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ABSTRACT

We characterize norm closed subspaces B of L (9D) such that C(90D)B C
B, and maximal ones in the family of proper closed subspaces B of L*°(9D)
such that A(D)B C B, where A(D) is the disk algebra. Analogously, we
characterize closed subspaces of H* that are simultaneously invariant un-
der S and S*, the forward and the backward shift operators, and maximal
invariant subspaces of H.

1 Introduction and Preliminaries

Let L* be the Banach space of essentially bounded functions on the unit circle
0D, and H* be the norm closed subspace of functions that admit an analytic
extension to D. Let z be the identity function on dD. A norm closed subspace B
of L™ is called invariant if zB C B and doubly invariant if zB C B and ZB C B.
Weak-star closed invariant subspaces of L> have being known for a long time as
Beurling’s theorem, see [1, pp. 131-133]. They have one of the following forms:

(a) B = xgL™, where E'C 0D is a measurable set and xg denotes its charac-
teristic function. This happens when B is doubly invariant.

(b) B =uH®, where |u(z)| = 1 for almost every z € 9D.

It follows immediately that every weak-star closed invariant subspace of H* has
form (b) with u an inner function. Since the structure of inner functions is
known completely, see [2], by Beurling’s characterization, one can write down all
weak-star closed invariant subspaces of H* in an explicit way.
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Despite these results, very little is known about closed invariant subspaces of
L*>° and H* with respect to the norm topology. In this paper, we concern with
only the norm topology. In the family of proper invariant subspaces of L*° and
H®, the maximal one is called a maximal invariant subspace of L> and H®,
respectively.

First, we give a complete characterization of doubly invariant subspaces of L>°.
From this, we are able to determine maximal invariant subspaces of L>. Let Sf =
zf, f € H*® and S* be the operator on H> defined by (S*f)(2) = Z(f(z) — f(0)).
We characterize the closed subspaces of H*> that are simultaneously invariant
under S and S*. Also, we describe the maximal invariant subspaces of H*.

Let A be a uniform algebra. We denote by M(A) the maximal ideal space of
A, that is, M (A) consists of the linear functionals of A that are multiplicative and
nonzero. It is a compact Hausdorff space with the weak-star topology induced by
the dual space of A. The Gelfand transform, defined as a(y) = ¢(a), for a € A
and ¢ € M(A), establishes an isometric isomorphism between A and a closed
subalgebra of C'(M(A)), the space of continuous functions on M (A).

When A is also a C* algebra, the Gelfand transform is a *-isomorphism from
A onto C(M(A)). This allows us to identify L> with C'(M (L)), from which the
dual space (L>°)* is identified with the space 9 (M (L>°)) of finite regular Borel
measures on M (L) with the total variation norm. Specifically, every element of
(L*°)* has the form

L= [ fan ger)

where p € OM(M (L)), and for every such p, the above formula defines a linear
functional of L* with ||L,|| = ||x||. Put ker L, = {f € L>= : L,(f) = 0}. When
fM(Loo fd,u = 0 holds, we write as f L p. For a subspace B of L, we write
B 1 puif f L p for every f € B. We denote by supp p the closed support set of
L.

The fiber over A € 9D in M (L) is defined by My = {p € M(L>) : Z(p) =
A}. Since |2] =1, M(L™) = Jycop M. Measures that are supported on a single
fiber will be of particular interest in our discussion. So, we define

§={peMM(L®)) :supp p C M, for some A € 9D}.



2 Doubly, and maximal invariant subspaces in
LOO

Recall that a norm closed subspace B C L* is called invariant if zB C B (i.e.:
A(D)B C B), and is called doubly invariant if 2B C B and ZB C B (i.e.
C(dD)B C B). If f € C(AD) and A € AD then f|y, = f(A). So, if p € F is
supported in M) for some A € 0D, then f = f(X\) on supp u, and consequently

fker L, CkerL,.

That is, ker L, is a doubly invariant subspace of L> for every u € §. It follows
immediately that if & C §, then (({ker L, : p € &} is doubly invariant. The
following theorem shows that the converse also holds.

Theorem 1 FEvery doubly invariant subspace B of L* has the form

B=()kerL, (1)

pned

for some family & C §.

To prove our theorem, we need the following lemma due to Glicksberg, see [1, p.
61].

Lemma 2 Let B be a doubly invariant subspace of L* and f € L*. Then f € B
if and only if f|u, € B|m, for every A € 0D. Also, if p L B then p|a, L Bl -

Proof of Theorem 1. Put & = {u € §: u L B}. For A € 9D, let &, denote the set
of measures p in & which are concentrated on M. Then & = (J{&, : A € OD}.
By Lemma 2 we also have p|y, L Bl for all u L B. Then by [1, p. 57], Be]MA
is closed in C(M,). Hence we have

B = ﬂ{fGLOO:f]MAGBWA} by Lemma 1
AedD
= ﬂ {feL>:fLyuforevery uc &y} because By, is closed
AedD

= {feL>:fLuforevery ue®}

= ﬂ ker L,,.

peG

Let B be an invariant subspace of L>. We can define maximal invariant subspaces
of B similarly.



