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ABSTRACT

We revisit the generalized connection of Double Field Theory. We implement a procedure that
allow us to re-write the Double Field Theory equations of motion in terms of geometric quantities
(like generalized torsion and non-metricity tensors) based on other connections rather than the
usual generalized Levi-Civita connection and the generalized Riemann curvature. We define a
generalized contorsion tensor and obtain, as a particular case, the Teleparallel equivalent of Double
Field Theory. To do this, we first need to revisit generic connections in standard geometry written
in terms of first-order derivatives of the vielbein in order to obtain equivalent theories to Einstein
Gravity (like for instance the Teleparallel gravity case). The results are then easily extrapolated to
DFT.
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1 Introduction

In this work we revisit some geometric aspects of the generalized connection of Double Field Theory
(DFT). DFT [1, 2] (see [3] for reviews) is a string-inspired field theory that describes the massless
sector of string theory in a T-duality covariant way. Interestingly enough, many geometric notions
similar to diffeomorphisms, covariant derivatives (connections) and curvature tensors arise in a
natural and generalized way, transcending the usual framework of differential geometry. Its geo-
metric structure, in fact, is closely related to that of generalized geometry and Courant algebroids
[4, 5, 6, 7, 8, 9].

However, in contrast to General Relativity (GR), the DFT version of the Levi-Civita connection
has not all of its components fully determined in terms of the physical fields, usually taken to be the
generalized metric and dilaton, but only some projections of the connection are. This also implies
that the DFT curvature tensor is not fully determined in terms of the physical fields [1, 10]. There
were other attempts to try to fully determine the DFT connection. For instance, in [11] a DFT-
connection was fully determined by demanding usual compatibility criteria plus an extra constraint
(the connection was required to live in the kernel of a particular six-index tensor). The result was
a semi-covariant derivative, i.e. only projected components of it transform well under generalized
coordinate transformations. In [12], the Weitzenböck connection was considered rather than the
generalized Levi-Civita. The resulting theory, based on this connection, reproduces the DFT action
(up to a boundary term) and the dynamics is based on the (generalized) torsion. However, a
reformulation in terms of other geometric quantities (like the contorsion tensor) and its analogy with
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teleparallel gravity (TG) was not analyzed. In the context of DFT on group manifolds [13, 14, 15]
a fully determined covariant derivative was found that has non-trivial curvature and non-trivial
torsion. But this covariant derivative is not covariant with respect to generalized diffeomorphisms.
Instead it is covariant with respect to normal 2D-diffeomorphims1. More recently, in [16] a fully
determined DFT connection is proposed by extending the geometry of DFT with a para-Hermitian
structure, resulting in a Born Geometry.

In this work we return to the issue of finding fully determined connections in DFT. We propose
a procedure that outlines why it is possible to consider fully determined connections (besides the
generalized Levi-Civita and Weitzenböck connections) in DFT and to understand their geometric
structures. These connections will reproduce theories equivalent to DFT and, in particular, we
obtain the teleparallel equivalent of DFT. We can interpret these new connections as deformed
versions of the Weitzenböck connection. This procedure will also allow us, in a natural way, to
reinterpret and determine the undetermined parts of the generalized Levi-Civita connection. The
gauge and global symmetries will play a crucial role and to understand this procedure we first need
to briefly review the teleparallel equivalent of GR.

Teleparallel Gravity (TG or TEGR) is an alternative formulation to General Relativity (GR)[17, 18,
19]. It is usually based on parallelizable manifolds equipped with the Weitzenböck connection (the
connection of the parallelization) rather than the Levi-Civita connection. One of the key aspects of
the theory is that the Weitzenböck connection furnishes a null Riemann curvature tensor, and since
this connection is metric-compatible, the dynamics of the theory is based only on the torsion. The
Weitzenböck connection is of the form Wµν

ρ = ∂µe
a
νea

ρ, where µ and a are curved and flat indices
respectively, and ea

µ is the vielbein. The vielbein is treated as the fundamental field of the theory
and the metric is interpreted as a byproduct coming from it. The name of TG comes from the
fact that there is a notion of absolute parallelism between vectors located at different space-time
points. Indeed, one way to see this is to notice that the vielbein field is covariantly constant with
respect to the Weitzenböck connection in a coordinate basis. This means that we can compare the
flat components of a vector field defined at different space-time points just like we would do in a
global basis of flat space-time. The incorporation of sources have also been studied (see [40]) in the
TG case. As a remark, TG has been found to have applications in cosmology by studying theories
called f(T )-Theories [20, 21, 22, 23, 24, 25, 26], where T stands for scalar combinations built out
of the torsion.

The key observation to our work is that in TG the local Lorentz symmetry group is generically
broken2. It is easy to see that space-time tensors built out of the Weitzenböck connection (for
instance the torsion Tµν

ρ) will not always transform as scalars under local Lorentz transformations.
In fact, the Weitzenböck connection itself, in a coordinate basis, does not transform like a scalar
under local Lorentz transformations but under global ones (i.e. with constant Lorentz parameters).
Global transformations bring the immediate worry about extra degrees of freedom coming from
the vielbein, since in D = 4, six out of the 16 components of the vielbein are gauged away by
local Lorentz transformations. However, since the TG action turns out to be equal to the Einstein-
Hilbert action, up to a boundary term, the equations of motion of TG are equivalent to the Einstein
equations and thus the theory enjoys local Lorentz symmetry.

Motivated by this global-local mechanism of TG, and inspired by the necessity of DFT to consider
connections (and curvatures) determined in terms of the physical fields of the theory, we will try
to obtain equivalent theories to DFT defined by fully determined connections. Although these
connections will transform under double Lorentz transformations with constant parameters, the

1We thank Falk Hassler for pointing this out.
2 In f(T )-theories at most only a remnant subgroup of it survives [27, 28, 29].
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resulting theories will possess double local Lorentz symmetry (that is, under parameters depending
on the coordinates). But before doing so, we first need to apply this procedure to GR. That is, our
starting point will be to first understand the most general connection written in terms of first-order
derivatives of the vielbein3 in standard geometry:

Γµν
ρ = Wµν

ρ − a1
(W )

T νµ
ρ + b1

(W )

T ρ
µν + b2

(W )

T ρ
νµ

−c1gµν
(W )

T σ
ρσ − d1δµ

ρ
(W )

T ν
σ
σ − d2δν

ρ
(W )

T µ
σ

σ. (1.1)

Where
(W )

T µν
ρ = 2W[µν]

ρ is the torsion of the Weitzenböck connection4 and gµν is the spacetime
metric. The connection (1.1) is parametrized by six real parameters and it does not have any
symmetry requirement imposed on its indices so it will yield, generically, non-vanishing curvature,
torsion and non-metricity. In a coordinate basis, this connection transforms in a proper way under
general coordinate transformations and is a scalar under constant Lorentz transformations. This
means that for generic coefficients, the local Lorentz symmetry is broken. In DFT, we will repeat
the same analysis as in standard geometry and we will also consider the most general connection
written in terms of first-order derivatives acting on the generalized vielbein (see subsection (3.9)).
This DFT-connection is a well-defined connection under generalized coordinate transformations
and a scalar under double Lorentz transformations with constant parameters. A key role will be
play by the generalized Weitzenböck connection and the introduction of generalized contorsion and
non-metricity tensors.

The paper is organized as follows. In section (2) we will introduce the notation used in the paper and
show how to obtain different actions equivalent to the Einstein-Hilbert action for connections with
generic features. The idea will be to set to zero a generic scalar curvature and extract from it a tensor
quantity (based on generic torsion and non-metricity) that yields the same equations of motion given
by the usual Ricci scalar (based on the Levi-Civita). As far as we know, these connections have not
been explicitly classified in a systematic way by imposing the vanishing of a generic scalar curvature,
neither in GR5 nor in DFT. In subsection (2.1) we will find constraints on the parameters of (1.1).
The parameters that satisfy these constraints will give the desired connections that allow for actions
equivalent, up to a boundary term, to the Einstein-Hilbert action and we will analyze particular
values of these parameters. In subsection (2.5) we will obtain the equations of motion for these
theories based on the new connections. In section (3) we proceed to implement the same analysis
as in the previous section and remark similarities and differences. We analyze the components of
the generalized connection without imposing any compatibility constraint. In subsection (3.4) we
present the general decomposition of the generalized connection and define a generalized contorsion
tensor and a L-tensor (made up of the non-metricity DFT tensor). In subsection (3.5) we compute
the decomposition of the generalized Riemann tensor which allows us to compute the equations of

3We will not consider terms that could involve the epsilon tensor ǫµνρσ.
4We are using the following conventions on indices: (ab) = 1

2

(

ab+ ba
)

and [ab] = 1
2

(

ab− ba
)

. In section (2.1) we

will denote quantities associated with the Weitzenböck connection with a (4) as superscript, e.g.
(W )

T µν
ρ =

(4)

T µν
ρ.

5In [34] a generic contorsion tensor and non-metricity tensor built from a 6-parametric connection (similar to
(1.1)) constructed from the coframe were considered. Although there are several similarities with our results, an
analysis of the parameters extracted from requiring the vanishing of a generic scalar curvature has not been done.
This is a general procedure that allows us to classify and write down explicit expressions for the parameters of the
possible connections, and also to derive equations of motion. This procedure is easily extrapolated to DFT. We also
want to stress that, we do not have extra degrees of freedom in the dynamical equations. In this sense, we differ with
respect to the Metric-Affine Gravity theories where they usually consider extra degrees of freedom [35]. See [36] also
for a treatment of TG in metric affine space-times.
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motion, derived from the new connection, in subsection (3.6). In subsection (3.7) we talk about
how the undetermined parts of the connection get naturally determined. In subsection (3.8) we
introduce the Teleparallel Equivalent of Double Field Theory and in (3.9) we show what structures
arise for other connections that present generically non-vanishing curvature and torsion. In section
(4) we summarize our work.

It is not often known that GR admits the possibility to be described by other connections rather
than the usual ones mentioned before and we will show that in DFT this is also the case. The DFT
connections will turn out to be naturally described (and fully determined) in a vielbein formulation
by defining notions of contorsion and non-metricity. More importantly, these connections will obey
the same global-local mechanism of TG theories, and, in particular, we will see that the generalized
Levi-Civita connection will also naturally do it. We believe these results are a step forward to
better understand and clarify the mathematical structures of the DFT connections and also for
future applications in α′-corrections as mentioned in the Summary section.

2 Connections in General Relativity

In this section we will work in D = 4 spacetime dimensions, µ, ν... are curved indices and a, b...
denote flat indices. Our fundamental field is the vielbein ea

µ and we define the metric as a byproduct
gµν = ηabe

a
µe

b
ν . Here ηab is the constant Minkowski metric. The vielbein satisfies ea

µebµ = δa
b

and eaµea
ν = δµ

ν where we raise and lower curved and flat indices with the metric gµν and ηab
respectively. We define the flat derivative Da = ea

µ∂µ. It is useful to introduce the following
quantities:

Ωab
c = Daeb

ρecρ, τab
c = 2Ω[ab]

c. (2.1)

Here, τab
c are the anholonomy coefficients. The Riemann curvature tensor is defined as fol-

lows:
Rµνρ

σ = ∂µΓνρ
σ − ∂νΓµρ

σ − Γµρ
λΓνλ

σ + Γνρ
λΓµλ

σ. (2.2)

For generic affine connections, the Riemann tensor is only antisymmetric in the first two indices. In
a metric-affine spacetime the affine connection admits a general decomposition of the form:

Γµν
σ =

{

σ
µ ν

}

+Kµν
σ + Lµν

σ, (2.3)

where the Christoffel symbols, contorsion tensor and the Lµν
ρ tensor are given respectively by:

{

σ
µ ν

}

=
1

2
gτσ (∂µgντ − ∂τgµν + ∂νgτµ) , (2.4)

Kµν
σ = −1

2
gτσ (Tµτ

ρgρν − Tτν
ρgρµ − Tµν

ρgρτ ) , (2.5)

Lµν
σ = −1

2
gτσ (∇µgντ −∇τgµν +∇νgτµ) . (2.6)

Here, the torsion is Tµν
σ = 2Γ[µν]

σ and the covariant derivative is defined as ∇µVν = ∂µVν−Γµν
ρVρ.

