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Abstract  

Clinical studies suggest that triple negative breast cancer (TNBC) patients with epidermal growth 

factor receptor (EGFR)-expressing tumors could benefit from therapy with Cetuximab, which targets 

EGFR. NK cells are the primary effectors of antibody (Ab)-dependent cell-mediated cytotoxicity 

(ADCC) and thus play a role in Ab-based therapies. We have previously described diminished levels 

of Cetuximab-mediated ADCC in vitro in patients with advanced breast cancer. Here, we investigated 

the potential causes of this NK-cell functional deficiency. We characterized NK-cell 

activating/inhibitory receptors in the peripheral blood of breast cancer patients and found CD85j 

inhibitory receptor overexpression. The capacity of NK cells to perform Cetuximab-triggered ADCC 

against TNBC cells correlated inversely with CD85j expression, even in the presence of the 

stimulatory cytokines IL-2 or IL-15. Hence, patients expressing high levels of CD85j had an impaired 

ability to lyse TNBC cells in the presence of Cetuximab. We also found that CD85j overexpression 

was associated with HLA-I and soluble HLA-G expression by tumors. A CD85j functional blockade 

with a CD85j antagonist Ab restored ADCC levels in breast cancer patients and reverted this negative 

effect. Our data suggest that strategies which overcome the hurdles of immune activation could 

improve Cetuximab clinical efficacy. 
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Introduction 

NK cells are a major component of the innate immune system and can limit the growth and 
dissemination of several types of tumors [1]. In cancer immune surveillance, NK cells can exert direct 
cellular cytotoxicity on tumor cells without prior sensitization and secrete immunostimulatory 

cytokines such as IFN-, which can control both local tumor growth and metastasis [2, 3]. Moreover, 
NK cells act as effectors in antibody (Ab)-dependent cell- mediated cytotoxicity (ADCC) [4]. 
Accordingly, it has been determined that NK-cell activity can play a significant role in the efficacy of 
several therapeutic mAbs used in cancer therapy [5-9].  
NK-cell activities are regulated by inhibitory and activating signals following engagement of cell 
membrane receptors with their cognate ligands on target cells [1]. Their main ligands are MHC class I 
(MHC-I) molecules; NK cells preferentially lyse cells that express few or no MHC-I molecules and 
therefore fail to bind inhibitory receptors [10]. Furthermore, to complete NK-cell activation the 
activating receptors must still recognize their specific ligands on target cells [11]. Killer 
Immunoglobulin-like Receptors (KIRs) [12] and Leukocyte Immunoglobulin-like Receptors (LIRs) are 
type I transmembrane proteins of the immunoglobulin-like receptor superfamily [13]. LIR-1, the 
most broadly expressed LIR family member, is an inhibitory receptor that binds multiple MHC-I 
molecules, both classical (HLA-A, -B and -C) and non-classical (HLA-E, -F and -G) [12-16]. The 
inhibitory receptor LIR-1 (also known as ILT-2 and CD85j) is the only LIR expressed on NK cells [17]. 

