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Abstract

One-dimensional free boundary problem for a nonlinear diffusion - convection
equation with a Dirichlet condition at fixed face x = 0, variable in time, is
considered. Throught several transformations the problem is reduced to a
free boundary problem for a diffusion equation and the integral formulation is
obtained. By using fixed point theorems, the existence of at least a solution,
for small time, to a system of coupled nonlinear integral equations is obtained.
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1. Introduction

Free boundary problems (FBP) are of great importance, both physically
and mathematically. FBP are boundary value problems for partial differ-
ential equations where an unknown moving boundary must be determined
[1, 8, 19, 21]. In this paper, we formulate a FBP for a nonlinear diffusion-
convection equation namely Rosen-Fokas-Yorstos equation [11, 14]. This
equation describes fluid diffusion with convective effects in porous media and
has multiple applications, for example, to ground water hydrology, oil reser-
voir engineering and other biological applications as the drug propagation in
the arterial tissues.
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In [5, 7] a FBP on a finite interval is formulated and solved for a nonlinear
diffusion-convection equation which describe drug diffusion in arterial tissues
after the drug is released by an arterial stent and the problem is reduced to
a system of nonlinear integral equations.

We will study a one-dimensional FBP for the diffusion-convection equa-
tion with a variable Dirichlet condition(which is the one novelty with respect
to [5, 7]) at the fixed face x=0 and a Stefan like condition on the free bound-
ary which has a convective term. The present paper is organized as follows:
In Section 2, we introduce the FBP and through several transformations we
map the FBP for the nonlinear diffusion-convection equation into an equiv-
alent FBP for the linear heat-diffusion equation. In Section 3, we give an
equivalent integral formulation to problem which requires to solve a system
of three coupled nonlinear Volterra integral equations. Section 4 is subdi-
vided into two subsections: in subsection 4.1 , fixed one unknown, we prove
existence and uniqueness of the solution, local in time, by using Banach fixed
point theorem, in subsection 4.2 we use the Schauder fixed point theorem to
prove that there exists at least one solution of this unknown.

We can remark that sequential transformations used on Section 2 have
been previously used in different physical context as modelled, in particular,
by moving boundary problems, for example [2, 3, 9, 10, 14, 16, 17, 18]

2. Free boundary problem

We consider the free boundary s = s(t) > 0, defined for t > 0, and u(x, t)
which satisfy a diffusion-convection equation with the following conditions:

ut = u2(Duxx − ux) , 0 < x < s(t) , t > 0 , (1)

u(0, t) = f(t) , t > 0 , (2)

u(s(t), t) = β > 0 , t > 0 , (3)

Dux(s(t), t) − u(s(t), t) = −ṡ(t) , t > 0 , (4)

u(x, 0) = u0(x) > β , 0 ≤ x ≤ b , (5)

s(0) = b (6)

where D is the diffusivity, u0 is the initial concentration and f = f(t) is the
concentration in the fixed face x = 0. We assume that:

f ∈ C1[0, σ], u0 ∈ C1[0, b], u0(0) = f(0), u0(b) = β, f(t) >
3β

2
(7)
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Following [5, 7, 14] we will transform this problem in the one which is gov-
erned by the Burgers equation. We have:

Lemma 1. A) If u = u(x, t), s = s(t) is a solution to the problem (1)-(6)
then v = v(z, t), z0(t), z1(t) defined by:

v(z, t) = u(x, t), (8)

where

z(x, t) = C1 +

∫ t

0

(u(0, τ) − Dux(0, τ)) dτ +

∫ x

0

1

u(η, t)
dη (9)

z0(t) = z(0, t) = C1 +

∫ t

0

(
f(τ) − D

vz(z0(τ), τ)

f(τ)

)
dτ (10)

z1(t) = z(s(t), t) = C2 + (β + 1)t − D(β + 1)

β2

∫ t

0

vz(z1(τ), τ)dτ (11)

with C1 an arbitrary constant, is a solution to the problem given by the Burg-
ers equation

vt = Dvzz − 2vvz , z0(t) < z < z1(t) , t > 0 , (12)

with the following initial and boundary conditions:

v(z0(t), t) = f(t) , t > 0 , (13)

v(z1(t), t) = β , t > 0 , (14)

D
vz(z1(t), t)

v(z1(t), t)
− v(z1(t), t) = − β

β + 1
ż1(t) , t > 0 , (15)

v(z, 0) = v0(z) , C1 ≤ z ≤ C2 , (16)

z0(0) = C1 , z1(0) = C2 (17)

where

v0(z) = u0(g
−1(z)), g(x) = C1 +

∫ x

0

1

u0(η)
dη (18)

C2 = C1 + U0 = C1 +

∫ b

0

1

u0(η)
dη (19)
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and the constants b, C1 and C2 satisfy the following relation

b =

∫ C2

C1

v0(z)dz (20)

B) Conversely if v = v(z, t), z0(t), z1(t) is the solution to the problem (12)−
(17) then u = u(x, t), s = s(t) given by

u(x, t) = v(z, t), (21)

with

x(z, t) =

∫ z

z0(t)

v(η, t)dη, (22)

s(t) = x(z1(t), t) =

∫ z1(t)

z0(t)

v(η, t)dη (23)

is a solution to the problem (1) − (6).

Proof. A) From (8), (9) and by (1) we have

zx = 1
u(x,t)

= 1
v(z,t)

, zt = u(x, t) − Dux(x, t) = v(z, t) − D vz(z,t)
v(z,t)

,

and
ux(x, t) = vz(z,t)

v(z,t)
, uxx(x, t) = vzz(z,t)

v2(z,t)
− v2

z(z,t)
v3(z,t)

,

ut(x, t) = vt(z, t) + vz

(
v(z, t) − D vz(z,t)

v(z,t)

)
.

Then, from (1) we get (12) which is the Burgers equation for the dependent
variable v(z, t).

Taking into account (9) the domain D = {(x, t)/0 < x < s(t), t > 0} for
u(x, t) is transformed into the domain D∗ = {(z, t)/z0(t) < z < z1(t), t > 0)}
for v(z, t), where z0(t) and z1(t) are given by

z0(t) = z(0, t) = C1 +

∫ t

0

(u(0, τ) − Dux(0, τ)) dτ

z1(t) = z(s(t), t) = C1 +

∫ t

0

(u(0, τ) − Dux(0, τ)) dτ +

∫ s(t)

0

1

u(η, t)
dη
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If we derivate z1 respect to variable t and we use (1) and the conditions
(2)-(6), we obtain the follow relation

ż1(t) = β+1
β

ṡ1(t).

Then, from (4) we have (15) and the expression (11) for z1(t), where z1(0) =

C1 +
∫ b

0
1

u0(η)
dη = C2. Equations (13) and (14) follows inmediatly from (2)

and (3) respectively.
For t = 0 we have that

z = C1 +

∫ x

0

1

u0(η)
dη = g(x),

then (5) is equivalent to v(z, 0) = u0 (g−1(z)) for C1 ≤ z ≤ C2 where C2 =

C1 +
∫ b

0
1

u0(η)
dη. Therefore (16) holds.

To prove B) we consider (21), (22) and the (12)− (17) which are satisfied
by v = v(z, t), z0(t), z1(t). We have

xz = v(z, t), xt = Dvz − v2(z, t).

