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Abstract
Aim: To fill critical knowledge gaps with regard to the distributions and conservation 
status of the wild relatives of chile peppers (Capsicum L.).
Location: The study covered the potential native ranges of currently recognized wild 
Capsicum taxa, throughout the Americas.
Methods: We modelled the potential distributions of 37 wild taxa in the genus, char-
acterized their ecogeographic niches, assessed their ex situ and in situ conservation 
status, and performed preliminary threat assessments.
Results: We categorize 18 of the taxa as “high priority” for further conservation ac-
tion as a consequence of a combination of their ex situ and in situ assessments, 17 
as “medium priority,” and two as “low priority.” Priorities for resolving gaps in ex situ 
conservation were determined to be high for 94.6%, and medium or high with re-
gard to increased habitat protection for 64.9% of the taxa. The preliminary threat 
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1  | INTRODUC TION

Crop wild relatives—the wild progenitors and closely related species 
to cultivated plants—have provided many important agronomic and 
nutritional traits for crop improvement (Dempewolf et al., 2017; 
Hajjar & Hodgkin, 2007). As populations of some of these taxa are 
adapted to extreme climates, adverse soil types, and important pests 
and diseases, they may provide key traits for the adaptation of crop 
plants to emerging and projected future challenges (Dempewolf et 
al., 2013).

Knowledge gaps with regard to wild genetic resources, includ-
ing information on species’ taxonomy and relatedness to pertinent 
crops (i.e., gene pool assignments), geographic distributions, and val-
ues for traits of interest, constrain their potential use in plant breed-
ing (Dempewolf et al., 2017; Miller & Khoury, 2018). Such knowledge 
gaps also affect conservation efforts, which are essential to protect 
vulnerable populations from habitat destruction, over-harvest-
ing, climate change, pollution, and invasive species (Bellon, Dulloo, 
Sardos, Thormann, & Burdon, 2017; Díaz et al., 2019; Jarvis, Lane, & 
Hijmans, 2008), and to ensure that these genetic resources are safe-
guarded for the long term and available for research in ex situ plant 
conservation repositories (Castañeda-Álvarez et al., 2016; Gepts, 
2006). Global analyses indicate that many crop wild relatives are 
poorly represented in gene banks (Castañeda-Álvarez et al., 2016) 
and in protected areas (Khoury et al., 2019a). These reports highlight 
the urgency of addressing fundamental knowledge gaps to have the 
information available to guide conservation and crop improvement 
efforts.

The chile pepper genus (Capsicum L.) originated in the Andes 
Mountains, in north-western South America, and subsequently di-
versified and dispersed, initially by birds and later also by people, 
throughout the neotropics and subtropics (Bosland & Votava, 2012; 
Carrizo Garcıa et al., 2016; Noss & Levey, 2014). There is evidence 
that humans were using wild chile peppers as early as 8,000–
10,000 years ago (Davenport, 1970; Heiser, 1969; Pickersgill, 1966). 
Domesticated forms of chile peppers, as well as human dispersal of 
the fruits within the Americas, including to parts of the Caribbean, 
have been documented from at least 6,000 years ago (Jarrett et al., 
2019; Perry et al., 2007; Perry & Flannery, 2017; Pickersgill, 1969, 
1977; Walsh & Hoot, 2001). Originally used primarily for medicinal 

and ceremonial purposes, chile peppers became an important spice 
and vegetable for diverse Indigenous peoples (Bosland & Votava, 
2012; Luna-Ruiz, Nabhan, & Aguilar-Meléndez, 2018; Smith, 1967).

Today, chile peppers are used worldwide as a vegetable, spice, 
colourant and pharmaceutical (Wall & Bosland, 1998). They are con-
sumed daily by approximately a quarter of the world's population 
(Halikowski Smith, 2015). Some chile pepper varieties have excep-
tionally high levels of provitamin A (Guzman, Bosland, & O’Connell, 
2011; Kantar et al., 2016) and thus can make a significant contri-
bution to fulfilling that nutritional requirement. Chile peppers are 
a high value crop (DeWitt & Bosland, 1993), providing economic 
benefits to both smallholder and larger-scale farmers (Kahane et al., 
2013).

Capsicum contains five principle domesticated chile pepper 
taxa—Capsicum annuum L. var. annuum, Capsicum baccatum L. var. 
pendulum (Willd.) Eshbaugh [incl. syn. Capsicum baccatum L. var. um-
bilicatum (Vell.) Hunz. & Barboza], Capsicum chinense Jacq., Capsicum 
frutescens L. and Capsicum pubescens Ruiz & Pav. (Bosland & Votava, 
2012; Walsh & Hoot, 2001)—and ca. 37 wild taxa, some of which 
are also occasionally cultivated in home gardens (Table 1) (Baral & 
Bosland, 2002; Zonneveld et al., 2018). Among the domesticated 
species, C. annuum var. annuum is the most widely grown and stud-
ied. Both C. annuum var. annuum and C. baccatum var. pendulum have 
extant putative progenitors (Capsicum annuum var. glabriusculum 
(Dunal) Heiser & Pickersgill and C. baccatum L. var. baccatum, re-
spectively); the progenitors of the remaining domesticates have not 
been identified.

Three genetic (species) complexes have been recognized within 
the genus, based on genetic relatedness and reproductive compat-
ibility with the domesticated taxa (Barchenger & Bosland, 2019; 
Emboden, 1961; Eshbaugh, 1970; Heiser & Smith, 1948; Pickersgill, 
1971, 1980; Scaldaferro, 2019; Tong & Bosland, 1999). Each of these 
complexes contains both domesticated and wild taxa. Member 
species of the annuum complex generally have white, greenish, or 
yellowish flowers, and include the crop species C. annuum var. ann-
uum, C. chinense and C. frutescens. Members of the baccatum com-
plex typically have white flowers with yellow to green corolla spots. 
Members of the pubescens complex have purple flowers. While 
comprehensive crossability studies between all species in the genus 
have yet to be completed (Barchenger & Bosland, 2019), successful 

assessment indicated that six taxa may be critically endangered, three endangered, 
ten vulnerable, six near threatened and 12 least concern.
Main conclusions: Taxonomic richness hot spots, especially along the Atlantic coast 
of Brazil, in Bolivia and Paraguay, and in the highlands of Colombia, Ecuador, Peru and 
Venezuela, represent particularly high priority regions for further collecting for ex 
situ conservation as well as for enhanced habitat conservation.
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TA B L E  1   Capsicum L. taxa and their known chromosome numbers, clades, complexes, genetic relative/potential gene pool classifications, 
and domestication/cultivation status