Upon ligand binding, CD85j is able to inhibit NK-cell cytotoxicity [16, 18-20], as well as IFN- 
production [21]. Despite the fact that NK-cell inhibitory receptor engagement with target cells is 
considered a primary event in the formation of the inhibitory synapse and the subsequent 
prevention of cell lysis [22], CD85j receptor involvement in cancer has been poorly addressed. In 
lung cancer, CD85j expression was drastically reduced on intratumoral NK cells compared to blood 
NK cells [23]. In contrast, CD85j was up-regulated on peripheral blood (PB) NK cells from breast 
cancer patients with advanced disease compared to cells from healthy donors (HD) or in situ 
carcinoma patients [24]. 
Triple-negative breast cancer (TNBC) accounts for approximately 15 to 20 % of breast cancer cases. 
These tumors are defined by a diagnosis of exclusion; they lack both estrogen (ER) and progesterone 
receptors (PR), and do not have the overexpression of ErbB-2 (HER-2). TNBC occurs more frequently 
in younger patients and tends to be aggressive [25], exhibiting worse prognosis and more frequent 
relapse with distant metastasis than luminal subtypes [26]. There is a dire need for new, effective, 
target-specific therapies. TNBCs frequently express epidermal growth factor receptor (EGFR-HER-1) 
[27, 28]. EGFR has a diagnostic and prognostic role in basal-like TNBC and has been validated as a 
relevant therapeutic target in several human cancers [29].  
Cetuximab is a chimeric mAb that binds EGFR, and some reports suggest that it is effective in TNBC 
Despite strong preclinical data, its clinical efficacy is still a matter of discussion. Two phase II clinical 
trials reported that Cetuximab, in combination with chemotherapeutic agents, induced responses in 
20% of metastatic TNBC patients, encouraging further investigation [30, 31]. 
Previously, we investigated the ability of NK cells from breast cancer patients to perform Cetuximab-
mediated ADCC [32]. We observed that TNBC cell lysis was significantly diminished in patients with 
advanced disease. In the present study, we analyzed the causes of ADCC impairment in breast 
cancer patients and unraveled how the overexpression of the inhibitory receptor CD85j dampens 
breast cancer NK-cell effectiveness against breast cancer cells. Moreover, we evaluated NK-cell 
functional restoration using a CD85j blocking Ab. This study provides the first functional evaluation 
of CD85j in breast cancer, not only by describing a tumor escape mechanism, but also highlighting a 
potential new therapeutic strategy. 
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Results 

CD85j inhibitory receptor is over-expressed in breast cancer PBLs 

In previously published work we describe a significant reduction in the efficiency of Cetuximab-

mediated ADCC in PB NK cells from breast cancer patients with advanced disease than HD [32]. In 

this work we performed an exhaustive analysis of 13 NK-cell receptors on PB breast cancer NK cells 

to characterize the phenotypic alterations involved in that impairment (Supporting Information Fig. 

S1). There was a significantly higher proportion of CD3-CD56+ NK cells in breast cancer PBL as 

compared to HD (HD mean 8.4 ± 3.6%; breast cancer patients mean 12.2 ± 6.3%; Supporting 

Information Fig. S1B). The comparative analysis of NK-cell receptor expression revealed that most 

receptors were similarly expressed in HD and breast cancer patients. However, there was higher 

dispersion of the expression levels in breast cancer patients and a loss of the normal distribution 

typically observed for HD receptors. The dispersion of expression levels for breast cancer patients 

tended to overexpress inhibitory receptors, such as KIRs CD158a/h, CD158b and NKG2A, and to 

underexpress activating receptors, such as NKp30, CD161 and DNAM-1 (Supporting Information Fig. 

S1 C). Surprisingly, the receptor that was most significantly altered in breast cancer NK cells was the 

inhibitory receptor CD85j (HD mean 21.7%; breast cancer patients mean 39.5% P<0.0001) (Fig. 1 A). 

Moreover, this receptor was also overexpressed in breast cancer patient’s T cell (CD3+CD56-) and 

NKT-like cell (CD3+CD56+) populations (P<0.001 and P<0.01), respectively (Supporting Information 

Fig. S2A). CD85j analysis showed a positive linear association of expression with disease progression 

(P=0.01), although we found overexpression in early stages (Fig. 1 B). Interestingly, we observed that 

CD85j was overexpressed in patients with tumors of different tumor subtypes (Fig. 1 C). 

Taking into account previous reports relating augmentation of CD85j expression with aging, 

we decided to evaluate the relationship between CD85j expression and age in our breast cancer 

patients. We observed a significant positive correlation between the percentage of NK cells 

expressing CD85j and breast cancer patient age (Supporting Information Fig. S2B). However, when 

dividing breast cancer patients and HD by age, we observed significantly higher CD85j mean values 

in breast cancer patients than in HD of same age group, even in the younger group ranging from 20-

39 years old (Supporting Information Fig. S2C). Meanwhile, the 40-59 HD cohort and the younger HD 

cohort had similar CD85j expression levels. This indicates that increased CD85j expression in breast 

cancer patients is an effect of both age and disease status. 
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CD85j overexpression impairs NK-cell functionality against TNBC cells 