Corollary 3 Let B be a doubly invariant subspace of L>= and N be an invariant
subspace of B. Then

(i) N is a mazimal invariant subspace of B if and only if N = ker L, N B for
some measure p € § with p Y B.

(ii) N is contained in a maximal invariant subspace of B if and only if | J,~,Z"N
s not dense in B.

Proof. Suppose that N is maximal in B. Then N is a proper subspace of B.
Since zN C N, N C ZN holds. Then either ZN = N or ZN = B holds. Suppose
that ZN = B. Then for every f € B, we have Zf € B and there is h € N such
that zh = zf. This implies that N = B. This contradicts the properness of N in
B. Thus, ZN = N holds and N is double invariant. By Theorem 1, there exists
& C § such that N = ({ker L, : p € &}. Since N # B, there must be some
i1 € & such that py £ B. Thus

N cBnkerlL, CB,

where the last inclusion is proper. Since N is maximal in B, then N = Bnker L,,,.

Conversely, let o € § be such that @ £ B. Then BNker L, is doubly invariant
and dim B/(ker L, N B) = 1, from which the maximality is clear. This proves (i).

Suppose that N is contained in a maximal invariant subspace M of B. In the
first paragraph of the proof, we showed that M is doubly invariant. Thus, the
closure of | J,,,Z"N in L™ is contained in M. Since M is proper in B, |, o, Z"N
is not dense in B. Conversely, suppose that U5 2" N is not dense in B. Let
M be the closure of | J,~,z"N in L. Then M is doubly invariant and M # B.
By Theorem 1, there is some measure p € § such that M C ker L, and p £ B.
Hence, by (i) ker L, N B is a maximal invariant subspace of B containing N.

3 Invariant subspaces in H*

We recall that Sf = zf and S*f = Z(f — f(0)) for f € H*®. Let B C H* be
a closed subspace. Then B is an invariant subspace if and only if B is invariant
under S. Put § ={pe§:pn L C}

Theorem 4 Let B C H* be a closed subspace such that B # {0}. Then B is
mwvariant under S and S* if and only if there is & C §o such that

B= () kerL,nH>.

neG



Proof. For the sufficiency of the proof, observe that if © € § is supported on
My (X € OD), then for every f € H* we have

Sf—AfekerL, and S*f —X(f — f(0)) € ker L,,.
On the other hand, if 4 L C and f € ker L,,, then
M €ker L, and A(f — f(0)) € ker L,.

Consequently, if ;1 € §o, then we have Sf,S*f € ker L, for every f € ker L,,.
That is, ker L, N H* is invariant under S and S* for every p € §o.

Now we prove the necessity. Suppose that B is invariant under S and S*.
Since B # {0}, there exist f € B and a nonnegative integer n such that f = z"g,
with g € H* and g(0) # 0. Then ((S*)" — S(S*)"™!)f = g(0) € B, so that B
contains a nonzero constant. Consequently B contains the disk algebra A(D).

Let ¢ € H*® and ¢ € C(9D) be such that g + ¢ belongs to the closure of
B+ C(0D) in H® + C(9D). Then there are f, € B and ¢, € C(9D) such that
| fo + cn — g — ¢|]|o—0. It is well known (see [2, p.137]) that dist(c, — ¢, H>®) =
dist(c, — ¢, A(D)). Hence there exists a, € A(D) such that ||a, — (¢, — ¢)||cc—0.
Thus,

1fr + an— glloo < [[fa+n—9—clloc + [lan — cn + ¢l|c—0.

Since f,, + a, € B and B is closed, we have g = lim(f,, + a,) € B. So, g+ ¢ €
B+ C(0D). Thus B + C(0D) is closed in H> 4 C(0D). It follows that

B = (B +C(0D)) N H>, 2)

because A(D) C B.

Since z"B C (S*)"B + C(0D) C B + C(9D) for every nonnegative integer
n, we have that B % the closure of U,s02" B in H* + C(9D) is contained in
B + C(9D). Therefore

by:(2)

BCBy,NH*®C(B+C(D))NH> B.

Thus B = B, NH®. Since By, is a doubly invariant subspace of L*, by Theorem
1 there is a family & C § such that B, = (({ker L, : p € &}. Since C C B C
B, we get & C §o.

Corollary 5 Let B C H* be a maximal invariant subspace. If there exists f € B
that is invertible in H*, then B = ker L, N H* for some v € § with v L H*.



Proof. Let us assume first that f = 1. Then A(D) C B. Since zB C B, B C S*B
holds. Thus, for g € B we have that SS*g = g — ¢(0) € B C S*B. It is easy to
see that S*B is closed. Hence S*B is an invariant subspace of H*. Since B is
maximal in H*°, either S*B = B or S*B = H* holds. If S*B = H*, then for
every h € H* thereis g € B such that Z(g—¢g(0)) = h, and consequently zh € B.
Thus zH*> C B, and since zH* is a maximal invariant subspace of H* and B is
a proper subspace of H*, then B = zH holds. This contradicts the hypothesis
that 1 € B. Hence, S*B = B holds and B turns out to be S*-invariant. Then by
Theorem 4, there is a collection & C §y such that B = (\{ker L, : p € &} N H>.
Since B is a proper subspace of H*, there exists some v € & such that v } H*>.
Since ker L, N H* is a maximal invariant subspace of H* that contains B, we
get B=ker L, N H*.

