In this subsection we assume that all the hypothesis of Theorem 3 are
valid, which guarantee the existence and uniqueness of w = wy,, Yo = yor, and
y1 = y1p, for each h € I1;.

Now we will prove that for suitable values of H, R, S and o there exists
h € II(H, R, S, o) such that

wp(Yon(t), ) = h(t) (115)

for t € [0, 0], where wj, and yo, are established for above theorem.
We define the map Z on II such that for each h € II C II; (0 < 1)

Z(h)(t) = wn(yon(t), 1),

y1n(t)

ﬂmwzum—mG—AEMﬂm+% w@ﬁ%) (116)

Yon (t)

where @15, wy, yon and yy, are the solutions obtained in above section. We
will use the Schauder’s fixed point theorem which states: For any continu-
ous function L mapping a compact convex set to itself there is xq such that
L(l‘o) =X -

Lemma 7. If
(Lf{f+ B) (2Cy 4 3Uo) < 2D (117)
then, for h € 11 function Z(h) € C'(0, 0] and satisfies
Z(h)(t) > g, (118)

(< 2DAI+8) 0+ M)
= 2D~ (|1l + 5 (20 + 300)’

2D(||£1+8)(1+M) 2|11l 8
12" < s5=qisTmcirson { 7 T UA+5) [5 +M (% + %)]}
(120)

12(h)

(119)

+M (|1 + 5)
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Proof. From definition of Z(h) and (7) we have Z(h)(t) > g Taking into
account (116) and the fact that

wh(§7t> S wh(y()(t)vt)7 yO(t) S 5 S yl(t)

we have
Z(W) (1) < (F(8) + B) (1 = [ bl + wnlan(t.8) (1) - yo<t>>) |

Since ||¢14]| < M, 0 <1 and taking into account Lemma 5 we obtain

1zl < (171 + 5) (1 Mz 2 +3“’) ,

or equivalently

20071+ )1+ )
1200 < 55 =17 5) 2Cr + 300)

If we derivate Z(h) respect to variable t, we get

t y1n(t)
(Z(h)'(t) = f'(t) (1 —/0 G (T)dT + %/ o wh(éiﬂf)

(1) - ) [—¢lh<t>+%wh<y0h<> Dyon(®) + / whtft)dgl

and using eq. (39), (51) and (53) we obtain

t y1n(t)
(Z(h)'(t) = f'(t) (1 —/O G1(T)dT + %/ o wh(fiﬂf)

+(f(t) = B) [=01n(t) — Hwnlyon(t), ) yon(t) + dni(t) — dna(t)]
B

Lo Z(h)(t) Z(h)pB> z
- O 2B ) 5 vt (35 -1 5]

Then we have

(ZR)Y O < 1711252+ (1F) -+ 8) [”Z ”B+M(2”Z(h)” +1+ ”Z(h)“)]
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<12+ (1 +8) |5+ M (2+5)] b+ M A1+ 8),

< U LA ()4 ) [+ M (24 5)]} + M 151+ 8)
and the lemma holds. O

Next, we define

1 /1] /1]
Ey=1+42 A Ey =2 121
and
o 2D(lfl+8
3 —_— .
= (71l + B) (2C1 + 3Uy)
Lemma 8. We assume (117) and
B3y < 1. (122)
If we take
5 Es(1+ Ey)
H== = — 123
> =T EE (123)
s =B {2 +8) [2+M (2+ )]} (124)
where M 1s given by
Ey+ EyEy
= < 125
M 1— E3Es (125)
then Z, € 11.
Proof. From (111) we have
M = E; + E5R,

then by (119) we have

Therefore, if we define R = }i‘"’(lE—+gl we have ||Z(h)|| < R. Moreover we have

Z(h)(t) > 2 = H and by Lemma 7 we have [|(Z(h))'|| < S. This yields
Z(h) € II and the proof is complete.

O
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Remark 2. Assumption (122) is equivalent to
AD| A1+ 8)
2D — ([[f]| + B) (2C1 + 3Uo)] (3 — D)

Theorem 5. We assume hypothesis of Lemma 8. There exists at least a
solution h* € 11 such that Z(h*) = h*.

<1 (126)

Proof. Taking into account above lemmas and using Schauder’s fixed-point
theorem we obtain that there exists at least a solution A* & II such that

Z(h*) = h*. O]
We can now formulate our main result.

Theorem 6. Fized Cy < 5. Let H, R, S and M given by (123), (124) and
(125) respectively. If (117) and (126) hold,

o<1, 2(1+p8) (1 242)0<02 (127)
(5+2%)0§C& s+ 0 <1 (128)
Hi <1, Hy<1 (129)

where Hyand Hy are given by (112) — (113) then there exists solution to the
free boundary problem (39) — (47) given by

Co t
w*(y,ﬂ:/c G(y,t;&O)F(f)d&JrD/o o1(T)G(y, t;yi(7), T)dT (130)
"h(7)

I ATes

G@m%h»ﬂﬁ—DﬂAﬁ%@G@m%wxﬂm

—D/h* Sy, 1y (), 7)dr

and

, (1 t
0 :01_52/0 mdT_D/ s (1= ) esmar ()

Ji() = s + (1— B)t + 2EHpy ( /@ ) (132

where @7, ¢5 are the unique solutions to the system of two Volterra integral
equations (54) and (55) corresponding to h* a solution of Z(h) = h.
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5. Parametric solution to the problem (1)-(6)

Assuming hypothesis of Theorem 6, if we invert the transformations given
by (8), (26) and (36) we obtain the explicit parametric representation of the
solution to free boundary problem (1) — (6) given by

w*(y,t)

* -t
u (I’ ) 1—[0 ¢1 dT—|— fyl(t gt) 5

+ 1 (133)

v = / . [ w'p 1) +B8lde  (134)
e (1) +28t fo oi(r)dr + 5 fyl(t *(€,t)d¢
with
Yo (t) <y < wi(t), O<t<o
and

dp  (135)

(Er+2pt w* (1, t)
t)= +
s(t) /ys(t)-i-%’t [ fo ¢t (T)dr + L 6 fyl w* (&, t)dE P

where w* = w*(y, t) is given by (130), y; (%), y;(t) are given by (131) and (132)
respectively, with ¢7, ¢5 the unique solutions to (54) and (55) corresponding
to the solution h* to equation (115).
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