To analyze the potential link between Cetuximab-mediated ADCC decrease and CD85j 

overexpression we performed a correlation analysis of NK-cell receptor expression and in vitro basal 

lysis or ADCC levels against TNBC cells. As expected, Cetuximab-triggered ADCC, but not basal lysis, 

was positively correlated with the percentage of CD16+ NK cells in HD. This correlation was lost in 

the breast cancer patients (Fig. 2 A, upper panel), and no correlation with CD16 MFI was found 

(Supporting Information Fig. S3A). This suggests that receptors other than CD16 may modulate ADCC 

levels. In this respect, there was a negative correlation between ADCC levels and the percentage of 

CD85j+ NK cells in breast cancer patients, but not in HD. No correlation was found between CD85j+ 

NK cells and basal lysis (Fig. 2 A, lower panel). We were able to rule out a concomitant decrease in 

CD16 expression as the cause of decreased ADCC in patients with a high percentage of CD85j+ NK 

cells because CD16+ NK cells remained at high levels even in patients with high levels of CD85j+ NK 

cells (Supporting Information Fig. S3B). To better examine the effect of CD85j expression on ADCC 

levels, we divided the patients into groups of low and high CD85j+ NK cells, using the percentage of 

CD85j+ NK-cell mean value plus 2 SD of HD as a cutoff (Fig. 1 A). The CD85jhigh breast cancer patient 

group, but not the CD85jlow group, showed significantly lower ADCC levels as compared with HD 

control group (p <0.05) (Fig. 2 B). 

As previously described, stimulation with IL-2 and IL-15 increases PB NK-cell lytic activity against 

TNBC cells [32, 33]. However, the negative correlation between CD85j overexpression and ADCC 

levels was observed even after cytokine stimulation (Fig. 2 C). 

 

HLA-I tumor expression correlates with CD85j overexpression in breast cancer 

The expression of a singular receptor can only have a significant functional impact when it coexists 

with its cognate ligand. CD85j functions as a broad-specificity receptor recognizing both classical and 

non-classical HLA-I molecules. We studied HLA-I molecule expression in 66 breast cancer tumors by 

IHC on a Tissue Microarray (TMA). Microscopic quantification was successful in 91% (60 cases) for 

HLA-ABC, 92% (61 cases) for HLA-E, and 89% (59 cases) for HLA-G; results are summarized in Table 2. 

As internal controls, we observed that normal cells, such as vascular endothelium, fibroblasts or 

lymphocytes were positively labeled for HLA-ABC and occasionally HLA-E (Supporting Information 

Fig. S4). HLA-I expression was not associated with the different breast cancer subtypes (Fig. 3 A). We 

also performed an association analysis between tumor HLA-I expression or loss and CD85jlow or 

CD85jhigh in PB breast cancer NK cells. Interestingly, there was an association between these 

variables (P= 0.021); no patient whose tumor had completely lost HLA-I expression (classical and 

non-classical) over-expressed CD85j in PB NK cells. Separate analysis by HLA type revealed that this 

association was mainly between HLA-ABC and CD85j expression (P= 0.014), while HLA-E and HLA-G 

expression on tumors were not associated with CD85j expression on PB NK cells (Fig. 3 B). 
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Measurement of plasmatic sHLA-G in breast cancer patients 

It has been reported that the HLA-G soluble isoforms (sHLA-G) HLA-G1 and HLA-G5 can promote the 

overexpression of their receptors [34]. We measured plasmatic sHLA-G levels in HD and breast 

cancer patients and analyzed their relationship to CD85j overexpression. No significant differences in 

plasmatic sHLA-G levels were found between HD and breast cancer patients (mean 4.8 ng/ml and 8.8 

ng/ml, respectively) (Fig. 3 C). Only 5 out of the 47 patients studied had plasmatic sHLA-G values 

higher than the HD mean + 2 SD. Interestingly, all of these patients presented CD85jhigh NK cells, 

showing a significant relationship with elevated plasmatic sHLA-G values (P= 0.015, Fig. 3 D). This 

suggests that high systemic concentrations of sHLA-G may be one of the possible mechanisms by 

which CD85j overexpression is produced. However, most CD85jhigh patients also presented low 

plasmatic sHLA-G levels, indicating that other mechanisms must also be involved in the 

overexpression of this receptor in breast cancer NK cells. 