Taxa
Chromosome 
(n) Cladea Complexb

Genetic relative/
potential 
gene pool 
classificationc Wild or domesticatedd

Capsicum annuum L. var. annuum 12 Annuum Annuum B2, P3 Domesticated

Capsicum annuum L. var. glabriusculum 
(Dunal) Heiser & Pickersgill

12 Annuum Annuum A1, B2, P3 Wild

Capsicum baccatum L. var. pendulum (Willd.) 
Eshbaugh [incl. syn Capsicum baccatum L. 
var. umbilicatum (Vell.) Hunz. & Barboza]

12 Baccatum Baccatum A2 Domesticated

Capsicum baccatum L. var. baccatum 12 Baccatum Baccatum A2, B1, P3 Wild

Capsicum benoistii Hunz. ex Barboza Unknown       Wild

Capsicum caatingae Barboza & Agra 12 Caatinga     Wild

Capsicum caballeroi M. Nee Unknown Bolivian     Wild

Capsicum campylopodium Sendtn. 13 Atlantic Forest     Wild

Capsicum cardenasii Heiser & P. G. Sm. 12 Purple Corolla Pubescens A3, B3, P1 Wild, also cultivated in 
home gardens

Capsicum ceratocalyx M. Nee Unknown Bolivian     Wild

Capsicum chacoense Hunz. 12 Baccatum Annuum A2, B2 Wild, also cultivated in 
home gardens

Capsicum chinense Jacq. 12 Annuum Annuum A2, B2, P3 Domesticated; wild 
status uncertain

Capsicum coccineum (Rusby) Hunz. Unknown Bolivian     Wild

Capsicum cornutum (Hiern) Hunz. 13 Atlantic Forest     Wild

Capsicum dimorphum (Miers) Kuntze Unknown Andean     Wild

Capsicum eshbaughii Barboza Unknown Purple Corolla   P2 Wild

Capsicum eximium Hunz. 12 Purple Corolla Pubescens A3, B3, P1 Wild, also cultivated in 
home gardens

Capsicum flexuosum Sendtn. 12 Flexuosum     Wild

Capsicum friburgense Bianchetti & Barboza Unknown Atlantic Forest     Wild

Capsicum frutescens L. 12 Annuum Annuum A2, B2, P3 Domesticated; wild 
status uncertain

Capsicum galapagoense Hunz. 12 Annuum Annuum A2, P3 Wild

Capsicum geminifolium (Dammer) Hunz. 13 Andean     Wild

Capsicum hookerianum (Miers) Kuntze Unknown Andean     Wild

Capsicum hunzikerianum Barboza & 
Bianchetti

Unknown Atlantic Forest     Wild

Capsicum lanceolatum (Greenm.) C. V. Morton 
& Standl.

13 Andean     Wild

Capsicum longidentatum Agra & Barboza 12 Longidentatum     Wild

Capsicum longifolium Barboza & S. Leiva 13 Andean     Wild

Capsicum lycianthoides Bitter 13 Andean     Wild

Capsicum minutiflorum (Rusby) Hunz. Unknown Bolivian     Wild

Capsicum mirabile Mart. ex Sendtn. 13 Atlantic Forest     Wild

Capsicum neei Barboza & X. Reyes Unknown Bolivian     Wild

Capsicum parvifolium Sendtn. 12 Caatinga     Wild

Capsicum pereirae Barboza & Bianchetti 13 Atlantic Forest     Wild

Capsicum piuranum Barboza & S. Leiva 13 Andean     Wild

(Continues)
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hybridizations are known among species (Scaldaferro, 2019), includ-
ing between those belonging to different complexes (Walsh & Hoot, 
2001). Provisional clades of Capsicum species, based on their posi-
tions in phylogenetic trees using sequence-based molecular mark-
ers, have also been described (Carrizo Garcıa et al., 2016). Genetic 
relatedness classifications based on interfertility research, supple-
mented by taxonomic, phylogenetic and ploidy information, provide 
partial indications of the gene pools of the domesticated species 
(Table 1; USDA ARS NPGS, 2019).

Unlike tomato (Solanum lycopersicum L.; Lin et al., 2014) and po-
tato (Solanum tuberosum L.) (Hirsch et al., 2013), other important 
crops in the Solanaceae, the genetic diversity contained in wild rel-
atives of chile peppers has not been well studied (van Zonneveld et 
al., 2015) or widely utilized (Mongkolporn & Taylor, 2011), aside from 
a few reports of disease resistance (Kenyon, Kumar, Tsai, & Hughes, 
2014). Tolerance of wild Capsicum to abiotic stresses such as salinity, 
drought, flooding and heat, all recognized challenges in the produc-
tion of the crop taxa (Aloni, Peet, Pharr, & Karni, 2001; De Pascale, 
Ruggiero, Barbieri, & Maggio, 2003; Gajanayake, Trader, Reddy, & 
Harkess, 2011; Han, Li, Wang, & Miao, 1996; Maas & Hoffman, 1977; 
Rao & Li, 2003), has not been investigated.

A number of wild Capsicum taxa are harvested from nearby pop-
ulations and sold in local and regional markets. For example, fruit of 
Capsicum eximium Hunz. and C. baccatum var. baccatum are much in 
demand in Bolivia due to their unique taste profiles, thus providing 
market opportunities for local communities (van Zonneveld et al., 
2015). In Mexico, flavours associated with C. annuum var. glabrius-
culum make them highly sought after and consumers are willing to 
pay a premium for more flavourful fruit (Villalon-Mendoza, Medina-
Martinez, Ramirez-Meraz, Solis Urbina, & Maiti, 2014).

Recent conservation assessments are lacking for much of the 
Capsicum genus. The IUCN Red List of Threatened Species lists 
five taxa—C. annuum L. (Least Concern [LC]; Aguilar-Meléndez, 
Azurdia, Cerén-López, Menjívar, & Contreras, 2019), Capsicum caat-
ingae Barboza & Agra (LC; BGCI & IUCN SSC Global Tree Specialist 
Group, 2019), Capsicum lanceolatum (Greenm.) C. V. Morton & Standl. 
(Endangered [EN], due to agriculture and logging activities; Azurdia, 
Aguilar-Meléndez, Menjívar, Cerén-López, & Contreras, 2017), C. 
frutescens (LC, although populations decreasing due to agriculture, 
livestock ranching and wild harvesting; Azurdia, Aguilar-Meléndez, 
Cerén-López, Contreras, & Menjívar, 2017a) and Capsicum rhomboi-
deum (Dunal) Kuntze (LC; Azurdia, Aguilar-Meléndez, Cerén-López, 
Contreras, & Menjívar, 2017b). The NatureServe Explorer lists conser-
vation assessments only for C. annuum, C. annuum var. annuum and C. 
annuum var. glabriusculum, all of which were determined to be secure 
although the assessments are from the 1990s (NatureServe, 2019).

