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A Late Cretaceous-aged multi-taxon nesting site from Romania preserved in three dimensions
reveals the earliest example of nest site sharing yet known from the vertebrate fossil record. Eggshell
and osteological evidence combined in this single accumulation demonstrate that at least four
vertebrate taxa including enantiornithine birds and another avian of indeterminate affinities as well
as crocodylomorphs and gekkotan squamates nested together in the same place. Colonial nesting
in enantiornithines was previously described from this site; here, we present the first fossil evidence
that other vertebrates also nested in the same place, perhaps exploiting the presence of the large bird
colony. We describe four distinct eggshell morphotypes that have been collected from this site and draw
palaeoecological inferences based on this unique multi-taxon nesting association.

The eggs, hatchlings, nests, and nesting sites of extinct animals are relatively common in the vertebrate fossil
record. Evidence of dinosaur reproductive activities have, for example, been interpreted, or inferred, from depos-
its that range in age from the Triassic to the Late Cretaceous, and are known from numerous sites around the
world (e.g. Mongolia, China, Argentina, Montana, Portugal, and Romania)"2. Although it remains debated exactly
when ‘bird-like” parental care evolved within archosaurs®=, current evidence shows that it was present within
non-avialan maniraptoran theropods (e.g. members of Alvarezsauridae, Oviraptorosauria, Dromaeosauridae,
and Troodontidae)”~ by the latest Cretaceous, 70 million years ago (Mya). Adult oviraptorosaurs are preserved
in physical contact with neatly arranged eggs'?, forelimbs protectively surrounding the clutch!!, while fossil data
shows that some non-avialan maniraptorans and Cretaceous stem-birds embedded their eggs individually into
the substrate®!®121% and produced precocial (fully-independent) young''>.

Much less information is presently available for other non-avialan theropod dinosaur lineages although evi-
dence is consistent with their use of reproductive modes similar to those of living turtles, crocodiles, or lacertans.
However, with just a few exceptions (e.g. Maiasaura)'®', evidence of significant hatchling parental care in dino-
saurs is limited, although some groups appear to have nested in large colonies'*'*-%, As far as it is known, both
non-avialan theropod dinosaurs and Mesozoic birds had precocial young?1%13-1521-27; this contrasts with the altri-
cial>**-*! young of many living Aves where energetically demanding parental care is required. These behaviours
include, but are not limited to, egg brooding and egg turning, both critical to improve hatching rate®?, hatchling
feeding, and the construction of complex nests'®**. Most significantly for palaeontological studies, the identifiable
bones of precocial neonates have frequently been found in association with fossil eggs while altricial young do not
develop hardened bones until after they hatch®*. Their soft bones rarely form fossils.

The vertebrate record is also dominated by single-species egg and nest associations'?, with a few rare excep-
tions of in-situ fossil eggs and eggshells (e.g.>***). Among extant faunas, however, there are numerous examples of
disparate taxa that share nesting areas and even the same nests; the South American gecko Homonota darwinii,
for example, often lays eggs alongside nesting cormorants (Phalacrocorax spp.) and gulls (Larus spp.). These
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Figure 1. The site and accumulation. (A) Map showing the Late Cretaceous Od location (star), Sebes,
Romania®. (B) One part of the Od calcareous lens as collected and prior to preparation. Scale bar is 5 cm.
(C) Stratigraphic profile of Od/A outcrop in the Maastrichtian, Sebes Formation®.

geckos utilise nesting areas for shelter, warmth, and the opportunity to feed on algae, which the birds use to con-
struct their nests*. Similarly, the Lesser Rhea (Pterocnemia pennata) and Elegant Crested Tinamou (Eudromia
elegans) often nest and brood alongside penguins in Patagonia with complete interspecific tolerance®. It is there-
fore parsimonious to predict that similar behaviours were also present in the past.