 

CD85j blockade increases lysis and restores deficient Cetuximab-triggered NK-cell mediated ADCC 

To test whether CD85j expression could impact NK cytotoxic activity against TNBC cells, we used the 

previously described HP-F1 mAb for its ability to specifically recognize and functionally block CD85j 

[16]. As control of blockade specificity, we performed the same assay using K562 cells, which do not 

express HLA-I molecules and do express other NK-cell ligands (Supporting Information Fig. S5).  

The CD85j receptor blockade increased NK-cell basal lysis levels against IIB-BR-G cells for breast 

cancer patients (Fig. 4 A, right panel), as well as ADCC levels for both HD and breast cancer patients 

(Fig. 4 B). It did not affect lytic activity against HLA-I-negative K562 cells (Fig. 4 C), showing that the 

blockade is specific to cellular targets expressing the receptor ligand. We also found a positive 

correlation between the expression of CD85j and ADCC increase after HP-F1 blockade (P<0.01), 

which is indicative of increased inhibition at higher levels of CD85j expression on NK cells (Fig. 4 D). 

Discussion 

NK cells play a central role in the eradication of transformed cells [35]. In Ab-based immunotherapy, 

NK cells cooperate with Ab-mediated antiproliferative activity by lysing opsonized tumor cells [7, 36, 

37]. We have previously described PB NK cell´s ability to perform Cetuximab-triggered ADCC against 

TNBC cells in vitro. The efficiency of killing opsonized cells was almost 70%, even against K-RAS 

mutated target cells [33]. Clinical trials evaluating Cetuximab in breast cancer are in advanced 

phases [30, 31], suggesting that NK-cell activity can have clinical implications in breast cancer 

treatment. Although there were many altered and dysfunctional features in intratumoral breast 

cancer NK cells [24, 32], PB-NK cells should be evaluated as a therapeutic approach for TNBC in the 

adjuvant setting, since this population could be responsible for preventing metastatic spread [38]. 

Adjuvant therapies are administered post-surgery when patient's primary tumor has been excised. 

NK cells are recognized as the main ADCC effector cells in the PB, as well as in Cetuximab-mediated 

lysis [33]. In breast cancer patients the therapeutic application of Trastuzumab is widely accepted in 

HER-2+ tumors. In this context, patients who responded to Trastuzumab with complete or partial 

remissions demonstrated greater capacity to mediate ADCC in vitro in response to Ab than those 

patients whose tumors did not respond to therapy [8, 9]. 
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Unfortunately, NK cells from cancer patients display altered receptor signatures that prevent them 

from developing their full range of potential activities [24, 39-43]. In particular, we observed a 

heterogeneous pattern of Cetuximab-mediated cytotoxicity by NK cells from breast cancer patients. 

When we classified patients by clinical AJCC stage, we observed a decrease in Cetuximab-mediated 

ADCC levels in patients with advanced disease (data not shown). These results indicate that the loss 

of breast cancer NK-cell functional activity against breast cancer tumor cells increased over the 

course of the disease, which is coincident with previous reports describing decreased NK-cell 

functionality in breast cancer PB [24, 44, 45]. Although CD16 receptor expression in breast cancer 

patients was comparable to HD in all stages, we found that the correlation between CD16 expression 

and ADCC levels observed in HD was lost in breast cancer patients. CD16 is the main receptor 

implicated in ADCC triggering [46, 47] and the quantity of CD16+ NK cells is reported to be a major 

predictor for ADCC activity in Trastuzumab treated breast cancer patients [9]. With this 

understanding, the loss of correlation between CD16 and Cetuximab-mediated ADCC found in breast 

cancer patients was unexpected. However, response quality and intensity is the result of NK-cell 

receptor expression balance [48] and this would be especially important for patients with many 

phenotypic alterations. 