The combination Qµνρ = ∇µgνρ is known as the non-metricity tensor. When we plug the above
decomposition in (2.2) we obtain:

Rµνρ
σ(Γ) = Rµνρ

σ({}) +
({})

T µν
λCλρ

σ

+ 2
({})

∇ [µCν]ρ
σ + 2C[µ|λ|

σCν]ρ
λ , (2.7)
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where Cµν
σ = Kµν

σ + Lµν
σ and

({})

∇ µ is referred to the Levi-Civita connection. The Ricci tensor
and Ricci scalar are defined as

Rµν = Rµρν
ρ, R = gµνRµρν

ρ. (2.8)

The decomposition (2.7) on the Ricci scalar yields:

R(Γ) = R({}) +
({})

∇ µCσ
µσ −

({})

∇ σCµ
µσ

+ Cµλ
σCσ

µλ − Cσλ
σCµ

µλ. (2.9)

The Levi-Civita connection is torsionless and metric-compatible, which means that
({})

T µν
σ = 0 and

the metric can pass through the covariant derivative.

The relation between the components of the affine connection written in a holonomic basis and an
anholonomic one is of the form:

Γµν
ρ = Wµν

ρ + ebνec
ρwµb

c. (2.10)

For instance, if Γµν
ρ is the Levi-Civita connection then wµa

b is the usual spin connection (2.12).
For simplicity, we will refer to wµa

b as a gauge connection. By inserting (1.1) in (2.10) and using
Wµν

ρ = −eaµe
b
νec

ρΩab
c the gauge connection gets the following form:

wab
c = a1τba

c − b1τ
c
ab − b2τ

c
ba + c1ηabτd

cd

+ d1δa
cτb

d
d + d2δb

cτa
d
d. (2.11)

It is important to stress that the above gauge connection (with all flat indices) transforms as a
scalar under diffeomorphisms. However, for generic coefficients, it does not transform like a gauge
connection under local gauge transformations, but only global (constant) ones. In fact, if we force
this connection to transform under local Lorentz transformations we see that the only possibility is
with a1 = b1 = b2 = −1/2, c1 = d1 = d2 = 0. This is precisely the coefficients for the Levi-Civita
spin connection:

({})
w ab

c =
1

2
τab

c +
1

2
τc ab +

1

2
τc ba . (2.12)

In planar indices, the Riemman tensor (2.2) takes the form:

Rabc
d =Dawbc

d −Dbwac
d − wac

ewbe
d

+ wbc
ewae

d − τab
ewec

d. (2.13)

Similarly as before, the Ricci tensor and the Ricci scalar are of the form Rab = Racb
c and R = ηabRab

respectively.

The idea is to use the connection (2.11) (or equivalently (1.1)) and find conditions on the coefficients
(a1, b1, b2, c1, d1, d2) such that the Ricci scalar for this connection vanishes. In this way, we obtain
an equality between the usual Einstein-Hilbert action and an action with C-terms (up to a boundary
term). Indeed, consider the Einstein-Hilbert action with the scalar curvature (2.9):

∫
dx4√−gR(Γ) =

∫
dx4√−g

(
R({})

+ Cµλ
σCσ

µλ − Cσλ
σCµ

µλ
)
. (2.14)
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We have dropped out the covariant derivative terms since they form a total derivative. By setting
R(Γ) = 0 in (2.14) we simply obtain:

∫
dx4√−gR({}) =

= −
∫

dx4√−g
(
Cµλ

σCσ
µλ − Cσλ

σCµ
µλ
)
. (2.15)

We stress again that the above equality should be understood up to a boundary term. In the
second line of (2.15), the tensor Cµν

ρ depends on the general connection Γ (1.1). This means
that connections that furnish a null Ricci scalar can be used to yield an action equivalent to
the Einstein-Hilbert action by using its torsion and/or non-metricity. This is indeed the case for
the usual TG, where the right hand side of (2.15) reproduces exactly the teleparallel action with
Cµν

ρ(W ) = Kµν
ρ(W ) (see section 2.5.1).

The reader might be worried about the fact that we are considering global Lorentz transformations.
But all of the connections we will obtain reproduce theories which possess local gauge transforma-
tions as established by the action (2.15), reducing in this way the number of degrees of freedom of the
vielbein. This is the same mechanism as in teleparallel gravity6 where the affine connection is cho-
sen to be the Weitzenböck connection Wµν

ρ which is invariant only under Lorentz transformations
with constant parameters but the resulting theory turns out to have local Lorentz symmetry.

For simplicity we will mostly work with flat indices. The usual Einstein-Hilbert action with Levi-
Civita connection after a partial integration is of the form:

∫
dx4√−gR({}) =

∫
dx4√−g

(
− τac

cτabb

+
1

2
τa b

cτac
b +

1

4
τab cτab

c
)
, (2.16)

where we have used (2.13) and (2.12). Equation (2.15) then gets the form:

∫
dx4√−g

(
− τac

cτabb +
1

2
τa b

cτac
b +

1

4
τab cτab

c
)

= −
∫

dx4√−g
(
Cab

cCc
ab − Ccb

cCa
ab
)
. (2.17)

2.1 Equations for coefficients

As mentioned before, we would like to find conditions on the coefficients of the general connection
(2.11) such that the Ricci scalar of this connection vanishes. We plug (2.11) in the Riemann tensor

6At least for the usual teleparallel gravity which is equivalent to Einstein gravity (TEGR). As mentioned in the
introduction, the Lorentz transformations in f(T )-gravities are more subtle.
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(2.13) and contract indices to obtain the scalar curvature. The result is the following:

R(w) =Daτa
b
b

(
a1 + 2 b2 + 3 c1 + 3 d1 + b1

)

+ τabcτabc

(
a1b1 − b1b2 − a1b2 − b2

)

+ τabcτacb

(
− a1a1 + a1b2 − a1b1 − b1b1

+ b1b2 − b2b2 − a1 − b1

)

+ τb
c
cτ

ab
a

(
− a1b1 − b1b2 + 2 b1c1 − 4 b1d1

− a1b2 − b2b2 − 2 b2c1 − 2 b2d1

− 4 a1c1 + 3 c1c1 − 12 c1d1

+ 2 a1d1 + 3 d1d1 + c1 + d1

)
; (2.18)

All of the terms are independent of each other so in order to obtain a null scalar curvature we must
set each parentheses to zero. This defines a set of four quadratic equations for five variables (a1,
b1, b2, c1, d1). Note that the coefficient d2 has dropped out from (2.18) but does not drop out from
the Riemann tensor nor the Ricci tensor. The reason is the following. It is known that a Riemann
tensor with a generic connection is invariant under:

Γµν
ρ → Γµν

ρ + δν
ρ∂µφ, (2.19)

where φ is a scalar. However, the Ricci scalar built from this generic Riemann tensor is invariant
under a relaxed version of the above equation:

Γµν
ρ → Γµν

ρ +Aµδν
ρ. (2.20)

This is due to a contraction between the metric and ∂[µAν]. We can see that the term with coefficient
d2 in (1.1) has exactly the same form as in (2.20). We will come back to this point later.

We might have set to zero the curvature tensor or the Ricci tensor in order to obtain equations for
the coefficients. Nevertheless, we analyze the vanishing of the scalar curvature because the solutions
for this one includes the cases for a null curvature tensor and Ricci tensor. Therefore, teleparallel
gravity must show up as a particular solution to our set of four quadratic equations derived from
(2.18).

Our set of four equations have an infinite amount of solutions yielding both torsion and non-metricity
(and, in general, a non-vanishing curvature). To simplify the analysis we consider particular cases
in the following subsections.

2.2 Metric-Compatible case

In this subsection we restrict to the case of metric-compatible connections, i.e.:

Daηab − wab
eηec − wac

eηbe = 0 ⇒ wa(bc) = 0 . (2.21)

The above condition implies
a1 = b1, c1 = d1, d2 = 0, (2.22)
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The set of four equations derived from (2.18) together with conditions (2.22) yield only four solutions
which will be referred to as cases 1 to 4. These are respectively:

a1 = −1, b2 = −1, c1 = 2/3, (2.23)

a1 = −2/3, b2 = −4/3, c1 = 2/3, (2.24)

a1 = −1/3, b2 = 1/3, c1 = 0, (2.25)

a1 = 0, b2 = 0, c1 = 0, (2.26)

Replacing cases 1 to 4 in the general connection (1.1) we obtain the following connections, respec-
tively:

(1)

Γ µν
ρ = Wµν

ρ +
(W )

T νµ
ρ −

(W )

T ρ
µν −

(W )

T ρ
νµ

− 2

3
gµν

(W )

T σ
ρσ − 2

3
δµ

ρ
(W )

T ν
σ

σ. (2.27)

(2)

Γ µν
ρ = Wµν

ρ +
2

3

(W )

T νµ
ρ − 2

3

(W )

T ρ
µν − 4

3

(W )

T ρ
νµ

− 2

3
gµν

(W )

T σ
ρσ − 2

3
δµ

ρ
(W )

T ν
σ

σ. (2.28)

(3)

Γ µν
ρ = Wµν

ρ +
1

3

(W )

T νµ
ρ − 1

3

(W )

T ρ
µν +

1

3

(W )

T ρ
νµ.

(2.29)

(4)

Γ µν
ρ = Wµν

ρ. (2.30)

Equivalently, we use (2.11) with the above coefficients. As expected, one of the solutions (eq. (2.30))
is the Weitzeböck connection.

The above connections (2.27)-(2.30) are metric compatible (the non-metricity tensor vanishes) and
present non-vanishing torsion. Thus only the contorsion tensor Kab

c will contribute to (2.17). The
contorsion tensor for the metric-compatible case is equal to:

Kab
c = Cab

c = wab
c − ({})

w ab
c. (2.31)

It is straightforward to check that (2.17) is satisfied for the four cases when plugging (2.31) in
(2.17). That is:

(i)

Kab
e
(i)

Kec
bsca −

(i)

Kab
a
(i)

Kec
bsce =

= −1

2
τabcτacb −

1

4
τabcτabc + τba aτb

c
c, (2.32)

with i = 1, · · · , 4 labeling cases 1 to 4. We want to remark that the above connections not only yield
non-vanishing torsion but also non-vanishing curvature tensor and Ricci tensor. The only exception

being case 4, i.e. the Weitzenböck case
(4)

Γ µν
ρ = Wµν

ρ (only has non-vanishing torsion).
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2.3 Non-metricity case

We begin studying the simplest case of torsionless non-metric connection. The condition is:

Tµν
σ = 0 ⇒ τab

c = wab
c − wba

c, (2.33)

which implies that the coefficients must satisfy:

1 + 2a1 = 0,

b1 − b2 = 0,

d2 − d1 = 0.

(2.34)

However, equations (2.34) together with the set of four quadratic equations derived from (2.18)
yield no solution. There have been other attempts for constructing equivalent theories to EG based
purely on non-metricity. For instance in [37] a vanishing Γµν

ρ was considered, allowing the theory to
be described only in terms of the non-metricity tensor Qµνρ = ∂µgνρ. This is equivalent as choosing
wab

c = ea
µeb

νecρWµν
ρ. We believe that if we had allowed an extra arbitrary constant factor in front

of Wµν
ρ in (1.1) then our procedure would have also yielded this gauge connection as a particular

result. However, the transformation properties of this connection under diffeomorphisms would
have been compromised.

As said before there are infinite solutions to our set of four equations presenting, in a generic way,
non-metricity and torsion. Just to analyze a particular case we study the condition for a Weyl’s
space7:

∇µgνρ = −2Aµgνρ ⇒ wa(bc) = Aaηbc. (2.35)

Where Aµ is a one-form field (Weyl’s vector field). Since we want a connection only in terms of
derivatives of the vielbein the only possibility is Aa = ατa

d
d for some real constant α. This implies

the conditions
a1 = b1, c1 = d1, α = d2. (2.36)

These conditions on the coefficients are the same as the previous case (2.22) except that we have
a non-trivial condition on d2. Since d2 does not show up in (2.18), the solutions to the quadratic
equations plus (2.36) are the same as the previous case but with an extra term, i.e.:

(i)

Γ̃µν
ρ =

(i)

Γ µν
ρ − α

(W )

T µ
σ
σδν

ρ, (2.37)

with i = 1, · · · , 4. Although these connections are different from (2.27)-(2.30) due to the last term
in (2.37), we must notice that this extra term is just of the form (2.20) which leaves the Ricci scalar

invariant. More explicitly: Aµδν
ρ = −α

(W )

T µ
σ
σδν

ρ.