Moreover, for z = z0(t) is x = 0 and for z = z1(t) is x =
∫ z1(t)

z0(t)
v(η, t)dη = s(t).

Since
vt = Du2

xu − uxu
2 + ut, vz = uxu, vzz = uxxu

2 + u2
xu

then (12) yields (1).
The conditions (2), (3) and (5) follows inmediatly from (13), (14) and

(16) respectively.
To prove (4), from (23) we calculate ṡ(t) and use (12) and (14). We have

ṡ(t) = v(z1(t), t)ż1(t) − v(z0(t), t)ż0(t) +

∫ z1(t)

z0(t)

vt(η, t)dη

= β − D
vz(z1(t), t)

β
= β − Dux(s(t), t)

and (4) holds.

Remark 1. Eq. (9) is equivalent to the relations

zx =
1

u(x, t)
, zt = u(x, t) − Dux(x, t). (24)
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Eq. (22) is equivalent to

xz = v(z, t), xt = Dvz − v2(z, t). (25)

Now we introduce the Galilean Transformation given by

V (y, t) = v(z, t) − β, y = z − 2βt t > 0 (26)

to obtain de following result:

Lemma 2. Under the transformation (26) the problem (12)-(19) is equivalent
to the following FBP:

Vt = DVyy − 2V Vy , y0(t) < y < y1(t) , t > 0 , (27)

V (y0(t), t) = f(t) − β , t > 0 , (28)

V (y1(t), t) = 0 , t > 0 , (29)

D
Vy(y1(t), t)

β
=

β(1 − β) − βẏ1(t)

β + 1
, t > 0 , (30)

V (y, 0) = V0(y) , C1 ≤ y ≤ C2 , (31)

y0(0) = C1 , y1(0) = C2 (32)

where
V0(y) = v0(y) − β (33)

y0(t) = C1 − 2βt +

∫ t

0

(
f(τ) − D

Vy(y0(τ), τ)

f(τ)

)
dτ (34)

y1(t) = C2 + (1 − β)t − D(β + 1)

β2

∫ t

0

Vy(y1(τ), τ)dτ. (35)

Proof. The Galilean transformation (26) leaves invariant the Burgers equa-
tion (12). The free boundaries y0(t) and y1(t) given by (34)-(35) are obtained
from (10)-(11). The conditions (28)-(32) follows from (13)-(17).

Conversely, if we define

v(z, t) = V (y, t) + β, z = y + 2βt t > 0,

from (27)-(35) we obtain (12)-(19) with z0(t) and z1(t) given by (10) and
(11) respectively.
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Let us now transform problem (27) − (35) in the one which is governed
by a heat-diffusion equation using the Hopf Cole transformation given by

w(y, t) = C(t)V (y, t)η(y, t), y0(t) ≤ y ≤ y1(t) , t > 0, (36)

with

C(t) = 1 −
∫ t

0

wy(y1(τ), τ)dτ, (37)

and

η(y, t) = exp

(
1
D

∫ y1(t)

y

V (ξ, t)dξ

)
. (38)

We have the following result:

Theorem 1. Under transformation (36)− (38) problem (27)− (35) is equiv-
alent to the free boundary problem (39) − (47) given by:

wt = Dwyy , y0(t) < y < y1(t) , t > 0 , (39)

w(y0(t), t) = (f(t) − β)

(
C(t) +

1

D

∫ y1(t)

y0(t)

w(ξ, t)dξ

)
, t > 0 , (40)

w(y1(t), t) = 0 , t > 0 , (41)

Dwy(y1(t), t)

βC(t)
=

β(1 − β) − βẏ1(t)

β + 1
, t > 0 , (42)

w(y, 0) = F (y) , C1 ≤ y ≤ C2 , (43)

y0(0) = C1 , y1(0) = C2 (44)

where

F (y) = V0(y)exp

(
1
D

∫ C2

y

V0(ξ)dξ

)
= V0(y)

(
1 − 1

D

∫ C2

y

w(ξ, 0)dξ

)
(45)

and the free boundaries y0 = y0(t) and y1 = y1(t) are given by:

y0(t) = C1 − β2

∫ t

0

1

f(τ)
dτ − D

∫ t

0

wy(y0(τ), τ)

w(y0(τ), τ)

(
1 − β

f(τ)

)
dτ, (46)

y1(t) = C2 + (1 − β)t +
D(β + 1)

β2
log

(
1 −

∫ t

0

wy(y1(τ), τ)dτ

)
. (47)
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Proof. To prove the equivalence of the two problems we will deduce the
inverse transformation to the relation(36) by considering the definition (38),
we have

log (η(y, t)) = 1
D

∫ y1(t)

y

V (ξ, t)dξ

then

ηy(y, t) = − 1
D

V (y, t)η(y, t) = − 1
D

w(y, t)

C(t)
.

Integrating on variable y, it follows that

η(y, t) =
C(t) + 1

D

∫ y1(t)

y
w(ξ, t)dξ

C(t)
.

Therefore, we have that the inverse relation to the generalized Hopf-Cole
transformation (36) is expressed by:

V (y, t) =
w(y, t)

C(t) + 1
D

∫ y1(t)

y
w(ξ, t)dξ

. (48)

Under transformation (48) the Burgers equation (27) is mapped into the lin-
ear heat-diffusion equation (39). The initial and boundary conditions (40) −
(44) are easily obtained from (28) − (32). The expressions (46) and (47) for
the free boundaries are obtained from (34) and (35) respectively.

The converse is proved analogously.

3. Integral formulation

In this section, we give an integral formulation of the free boundary prob-
lem (39) − (47). We have the following equivalence theorem.

Theorem 2. Let (7) and 0 < D < 2 be. The solution to the free boundary
problem (39) − (47) has the following integral representation

w(y, t) =

∫ C2

C1

G(y, t; ξ, 0)F (ξ)dξ + D

∫ t

0

ϕ1(τ)G(y, t; y1(τ), τ)dτ (49)

+β2

∫ t

0

h(τ)

f(τ)
G(y, t; y0(τ), τ)dτ − Dβ

∫ t

0

ϕ2(τ)

f(τ)
G(y, t; y0(τ), τ)dτ
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−D

∫ t

0

h(τ)Ny(y, t; y0(τ), τ)dτ,

with

h(t) = (f(t) − β)

(
C(t) +

1

D

∫ y1(t)

y0(t)

w(ξ, t)dξ

)
, (50)

y0(t) = C1 − β2

∫ t

0

1

f(τ)
dτ − D

∫ t

0

ϕ2(τ)
h(τ)

(
1 − β

f(τ)

)
dτ, (51)

y1(t) = C2 + (1 − β)t + D(β+1)
β2 ln

(
1 −

∫ t

0

ϕ1(τ)dτ

)
(52)

and ϕ1, ϕ2 are defined by

ϕ1 (t) =
∂w

∂y
(y1(t), t) , ϕ2 (t) =

∂w

∂y
(y0(t), t) (53)

if and only if it satisfies the following system of two Volterra integral equa-
tions:

ϕ1 (t) =
2

2 − D

{∫ C2

C1

N(y1(t), t; ξ, 0)F ′(ξ)dξ + D

∫ t

0

ϕ1(τ)Gy(y1(t), t; y1(τ), τ)dτ

+β2

∫ t

0

h(τ)

f(τ)
Gy(y1(τ), t; y0(τ), τ)dτ − Dβ

∫ t

0

ϕ2(τ)

f(τ)
Gy(y1(τ), t; y0(τ), τ)dτ,

−
∫ t

0

h′(τ)N(y1(t), t; y0(τ), τ)dτ

}
, (54)

ϕ2 (t) =
2f(t)

2f(t) − Dβ

{
−β2 h(t)

f(t)
+

∫ C2

C1

N(y0(t), t; ξ, 0)F ′(ξ)dξ

+D

∫ t

0

Gy(y0(t), t; y1(τ), τ)ϕ1(τ)dτ + β2

∫ t

0

h(τ)

f(τ)
Gy(y0(t), t; y0(τ), τ)(τ)dτ

−Dβ

∫ t

0

ϕ2(τ)

f(τ)
Gy(y0(t), t; y0(τ), τ)(τ)dτ −

∫ t

0

h′(τ)N(y0(t), t; y0(τ), τ)(τ)dτ

}
,

(55)
where G, N are the Green and Neumann functions respectively, and K is the
fundamental solution to the heat equation, defined by

G (x, t, ξ, τ) = K (x, t, ξ, τ) − K (−x, t, ξ, τ) , (56)
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N (x, t, ξ, τ) = K (x, t, ξ, τ) + K (−x, t, ξ, τ) , (57)

K (x, t, ξ, τ) =

{
1

2
√

πD(t−τ)
exp

(
− (x−ξ)2

4D(t−τ)

)
t > τ

0 t ≤ τ
(58)

and y0 , y1 are given by (51) and (52) respectively. Moreover, function h(t) =
w(y0(t), t) must satisfy the integral relation

h(t) = (f(t) − β)

(
1 −

∫ t

0

ϕ1(τ)dτ +
1

D

∫ y1(t)

y0(t)

w(y, t)dy

)
. (59)

Proof. Let w(y, t), y0(t), y1(t) be the solution to the problem (39) − (47).
We integrate on the domain

Dt,ϵ = {(ξ, τ) / y0(τ) < ξ < y1 (τ) , ϵ < τ < t − ϵ} (ϵ > 0),

the Green identity

D (Gwξ − wGξ)ξ − (Gw)τ = 0 (60)

and we let ϵ → 0, to obtain the integral representation for w(y, t) [12, 19]

w(y, t) =

∫ C2

C1

G(y, t; ξ, 0)w(ξ, 0)dξ + D

∫ t

0

wξ(y1(τ), τ)G(y, t; y1(τ), τ)dτ

(61)

+β2

∫ t

0

w(y0(τ), τ)

f(τ)
G(y, t; y0(τ), τ)dτ −Dβ

∫ t

0

wξ(y0(τ), τ)

f(τ)
G(y, t; y0(τ), τ)dτ

+D

∫ t

0

w(y0(τ), τ)Gξ(y, t; y0(τ), τ)dτ.

By using the definitions of ϕ1 and ϕ2 given by (53), the definition of h and
boundary conditions we have (49). If we differentiate (61) in variable y and
we let y → y+

0 (t) and y → y−
1 (t), by using the jump relations [12] we obtain

the system of integral equations (54) and (55) for ϕ1 and ϕ2. Moreover, from
(37) and (50) we have the equation (59).

Conversely, the function w(y, t) defined by (49), where ϕ1 and ϕ2 are the
solutions of (54) and (55) , satisfies the conditions (39), (42) - (44). In order
to prove the conditions (40) and (41) we define

µ1 (t) = w(y1(t), t) and µ2 (t) = h(t) − w(y0(t), t).
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If we integrate the Green identity (60) over the domain Dt,ε (ε > 0) and we
let ε → 0, we obtain that

w(y, t) =

∫ C2

C1

G(y, t; ξ, 0)w(ξ, 0)dξ + D

∫ t

0

G(y, t; y1(τ), τ)ϕ1(τ)dτ

−D

∫ t

0

Gy(y, t; y1(τ), τ)w(y1(τ), τ)dτ +

∫ t

0

G(y, t; y1(τ), τ)w(y1(τ), τ)y
′
1(τ)dτ

−
∫ t

0

G(y, t; y0(τ), τ)
[
w(y0(τ), τ)y

′
0(τ) − Dϕ2(τ)

]
dτ

+D

∫ t

0

Gξ(y, t; y0(τ), τ)w(y0(τ), τ)dτ. (62)

Then, if we compare this last expression (62) with (49) we deduce that

∫ t

0

G(y, t; y0(τ), τ)

[
β2

f(τ)
µ2(τ) − Dϕ2(τ)

f(τ)

(
β +

w(y0(τ), τ)(f(τ) − β)

h(τ)

)
+ Dϕ2(τ)

]
dτ

+D

∫ t

0

Gy(y, t; y0(τ), τ)µ2(τ)dτ + D

∫ t

0

Gy(y, t; y1(τ), τ)µ1(τ)dτ

−
∫ t

0

G(y, t; y1(τ), τ)µ1(τ)

[
(1 − β) − Dϕ1(τ)(β + 1

β2C(τ)

]
dτ = 0. (63)

By taking y → y−
1 (t) and y → y+

0 (t) in (63), and the jump relations we
obtain that µ1 and µ2 must satisfy the following system of Volterra integral
equations:

µ1(t) =
−2

D

∫ t

0

{
DGy(y1(t), t; y1(τ), τ) − G(y, t; y1(τ), τ)

[
(1 − β) − Dϕ1(τ)(β+1

β2C(τ)

]}
µ1(τ),

(64)

+
{

DGy(y1(t), t; y0(τ), τ) + G(y1(t), t; y0(τ), τ)
[

β
f(τ)

− Dϕ2(τ)
(

β
f(τ

− 1
h(τ)

)]}
µ2(τ)dτ

µ2(t) =
2

D
+

∫ t

0

{DGy(y0(t), t; y0(τ), τ) − G(y0(t), t; y0(τ), τ) (65)
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[
β

f(τ)
− Dϕ2(τ)

(
β

f(τ
− 1

h(τ)

)]}
µ2(τ)

+

{
DGy(y0(t), t; y1(τ), τ) − G(y0(t), t; y1(τ), τ)

[
(1 − β) − Dϕ1(τ)(β + 1

β2C(τ)

]}
µ1(τ)dτ.

Following [13], it’s easy to see that there exist a unique solution µ1 ≡ µ2 ≡ 0
to the system of Volterra integral equations (64)-(65). Then (40) and (41)
are verified and the result holds.

4. Existence of the solution

In order to prove existence of solution w = w(y, t), y = y0(t) and y = y1(t)
of (39) − (47) and taking into account the result of Theorem 3.1 we will
demonstrate that there exists at least a local solution ϕ1,ϕ2 and h to the
coupled nonlinear integral equations (54), (55) and (59).
We will proceed in the following way: Fixed positive constants H,R, S and
σ we define the set Π = Π(H, R, S, σ) given by

Π :=
{
h ∈ C1[0, σ]/h(t) ≥ H, ∥h∥ ≤ R, ∥h′∥ ≤ S

}
(66)

where ∥h∥ = max
t∈[0,σ]

|h(t)|. Clearly Π is a compact and convex set in C1[0, σ].

