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Daniel Suárez

Abstract

Let L2
a be the Bergman space of the unit disk and T(L2

a) be the Banach algebra gene-
rated by Toeplitz operators Tf , with f ∈ L∞. We prove that the closed bilateral ideal
of T(L2

a) generated by operators of the form TfTg − TgTf coincides with T(L2
a).

1 Introduction

If 0 < p ≤ ∞ let Lp = Lp(D, dA), where D is the open unit disk and dA(z) = (1/π)dxdy
(z = x + iy) is the normalized area measure on D. The Bergman space Lp

a is formed by the
analytic functions in Lp. If 1 < p < ∞ then

(Pf)(z) =

∫

D

f(ω)

(1− ωz)2
dA(ω)

is a bounded projection from Lp onto Lp
a. This is the usual Bergman projection. For

a ∈ L∞ let Ma : Lp→Lp be the operator of multiplication by a and Pa = PMa. Then
‖Pa‖ ≤ Cp‖a‖∞, where Cp is the norm of P acting on Lp. The Toeplitz operator Ta : Lp

a→Lp
a

is the restriction of Pa to the space Lp
a. If B is a Banach space, we will write L(B) for

the algebra of all bounded operators on B and T(Lp
a) for the closed subalgebra of L(Lp

a)
generated by {Ta : a ∈ L∞}.

If A is a Banach algebra, its commutator ideal CA is the closed bilateral ideal generated

by elements of the form [x, y]
def
= xy − yx, with x, y ∈ A. It is clear that CA is the smallest

closed ideal of A such that A/CA is a commutative Banach algebra. There is an extensive

02000 Mathematics Subject Classification: primary 47B35, secondary 47B47. Key words: commutator
ideal, Toeplitz operators, Bergman space.

1



literature on commutator ideals and abelianizations of Toeplitz algebras acting on the Hardy
space H2. The book of Nikoslkii [5] contains plentiful information and further references.
In contrast with this situation, we only have a handful of results for Toeplitz algebras of
operators on L2

a. Probably the most relevant papers on the subject are [2], [4] and [1].

If H is a Hilbert space of dimension greater than one then CL(H) = L(H). Although
this situation is very unusual for Toeplitz algebras, the purpose of this paper is to prove the
following

Theorem 1.1 The Toeplitz algebra on L2
a coincides with its commutator ideal.

In [3] it is shown that if φ(z) = exp(i log log |z|−2) then the semicommutator Tφφ − TφTφ is
a nontrivial scalar multiple of the identity. Analogously, it could happen that there are two
simple functions a, b ∈ L∞ such that TaTb− TbTa is easily seen to be invertible. This would
immediately prove Theorem 1.1. Since I was unable to find such functions or even prove
their existence, the proof here is considerably more complicated.

2 Segmentation

For z ∈ D let ϕz(ω) = (z−ω)/(1− zω), the special automorphism of D that interchanges 0
and z. The pseudo-hyperbolic metric is defined by ρ(z, ω) = |ϕz(ω)| for z, ω ∈ D. It is well
known that ρ is invariant under the action of Aut(D). We will also use that

ρ(z, ω) ≥ ρ(z, u)− ρ(u, ω)

1− ρ(z, u)ρ(u, ω)
for all z, ω, u ∈ D.

If 0 < r < 1 write K(z, r)
def
= {ω ∈ D : ρ(ω, z) ≤ r} for the closed ball of center z and radius

r with respect to ρ. A sequence S = {zn} in D will be called separated if infi6=j ρ(zi, zj) > 0.
Although I have not found the next result in its present form in the literature, it is a well
known feature of separated sequences. We sketch here a proof.

Lemma 2.1 Let S be a separated sequence and 0 < σ < 1. Then there is a finite decom-
position S = S1 ∪ . . . ∪ SN such that for every 1 ≤ i ≤ N : ρ(z, ω) > σ for all z 6= ω in
Si.

