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Abstract Additional jet activity in dijet events is measured
using pp collisions at ATLAS at a centre-of-mass energy
of 7 TeV, for jets reconstructed using the anti-kt algorithm
with radius parameter R = 0.6. This is done using variables
such as the fraction of dijet events without an additional
jet in the rapidity interval bounded by the dijet subsystem
and correlations between the azimuthal angles of the dijets.
They are presented, both with and without a veto on addi-
tional jet activity in the rapidity interval, as a function of the
mean transverse momentum of the dijets and of the rapid-
ity interval size. The double differential dijet cross section
is also measured as a function of the interval size and the az-
imuthal angle between the dijets. These variables probe dif-
ferences in the approach to resummation of large logarithms
when performing QCD calculations. The data are compared
to POWHEG, interfaced to the PYTHIA 8 and HERWIG parton
shower generators, as well as to HEJ with and without inter-
facing it to the ARIADNE parton shower generator. None of
the theoretical predictions agree with the data across the full
phase-space considered; however, POWHEG+PYTHIA 8 and
HEJ+ARIADNE are found to provide the best agreement with
the data. These measurements use the full data sample col-
lected with the ATLAS detector in 7 TeV pp collisions at the
LHC and correspond to integrated luminosities of 36.1 pb−1

and 4.5 fb−1 for data collected during 2010 and 2011 respec-
tively.

1 Introduction

The Large Hadron Collider (LHC) has opened up a new
kinematic regime to test perturbative QCD (pQCD) us-
ing measurements of jet production. Next-to-leading-order
QCD predictions for inclusive jet and dijet cross sections
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have been found to describe the data at the highest mea-
sured energies [1–7]. However, purely fixed-order calcu-
lations are expected to describe the data poorly wherever
higher-order corrections to a given observable are impor-
tant. In such cases, higher orders in perturbation theory must
be resummed; this resummation is typically performed in
terms of ln(1/x), where x is Bjorken-x, the Balitsky–Fadin–
Kuraev–Lipatov (BFKL) approach [8–11], or in terms of
ln(Q2), where Q2 is the virtuality of the interaction, the
Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) ap-
proach [12–14]. These resummations provide approxima-
tions that are most valid in phase-space regions for which
the resummed terms provide a dominant contribution to the
observable. Such a situation exists in dijet topologies when
the two jets have a large rapidity separation or when a veto
is applied to additional jet activity in the rapidity interval
bounded by the dijet system [15]. In these regions of phase-
space higher order corrections proportional to the rapidity
separation and the logarithm of the average transverse mo-
mentum of the dijets become increasing important: these
must be summed to all orders to obtain accurate theoretical
predictions.

When studying these phase-space regions, a particularly
interesting observable is the gap fraction, f (Q0), defined as
f (Q0) = σjj (Q0)/σjj where σjj is the inclusive dijet cross
section and σjj (Q0) is the cross section for dijet produc-
tion in the absence of jets with transverse momentum greater
than Q0 in the rapidity interval bounded by the dijet system.
The variable Q0 is referred to as the veto scale. In the limit
of large rapidity separation, ∆y, between the jet centroids,
the gap fraction is expected to be sensitive to BFKL dy-
namics [16–18]. Alternatively, when the average transverse
momentum of the dijets, pT, is much larger than the veto
scale, the effects of wide-angle soft gluon radiation may
become important [19–21]. Finally, dijet production via t-
channel colour-singlet exchange [22] is expected to provide
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an increasingly important contribution to the total dijet cross
section when both of these limits are approached simulta-
neously. The mean number of jets above the veto scale in
the rapidity interval between the dijets is presented as an al-
ternative measurement of hard jet emissions in the rapidity
interval.

A complementary probe of higher-order QCD effects
can be made by studying the azimuthal angle between the
jets in the dijet system, ∆φ . A purely 2→ 2 partonic scatter
produces final-state partons back-to-back in azimuthal an-
gle. Any additional quark or gluon emission alters the bal-
ance between the partons and produces an azimuthal decor-
relation, the predicted magnitude of which is different for
fixed-order calculations, BFKL-inspired resummations and
DGLAP-inspired resummations [23]. In particular, the az-
imuthal decorrelation is expected to increase with increas-
ing rapidity separation if BFKL effects are present [24, 25].
To discriminate between DGLAP-like and BFKL-like be-
haviour, the azimuthal angular moments 〈cos(n(π−∆φ))〉
where n is an integer and the angled brackets indicate the
profiled mean over all events, have been proposed [24–26].
In addition, taking the ratio of different angular moments is
predicted to enhance BFKL effects [27, 28].