For each fixed function h ∈ Π1 = {h ∈ C1[0, 1]/h(t) ≥ H, ∥h∥ ≤ R, ∥h′∥ ≤ S}
we will use the Banach fixed point Theorem in order to prove that there exist
unique solutions ϕ1, ϕ2 ∈ C0 [0, σ] to the system of two Volterra integral
equations (54) and (55). Then for suitable H, R, S and σ, by using Shauder’s
fixed point Theorem we will demonstrate that there exists at least a solution
h ∈ Π1 of (59).

4.1. Existence and uniqueness of ϕ1, ϕ2

We consider the Banach space

C[0, σ] =

{−→
ϕ∗=

(
ϕ1

ϕ2

)
/ ϕi : [0, σ] → R, i = 1, 2, continuous

}

with the norm ∥∥∥∥
−→
ϕ∗
∥∥∥∥

σ

:= max
t∈[0,σ]

|ϕ1(t)| + max
t∈[0,σ]

|ϕ2(t)|
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and the subset:

CM,σ =

{−→
ϕ∗∈ C[0, σ]/

∥∥∥∥
−→
ϕ∗
∥∥∥∥

σ

≤ M

}

with σ and M positive numbers to be determinate.
We define the map χ : CM,σ −→ CM,σ, such that

χ

(−→
ϕ∗
)

(t) =

(
χ1(ϕ1(t), ϕ2(t))

χ2(ϕ1(t), ϕ2(t)))

)

where

χ1(ϕ1(t), ϕ2(t)) = 2
2−D

{∫ C2

C1

N(y1(t), t; ξ, 0)F ′(ξ)dξ + D

∫ t

0

ϕ1(τ)Gy(y1(t), t; y1(τ), τ)dτ

+β2

∫ t

0

h(τ)

f(τ)
Gy(y1(τ), t; y0(τ), τ)dτ − Dβ

∫ t

0

ϕ2(τ)

f(τ)
Gy(y1(τ), t; y0(τ), τ)dτ,

−
∫ t

0

h′(τ)N(y1(t), t; y0(τ), τ)dτ

}
, (67)

χ2(ϕ1(t), ϕ2(t)) =
2f(t)

2f(t) − Dβ

{
−β2 h(t)

f(t)
+

∫ C2

C1

N(y0(t), t; ξ, 0)F ′(ξ)dξ

+D

∫ t

0

Gy(y0(t), t; y1(τ), τ)ϕ1(τ)dτ + β2

∫ t

0

h(τ)

f(τ)
Gy(y0(t), t; y0(τ), τ)(τ)dτ

−Dβ

∫ t

0

ϕ2(τ)

f(τ)
Gy(y0(t), t; y0(τ), τ)(τ)dτ −

∫ t

0

h′(τ)N(y0(t), t; y0(τ), τ)(τ)dτ

}
.

(68)
We will prove that for suitable M and σ, the map χ is well defined and it
is also a contraction, therefore by the Banach fixed point Theorem it has a
unique fixed point.

Firstly, we give some preliminary results

Lemma 3. Let f(t) > 3β
2
, 0 < D < 2 and ϕi ∈ C0 [0, σ] , max

t∈[0,σ]
|ϕi(t)| ≤

M, (i = 1, 2). If

2(1 + β)

(
1 +

M

β2

)
σ ≤ C2, 2

(
β + 2

MD

H

)
σ ≤ C1
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then y0 and y1 defined by (51) and (52) satisfies

|y0(t) − y0(τ)| ≤
(
β + 2DM

H

)
|t − τ | , ∀τ, t ∈ [0, σ] , (69)

C1

2
≤ y0(t) ≤ 3C1

2
, ∀t ∈ [0, σ] , (70)

|y1(t) − y1(τ)| ≤ (1 + β)
(
1 + M

β2

)
|t − τ | , ∀τ, t ∈ [0, σ] , (71)

C2

2
≤ y1(t) ≤ 3C2

2
, ∀t ∈ [0, σ] . (72)

Proof. It follows inmediatly from definitions (51)-(52) and assumptions on
data.

To prove the following Lemmas we need to use the classical inequality

exp
(

−x2

α(t−τ)

)

(t − τ)
n
2

≤
( nα

2ex2

)n
2

, α, x > 0 , t > τ , n ∈ N. (73)

Lemma 4. Let σ ≤ 1. For each function h ∈ Π1 under the hypothesis of
Lemma 3 and C1 < U0

2
we have that following properties are satisfied

∫ C2

C1

|F ′(ξ)| |N(y1(t), t; ξ, 0)| dξ ≤ ∥F ′∥ ≤ A1(u0, U0, β,D), (74)

D

∫ t

0

|Gy(y1(t), t; y1(τ), τ)ϕ1(τ)| dτ ≤ A2(M,D, U0, C1)
√

σ, (75)

β2

∫ t

0

∣∣∣∣Gy(y1(t), t; y0(τ), τ)
h(τ)

f(τ)

∣∣∣∣ dτ ≤ A3(R,D, β, C2, C1)
√

σ, (76)

βD

∫ t

0

∣∣∣∣Gy(y1(t), t; y0(τ), τ)
ϕ2(τ)

f(τ)

∣∣∣∣ dτ ≤ A4(M,D, C2, C1)
√

σ, (77)

∫ t

0

|h′(τ)| |N(y1(t), t; y0(τ), τ)| dτ ≤ A5(S, D)
√

σ, (78)

∫ C2

C1

|F ′(ξ)| |N(y0(t), t; ξ, 0)| dξ ≤ ∥F ′∥ ≤ A1(u0, U0, β,D), (79)
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D

∫ t

0

|Gy(y0(t), t; y1(τ), τ)ϕ1(τ)| dτ ≤ A4(D,M, C1, C2)
√

σ, (80)

β2

∫ t

0

∣∣∣∣Gy(y0(t), t; y0(τ), τ)
h(τ)

f(τ)

∣∣∣∣ dτ ≤ A6(R,M, D, β, C2, C1)
√

σ, (81)

βD

∫ t

0

∣∣∣∣Gy(y0(t), t; y0(τ), τ)
ϕ2(τ)

f(τ)

∣∣∣∣ dτ ≤ A7(M,D, C1)
√

σ, (82)

∫ t

0

|h′(τ)| |N(y0(t), t; y0(τ), τ)| dτ ≤ A5(S, D)
√

σ, (83)

β2 h(t)

f(t)
≤ βR, (84)

where

A1(u0, U0, β,D) = exp
(

∥u0∥+βU0

D

)[∥∥∥∥
u

′
0

u0

∥∥∥∥+
∥u0∥ + β

D

]
,

A2(M,D, U0, C1) =
M

√
D

2
√

π

[
2M +

3

C2
2

(
2D

3e

)3/2
]

,

A3(R,D, β, C2, C1) =
Rβ

2
√

Dπ
(A31 + A32)),

A31 =
3C2 − C1

2

(
24D

e(C2 − 3C1)2

) 3
2

, A32 =
18

√
6

e3/2(C1 + C2)2
,

A4(M,D, C2, C1) =
M

√
D

2
√

π
(A31 + A32)),

A5(S, D) = 2
S√
Dπ

,

A6(R,M, D, β, C1) =
βRM

√
D

2
√

π

[
2M +

3

C2
1

(
2D

3e

)3/2
]

,

A7(M,D, β, C1)) = DM

[
2M +

3

C2
1

(
2D

3e

)3/2
]

,
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Proof. To prove (74) we consider

∫ C2

C1

|F ′(ξ)| |N(y1(t), t; ξ, 0)| dξ ≤ ∥F ′∥
∫ ∞

0

|N(y1(t), t; ξ, 0)| dξ ≤ ∥F ′∥ .