Here we use taxonomic and geographic occurrence information 
to model the potential distributions of all 37 currently known wild 
taxa in the genus Capsicum, and to characterize their ecogeographic 
niches. We assess the conservation status of the taxa, in gene banks 
and botanic gardens (ex situ), and in protected areas (in situ), and 
perform preliminary threat assessments.

2  | METHODS

2.1 | Occurrence information

Reference occurrence data were obtained from all records listed 
within the genus Capsicum from the Global Biodiversity Information 

Taxa
Chromosome 
(n) Cladea Complexb

Genetic relative/
potential 
gene pool 
classificationc Wild or domesticatedd

Capsicum praetermissum Heiser & P. G. Sm. 12 Baccatum Baccatum A2, B1, P3 Wild

Capsicum pubescens Ruiz & Pav. 12 Pubescens Pubescens   Domesticated; wild 
status uncertain

Capsicum recurvatum Witas. 13 Atlantic Forest     Wild

Capsicum rhomboideum (Dunal) Kuntze 13 Andean     Wild

Capsicum schottianum Sendtn. 13 Atlantic Forest     Wild

Capsicum tovarii Eshbaugh et al. 12 Tovarii Baccatum B3 Wild

Capsicum villosum Sendtn. (includ-
ing Capsicum villosum Sendtn. var. muticum 
Sendtn. and Capsicum villosum Sendtn. var. 
villosum)

13 Atlantic Forest     Wild

aProvisional clades of Capsicum species based on their positions in strict consensus trees using three molecular markers (Carrizo Garcıa et al., 2016). 
bAs outlined in Scaldaferro (2019). 
cA denotes the crop C. annuum var. annuum; B for C. baccatum var. pendulum and P for C. pubescens. Taxa are assigned to genetic relative categories 
for these domesticated species into three groups: 1 for primary (closest relatives), 2 for secondary and 3 for tertiary (most distant relatives in the 
genus). Assignments as per USDA ARS NPGS (2019), based on crossability, phylogenetic and other evidence. Given assigned complexes, genetic 
relative classifications for taxa with regard to C. annuum var. annuum may be assumed equivalent with regard to C. chinense and C. frutescens. 
dHome garden use as noted in van Zonneveld et al. (2018). 

TA B L E  1   (Continued)
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Facility (GBIF, 2018), the Global Crop Wild Relative Occurrence 
Database (Global Crop Diversity Trust, 2018a), scientific literature 
(Barboza, Agra, Romero, Scaldaferro, & Moscone, 2011; Barboza 
& Bianchetti, 2005; Barboza, Carrizo García, Leiva González, 
Scaldaferro, & Reyes, 2019) and from the authors’ own botanical ex-
plorations. Gene bank and botanical garden conservation occurrence 
as well as reference data were obtained from the Genesys plant 
genetic resources portal (Global Crop Diversity Trust, 2018b), the 
USDA National Plant Germplasm System (GRIN Global; USDA ARS 
NPGS, 2018), the United Nations Food and Agriculture Organization 
World Information and Early Warning System on Plant Genetic 
Resources for Food and Agriculture (WIEWS) (FAO, 2018), and from 
the Botanic Gardens Conservation International PlantSearch data-
base (BGCI, 2019). Duplicate records were removed with preference 
for original/most recently updated data providers (e.g., USDA ARS 
NPGS dataset instead of equivalent USDA records in Genesys).

Taxonomic names were standardized based on current literature 
(Barboza & Bianchetti, 2005; Barboza et al., 2011, 2019; Carrizo Garcıa 
et al., 2016; Jarrett et al., 2019) and a monograph on the genus soon to be 
published (Barboza et al., in prep). Cultivated taxa; records listed in sample 
status fields as other than wild, weedy or null (e.g., landrace, improved, 
breeding material and cultivated); fossil specimens in the GBIF dataset; 
and records listed in collecting/acquisition source fields as sourcing from 
markets, institutes and home gardens were excluded. In preparation for 
the conservation analysis, we classified each record according to whether 
it was a reference observation (labelled H, as most of these records were 
from herbaria), or a “site where germplasm collected” location of an 
existing ex situ plant gene bank or botanic garden conservation acces-
sion (labelled G, as most records were from gene banks). For GBIF, this 
classification was accomplished by filtering the “Basis of Record” field, 
assigning “living specimen” records as G, with the other categories (ob-
servation, literature, preserved specimen, human observation, machine 
observation, material sample and unknown) assigned as H. All records in 
Genesys, WIEWS and PlantSearch were assigned G, while GRIN Global 
records were assigned G when their status field was listed as “active” and 
H when “inactive”. Records from the Global Crop Wild Relative Database 
had already been categorized accordingly. Gene bank/botanic garden (G) 
occurrences with detailed locality information but lacking coordinates 
were georeferenced using Google Earth (Google, 2019a) to maximize the 
comprehensiveness of the ex situ conservation gap analysis.

To review the occurrence data in preparation for distribution 
modelling, H and G coordinates were uploaded to an interactive 
mapping platform (Google, 2019b). Occurrences in bodies of water 
or in clearly incorrect locations were corrected or removed. Refined 
occurrence data were extracted for use in distribution modelling. 
The final occurrence dataset is available in Appendix S1, sheet 1 in 
the Supporting Information.