For the case that f € B is a general invertible function in H*°, consider the
space f~1B. It is obvious that this space is also a maximal invariant subspace
of H*, and 1 € f~'B. By our previous case, there is some 1y € F, such that
vo £ H® and f~'B = ker L,, N H*. Hence B = ker L, N H*, where v = f‘lyo
is not orthogonal to fH* = H*>.

For w € D, we write ¢,(z) = (w — z)(1 — wz) for the special automorphism of
the disk that interchanges w and 0.

Lemma 6 Let B C H*® be a mazimal invariant space and b be a finite Blaschke
product. If B # ¢,H> for all w € D, then BNbH> = bB.

Proof. First, we prove the following.
Claim 1. If B # 2H*, then BN z"H> = 2" B for every positive integer n.
Since 2"B C B, B C z"BN H* holds. By the maximality of B in H*, either
B=Z"BNH* o H>*=ZzZ"BNH™. (3)

The first equality is our claim. Suppose that H>* = Zz"B N H* holds for some n.
We may assume that n is the smallest positive integer satisfying H> = z"BNH®>.
We have 2"H> = BN z"H*. Hence

Z"H*™ C B. (4)

Here we have that n # 1. For, suppose that zH* C B holds. Since zH® is
a maximal invariant subspace of H>* and B C H®™ is proper, B = zH* holds.
This contradicts our assumption of Claim 1. Hence n > 2. By (3), we have
B =ZB N H*. Hence by (4), we get

ZPH® =2"H*NzH® Cc BNzH>* = zB.



Thus we obtain 2" 'H>® C B. Hence H® = z" 1 BN H* holds. This contradicts
that n is the smallest one such that H* =2z"B N H*™.

Next, we prove the following claim.

Claim 2: BNy, H* = ¢! B for every w € D and positive integer n.

Consider the closed subspace of H> given by B o ¢, def {fows: f€ B}
Since (¢ © Yw)(2) = z, it is clear that B o ¢,, is a maximal invariant subspace of
H*®°. By our assumption, B # ¢,, H* holds. Hence Bop,, # zH>. Therefore by
Claim 1, (Bop,)Nz"H™ = 2"(Bo,) for every positive integer n. Composing
this equality with ¢,, we obtain the desired result.

Now let b be a finite Blaschke product. Obviously bB C BN bH>. For the
reverse inclusion, let f € H* be such that 0f € B. Writing b = ¢! ... ok,
where w; € D and n; > 1 for 1 < j < k, we have that

ngll...gaZ’ZfEB.

Then Claim 2 asserts that 2 ... opk f € B. We can repeat this argument £k — 1
more times to obtain f € B.

Theorem 7 Let B C H*™ be a mazximal invariant subspace. Then either B =
Y H™ for some w € D or B =ker L, N H® for some v € § with v } H*.

Proof. Let Bo, be the closure of | J,.,Z"B in H* + C(0D). Assume first that
1 € By. Then there are ¢ € B and a nonnegative integer n such that ||[z"g —
1|o < 1/2. Hence, ||g — 2"|loo < 1/2. Since |2%| = 1 on M(H>)\ D, then
|g] > 1/2 on M(H>) \ D. It is well known that a function in H* that never
vanishes on M (H>) \ D can be factored as g = bf, where f € (H*)™! and b is
a finite Blaschke product.

If there is some w € D such that B = ¢,H*>, we are done. If not, Lemma 6
says that f € B. Hence, Corollary 5 says that B = ker L, N H* for u € § with
i £ H*. Thus our theorem holds when 1 € B.

Now suppose that 1 € B,,. Since B, is a doubly invariant subspace of L>,
Theorem 1 states that there exists a family & C § such that By, = () {ker L, :
€ &}, Since 1 ¢ By, there must be some v € & such that v Y 1. Thus

BcB.NH*®CkerL,NH™.

Since 1 & ker L, N H*, this space is a proper invariant subspace of H*. Since B
is maximal in H*, B = ker L,, N H* holds, as claimed.

Open Problems. The most important open problem is to obtain a complete
characterization of invariant subspaces of L> and H*®. If B C H® is invariant,
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the weak-star closure of B has the form uH*°, where u is an inner function. Thus,
uB is an invariant subspace of H> that is weak-star dense in H*°. Therefore, the
problem for H* reduces to characterize invariant subspaces that are weak-star
dense in H*. A similar analysis can be done for L*°, except that in this case we
also have to characterize invariant subspaces whose weak-star closure is x gL,
where . C JD is some measurable set.

We have other questions. Is every invariant subspace in H*° contained in a
maximal one? What about L>°7 Obviously, these questions are less ambitious
than the ones in the previous paragraphs.
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