Here, we discuss a fossil accumulation (Transylvanian Museum Society, Cluj Napoca, EME V.314) from the
Late Cretaceous Oarda de Jos locality (Od) in the vicinity of the city of Sebes, Transylvania (western Romania).
This deposit contains at least four different eggshell morphotypes as well as complete eggs and isolated bones
within a single, very restricted, micro-horizon (Fig. 1). In our initial reports®®*, we noted that this assemblage
comprises a lens of calcareous mudstone that contains thousands of avian eggshell fragments and complete eggs.
However, while the morphologies of adult and neonate bones found among the shell fragments are consistent
with our earlier report of enantiornithine birds®, further preparation has revealed skeletal elements that cannot
be assigned to that lineage, while including eggshell fragments from at least three additional vertebrate taxa. These
include a bird of uncertain affinities, crocodylomorphs, and gekkotan squamates. Sedimentological and tapho-
nomic evidence® supports the conclusion that these additional vertebrate taxa were nesting within the same areas
as the breeding enantiornithine colony, which makes the Od assemblage unique in the vertebrate fossil record.

Results

Taphonomy of the Od lens.  Asdiscussed in our initial reports?*3*, the EME V.314 lens comprises a calcar-
eous mudstone that contains thousands of eggshell fragments and a number of complete or near-complete eggs
(N=13) (Fig. 1). Observations show that the more complete eggs were deposited in the top third of the eggshell
coquina, and that shell density within the lens approaches 80% of matrix volume (Fig. 1).

Sample E.V. 314 /1 includes 77 eggshells comprising about 60% (46 eggshells) horizontal fragments preserved
concave side-up (CU), alongside 40% (N = 31) that are preserved concave side-down (CD). These subsets provide
two distinct data samples for further statistical analysis; we therefore performed a proportion test on two samples
considered representative of the whole (ratio: 60:40; X?=2.5455, 1 degree of freedom (d.f.), p=0.59, 95% percent
confidence interval (CI), between 0.4793 and 0.7056) that reveals that this distribution of shell orientations is sim-
ilar to ratios seen at in situ avian nesting sites (ratio: 60:40; x*>=3.9781, 1 d.f;; p=10.0461)***. Thus, for this phase
of the burial event, it is clear the eggshell distribution included near complete, partially-crushed eggs preserved
with their long axes orientated non-randomly.

Our observations also reveal the presence of a second phase event that accounts for 85 eggshells, of which
42% (N =36) are preserved CU and 58% are preserved CD. A second proportion test (ratio: 42:58, x>*=1.6941, 1
d.f., p=0.4235,95% CI between 0.3185 and 0.5354) shows that this distribution of preserved shell orientations is
similar to the eggshell ratios recorded at chick-trampled sites (ratio: 42:58; x*=0.29, 1 d.f., p=0.58; not signifi-
cantly different; x>=1.49, 1 d.f,, p=0.22). This result suggests that Od site shell orientations are consistent with
interpretation as a chick-trampled, non-transported accumulation**!. It is also noteworthy that the shell ratio at
the Od site is significantly different from previously published fragment orientations, including samples buried
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Figure 2. Enanthiornithine eggshell. (A) Thin section under PPL showing the thickness of the eggshell at low
magnification. ML with barrel-shaped M, with its organic core at the base of the M. The CL overlies the ML and
encompasses a SqZ and an EZ. The EZ consists of compact calcite crystals. (B) Eggshell under SEM, the lower
arrow points the limit between two Ms. This image shows barrel-shaped mammilla. The transition between ML
and the CL at low magnification is not evident, whereas the SqZ has squamatic ultrastructure it shows abrupt
transition to the EZ. The upper arrow points the limit between two vertical crystals in the EZ. (C) Thin section
under crossed Nicol prisms, arrow shows the limit of a prism from the CL (the shadow denotes a prism with
irregular boundaries). (D) SEM shows details of the M, while the upper arrow points the arrangement of the
wedges with tabular ultrastructure (See Fig. 3) with calcitic crystals diverge from the M base. The lower arrow
indicates the M base including the replace organic core.

within substrates (ratio: 38:62; x2=0.02, 1 d.f,, p=0.86) and those that have been transported under experimen-
tal and natural fluvial conditions (ratio: 18:85; x*=5.66, 1 d.f., p=0.01)%.