2.2 | Distribution modelling

The maximum entropy (MaxEnt) algorithm (Phillips, Anderson, Dudik, 
Schapire, & Blair, 2017) accessed through the R statistical package 

“dismo” (Hijmans, Phillips, Leathwick, & Elith, 2017) was used to pro-
duce potential ecogeographic (climatic and topographic) suitability 
models (i.e., potential distribution models) for the taxa, following pro-
cesses outlined in Khoury et al. (2019a). A total of 26 ecogeographic 
predictors (Table S2.1 in the Supporting Information) were assem-
bled. These included 19 bioclimatic variables, and solar radiation, 
water vapour pressure, and wind speed, as derived from WorldClim 
2 (Fick & Hijmans, 2017). For the final three variables, we produced 
annual values by calculating the median across monthly values. 
Altitude data were obtained from the CGIAR-Consortium for Spatial 
Information (CSI) dataset based on NASA Shuttle Radar Topography 
Mission (STRM) data (Jarvis, Reuter, Nelson, & Guevara, 2008). 
Variables for slope and aspect were also incorporated after having 
been calculated from the altitude dataset using the terrain function 
in R package “raster” (Hijmans, 2017). All ecogeographic predictors 
were processed at a spatial resolution of 2.5 arc-min (~5 km2 at the 
equator) (values available in Appendix S1, sheet 2 in the Supporting 
Information; raw data available from Khoury et al., 2019b).

Ecogeographic variables (per taxon) were selected using the R 
package “VSURF” (Genuer, Poggi, & Tuleau-Malot, 2018). All vari-
ables with no measurable impact on model performance were 
removed and the remaining variables were ranked in order of impor-
tance. Starting with the most important predictor, variables with a 
Pearson's correlation coefficient greater than a 0.7 were removed. 
This process was performed for the top five predictor variables, 
with the remaining variables employed in the modelling process 
(Appendix S1, sheet 3 in the Supporting Information).

The number of comparative background points (pseudo-ab-
sences) were defined per taxon in proportion to the total area of the 
spatial background, which was calculated based on pertinent ecore-
gion boundaries, that is the ecoregions defined in Olson et al. (2001) 
(available from Khoury et al., 2019b) wherein occurrence data fell, 
bounded by pertinent country borders, with a maximum of 5,000 
pseudo-absences per taxon. Pseudo-absence points that fell within 
the same cell as a presence point were not included.

For each taxon with at least 10 coordinates, the modelled dis-
tribution was calculated as the median of ten MaxEnt model repli-
cates (K = 10), using linear, quadratic, hinge and product features, 
with a regularization parameter β = 1.0. For taxa with less than ten 
coordinates, the median of three replicates (K = 3) was calculated. 
Following previous gap analysis studies (Castañeda-Álvarez et al., 
2016; Ramirez-Villegas, Khoury, Jarvis, Debouck, & Guarino, 2010), 
the MaxEnt model output was evaluated using the area under the re-
ceiver operating characteristic curve (AUC), the standard deviation 
of the AUC across replicates (SDAUC) and the proportion of the po-
tential distribution model with a standard deviation of the replicates 
above 0.15 (ASD15). A robust model as per the previous studies re-
quired an AUC ≥ 0.7, SDAUC < 0.15, and ASD15 ≤ 10%. All models 
were individually evaluated for quality of fit based on the authors’ 
field experiences. Distribution models were thresholded using the 
maximum sum of sensitivity and specificity (Liu, Berry, Dawson, & 
Pearson, 2005; Liu, White, & Newell, 2013) and clipped to the extent 
of the native country—ecoregion boundaries (Olson et al., 2001).
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2.3 | Ecogeographic characterization

Ecogeographic predictor information, at a resolution of 30 arc-sec-
onds (approximately 1 km2 at the equator) for 23 pertinent variables 
(slope and aspect variables were not included as they do not provide 
meaningful ranges with which to distinguish variation among taxa) 
from the WorldClim 2 and CGIAR-CSI datasets, were extracted for 
all records with coordinates, for all taxa (Appendix S1, sheet 4 in the 
Supporting Information). These data were used to characterize taxa 
with regard to their potential ecogeographic niches for each vari-
able. We also used these data to assess the representation of these 
niches in ex situ conservation by comparing the distributions of G 
points for each taxon within the full spread of its occurrences, as 
supplement to the conservation analysis described below.

2.4 | Conservation gap analysis

We assessed the degree of representation of each taxon in both ex 
situ and in situ conservation systems building on methods outlined in 
Khoury et al. (2019a). For ex situ, four scores were calculated.

The sampling representativeness score ex situ (SRSex) provides 
a general indication of the completeness of gene bank and botanic 
garden conservation collections, for each taxon. This compares 
the total count of germplasm accessions (G) available in ex situ re-
positories against the total count of reference (H) records, with an 
ideal ratio of 1:1. Unique among the conservation metrics, this score 
makes use of all compiled reference and germplasm records, regard-
less of whether they include geographic coordinates. In this, and in 
all other metrics, SRSex is bound between 0 and 100, with 0 repre-
senting an extremely poor state of conservation and 100 represent-
ing comprehensive (complete) conservation.

The geographic representativeness score ex situ (GRSex) is a geo-
graphic measurement of the proportion of the range of the taxon con-
served ex situ. Buffers (“CA50”) of 0.5° (~50 km radius) were created 
around each G collection point in order to estimate geographic areas 
already collected within the distribution models. Comprehensive con-
servation under this metric was considered to have been accomplished 
when the buffered areas covered the entire distribution model.

The ecological representativeness score ex situ (ERSex) is an eco-
logical measurement of the proportion of the range of the taxon con-
served in ex situ repositories. The ERSex compares the ecoregional 
diversity encompassed in ex situ conservation repositories to the 
diversity throughout the distribution models. It considers compre-
hensive conservation to have been accomplished only when every 
ecoregion potentially inhabited by a taxon is included at least once 
within the set of CA50 buffered areas. The layer used for estimating 
the ERSex contained 867 distinct terrestrial ecoregions worldwide 
(Olson et al., 2001) (available from Khoury et al., 2019b). A final con-
servation score for ex situ (FCSex) was derived by calculating the 
average of the three individual ex situ conservation metrics.

For the analysis of the state of in situ conservation, four metrics 
were calculated based on the extent of representation of the range 

of each taxon within officially recognized protected areas. Data 
were obtained from the World Database of Protected Areas (WDPA) 
(IUCN, 2019), selecting terrestrial and coastal reserves marked as 
designated, inscribed or established. The sampling representative-
ness score in situ (SRSin) calculates the proportion of occurrences of 
a taxon that fall within a protected area.

The geographic representativeness score in situ (GRSin) com-
pares the area (in km2) of the distribution model located within 
protected areas versus the total area of the distribution model, con-
sidering comprehensive conservation to have been accomplished 
only when the entire distribution occurs within protected areas.