Proof. Since S is separated, there is some positive integer N depending only on σ and
the degree of separation of S, such that K(z, σ) ∩ S has no more than N points for every
z ∈ D. Let S1 ⊂ S be a maximal sequence such that ρ(z, ω) > σ for every z, ω ∈ S1

with z 6= ω. The maximality implies that S ⊂ ⋃
z∈S1

K(z, σ). If S = S1 we are done.
Otherwise suppose that n ≥ 2, S1, . . . ,Sn−1 are chosen and S \ (S1 ∪ . . . ∪ Sn−1) 6= ∅. Let
Sn ⊂ S \ (S1 ∪ . . . ∪ Sn−1) be a maximal sequence such that ρ(z, ω) > σ for every z, ω ∈ Sn
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with z 6= ω. By the maximality at the previous steps, if z ∈ Sn there is some zi ∈ Si such
that z ∈ K(zi, σ) for every 1 ≤ i ≤ n − 1. Therefore {z, z1, . . . , zn−1} ⊂ K(z, σ) ∩ S, and
consequently n ≤ N . 2

Lemma 2.2 For 1 ≤ k ≤ m let {ak
j}j≥1 be sequences in the unit ball of L∞ such that

supp ak
j ⊂ K(αj, r), where K(αj, r) ∩K(αi, r) = ∅ if i 6= j. Suppose that 1 < p < ∞ and

{Rj}j≥1 is a bounded sequence in L(Lp). If f ∈ Lp is such that
∑

j≥1 Mam
j
Rjf ∈ Lp then

‖
∑
j≥1

Pa1
j
. . . Pam

j
Rjf‖p ≤ Cm

p ‖
∑
j≥1

Mam
j
Rjf‖p ,

where Cp is the norm of the projection P acting on Lp.

Proof. For every j ≥ 1 write Qj = Pa2
j
. . . Pam−1

j
P and S =

∑
j≥1 Ma1

j
QjMam

j
Rj. Then

‖Qj‖ ≤ Cm−1
p and for f ∈ Lp we have

‖Sf‖p
p = ‖

∑
j≥1

Ma1
j
QjMam

j
Rjf‖p

p =
∑
j≥1

‖Ma1
j
QjMam

j
Rjf‖p

p

≤ C(m−1)p
p

∑
j≥1

‖Mam
j
Rjf‖p

p = C(m−1)p
p ‖

∑
j≥1

(Mam
j
Rj)f‖p

p. (2.1)

If the last quantity is finite then Sf ∈ Lp and the partial sums Snf =
∑n

j=1 Ma1
j
QjMam

j
Rjf

converge to Sf in Lp-norm when n→∞. Therefore

‖
∑
j≥1

Pa1
j
. . . Pam

j
Rjf‖p

p = lim
n
‖

n∑
j=1

Pa1
j
. . . Pam

j
Rjf‖p

p

= lim
n
‖PSnf‖p

p ≤ Cp‖Sf‖p
p.

The lemma follows combining this equality with (2.1). 2

Corollary 2.3 Taking Rj = I for every j in Lemma 2.2 we obtain

‖
∑
j≥1

Pa1
j
. . . Pam

j
‖L(Lp) ≤ Cm

p .

Proof. By the lemma,

‖
∑
j≥1

Pa1
j
. . . Pam

j
f‖p ≤ Cm

p ‖
∑
j≥1

Mam
j
f‖p ≤ Cm

p ‖M(
P

j≥1 am
j )f‖p ≤ Cm

p ‖f‖p

for every f ∈ Lp. 2

The next result is a particular case of Lemma 4.2.2 in [6].
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Lemma 2.4 If t > −1, c is real and

Fc,t(z) =

∫

D

(1− |ω|2)t

|1− zω|2+t+c
dA(ω) (z ∈ D),

then Fc,t is bounded when c < 0 and |Fc,t(z)| ≤ C(1− |z|2)−c when c > 0.

Lemma 2.5 Let 0 < r < 1 and {αj}j≥1 ⊂ D such that K(αj, r)∩K(αi, r) = ∅ if i 6= j. If
r < R < 1 and 0 < β < 1 then

∫

D

∑
j

[
χK(αj ,r)(z)χD\K(αj ,R)(ω)

] (1− |ω|2)−β

|1− zω|2 dA(ω) ≤ cβ(R)(1− |z|2)−β, (2.2)

where cβ(R)→0 when R→1.

Proof. If z ∈ K(αj, r) and ω ∈ D \K(αj, R) then

ρ(ω, z) ≥ ρ(ω, αj)− ρ(αj, z)

1− ρ(αj, z)ρ(ω, αj)
>

R− r

1−Rr
= δ,

where δ = δ(R)→1 when R→1. Therefore D \K(αj, R) ⊂ D \K(z, δ) and
∑

j

χK(αj ,r)(z)χD\K(αj ,R)(ω) ≤
∑

j

χK(αj ,r)(z) χD\K(z,δ)(ω).