A number of complete and identifiable adult enantiornithine bird bones are also mixed with smaller bones
and numerous bone fragments within this lens (Fig. 1). These elements include two partial humeri, a complete
coracoid, and an ulna which exhibits clear enantiornithine synapomorphies®®. Half of the preserved long bones
are inclined horizontally.

Our use of thin-sections and scanning electron microscope (SEM) images of samples from the EME V.314 lens
augments our initial reports and reveals the presence of four distinct eggshell structural types (based on previ-
ously published terminologies and definitions)*>*: (1) Enantiornithine eggs; (2) Unidentified Ornithoid eggshell;
(3) Krokolithid eggshell, and; (4) Gekkolithid eggshell.

Eggshell descriptions.  Enantiornithine eggs. Description: Eggshells of this taxon are the most common.
They comprise ca. 70% of all shells surveyed (N =161 from 230 eggshells examined) and are all between 220 pm
and 340 um in thickness (Fig. 2A). It was originally reported that these shell lack ornamentation®®, however sub-
sequent examination of a larger sample suggests that the shell from the original sample has abraded external
surfaces and in fact many of these shells actually exhibit a soft woven patina-like texture. One of the almost com-
plete elongated eggs is 4.0 cm x 2.5 cm and would have had a volume of around 11 cm®. These eggs are slightly
asymmetrical with one pole that is more pointed than the other.

Our observations reveal that the microstructure of this shell type comprises two layers that encompasses a
mammillary layer (ML) and a continuous layer (CL), a typical ornithoid basic form (Figs 2A and 3A). Mammillae
are closely-packed, broad, barrel-shaped structures that are composed of calcite spherulites that extend outward
from their base. These mammillae measure 75 pum to more than 80 um in diameter (Fig. 2A,B).

Three general ultrastructural strata can be distinguished under SEM (Figs 2B and 3A); an organic core replaced
by calcium (Fig. 2B), the base of this zone with radiating crystallites (Figs 2B and 3B), and examples of wedges
with tabular ultrastructure (Fig. 2B). The CL comprises a squamatic zone (SqZ) with squamatic ultrastructure
(SqU) and an external zone (EZ) with a more compact appearance and evident prisms (Fig. 3C,D). The SqZ is
ca. 175 pm thick and gradually changes such that its boundary is difficult to distinguish. (Figs 2A-D and 3A).
There are a number of tiny holes SqZ present which range in size between 0.3 pm and 1.5 um (Figs 2B and 3C).
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Figure 3. Enathiornithine eggshells. (A) Showing the thickness of the eggshell under SEM, at low
magnification, and including an ML that has a barrel-shaped M with its organic core at the base of the ML. The
CL overlies the ML in this case and encompasses a SqZ and EZ. External surface with a soft patination. (B)
Details of the M base. (C) SqZ squamatic texture. (D) Vertical prisms within the EZ.

The EZ under SEM appears as a graded transition to more compact calcite crystals that are blocky in appearance,
with a vertical striation at high magnification (Fig. 3D). No squamatic texture is evident and the EZ which tends
to have a more homogenous crystalline structure and is around 70 pm thick (Fig. 2A,B). Vertical prisms, longer
than they are thick, are subtended from the external surface and form the external zone (Figs 2A,B and 3D).