Previous measurements have been made of dijet produc-
tion for which a strict veto, of order of ΛQCD, was imposed
on the emission of additional radiation in the inter-jet re-
gion, so-called “rapidity gap” events, at HERA [29–31] and
at the Tevatron [32–36]. At the LHC, measurements of for-
ward rapidity gaps and dijet production have been made by
ATLAS [37, 38], while ratios of exclusive-to-inclusive dijet
cross sections have been measured at CMS [39]. Azimuthal
decorrelations for central dijets have also been measured at
the LHC by ATLAS [40] and CMS [41] and before that by
D0 at the Tevatron [42].

This paper presents measurements of the gap fraction
and the mean number of jets in the rapidity interval as func-
tions of both the dijet rapidity separation and the average
dijet transverse momentum. Measurements of the first az-
imuthal angular moment, the ratio of the first two moments
and the double-differential cross sections as functions of
∆φ and ∆y are also presented, both for an inclusive dijet
sample and for events where a jet veto is imposed. Previ-
ous results are extended out to a dijet rapidity separation
of ∆y = 8 as well as to average dijet transverse momentum
of pT = 1.5 TeV, the effective kinematic limits of the AT-
LAS detector for pp collisions at a centre-of-mass energy,√

s = 7 TeV. The measurements are obtained using the full
pp collision datasets recorded during 2010 and 2011, corre-
sponding to integrated luminosities of 36.1±1.3 pb−1 and
4.5±0.1 fb−1, respectively [43]. The two datasets are used
in complementary areas of phase-space: the data collected
during 2010 are used in the full rapidity range covered by
the detector, probing large rapidity separations, with a veto

scale of 20 GeV, while the data collected during 2011 are
used in a restricted rapidity range and a veto scale of 30 GeV
but can access higher values of dijet transverse momentum.

The content of the paper is as follows. Section 2 de-
scribes the ATLAS detector followed by Sect. 3, which de-
tails the Monte Carlo simulation samples used. Jet recon-
struction and event selection are presented in Sect. 4 and
Sect. 5 respectively. The correction for detector effects is
shown in Sect. 6 and discussion of systematic uncertain-
ties on the measurement is in Sect. 7. Section 8 discusses
the theoretical predictions before the results are presented in
Sect. 9. Finally, the conclusions are given in Sect. 10.

2 The ATLAS detector

ATLAS [44] is a general-purpose detector surrounding one
of the interaction points of the LHC. The main detector com-
ponents relevant to this analysis are the inner tracking detec-
tor and the calorimeters; in addition, the minimum bias trig-
ger scintillators (MBTS) are used for selecting events dur-
ing early data taking. The inner tracking detector covers the
pseudorapidity range |η |< 2.51 and has full coverage in az-
imuthal angle. There are three main components to the in-
ner tracker. In order, moving outwards from the beam-pipe,
these are the silicon pixel detector, the silicon microstrip de-
tector and the straw-tube transition-radiation tracker. These
components are arranged in concentric layers and immersed
in a 2 T magnetic field provided by the superconducting
solenoid magnet.

The calorimeter is also divided into sub-detectors, pro-
viding overall coverage for |η |< 4.9. The electromag-
netic calorimeter, covering the region |η |< 3.2, is a high-
granularity sampling detector in which the active medium is
liquid argon (LAr) interspaced with layers of lead absorber.
The hadronic calorimeters are divided into three sections:
a tile scintillator/steel calorimeter is used in both the barrel
(|η |< 1.0) and extended barrel cylinders (0.8 < |η |< 1.7)
while the hadronic endcap (1.5 < |η |< 3.2) consists of
LAr/copper calorimeter modules. The forward calorimeter
measures both electromagnetic and hadronic energy in the
range 3.2 < |η |< 4.9 using LAr/copper and LAr/tungsten
modules.

The MBTS system consists of 32 scintillator counters,
organized into two disks with one on each side of the de-
tector. They are located in front of the end-cap calorimeter
cryostats and cover the region 2.1 < |η |< 3.8.

