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Abstract−− In this article we compare results from 

different heuristics approaches for the design of VLE 

separation vessels. In addition, we present an MILP 

approach that embeds the aforementioned heuristics 

and considers the discrete nature of the geometric 

variables. We show that different heuristics render 

different results and, while results from heuristics and 

MILP often coincide, significant departures occur. 

Keywords−− Phase Separator Design, Optimiza-

tion. 

I. INTRODUCTION 

Vapor-liquid phase separators are widely used in oil re-

fineries, natural gas processing plants, petrochemical and 

chemical plants, etc. (Meyers, 1997; Kayode Coker, 

2010; Speight, 2011). In classical textbooks (Silla, 2003; 

Couper et al., 2005; Stewart and Arnold, 2008; Datta, 

2008; Towler and Sinnott, 2008), heuristic procedures 

are proposed. Another approach for the design uses com-

putational fluid dynamic (CFD) (Misra et al., 2017; 

Ghaffarkhah et al., 2017). We focus our analysis on the 

former approaches, as usually employed in practice and 

we reformulate it in a form of an optimization procedure. 

In this article, results using different heuristics for the 

design of vapor-liquid separation vessels are compared 

and an alternative optimization procedure is presented. 

Design principles used by traditional heuristics are pre-

sented first. Then, the traditional heuristic procedures and 

the MILP optimization procedure is presented. Solutions 

of the MILP procedure are compared with the heuristics’ 

solutions highlighting important discrepancies in some 

cases, which  indicate that the utilization of mathemati-

cal programing can attain solutions with lower costs. 

II. DESIGN PRINCIPLES 

In this section, we list all the constraints used to design 

vertical VLE phase separators (Figure 1). The design var-

iables of a vertical separator are: diameter, height, type 

headers and wall thickness. For comparison, we pick the 

following heuristic procedures: Silla (2003), Couper et 

al. (2005), who follows Evans (1980), and Towler and 

Sinnott (2008). These design procedures are focused on 

the determination of the vessel diameter based on the sep-

aration of the droplets from the vapor flow. 

 
Figure 1. Vertical Phase Separator.  

A. Vessel Diameter 

It is obtained based on the vapor velocity vv 

𝐷𝑣𝑒𝑠𝑠𝑒𝑙 = (
4�̂�𝑣

𝜋𝑣𝑣
)

1
2⁄

     (1) 

where �̂�𝑣 is the operating vapor volumetric flow rate (pa-

rameters are represented with a “^” on the top).  

When the diameter is small such that regular sched-

uled pipes can be used, rounding off the diameter to the 

next available commercial value is done. When plates are 

used, there also exist recommendations to round up to the 

next standard value (Silla, 2003; Couper et al., 2005). 

B. Terminal Velocity 

All three sources recommend determining the terminal 

velocity (or settling velocity) of a droplet of a certain size 

(�̂�𝑑,𝑐𝑟𝑖𝑡) first. Liquid droplets of smaller size than the cut 

size remain part of the vapor, eventually coalescing in the 

mist extractor when present. Balancing the buoyancy, 

drag forces and gravitational forces, one obtains (Silla, 

2003; Stewart and Arnold, 2008; Datta, 2008): 

𝑣𝑣 = (
4 �̂�𝑑,𝑐𝑟𝑖𝑡 �̂�

3 𝐶𝐷
)

1
2⁄

(
�̂�𝑙−�̂�𝑣

�̂�𝑣
)

1
2⁄

    (2) 

where 𝐶𝐷   is the drag coefficient. Typically, the above 

formula is rewritten introducing a coefficient 𝐾𝑣: 

𝑣𝑣 = 𝐾𝑣 (
�̂�𝑙−�̂�𝑣

�̂�𝑣
)

1
2⁄

     (3) 

In this article, we just use values of 𝐾𝑣, and we do not 

pick values of �̂�𝑑,𝑐𝑟𝑖𝑡 or  𝐶𝐷 (left for future work). In ad-

dition, we do not consider the use of demisters.  
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Many authors suggest different fixed approximate 

values of 𝐾𝑣. Gerunda (1981) says (without citing any 

source), that for most systems, the value of 𝐾𝑣 varies be-

tween 0.1 and 0.35 ft/s (0.03045 and 0.107 m/s), the value 

of 𝐾𝑣 = 0.03405 ft/s (0.01038 m/s) being the most ade-

quate for designs without demisters. In turn, Towler and 

Sinnott (2008) suggest using 𝐾𝑣 = 0.0105 m/s for vessels 

without demister. Finally, Silla (2003) takes the extreme 

values of the range used by Gerunda (1981), that is, 𝐾𝑣 = 

0.1 ft/s (0.03045 m/s) for separator without demister. 