Discussion: The enantiornithine bird eggs within EME V.314 are similar in volume to those of enanthiorni-
thines from Neuquén City'®, Argentina, and have similar shell thicknesses. These two types of eggs are also sim-
ilar in shape to one another as both are asymmetrical and have pointed poles. An extensive bibliographic study
carried out as part of this research (MF) reveals that the mammillary and continuous layers of extant paleognath
eggshell typically comprise almost the entire shell thickness, while external zones and cuticle, if present, are
reduced*. This is not the case for neognathous eggshells, which typically exhibit a squamatic layer much thicker
than the mammillary, and which have a correspondingly thin external layer*. In contrast, Neuquén City eggs
from the Argentine Bajo de la Carpa Formation (Rio Colorado Subgroup) have been described with a ML and a
SqZ that are proportionally thicker than the EZ'>*, while another Mesozoic bird egg* has been reported with a
ML which is 92.9 pm thick, a SqZ which is 58.7 pm thick, and an EZ which is 14.4 pm thick. A further example of
an egg from the Brazilian Valle do Rio do Peixe Formation (Turonian-to-Maastrichtian) has a ML, a SqZ, and EZ
that are all equal in thickness, which has been interpreted as unique to this specimen®. Moreover, several authors
have described extant neognath eggs with graded transitions between structural zones, while those of paleognaths
always exhibit an abrupt transition*!. Eggs assigned to Gobipteryx, as well as the Bajo de la Carpa and Oarda
examples, all share a graded contact between their ultrastructural zones*. Three structural layers, together with
prismatic transitions (graded transition), have also been described from Mongolian Cretaceous bird eggs*, and
this has been cited as evidence for closer affinities with modern avians as opposed to basal ornithothoracines*,
while the known Bajo de la Carpa eggs have been associated with Ornithothoracines on the basis of embryonic
evidence from this Neognathous morphotype (prismatic condition)'>*** (Table 1). The contact between the egg-
shell zones in the Bajo de la Carpa eggshells is graded (not abrupt), as in the Od eggs in agreement with Schweitzer
et al.’®. It is clear that the Od eggs exhibit the same structural contact between their eggshell zones and have the
same shape and volume of their Argentine counterparts. These Romanian eggs can therefore be assigned to enan-
tiornithines, a conclusion which is further supported by their shell characteristics: two-layered ornithoid-basic
type eggshell with subdivision of the second layer (CL) into to ultrastructural zones (SqZ and EZ) and the pres-
ence of bird bones within the assemblage (Table 1).
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Enanthiornithid eggshells 4tol Smooth 11cm? 240 um-340 pm This work

llznanthif)rnithid eggs from 3tol Smooth 17 cm?® 300 um Schweitzer ef al.'®
atagonia

Brazilian ornithothoracine egg 2to1 Smooth 6.38cm’® 125.5pm Marsola ef al.*®

Gobioolithid eggs 2to1 Smooth 100 pum to 400 pum | Angusticanaliculate | Mickailov (1996)

Ornitholithidae Undulating ornamentation 1.9 mmto 4 mm Rimocanaliculate Dughi & Sirugue (1962)

Table 1. Comparison between Romanian and enanthiornithid eggshells from around the world.

Figure 4. (A) Thin section of EME V.314 viewed under PPL reveals a four-layered eggshell. The ML is
composed of slender M with a strong development. The lower arrow shows the transition between two M. CL

is composed of a SqZ as well as EZ1 and EZ2. The CL has an irregular and very soft extinction pattern under
crossed Nicols, and the upper arrows indicate the limit of two blocky crystals that comprise the part 1 of the EL.
These crystals are longer than wide. The upper arrow points to the lower margin of the fourth layer, which looks
similar to the SqZ but has an undulating external surface. (B) Under crossed Nicol prisms, a thin section reveals
an irregular and very soft extinction pattern. Note that the fourth layer is completely opaque under PL. (C) SEM
shows four layers: lower arrow points to a slender ML, the middle arrow indicates the SqZ, and the upper arrow
points to the abrupt transition between the SqZ and part 1 of the EZ. Part 1 of the EZ in this case is composed of
blocky calcite crystals, again longer than they are wide. The fourth layer is evident under SEM on top of the EZ
part 1, with a similar ultrastructure of the SqZ. (D) SEM to show squamatic texture. The lower arrow denotes an
opaque line which appears between each subunit of the squamatic ultrastructure, while the two upper arrows
point to tiny holes which are distributed throughout the CL.