2.4 Gauge redundancy and deformed Weitzenböck connections

One might worry about the fact that the different connections we are obtaining are, in some sense,
gauge artifacts of the Weitzenböck connection. We want to stress, again, that only when taking
Lorentz transformations with constant parameters, the connection Γµν

ρ and tensors built out of it

7In [38] a Weyl vector has also been considered. However, we are not considering this vector to be an independent
degree of freedom since it is built from the vielbein.
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are well defined, in the sense that they transform as a scalar under Lorentz transformations. And
only when considering actions or equations of motion the local Lorentz symmetry is restored. This
is completely analogous to the usual teleparallel gravity case. Thus, if we consider global Lorentz
transformations it is clearly not possible to gauge-transform the different connections into the
Weitzenböck connection. Moreover, if we allowed for local Lorentz transformations it is not possible
neither. Take for instance the curvature tensor (2.13) with the general connection (2.11):

Rabc
d(w) =Da

(
a1τcb

d − b1τ
d
bc − b2τ

d
cb + c1ηbcτe

de

+ d1δb
dτc

e
e + d2δc

dτb
e
e

)

−Db

(
a1τca

d − b1τ
d
ac − b2τ

d
ca

+ c1ηacτe
de + d1δa

dτc
e
e + d2δc

dτa
e
e

)

+ · · · , (2.38)

where the dots represent quadratic terms. From the above derivative terms we see that the only
possibility for the curvature tensor to vanish is that all of the coefficients must be set equal to zero,
implying that the Weitzenböck connection is the only connection written in terms of derivatives
of the vielbein that makes the curvature tensor to vanish. Therefore, if the connections we have
obtained so far were gauge-transformed (under local Lorentz transformations) of the Weitzenböck
connection, it would imply a vanishing curvature tensor for these connections. As we have stated
in the previous examples, this is not the case. More generally, different set of coefficients live in
different Lorentz gauge orbits.

On the other hand, we have mentioned about transformations that leave the curvature tensor or
scalar curvature invariant, (2.19) and (2.20) respectively. From a geometric point of view, the
connections are meant to be defined up to a “gauge transformation” of the form (2.19) as long
as the new connection enjoys the same index symmetry properties as the old one. For instance,
the Levi-Civita connection is symmetric in its two lower indices and if we apply the transformation
(2.19) the symmetry in the two indices will be broken resulting in a new connection with torsion and
non-metricity. The connections obtained in this work do not have a particular definite symmetry
on their indices, and thus, transformations of the form (2.19) might be considered. However, none
of our connections are related in this sense, since there is no combination of vielbein that produces
a non-trivial scalar as in the last term of (2.19). The only transformation relevant for us is (2.20).
In this case there are connections that are related as we have explicitly shown in (2.37). Despite

of this, the geometric properties defined by

(i)

Γ̃ are different from
(i)

Γ : Clearly,

(i)

Γ̃ yields non-trivial

non-metricity while
(i)

Γ does not. Also, the form of the curvature tensor for these connections are
different since the d2 term does not decouple from the curvature tensor (see (2.38)).

Having clarified the gauge redundancy issue, the interpretation we are giving to the new connections
is that they are deformed versions of the Weitzenböck connection [35]. Given two connections Γ1

and Γ2 we can always relate them by a tensor. Take Γ1 = W + w1 and Γ2 = W + w2 as in the
decomposition (2.10). Since w is a tensor under diffeomorphisms, we obtain Γ1 = Γ2 + (w1 − w2).
Thus, Γ1 and Γ2 are related by a tensor and we say Γ1 is a deformed version of Γ2. In this work,
what we did is to find those w parametrized by (2.11) such that Γ1 = W + w is a deformation of
Γ2 = W and reproduce the same action (or equations of motion) for the vielbein.
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2.5 Equations of Motion

In this subsection we will obtain the equations of motion for the vielbein in terms of quantities
associated to the connections we have obtained in the previous subsections.

As a warm-up, we first obtain the equations of motion in the teleparallel case (i.e.
(4)
w ab

c = 0) as it
is usually done in the literature. However, we will apply a more general procedure in (2.5.2) that
will include the Weitzenböck case as a particular case.

2.5.1 Weitzenböck case

We are interested in the right hand side of (2.15) using planar indices and the Weitzenböck con-

nection
(4)
w ab

c = 0. For metric-compatible connections the non-metricity tensor vanishes, therefore
the only contribution to the action comes from the contorsion tensor, i.e. Cab

c = Kab
c. Expanding

in terms of the torsion we get:

(4)

Kab
c
(4)

K c
ab −

(4)

K cb
c
(4)

Ka
ab =

= −1

4

(4)

T abc

(4)

T abc − 1

2

(4)

T abc

(4)

T acb +
(4)

T ab
b
(4)

T ac
c . (2.39)

Where we recall that
(4)

T ab
c = −τab

c. Since the Riemann tensor associated to the Weitzenböck
connection vanishes, we expect to find equations of motion in terms of only Tab

c. The right hand
side of (2.15) thus gives:

∫
dx4e

(
− 1

4

(4)

T abc

(4)

T abc − 1

2

(4)

T abc

(4)

T acb +
(4)

T ab
b
(4)

T ac
c

)
=

=

∫
dx4e

(
− 1

2

(4)

T̂ abc
(4)

T abc

)
. (2.40)

Here e =
√−g and in the last line we have introduced the tensor T̂abc known as the superpotential

in TG:

T̂abc = Kcba + ηacTbd
d − ηbcTad

d

=
1

2

(
Tabc + 2T[a|c|b] + ηacTbd

d − ηbcTad
d
)
. (2.41)

The superpotential satisfies T̂abc = 2T̂[ab]c. Due to this property the variation of the lagrangian is
easier to perform:

δe

(
− 1

2
e

(4)

T̂ abc
(4)

T abc

)
=
1

2
eedµδe

dµ

(4)

T̂ abc
(4)

T abc

− e

(4)

T̂ abcδe
(4)

T abc , (2.42)
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where

−e

(4)

T̂ abcδe
(4)

T abc = e

(4)

T̂ abc
(
2δea

µedµΩ
d
bc + τab

ded
µδecµ

+ 2Daδeb
µecµ

)
. (2.43)

Since the last term of (2.43) is antisymmetrized on indices (a, b) we can use:

2D[aAb] = 2
({})

D[aAb] + 2
({})
w [ab]

cAc, (2.44)

where
({})

DaAb = DaAb −
({})
w ab

cAc. When substituting (2.44) in (2.43) we see that the second term

in the right-hand side of (2.44) cancels the τ term in the first line of (2.43) since 2
({})
w [ab]

c = τab
c

and δeaµe
bµ = −eaµδe

bµ. We proceed to use the product rule:

e

(4)

T̂ abc2
({})

Daδeb
µecµ =

= 2e
({})

Da

((4)
T̂ abcδeb

µecµ

)
− 2e

({})

Dc

(4)

T̂ cadδea
µedµ

− 2e

(4)

T̂ abcδeb
µ(−eeµΩa

e
c −

({})
w ac

eeeµ). (2.45)

The first term on the right-hand side of (2.45) yields a total derivative and the last line of (2.45)

comes from expanding
({})

Daecµ. Putting all together we then have:

δe

(
− 1

2
e

(4)

T̂ abc
(4)

T abc

)
=

=
1

2
eedµδe

dµ

(4)

T̂ abc
(4)

T abc + 2eδea
µedµ

((4)
T̂ abcτdbc

−
({})

Dc

(4)

T̂ cad +

(4)

T̂ bac({})w bc
d
)
, (2.46)

up to a total derivative. The Ω term of (2.45) combines with the Ω term of (2.43) to form the τ
term in the second line of (2.46). The equations of motion are simply:

2
({})

Dc

(4)

T̂ c
ab + 2

(4)

T̂ acd

((4)
T b

cd −
(4)

K cd
b

)
− 1

2
ηab

(4)

T cde

(4)

T̂ cde = 0.

(2.47)

Here we have used
(4)

T ab
c = −τab

c and
(4)

Kab
c = −({})

w ab
c.

2.5.2 Generic case

In the previous subsection we obtained the equations of motion by varying the right hand side of
(2.15). This is our goal here too. The variational procedure, however, of the preceding subsection
depends heavily on the form of the torsion with respect to the vielbein and if we perform that
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procedure for the new connections it is not easy to see how to rearrange terms in meaningful
geometric quantities. In the Weitzenböck case, the equations of motion are fully described in terms
of the torsion since there is no curvature. In the case of the new connections, all of them have
non-zero curvature and we expect the Ricci tensor to appear in the equations of motion. Therefore,
we will follow here a different route to derive the equations of motion for our generic connections,
and in particular, it will yield the equations of motion for the Weitzenböck case (2.47).

We start with the following action,

S =

∫
eR(Γ)dx4 , (2.48)

where R(Γ) = gµνRµρν
ρ(Γ). We are assuming that Γ is written in terms of first-order derivatives

of the vielbein. We now vary the action with respect to the vielbein,

δS =

∫
δeR(Γ)dx4

+

∫
eδgµνRµρν

ρ(Γ) +

∫
egµνδRµρν

ρ(Γ). (2.49)

The first term of (2.49) is as usual,

−
∫

eeaµR(Γ)δeaµ. (2.50)

The second term of (2.49) gives:

2

∫
eR(µ|ρ|ν)

ρ(Γ)eaνδea
µ. (2.51)

The third term of (2.49) can be decomposed as follows. We use the decomposition for Γ as given
by (2.3) implying a decomposition for the Riemann tensor (2.7). Thus, we obtain:

∫
egµνδ

(
Rµρν

ρ({}) + 2
({})

∇ [µCρ]ν
ρ + 2C[µ|λ|

ρCρ]ν
λ
)
. (2.52)

The variation of the first term of (2.52) is obtained by varying (2.2) with respect to Γ with Γ being
the Levi-Civita connetion. The result is:

∫
egµν

({})

∇ [µδ
({})

Γ σ]ν
σ = 0. (2.53)

Which yields zero, since it is a total derivative. The second and third term of (2.52) can be rewritten
as follows:

∫
egµν δ

(
2
({})

∇ [µCρ]ν
ρ
)
=

= δ
(∫

egµν (2
({})

∇ [µCρ]ν
ρ)
)
−
∫

δegµν (2
({})

∇ [µCρ]ν
ρ)

−
∫

eδgµν (2
({})

∇ [µCρ]ν
ρ), (2.54)
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and
∫

egµν δ
(
2C[µ|λ|

ρCρ]ν
λ
)
=

= δ
(∫

egµν (2C[µ|λ|
ρCρ]ν

λ)
)
−
∫

δegµν (2C[µ|λ|
ρCρ]ν

λ)

−
∫

eδgµν (2C[µ|λ|
ρCρ]ν

λ). (2.55)

Putting all together

δS =

∫
e

(
gµν

(
−R(Γ) + 2

({})

∇ [σCρ]
σρ + 2C[σ|λ|

ρCρ]
σλ

)
+

+ 2R(µ|ρ|ν)
ρ(Γ)− 2

({})

∇ (µC|ρ|ν)
ρ + 2

({})

∇ ρC(µν)
ρ

− 2C(µ|λ
ρCρ|ν)

λ + 2Cρλ
ρC(µν)

λ

)
ea

νδeaµ +

+ δ

(
2

∫
eC[µ|λ|

ρCρ]
µλ

)
. (2.56)

Since we are dealing with Γ’s such that the Ricci scalar vanishes then the action (2.48) vanishes.
This implies that δS = 0 off-shell. Therefore, the right hand side of (2.56) must vanish identically.
On the other hand, the last term of (2.56) is equal to the variation of the right hand side of (2.15)
and we need to impose this variation to vanish in order to obtain the equations of motion. So, the
resulting (equivalent) equations of motion are:

2R(µ|ρ|ν)
ρ(Γ) + gµν

(
2
({})

∇ [σCρ]
σρ + 2C[σ|λ|

ρCρ]
σλ
)

− 2
({})

∇ (µC|ρ|ν)
ρ + 2

({})

∇ ρC(µν)
ρ − 2C(µ|λ

ρCρ|ν)
λ

+ 2Cρλ
ρC(µν)

λ = 0, (2.57)

where we have used R(Γ) = 0. Equivalently, in flat indices the equations of motion are:

2R(a|c|b)
c(w) + ηab

(
2
({})

D[dCc]
dc + 2C[d|e|

cCc]
de
)

− 2
({})

D(aC|c|b)
c + 2

({})

DcC(ab)
c − 2C(a|e

cCc|b)
e

+ 2Cce
cC(ab)

e = 0. (2.58)

Equations (2.57) and (2.58) are the equations of motion for the general case (1.1) and (2.11)
respectively. In the case of metric-compatible connections only the contorsion tensor contributes to
Cab

d. In this case, and after some manipulations, equation (2.58) gets the form:

2R(a|c|b)
c(w) + 2

({})

DcT̂
c
ab + 2T̂acd

(
Tb

cd −Kcd
b

)

− 1

2
ηabTcdeT̂

cde +
({})

DcTab
c + 2

({})

D[aTb]c
c

+ T[b
cdT|cd|a] − Tab

cTcd
d = 0, (2.59)
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where T̂ab
c was defined in (2.41). It is easy to see that (2.59) reduces to (2.47) for the Weitzenböck

case,
(4)
w ab

c = 0, Rabc
d(

(4)
w ) = 0,

(4)

T ab
c = −τab

c, with the help of the following identity:

({})

Dcτab
c + 2

({})

D[aτb]c
c − τ[b

cdτ|cd|a] + τab
cτcd

d = 0, (2.60)

As a final remark, we have verified that when plugging the connections (2.27)-(2.30) inside equations
(2.59) reproduce the same equations of motion for the vielbein as in teleparallel gravity or Einstein
gravity.