From (45) we have

F ′(y) = exp

(
1
D

∫ C2

y

V0(ξ)dξ

)[
V

′
0 (y) − 1

D
V 2

0 (y)

]

then
∥F ′∥ ≤ exp

(
∥V0∥(C2−C1)

D

) [∥∥∥V ′
0

∥∥∥+ 1
D

∥V0∥
]

≤ exp
(

(∥u0∥+β)U0

D

) [∥∥∥u
′
0

u0

∥∥∥+ ∥u0∥+β
D

]
= A1(u0, U0, β,D).

Following the proof given in [4, 6] and taking C1 < U0

2
we obtain (75), (76),

(77),(80), (81) and (82).
To prove (78) we take into account that

|N(y1(t), t; y0(τ), τ)| ≤ 1√
π (t − τ)

so, we obtain

∫ t

0

∣∣∣h′
(τ)
∣∣∣ |N(y1(t, t; y0(τ), τ)| dτ ≤ 2

√
t

Dπ
S.

The inequalities (79) and (83) are proved in the same way as (74) and
(78) respectively.

Lemma 5. Let y01 and y02 be the functions corresponding to ϕ21 and ϕ22 in
C0[0, σ] respectively, and y11 and y12 be the functions corresponding to ϕ11

and ϕ12 in C0[0, σ] respectively with max
t∈[0,σ]

|ϕij(t)| ≤ M, i, j = 1, 2. Under

hypothesis Lemma 3 we have





|y01(t) − y02(t)| ≤ 2D
H

σ ∥ϕ11 − ϕ12∥σ ,

|y01(t) − y02(τ)| ≤
(
β + 2DM

H

)
|t − τ | , i = 1, 2,

C1

2
≤ y0i(t) ≤ 3C1

2
, ∀t ∈ [0, σ] , i = 1, 2,

(85)
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and 



|y11(t) − y12(t)| ≤ β+1
β2 σ ∥ϕ21 − ϕ22∥σ ,

|y1i(t) − y1i(τ)| ≤ (1 + β)
(
1 + M

β2

)
|t − τ | , i = 1, 2,

C2

2
≤ y1i(t) ≤ 3C2

2
, ∀t ∈ [0, σ] , i = 1, 2.

(86)

Proof. It follows inmediatly from definitions (51)-(52) and assumptions on
data.

Lemma 6. If we take σ ≤ 1, 4M
H

(
β + 2DM

H

)
σ ≤ 1 and we assume the

hypothesis of Lemma 5 then we have

∫ C2

C1

∣∣∣F ′
(ξ)
∣∣∣ |N(y11(t), t; ξ, 0) − N(y12(t), t; ξ, 0)| dξ (87)

≤
2 ∥F ′∥[C1,C2]

D
√

π
∥ϕ11 − ϕ12∥σ

√
σ ≤ P1(u0, D, β, U0)

∥∥∥ϕ⃗∗
1 − ϕ⃗∗

2

∥∥∥
√

σ,

D

∫ t

0

|ϕ11(τ)Gy(y11(t), t; y11(τ), τ) − ϕ12(τ)Gy(y12(t), t; y12(τ), τ)| dτ (88)

≤ P2(M,D, C2)σ ∥ϕ11 − ϕ12∥ ≤ P2(M,D, C2)
∥∥∥ϕ⃗∗

1 − ϕ⃗∗
2

∥∥∥
√

σ,

β2

∫ t

0

h(τ)
f(τ)

|Gy(y11(t), t; y01(τ), τ) − Gy(y12(t), t; y02(τ), τ)| dτ (89)

≤ P3(R, β, C1, C2)
∥∥∥ϕ⃗∗

1 − ϕ⃗∗
2

∥∥∥
√

σ,

Dβ

∫ t

0

1
f(τ)

|ϕ21(τ)Gy(y11(t), t; y01(τ), τ) − ϕ22(τ)Gy(y12(t), t; y02(τ), τ)| dτ

(90)

≤ P4(D,M, C1, C2)
∥∥∥ϕ⃗∗

1 − ϕ⃗∗
2

∥∥∥
√

σ,

∫ t

0

|h′(τ)| |N(y11(t), t; y01(τ), τ) − N(y12(t), t, y02(τ), τ)| dτ (91)

≤ P5(S, D, C1, C2)
∥∥∥ϕ⃗∗

1 − ϕ⃗∗
2

∥∥∥
√

σ,
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∫ C2

C1

∣∣∣F ′
(ξ)
∣∣∣ |N(y01(t), t; ξ, 0) − N(y02(t), t; ξ, 0)| dξ (92)

≤
2 ∥F ′∥[C1,C2]

D
√

π
∥ϕ2,1 − ϕ2,2∥σ

√
σ ≤ P1(u0, D, β, U0)

∥∥∥ϕ⃗∗
1 − ϕ⃗∗

2

∥∥∥
√

σ,

D

∫ t

0

|ϕ11(τ)Gy(y01(t), t; y11(τ), τ) − ϕ12(τ)Gy(y02(t), t; y12(τ), τ)| dτ (93)

≤ P4(D,M, C1, C2)
∥∥∥ϕ⃗∗

1 − ϕ⃗∗
2

∥∥∥
√

σ,

β2

∫ t

0

h(τ)

f(τ)
|Gy(y01(t), t; y01(τ), τ) − Gy(y02(t), t; y02(τ), τ)| dτ (94)

≤ P6(D,H, R, M,C1)
∥∥∥ϕ⃗∗

1 − ϕ⃗∗
2

∥∥∥
√

σ,

D

∫ t

0

|ϕ21(τ)Gy(y01(t), t; y01(τ), τ) − ϕ22(τ)Gy(y02(t), t; y02(τ), τ)| dτ (95)

≤ P7(M,D, C1)
∥∥∥ϕ⃗∗

1 − ϕ⃗∗
2

∥∥∥
√

σ,

∫ t

0

|h′(τ)| |N(y11(t), t; y01(τ), τ) − N(y12(t), t, y02(τ), τ)| dτ (96)

≤ P5(S, D, C1, C2)
∥∥∥ϕ⃗∗

1 − ϕ⃗∗
2

∥∥∥
√

σ,

where

P1(u0, D, β, U0) = 2
D

√
π

[
(∥u0∥ + β) exp

(
U0

β
(∥u0∥ + β)

)
+ (∥u0∥+β)2

D

]
, (97)

P2(M,D, C2) =
√

D
4
√

π

[
6M + 3

C2
2

(
2
3e

)3/2
+ 6M

C2
2

(
6
e

)3/2
]
, (98)