Looking for phenotypic traits that could be responsible for this impairment, we found that CD85j 

overexpression was the most striking NK-cell receptor alteration of the 13 activating /inhibitory 

receptors analyzed. In fact, our study demonstrated that CD85j inhibitory receptor overexpression 

correlated negatively with Cetuximab-mediated ADCC in these patients. Likewise, when we stratified 

patients according to low or high CD85j expression levels, we observed that the CD85jhigh patient 

group presented diminished Cetuximab-mediated ADCC against HLA+ IIB-BR-G cells. Furthermore, 

CD85j expression increased with disease progression. In the search for tumor-associated causes of 

CD85j augmentation in breast cancer patients, we studied classical and non-classical HLA-I molecules 

in patient´s biopsies. We found an association between HLA-I and CD85jhigh expression, which 

supports the notion that CD85j overexpression assumes functional relevance when tumor cells 

express its ligands. The major mechanism that determines this upregulation of CD85j protein is still 

unknown. Patients with high serum sHLA-G also presented CD85jhigh, a mechanism previously 

reported as a modulator of CD85j expression [34]. However, high sHLA-G was observed in a minority 

of breast cancer patients. On the other hand, cross-sectional studies showed that expression of 

CD85j in CD8 T cells increased with age and, while already apparent in the 40-59 cohort, was clearly 

accelerated in older people [49]. Furthermore, the proportion of CD85j+ NK cells gradually increase 

with age in healthy adults [50]. However, our findings in breast cancer patients from 20-39 yrs, 

whose CD85j values were higher than HD, suggest that a cancer-related pathological factor may also 

be involved in CD85j overexpression. Consequently, other factors impacting the regulation of CD85j 

expression should be the focus of future research. 
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Based on our previous work to overcome NK-cell dysfunction in breast cancer patients [32], we 

tested whether pre-activating NK cells with IL-2 or IL-15 cytokines improved TNBC basal lysis or 

ADCC. As expected, pre-activation of NK cells with IL-2 or IL-15 increased their lytic activity; however 

the negative correlation between CD85j overexpression and ADCC levels persisted even after 

stimulation with cytokines. CD85j is one of many inhibitory receptors on NK cells that can detect 

MHC class I on other cells [15]. CD85j binds to the HLA-I conserved region α3, which imparts the 

versatility to recognize classical and non-classical HLA molecules. Binding between CD85j and its 

HLA-I ligands leads to the inhibition of NK-cell effector function [16, 51, 52]. Since overexpression of 

the inhibitory receptor CD85j is a possible mechanism of immune suppression in breast cancer that 

would diminish NK-cell activity against tumor cells, we blockaded CD85j in order to increase the anti-

tumor activity of NK cells in breast cancer patients. NK-cell specific blockade with HP-F1 mAb 

increased both basal lysis and ADCC levels against the TNBC cell line HLA-I+ IIB-BR-G; we also found 

greater lysis derepression and improved ADCC levels when NK cells expressed high levels of the 

CD85j receptor. As expected, this functional enhancement did not take place with the HLA- K562 cell 

line, since CD85j does not play any role in K562 target cell recognition.  

We focused our study on TNBC because Cetuximab is a promising treatment for this group. 

However, HER-2+ breast cancer patients also overexpressed CD85j in PB-NK cells. Hence, CD85j 

could also impact Trastuzumab-mediated ADCC, since approximately 50% of HER-2+ tumors express 

HLA-I [53]. Although evaluation of the impact of CD85j against HER-2+ targets was out of the scope 

of the present study, we believe this hypothesis should be tested in a near future. 

In conclusion, we detected phenotypic and functional alterations in breast cancer PB NK cells. As 

tumor cells develop strategies to overcome their elimination by the innate immune system, it is 

possible to develop counter-strategies to restore these functions. This could be achieved through 

direct enhancement of anti-tumor immune functions, as we proposed with the use of IL-2 or IL-15 

stimulatory cytokines [32, 33], or through inhibition of negative immune regulator molecules, as we 

demonstrate here with the CD85j receptor blockade. Considering the biological variability and 

immune evasion mechanisms observed in breast cancer, an efficient therapeutic strategy could 

certainly rely on combinatorial approaches to successfully fight this complex disease. 
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Materials and Methods  

Patients 

105 breast cancer patients treated at the Servicio de Patología mamaria, Instituto Alexander Fleming 

(Ciudad Autónoma de Buenos Aires, Argentina) were recruited at diagnosis between April 2011 and 

July 2014. PB was sampled during surgery and before administration of any treatment. Patients were 

classified into 5 clinical stages following The American Joint Committee on Cancer (AJCC) staging 

classification and into 3 groups according to morphological tumor characteristics and hormonal and 

HER-2 receptor expression (Table 1). We also included a control group of healthy donors (HD) from 

our institution (n = 36; age mean: 34 years; range: 19-56 years). All subjects gave written, informed 

consent approved by the Institutional Review Board of the Instituto Alexander Fleming. 