3 Connections in Double Field Theory

In this section we will try to apply the same procedure of the previous section (2) to Double Field
Theory and remark the similarities and differences. We briefly review the DFT ingredients we are
going to use. Most of the details can be found in the literature mentioned in the Introduction.

String theory has several dualities relating different theories defined on different backgrounds or
regimes of validity. In particular, T-duality is a duality relating string theory compactified on
different toroidal backgrounds. The T-duality symmetry is represented by the O(n, n) group, where
n represents the number of internal compactified dimensions. Double Field Theory is a proposal
to incorporate the T-duality group as a manifest symmetry of a field theory. It achieves this by
doubling the usual space-time coordinates, incorporating new coordinates x̃ dual to the winding of
the string. The fields of DFT are represented by a generalized metric HMN (X) and generalized
dilaton d(X), where XM = (x̃, x) are the DFT space-time coordinates, M = 1, ..., 2D (where D
is the target space-time dimension containing both external and internal coordinates). Indices are
raised and lowered with the invariant O(D,D) metric,

ηMN =

(
0 1
1 0

)
. (3.1)

The generalized metric satisfies HM
NHNP = ηMP and HMN = HNM . DFT is a constrained

theory, it usually satisfies the strong constraint ∂M∂M (...) = 0, where the dots represents arbitrary
products of fields and gauge parameters. However, there are instances where it is known the strong
constraint can be relaxed, for example in generalized Scherk-Schwarz compactifications (see, for
instance, [3] and references therein). For simplicity, we will assume the strong constraint in this
work. It is convenient to introduce projectors P and P̄ :

PM
N =

1

2

(
δM

N −HM
N
)
, P̄M

N =
1

2

(
δM

N +HM
N
)
, (3.2)

PM
M + P̄M

N = δM
N , PM

P P̄PN = 0. (3.3)

These projectors allow us to separate components of tensors in orthogonal subspaces and we will use
the notation V

¯
M = PM

NVN and VM̄ = P̄M
NVN . It is possible to introduce a generalized vielbein

EA
M as in GR:

HMN = SABE
A
MEB

N , ηMN = ηABE
A
MEB

N , (3.4)
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where

SAB =

(
sab 0
0 sab

)
, a, b = 1, ..., D, sab = diag(−,+, ...,+), (3.5)

and ηAB is numerically equivalent to (3.1). The generalized vielbein satisfies EA
MEBM = ηAB,

EAMEA
N = ηMN . Here, we have introduced planar indices A,B,C,D,E, F = 1, ..., 2D which

are raised and lowered with ηAB. The curved indices ranges from K,L,M,N, ... = 1, ..., 2D. The
theory is invariant under generalized coordinate transformations acting on curved indices:

δξE
A
M = LξE

A
M

= ξP∂PE
A
M + (∂MξP − ∂P ξM )EA

P , (3.6)

and a local double Lorentz transformation O(1, D−1)×O(1, D−1) acting on the planar ones:

δΛEA
M = ΛA

BEB
M . (3.7)

Here ξM = ξM (X) is an infinitesimal parameter of coordinate transformations and ΛA
B = ΛA

B(X)
satisfies ΛAB = −ΛBA, SA

A′

ΛA′B = SB
B′

ΛAB′ (following the conventions of [39]). The dilaton
transforms under generalized coordinate transformations as δξd = ξP ∂Pd− 1

2∂P ξ
P . Of course, the

theory is also invariant under global O(D,D) transformations acting on curved indices.

It is possible in DFT to introduce concepts like connections and curvatures by introducing a co-
variant derivative under generalized coordinate transformations:

∇MVN = ∂MVN − ΓMN
PVP . (3.8)

The DFT connection transforms in the following way under generalized coordinate transforma-
tions:

δξΓMN
P = LξΓMN

P + ∂M∂NξP − ∂M∂P ξN . (3.9)

The concepts of covariant derivative and generalized coordinate transformation seems to parallel the
one in standard geometry reviewed in section (2). In particular, we saw that a generic connection
in a metric-affine space-time can be decomposed in terms of the appropriate geometric quantities
as in (2.3). This decomposition has allowed us to study and find, in a systematic way, different
connections and equations of motion based on different geometric quantities. In the following
subsections we would like to find a similar decomposition for a generic generalized DFT connection
that helps us to unravel the different geometric quantities allowed by the theory. That is, we would
like to find a decomposition of the form:

ΓMN
P =

{

P
M N

}

+KMN
P + LMN

P , (3.10)

where
{

P
M N

}

would play the role of generalized Levi-Civita connection and the rest would be the

generalization of the contorsion and L-tensor. Let us introduce two quantities that transform as
tensors under generalized coordinate transformations which can be interpreted as the generalization
of the torsion tensor in general relativity:

T (1)
MP

Q ≡ ΓMP
Q − ΓPM

Q + ηQRηTPΓRM
T , (3.11)

T (2)
MP

Q ≡ ΓMP
Q + ηQRηTPΓMR

T

≡ −ηQR∇MηPR . (3.12)

The tensor T (1) in (3.11) has been named the generalized torsion tensor in DFT. The tensor T (2)

in (3.12) is the representation of the covariant derivative of ηMN which a priori we are not setting
to zero. Now we have all the tools to find a decomposition as in (3.10).
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3.1 Tensors Q and Q̄

Since there are two kinds of metrics in DFT we need to study the covariant derivative of both of
them. Nevertheless, instead of working with them, we will work with projectors (3.2):

∇MPNP = ∂MPNP − ΓMN
¯
P − ΓMP

¯
N , (3.13)

∇M P̄NP = ∂M P̄NP − ΓMNP̄ − ΓMPN̄ . (3.14)

For simplicity, it will be convenient to introduce the following quantities:

QMNP = ∇MPNP , Q̄MNP = ∇M P̄NP . (3.15)

They play the role of the non-metricity tensor in Riemannian geometry. From equation (3.13) we
can hit with P̄ on the N index to obtain:

ΓMN̄
¯
P = P̄N

N ′

∂MPN ′P −QMN̄P . (3.16)

And similarly with (3.14):

ΓM
¯
NP̄ = PN

N ′

∂M P̄N ′P − Q̄M
¯
NP . (3.17)

Equations (3.16) and (3.17) fully determine Γ
¯
MN̄

¯
P , ΓM̄N̄

¯
P and Γ

¯
M

¯
NP̄ ΓM̄

¯
NP̄ , respectively.

Note also that the following components are equal to zero:

Q̄M
¯
P
¯
Q = PP

P ′

PQ
Q′∇M P̄P ′Q′ = 0, (3.18)

QMP̄Q̄ = P̄P
P ′

P̄Q
Q′∇MPP ′Q′ = 0. (3.19)

This can be seen by using the orthogonality of the projectors and the Leibniz rule.

3.2 Components from T (1)

We would like to point out something that has not been stated in the literature so far. If we take

T (1)
MN

P = 0 then:
ΓQ

MP = −
(
ΓMP

Q − ΓPM
Q
)
, ⇒ ΓQMP = ΓQ[MP ]. (3.20)

Thus, with the above imposition Γ turns out to be antisymmetric in its last two indices and
then:

T (2)
MNP = −∇MηNP = 2ΓM(NP ) = 0. (3.21)

So, imposing T (1) = 0 already implies the constraint ∇η = 0. This shows that both T (1) and T (2)

are related.

Returning to the undetermined components, from the definition of T (1) we can obtain new deter-
mined components for the connection by projecting the indices:

Γ
¯
PM̄Q̄ = −T (1)

M̄
¯
PQ̄

+ ΓM̄
¯
PQ̄ + ΓQ̄M̄

¯
P , (3.22)

ΓM̄
¯
P
¯
Q = T (1)

M̄
¯
P
¯
Q
+ Γ

¯
PM̄

¯
Q − Γ

¯
QM̄

¯
P (3.23)
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The above components for the connection are fully determined in terms of the physical fields and
T (1).

From the tensor T (2) we obtain no new information since we note that can be written in several
ways using previous tensors:

T (2)
MPQ = 2ΓM(PQ)

= 2T (1)
(PQ)M

= −QMPQ − Q̄MPQ

(3.24)

This shows that T (2) is not independent from T (1) or the Q’s tensors. And, of course, also shows,
that this particular combination of T (1) is related to the Q’s. Moreover, not all of the components
of T (1) are independent. By using the definition of T (1) and (3.22) and (3.23), we can see which
components of T (1) are related . The relations are as follows:

T (1)

¯
MN̄

¯
P
= −T (1)

N̄
¯
M

¯
P
−Q

¯
PN̄

¯
M − Q̄

¯
P

¯
MN̄ (3.25)

T (1)

¯
MN̄P̄

= −T (1)

N̄
¯
MP̄

−QP̄ N̄
¯
M − Q̄P̄

¯
MN̄ (3.26)

T (1)

¯
M

¯
NP̄

=T (1)

P̄
¯
M

¯
N
− Q̄

¯
M

¯
NP̄ −Q

¯
MP̄

¯
N

+ Q̄
¯
N

¯
MP̄ +Q

¯
NP̄

¯
M

T (1)

M̄N̄
¯
P
= −T (1)

M̄
¯
PN̄

−QM̄N̄
¯
P − Q̄M̄

¯
PN̄ (3.27)

We choose the components T (1)

M̄
¯
NP̄

and T (1)

M̄
¯
N

¯
P

as independent ones and built the others from

them.

