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Abstract

We characterize norm closed subspaces B of L∞(∂D) such that C(∂D)B ⊂
B, and maximal ones in the family of proper closed subspaces B of L∞(∂D)
such that A(D)B ⊂ B, where A(D) is the disk algebra. Analogously, we
characterize closed subspaces of H∞ that are simultaneously invariant un-
der S and S∗, the forward and the backward shift operators, and maximal
invariant subspaces of H∞.

1 Introduction and Preliminaries

Let L∞ be the Banach space of essentially bounded functions on the unit circle
∂D, and H∞ be the norm closed subspace of functions that admit an analytic
extension to D. Let z be the identity function on ∂D. A norm closed subspace B
of L∞ is called invariant if zB ⊂ B and doubly invariant if zB ⊂ B and zB ⊂ B.
Weak-star closed invariant subspaces of L∞ have being known for a long time as
Beurling’s theorem, see [1, pp. 131-133]. They have one of the following forms:

(a) B = χEL∞, where E ⊂ ∂D is a measurable set and χE denotes its charac-
teristic function. This happens when B is doubly invariant.

(b) B = uH∞, where |u(z)| = 1 for almost every z ∈ ∂D.

It follows immediately that every weak-star closed invariant subspace of H∞ has
form (b) with u an inner function. Since the structure of inner functions is
known completely, see [2], by Beurling’s characterization, one can write down all
weak-star closed invariant subspaces of H∞ in an explicit way.

02000 Mathematics Subject Classification: primary 47A15, secondary 46J15. Key words:
Invariant subspaces, supreme norm.

1



Despite these results, very little is known about closed invariant subspaces of
L∞ and H∞ with respect to the norm topology. In this paper, we concern with
only the norm topology. In the family of proper invariant subspaces of L∞ and
H∞, the maximal one is called a maximal invariant subspace of L∞ and H∞,
respectively.

First, we give a complete characterization of doubly invariant subspaces of L∞.
From this, we are able to determine maximal invariant subspaces of L∞. Let Sf =
zf, f ∈ H∞ and S∗ be the operator on H∞ defined by (S∗f)(z) = z(f(z)−f(0)).
We characterize the closed subspaces of H∞ that are simultaneously invariant
under S and S∗. Also, we describe the maximal invariant subspaces of H∞.

Let A be a uniform algebra. We denote by M(A) the maximal ideal space of
A, that is, M(A) consists of the linear functionals of A that are multiplicative and
nonzero. It is a compact Hausdorff space with the weak-star topology induced by
the dual space of A. The Gelfand transform, defined as â(ϕ) = ϕ(a), for a ∈ A
and ϕ ∈ M(A), establishes an isometric isomorphism between A and a closed
subalgebra of C(M(A)), the space of continuous functions on M(A).

When A is also a C∗ algebra, the Gelfand transform is a ∗-isomorphism from
A onto C(M(A)). This allows us to identify L∞ with C(M(L∞)), from which the
dual space (L∞)∗ is identified with the space M(M(L∞)) of finite regular Borel
measures on M(L∞) with the total variation norm. Specifically, every element of
(L∞)∗ has the form

Lµ(f) =

∫

M(L∞)

f̂ dµ (f ∈ L∞),

where µ ∈ M(M(L∞)), and for every such µ, the above formula defines a linear
functional of L∞ with ‖Lµ‖ = ‖µ‖. Put kerLµ = {f ∈ L∞ : Lµ(f) = 0}. When∫

M(L∞)
f̂dµ = 0 holds, we write as f̂ ⊥ µ. For a subspace B of L∞, we write

B ⊥ µ if f̂ ⊥ µ for every f ∈ B. We denote by supp µ the closed support set of
µ.

The fiber over λ ∈ ∂D in M(L∞) is defined by Mλ = {ϕ ∈ M(L∞) : ẑ(ϕ) =
λ}. Since |ẑ| ≡ 1, M(L∞) =

⋃
λ∈∂D Mλ. Measures that are supported on a single

fiber will be of particular interest in our discussion. So, we define

F = {µ ∈ M(M(L∞)) : supp µ ⊂ Mλ for some λ ∈ ∂D}.
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2 Doubly, and maximal invariant subspaces in

L∞

Recall that a norm closed subspace B ⊂ L∞ is called invariant if zB ⊂ B (i.e.:
A(D)B ⊂ B), and is called doubly invariant if zB ⊂ B and zB ⊂ B (i.e.:
C(∂D)B ⊂ B). If f ∈ C(∂D) and λ ∈ ∂D then f̂ |Mλ

= f(λ). So, if µ ∈ F is

supported in Mλ for some λ ∈ ∂D, then f̂ = f(λ) on suppµ, and consequently

f̂ ker Lµ ⊂ ker Lµ.