Hence, the integral in (2.2) is bounded by

∑
j

χK(αj ,r)(z)

∫

D
χD\K(z,δ)(ω)

(1− |ω|2)−β

|1− zω|2 dA(ω)

=
∑

j

χK(αj ,r)(z)

∫

|v|>δ

(1− |ϕz(v)|2)−β

|1− zv|2 dA(v)

≤
∫

|v|>δ

(1− |v|2)−β

|1− zv|2−2β
(1− |z|2)−β dA(v), (2.3)

where the equality comes from the change of variables v = ϕz(ω) and the inequality because
K(αj, r) are pairwise disjoint. Pick some p = p(β) > 1 satisfying simultaneously the
conditions pβ < 1 and p(2− β) < 2. If p−1 + q−1 = 1, Holder’s inequality gives

∫

|v|>δ

(1− |v|2)−β

|1− zv|2−2β
dA(v) ≤

(∫

D

(1− |v|2)−pβ

|1− zv|2p(1−β)
dA(v)

)1/p

(1− δ2)1/q.

Since 2p(1 − β) = 2 − pβ + [p(2 − β) − 2] < 2 − pβ, then Lemma 2.4 says that the last
expression is bounded by Cβ(1− δ2)1/q, where Cβ depends only on β. Going back to (2.3)
we see that the integral in (2.2) is bounded by

Cβ(1− δ(R)2)1/q(β)(1− |z|2)−β,

proving the lemma. 2
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Lemma 2.6 Let 0 < r < 1 and αj ∈ D (for j ≥ 1) such that K(αj, r) are pairwise disjoint.
Suppose that R ∈ (r, 1) and aj, Aj ∈ L∞ are functions of norm ≤ 1 such that

supp aj ⊂ K(αj, r) and supp Aj ⊂ D \K(αj, R).

Then
∑

j≥1 Maj
PMAj

is bounded on Lp for every 1 < p < ∞, with norm bounded by some
constant kp(R)→0 when R→1.

Proof. Write

Φ(z, ω) =
∑
j≥1

χK(αj ,r)(z)χD\K(αj ,R)(ω)
1

|1− ωz|2 .

Let f ∈ Lp. Since ‖aj‖∞, ‖Aj‖∞ ≤ 1 for all j, then

∣∣∣∣∣

(∑
j≥1

Maj
PMAj

f

)
(z)

∣∣∣∣∣ =

∣∣∣∣∣
∑
j≥1

aj(z)

∫

D
Aj(ω)f(ω)

dA(ω)

(1− ωz)2

∣∣∣∣∣

≤
∫

D
Φ(z, ω)|f(ω)| dA(ω).

Taking h(z) = (1− |z|2)−1/pq, where p−1 + q−1 = 1, Lemma 2.5 asserts that
∫

D
Φ(z, ω)h(ω)q dA(ω) ≤ cp−1(R)h(z)q

and Lemma 2.4 implies that there is some C > 0 such that
∫

D
Φ(z, ω)h(z)p dA(z) ≤ Ch(ω)p.

By Schur’s theorem [6, p. 42] the integral operator with kernel Φ(z, ω) is bounded on Lp

and its norm is bounded by (cp−1(R))
1
q C

1
p →0 as R→1. 2

Let aj, bj ∈ L∞ (j ≥ 1) be functions of norm at most 1 supported on K(αj, r), where the
pseudo-hyperbolic disks are pairwise disjoint. By Lemma 2.1 for any σ ∈ (r, 1) there is some
n = n(σ) ≥ 1 and a partition of the positive integers N = N1 ∪ . . . ∪Nn such that

ρ(αi, αj) > σ for i 6= j, i, j ∈ Nk (1 ≤ k ≤ n).

Lemma 2.7 If 1 < p < ∞ then

∑

1≤k≤n

[(∑
j∈Nk

Pa1
j
. . . Pam

j

)
P(
P

i∈Nk
bi)

]
→

∑
j≥1

Pa1
j
. . . Pam

j
Pbj

(2.4)

in operator norm when σ→1.
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Proof. Write Bj =
∑

i∈Nk, i 6=j bi when j ∈ Nk for some 1 ≤ k ≤ n. Since P(
P

i∈Nk
bi) =

Pbj
+ PBj

, the first term in (2.4) can be decomposed as

n∑

k=1

[∑
j∈Nk

Pa1
j
. . . Pam

j
Pbj

+
∑
j∈Nk

Pa1
j
. . . Pam

j
PBj

]
= S1 + S2,

where

S1 =
n∑

k=1

∑
j∈Nk

Pa1
j
. . . Pam

j
Pbj

=
∑
j≥1

Pa1
j
. . . Pam

j
Pbj

and

S2 =
n∑

k=1

∑
j∈Nk

Pa1
j
. . . Pam

j
PBj

=
∑
j≥1

Pa1
j
. . . Pam

j
PBj

.