Cell lines 

The K562 cell line, derived from human leukemia (ATCC # CCL-243), was grown at 37°C in a humid 

atmosphere containing 5% CO2 in RPMI supplemented with 10% heat-inactivated FCS (Natocor, 

Córdoba, Argentina). The TNBC cell line IIB-BR-G was established from a primary infiltrating ductal 

breast cancer [54] and was cultured in DMEM (Invitrogen) supplemented with 10% FBS, 2 mM L-

glutamine, 3.5 mg/ml sodium carbonate, 2 mg/ml insulin, and 4.5 mg/ml glucose. 

Flow cytometry 

For NK-cell phenotyping, 2.0 X105 PBMC were incubated with the appropriated Abs: FITC-conjugated 

anti-CD3, allophycocyanin-conjugated anti-CD56 and anti-CD69, PE-conjugated anti-NKp30, anti-

NKp44, anti-NKp46, anti-CD16, anti DNAM-1, anti-CD94, anti-CD161, anti-CD56, anti-CD158a/h, anti-

CD158b, anti-CD107a and anti-CD85j (BD PharMingen) or PE-conjugated anti-NKG2A (R&D Systems), 

for 30 min at 4°C. The NK-cell population was selected based on CD3-CD56+ phenotype of gated 

lymphocytes according to forward-side scatter. For NK-cell ligand analysis, tumor cell lines were 

incubated with FITC-conjugated anti-HLA-ABC (BD PharMingen), or PE-conjugated anti-HLA-G, anti-

HLA-E (Abcam), anti-CD112 and ant-MICA/B (BD PharMingen), anti-CD155 (BioLegend) or respective 

isotype controls. All samples were acquired on a BD FACS Calibur using Cellquest Pro software (BD 

Biosciences) and analyzed with FlowJo 7.6.2 software (Tree Star, Inc.). 
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Cytotoxicity assays 

TNBC IIB-BR-G or K562 cells were used as targets and labeled with Calcein-acetyoxymethyl (Calcein-

AM) (Molecular Probes, Invitrogen Life Technology) as previously reported [55]. For ADCC 

experiments, IIB-BR-G cells were preincubated (30 min at room temperature –RT-) with 1 g/ml 

Cetuximab (Erbitux, Merck) or rituximab (Rituxan, Roche) as irrelevant chimeric IgG1. The effector 

cells were PBMC, fixing E:T ratios with NK cells. Cytotoxicity assays were performed in triplicate using 

different E:T ratios ranging from 5:1 to 1.25:1 (NK:IIB-BR-G or NK:K562). Three replicate wells were 

also measured for spontaneous (only target cells in RPMI medium with 10% FCS) and maximum 

release (only target cells in medium plus 1% Triton X-100). After incubation at 37 °C in 5% CO2 for 4h, 

supernatants were analyzed using a microplate fluorescence reader (BTX880, Beckman Coulter) to 

measure cell death (Calcein release). The percentage of specific lysis was calculated as follows: 

(experimental fluorescence – spontaneous fluorescence)/ (maximum fluorescence – spontaneous 

fluorescence) X 100. 

CD85j functional blockade 

The HP-F1 monoclonal antibody (kindly provided by Dr. López-Botet, Institut Hospital del Mar 

d'Investigacions Mèdiques, España), which has the ability to specifically block CD85j function, was 

used in functional assays [16]. HP-F1 mAb or the corresponding mouse IgG1 control, were added at 

the beginning of cytotoxic assays. 

ELISA for soluble HLA-G (sHLA-G) 

Serum levels of sHLA-G (isoforms 1 and 5) were measured by ELISA [56] as previously described. 