Other authors attempt to calculate it directly through pro-

posed formulas. In particular, Watkins (1967) proposed, 

not citing any source, that 𝐾𝑣 be a function of �̂�𝑙𝑣 =

(�̂�𝑙/�̂�𝑣)√�̂�𝑣/�̂�𝑙 (�̂�𝑣 and �̂�𝑙 are the vapor and liquid 

mass flowrates, respectively). Watkins (1967) claims that 

his curve corresponds to 5% liquid entrainment with no 

demister and 85% flooding. Blackwell (1984) proposed 

an analytical expression (a 5th degree polynomial based 

on (ln �̂�𝑙𝑣), which we use here. 

C. Vapor Height 

Vapor height, the length between the liquid surface to the 

top, is obtained using a set of heuristics that vary from 

author to author, all presumably attempting to allow 

some length to let parallel flow to develop. Watkins 

(1967) proposed 36”+0.5 of nozzle diameter above the 

inlet nozzle center and 12”+0.5 nozzle diameter below 

the inlet nozzle center. When there is no demister, Couper 

et al. (2005) show recommendations in a figure: a mini-

mum of 48” above the inlet nozzle center, and a minimum 

of 18” between it and the liquid level increasing, values 

far larger than the ones proposed by Watkins (1967). In 

addition, in the text, they do not refer to this figure, but 

rather to another figure presented for the case of the use 

of demisters. Finally, according to Couper et al. (2005) 

and Watkins (1967), the aforemen-tioned nozzle diame-

ter should be selected such as the nozzle two-phase ve-

locity (�̂�𝑛) is between minimum and maximum values, 

calculated to be 60 and 100 times the value of √�̂�𝑚𝑖𝑥 . 

We use a conservative velocity 10% below the maxi-

mum, that is: 

�̂�𝑛(ft/s) = 90 √�̂�𝑚𝑖𝑥     (4) 

In our comparisons, for the case of using the heuris-

tics by Cooper et al. (2005), the recommendations are a 

minimum of 48” above the inlet nozzle center, and a min-

imum of 18” between it and the liquid level (the mini-

mum values proposed by Watkins (1967)). Thus, we have 

𝐻𝑣 = 1.6764 m (66"). 
In turn, Towler and Sinnott (2008) only depict the 

case when a demister is installed. The height is obtained 

adding 0.4 m (minimum) for allowing demister installa-

tion and the space above, one vessel diameter from the 

center of the nozzle to the demister (with a minimum of 

1 m), and half diameter from the center of the nozzle to 

the liquid level. (0.6 m minimum). To this, they propose 

to add space for the inlet fittings (𝐻𝑖𝑛𝑙𝑒𝑡), and above that, 

certain room for the vapor flow to develop (𝐻𝑣).  

Finally, the heuristic proposed by Silla (2003) is 

based on the sum of 𝐻𝑖𝑛𝑙𝑒𝑡−𝑙𝑖𝑞  and 𝐻𝑑𝑖𝑠𝑒𝑛𝑔𝑎𝑔𝑒 , the same 

way as in the case of Towler and Sinnott (2008):  

𝐻𝑣 = 𝐻𝑖𝑛𝑙𝑒𝑡−𝑙𝑖𝑞 + 𝐻𝑑𝑖𝑠𝑒𝑛𝑔𝑎𝑔𝑒    (5) 

Towler and Sinnott (2008) suggest  

𝐻𝑖𝑛𝑙𝑒𝑡−𝑙𝑖𝑞 = max{0.5 𝐷𝑣𝑒𝑠𝑠𝑒𝑙 , 0.6 m}  (6) 

 𝐻𝑑𝑖𝑠𝑒𝑛𝑔𝑎𝑔𝑒 = max{𝐷𝑣𝑒𝑠𝑠𝑒𝑙 , 1}  (7) 

In turn, Silla (2003) suggests  

𝐻𝑖𝑛𝑙𝑒𝑡−𝑙𝑖𝑞 = max{0.5 𝐷𝑣𝑒𝑠𝑠𝑒𝑙 , 0.6096}    (8) 

𝐻𝑑𝑖𝑠𝑒𝑛𝑔𝑎𝑔𝑒 = max{𝐷𝑣𝑒𝑠𝑠𝑒𝑙 , 0.9144}   (9)  

All the aforementioned heuristics are based on the in-

ability of predicting in detail when a velocity field is uni-

form and upwards. This matter is left for future work. 

D. Liquid Level 

It is obtained using a given residence time �̂�𝑠. The values 

vary from 5 to 20 min (Cooper et al., 2005), who take 

that recommendation from Walas (1988), 10 min for 

Towler and Sinnott (2008) and 5 min for Silla (2003). All 

values are subject to a minimum value (0.61 m), as rec-

ommended by Silla (2003) or 0.3 m as suggested by 

Towler and Sinnott (2008) to accommodate a level meas-

urement device. In turn, Couper et al. (2005) do not men-

tion a minimum specifically, only citing vaguely the need 

for liquid hold-up. Thus, one can safely assume that a 

level measurement device will be installed. Therefore, 

𝐻𝑙 = max {
4�̂�𝑙�̂�𝑠

𝜋𝐷𝑣𝑒𝑠𝑠𝑒𝑙
2 , �̂�𝑙,𝑚𝑖𝑛}    (10) 

E. Slenderness 

The 𝐻𝑣𝑒𝑠𝑠𝑒𝑙 𝐷𝑣𝑒𝑠𝑠𝑒𝑙⁄  restrictions can be traced back to 

Watkins (1967), also cited by many as the earliest source. 