Let f ∈ Lp. By Lemma 2.2

‖S2f‖p ≤ Cm
p ‖

∑
j≥1

Mam
j
PBj

f‖p. (2.5)

If ω ∈ supp Bj for j ∈ Nk with 1 ≤ k ≤ n, then there is i 6= j in Nk such that ω ∈ K(αi, r).
Then

ρ(ω, αj) ≥ ρ(αj, αi)− ρ(ω, αi)

1− ρ(αj, αi)ρ(ω, αi)
>

σ − r

1− σr
= R(σ),

meaning that supp Bj ⊂ D \K(αj, R(σ)). Since R(σ)→1 when σ→1, (2.5) and Lemma 2.6
prove (2.4). 2

Corollary 2.8 Under the conditions of Lemma 2.7,

∑

1≤k≤n

[(∑
j∈Nk

Ta1
j
. . . Tam

j

)
T(
P

i∈Nk
bi)

]
→

∑
j≥1

Ta1
j
. . . Tam

j
Tbj

(2.6)

and
∑

1≤k≤n

[
T(
P

i∈Nk
bi)

(∑
j∈Nk

Ta1
j
. . . Tam

j

)]
→

∑
j≥1

Tbj
Ta1

j
. . . Tam

j
(2.7)

in operator norm when σ→1.

Proof. We obtain (2.6) by restricting the operators of (2.4) to Lp
a. To prove (2.7) use (2.6)

with
∑

1≤k≤n

[(∑
j∈Nk

Tam
j

. . . Ta1
j

)
T(
P

i∈Nk
bi)

]

and then take adjoints. 2
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Proposition 2.9 Let 1 < p < ∞ and c1
j , . . . , c

l
j, aj, bj, d

1
j , . . . , d

m
j ∈ L∞ be functions of

norm ≤ 1 supported on K(αj, r) for j ≥ 1, where K(αj, r) ∩K(αi, r) = ∅ if i 6= j. Then
∑
j≥1

Tc1j
. . . Tcl

j
(Taj

Tbj
− Tbj

Taj
)Td1

j
. . . Tdm

j
∈ CT(Lp

a).

Proof. For r < σ < 1 decompose N = N1 ∪ . . . ∪ Nn as in the paragraph that precedes
Lemma 2.7. By Corollary 2.8,

∑

1≤k≤n

[
T(
P

j∈Nk
aj)T(

P
i∈Nk

bi) − T(
P

i∈Nk
bi)T(

P
j∈Nk

aj)

]
→

∑
j≥1

(Taj
Tbj

− Tbj
Taj

)

when σ→1. Since the first operators belong to the commutator ideal, so does their limit.
Thus, ∑

j∈F

(Taj
Tbj

− Tbj
Taj

) ∈ CT(Lp
a)

for any subset F ⊂ N. In particular, this hold for F = Nk (1 ≤ k ≤ n). Then

∑

1≤k≤n

[(∑
j∈Nk

(Taj
Tbj

− Tbj
Taj

)

)
T(
P

i∈Nk
d1

i )

]
∈ CT(Lp

a),

and since (2.6) says that the above operators converge to
∑
j≥1

(Taj
Tbj

− Tbj
Taj

)Td1
j

when σ→1, this operator is also in CT(Lp
a). Clearly, the same holds if the sum is over any

set F ⊂ N. We can repeat this process m− 1 more times using (2.6) and then l times using
(2.7) to obtain the desired result. 2

3 An invertible operator in CT(L2
a)

Let a ∈ L∞ be a real-valued function such that a(ω) ≥ δ > 0 for every ω ∈ D. Then Ta is
self-adjoint and

〈Taf, f〉 =

∫

D
a|f |2 dA ≥ δ

∫

D
|f |2 dA = δ‖f‖2

2

for every f ∈ L2
a. Therefore Ta is invertible. Theorem 1.1 will be proved by constructing a

function a as above such that Ta ∈ CT(L2
a).