Unidentified ornithoid eggshell. Description: Eggshells of this taxon are the least abundant within the Od accu-
mulation, less than 1% of all shells surveyed. All of these specimens are between 240 um and 260 um in thickness
(Fig. 4A) and have external surfaces that are ornamented with a rough covering of nodules. Thin sections of EME
V.314 reveal that these eggshells are two-layered, and comprise a ML, a CL layer, which under SEM encompass
two ultrastructural zones: a SqZ and an EZ external zone with the latter of which comprised of two parts, a ‘stony
layer’*?, and one with squamatic ultrastructure. The latter of these two is textured and forms the ornamentation;
these shells possess a mammillary layer that is ca. 100 um thick, and a CL of ca. 160 pm. The last one under SEM
can be described as having: a SqZ that is ca. 100 um thick, and an EZ with a ‘stony layer’ which is only 20 um thick.
The second part of this outer layer has a squamatic texture while undulating ornamentation occurs in the last ca.
40 um (Fig. 4A).
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The ML of these shells is comprised of slender mammillae measuring ca. 35 um wide. Each has a width:height
ratio of 0.35, which signifies strong and tall development. The second layer starts ca. 100 pm from the inner
surface, and has a typically avian squamatic ultrastructure. An opaque line is present between each subunit on
the SqZ (Fig. 4D). Tiny shell holes are preserved as spherical features unevenly distributed within the shell wall,
particularly throughout the SqZ (Fig. 4D). The EZ of the third layer is comprised of blocky crystals 40 um in width
(Fig. 4C) that are longer than they are wide, and have a more compact crystal arrangement than the SqZ when
viewed under SEM. These images also reveal that the transition between the mammillary layer and SqZ is not
abrupt, but rather there is a soft transition between the two (Fig. 4C), while the second (SqZ) and third layers (EZ
part 1) are abruptly delimited. SEM images reveal a fourth layer with squamatic texture, although this is opaque
under plain polarised light (PPL) (Fig. 4B). It is noteworthy that this layer might also be the result of diagenesis;
further work utilizing cathodoluminescence-approaches will be required to determine this (beyond the scope of
this study).

Discussion: The ornithoid eggshells from the Od accumulation are not assigned in this study to any known
oofamily, or oospecies. Nevertheless, we did compare them with shells from accipitriform neornithine birds*
because these are the only species that exhibit similar zonation; a ML followed by a CL with three different com-
ponents, a SqZ, a ‘stony layer’*, and an external microcanaliculated zone*2. The Od eggshells have different pro-
portions between their eggshell layers, and a different ultrastructure in the fourth external zone. The ML in the
Od eggshells comprises one third of the total thickness, while extant birds tend to have thinner ML. While extant
birds have thinner, ca. 60 um, ML, and the Romanian examples are 100 pm thick. Although the SqZ in the Od
eggshells is similar in thickness to the ML, extant accipitriformes have a thin SqZ and also a third ‘stony layer,
which is unique among avian eggshells. Distinctly separated prisms have a homogeneous and solid ultrastructure.
We have described the Od eggshells as having a more compact shape, but in these Romanian shells this layer is
significantly thinner than in extant birds where it is 80 um, and the fourth layer in neornithines has also been
described as microcanaliculated. This reveals another important difference with the Od eggshells as they display
a SqU and lack microcanaliculae; this region is smooth in extant birds but is undulated in the Od eggshells. As no
fossil eggshells with these characters have been described, we consider that the Od shell of this type likely presents
a unique combination of characters and therefore represent a new oospecies and oofamily. This will be addressed
in our future work.