Watkins’ article states that the limits are based on the fact 

that “as diameter decreases, the shell thickness decreases 

and vessel length increases.” Then he adds: “At some 

point between 𝐻𝑣𝑒𝑠𝑠𝑒𝑙 𝐷𝑣𝑒𝑠𝑠𝑒𝑙⁄  ratios of 3 and 5, a mini-

mum weight will occur, and this will result in minimum 

cost.” Watkins (1967) also mentions that when 

𝐻𝑣𝑒𝑠𝑠𝑒𝑙 𝐷𝑣𝑒𝑠𝑠𝑒𝑙⁄  is larger than 5, it is more convenient to 

use a horizontal separator, based on the notion that hori-

zontal separators can better hold liquid.  

Couper et al. (2005) and Silla (2003) state that 

𝐻𝑣𝑒𝑠𝑠𝑒𝑙 𝐷𝑣𝑒𝑠𝑠𝑒𝑙⁄  needs to be higher than 3 and lower than 

5, as first suggested by Watkins (1967). We will assume 

the same for Towler and Sinnott (2008), although it is not 

explicitly mentioned. 

Thus, if 𝐻𝑣𝑒𝑠𝑠𝑒𝑙/𝐷𝑣𝑒𝑠𝑠𝑒𝑙  > 5, then the heuristics sug-

gest that the diameter be increased a certain percentage 

(defined by the experienced designer) until it complies. 

With this new vessel diameter, the vessel height is recal-

culated. The procedure is repeated, until finding values 

of diameter and height that satisfy the previous relation-

ship. Conversely, if 𝐻𝑣𝑒𝑠𝑠𝑒𝑙 /𝐷𝑣𝑒𝑠𝑠𝑒𝑙<3, then the height is 

increased keeping the diameter constant (since it is in the 

minimum value), until the ratio is larger or equal to 3. 

F. Wall Thickness of Shell and Heads 

It depends on the fabrication method, for which the most 

popular choices are a portion of a large pipe or rolled steel 

plates, later welded. For the case of the use of pipes, the 
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diameter and wall thickness come in discrete choices, re-

lated to the standardized pipe schedule also taking into 

account pressure. In the case of rolled steel plates, pres-

sure also dictates the thickness to be used, which also 

comes in standardized discrete choices.  

The top and bottom heads choices are elliptical or 

hemispherical, with also standardized discrete thickness 

choices. The following formulas are used (Silla, 2003; 

Couper et al., 2005; Stewart and Arnold, 2008): 

𝑡𝑠ℎ𝑒𝑙𝑙 = max {
�̂�

𝐷𝑣𝑒𝑠𝑠𝑒𝑙
2

�̂��̂�−0.6�̂�
, �̂�𝑚𝑖𝑛}       (11) 

𝑡ℎ−𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑𝑎𝑙 = max {
�̂�𝐷𝑣𝑒𝑠𝑠𝑒𝑙

2�̂��̂�−0.2�̂�
, �̂�𝑚𝑖𝑛}   (12) 

𝑡ℎ−ℎ𝑒𝑚𝑖𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 = max {
�̂�∙

𝐷𝑣𝑒𝑠𝑠𝑒𝑙
2

2�̂��̂�−0.2�̂�
, �̂�𝑚𝑖𝑛}          (13) 

which means that a choice between of head needs to be 

made. The value of �̂�𝑚𝑖𝑛 is usually 3/32” (2.38 mm) or 

higher if an allowance for corrosion is added: Stewart and 

Arnold (2008) recommend adding ¼ in. On the other 

hand, Silla (2003) considers this value excessive. The 

thickness for hemispherical heads is lower than the one 

for ellipsoidal heads for the same diameter and pressure 

(�̂�) and other fixed parameters like maximum allowable 

stress values (�̂�) and welding efficiency (�̂� = 1 for dou-

ble welding with X-ray and 0.6 for simple welding with 

no X-ray). In the case of vessels made from pipes, which 

do not exhibit a welding joint, they are still welded to the 

heads, or to the inlet nozzle. Note that hemispherical head 

has more volume than the ellipsoidal head for the same 

diameter and the same thickness. In turn, the ellipsoidal 

head renders twice the thickness for the same pressure 

and diameter. An additional heuristics states that above 

150 bar it is advisable to use spherical heads (Silla, 2003). 