3.3 Components from ∇e−2d

We define the covariant derivative acting on e−2d as

∇Me−2d = ∂Me−2d − ΓQM
Qe−2d. (3.28)

From this equation we can determine the trace components of the connection, since ΓQM
Q =

Γ
¯
QM ¯

Q + ΓQ̄M
Q̄. So by projecting the free index we obtain:

Γ
¯
Q

¯
M ¯

Q = −ΓQ̄
¯
M

Q̄ + e2dPM
M ′ (−∇M ′e−2d + ∂M ′e−2d

)
(3.29)

ΓQ̄M̄
Q̄ = −Γ

¯
QM̄ ¯

Q + e2dP̄M
M ′ (−∇M ′e−2d + ∂M ′e−2d

)
(3.30)

The trace components are then fully determined. These are the only equations from where we may
try to obtain information about Γ

¯
M

¯
N

¯
P and ΓM̄N̄P̄ , the equations from previous sections do not
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yield any non-trivial information about them. Following [10] we propose the following ansatz for
Γ

¯
M

¯
N

¯
P and ΓM̄N̄P̄ :

Γ
¯
M

¯
N

¯
P = − 2

1−D
PM [NPP ]

P ′

ΓQ̄
¯
P ′

Q̄ + Γ̃
¯
M

¯
N

¯
P +Σ

¯
M

¯
N

¯
P +

+
2e2d

1−D
PM [NPP ]

P ′(−∇P ′e−2d + ∂P ′e−2d
)
. (3.31)

ΓM̄N̄P̄ = − 2

1−D
P̄M [N P̄P ]

P ′

Γ
¯
QP̄ ′ ¯

Q + Γ̃M̄N̄P̄ +ΣM̄N̄P̄ +

+
2e2d

1−D
P̄M [N P̄P ]

P ′(−∇P ′e−2d + ∂P ′e−2d
)
. (3.32)

Note that the trace parts of the connection on the right hand sides are determined components
given by the trace of (3.16) and (3.17). The ansatz (3.31) and (3.32) satisfy (3.29) and (3.30)
provided we introduce the quantities Γ̃ and Σ that satisfy:

Γ̃
¯
Q

¯
M ¯

Q = 0, Γ̃Q̄M̄
Q̄ = 0, (3.33)

Σ
¯
Q

¯
M ¯

Q = 0, ΣQ̄M̄
Q̄ = 0. (3.34)

And also:

0 = Γ̃
¯
Q

¯
M

¯
R − Γ̃

¯
M

¯
Q
¯
R + Γ̃

¯
R
¯
Q

¯
M , (3.35)

T (1)

¯
Q

¯
M

¯
R = Σ

¯
Q

¯
M

¯
R − Σ

¯
M

¯
Q
¯
R +Σ

¯
R
¯
Q

¯
M , (3.36)

And similarly for Γ̃M̄N̄P̄ and ΣM̄N̄P̄ . The above requirements come from (3.11) and (3.24). The
quantity Γ̃ was introduced in [10] and it is an undetermined component in terms of the physical
fields (PMN , P̄MN , d). It is responsible for fixing the transformation properties of Γ

¯
M

¯
N

¯
P or ΓM̄N̄P̄

under generalized coordinate transformations. Here, we need to introduce a new quantity, Σ, which
is a tensor under generalized coordinate transformations. Depending on the choice for the tensor
T (1) (which might carry physical degrees of freedom), the tensor Σ may be fully expressed in terms
of it. This means, to express Σ as a linear combination of T (1) (we will see how to do this for
particular cases in subsections (3.8) and (3.9)).

3.4 The full connection

By gathering together (3.16),(3.17), (3.22), (3.23), (3.31) and (3.32) we are now able to write the
full connection. The final expression is:

ΓMNP =
{

P
M N

}

+KMNP + LMNP , (3.37)
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with

{

P
M N

}

=− 2

1−D
PM [NPP ]

P ′
(
P̄M ′N ′

PP ′
R∂M ′ P̄N ′R − e2d∂P ′e−2d

)

− 2

1−D
P̄M [N P̄P ]

P ′
(
PM ′N ′

P̄P ′
R∂M ′PN ′R − e2d∂P ′e−2d

)

+ PM
M ′

PN
N ′

∂M ′ P̄N ′P + PM
M ′

P̄N
N ′

∂M ′PN ′P

+ P̄N
N ′

PM
M ′

∂N ′P̄M ′P + P̄P
P ′

P̄N
N ′

∂P ′PN ′M

+ P̄M
M ′

P̄N
N ′

∂M ′PN ′P + P̄M
M ′

PN
N ′

∂M ′ P̄N ′P

+ PN
N ′

P̄M
M ′

∂N ′PM ′P − PP
P ′

P̄M
M ′

∂P ′PM ′N

+ Γ̃
¯
M

¯
N

¯
P + Γ̃M̄N̄P̄ , (3.38)

KMNP = −T (1)

N̄
¯
MP̄

+ T (1)

M̄
¯
N

¯
P
+Σ

¯
M

¯
N

¯
P +ΣM̄N̄P̄ (3.39)

LMNP =− 2e2d

1−D
PM [NPP ]

P ′∇P ′e−2d − 2e2d

1−D
P̄M [N P̄P ]

P ′∇P ′e−2d

+
2

1−D
PM [NPP ]

P ′

Q̄Q̄
¯
P ′

Q̄ +
2

1−D
P̄M [N P̄P ]

P ′

Q
¯
QP̄ ′ ¯

Q (3.40)

− Q̄
¯
M

¯
NP̄ −Q

¯
MN̄

¯
P − Q̄N̄

¯
MP̄ −QP̄ N̄

¯
M

−QM̄N̄
¯
P − Q̄M̄

¯
NP̄ −Q

¯
NM̄

¯
P +Q

¯
PM̄

¯
N .

We have obtained the generalized Levi-Civita connection
{

P
M N

}

, which after some manipulations

is equal to the connection obtained in [10]. The generalized Levi-Civita connection has vanishing
torsion, it is η-H-compatible, i.e. ∇P = ∇P̄ = 0 and has vanishing ∇e−2d = 0. We have also
defined the generalized contorsion tensor (3.39), and the L-tensor (3.40) made up of the non-
metricity tensors Q, Q̄ and ∇e−2d. For simplicity, we define

CMNP ≡ KMNP + LMNP . (3.41)

Note that it is the tensor CMNP the one that accounts for equation (3.11) rather than only using
the generalized contorsion tensor KMNP , that is

T (1)
MNP = CMNP − CNMP + CPMN . (3.42)

In a metric-affine geometry only the contorsion tensor is needed to yield the torsion, i.e. Tµν
ρ =

2Γ[µν]
ρ = 2K[µν]

ρ.

3.5 Generalized Riemann tensor

The results shown here are a little bit more general compared to the ones stated before in the
literature since we do not assume any extra index property on the Riemann tensor (a priori) given
by imposition of constrains in the connection. The generalized Riemann tensor in curved index is
given by:

RMNKL = RMNKL +RKLMN + ΓQMNΓQ
KL, (3.43)
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with
RMNKL = ηQL

(
2∂[MΓN ]K

Q + 2Γ[M|R|
QΓN ]K

R
)
. (3.44)

By definition, the generalized Riemann tensor satisfies RMNKL = RKLMN . The generalized Rie-
mann tensor can be written in planar indices by rotating with the generalized vielbein and the
below quantity:

ΩABC = EA
M∂MEB

NECN (3.45)

Note that ΩABC = −ΩACB. Of course, we can use the generalized vielbein EA
M to convert curved

indices to planar ones. We will often use ΩMNP = EA
MEB

NEC
PΩABC . We define the “generalized

fluxes":
FABC ≡ 3Ω[ABC], (3.46)

FA ≡ ΩB
BA + 2DAd, (3.47)

where DA = EA
M∂M . It is important to stress that the generalized fluxes (with planar indices)

transform as scalars under generalized coordinate transformations when imposing the strong con-
straint. The relation between the connection and the gauge connection is:

ΓMN
P = WMN

P + EA
NEB

PwMA
B. (3.48)

where WMN
P = −ΩMN

P is the generalized Weitzenböck connection and we will refer to wABC as
the DFT gauge connection. This gauge connection transforms as a scalar (with all planar indices)
under general coordinate transformations. In principle, one can require that wMBC transforms
as a gauge connection under local double Lorentz transformation. However, as stated in the In-
troduction, we are only concerned with its transformation properties under generalized coordinate
transformations since the local double Lorentz group will be generically broken, i.e., only global
double Lorentz transformations (that is with constant parameters) will survive at the connection
level. The generalized curvature tensor in planar indices then gets the form:

RABCD = R̂ABCD + R̂CDAB + wE
ABwECD, (3.49)

where
R̂ABCD = 2D[AwB]CD −FAB

EwECD − 2w[A|C|
EwB]ED . (3.50)

Under a variation of the connection the Riemann tensor changes to8:

Γ′
MN

K = ΓMN
K + δΓMN

K , (3.51)

⇒ δRMNKL =2ηLQ

(Γ)

∇ [MδΓN ]K
Q +

(Γ)

T (1)
MN

QδΓQKL

+ 2ηNQ

(Γ)

∇ [KδΓL]M
Q +

(Γ)

T (1)
KL

QδΓQMN .

(3.52)

We now know that we can decompose a general connection in terms of the generalized Levi-Civita
connection, the generalized contorsion and the L-tensor:

ΓMN
P =

{

P
M N

}

+ CMN
P , (3.53)

8Since a priori we are not assuming ∇η = 0 we will work with a connection defined with its third index up ΓMN
K

just like in Riemannian geometry. However, we will raise and lower its indices with η when this poses no problem.
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When plugging the above decomposition in the Riemann tensor we obtain the general form:

RMNKL(Γ) =RMNKL({}) + 2ηLQ

({})

∇ [MCN ]K
Q +

({})

T (1)
MN

QCQKL

+ 2ηNQ

({})

∇ [KCL]M
Q +

({})

T (1)
KL

QCQMN

+ 2C[M|QL|CN ]K
Q + 2C[K|QN |CL]M

Q

+ CQMNCQ
KL.

(3.54)

Where we have used RMNKL = RKLMN . When the connection is equal to the generalized Levi-
Civita, it is possible from the generalized Riemann curvature to define a generalized Ricci tensor
R

¯
M

¯
NK̄ ¯

N and a Ricci scalar R = PMKPNLRMNKL. The equations of motion of DFT are just the
vanishing of the generalized Ricci tensor and the vanishing of the generalized Ricci scalar, which
gives the equations of motion for the generalized metric HMN and the dilaton d, respectively. These
equations can be found by varying the DFT action:

S =

∫
dXe−2dR({})

=

∫
dXe−2d

(
4HMN∂M∂Nd− ∂M∂NHMN + 4∂MHMN∂Nd− 4HMN∂Md∂Nd

− 1

2
HMN∂MHKL∂KHNL +

1

8
HMN∂MHKL∂NHKL

)
. (3.55)

A couple of Bianchi identities can be deduced from the generalized Riemann tensor [10, 39]. All of
them can be expressed in terms of generalized contorsion, L-tensor and non-vanishing curvature for
generic connections using (3.54). For instance, a B.I for full antisymmetrization on the generalized
Riemann tensor can be translated as:

0 = R[MNKL]({}) =R[MNKL](Γ)− 4ηQ[L

({})

∇ MCNK]
Q

− 4C[M|Q|LCNK]
Q − CQ[MNCQ

KL]. (3.56)

Where Γ is a generic generalized connection and we have used that
({})

T (1) = 0. In the flux formulation,
the above B.I is important since it can be related to a B.I for the fluxes

R[ABCD]({}) =
4

3
D[AFBCD] −F[AB

EFCD]E = 0.

Before closing this subsection we would like to make a comment on extracting information about
components of the generalized connection using a possible Palatini formulation. It is known that in
GR, one can use the Palatini formalism to obtain equations of motion for the connection and for the
metric separately, and when one solves for the connection and plugs the solution into the equation
of motion of the metric, the Einstein’s equation of motion is recovered. It is not our intention to
apply a Palatini formalism to DFT but just to vary the DFT action with respect to the connection
and see what information we get from there. We consider the action
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S =

∫
dXe−2dPMKPNLRMNKL(Γ). (3.57)

Then we vary with respect to Γ using (3.51)- (3.52). We then have

e−2dPMKPNLδRMNKL = e−2dP [M|K|PN ]
L

(
4∇MδΓNK

L
)

+ 2e−2dPMKPNLT (1)
MN

QδΓQKL .
(3.58)

We then plug the above calculation in (3.57) and after an integration by parts and recalling the
definition of ∇e−2d we obtain:

S =

∫
dX
[
− 4∇M

(
e−2dP [M|K|PN ]

L

)
+ 2e−2dPMKPQ

LT (1)
MQ

N
]
δΓNK

L . (3.59)

We thus obtain an equation relating the non-metricity and the generalized torsion:

0 = −4∇M

(
e−2dP [M|K|PN ]

L

)
+ 2e−2dPMKPQ

LT (1)
MQ

N . (3.60)

This is something to expect. Just to compare, if we performed the same calculation in GR we would
obtain:

0 = Tτλ
µ +∇λg

µǫgτǫ − gǫθ∇[τg|ǫθ|δ
µ

λ]

− gǫτ∇σg
σǫδµλ − 2T[τ |ρ

ρδµ
λ] . (3.61)

In both cases, the torsion and non-metricity get related. In GR, when the connection is metric
compatible the solution to (3.61) is given by Tµν

ρ = 0. In the DFT case, if P = 1
2 (η−H) in (3.60)

and the connection is η-H-compatible then only some components of the generalized torsion are
required to be equal to zero but not all of them, a priori. We have analyzed several components
of (3.60) and they seem to give no new information compared to the analysis of the previous
subsection.