P3(R, β, C1, C2) = Rβ(P31 + P32), (99)

with

P31(C1, C2) = 1√
πe3/2

[√
6(3C2−C1)2

16(C2−3C1)3
+ 27

√
3

4
+ 12

√
6

(C2−3C1)3
+ 6

√
3

(C2+C1)3

]
, (100)

P32(C1, C2) = 12
√

6√
πe3/2

[
1

(C2−3C1)3
+ 9

8
+ (3C2−C1)2

8(C2−3C1)3
+ 1

(C2+C1)2

]
, (101)

P4(D,M, C1, C2) = D [M(P31 + P32) + P41] , (102)
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where
P41(C1, C2) =

√
6√
πe

[
1

(C2−3C1)2
+ 1

(C2+C1)2

]
, (103)

P5(S, D, C1, C2) = 63/2SD√
πe3/2

[
3C2 − C1

(C2 − 3C1)3
+

3

(C2 + C1)2

]
, (104)

P6(D,H, R, M,C1) = βR
{

(2D)−1(Dπ)−1/2
[

2D
H

+ 2
H

(
β + 2DM

H

)2]
(105)

+
(

6
eC2

1

)3/2
18C2

1+1

4
√

π
4D
H

}
,

P7(M,D, C1) =
√

D
4
√

π

[
6M + 3

C2
1

(
2
3e

)3/2
+ 6M

C2
1

(
6
e

)3/2
]
. (106)

Proof. The inequalities (87)-(93) and (95)-(96) are obtained following [6].
We will show the proof of (94), following [20]. We write

|Gy(y01(t), t; y01(τ), τ) − Gy(y02(t), t; y02(τ), τ)|

≤ |Ky(y01(t), t; y01(τ), τ) − Ky(y02(t), t; y02(τ), τ)|
+ |Ky(−y01(t), t; y01(τ), τ) − Ky(−y02(t), t; y02(τ), τ)| .

Taking into account that

|Ky(y01(t), t; y01(τ), τ) − Ky(y02(t), t; y02(τ), τ)|

≤ (2D(t − τ))−1 |K(y01(t), t; y01(τ), τ) [(y01(t) − y01(τ)) − (y02(t) − y02(τ))]

+ [K(y01(t), t; y01(τ), τ) − K(y02(t), t; y02(τ), τ)] (y02(t) − y02(τ))|
≤ (2D(t − τ))−1K(y01(t), t; y01(τ), τ) |[(y01(t) − y01(τ)) − (y02(t) − y02(τ))]

+ [1 − exp(m(t, τ)] (y02(t) − y02(τ))| ,
where

m(t, τ) =
(y01(t) − y01(τ))2 − (y02(t) − y02(τ))2

4D(t − τ)

=
[(y01(t) − y01(τ)) − (y02(t) − y02(τ))] [(y01(t) − y01(τ)) + (y02(t) − y02(τ))]

4D(t − τ)
.

We have

|(y01(t) − y01(τ)) − (y02(t) − y02(τ))| ≤ D

∫ t

τ

1
h(η)

∣∣∣1 − β
f(η)

∣∣∣ |ϕ21(η) − ϕ22(η)| dη

19Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



≤ 2D
H

∥∥∥ϕ⃗∗
1 − ϕ⃗∗

2

∥∥∥ (t − τ),

and

|(y01(t) − y01(τ)) + (y02(t) − y02(τ))| ≤ 2
(
β + 2DM

H

)
(t−τ) ≤ 4

(
β + 2DM

H

)
σ,

then
|m(t, τ)| ≤ 2

H

∥∥∥ϕ⃗∗
1 − ϕ⃗∗

2

∥∥∥
(
β + 2DM

H

)
σ,

and taking into account that
∥∥∥ϕ⃗∗

1 − ϕ⃗∗
2

∥∥∥ ≤ 2M we have

|m(t, τ)| ≤ 4M
H

(
β + 2DM

H

)
σ.

If we assume that σ satisfies

4M
H

(
β + 2DM

H

)
σ ≤ 1,

we obtain that

|1 − exp(m(t, τ)| ≤ 2 |m(t, τ)| ≤ 2
H

(
β + 2DM

H

) ∥∥∥ϕ⃗∗
1 − ϕ⃗∗

2

∥∥∥σ.

Therefore

|Ky(y01(t), t; y01(τ), τ) − Ky(y02(t), t; y02(τ), τ)| ≤

≤ (2D)−1K(y01(t), t; y01(τ), τ)
[

2D
H

+ 2
H

(
β + 2DM

H

)2
σ
] ∥∥∥ϕ⃗∗

1 − ϕ⃗∗
2

∥∥∥

≤ (4D)−1(Dπ(t − τ))−1/2
[

2D
H

+ 2
H

(
β + 2DM

H

)2
σ
] ∥∥∥ϕ⃗∗

1 − ϕ⃗∗
2

∥∥∥ .

Using the mean value theorem we may write

|Ky(−y01(t), t; y01(τ), τ) − Ky(−y02(t), t; y02(τ), τ)|

≤
∣∣∣∣K(n(t, τ), t; 0, τ)

(
n2(t, τ)

4D2(t − τ)2
− 1

2D(t − τ)

)∣∣∣∣ |y01(t) + y01(τ) − y02(t) − y02(τ)|

where n = n (t, τ) is between y01(t) + y01(τ) and y02(t) + y02(τ).
Since

|y01(t) + y01(τ) − y02(t) − y02(τ)| ≤ 4D

H
σ
∥∥∥ϕ⃗∗

1 − ϕ⃗∗
2

∥∥∥ ,
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and
C1 ≤ n (t, τ) ≤ 6C1,

by using (73) we have

∣∣∣∣K(n(t, τ), t; 0, τ)

(
n2(t, τ)

4D2(t − τ)2
− 1

2D(t − τ)

)∣∣∣∣ ≤
(

6

eC2
1

)3/2
18C2

1 + 1

4
√

π
,

then

|Ky(−y01(t), t; y01(τ), τ) − Ky(−y02(t), t; y02(τ), τ)| ≤
(

6
eC2

1

)3/2
18C2

1+1

4
√

π
4D
H

σ
∥∥∥ϕ⃗∗

1 − ϕ⃗∗
2

∥∥∥ .

Collecting the results we have

|Gy(y01(t), t; y01(τ), τ) − Gy(y02(t), t; y02(τ), τ)|

≤
{

(4D)−1(Dπ(t − τ))−1/2
[

2D
H

+ 2
H

(
β + 2DM

H

)2]
+
(

6
eC2

1

)3/2
18C2

1+1

4
√

π
4D
H

}∥∥∥ϕ⃗∗
1 − ϕ⃗∗

2

∥∥∥ ,

then

β2

∫ t

0

h(τ)

f(τ)
|Gy(y01(t), t; y01(τ), τ) − Gy(y02(t), t; y02(τ), τ)| dτ

≤ P6(D,H, R, M, C1

∥∥∥ϕ⃗∗
1 − ϕ⃗∗

2

∥∥∥
√

σ,

where

P6(D,H, R, M, C1) = βR
{

(2D)−1(Dπ)−1/2
[

2D
H

+ 2
H

(
β + 2DM

H

)2]

+
(

6
eC2

1

)3/2
18C2

1+1

4
√

π
4D
H

}
.