G. Vessel Volume 

The volume of shell material is determined as the shell 

volume plus heads volumes, for ellipsoidal and hemi-

spherical head, respectively: 

𝑉𝑠ℎ𝑒𝑙𝑙 = 𝜋(𝐷𝑣𝑒𝑠𝑠𝑒𝑙𝑡𝑠ℎ𝑒𝑙𝑙 + 𝑡𝑠ℎ𝑒𝑙𝑙
2)𝐻𝑣𝑒𝑠𝑠𝑒𝑙    (14) 

𝑉ℎ𝑒𝑎𝑑 =
𝜋

12
(6𝐷𝑣𝑒𝑠𝑠𝑒𝑙

2𝑡ℎ + 12𝐷𝑣𝑒𝑠𝑠𝑒𝑙𝑡ℎ
2 + 8𝑡ℎ

3) (15) 

𝑉ℎ𝑒𝑎𝑑 =
𝜋

6
(6𝐷𝑣𝑒𝑠𝑠𝑒𝑙

2𝑡ℎ + 12𝐷𝑣𝑒𝑠𝑠𝑒𝑙𝑡ℎ
2 + 8𝑡ℎ

3) (16) 

H. Cost 

The cost is composed as the cost of metal. To compare 

we use the total mass of material employed to build the 

vessel. 

III. RESULTS OBTAINED USING HEURISTICS  

A. Straight Comparisons 

We compare traditional heuristic design procedures to 

discuss the impact of the different choices for fixed 𝐾𝑣 

values and the different restrictions associated to the 

height. The discrete values of diameter and thickness for 

pipes we used correspond to STD, XS and XXS and we 

do not include schedules 10, 40 and 60. For diameter  
 

Table 1: Data for Example 1. 

Parameter Value Parameter Value 

�̂�𝑣(m3 s⁄ ) 1.4157 �̂�𝑣(Pa ∙ s) 1.810-5 

�̂�𝑙(m3 s)⁄  0.0117987 �̂�𝑠(s) 600 

�̂�𝑙(kg m3⁄ ) 999.552 �̂�(psig) 30 

�̂�𝑣(kg 𝑚3⁄ ) 1.201385 �̂�(psi) 17500 

Table 2: Heuristics results - Example 1 (No demister) 

Model 

/ 

Variables 

From 

Couper et 

al. (2005) 

Couper et 

al. (2005) 

Towler 

and 

Sinnott 

(2008) 

Silla 

(2003) 

𝐷𝑣𝑒𝑠𝑠𝑒𝑙 (m) 1.3717 1.5049 1.5049 1.5049 

𝐻𝑣𝑒𝑠𝑠𝑒𝑙 (m) 6.4617 5.6564 6.24 6.24 

𝑡𝑠ℎ𝑒𝑙𝑙 , 𝑡ℎ (mm) 9.53 9.53 9.53 9.53 

�̂�𝑣 (m/s) 0.04267 0.1058 0.1058 0.1058 

𝐻𝑣𝑒𝑠𝑠𝑒𝑙 𝐷𝑣𝑒𝑠𝑠𝑒𝑙⁄  4.71 3.76 4.14 4.14 

Mass (kg) 2562.22 2568.55 2776.65 2776.65 

higher than 60”, we used rolled steel plates (of standard 

thickness) discretizing the external diameter using 2 

inches steps. We use �̂�𝑠𝑡𝑒𝑒𝑙 =7900 kg/m3 for ASTM 

SA516 G70. 

The first example is taken from Couper et al. (2005) 

where liquid water is separated from air at atmospheric 

conditions (Table 1).  

Results are shown in Table 2, including the original 

results (𝐷𝑣𝑒𝑠𝑠𝑒𝑙  and 𝐻𝑣𝑒𝑠𝑠𝑒𝑙) obtained by Couper et al. 

(2005), where we assume ellipsoidal head and a thickness 

of 0.00953 m. We note that, originally, Couper et al. 

(2005) (first column), used a value of 𝐾𝑣, different than 

the one we obtain from the Blackwell formula and that 

all results include ellipsoidal heads. 

We also made the adjustments needed to abide by the 

slenderness constraints (𝐻𝑣𝑒𝑠𝑠𝑒𝑙 𝐷𝑣𝑒𝑠𝑠𝑒𝑙⁄  ratio), as the 

heuristics suggest.  

We illustrate the adjustments made as follows: using 

the Couper et al’s heuristics one first obtains 𝐷𝑣𝑒𝑠𝑠𝑒𝑙 = 

0.7876 m, 𝐻𝑣𝑒𝑠𝑠𝑒𝑙= 16.2070 m, and 𝐻𝑣𝑒𝑠𝑠𝑒𝑙 𝐷𝑣𝑒𝑠𝑠𝑒𝑙⁄ = 

20.5777. Since the ratio obtained 𝐻𝑣𝑒𝑠𝑠𝑒𝑙 𝐷𝑣𝑒𝑠𝑠𝑒𝑙⁄  is 

higher than the maximum ratio recommended according 

to the heuristics, and the heuristic procedure calls for 

changing the diameter in this situation, we try that until 

𝐻𝑣𝑒𝑠𝑠𝑒𝑙 𝐷𝑣𝑒𝑠𝑠𝑒𝑙⁄  ≤ 5. The sequence of diameters and 

heights tried is the following: (𝐷𝑣𝑒𝑠𝑠𝑒𝑙 , 𝐻𝑣𝑒𝑠𝑠𝑒𝑙),  = 

(0.8386 m, 14.4934 m), (0.8448 m, 14.3055 m), … 

(0.8949 m, 12.9314 m),… (1.4986 m, 5.6899 m), with 

this last complying with the slenderness constraint. 