We need to summarize several basic features of Toeplitz operators. If a, b ∈ L∞ then
TaTb = Tab when a ∈ H∞ or b ∈ H∞. If z ∈ D then Uzf = (f ◦ ϕz)ϕ

′
z defines a unitary

self-adjoint operator on L2
a. Therefore, if a ∈ L∞ and f, g ∈ L2

a,

〈UzTaUzf, g〉 = 〈TaUzf, Uzg〉 = 〈a(f ◦ ϕz)ϕ
′
z, (g ◦ ϕz)ϕ

′
z〉 = 〈(a ◦ ϕz)f, g〉,
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where the last equality comes from changing variables inside the integral. Thus

UzTa1 . . . TanUz = UzTa1Uz . . . UzTanUz = Ta1◦ϕz . . . Tan◦ϕz (3.1)

for aj ∈ L∞, 1 ≤ j ≤ n. By diagonal operator we always mean diagonal with respect to the
orthonormal basis {√n + 1 zn}n≥0

A straightforward calculation with polar coordinates shows that if a ∈ L∞ is a radial
function (i.e.: a(z) = a(|z|)), then Ta is diagonal with n-entry

λn(a) =

∫ 1

0

a(t1/2)(n + 1)tn dt. (3.2)

If χr denotes the characteristic function of the ball {|ω| ≤ r}, where 0 < r < 1, then (3.2)
yields Tχrω

n = r2(n+1)ωn.

Lemma 3.1 Let a ∈ L∞ be a radial function and 0 < r < 1. Then

TχrTa = Tχr(ω) a(ω/r).

Proof. The operator Tχr(ω) a(ω/r) is diagonal, and its n-entry is

∫ 1

0

χ[0,r](t
1/2) a

(
t1/2

r

)
(n + 1)tn dt =

∫ r2

0

a

(
t1/2

r

)
(n + 1)tn dt

= r2n+2

∫ 1

0

a(u1/2)(n + 1)un du,

where the last equality comes from the change of variables u = t/r2. By (3.2) TχrTa is also
diagonal and has the same entries. 2

A simple calculation shows that 〈Tωωn, ωk〉 = 〈ωn, ωk+1〉 = 〈(n/n + 1)ωn−1, ωk〉 if n ≥ 1. A
recursive argument then gives that for every nonnegative integer k,

Tωkωn =

(
n + 1− k

n + 1

)
ωn−k if n ≥ k

and Tωkωn = 0 if n < k. Thus

TωkTχrω
n = r2(n+1)

(
n + 1− k

n + 1

)
ωn−k if n ≥ k,

and since TχrTωkωn = r2(n+k+1)ωn+k then

(TωkTχr)(TχrTωk)ωn = r4(n+k+1)

(
n + 1

n + k + 1

)
ωn = r4kTχr2TωkTωkωn, (3.3)
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where the second equality comes from the limit case r = 1 in the first equality and from
Tχr2ω

n = r4(n+1)ωn. Since Tχr and TωkTωk are diagonal, they commute, and since T 2
χr

= Tχr2

then
TχrTωkTωkTχr = T 2

χr
TωkTωk = Tχr2TωkTωk . (3.4)

By (3.3), (3.4) and Lemma 3.1,

Sk
def
= [Tωkχr

, Tωkχr
] = Tχr2 (TωkTωk − r4kTωkTωk)

= Tχr2TωkTωk − Tχr2 |ω|2k . (3.5)

Let P0 ∈ L(L2
a) be the operator P0f = f(0). Straightforward evaluations on the basis

{zn}n≥0 give the following identities

TωTω = T1+log |ω|2 , Tω2Tω2 = T1+2 log |ω|2 + P0 and Tχr2P0 = r4P0. (3.6)

Then

2S1 − S2
by (3.5)

= Tχr2 (2TωTω − Tω2Tω2) + Tχr2(|ω|4−2|ω|2)

by (3.6)
= Tχr2 (1+|ω|4−2|ω|2) − r4P0

= Tχr2 (1−|ω|2)2 − r4P0. (3.7)

Since 2S1 − S2, Tχr and P0 are diagonal operators, they commute. Consequently

P0TχrTω = TχrP0Tω = 0,

which together with Lemma 3.1 and (3.7) gives

Tχrω(2S1 − S2)Tχrω = TωTχr(2S1 − S2)TχrTω = Tχr4 (1−|ω|2/r4)2|ω|2 . (3.8)