3.6 Equations of Motion

We start from the general action

S =

∫
dXe−2dPMKPNLRMNKL(Γ). (3.62)

To find the equations of motion we vary with respect to the vielbein EA
M and the dilaton. With

respect to the vielbein:

δES =

∫
dXe−2dδER(Γ) (3.63)

= 2

∫
dXe−2dδEP

MKPNLRMNKL(Γ) +

∫
dXe−2dPMKPNLδERMNKL(Γ), (3.64)
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and9

2(δEP
MK)PNLRMNKL(Γ) = −4∆ACE

A
MEC

NPQN P̄RMRQ
¯
PR¯

P (3.65)

where

∆AB = δEA
MEBM = −∆BA. (3.66)

The other term of the action

∫
e−2dPMKPNLδERMNKL(Γ) =

=

∫
e−2dPMKPNL

[
δERMNKL({})

+ δE

(
2ηLQ

({})

∇ [MCN ]K
Q + 2ηNQ

({})

∇ [KCL]M
Q
)

+ δE

(
C2

MNKL

)]
(3.67)

Where we have defined for simplicity:

C2
MNKL = 2C[M|QL|CN ]K

Q + 2C[K|QN |CL]M
Q + CQMNCQ

KL (3.68)

Now, the first term on the right hand side of (3.67) can be shown to be a total derivative just like
in GR (see [39, 10] for more details) so we focus on the other two terms. They can be cast in the
following form, respectively:

∫
e−2dPMKPNLδE

(
2ηLQ

({})

∇ [MCN ]K
Q + 2ηNQ

({})

∇ [KCL]M
Q
)
=

= −2

∫
e−2d(δEP

MK)PNL
(
2ηLQ

({})

∇ [MCN ]K
Q + 2ηNQ

({})

∇ [KCL]M
Q
)

(3.69)

and

∫
e−2dPMKPNLδEC

2
MNKL = δE

∫
e−2dPMKPNLC2

MNKL

− 2

∫
e−2d(δEP

MK)PNLC2
MNKL (3.70)

In several steps we have made use of
({})

T (1)
MNP = 0, (3.71)

9The reader is referred to [39] for this result. The important point is that it only makes use of RMNKL = RKLMN .
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({})

∇ MPNQ =
({})

∇ M P̄NQ = 0, (3.72)

({})

∇ Me−2d = 0. (3.73)

These equations also allowed us to discard a total derivative in (3.69).

Putting all together we have

δES = −4

∫
e−2d∆ACE

A
MEC

NPQN P̄RM
(
RQ

¯
PR¯

P (Γ)

− 2
({})

∇ (QC|
¯
P |R)¯

P + 2
({})

∇ PC(QR)¯
P − C2

Q
¯
PR¯

P
)

+ δE

(∫
e−2dPMKPNLC2

MNKL

)
(3.74)

The argument to find the equations of motion follows exactly as in subsection (2.5). We know that
δES = 0 off-shell since R(Γ) = 0 so the right hand side of (3.74) vanishes identically. On the other
hand, and due to R(Γ) = 0 again, we know that up to a boundary term:

∫
dXe−2dR({}) = −

∫
dXe−2dPMKPNLC2

MNKL. (3.75)

When varying with respect to EA
M we find the equation of motion and we see that the right hand

side of (3.75) matches the last term of (3.74). Therefore, equation of motion for EA
M from (3.74)

is:

0 = PQ[N P̄M ]R
(
RQ

¯
PR¯

P (Γ)− 2
({})

∇ (QC|
¯
P |R)¯

P + 2
({})

∇ PC(QR)¯
P − C2

Q
¯
PR¯

P
)
. (3.76)

This is the equation of motion for the generalized vielbein in terms of the geometric quantities
furnished by a generic generalized connection that renders null the generalized scalar curvature.
We will see below the particular case of the generalized Weitzenböck connection. Note also the
similarity between (3.76) and equation (2.57) in the the GR case. The second term on the first line
of (2.57) is actually absent in (3.76) because the role of the determinant of the metric in GR is now
played by e−2d in DFT and it is an independent degree of freedom.

The procedure to find the dilaton equations of motion proceeds very closely as before, so we just
quote the result:

0 = PMKPNL
(
2
({})

∇ [MCN ]KL + 2
({})

∇ [KCL]MN + C2
MNKL

)
. (3.77)

3.7 Determination of undetermined parts of the Connection

Before giving examples of connections that furnish equal theories to the standard DFT we would
like to make an observation about the undetermined parts of the generalized Levi-Civita connec-
tion (3.38). Let us concentrate on particular projected components that contain undetermined
parts:
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({})

Γ
¯
M

¯
N

¯
P = PM

M ′

PN
N ′

PP
P ′

{

P ′

M ′ N ′

}

= − 2

1−D
PM [NPP ]

P ′(
P̄M ′N ′

PP ′
R∂M ′ P̄N ′R − e2d∂P ′e−2d

)

+ Γ̃
¯
M

¯
N

¯
P . (3.78)

This is the only projected part of the full connection (together with ΓM̄N̄P̄ ) that possesses unde-
termined parts10, i.e. Γ̃. We recall that we have obtained this expression by demanding that

∇MPNP = ∇M P̄NP = T (1)
MNP = ∇Me−2d = 0. (3.79)

We know that a general connection can be rewritten in terms of the Weitzenböck connection and a
gauge connection wMA

B through (3.48), and when doing so, we can translate the conditions (3.79)
as conditions on the gauge connection:

wABC + wACB = 0, SC
C′

wABC′ + SB
B′

wACB′ = 0, (3.80)

3w[ABC] = FABC , wB
BA = FA. (3.81)

Let us now try to solve these equations assuming a connection written in terms of first order
derivatives of the generalized vielbein and dilaton such that wABC is a scalar. This forces to write
wABC in terms of linear combinations of fluxes. The unique solution to the above equations is given
by:

({})
w ABC =

1

1−D
(ηA[CFB] + SA[CS

D
B]FD)

+
1

3

(
FABC + SB

B′

SC
C′FAB′C′

− 1

2
SA

A′

SB
B′FA′B′C − 1

2
SA

A′

SC
C′FA′BC′

)
(3.82)

This spin connection does not transform well under local double Lorentz transformations but under
constant ones. It is straightforward to check that this connection yields the usual generalized Ricci
scalar in terms of the fluxes, that is

R(
({})
w ) = SAB(2DAFB −FAFB) + FABCFDEF

(
1

4
SADηBEηCF − 1

12
SADSBESCF

)

− 2DAFA + FAFA − 1

6
FABCFABC . (3.83)

The last line of (3.83) actually vanishes since we are imposing the strong constraint. The resulting

action giving by R(
({})
w ) coincides with (3.55) up to a boundary term. Now, we would like to point

out that a seeming paradox comes about. Since wABC defined by (3.82) is a generalized scalar we
can construct a fully determined connection by using (3.48). Let us call this connection Γ′:

10For the generalized Levi-Civita case we can just set the undetermined part Σ to zero, since the generalized torsion
vanishes in this case.
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Γ′
MNP = WMNP +

({})
w MNP , (3.84)

where
({})
w MNP = EA

MEB
NEC

P
({})
w ABC . Let us see the implication of comparing (3.78) to (3.84)

with all indices projected:

({})

Γ
¯
M

¯
N

¯
P = Γ′

¯
M

¯
N

¯
P . (3.85)

When comparing both sides of (3.85) we see that the first line of (3.82) gets canceled by several
terms of the first line in (3.78) and the difference requires:

Γ̃
¯
M

¯
N

¯
P = − 2

1−D
PM [NPP ]

RΩ¯
Q

¯
QR − Ω

¯
M

¯
N

¯
P +

1

3
F

¯
M

¯
N

¯
P . (3.86)

It is straight-forward to check that Γ̃ satisfies the desired requisites Γ̃
¯
M

¯
N ¯

M = 0 and Γ̃
¯
M

¯
N

¯
P −

Γ̃
¯
N

¯
M

¯
P + Γ̃

¯
P

¯
M

¯
N = 0 established in equations (3.33, 3.35. The undetermined part Γ̃M̄N̄P̄ gets also

fully determined with a similar form:

Γ̃M̄N̄P̄ = − 2

1−D
P̄M [N P̄P ]

P ′

ΩQ̄
Q̄P ′ − ΩM̄N̄P̄ +

1

3
FM̄N̄P̄ . (3.87)

The undetermined component Γ̃ of the generalized Levi-Civita connection is now determined in
terms of physical fields (i.e. EA

M and d). The reason why it was no possible to fully determine
the connection before is that demanding the connection to be only written in terms of PMN or
P̄MN is too restrictive. Indeed, the right-hand side of (3.86) (or (3.87)) cannot be fully written in
terms of PMN (or P̄MN ) and derivatives acting on them only. One way to see this is by noting
that the first term of (3.86) should come from a combination of terms of the form PNP ∂RP

RQPQM ,
PMP ∂RP

RQPQN and PMN∂RP
RQPQP (other combinations give zero). However, it is not possible

with combinations of these terms to obtain exactly (3.86).

We would like at this point to make a small summary of the above situation and a comparison
with general relativity. We know that the GR’s Levi-Civita connection is fully expressed in terms
of first-order derivatives acting on the metric. The spin connection (2.12), on the other hand, is
written in terms of first-order derivatives acting on the vielbein, and through (2.10), all the terms
rearrange in such a way that only the metric appears. This can be done because the Weitzenböck
connection cannot be written in terms of first-order derivatives acting on the metric. Besides, the
GR’s spin connection transforms like a SO(1, 3)-connection under local Lorentz transformations.
We also know that the equations of motion of GR can be written either in terms of the metric gµν
or the vielbein ea

µ and when written in terms of the latter, a local Lorentz invariance is manifest.
Therefore, the equations of motion of GR written in both languages contain exactly the same
information.

In DFT, the situation is very similar but, still, there are some differences. As we have seen above,
the generalized Levi-Civita connection cannot be fully written in terms of PMN (or P̄MP ) and that
causes an undetermined part of the connection to be added when this choice is made. But if we
make the choice to write the connection in terms of first-order derivatives acting on the generalized
vielbein EA

M rather than PMN (or P̄MP ), then, the undetermined parts get determined (3.86)-
(3.87). From the curved DFT space-time point of view, the connection (3.84) is well-defined (i.e.
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transforms as a connection under generalized coordinate transformations), it is fully determined and
is unique. From the double Lorentz point of view only transformations with constant parameters
are consistent. Note that in TG a similar situation occurs with the Weitzenböck connection, where
it is well-defined under diffeomorphisms but ill-behaved under local Lorentz transformations.

Despite the fact that the generalized Levi-Civita connection (3.84) can be fully written in terms of
physical fields only if one chooses the generalized vielbein and dilaton as the fundamental fields,
the DFT equations of motion can be fully written either in terms of (PMN , P̄MN , d) or (EA

M , d).
In the later case the local double Lorentz group is restored and the dynamical degrees of freedom
are exactly the same in both cases11. In this sense, we note that this global-local mechanism
is the same type of situation we have mentioned in the Introduction and analyzed throughout
this article: theories that have a well-defined curved connection with respect to diffeomorphisms
and with respect to constant Lorentz transformations, and yet, giving rise to equations of motion
with a local gauge symmetry (i.e. parameters now depending on the coordinates). Therefore,
the generalized Levi-Civita might also be interpreted as a deformed version of the generalized
Weitzenböck connection.

One more comment before finishing this subsection. In DFT (and also in TG) the gauge connection
wABC is not really a connection in the classical sense. However, from the geometric space-time
viewpoint this poses no problem since diffeomorphisms are not affected by this construction. In the
TG case, the Weitzenböck connection can be interpreted as the parallelization of the connection
(given by the basis of vielbeins). In the DFT case a proper geometric interpretation is lacking (see
however some comments in the next section).