The ecological representativeness score in situ (ERSin) compares 
the ecological variation encompassed within the range located in-
side protected areas to the ecological variation encompassed within 
the total area of the distribution model. It considers comprehensive 
conservation to have been accomplished only when every ecoregion 
potentially inhabited by a taxon is included within the distribution 
of the species located within a protected area. A final conservation 
score for in situ (FCSin) was derived by calculating the average of the 
three individual in situ conservation metrics.

A final conservation score combined (FCSc-mean) was calcu-
lated for each taxon by averaging its final ex situ (FCSex) and in situ 
(FCSin) scores. Taxa were then categorized, with high priority (HP) 
for further conservation action assigned when FCSc-mean < 25, me-
dium priority (MP) where 25  ≤  FCSc-mean  <  50, low priority (LP) 
where 50 ≤ FCSc-mean < 75, and sufficiently conserved (SC) for taxa 
whose FCSc-mean ≥ 75 (Khoury et al., 2019a).

To supplement the conservation gap analysis, we used the occur-
rence information to calculate the extent of occurrence (EOO) and area 
of occupancy (AOO) of each taxon, adapted from the IUCN Red List cri-
teria (IUCN Standards & Petitions Committee, 2019) and run through 
the R package “Redlistr” (Lee, Keith, Nicholson, & Murray, 2019). Taxa 
were classified per each metric and in combination, as critically en-
dangered (CR) where EOO < 100 km2 or AOO < 10 km2, endangered 
(EN) where 100 km2 < EOO < 5,000 km2 or 10 km2 < AOO < 500 km2, 
vulnerable (VU) where 5,000  km2  <  EOO  <  20,000  km2 or 500 
km2  <  AOO  <  2000  km2, possible near threatened (NT) where 
20,000 km2 > EOO < 45,000 km2 or 2,000 km2 < AOO < 4,500 km2, 
and least concern (LC) where EOO ≥ 45,000 km2 and AOO ≥ 4,500 
km2. We did not perform analyses based on rates of change over time 
due to the limited date information in the occurrence dataset, but 
provided observations based on our field experiences for some taxa. 
While the metrics and observations do not provide the full set of cri-
teria needed for Red Listing, they may offer indications of the most 
probable threat status of the taxa.

3  | RESULTS

3.1 | Distributions of wild Capsicum

A total of 6,974 occurrence records for the 37 taxa were compiled, 
processed and accepted for use for distribution modelling and 
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conservation analyses, including 6,723 reference (H) records and 
251 living plant conservation repository (G) records (Table 2, Table 
S2.2 in the Supporting Information). Of these, 3,672 contained co-
ordinates and were thus used as inputs into the species distribution 
modelling. The total number of records per taxon ranged from three 
for Capsicum benoistii Hunz. ex Barboza to 1,948 for C. annuum var. 
glabriusculum—the putative wild progenitor of C. annuum var. annuum 
and most widely dispersed and well-studied wild taxon in the genus.

Of the 29 taxa with at least ten distinct occurrences, and thus 
modelled with ten replicates, all passed the preset distribution 
modelling evaluation criteria and were therefore considered ro-
bust (Table S2.3 in the Supporting Information). The eight taxa 
with less than ten coordinates were each modelled with three 
replicates, producing ASD15 scores outside the threshold. Based 
on our current knowledge, we consider these models to be fair 
enough representations of their current distributions for use in the 
conservation analyses. Interactive models and associated evalu-
ation criteria for each taxon are available in Appendix S3 of the 
Supporting Information.

The modelled potential distributions of wild Capsicum ranged 
from the southern United States to northern Argentina, including the 
Caribbean and on the Galapagos Islands (Figure 1). Predicted taxon rich-
ness was highest along the Atlantic coast of Brazil, with up to ten taxa 
potentially overlapping in the same ca. 5 km2 areas. Other taxon-rich 
regions included areas of Bolivia and Paraguay, and in the highlands of 
Colombia, Ecuador, Peru and Venezuela. A minority of the taxa (notably 
C. annuum var. glabriusculum and C. rhomboideum in Mexico, Central, 
and South America, and C. baccatum var. baccatum in South America) 
had relatively widespread models inhabiting a variety of ecoregions.

The majority of the taxa, on the other hand, are endem-
ics or are otherwise restricted to specific environments. These 
include Capsicum caatingae Barboza & Agra, Capsicum campy-
lopodium Sendtn., Capsicum cornutum (Hiern) Hunz., Capsicum fr-
iburgense Bianchetti & Barboza, Capsicum hunzikerianum Barboza 
& Bianchetti, Capsicum longidentatum Agra & Barboza, Capsicum 
mirabile Mart. ex Sendtn., Capsicum pereirae Barboza & Bianchetti, 
Capsicum recurvatum Witas., Capsicum schottianum Sendtn., 
Capsicum villosum Sendtn. var. muticum Sendtn., and Capsicum vil-
losum Sendtn. var. villosum in coastal Brazil; Capsicum caballeroi M. 
Nee, Capsicum cardenasii Heiser & P. G. Sm., Capsicum ceratoca-
lyx M. Nee, Capsicum eshbaughii Barboza, Capsicum minutiflorum 
(Rusby) Hunz., and Capsicum neei Barboza & X. Reyes in Bolivia; 
Capsicum galapagoense Hunz. in the Galapagos Islands; C. beno-
istii, Capsicum hookerianum (Miers) Kuntze, Capsicum longifolium 
Barboza & S. Leiva, and Capsicum piuranum Barboza & S. Leiva 
in mainland Ecuador and/or northern Peru; and Capsicum tovarii 
Eshbaugh et al. in central-southern Peru.

3.2 | Ecogeographic characterization

Substantial variation with regard to ecogeographic niches was found 
across taxa. For example, the taxa with occurrences in the locations Ta
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with the highest maximum temperatures in the warmest month 
of the year included C. chacoense, C. annuum var. glabriusculum, 
C. baccatum var. baccatum, Capsicum coccineum (Rusby) Hunz. and 
C. minutiflorum (Figure S2.1 in the Supporting Information). Those 
found in locations with the lowest temperatures in the coldest 
month measured by median of occurrences included C. cardenasii, C. 
caballeroi, C. eximium, C. friburgense and Capsicum flexuosum Sendtn. 
Those taxa with occurrences in sites with the highest precipitation 
in the wettest month included Capsicum lanceolatum (Greenm.) C. 
V. Morton & Standl., Capsicum lycianthoides Bitter, C. schottianum 
and C. coccineum, while those occurring in areas with the lowest 
precipitation in the driest month included C. hookerianum, C. exi-
mium, C. cardenasii, C. chacoense, C. eshbaughii, C. galapagoense, C. 
longidentatum, C. neei, Capsicum parvifolium Sendtn., C. tovarii and 
C. caatingae.