The corresponding thickness for 𝐷𝑣𝑒𝑠𝑠𝑒𝑙=1.4986 m 

(60-XS) is 12.7 mm , with a corresponding mass of 

3430.36 kg. However, if one picks the next diameter (60-

STD) 𝐷𝑣𝑒𝑠𝑠𝑒𝑙=1.5049 m, one gets a thickness of 9.53 mm, 

which leads to a smaller weight (2568.55 kg), because 

STD pipes have smaller thickness. This is not mentioned 

in the heuristics we explored, and it makes a significant 

difference (28.04 % lower mass).  

The second example is taken from Towler and Sinnott 

(2008). Data for this example (water/steam) are shown in 

Table 3. For the heuristics, we used  𝐾𝑣 = 0.12602 m/s  
 



Latin American Applied Research  50(2): 65-70 (2020) 

 

68 

Table 3: Data for Example 2. 

Parameter Value Parameter Value 

�̂�𝑣(m3 s⁄ ) 0.257 �̂�𝑣(Pa ∙ s) 1.452110-5 

�̂�𝑙(m3 s)⁄  0.0003  �̂�𝑠(s) 750 

�̂�𝑙(kg m3⁄ ) 926.4 �̂�(psig) 68.32  

�̂�𝑣(kg m3⁄ ) 2.16   �̂�(psi) 17500 

Table 4: Heuristics results - Example 2. 

Model 

/ 

Variables 

From 

Towler 

and 

Sinnott 

(2008) 

Couper et 

al. (2005) 

Towler 

and 

Sinnott 

(2008) 

Silla 

(2003) 

𝐷𝑣𝑒𝑠𝑠𝑒𝑙 (m) 1.25 0.5399 0.5399 0.5399 

𝐻𝑣𝑒𝑠𝑠𝑒𝑙 (m) 3.75 2.4626 2.3862 2.3102   

𝑡𝑠ℎ𝑒𝑙𝑙 , 𝑡ℎ (mm) 9.53 9.53 9.53 9.53 

�̂�𝑣 (m/s)  0.0105 0.12602 0.12602 0.12602 

𝐻𝑣𝑒𝑠𝑠𝑒𝑙 𝐷𝑣𝑒𝑠𝑠𝑒𝑙⁄  3 4.5613 4.4198 4.2790   

Mass (kg) 1492.38 391.43 381.50 371.63 

(determined using the Blackwell equation). Adjustments 

to satisfy the 𝐻𝑣𝑒𝑠𝑠𝑒𝑙 𝐷𝑣𝑒𝑠𝑠𝑒𝑙⁄  ratio restriction are only 

necessary for the heuristics of Towler and Sinnott (2008). 

The results are in Table 4, where the original results from 

Towler and Sinnott (2008) were completed using their 

heuristics (first column). Heads are all ellipsoidal. 

In reporting the original results from Towler and 

Sinnott (2008) in the first column, we note that Towler 

and Sinnot added 0.4 m to the height. When we used the 

heuristics (third column), this distance is not added, be-

cause there is no demister here. If this value is not con-

sidered in the first column, then the height and vessel 

mass would be 𝐻𝑣𝑒𝑠𝑠𝑒𝑙 = 3.35 m and Mass =1403.00 kg. 

B. Danger of using arbitrarily selected values of �̂�𝒗  

Example 1 was taken from Couper et al. (2005), where 

they used a calculated value of 𝐾𝑣 = 0.04267 m/s (0.14 

ft/s), corresponding to  �̂�𝑣 = 1.2301 m/s, which is about 

40 % of the �̂�𝑣 obtained using the Blackwell equation. 

Thus, 𝐷𝑣𝑒𝑠𝑠𝑒𝑙  = 1.5049 m, 𝐻𝑣𝑒𝑠𝑠𝑒𝑙= 5.6564 m and vessel 

mass of 2568.55 kg, the same as in the second column of 

Table 2. 

For this example 2, Towler and Sinnot (2008), used a 

fixed value of 𝐾𝑣= 0.0105 m/s, which corresponds to �̂�𝑣 

= 0.2147 m/s, contrasting with 2.607 m/s obtained with 

𝐾𝑣 using the Blackwell equation. We obtained 𝐷𝑣𝑒𝑠𝑠𝑒𝑙  = 

1.5049 m, and adjusting the vessel height for slenderness, 

we get 𝐻𝑣𝑒𝑠𝑠𝑒𝑙  = 4.5147 m and a weight of 2159.61 kg. 