3.8 Teleparallel Double Field Theory

With the machinery developed above it is now straightforward to consider particular cases for
connections that renders different geometric theories compared to the usual DFT (which uses the
generalized Levi-Civita connection). Of course, these geometric theories will describe the same
dynamics for the generalized vielbein and generalized dilaton as the usual DFT. An important
particular connection is the Weitzenböck connection, which will be obtained as a particular solution
in the next section. This connection is equal to

(W )

Γ MN
P = WMN

P , WMN
P = −ΩMN

P . (3.88)

This connection is η-H-compatible, or equivalently

(W )

∇ MPNP = 0,
(W )

∇ M P̄NP = 0. (3.89)

It can be interpreted as the analog of being metric-compatible in GR. The Weitzenböck connection
also renders the curvature tensor null, i.e. RMNPQ(W ) = 0. These properties would indicate that
there is a distant parallelism in the DFT-space-time, or in other words, parallel transport of vectors
would not depend on the path. Indeed, it can be checked:

(W )

∇ MEA
N = 0 . (3.90)

11This is because the components Γ̃
¯
M

¯
N

¯
P and Γ̃M̄N̄P̄ are projected out from the generalized Ricci scalar, playing

no role in the EoMs.
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It is easy to see that the Weitzenböck connection furnishes non-trivial generalized torsion and
non-trivial ∇e−2d:

(W )

T (1)
MNP = −FMNP (3.91)

(W )

∇ Me−2d = −FMe−2d (3.92)

Therefore, there is a non-trivial generalized contorsion tensor KMNP and also a non-trivial trace12

of LMNP due to ∇e−2d 6= 0. The fact that it is not enough with assuming only a non-trivial
contorsion tensor contribution is a new feature compared to the usual Weitzenböck connection
of standard geometry. The connection (3.88) is fully determined in terms of the physical fields
(EA

B, d):

(W )

K MNP = −
(W )

T (1)
N̄

¯
MP̄ +

(W )

T (1)
M̄

¯
N

¯
P +

(W )

Σ
¯
M

¯
N

¯
P +

(W )

Σ M̄N̄P̄ (3.93)

(W )

L MNP =− 2e2d

1−D
PM [NPP ]

P ′
(W )

∇ P ′e−2d − 2e2d

1−D
P̄M [N P̄P ]

P ′
(W )

∇ P ′e−2d (3.94)

(W )

Σ
¯
M

¯
N

¯
P =

1

3

(W )

T (1)

¯
M

¯
N

¯
P ,

(W )

Σ M̄N̄P̄ =
1

3

(W )

T (1)
M̄N̄P̄ (3.95)

Equation (3.95) shows that, indeed, the generalized contorsion tensor (3.93) is fully described in
terms of the generalized torsion tensor (3.91). Thus, the theory and the geometry will be described

through
(W )

T (1)
MNP and

(W )

∇ Me−2d rather than the generalized curvature of DFT. More explicitly,
with the machinery developed in the last section, it is straightforward to write the equations of
motion in terms of geometric quantities (like the generalized contorsion tensor which contains the
generalized torsion and the tensor LMNP which contains ∇e−2d) given by the generalized Weitzen-
böck connection. From (3.76) and (3.77) the equations of motion for the Teleparallel equivalent of
DFT are:

0 = PQ[N P̄M ]R
(
− 2

({})

∇ (Q

(W )

C |
¯
P |R)¯

P + 2
({})

∇ P

(W )

C (QR)¯
P −

(W )

C2
Q
¯
PR¯

P
)
, (3.96)

0 = PMKPNL
(
2
({})

∇ [M

(W )

C N ]KL + 2
({})

∇ [K

(W )

C L]MN +
(W )

C2
MNKL

)
, (3.97)

where

(W )

C MNP =
(W )

K MNP +
(W )

L MNP

= −
(W )

T (1)
N̄

¯
MP̄ +

(W )

T (1)
M̄

¯
N

¯
P +

1

3

(W )

T (1)

¯
M

¯
N

¯
P +

1

3

(W )

T (1)
M̄N̄P̄

− 2e2d

1−D
PM [NPP ]

P ′
(W )

∇ P ′e−2d − 2e2d

1−D
P̄M [N P̄P ]

P ′
(W )

∇ P ′e−2d. (3.98)

12One may wonder if it is possible to find a connection such that R(Γ) = 0 and that also satisfies ∇P = ∇P̄ =
∇e−2d = 0 but with non-trivial generalized torsion. We found the answer to be no.
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We would like to stress that when writing (3.96) in flat indices and re-expressing it explicitly in
terms of T (1) and ∇Me−2d, and after some algebra, the equation of motion gets a very similar form
compared to the equation of motion of TG (2.47). That is, equation (3.96) gets the form13:

0 = −2SD[ADB](e2d
(W )

∇ De−2d)− (e2d
(W )

∇ De−2d −DD)T̂ D[AB] + T̂ CD[A
(W )

T (1)
CD

B] (3.100)

Where
(W )

∇ D = ED
M

(W )

∇ M . We have introduced the notation

T̂ ABC = SABCDEF

(W )

T (1)
DEF (3.101)

where

SABCDEF =
1

2
SADηBEηCF +

1

2
ηADSBEηCF +

1

2
ηADηBESCF − 1

2
SADSBESCF . (3.102)

Here, T̂ABC = T̂[ABC] because
(W )

T (1) is fully antisymmetric in its indices. We remark again that
the generalized torsion transforms only under constant double Lorentz transformations but (3.100)
(which is the same as the DFT action in the vielbein formalism) possesses a local double Lorentz
symmetry. The tensor 6-index tensor S satisfies SABCDEFS

DEFA′B′C′

= δA
′

A δB
B′

δC
′

C . This is
reminiscent of the superpotential introduced in the TG theory. Indeed, compare the similarity
between the last line of (2.41) and (3.101). The above equation coincides with the usual DFT
equation of motion for the vielbein in the flux formulation as expected (see [39]).

3.9 Examples of other connections in DFT

In this subsection we will find connections that furnish non-trivial structures such as non-vanishing
curvature and torsion and explicitly write them. They will transform under global (constant) double
Lorentz transformations but the equations of motion derived from them restore the local double
Lorentz transformations (much like in the teleparallel case). These connections will turn out to
be characterized by different geometric structures compared to the generalized Levi-Civita and
Weitzenböck connection.

We start by repeating a similar analysis as in subsection (2.1) and see if we can find other con-
nections determined in terms of the physical fields. The most general form of the connection Γ
that we are considering and consistent with its transformation properties under general coordinate
transformations is:

ΓMN
Q = WMN

Q + EA
MEB

NEC
QwAB

C , (3.103)

13It may be useful to use the following identity

DC

(W )

T
(1)

CAB + 2D[A(e2d
(W )

∇ B]e
−2d) + (e2d

(W )

∇ Ce−2d)

(W )

T
(1)C

AB = 0. (3.99)
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where the spin connection is given by:

wAB
C = a1FAB

C + d1SA
A′

SB
B′

SCC′FA′B′C′

+ b1SA
A′FA′B

C + b2SB
B′FAB′

C + b3S
CC′FABC′

+ c1SA
A′

SB
B′FA′B′

C + c2SA
A′

SCC′FA′BC′ + c3SB
B′

SCC′FAB′C′

+ d2ηABFC + d3δA
CFB + d4δB

CFA

+ e1ηABS
CC′FC′ + e2δA

CSB
B′FB′ + e3δB

CSA
A′FA′

+ f1SABFC + f2SA
CFB + f3SB

CFA

+ g1SABS
CC′FC′ + g2SA

CSB
B′FB′ + g3SB

CSA
A′FA′ . (3.104)

At this point, the spin connection wAB
C does not transform well under local double Lorentz trans-

formations but under constant ones.

It is difficult to analyze generic cases for possible connections in DFT due to the amount of terms
either in the connection (3.104) or in the generalized Ricci scalar. Therefore, we will restric to the
particular case of connections satisfying

wABC + wACB = 0, (3.105)

SC
C′

wABC′ + SB
B′

wACB′ = 0. (3.106)

And, also, for simplicity, we add no dependence on FA to the connection. This is because in the
generalized Ricci scalar there could be no coupling between FA and FABC due to the possible index
contractions between them and ηAB and SAB. So we can, if we wish to, analyze terms with FA

and FABC in a separate way. The ansatz to the above requirements is then:

wAB
C = a1FAB

C + b1SA
A′

SB
B′

SCC′FA′B′C′

+ b1SA
A′FA′B

C + b2SB
B′FAB′

C + b2S
CC′FABC′

+ c1SA
A′

SB
B′FA′B′

C + c1SA
A′

SCC′FA′BC′ + a1SB
B′

SCC′FAB′C′

(3.107)

When plugging this ansatz into the generalized scalar curvature R(w) = PABPCDRACBD(w) we
can extract the equations for the coefficients. We then have:

R(w) =AFABCFABC + BSABSCDSEFFACEFBDF +

C SABSCDFAC
EFBDE +DSABFA

CDFBCD. (3.108)

Where

A =8b1b1 + 8b1b2 + 8b2b2 + 8c1c1 + 8a1c1 − 4a1

− 16a1b2 − 16b1c1 − 8a1b1 − 8b2c1 + 4b2 (3.109)
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B =16a1b1 + 8b1c1 + 8a1b2 + 16b2c1 − 4b1 − 16a1c1

− 16b1b2 − 4b1b1 − 4b2b2 − 4c1c1 − 4a1a1 + 4c1 (3.110)

C =40a1c1 + 16a1a1 + 16b1b1 + 40b1b2 + 16b2b2 + 16c1c1 − 8c1

− 4a1 − 40a1b1 − 32a1b2 − 32b1c1 − 40b2c1 + 8b1 + 4b2 (3.111)

D =32a1b1 + 40a1b2 + 40b1c1 + 32b2c1 − 4b1 − 8b2

− 20a1a1 − 32a1c1 − 20b1b1 − 32b1b2 − 20b2b2

− 20c1c1 + 8a1 + 4c1 + 8a1a1 (3.112)

By requiring that each term should vanish in order to get a vanishing generalized Ricci scalar we
obtain the following solutions for the coefficients:

a1 = 0, b2 = −2

3
, c1 =

1

3
(−1 + 3b1), (3.113)

a1 = 0, b2 = −1

2
, c1 =

1

2
(−1 + 2b1), (3.114)

a1 = 0, b2 = −1

6
, c1 =

1

6
(1 + 6b1), (3.115)

a1 = 0, b2 = 0, c1 = b1. (3.116)

Now that we have found the coefficients for the allowed connections, we compute several geometric
quantities from them. The generalized torsion for them is given respectively by:

T (1)
MNP = (−7 + 12b1)FMNP + (

16

3
− 16b1)

(
FM

¯
NP + FMN

¯
P + F

¯
MNP

)

+ (−8

3
+ 20b1)

(
F

¯
M

¯
NP + F

¯
MN

¯
P + FM

¯
N

¯
P

)
− 24b1F

¯
M

¯
N

¯
P , (3.117)

T (1)
MNP = (−7 + 12b1)FMNP + (6− 16b1)

(
FM

¯
NP + FMN

¯
P + F

¯
MNP

)

+ (−4 + 20b1)
(
F

¯
M

¯
NP + F

¯
MN

¯
P + FM

¯
N

¯
P

)
− 24b1F

¯
M

¯
N

¯
P , (3.118)

T (1)
MNP = (−7 + 12b1)FMNP + (−2

3
− 16b1)

(
FM

¯
NP + FMN

¯
P + F

¯
MNP

)

+ (
4

3
+ 20b1)

(
F

¯
M

¯
NP + F

¯
MN

¯
P + FM

¯
N

¯
P

)
− 24b1F

¯
M

¯
N

¯
P , (3.119)

T (1)
MNP = (−1 + 12b1)FMNP − 16b1

(
FM

¯
NP + FMN

¯
P + F

¯
MNP

)