While some of these are distant relatives to the cultivated peppers 
(with a base chromosome number of 13 rather than 12), a number 
of the taxa with outstanding potential adaptations are putative pro-
genitors or relatively close relatives, including C. annuum var. glabri-
usculum, C. baccatum var. baccatum, C. cardenasii, C. chacoense, C. 
eshbaughii, C. eximium and C. galapagoense. Temperature, precipitation 
and other ecogeographic variables also varied considerably within the 
ranges of some of the more widespread taxa, including C. annuum var. 
glabriusculum, C. baccatum var. baccatum, and C. rhomboideum, and 
for the Andean taxa C. lycianthoides, C. geminifolium (Dammer) Hunz., 
Capsicum dimorphum (Miers) Kuntze, and C. coccineum, as well as for 
C. lanceolatum. Thus, populations within these taxa may differ signifi-
cantly with regard to their ecological adaptations.

3.3 | Conservation status

With regard to the conservation status of wild Capsicum in gene 
banks and botanic gardens, the overwhelming majority of taxa were 
found to be minimally or completely unrepresented ex situ. Twenty-
three taxa (62.2% of the total) were not represented in the available 
germplasm databases. An additional nine taxa had fewer than ten 
accessions. A total of 35 taxa were assessed as high priority for fur-
ther collecting, including the two putative crop progenitors (C. an-
nuum var. glabriusculum, with an FCSex of 6.65, and C. baccatum var. 
baccatum, FCSex of 20.45) (Figure 2, Table 2; Table S2.2). Capsicum 
chacoense (FCSex = 27.1) was assigned medium priority, and C. card-
enasii (FCSex = 82.11) was considered sufficiently conserved ex situ. 
The mean FCSex across all taxa was 6.60 on the conservation status 
scale of from 0 to 100.

Due to such a low level of ex situ conservation of these wild taxa, 
further collecting is needed throughout their distributions. Priorities 
for collecting largely mirror patterns of taxon richness, thus, uncol-
lected populations of up to ten taxa potentially occur in the same ca. 
5 km2 areas in coastal Brazil (Figure 3a).

The analysis of representation ex situ of the ecogeographic 
niches of the taxa indicated that C. annuum var. glabriusculum, C. bac-
catum var. baccatum and C. chacoense (i.e., the only taxa with more 
than 10 germplasm occurrences) are relatively well represented in 
gene banks and botanic gardens with regard to diverse ecological 
adaptations (Figure S2.2). The rest of the taxa, with no or very few 
occurrences, are poorly represented.

F I G U R E  1   Predicted taxonomic 
richness map combining the 37 wild 
Capsicum L. taxa potential distribution 
models. Darker colours indicate greater 
numbers of taxa potentially overlapping in 
the same areas
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As for in situ conservation in the territories included in the World 
Database of Protected Areas (IUCN, 2019), taxa were generally con-
siderably better protected than with regard to ex situ conservation, 

with a mean FCSin across all taxa of 45.98 (Figure 2, Table 2; Table 
S2.2). One taxon (C. piuranum) was determined to have no official 
habitat protection anywhere within its potential distribution in 
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northern Peru. Thus, it was categorized as high priority for further 
action. However, protected areas were detected nearby the mod-
elled distribution of the species. Two other taxa (C. tovarii and C. 
benoistii) were also assessed high priority, 21 taxa medium priority 
(including the two known crop progenitors), 11 low priority and two 
(C. galapagoense and C. villosum var. muticum) sufficiently conserved 
in situ.

As with the ex situ analysis, the ERSin scores per taxon were 
higher than the GRSin, in this case for all taxa but one (C. cornutum) 
and with 16 of the taxa being fully represented in in situ conserva-
tion with regard to the diversity of potentially inhabited ecoregions. 
The most efficient establishment of additional protection for wild 
Capsicum in protected areas with regard to geographic gaps would 
be concentrated in coastal Brazil, in Bolivia and Paraguay, and in the 
Andes (Figure 3b).

With regard to combined conservation status (averaging the 
ex situ and in situ metrics), taxa ranged from no protection at all 
(C. piuranum) to a moderate level of conservation (C. cardenasii, 
with an FCSc-mean of 61.51, and C. galapagoense, with an FCSc-
mean of 53.71) (Figure 2, Table 2; Table S2.2). The FCSc-mean 
averaged across all taxa was 26.29. In summary, 18 taxa were de-
termined to be high priorities for further conservation (including 
C. annuum var. glabriusculum), 17 medium priorities (including C. 
baccatum var. baccatum) and two (C. galapagoense and C. carde-
nasii) low priorities, with none currently considered sufficiently 
conserved.

The EOO and AOO Red List analyses, supplemented by our field 
experience, indicated that C. benoistii, C. ceratocalyx, C. eshbaughii, 
C. friburgense, C. piuranum and C. villosum var. muticum could be can-
didates for designation as CR; and C. cardenasii, C. galapagoense and 
C. hunzikerianum as EN (although a number of populations of the last 
two taxa occur in protected areas). Our results further indicated that 
C. caballeroi, C. campylopodium, C. cornutum, C. hookerianum, C. lon-
gidentatum, C. longifolium, C. minutiflorum, C. neei, C. pereirae and C. 
tovarii could be considered as VU; C. coccineum, C. lanceolatum, C. 
mirabile, C. recurvatum, C. schottianum and C. villosum var. villosum 
possibly as NT; and the remaining taxa, including the two putative 
progenitors, as LC (Table 2; Table S2.4).

These results provide further support for the current Red 
Listings for three LC taxa (C. annuum var. glabriusculum, C. caatingae 
and C. rhomboideum) and for designations proposed in previous liter-
ature (C. piuranum as CR, in Barbosa et al. 2019). They may provide 
further information for currently Red Listed taxa or taxa discussed 
in the literature whose designations do not fully align with our re-
sults (C. lanceolatum on the Red List; C. benoistii, C. longifolium and C. 
neei in Barboza et al., 2019; and C. caatingae and C. longidentatum in 

Barboza et al., 2011). The results may also provide useful preliminary 
threat assessment indications for the 28 taxa currently absent from 
the Red List and previous threat assessment literature.