Both examples illustrate the dangers of using arbitrar-

ily selected values of 𝐾𝑣. The important differences of 

mass obtained for Towler and Sinnott (2008) heuristics, 

using fixed ad-hoc values of 𝐾𝑣 and values obtained us-

ing the Blackwell equation (2159.61 kg and 381.50 kg, 

respectively) highlight the danger of using the formula. 

We conclude this section stating that the different 

heuristics offer intricacies that are hard to unify in a sin-

gle universal heuristics-based recipe. In addition, these 

heuristics are misleading when adjustments for slender-

ness are made. Moreover, even when adjustments for 

slenderness are not needed, the results can be substan-

tially different because one can still pick larger diameters 

that lead to smaller mass. Thus, for these two reasons, we 

recommend NOT using heuristics. 

IV. OPTIMIZATION PROCEDURE 

We now present a mixed-integer linear programming 

(MILP) formulation for solving the design problem 

through mathematical programming. The model takes 

into account the above presented heuristics regarding 

heights, but it does not force the procedural suggestions, 

i.e. the proposed formulation can identify the optimal so-

lution according to the literature equations employed in 

the practical design. We introduce binary variables 𝑧ℎ𝑒 

and 𝑧ℎℎ  to indicate the use of ellipsoidal or hemispherical 

heads.  

min 𝐶𝑜𝑠𝑡 = (𝑉𝑠ℎ𝑒𝑙𝑙 + 2 𝑉ℎ𝑒𝑎𝑑)�̂�𝑠𝑡𝑒𝑒𝑙�̂�𝑠𝑡𝑒𝑒𝑙  (17) 

s.t. 

𝐷𝑣𝑒𝑠𝑠𝑒𝑙 ≥ (
4�̂�𝑣

𝜋�̂�𝑣
)

1
2⁄

     (18) 

𝐷𝑣𝑒𝑠𝑠𝑒𝑙 ≥ �̂�𝑚𝑖𝑛     (19) 

𝐻𝑙 ≥
4�̂�𝑙�̂�𝑠

𝜋𝐷𝑣𝑒𝑠𝑠𝑒𝑙
2       (20) 

𝐻𝑙 ≥ �̂�𝑙_𝑚𝑖𝑛       (21) 

𝐻𝑣𝑒𝑠𝑠𝑒𝑙 ≥ 𝐻𝑙 + 𝐻𝑣     (22) 

𝐻𝑣 = {

1.6764 (Couper 𝑒𝑡 𝑎𝑙. ) 

(𝐻𝑖𝑛𝑙𝑒𝑡−𝑙𝑖𝑞 + 𝐻𝑑𝑖𝑠𝑒𝑛𝑔𝑎𝑔𝑒)(Towler, Sinnott)

(𝐻𝑖𝑛𝑙𝑒𝑡−𝑙𝑖𝑞 + 𝐻𝑑𝑖𝑠𝑒𝑛𝑔𝑎𝑔𝑒 ) (Silla)

 (23) 

𝐻𝑖𝑛𝑙𝑒𝑡−𝑙𝑖𝑞 ≥ {
max{0.5𝐷𝑣𝑒𝑠𝑠𝑒𝑙 , 0.6} (Towler; Sinnott)

max{0.5𝐷𝑣𝑒𝑠𝑠𝑒𝑙 , 0.6096} (Silla)
 (24) 

𝐻𝑑𝑖𝑠𝑒𝑛𝑔𝑎𝑔𝑒 ≥ {
max{𝐷𝑣𝑒𝑠𝑠𝑒𝑙 , 1} (Towler;  Sinnott)

max{𝐷𝑣𝑒𝑠𝑠𝑒𝑙 , 0.9144} (Silla)
 (25) 

3 ≤ 𝐻𝑣𝑒𝑠𝑠𝑒𝑙 𝐷𝑣𝑒𝑠𝑠𝑒𝑙⁄ ≤ 5   (26) 

𝑡𝑠ℎ𝑒𝑙𝑙 ≥
�̂�

𝐷𝑣𝑒𝑠𝑠𝑒𝑙
2

�̂��̂�−0.6�̂�
     (27) 

𝑡𝑠ℎ𝑒𝑙𝑙 ≥ �̂�𝑚𝑖𝑛      (28) 

𝑡ℎ ≥
�̂�∙𝐷𝑣𝑒𝑠𝑠𝑒𝑙

2∙�̂�∙�̂�−0.2∙�̂�
𝑧ℎ𝑒 +

�̂�∙
𝐷𝑣𝑒𝑠𝑠𝑒𝑙

2

2∙�̂�∙�̂�−0.2∙�̂�
𝑧ℎℎ  (29) 

𝑡ℎ ≥ �̂�𝑚𝑖𝑛      (30) 

𝑉𝑠ℎ𝑒𝑙𝑙 = 𝜋(𝐷𝑣𝑒𝑠𝑠𝑒𝑙𝑡𝑠ℎ𝑒𝑙𝑙 + 𝑡𝑠ℎ𝑒𝑙𝑙
2)𝐻𝑣𝑒𝑠𝑠𝑒𝑙  (31) 