+ 20b1
(
F

¯
M

¯
NP + F

¯
MN

¯
P + FM

¯
N

¯
P

)
− 24b1F

¯
M

¯
N

¯
P . (3.120)
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It is easy to show that ∇Me−2d = −e−2dFM for the four connections (3.113)-(3.116) found above.
The solution (3.116) contains the Weitzenböck connection by taking b1 = 0 and indeed the gener-
alized torsion reduces to (3.91). Let us point out a couple of things. First of all, the generalized
torsions have a very similar structures between each other, and, in particular, it can be noted that
they all have common factors parametrized by b1 which are given by (3.120). This is because the
three connections given by (3.113)-(3.115) have a linear common dependence given by the connec-
tion (3.116). We have computed the generalized curvature tensor for these connections and it is
different from zero for all of them (its components are too long to be displayed), in this sense they
are all different from the Weitzenböck connection which furnishes a null curvature tensor. The
generalized Ricci tensor is not that long, and, for completeness, we display it in planar indices.
Thus, the first term of (3.76) for the four connections takes respectively the following form:

PC[BP̄A]DRC
¯
ED¯

E(w) =
8

3
SF

CSE[BFA]FDFECD − 16

3
SF

D′

SF ′
E′

SC′[BFA]FF ′FC′D′E′

+
8

3
SC[BFA]DEFCDE − 4DCFAB

C + 4DC′FABDSC′D

− 4DC′FE′FD′

SA
E′SB

FSC′D′ + 4DC′FC′
D′E′

SA
D′SB

E′ (3.121)

PC[BP̄A]DRC
¯
ED¯

E(w) = −4SFC′

SD′E′

SF ′[BFA]
FD′FF ′C′E′ − 4SF [AFB]B′C′FFB′C′

− 4SFD′DFFB′C′D′

SA
B′SB

C′ + 4DFFF
B′C′

SA
B′SB

C′

− 4DCFAB
C + 4DC′FABDSC′D (3.122)

PC[BP̄A]DRC
¯
ED¯

E(w) = −8

3
SE′C′

SF [BFA]
E′

D′FFC′D′ +
4

3
SB′C′

SD′E′

SF [BFA]
B′D′FFC′E′

− 4

3
SE′[AFB]D′C′FE′D′C′ (3.123)

PC[BP̄A]DRC
¯
ED¯

E(w) = 0. (3.124)

We see that the parameter b1 has dropped out from (3.121)-(3.124). Although we have not displayed
the generalized curvature tensor, however, this parameter does not drop out from it for any of
the above connections. This means that these connections (and in particular solution (3.116) with
b1 6= 0) are different from the Weitzenböck connection from a geometric point of view14. Interesting
enough, however, connection (3.116) renders PQ[N P̄M ]RRQ

¯
PR¯

P (Γ) equal to zero (3.124). We have
seen a similar effect before commented in subsection (2.1). There we stated that there are gauge
transformations for the curvature tensor and scalar curvature. We do not know if the generalized
curvature tensor possesses any kind of gauge transformation as in equation (2.19). If we compare
the Riemannian curvature tensor in planar indices given by (2.13) with the one in DFT given
by (3.49) (both for generic connections) we see that there are two important differences: The
first one is that the usual Riemann curvature is antisymmetric in two of its indices, while the

14One may ask if the Bianchi identities 0 = D[AFBCD]−
3
4
F[AB

EFCD]E and 0 = DCFCAB+2D[AFB]−FCFCAB

can be used to render the generalized curvature tensor and (or) the generalized Ricci tensor null. But a careful
inspection shows that this is not the case.
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DFT Riemann tensor is symmetric under the exchange of its pairs of indices, i.e., RMNKL =
RKLMN (only when η-compatibility is enforced the share the same index properties). The second
difference is that the generalized curvature tensor in planar indices makes use of the Weitzenböck
connection explicitly through the appearance of FABC = −3W[ABC]. Perhaps some sort of gauge
transformation would necessarily include the use of FABC explicitly. The free parameter b1 may be
an indication that either a gauge transformation at the generalized curvature tensor level exists or it
is something particular of the generalized Ricci tensor and/or generalized scalar. In either case, the
generalized Riemann curvature for the connections given by (3.113)-(3.116) are different from the
curvatures given by the Weitzenböck connection. Thus, these connections are not gauge-artifacts
of the generalized Weitzenböck connection.

From a geometric point of view, the first three connections given by the solutions (3.113)-(3.115)
yield equations of motion (for the generalized vielbein and dilaton) given by (3.76)-(3.77) and are
represented geometrically by a non-vanishing generalized Ricci tensor, generalized contorsion tensor
and L-tensor (through ∇e−2d 6= 0). The connection (3.116) yields only non-vanishing contorsion
tensor and L-tensor. As a remark, the generalized torsion of all of these connections turns out to be
an antisymmetric tensor due to the condition wABC = −wACB. This implies that the expressions

for components of the Σ tensor are Σ
¯
M

¯
N

¯
P = 1

3T
(1)

¯
M

¯
N

¯
P and ΣM̄N̄P̄ = 1

3T
(1)

M̄N̄P̄
. This means that not

only the connections are fully determined but also provides a well-defined contorsion tensor (3.39).
We want to stress again that these connections, which we have dubbed them deformed versions of
the Weitzenböck connection, are well-behaved under general coordinate transformations (i.e they
are a generalized scalar), and transform under constant double Lorentz transformations. When
plugging these connections in the equations of motion (3.76) and (3.77) we recover the local double
Lorentz transformations.

4 Summary

We have expanded on geometric notions, such as contorsion tensor and non-metricity tensors in
DFT. This has also allowed us to obtain other connections in DFT, besides the generalized Levi-
Civita and Weitzenböck connections, capable of describing the same dynamics of usual DFT in
terms of other geometric quantities. The interpretation we are giving is that the new connections
are deformed versions of the Weitzenböck connection. We have first analyzed conditions on a
generic connection (1.1) in standard geometry in order to reproduce equivalent formulations to
Einstein Gravity. We have done this by extracting information from the vanishing of the scalar
curvature based on a general connection written in terms of first-order derivatives of the vielbein.
By doing this, we have found in section (2.2) that there are only four metric-compatible connections
that satisfy the conditions, one of them being the Weitzenböck connection. In this sense we are
obtaining Teleparallel Gravity as a particular case. For a generic case that includes both torsion
and non-metricity, there seems to be an infinite amount of solutions. In section (2.3) we analyzed

a particular case of a Weyl space with Weyl’s vector being proportional to
(W )

T µ
σ
σ (the vector

part of the Weitzenböck torsion). The connections (2.37) have torsion and non-metricity and are
related to the metric-compatible ones (2.27)-(2.30) through the transformation (2.20). Our generic
connections (except for the Weitzenböck one) present non-vanishing curvature, torsion and non-
metricity. The dynamics of the theories, defined by these connections, is represented by a mixture
of those quantities. This can be seen in the equations of motion (2.57) (or (2.58)) where the Ricci
tensor, torsion and non-metricity enters in a non-trivial way.
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With respect to the DFT part, we have followed the same procedure used in the GR case. We have
found that it is possible to consider a decomposition of a generic DFT connection (equation (3.37))
in terms of a generalized Levi-Civita, generalized contorsion tensor and a L-tensor. Although
this connection contains seeming undetermined parts Γ̃ and Σ, we have seen that they can be
determined. Indeed, in (3.7) we saw that it is possible to determine the undetermined part Γ̃ of the
generalized Levi-Civita connection by requiring to be written as first-order derivatives acting on
the generalized vielbein rather than P or P̄ . And we have seen examples of how to determine the
Σ-tensor in the Teleparallel equivalent case (subsection 3.8) and in other examples of connections
in subsection (3.9)). We have found in subsection 3.9) connections described by generic geometric
quantities such as generalized torsion, ∇e−2d and curvature, capable of describing the same DFT
dynamics through the general equations of motion (3.76) and (3.77). These equations allow one
to formulate the DFT dynamics in terms of other geometric quantities rather than the vanishing
of the generalized Ricci tensor and generalized Ricci scalar as in the standard approach to DFT
using the generalized Levi-Civita connection. This means, in a sense, that it is not clear what is the
fundamental connection to use in DFT. An observation is that we do not know if the generalized
curvature tensor possesses any kind of gauge transformation like in standard geometry (equation
(2.19)). If we take a look at the solutions give in (3.113)-(3.116) we saw that a free parameter b1
has remained. Recall that the usual scalar curvature of Riemannian geometry has an invariance
given by (2.20) which descends from a generalization of 2.19) (see also the discussion in subsection
(2.4)). The free parameter b1 might be an indication that some sort of gauge transformation for the
generalized curvature tensor could exist. However, due to the differences in the geometric quantities
characterizing our deformed versions of the Weitzenböck connection, we concluded that these are
not gauge-artifacts of the generalized Weitzenböck connection. We content ourselves with showing,
as we did above, that non-trivial solutions, other than the generalized Levi-Civita connection and
the generalized Weitzenböck connection, exist and yield an equivalent theory (in terms of dynamical
degrees of freedom) to DFT and yet described by different geometric quantities. It is important to
stress again, that this equivalence with the DFT dynamics is due to the same global-local mechanism
of the TG case either in GR or DFT.

As a future work, there are a couple of things to explore. It might be useful to understand if
the teleparallel equivalent of DFT can be interpreted as a gauge theory, in a similar fashion as in
the teleparallel equivalent of GR. There, TEGR can be understood as arising from gauging the
translation group R

4 where the gauge potential is related to the vielbein (see for instance [19] for
reviews). In DFT, we might try to follow a similar procedure keeping in mind the periodicity of the
doubled-torus bundle and the section condition, so in this case a compact subspace of R2D would
be gauged. Another line of research would be to explore applications to α′-corrections. As said in
the Introduction, higher-order derivatives terms in the DFT action are important to understand
how T-duality constraints or gives information about possible higher-order curvature completion to
an effective action coming from string theory. This work has shown that it is possible to rewrite
DFT in terms of other geometric quantities not based only on generalized curvatures as in standard
DFT. For instance, any of the connections found in subsection(3.9), including the Weitzenböck
connection, are described, generically, by a curvature tensor, generalized contorsion and L-tensor
through ∇e−2d. In particular, the Weitzenböck case, gives the teleparallel equivalent of DFT and
it is only described by a generalized contorsion tensor and non-vanishing ∇e−2d. It might well be
possible to describe higher-order derivative terms in the teleparallel equivalent coming from these
quantities, which is another motivation for this work: α′-corrections in DFT [30, 31, 32, 33]. In
general it would be useful to have all of the components of the generalized Riemann curvature to
be well-defined in order to write down higher-order derivative corrections to the effective action.
As said before, when writing in terms of generalized metric or dilaton, the generalized Riemann
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curvature cannot be fully determined in terms of them. This suggests α′ corrections to generalized
diffeomorphisms should be taken into account to have and α′ corrections to the effective action.
Even if there were a physical generalized Riemann curvature built from the generalized metric and
dilaton it could not be of use in constructing a Riemann squared [30]. In a different approach [31],
the frame-formalism of DFT is used to address the α′-corrections. This formalism turns out to be
slightly more flexible since it encompasses previous α′-DFT proposals based on generalized metric
formalism. It also maintains the usual form of generalized diffeomorphisms (no α′-corrections) but
the local double Lorentz transformations receive corrections plus an anomalous transformation of
the generalized metric under them. These non-standard transformations determine the structure
of the four-derivative corrections. Given the fact that the connections described in this paper
are fully determined in terms of and built out from the generalized frame of DFT, it might have
some relevance to the understanding of the α′-corrections in DFT. For instance, the f(T )-theories
mentioned in the Introduction are higher-order derivative corrections to the usual TG (or Einstein-
Hilbert action). The connections to be described here contain, for instance, non-trivial generalized
torsion T , so any f(T )-theory to be considered will naturally contain higher-order corrections and
may be a supplement for the standard approach of α′-corrections in terms of Riemann powers.

In any case, important attention to the local double Lorentz transformations must be paid, since, a
priori, it is not clear what combinations of higher-order terms coming from these geometric quan-
tities will keep partially or not at all the local double Lorentz transformations. In our approach,
when considering the connections as written in terms of first-order derivatives of the (generalized)
vielbein they are fully determined in terms of the physical field and, also, they generally break
the local (double) Lorentz transformations. Only the global group (i.e. with constant parameters)
survives. However, as said before, our actions and equations of motion derived form these connec-
tions restore the local (double) Lorentz group and this might also apply to a f(C)-theory where C
includes torsion, non-metricity, etc.

These f(T )-theories are out of the scope of this work, but, as a first step, it is useful to know that
they may be constructed using the connections described in this paper.
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