That is, ker Lµ is a doubly invariant subspace of L∞ for every µ ∈ F. It follows
immediately that if G ⊂ F, then

⋂ {ker Lµ : µ ∈ G} is doubly invariant. The
following theorem shows that the converse also holds.

Theorem 1 Every doubly invariant subspace B of L∞ has the form

B =
⋂

µ∈G
ker Lµ (1)

for some family G ⊂ F.

To prove our theorem, we need the following lemma due to Glicksberg, see [1, p.
61].

Lemma 2 Let B be a doubly invariant subspace of L∞ and f ∈ L∞. Then f ∈ B
if and only if f̂ |Mλ

∈ B̂|Mλ
for every λ ∈ ∂D. Also, if µ ⊥ B then µ|Mλ

⊥ B|Mλ
.

Proof of Theorem 1. Put G = {µ ∈ F : µ ⊥ B}. For λ ∈ ∂D, let Gλ denote the set
of measures µ in G which are concentrated on Mλ. Then G =

⋃{Gλ : λ ∈ ∂D}.
By Lemma 2 we also have µ|Mλ

⊥ B|Mλ
for all µ ⊥ B. Then by [1, p. 57], B̂|Mλ

is closed in C(Mλ). Hence we have

B =
⋂

λ∈∂D

{f ∈ L∞ : f̂ |Mλ
∈ B̂|Mλ

} by Lemma 1

=
⋂

λ∈∂D

{f ∈ L∞ : f̂ ⊥ µ for every µ ∈ Gλ} because B̂|Mλ
is closed

= {f ∈ L∞ : f̂ ⊥ µ for every µ ∈ G}
=

⋂

µ∈G
ker Lµ.

Let B be an invariant subspace of L∞. We can define maximal invariant subspaces
of B similarly.
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Corollary 3 Let B be a doubly invariant subspace of L∞ and N be an invariant
subspace of B. Then

(i) N is a maximal invariant subspace of B if and only if N = ker Lµ ∩ B for
some measure µ ∈ F with µ 6⊥ B.

(ii) N is contained in a maximal invariant subspace of B if and only if
⋃

n≥0 znN
is not dense in B.

Proof. Suppose that N is maximal in B. Then N is a proper subspace of B.
Since zN ⊂ N , N ⊂ zN holds. Then either zN = N or zN = B holds. Suppose
that zN = B. Then for every f ∈ B, we have zf ∈ B and there is h ∈ N such
that zh = zf . This implies that N = B. This contradicts the properness of N in
B. Thus, zN = N holds and N is double invariant. By Theorem 1, there exists
G ⊂ F such that N =

⋂ {ker Lµ : µ ∈ G}. Since N 6= B, there must be some
µ1 ∈ G such that µ1 6⊥ B. Thus

N ⊂ B ∩ ker Lµ1 ⊂ B,

where the last inclusion is proper. Since N is maximal in B, then N = B∩ker Lµ1 .

Conversely, let µ ∈ F be such that µ 6⊥ B. Then B∩ker Lµ is doubly invariant
and dim B/(ker Lµ∩B) = 1, from which the maximality is clear. This proves (i).

Suppose that N is contained in a maximal invariant subspace M of B. In the
first paragraph of the proof, we showed that M is doubly invariant. Thus, the
closure of

⋃
n≥0 znN in L∞ is contained in M . Since M is proper in B,

⋃
n≥0 znN

is not dense in B. Conversely, suppose that
⋃

n≥0 znN is not dense in B. Let
M be the closure of

⋃
n≥0 znN in L∞. Then M is doubly invariant and M 6= B.

By Theorem 1, there is some measure µ ∈ F such that M ⊂ ker Lµ and µ 6⊥ B.
Hence, by (i) ker Lµ ∩B is a maximal invariant subspace of B containing N .

3 Invariant subspaces in H∞

We recall that Sf = zf and S∗f = z(f − f(0)) for f ∈ H∞. Let B ⊂ H∞ be
a closed subspace. Then B is an invariant subspace if and only if B is invariant
under S. Put F0 = {µ ∈ F : µ ⊥ C}.

Theorem 4 Let B ⊂ H∞ be a closed subspace such that B 6= {0}. Then B is
invariant under S and S∗ if and only if there is G ⊂ F0 such that

B =
⋂

µ∈G
ker Lµ ∩H∞.
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Proof. For the sufficiency of the proof, observe that if µ ∈ F is supported on
Mλ(λ ∈ ∂D), then for every f ∈ H∞ we have

Sf − λf ∈ ker Lµ and S∗f − λ(f − f(0)) ∈ ker Lµ.