𝑉ℎ𝑒𝑎𝑑 =
𝜋

12
(6𝐷𝑣𝑒𝑠𝑠𝑒𝑙

2𝑡ℎ + 12𝐷𝑣𝑒𝑠𝑠𝑒𝑙𝑡ℎ
2 + 8𝑡ℎ

3)𝑧ℎ𝑒 +

  
𝜋

6
(6𝐷𝑣𝑒𝑠𝑠𝑒𝑙

2𝑡ℎ +   12 𝐷𝑣𝑒𝑠𝑠𝑒𝑙𝑡ℎ
2 + 8𝑡ℎ

3)𝑧ℎℎ   (32) 

𝑧ℎ𝑒 + 𝑧ℎℎ = 1     (33) 

Many geometric variables (x) have several discrete 

options 𝑥�̂�𝑖 according to standard/commercial alterna-

tives (e.g. diameters, wall thicknesses, lengths, etc). 

Thus, we use binary variables yi, and write x as follows: 

𝑥 = ∑ 𝑥�̂�𝑖  𝑦𝑖𝑖      (34) 
∑ 𝑦𝑖𝑖 = 1       (35) 

After the substitution of the discrete variables by its 

binary representation in the mathematical expressions of 

the vessel model, we get terms of the form 𝑝𝑛1𝑞𝑛2 ⋯ 𝑧𝑛𝑚 

that are substituted as follows: 

𝑝𝑛1𝑞𝑛2 ⋯ 𝑧𝑛𝑚 = 

[∑ 𝑝�̂�𝑖  𝑦𝑝𝑖]𝑛1
𝑖 [∑ 𝑞�̂�𝑗  𝑦𝑞𝑗]𝑛2

𝑗 [∑ 𝑧�̂�𝑘  𝑦𝑧𝑘]𝑛𝑚
𝑘  (36) 

Because Eqs. (34-35) render only one binary variable 

equal to 1, one can write: 
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Table 5: MILP results - Example 1. 

Model 

/ 

Variables 

Couper et al. 

(2005) 

Towler and 

Sinnott 

(2008) 

Silla (2003) 

𝐷𝑣𝑒𝑠𝑠𝑒𝑙 (m) 1.5685 1.5685 1.5685 

𝐻𝑣𝑒𝑠𝑠𝑒𝑙 (m) 5.34 6.02 6.02 

𝑡𝑠ℎ𝑒𝑙𝑙 , 𝑡ℎ (mm) 3.2 3.2 3.2 

�̂�𝑣 (m/s)  0.1058 0.1058 0.1058 

𝐻𝑣𝑒𝑠𝑠𝑒𝑙 𝐷𝑣𝑒𝑠𝑠𝑒𝑙⁄  3.41 3.84 3.84 

Mass (kg) 857.36 941.25 941.25 

𝑝𝑛1𝑞𝑛2 ⋯ 𝑧𝑛𝑚 = 

∑ 𝑝�̂�𝑖
𝑛1

𝑞�̂�𝑗
𝑛2

… . . 𝑞�̂�𝑘
𝑛𝑚

 𝑦𝑝𝑖𝑖,𝑗,..𝑘  𝑦𝑞𝑗 …  𝑦𝑧𝑘  (37) 

Therefore, the reformulated model is now composed 

by several expressions containing multiple summations 

of products of binary variables and a few continuous var-

iables. Finally, the products of binary variables are line-

arized using standard procedure: First Eq. (37) is rewrit-

ten as follows 

𝑝𝑛1𝑞𝑛2 ⋯ 𝑧𝑛𝑚 = 

∑ 𝑝�̂�𝑖
𝑛1

𝑞�̂�𝑗
𝑛2

… 𝑞�̂�𝑘
𝑛𝑚

 𝑤𝑝𝑖,𝑗,…,𝑘𝑖,𝑗,..𝑘   (38) 

and the following equations are added: 

 𝑤𝑝𝑖,𝑗,…,𝑘 ≤  𝑦𝑝𝑖              (39) 

 𝑤𝑝𝑖,𝑗,…,𝑘 ≤  𝑦𝑞𝑗              (40) 

……. 

 𝑤𝑝𝑖,𝑗,…,𝑘 ≤  𝑦𝑧𝑘              (41) 

 𝑤𝑝𝑖,𝑗,…,𝑘 ≥  𝑦𝑝𝑖  + 𝑦𝑞𝑗+ … + 𝑦𝑧𝑘 − (𝑚 − 1)   (42) 

where m is the number of binary variables participating 

in the product.  