Krokolithidae eggshells Kohring and Hirsch, 1996. Oospecies indet. Description: These shells are
present in low numbers (ca. 28% of all shells surveyed, N =45), have thicknesses between 250 um and 275 um,
and comprise Crocodiliod basic shell type and Crocodiloid morphotype are used here as previously defined*?. The
discrete shell units in these specimens have a width:height ratio between 0.36 and 0.48 (Fig. 5A). Thin sections
show discrete and approximately trapezoid units (Fig. 5A,B) that are composed of large and irregular wedges.
Each shell unit is between 90 um and 120 um wide, with individual wedges between 50 um and 75 um (Fig. 5A,B)
clearly visible in cross-polarised light. These units exhibit the typical blocky extinction pattern characteristic
of crocodylomorph eggshells (Fig. 5A,B)'**~*, with an inner layer that consists of a large aggregate of crystals
(Fig. 5A,B). Each exhibits a bulbous base (Fig. 5B), where preserved, and SEM images reveal three distinct layers,
a 48.63 um thick inner layer, a middle 56.94 um layer, and 144.83 um thick outer layer with a densely calcified
compact ultrastructure. Oblique lines present in this outer layer demark the cleavage planes of calcite crystals
(Fig. 5C,D).

Discussion: This third shell morphology present in the EME V.314 lens is consistent with referral to croc-
odylomorph eggs'**-*C. The fossil record of Cretaceous crocodylomorph eggs and eggshells has been stud-
ied at a number of sites, including the Lower Cretaceous Glen Rose Formation®, the Upper Cretaceous Two
Medicine Formation'®*?, the Upper Cretaceous (Campanian) Fruitland Formation®, and the Upper Cretaceous
Adamantina Formation, Brazil*. The Od eggshells, however, are distinct from the central Texan specimens which
are between 600 um and 700 pum thick?, while specimens from Montana® are 655 jum thick and have smooth sur-
faces. The Od eggshells are thinner, between 150 pm and 275 um think, but lack external ornamentation. Previous
workers® have also described how calcite spherulites in radial view on the inner eggshell surface extend outward
from relatively evenly spaced nuclei approximately 390 um apart. Although this pattern is also seen in the Od egg-
shells, it remains subtler; nuclei in this case are just 98 jum apart and the conical space between each basal knob is
similar. Crocodile shells* have also been described with two different ornamentations and different thicknesses,
but are congruent with the Od specimens in ultrastructure and microstructure; the Romanian shells also lack
external ornamentation, and have the same extinction pattern as the New Mexican eggshells. Thin sections of
these also reveal horizontal accretionary lines, and both eggshells are thicker than shells at Od; Oliveira et al.>,
described several near complete eggs that have external ornamentation not present in Od eggshells, and are thin-
ner. Their thickness ranges between 150 pum and 250 um. These materials reveal an undulating extinction pattern
of irregular and divergently massive edges under PLM. Od eggshells do not have this undulating pattern. Under
SEM, eggs from Adamantina Formation show radiating patterns of the crystalline wedges similar to Od eggshells.
On the basis of shell thicknesses, the Od eggshells are similar to Krokolites wilsoni** which has an eggshell thick-
ness between 250 um and 450 pm, K. helleri*® which is between 290 um and 360 pum, and the Pai Mogo egg from
the Jurassic®® which varies between 200 um and 350 um.

In earlier work, Ferguson®® described the structure and composition of eggshell membranes from the
extant crocodylian Alligator mississippiensis. In living crocodylians, calcite crystals are deposited horizontally
in eggshells, a pattern that is also seen in fossils from the Campanian-to-Maastrichtian transition of Spain®.
Ferguson® described an eggshell of five layers: an outer densely calcified layer (between 100 pm and 200 pm
thick), a honeycomb layer (between 300 um and 400 pm thick), an organic layer (between 8 um and 12 ym thick),
a ML (between 20 um and 29 um thick), and the eggshell membrane (between 150 um and 250 pm thick). The Od
material preserves three layers and organic membranes have not been preserved. It is not easy to identify all of
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Figure 5. Crocodilian eggshell. (A) Thin sections show discrete, large trapezoidal-shaped shell units, composed
of irregular wedges. Arrows show individual wedges visible in CPL. They exhibit the typical blocky extinction
pattern. (B) Thin section under PPL, lower arrow shows that the BK contains a large aggregate of crystals

and each has a bulbous base with a rosette-like structure. Upper arrow shows fish-bone pattern. (C) SEM
showing three layers comprising the eggshell: IL, the inner layer, with the basal knob; ML, the middle layer