On the other hand, if µ ⊥ C and f ∈ ker Lµ, then

λf ∈ ker Lµ and λ(f − f(0)) ∈ ker Lµ.

Consequently, if µ ∈ F0, then we have Sf, S∗f ∈ ker Lµ for every f ∈ ker Lµ.
That is, ker Lµ ∩H∞ is invariant under S and S∗ for every µ ∈ F0.

Now we prove the necessity. Suppose that B is invariant under S and S∗.
Since B 6= {0}, there exist f ∈ B and a nonnegative integer n such that f = zng,
with g ∈ H∞ and g(0) 6= 0. Then ((S∗)n − S(S∗)n+1)f = g(0) ∈ B, so that B
contains a nonzero constant. Consequently B contains the disk algebra A(D).

Let g ∈ H∞ and c ∈ C(∂D) be such that g + c belongs to the closure of
B + C(∂D) in H∞ + C(∂D). Then there are fn ∈ B and cn ∈ C(∂D) such that
‖fn + cn − g − c‖∞→0. It is well known (see [2, p. 137]) that dist(cn − c,H∞) =
dist(cn− c, A(D)). Hence there exists an ∈ A(D) such that ‖an− (cn− c)‖∞→0.
Thus,

‖fn + an − g‖∞ ≤ ‖fn + cn − g − c‖∞ + ‖an − cn + c‖∞→0.

Since fn + an ∈ B and B is closed, we have g = lim(fn + an) ∈ B. So, g + c ∈
B + C(∂D). Thus B + C(∂D) is closed in H∞ + C(∂D). It follows that

B = (B + C(∂D)) ∩H∞, (2)

because A(D) ⊂ B.

Since znB ⊂ (S∗)nB + C(∂D) ⊂ B + C(∂D) for every nonnegative integer

n, we have that B∞
def
= the closure of

⋃
n≥0 znB in H∞ + C(∂D) is contained in

B + C(∂D). Therefore

B ⊂ B∞ ∩H∞ ⊂ (B + C(∂D)) ∩H∞ by (2)
= B.

Thus B = B∞∩H∞. Since B∞ is a doubly invariant subspace of L∞, by Theorem
1 there is a family G ⊂ F such that B∞ =

⋂ {ker Lµ : µ ∈ G}. Since C ⊂ B ⊂
B∞, we get G ⊂ F0.

Corollary 5 Let B ⊂ H∞ be a maximal invariant subspace. If there exists f ∈ B
that is invertible in H∞, then B = ker Lν ∩H∞ for some ν ∈ F with ν 6⊥ H∞.
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Proof. Let us assume first that f = 1. Then A(D) ⊂ B. Since zB ⊂ B, B ⊂ S∗B
holds. Thus, for g ∈ B we have that SS∗g = g − g(0) ∈ B ⊂ S∗B. It is easy to
see that S∗B is closed. Hence S∗B is an invariant subspace of H∞. Since B is
maximal in H∞, either S∗B = B or S∗B = H∞ holds. If S∗B = H∞, then for
every h ∈ H∞ there is g ∈ B such that z(g−g(0)) = h, and consequently zh ∈ B.
Thus zH∞ ⊂ B, and since zH∞ is a maximal invariant subspace of H∞ and B is
a proper subspace of H∞, then B = zH∞ holds. This contradicts the hypothesis
that 1 ∈ B. Hence, S∗B = B holds and B turns out to be S∗-invariant. Then by
Theorem 4, there is a collection G ⊂ F0 such that B =

⋂ {ker Lµ : µ ∈ G}∩H∞.
Since B is a proper subspace of H∞, there exists some ν ∈ G such that ν 6⊥ H∞.
Since ker Lν ∩ H∞ is a maximal invariant subspace of H∞ that contains B, we
get B = ker Lν ∩H∞.

For the case that f ∈ B is a general invertible function in H∞, consider the
space f−1B. It is obvious that this space is also a maximal invariant subspace
of H∞, and 1 ∈ f−1B. By our previous case, there is some ν0 ∈ F0 such that
ν0 6⊥ H∞ and f−1B = ker Lν0 ∩H∞. Hence B = ker Lν ∩H∞, where ν = f̂−1ν0

is not orthogonal to fH∞ = H∞.

For w ∈ D, we write ϕω(z) = (w − z)(1 − wz) for the special automorphism of
the disk that interchanges w and 0.

Lemma 6 Let B ⊂ H∞ be a maximal invariant space and b be a finite Blaschke
product. If B 6= ϕwH∞ for all w ∈ D, then B ∩ bH∞ = bB.

Proof. First, we prove the following.

Claim 1. If B 6= zH∞, then B ∩ znH∞ = znB for every positive integer n.