The variables in our model are discretized as follows: 

𝐷𝑣𝑒𝑠𝑠𝑒𝑙 = ∑ 𝑉𝑒𝑠𝑠𝑒𝑙̂
𝑠𝑡𝑑,𝑖𝑛𝑡𝑑

𝑠𝑡𝑑𝑚𝑎𝑥
𝑠𝑡𝑑 𝑦𝑣𝑒𝑠𝑠𝑒𝑙𝑠𝑡𝑑  (43) 

𝑡𝑠ℎ𝑒𝑙𝑙 = ∑ 𝑉𝑒𝑠𝑠𝑒𝑙̂
𝑠𝑡𝑑,𝑡𝑠ℎ𝑒𝑙𝑙

𝑠𝑡𝑑𝑚𝑎𝑥
𝑠𝑡𝑑 𝑦𝑣𝑒𝑠𝑠𝑒𝑙𝑠𝑡𝑑  (44) 

𝑡ℎ = ∑ 𝑉𝑒𝑠𝑠𝑒𝑙̂
𝑠𝑡𝑑,𝑡ℎ

𝑠𝑡𝑑𝑚𝑎𝑥
𝑠𝑡𝑑 𝑦𝑣𝑒𝑠𝑠𝑒𝑙𝑠𝑡𝑑    (45) 

∑ 𝑦𝑣𝑒𝑠𝑠𝑒𝑙𝑠𝑡𝑑
𝑠𝑡𝑑𝑚𝑎𝑥
𝑠𝑡𝑑 = 1     (46) 

All MILP procedures usually reproduce the heuris-

tics, with the exception of certain cases that we explore 

next. 

V. RESULTS OF MILP PROCEDURES 

The MILP procedure was run using different models. The 

results of Example 2 are the same as those found by the 

heuristics (Table 4), while the results for Example 1 are 

shown in Table 5. All heads are ellipsoidal. 

The results show that for the Example 1, the MILP 

approach reaches better results that the solution found by 

the heuristics. We discuss this in the next section. 

VI. DEPARTURES FROM HEURISTICS 

There are two departures of interest. First, those that de-

rive from continued testing of larger diameter after the 

tests and eventual adjustments because of slenderness 

constraints are performed and second, discrepancies re-

lated to different liquid residence times.  

A. Diameter larger than heuristics results 

The final diameter departure from the calculated mini-

mum diameter is usually small. If slenderness constraints 

are enforced, this diameter sometimes changes. How-

ever, even if the latter case occurs, if one can continue 

increasing diameter and obtain a smaller weight.  

In Example 1, if one ignores stopping as soon as slen-

derness is within limits, and continues looking for larger 

diameters, which in this case are plates, then one obtains 

𝐷𝑣𝑒𝑠𝑠𝑒𝑙= 1.5685 m, 𝐻𝑣𝑒𝑠𝑠𝑒𝑙  = 5.34 m (a smaller height), 

with a mass of 857.36 kg. vs. 2568.55 kg, both results 

abiding by slenderness constraints. This is actually 

picked up by the MILP.  

B. Diameter larger because of Liquid Surge Time 

There is, however another case where departures from 

heuristics take place and it is when the liquid storage ca-

pacity renders larger diameters, a situation that is cap-

tured by the MILP, but not considered in step-by-step 

heuristics procedures. For example, for Couper et al. 

(2005) model, when one uses �̂�𝑠 = 20 min instead of 

�̂�𝑠 =10 min, both examples exhibit diameters that depart 

significantly from the minimum diameter. This is shown 

in Table 6, and in Fig. 2. Indeed, according to heuristics, 

one should stay close to the minimum diameter obtained 

using Eq. (1) by simply adjusting to the next standard di-

ameter. The MILP breaks with this heuristic selecting a 

much larger diameter. In other words, when the diameter 

increases, the liquid storage capacity increases and the 

height decreases (because liquid height decreases), 

reaching a point where the vessel weight is the lowest, 

before it starts increasing.  

 
Table 6: Minimum vessel diameter - Example 1 and 2.  

 Example 1 Example 2 

Diameter Eq.(1) 0.77 m 0.35 m 

Optimum Diameter 

MILP procedure 
1.823 m 0.6409 m 

Optimum Height 

MILP procedure 
7.1038 m 2.7918 m 

 

Figure 2. Impact of liquid residence time. 
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VII. EXHAUSTIVE ENUMERATION 

The above MILP procedure is very useful, especially if it 

is embedded in larger models where more equipment is 

optimized simultaneously. For stand-alone calculations, 

it can be applied by an enumeration procedure, where 

each combination of diameter, thickness and head option 

is considered.  

VIII. CONCLUSIONS 

The use of heuristics for the design of vertical vapor liq-

uid separators has been revisited finding that different au-

thors provide different recommendations, rendering dif-

ferent designs. We also developed an MILP procedure 

that can replace the use of heuristics. We found that the 

MILP procedure can reach better results in some cases. 

Therefore, the proposed approach becomes an automatic 

procedure, which without the need of direct human inter-

vention, can attain capital cost reductions for vessel de-

sign, thus improving the power of heuristic-based design 

procedures. In addition, we also explored the impact of 

some design parameters. 
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