MEM-G/9 (Abcam) was used as capture Ab, and biotinylated anti-beta-2—microglobulin (Abcam) 

was used for detection. Streptavidin-peroxidase (Abcam) was used for color development, using a 

TMB substrate reagent set (BD biosciences). sHLA-G concentration were calculated based on a 

calibration curve, using r-sHLAG (kindly provided by Dr. Daniel E. Geraghty, Fred Hutchinson Cancer 

Research Center, USA). DO was measured using a microplate reader (BioRad, USA)  

Tissue microarray (TMA) and Immunohistochemistry (IHC) 

The TMA construction of paraffin embedded tissues was performed using a previously described 
adapted homemade technique [57]. Each 3 mm spot contained a tumor area selected by a 
pathologist. IHC staining pretreatments consisted of sample dehydration in graded alcohols, enzyme 
digestion, or other heat-mediated retrieval methods. HLA-I, classic and non-classic molecule 
expression in human tumor spots were assessed using mAbs anti HLA-ABC (clone EMR8-5), HLA-E 
(clone MEM-E/02) and HLA-G (clone 4H84) following manufacturer’s specifications (Abcam). In brief, 
after incubation with the primary mAb to human HLAs, sections were stained using ABC system 
(Vectastain Universal Elite ABC kit, PK-6200 Vector Lab), counterstained with hematoxylin and 
mounted. All results were interpreted using light microscopy (Olympus BX40). Using a double blind 
system to evaluate percentage and intensity of positive cells pictures were captured with a coupled 
camera (Olympus Digital Camera DP72) and acquired with DP2-BSW software (Olympus).  
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Statistics 

Statistical analyses were performed with GraphPad Prism 5 (GraphPad Software). Comparisons 

between samples (breast cancer and HD) were performed using Mann-Whitney tests and non-

parametric one-way ANOVA with Dunns post-tests for multiple comparison analysis. Wilcoxon 

matched-pair test was used when comparing two matched groups. In all figures, data are 

represented using the mean ± SEM. Reported p values are two-tailed and p<0.05 was considered 

significant. 
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Figure 1. CD85j expression in PB NK cells from breast cancer patients.  

(A-C) The expression of CD85j was determined by flow cytometry in various NK-cell populations.  NK-

cell population was selected by CD3-CD56+ phenotype of gated lymphocytes by to FSC/SSC.  (A) 

Percent CD85j expression in PB NK cells from HD (n= 29) and breast cancer patients (n= 89) is shown. 

The gray line shows the cutoff for normal values (mean + 2SD of values from HD). Values below and 

above the cutoff are considered as CD85jlow and CD85jhigh, respectively. Black bars represent the 

mean for each group.  ***P <0.001 (Mann-Whitney test). (B) As for (A), with breast cancer patients 

divided into different clinical stages: in situ, stages I, II, III and IV (n= 4, 46, 29, 9 and 2 respectively). 

The gray line represents the significant positive linear trend between CD85j expression levels and 

disease progression, P= 0.007 (ANOVA test for linear trend). Mean values for each stage are shown 

with black bars, *P< 0.05, ***P< 0.001 (Dunn's Multiple Comparison Test). (C) As for (A), with breast 

cancer patients classified according to tumor subtype: HR (n= 69), HER-2+ (n=8), TN (n=7). Black bars 

represent the mean for each group, *P<0.05, **P< 0.01, ***P< 0.001 (Dunn's Multiple Comparison 

Test).  
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Figure 2. Correlation between PB NK-cell cytotoxic ability and NK-cell receptor expression.  

(A-C) Cytotoxic activity of NK cells against IIB-BR-G cells was measured by calcein release assay.  IIB-

BR-G cells were pre-incubated with Cetuximab or rituximab as irrelevant chimeric IgG1.  (A) Basal lysis 

levels (gray dots) or Cetuximab-triggered ADCC (black squares) of PB NK cells from HDs and breast 

cancer patients against IIB-BR-G cells were correlated with CD16 (top, 2.5:1 NK:T ratio) and CD85j 

(bottom, 5:1 NK:T ratio) expression. Spearman r correlation coefficients and P values of significance 

are shown. (B) ADCC mediated by PB NK cells from HD (n= 14) and breast cancer patients divided 

into CD85j normal expression (CD85jlow, n=10) and CD85j overexpression (CD85jhigh, n=11), as 

described in Figure 2A. NK:T ratio 5:1. Black bars represent mean values for each group, *P<0.05 

(Dunnett's Multiple Comparison Test).  (C) Correlation between CD85j expression in breast cancer 

patients and ADCC against IIB-BR-G cells by cytokine-activated NK cells. PBMC were pre-incubated 

overnight with IL-2 (empty gray dots), IL-15 (black diamonds). Lysis values correspond to a NK:T ratio 

of 5:1. Spearman r correlation coefficients and P values of significance are shown.  
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Figure 3. CD85j expression on PB breast cancer NK cells relative to HLA-I expression in tumors.  