Then, (94) has been proved

Theorem 3. Let hypothesis (7) be. Fixed 0 < C1 < U0

2
and h ∈ Π. If σ

satisfies the following inequalities

σ ≤ 1, 2(1 + β)

(
1 +

M

β2

)
σ ≤ C2, (107)
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(
β + 2

MD

H

)
σ ≤ C1,

4M
H

(
β + 2DM

H

)
σ ≤ 1, (108)

H1 (C1, C2, U0,M, D, β, R, S, σ) ≤ 1, (109)

H2(C1, C2, U0,M, D, β, R, S, σ) ≤ 1, (110)

where M is given by

M (u0,U0, f,D, β, R) = 1 +

(
1

2 − D
+

∥f∥
β(3 − D)

)
2A1 + 2

∥f∥
3 − D

R, (111)

and

H1 (C1, U0, f,M, D, β, R, S, σ) =

{(
2

2 − D

)[
A2 + A3 + A4 +

2S√
πD

]

+
2∥f∥

β(3 − D)

[
A4 + A5 + A6 +

2S√
πD

]}√
σ, (112)

H2 (C1, U0, f,M, D, β, R, S, σ) =

{
2

2 − D
[P1 + P2 + P3 + P4 + P5]

+
2∥f∥

β(3 − D)
[P1 + P4 + P5 + P6 + P7]

}√
σ, (113)

then the map χ : CM,σ −→ CM,σ is well defined and it is a contraction map.
Therefore there exists a unique solution ϕ∗

1, ϕ∗
2 on CM,σ to the system of

integral equations (54) and (55).

Proof. Firstly, we demonstrate that χ maps CM,σ into itself, that is

∥∥∥∥X
(−→

ϕ∗
)∥∥∥∥

σ

= max
t∈[0,σ]

|χ1(ϕ1(t), ϕ2(t))| + max
t∈[0,σ]

|χ2(ϕ1(t), ϕ2(t))| ≤ M

Taking into account Lemma 4 we have

|χ1(ϕ1(t), ϕ2(t))| ≤ 2

2 − D

{
A1 +

[
A2 + A3 + A4 +

2S√
πD

]√
σ

}
,

|χ2(ϕ1(t), ϕ2(t))| ≤ 2∥f∥
β(3 − D)

{
βR + A1 +

[
A4 + A5 + A6 +

2S√
πD

]√
σ

}
,
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and then
∥∥∥∥χ
(−→

ϕ∗
)∥∥∥∥

σ

≤ 2A1

[
1

2 − D
+

∥f∥
β(3 − D)

]
+

2∥f∥R

(3 − D)
+H1(C1, C2, U0,M, D, β, R, S, σ))

where H1 is given by (112) .

Selecting M by (111) and σ such that (116) holds, we obtain
∥∥∥χ
(−→

ϕ∗
)∥∥∥

σ
≤

M.
Now, we will prove that

∥∥∥∥χ
(−→

ϕ∗
1

)
− χ

(−→
ϕ∗

2

)∥∥∥∥
σ

≤ H2 (C1, C2, U0,M, D, β, R, S, σ)

∥∥∥∥
−→
ϕ∗

1 −
−→
ϕ∗

2

∥∥∥∥
σ

where
−→
ϕ∗

1=
(

ϕ11

ϕ12

)
,

−→
ϕ∗

2=
(

ϕ21

ϕ22

)
∈ CM,σ.

Taking into account Lemma 6 we have

∥∥∥∥χ
(−→

ϕ∗
1

)
− χ

(−→
ϕ∗

2

)∥∥∥∥
σ

= max
t∈[0,σ]

|χ1 (ϕ11 (t) , ϕ12 (t)) − χ1 (ϕ21 (t) , ϕ22 (t))|

+ max
t∈[0,σ]

|χ2 (ϕ11 (t) , ϕ12 (t)) − χ2 (ϕ21 (t) , ϕ22 (t))|

≤
{

2

2 − D
[P1 + P2 + P3 + P4 + P5]

+
2∥f∥

β(3 − D)
[P1 + P4 + P5 + P6 + P7]

}√
σ

∥∥∥∥
−→
ϕ∗

2 −
−→
ϕ∗

1

∥∥∥∥
σ

(114)

= H2 (C1, C2, U0,M, D, β, R, S, σ)

∥∥∥∥
−→
ϕ∗

2 −
−→
ϕ∗

1

∥∥∥∥
σ

.

By hypothesis (107)-(111) we have that χ is a contraction and therefore,
there exists a unique fixed point ϕ∗ =

(
ϕ1

ϕ2

)
such that χ(ϕ∗) = ϕ∗ this is

χ1(ϕ1(t), ϕ2(t)) = ϕ1(t), χ2(ϕ1(t), ϕ2(t)) = ϕ2(t).

Theorem 4. For each h ∈ Π1, under hypothesis of Theorem 3 there exists
a unique integral representation for w, y0 and y1 given by (49),(51) and (52)
respectively, where ϕ1 and ϕ2 are the unique solutions of (54) and (55)
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4.2. Existence of at least a solution of wh(y0h(t), t) = h(t)

In this subsection we assume that all the hypothesis of Theorem 3 are
valid, which guarantee the existence and uniqueness of w = wh, y0 = y0h and
y1 = y1h for each h ∈ Π1.

Now we will prove that for suitable values of H, R, S and σ there exists
h ∈ Π(H, R, S, σ) such that

wh(y0h(t), t) = h(t) (115)

for t ∈ [0, σ], where wh and y0h are established for above theorem.
We define the map Z on Π such that for each h ∈ Π ⊂ Π1 (σ ≤ 1)

Z(h)(t) = wh(y0h(t), t),

this is

Z(h)(t) = (f(t) − β)

(
1 −

∫ t

0

ϕ1h(τ)dτ +
1

D

∫ y1h(t)

y0h(t)

wh(ξ, t)dξ

)
, (116)

where ϕ1h, wh, y0h and y1h are the solutions obtained in above section. We
will use the Schauder’s fixed point theorem which states: For any continu-
ous function L mapping a compact convex set to itself there is x0 such that
L(x0) = x0 .

Lemma 7. If
(∥f∥ + β) (2C1 + 3U0) < 2D (117)

then, for h ∈ Π function Z(h) ∈ C1[0, σ] and satisfies

Z(h)(t) >
β

2
, (118)

∥Z(h)∥ ≤ 2D (∥f∥ + β) (1 + M)

2D − (∥f∥ + β) (2C1 + 3U0)
, (119)

∥Z ′(h)∥ ≤ 2D(∥f∥+β)(1+M)
2D−(∥f∥+β)(2C1+3U0)

{
2∥f ′∥

β
+ (∥f∥ + β)

[
β
D

+ M
(

2
β

+ 1
D

)]}

(120)
+M (∥f∥ + β) .
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Proof. From definition of Z(h) and (7) we have Z(h)(t) > β
2
. Taking into

account (116) and the fact that

wh(ξ, t) ≤ wh(y0(t), t), y0(t) ≤ ξ ≤ y1(t)

we have

Z(h)(t) ≤ (f(t) + β)

(
1 −

∫ t

0

ϕ1h(τ)dτ) + wh(y0(t), t) (y1(t) − y0(t))

)
.