If α ∈ D then (3.1), (3.5) and (3.8) yield

T(χr◦ϕα)ϕα
(2[T(χr◦ϕα)ϕα , T(χr◦ϕα)ϕα

]− [T(χr◦ϕα)ϕ2
α
, T(χr◦ϕα)ϕ2

α
]) T(χr◦ϕα)ϕα

= UαTχrω(2S1 − S2)TχrωUα

= T(χr4◦ϕα)(1−|ϕα|2/r4)2|ϕα|2 . (3.9)

Suppose that 0 < r < 1 and {αj} ⊂ D is a sequence such that K(αi, r) ∩K(αj, r) = ∅ for
i 6= j. Since (χr4 ◦ ϕα)(ω) = χK(α,r4)(ω), the characteristic function of K(α, r4), then

A(ω)
def
=

∑
j≥1

χr4(ϕαj
(ω))(1− |ϕαj

(ω)|2/r4)2|ϕαj
(ω)|2

is in L∞ with ‖A‖∞ ≤ 1. In conjunction with (3.9), Proposition 2.9 tells us that

TA =
∑
j≥1

T(χr4◦ϕαj )(1−|ϕαj |2/r4)2|ϕαj |2 ∈ CT(L2
a). (3.10)
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When ω ∈ D satisfies r4/4 < ρ(ω, αj) ≤ (3/4)r4 for some αj we have

(
1− |ϕαj

(ω)|2
r4

)2

|ϕαj
(ω)|2 ≥

(
1− 32r8

42r4

)2
r8

42
≥ r8

28
,

meaning that

A(ω) ≥ (r/2)8 when ω ∈ K(αj, (3/4)r4) \K(αj, r
4/4) for some αj. (3.11)

Lemma 3.2 Given 0 < σ < 1 there is a separated sequence {αj} in D such that every
z ∈ D is in K(αj,

3σ
4

) \K(αj,
σ
4
) for some αj.

Proof. Take a sequence {αj} ⊂ D such that ρ(αi, αj) > σ/100 if i 6= j and

ρ({αj}j≥1, ω) ≤ σ/8 for every ω ∈ D. (3.12)

For an arbitrary z ∈ D write βj = ϕz(αj). The conformal invariance of ρ implies that
{βj}j≥1 satisfies (3.12). We claim that there is some βj such that σ/4 < |βj| ≤ (3/4)σ.
Otherwise

ρ(σ/2, {βj}j≥1) ≥ ρ(σ/2,D \ {σ/4 < |ω| ≤ (3/4)σ})
= ρ(σ/2, {σ/4, 3σ/4})
≥ (σ/4)

1− (σ/4)(σ/2)
> σ/4.

This contradicts (3.12) with respect to {βj}j≥1 for ω = σ/2. If σ/4 < |βj0| ≤ (3/4)σ then

ρ(αj0 , z) = ρ(ϕz(αj0), ϕz(z)) = ρ(βj0 , 0) = |βj0| ∈ (σ/4, 3σ/4],

and since z ∈ D is arbitrary, the lemma follows. 2

Returning to our construction, fix 0 < r < 1 and suppose that S = {αj}j≥1 is a sequence
satisfying Lemma 3.2 for σ = r4. Since S is separated, by Lemma 2.1 we can decompose
S = S1 ∪ . . . ∪ SN , where for each 1 ≤ k ≤ N , K(αi, r) ∩K(αj, r) = ∅ if αi, αj ∈ Sk with
i 6= j. For 1 ≤ k ≤ N write

Ak(ω) =
∑

αj∈Sk

χr4(ϕαj
(ω))(1− |ϕαj

(ω)|2/r4)2|ϕαj
(ω)|2.

Then ‖Ak‖∞ ≤ 1 and (3.10) says that TAk
∈ CT(L2

a). Consequently

N∑

k=1

TAk
= T(

PN
k=1 Ak) ∈ CT(L2

a).
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In addition, (3.11) says that for every 1 ≤ k ≤ N ,

Ak(ω) ≥ (r/2)8 when ω ∈ K(αj, (3/4)r4) \K(αj, r
4/4) for some αj ∈ Sk,

and since Lemma 3.2 asserts that

D =
⋃

1≤k≤N

⋃
αj∈Sk

K(αj, (3/4)r4) \K(αj, r
4/4)

then
∑N

k=1 Ak(ω) ≥ (r/2)8 for every ω ∈ D. This completes the construction and proves
Theorem 1.1.

Acknowledgement. I am grateful to the referee for pointing out a mistake in the proof of
Lemma 2.6.
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