HLA-I expression in breast cancer tumors was assessed by IHC on tissue microarrays. 

(A) Frequency distribution of HLA-ABC (left), HLA-E (middle) and HLA-G (right) expression among 

different breast cancer tumor subtypes. P values are shown, Chi-square test. (B) Frequency 

distribution of low CD85j expression (CD85jlow) and overexpression (CD85jhigh) on NK cells relative to 

the expression of HLA-I classical and non-classical molecules in breast cancer tumors. P values are 

shown, Chi-square test. (C) Plasmatic HLA-G levels in HD (n=24) and breast cancer patients (n=47) 

were measured by ELISA. Mean ± SEM are shown, P>0.05 (Mann-Whitney test). The gray line 

indicates the cutoff for normal values (mean + 2SD of values from HD). Values below and above the 

cutoff are considered HLA-Gslow and HLA-Gshigh, respectively. (D) Frequency distribution of low CD85j 

expression (CD85jlow) and overexpression (CD85jhigh) on NK cells relative to the expression of 

plasmatic HLA-Gs levels: HLA-Gslow and HLA-Gshigh. P value is shown, Chi-square test.  
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Figure 4. CD85j functional blockade restores Cetuximab-mediated NK-cell ADCC. 

(A, B) IIB-BR-G cells were incubated with NK cells from HD (left, n=5) and breast cancer patients 

(right, n=5) in the presence of CD85j-neutralizing mAb HP-F1 or isotype control, at a 2.5:1 NK:T ratio.  

(A) Basal lysis and (B) ADCC against IIB-BR-G cells by NK cells was determined by calcein release 

assay.  (C) Basal lysis against HLA-I-/- K562 cells by NK cells from HD (left, n=3) and breast cancer 

patients (right, n=3) in the presence of CD85j-neutralizing mAb HP-F1 or isotype control, at a 2.5:1 

NK:T ratio. *P<0.05, **P<0.01 (Paired t-test). (D) Correlation between CD85j expression levels and 

the improved NK-cell ADCC against TNBC cells in the presence of CD85j-neutralizing mAb HP-F1. 

Percent lysis enhancement was calculated as (ADCC with HP-F1 – ADCC)/ ADCC X100.  Symbols 

represent individual values obtained from HD (filled black dots, n=5) and breast cancer patients 

(empty dots, n=5). Spearman r correlation coefficients and P values are shown.  
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Table 1.  Clinical characteristics of breast cancer patients involved in the study 

Stages  In Situ I II III IV 

n  5 
5%  

54 
51% 

35 
33% 

9 
9% 

2 
2% 

Mean age (years)  51 58 51 57 60 

Grade 1 1 14 7 1 0 

 2 0 35 14 5 1 

 3 4 5 12 3 1 

 NDa)  - - 2 - - 

IHC expression HR+ 3 51 30 7 1 

 HER-2+ ND 4 3 2 0 

 HRb)- HER-2- ND 1 4 1 1 

Histological type CDISc) 2 43 26 6 1 

 Ductal 0 4 7 3 0 

 Lobulillar 0 4 1 0 1 

 Ductolobulillar 3 0 0 0 0 

 Others 0 3 1 0 0 

%Ki67 High >13 - 36 16 4 2 

 Low<13 - 10 11 4 0 

 ND 5 8 8 1 - 

a) ND - not determined 

b) HR - hormone receptor 

c) CDIS - in situ carcinoma 
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Table 2. Breast tumor expression of HLA-I molecules 
 

HLA-I molecule % of tumors  

HLA-I loss 12.9 

74.6 

54.0 

65.1 

HLA-ABC expression 

HLA-E expression 

HLA-G expression 

HLA-I coexpression HLA-E HLA-G HLA-EG 

HLA-ABC Loss  0 3.2 9.5 

HLA-ABC expression 9.5 17.5 34.9 

 
 