Since ∥ϕ1h∥ ≤ M , σ ≤ 1 and taking into account Lemma 5 we obtain

∥Z(h)∥ ≤ (∥f∥ + β)

(
1 + M + ∥Z(h)∥ 2C1 + 3U0

2D

)
,

or equivalently

∥Z(h)∥ ≤ 2D (∥f∥ + β) (1 + M)

2D − (∥f∥ + β) (2C1 + 3U0)
.

If we derivate Z(h) respect to variable t, we get

(Z(h))′(t) = f ′(t)

(
1 −

∫ t

0

ϕ1h(τ)dτ + 1
D

∫ y1h(t)

y0h(t)

wh(ξ, t)dξ

)

+(f(t) − β)

[
−ϕ1h(t) + 1

D
wh(y0h(t), t)y

′
0h(t) +

1

D

∫ y1h(t)

y0h(t)

wht(ξ, t)dξ

]

and using eq. (39), (51) and (53) we obtain

(Z(h))′(t) = f ′(t)

(
1 −

∫ t

0

ϕ1h(τ)dτ + 1
D

∫ y1h(t)

y0h(t)

wh(ξ, t)dξ

)

+(f(t) − β)
[
−ϕ1h(t) − 1

D
wh(y0h(t), t)y

′
0h(t) + ϕh1(t) − ϕh2(t)

]

= f ′(t)
Z(h)(t)

f(t) − β
+ (f(t) − β)

[
Z(h)β2

Df(t)
+ ϕh2(t)

(
Z(h)(t)

h(t)
− 1 − Z(h)(t)β

Df(t)

)]
.

Then we have

|(Z(h))′(t)| ≤ ∥f ′∥ 2∥Z(h)∥
β

+ (∥f∥ + β)
[

∥Z(h)∥β
D

+ M
(

2∥Z(h)∥
β

+ 1 + ∥Z(h)∥
D

)]
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≤ ∥Z(h)∥
{

2∥f ′∥
β

+ (∥f∥ + β)
[

β
D

+ M
(

2
β

+ 1
D

)]}
+ M (∥f∥ + β) ,

≤ 2D(∥f∥+β)(1+M)
2D−(∥f∥+β)(2C1+3U0)

{
2∥f ′∥

β
+ (∥f∥ + β)

[
β
D

+ M
(

2
β

+ 1
D

)]}
+ M (∥f∥ + β)

and the lemma holds.

Next, we define

E1 = 1 + 2

(
1

2 − D
+

∥f∥
β(3 − D)

)
A1, E2 = 2

∥f∥
(3 − D)

, (121)

and

E3 =
2D (∥f∥ + β)

2D − (∥f∥ + β) (2C1 + 3U0)
.

Lemma 8. We assume (117) and

E3E2 < 1. (122)

If we take

H =
β

2
, R =

E3(1 + E1)

1 − E3E2

, (123)

S = E3

{
2∥f ′∥

β
+ (∥f∥ + β)

[
β
D

+ M
(

2
β

+ 1
D

)]}
(124)

where M is given by

M =
E1 + E2E3

1 − E3E2

(125)

then Zh ∈ Π.

Proof. From (111) we have

M = E1 + E2R,

then by (119) we have

E3(1 + M) = R ⇔ E3(1 + E1) + E3E2R = R.

Therefore, if we define R = E3(1+E1)
1−E3E2

we have ∥Z(h)∥ ≤ R. Moreover we have

Z(h)(t) > β
2

= H and by Lemma 7 we have ∥(Z(h))′∥ ≤ S. This yields
Z(h) ∈ Π and the proof is complete.
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Remark 2. Assumption (122) is equivalent to

4D∥f∥ (∥f∥ + β)

[2D − (∥f∥ + β) (2C1 + 3U0)] (3 − D)
< 1 (126)

Theorem 5. We assume hypothesis of Lemma 8. There exists at least a
solution h∗ ∈ Π such that Z(h∗) = h∗.

Proof. Taking into account above lemmas and using Schauder’s fixed-point
theorem we obtain that there exists at least a solution h∗ ∈ Π such that
Z(h∗) = h∗.

We can now formulate our main result.

Theorem 6. Fixed C1 < U0

2
. Let H, R, S and M given by (123), (124) and

(125) respectively. If (117) and (126) hold,

σ ≤ 1, 2(1 + β)

(
1 +

M

β2

)
σ ≤ C2, (127)

(
β + 2

MD

H

)
σ ≤ C1

4M
H

(
β + 2DM

H

)
σ ≤ 1 (128)

H1 ≤ 1, H2 ≤ 1 (129)

where H1and H2 are given by (112) − (113) then there exists solution to the
free boundary problem (39) − (47) given by

w∗(y, t) =

∫ C2

C1

G(y, t; ξ, 0)F (ξ)dξ + D

∫ t

0

ϕ∗
1(τ)G(y, t; y∗

1(τ), τ)dτ (130)

+β2

∫ t

0

h∗(τ)

f(τ)
G(y, t; y∗

0(τ), τ)dτ − Dβ

∫ t

0

ϕ∗
2(τ)

f(τ)
G(y, t; y∗

0(τ), τ)dτ

−D

∫ t

0

h∗(τ)Ny(y, t; y∗
0(τ), τ)dτ

and

y∗
0(t) = C1 − β2

∫ t

0

1

f(τ)
dτ − D

∫ t

0

1
h∗(τ)

(
1 − β

f(τ)

)
ϕ∗

2(τ)dτ (131)

y∗
1(t) = C2 + (1 − β)t + D(β+1)

β2 ln

(
1 −

∫ t

0

ϕ∗
1(τ)dτ

)
(132)

where ϕ∗
1, ϕ∗

2 are the unique solutions to the system of two Volterra integral
equations (54) and (55) corresponding to h∗ a solution of Z(h) = h.
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5. Parametric solution to the problem (1)-(6)

Assuming hypothesis of Theorem 6, if we invert the transformations given
by (8), (26) and (36) we obtain the explicit parametric representation of the
solution to free boundary problem (1) − (6) given by

u∗(x, t) =
w∗(y, t)

1 −
∫ t

0
ϕ∗

1(τ)dτ + 1
D

∫ y∗
1(t)

y
w∗(ξ, t)dξ

+ β (133)

x =

∫ y+2βt

y∗
0(t)+2βt

[
w∗(µ, t)

1 −
∫ t

0
ϕ∗

1(τ)dτ + 1
D

∫ y∗
1(t)

µ
w∗(ξ, t)dξ

+ β

]
dµ (134)

with
y∗

0(t) < y < y∗
1(t), 0 < t < σ

and

s(t) =

∫ y∗
1(t)+2βt

y∗
0(t)+2βt

[
w∗(µ, t)

1 −
∫ t

0
ϕ∗

1(τ)dτ + 1
D

∫ y∗
1(t)

µ
w∗(ξ, t)dξ

+ β

]
dµ (135)

where w∗ = w∗(y, t) is given by (130), y∗
0(t), y∗

1(t) are given by (131) and (132)
respectively, with ϕ∗

1, ϕ∗
2 the unique solutions to (54) and (55) corresponding

to the solution h∗ to equation (115).
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