Since znB ⊂ B, B ⊂ znB∩H∞ holds. By the maximality of B in H∞, either

B = znB ∩H∞ or H∞ = znB ∩H∞. (3)

The first equality is our claim. Suppose that H∞ = znB ∩H∞ holds for some n.
We may assume that n is the smallest positive integer satisfying H∞ = znB∩H∞.
We have znH∞ = B ∩ znH∞. Hence

znH∞ ⊂ B. (4)

Here we have that n 6= 1. For, suppose that zH∞ ⊂ B holds. Since zH∞ is
a maximal invariant subspace of H∞ and B ⊂ H∞ is proper, B = zH∞ holds.
This contradicts our assumption of Claim 1. Hence n ≥ 2. By (3), we have
B = zB ∩H∞. Hence by (4), we get

znH∞ = znH∞ ∩ zH∞ ⊂ B ∩ zH∞ = zB.
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Thus we obtain zn−1H∞ ⊂ B. Hence H∞ = zn−1B∩H∞ holds. This contradicts
that n is the smallest one such that H∞ = znB ∩H∞.

Next, we prove the following claim.

Claim 2: B ∩ ϕn
wH∞ = ϕn

wB for every w ∈ D and positive integer n.

Consider the closed subspace of H∞ given by B ◦ ϕw
def
= {f ◦ ϕw : f ∈ B}.

Since (ϕw ◦ϕw)(z) = z, it is clear that B ◦ϕw is a maximal invariant subspace of
H∞. By our assumption, B 6= ϕwH∞ holds. Hence B ◦ϕw 6= zH∞. Therefore by
Claim 1, (B ◦ϕw)∩ znH∞ = zn(B ◦ϕw) for every positive integer n. Composing
this equality with ϕw we obtain the desired result.

Now let b be a finite Blaschke product. Obviously bB ⊂ B ∩ bH∞. For the
reverse inclusion, let f ∈ H∞ be such that bf ∈ B. Writing b = ϕn1

w1
. . . ϕnk

wk
,

where wj ∈ D and nj ≥ 1 for 1 ≤ j ≤ k, we have that

ϕn1
w1

. . . ϕnk
wk

f ∈ B.

Then Claim 2 asserts that ϕn2
w2

. . . ϕnk
wk

f ∈ B. We can repeat this argument k− 1
more times to obtain f ∈ B.

Theorem 7 Let B ⊂ H∞ be a maximal invariant subspace. Then either B =
ϕwH∞ for some w ∈ D or B = ker Lν ∩H∞ for some ν ∈ F with ν 6⊥ H∞.

Proof. Let B∞ be the closure of
⋃

n≥0 znB in H∞ + C(∂D). Assume first that
1 ∈ B∞. Then there are g ∈ B and a nonnegative integer n such that ‖zng −
1‖∞ < 1/2. Hence, ‖g − zn‖∞ < 1/2. Since |ẑn| ≡ 1 on M(H∞) \ D, then
|ĝ| ≥ 1/2 on M(H∞) \ D. It is well known that a function in H∞ that never
vanishes on M(H∞) \D can be factored as g = bf , where f ∈ (H∞)−1 and b is
a finite Blaschke product.

If there is some w ∈ D such that B = ϕwH∞, we are done. If not, Lemma 6
says that f ∈ B. Hence, Corollary 5 says that B = ker Lµ ∩H∞ for µ ∈ F with
µ 6⊥ H∞. Thus our theorem holds when 1 ∈ B∞.

Now suppose that 1 6∈ B∞. Since B∞ is a doubly invariant subspace of L∞,
Theorem 1 states that there exists a family G ⊂ F such that B∞ =

⋂ {ker Lµ :
µ ∈ G}. Since 1 6∈ B∞, there must be some ν ∈ G such that ν 6⊥ 1. Thus

B ⊂ B∞ ∩H∞ ⊂ ker Lν ∩H∞.

Since 1 6∈ ker Lν ∩H∞, this space is a proper invariant subspace of H∞. Since B
is maximal in H∞, B = ker Lν ∩H∞ holds, as claimed.

Open Problems. The most important open problem is to obtain a complete
characterization of invariant subspaces of L∞ and H∞. If B ⊂ H∞ is invariant,
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the weak-star closure of B has the form uH∞, where u is an inner function. Thus,
uB is an invariant subspace of H∞ that is weak-star dense in H∞. Therefore, the
problem for H∞ reduces to characterize invariant subspaces that are weak-star
dense in H∞. A similar analysis can be done for L∞, except that in this case we
also have to characterize invariant subspaces whose weak-star closure is χEL∞,
where E ⊂ ∂D is some measurable set.

We have other questions. Is every invariant subspace in H∞ contained in a
maximal one? What about L∞? Obviously, these questions are less ambitious
than the ones in the previous paragraphs.
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