that encompasses a thin honeycomb structure, and EL, external layer with calcite crystals with a more compact
structure. Lower arrow indicates the basal knob, and upper arrow shows calcite cleavage plane. (D) SEM
enlargement of EL (marked with an arrow); additional arrows pointing to cleavage planes of calcite crystals. All
terminology follows previous work!®#2%,

these structural layers in fossil crocodylomorph eggshells because the organic material that forms layers in the
live eggs is generally lost during fossilisation. Eggshell thickness of the Od crocodylomorph egg varies between
250 um and 275 um, and thus falls within the range of fossil crocodylomorph eggshells described by Hirsch and
Kohring®. Most fossil crocodylomorph materials have been described as single layered eggshells, but extant eggs
reveal a multilayered eggshell. These layers are not homologous with those observed in theropods (including
birds). Notably, Moreno-Azanza et al.*® reviewed the terminology used to described the microstructure and
ultrastructure of crocodylomorph eggshells and concluded that ‘all described crocodylomorph eggshell material,
whether recent or fossil, displays at least two well-distinguished layers with distinct ultrastructure. We observed
triple-laminated eggshell under SEM (Fig. 5C), an inner layer, with or without a basal plate group which is ca.
50.2 um thick, a middle layer with a thin honeycomb structure ca. 59.74 um thick, and a more compact outer layer
ca. 136.12 um thick. The presence of an additional outer layer in crocodylomorph eggshells has not been noted in
most literature, but is clearly present in some described ootaxa (e.g. K. wilsoni)*®. The crocodylomorph eggshell
from Od have three distinct layers and their blocky extinction pattern and basal knob support crocodylomorph
affinities (Fig. 5C,D).

Gekkolithid eggshells. Description: In total, about 1% of the Od shell fragments come are Geckoid basic type
eggs® and demonstrate the presence of gekkotans in the assemblage. Living gekkotans have small, thin-shelled
eggs which are sub-spherical or ellipsoid in shape and have a smooth external surface*. In contrast, the eggshells
from Od that have Geckoid basic eggshell type and Geckoid morphotype, are between 60 um and 66 um thick,
and have two layers, the inner of which is wider than the outer, and both are characterised by numerous slen-
der, densely-packed, and jagged columns (Fig. 6A). These columns lack cone-like morphologies, fan-like micro-
structure, and pore canals (Fig. 6A), but possess ultrastructural zonation (Fig. 6A). The inner layer comprises a
compact, interlocking layer of calcite crystals with a prismatic appearance (not related to the prismatic layer of
theropod eggshell) with lattices and etched faces (Fig. 6A,B). There is an abrupt transition between these crystals
and acicular, parallel examples in the second layer that form a tightly packed palisade. The crystal ultrastructure
is jagged, and is studded with abundant tiny holes (Fig. 6B) that resemble the primary vesicles (spherical films)
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Figure 6. (A) SEM of a gekkotan eggshell with a two-layered eggshell structure. (B) SEM reveals the fine structure
in the vertical prism of the second layer, arrows show abundant tiny holes, less than 0,01 microns in size.

seen in recent avian eggshells, although they are much smaller*. The organic core and basal plate group are also
lacking in these shells (Fig. 6A).

Discussion: The geckoid-type shells from Od resemble those of the extant gecko Ptydactylus®, (Schleich and
Kastle 1988 pp. 56, 57) as both have two distinct layers visible under SEM. Of these, the inner layer is comprised
of blocky crystals which are longer than they are wide, while the external layer has thinner crystals with jagged
boundaries, similar to those from Od*’. Spanish fossil geckoid-type eggshells®® also have a particularly thin sec-
ond layer, about 20 um thick, much like the external layer seen in extant geckos®. Additional examples of these
shells® have been described as a single layer with a diagenetic second layer. They contrast with the Od eggshells
which have two distinct layers. The remarkable structural similarities seen between the fossil shell and mod-
ern geckoid-type eggshell enable the clear assignment of these specimens to gekkotans, specifically Oofamily
Gekkoolithidae Hirsch 1996.