4  | DISCUSSION

In total, 94.6% of the wild relatives of chile peppers were assessed 
high priority for further collecting for ex situ conservation, including 
the two known putative crop progenitors. Among these are 23 taxa 
with no (zero) reported ex situ representation in the available germ-
plasm databases, and another eight with fewer than ten accessions, 
and thus very limited genetic diversity accessible for crop breeding 
and other research. Twenty-four (64.9%) taxa were assessed as me-
dium or high priority for further protection in situ. A total of 48.7% 
of taxa were determined to be high, and another 46% medium prior-
ity for conservation with regard to both ex situ and in situ strategies 
combined. It is thus clear that further conservation action is needed, 
both to safeguard these taxa ex situ, and to ensure their continued 
survival and evolution in their natural habitats.

Across the wild taxa in the genus, the geographic gaps in both ex 
situ and in situ conservation representation largely aligned with tax-
onomic richness hot spots. These are especially prevalent along the 
Atlantic coast of Brazil where the occurrences of multiple taxa over-
lap. Other hot spots are located in Bolivia and Paraguay, as well as 
in the highlands of Colombia, Ecuador, Peru, and Venezuela, and to 
a more limited extent in Mesoamerica. These represent particularly 
high value regions for further study and collecting of the taxa for 
ex situ conservation, as well as priority candidate areas for further 
protection in their natural habitats.

The genus as a whole, as well as at least one of the domesticated 
taxa (C. baccatum var. pendulum), have been proposed to have orig-
inated in seasonally dry tropical forests (Bosland & Votava, 2012; 
Scaldaferro, Barboza, & Acosta, 2018), and we estimate that at least 
19 extant Capsicum taxa occur in this highly threatened and often 
overlooked biome (DRYFLOR et al., 2016). Matching wild Capsicum 
occurrences to spatial information on “Tropical and subtropical dry 
broadleaf forests” in the Americas (WWF, 2019), we found that over 
a fifth (22.1%) of all points fell within this major habitat type, in-
cluding all of the occurrences for C. eshbaughii, 70.4% of those of C. 
caballeroi, 60.8% of C. eximium, 58.8% of C. chacoense and 52.9% of 
C. minutiflorum, among others. We found that only ca. 7% of the total 
area of these dry broadleaf forests are currently protected within 
areas included in the WDPA. Alongside geographic prioritizations 
focused on taxonomic richness, in situ conservation action may 

F I G U R E  2   Conservation gap analysis results per assessed wild Capsicum L. taxon. Taxa are listed by descending priority for further 
conservation action by priority categories (high priority [HP, red], medium priority [MP, orange], low priority [LP, yellow], and sufficiently 
conserved [SC, green]). The red diamond represents the final conservation score combined (FCSc-mean) for the taxon, which is the 
average of the final ex situ (FCSex, black circle) and in situ (FCSin, black triangle) scores. Results of the conservation assessments within 
each strategy (sampling representativeness score ex situ [SRSex], geographic representativeness score ex situ [GRSex] and ecological 
representativeness score ex situ [ERSex] for ex situ; and sampling representativeness score in situ [SRSin], geographic representativeness 
score in situ [GRSin] and ecological representativeness score in situ [ERSin] for in situ) are also displayed
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thus consider prioritizing such threatened biomes, habitat types and 
ecoregions (Scaldaferro et al., 2018).

Focusing on the putative crop progenitors and close relatives, 
that is the taxa most likely to be utilized in crop breeding, which also 
include the wild taxa sold in local markets or cultivated in home gar-
dens, the high priority taxon C. annuum var. glabriusculum is poorly 
represented ex situ with regard to geographic coverage of its po-
tential distribution, but fairly well represented with regard to eco-
geographic and ecological variation (Table 2; Figure S2.2). This taxon 
is potentially present in protected areas that are fairly well distrib-
uted across its modelled range from the southern United States to 
northern South America, and was given a preliminary designation 
of LC in the threat assessment. The majority of the currently rec-
ognized secondary relatives of C. annuum var. annuum (and also for 
C. chinense and C. frutescens) (i.e., C. chacoense, C. galapagoense, C. 
baccatum var. baccatum and C. praetermissum) were assigned high 
or medium priority for further conservation action, with geographic 
gaps particularly present in Argentina, Bolivia, Brazil, the Galapagos 
Islands and Paraguay.

Medium priority putative progenitor taxon C. baccatum var. bac-
catum appears to be somewhat better conserved both ex and in situ 
in comparison with the progenitor of C. annuum var. annuum, but 
identifiable geographic and ecological gaps remain with regard to 
both conservation strategies. The other close relatives of C. bacca-
tum var. pendulum, like those of C. annuum var. annuum, were as-
signed high or medium priority for further conservation action, with 
geographic gaps as detailed above.

Among the known close relatives of C. pubescens, only C. carde-
nasii is currently fairly well represented ex situ, while C. eximium and 

especially C. eshbaughii are very poorly conserved. These species 
appear to be comparatively better conserved in situ. Conservation 
action in Bolivia is necessary to resolve the gaps for these species, 
one of which was assessed as CR and another as EN, in the prelimi-
nary threat assessment.

4.1 | Challenges and limitations to distribution 
modelling and conservation gap analysis

Distributions of wild Capsicum are influenced by factors beyond 
the 26 ecogeographic predictors used here. These may include bi-
otic (e.g., dispersal agents, host plants, mycorrhizae, pathogens and 
pollinators) and other abiotic (e.g., soil parent material and other 
edaphic characteristics) factors (Carlo & Tewksbury, 2014; Kraft et 
al., 2014; Tewksbury et al., 1999, 2008). A number of the taxa, in 
particular C. annuum var. glabriusculum, but also C. baccatum var. 
baccatum, C. cardenasii, C. chacoense, C. eximium, C. praetermissum 
and C. frutescens (putative wild/feral populations), are harvested 
from the wild, with populations exposed to varying levels of human 
management and impact, which affect their distributions over the 
long term (Aguilar-Meléndez & Lira Noriega, 2018; van Zonneveld 
et al., 2015, 2018; Villalon-Mendoza et al., 2014). Furthermore, the 
current ecogeographic suitability models are unable to fully ac-
count for relatively recent extirpation events of populations due to 
habitat degradation or destruction, for example for C. lanceolatum, 
thought to now be extinct in Mexico (Barchenger & Bosland, 2019). 
Our results, therefore, should best be considered as planning tools 
to guide explorations for further confirmation in the field.