Discussion

Previous work has shown that eggshell orientation can be used to distinguish nesting and predation localities from
transported assemblages in the fossil record!$*-4-%_ Specifically, non-transported eggshell fragments at hatching
and predation sites tend to rest CU rather than CD*. Therefore, trampled fragments and fragments transported by
wind and water favour CD over CU orientations*>*¢!. The CU:CD orientation ratio (42:58) in our study is statisti-
cally distinguishable from both the 60:40 ratio typical of in situ nests and the 15:85 ratio of transported nests when
evaluated with a chi-square test®% and from those nests that are buried under substrate with a relation of CU:CD
orientation (38:62). Our observed ratios (42:58) resemble the ratios (42:58) of chick-trampled eggshells, in accord-
ance with the sedimentology and taphonomy of the Od lens which suggests that eggs were deposited in a single flood
event. We have previously argued that these eggshells were transported a short distance and deposited in a shallow
pond?*¢!. The results also support the conclusion that a proportion as high as 85% of CD eggshells in a fossil assem-
blage could be used to indicate transport regardless of eggshell type or substrate®!, but a lower proportion should be
used with caution. Again, as suggested by Hayward et al.®°, palacontologists should interpret the taphonomy of fossil
eggshells with care and pay detailed attention to their sedimentological context®.

The EME V.314 Od accumulation contains eggshells consistent with four distinct vertebrate taxa, enantior-
nithine birds, birds of undetermined affinities, crocodylomorphs, and gekkotan lizards. Enantiornithine birds
were the dominant taxon and nested at this site in large numbers. They may have actively accumulated the eggs
or shells of other taxa, perhaps as a food source or a calcium bank. We consider this to be unlikely, however, as no
gastric-acid etching (caused by digestion) was detected on the Od eggshells. It is more likely that these fossil egg-
shells, preserved alongside the complete bones and eggs of enantiornithines, evidence a mixed nesting association
of at least four distinct taxa. This hypothesis is also consistent with sedimentological and taphonomic evidence?.
The Od accumulation is thus unique in the vertebrate fossil record and represents the earliest record of disparate
animals sharing the same nesting area.

We speculate that perhaps a plain area, created by seasonal flooding, offered the enantiornithines safety from
predators and that their nest environments afforded shelter to smaller reptiles that benefitted from the security
provided by the birds guarding their own nests". This is often the case in extant mixed-nesting assemblages (see
above). The enantiornithine component in the accumulation far outweighs the birds with undefined affinities. The
presence of crocodylomorph and gekkotan material perhaps suggests that these animals were not only tolerated,
but were perhaps not perceived as a threat to enantiornithine eggs or nestlings.

The sedimentology of the Od locality is consistent with a flood plain environmen and there is no evi-
dence of other nests. Indeed, while the only other known enantiornithine breeding associations are monospecific,
resident birds nevertheless share these general areas with other vertebrates including non-avian theropods and
crocodiles®.

t26,38

Materials and Methods

The lens containing the Od accumulation was collected in pieces by MV from the basal fluvio-paludal part of the
Oarda outcrop (Maastrichtian Sebes Formation) (Fig. 1C) and is housed in the Transylvanian Museum Society,
Cluj-Napoca, Romania as EME V.314%638,
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All eggshell samples were treated with 10% acetic acid and the concretion of eggshell and matrix from the Od

accumulation was then prepared as standard 30 pm petrographic thin-sections and examined with a polarised
light microscope (Centro Atémico Bariloche, Argentina). Two other concretion samples were sputtered with
10nm of platinum and analysed with an FEI (Hillsborough, Oregon) Nova NanoSEM 230 SEM at 15kV. Images
were evaluated using the open source FIJI software package® to measure eggshell structural attributes®. We com-
pared eggshell orientation ratios using a chi-square test, and orientations were measured from the horizontal face
of the EME V.314/1 with an area of 11 X 15cm. and EME V.314/2 with an area of 11 cm x 13 cm.
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