F I G U R E  3   (a) Predicted further collecting priorities hot spots map for wild Capsicum L. taxa. The map displays richness of areas within 
the potential distributions of the 37 wild Capsicum taxa that have not been previously collected for ex situ conservation, with up to ten taxa 
in need of further collecting potentially found in the same areas. Sites where existing germplasm of taxa has been collected are overlaid. (b) 
Predicted further in situ protection priorities map for wild Capsicum. The map displays richness of areas within the potential distributions of 
the 37 wild Capsicum taxa that are outside of current protected areas, with up to ten taxa found in the same unprotected areas. Protected 
areas are displayed in green
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Biodiversity occurrence data are often spatially biased, tend-
ing to concentrate around roadways and major population centres 
(Stolar & Nielsen, 2015; Syfert, Smith, & Coomes, 2013). Alongside 
extensively reviewing the presence coordinate locations for accu-
racy, to mitigate the potential effect of spatial bias, we generated 
background points (pseudo-absences) only within the ecoregions 
in which the presence points were located. This limited the amount 
of variability present within the range of predictor values in the 
background dataset (Jarnevich & Young, 2019). For some taxa, it is 
possible that the current occurrence data did not capture the full 
ecogeographic range within which the species can be found. As a 
result, the edges of the predicted distribution models represent par-
ticularly important regions for further field exploration (Jarnevich, 
Stohlgren, Kumar, Morisette, & Holcombe, 2015).

With regard to the conservation analyses, openly available da-
tabases on gene bank and botanic garden holdings are not fully 
representative of all such institutions worldwide. Thus, gaps in 
information on the ex situ conservation of wild Capsicum may yet 
exist, particularly with regard to gene banks and gardens that are 
not currently reporting in databases such as Genesys, FAO WIEWS 
and GBIF (Thomas et al., 2016). Coordinate or other locality in-
formation is also presently lacking for a large number of records 
that are available in online databases. For example, PlantSearch 
currently does not make locality level information on accessions 
available, and the presence of a taxon in a botanic garden as listed 
in the database indicates at least one accession (but no informa-
tion on the actual number). Furthermore, our review of taxonomic 
information in these databases for members of the genus indicates 
that they are in need of improvement. If these constraints were to 
be remedied, it is possible that the ex situ conservation status of 
some taxa might be revised in a positive (or even negative) direc-
tion. This said, national and institutional policies and other barriers 
often restrict the distribution of germplasm from the gene banks 
and botanic gardens for which information is currently not readily 
available.

Our ecogeographic suitability model-based results did not al-
ways align perfectly with our field experience, particularly with re-
gard to presence in protected areas. For example, our models (as well 
as points) for C. villosum var. muticum were determined through the 
analysis to overlap quite well with the protected areas listed in the 
WDPA. Unfortunately, for the taxon, its observed restricted distri-
bution in fact falls just outside of protected areas, and the quality of 
its habitat has declined progressively during our field visits over the 
past six years.

While the lands listed in the WDPA hopefully afford collateral 
protection to wild Capsicum taxa as a result of overall land con-
servation practices, robust long-term protection of these plants in 
these areas will likely require the formation of active taxon- and 
population-specific management plans. Overexploitation of wild 
populations, particularly those experiencing climate stress, can 
severely impact their persistence, recovery and genetic diversity 
(González-Jara, Moreno-Letelier, Fraile, Piñero, & García-Arenal, 
2011; Nabhan, 1990). We are aware of only one protected area 

worldwide (Rock Corral Canyon, Coronado National Forest), on 
the Arizona, United States—Sonora, Mexico border, where active 
monitoring and management plans facilitate the long-term conser-
vation of wild Capsicum populations (Nabhan & Riordan, 2019). As 
a number of the Capsicum taxa are wild-harvested and contribute 
to local cultures, nutrition and economies, it is important to include 
and to incorporate the priorities of harvesters and local consumers 
in conservation plans. We note that further domestication of wild 
Capsicum for cultivation could also aid in reducing pressure on nat-
ural populations while responding to growing market demands for 
the edible species.

4.2 | Challenges to utilization of wild 
Capsicum germplasm

While ecogeographic information associated with germplasm ac-
cessions can help narrow the potential pool of useful germplasm 
targeted by plant breeders, these data cannot completely displace 
the need for phenotypic validation of adaptations, such as for 
abiotic or biotic stress tolerance. Moreover, ecogeographic data 
may better predict abiotic than biotic stress tolerance. Phenotypic 
characterizations of collections under diverse environmental 
conditions and using manipulative experiments (e.g., imposing 
moisture stress or inoculating with pathogens) are needed for 
wild Capsicum accessions. To further understanding of the genet-
ics underlying adaptive traits in these wild relatives, associations 
between particular genetic sequences in wild Capsicum and phe-
notypes of interest could be established through genome-wide 
association studies (GWAS) or quantitative trait locus (QTL) analy-
ses. Once the function of these candidate loci is established, the 
phenotypic effects of particular genetic variants can be mobilized 
for use (Tanksley & McCouch, 1997).

Further, interspecific hybridizations can present challenges for 
breeding with wild species. For example, crosses made between 
members of the pubescens complex and other groups have some-
times resulted in unilateral incompatibility (Onus & Pickersgill, 2004; 
Pickersgill, 1997). Post-fertilization seed abortion or sterility in the 
offspring has also been reported in several interspecific crosses 
(Pickersgill, 1991; Smith & Heiser, 1957; Yoon, Yang, Do, & Park, 
2006).

These constraints to utilization acknowledged, several successful 
strategies to overcome barriers to interspecific hybridization do exist 
in Capsicum (Yoon et al., 2006). Furthermore, for more than 20 years, 
genes from pepper have been moved into tomato using transgenic 
technologies, increasing resistance to key diseases (Tai et al., 1999). In 
the emerging era of genome editing, both the 12 and 13 base chromo-
some number wild Capsicum taxa could be useful in the development 
of more resilient peppers, as well as other crops, although we note that 
much of the environmental adaptation within wild plants is polygenic 
and quantitative (Tiffin & Ross-Ibarra, 2014), so there may be limits 
on the degree to which adaptation can be engineered. Regardless 
of the breeding methods used, ensuring adequate representation of 



14  |     KHOURY et al.

these wild relatives in conservation systems, and further characteriz-
ing populations with regard to their adaptations to abiotic and biotic 
stresses, will provide the foundations for their more widespread use.
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