1 ATLAS uses a right-handed coordinate system with its origin at
the nominal interaction point (IP) in the centre of the detector and the
z-axis along the beam pipe. The x-axis points from the IP to the cen-
tre of the LHC ring, and the y-axis points upward. Cylindrical coor-
dinates (r,φ) are used in the transverse plane, φ being the azimuthal
angle around the beam pipe. The pseudorapidity is defined in terms of
the polar angle θ as η =− ln tan(θ/2). The rapidity of a particle with
respect to the beam axis is defined as y = (1/2) ln [(E + pz)/(E− pz)].
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The online trigger selection used in this analysis em-
ploys the minimum bias and calorimeter jet triggers [45].
The minimum bias triggers are only available at the hard-
ware level, while the calorimeter triggers have both hard-
ware and software levels. The Level-1 (L1) hardware-based
trigger provides a fast, but low-granularity, reconstruction
of energy deposited in towers in the calorimeter; the Level-2
(L2) software implements a simple jet reconstruction algo-
rithm in a window around the region triggered at L1; and
finally the Event Filter (EF) performs a more detailed jet
reconstruction procedure taking information from the en-
tirety of the detector. The efficiency of jet triggers is de-
termined using a bootstrap method, starting from the fully
efficient MBTS trigger [45]. Between March and August of
2010, only L1 information was used to select events; both
the L1 and L2 stages were used for the remainder of the
2010 data-taking period and all three levels were required
for data taken during 2011.

3 Monte Carlo event simulation

Simulated proton–proton collisions at
√

s = 7 TeV were
generated using the PYTHIA 6.4 [46] program. These were
used only to derive systematic uncertainties and to cor-
rect for detector effects; for this purpose they are com-
pared against uncorrected data. Additional samples used to
compare theoretical predictions to the data are described in
Sect. 8.

The PYTHIA program implements leading-order (LO)
QCD matrix elements for 2→ 2 processes followed by pT-
ordered parton showers and the Lund string hadronisation
model. The underlying event in PYTHIA is modelled by
multiple-parton interactions interleaved with the initial-state
parton shower.

The events were generated using the MRST LO* parton
distribution functions (PDFs) [47, 48]. Samples which sim-
ulated the data-taking conditions during 2010 (2011) used
version 6.423 (6.425) of the generator, together with the
ATLAS AMBT1 [49] (Perugia2011 [50]) underlying event
tune. For the samples simulating the data-taking conditions
from 2011, additional pp collisions were overlaid onto the
hard scatter in the correct proportions to replicate this ef-
fect in the data. The final-state particles were passed through
a detailed GEANT4 [51] simulation of the ATLAS detec-
tor [52] before being reconstructed using the same software
used to process data.

4 Jet reconstruction

The collision events selected by the ATLAS trigger sys-
tem were fully reconstructed offline. Energy deposits in the
calorimeter left by electromagnetic and hadronic showers

were calibrated to the electromagnetic (EM) scale. 2 Three-
dimensional topological clusters (“topoclusters”) [53] were
constructed from seed calorimeter cells according to an iter-
ative procedure designed to suppress electronic noise [54].
Each of these was then treated as a massless particle with
direction given by its energy-weighted barycentre. The
topoclusters were then passed as input to the FastJet [55]
implementation of the anti-kt jet algorithm [56] with dis-
tance parameter R = 0.6 and full four-momentum recombi-
nation.

The jets built by the anti-kt algorithm were then cali-
brated in a multi-step procedure. Additional energy arising
from “in-time pileup” (simultaneous pp collisions within a
single bunch crossing) was subtracted using a correction de-
rived from data. Each event was required to have at least
one primary vertex, reconstructed using two or more tracks,
each with pT > 400 MeV and the primary vertex with the
highest ∑ p2

T of tracks associated with it was identified as
the origin of the hard scatter. The jet position was recali-
brated to point to this identified hard scatter primary ver-
tex, rather than the geometric centre of the detector. A series
of pT- and η-dependent energy correction factors derived
from simulated events were used to correct for the response
of the detector to jets. For the data collected during 2011,
additional calibration steps were applied. Energy contribu-
tions, which were usually negative, coming from “out-of-
time pileup” (residual electronic effects from previous pp
collisions) were corrected for using an offset correction de-
rived using simulation.

A final in situ calibration, using Z+jet balance, γ+jet bal-
ance and multi-jet balance, was then applied to correct for
residual differences in jet response between the simulation
and data. The calibration procedure is described in more de-
tail elsewhere [57, 58].

5 Event selection

The measurements were performed using only the data from
specific runs and run periods in which the detector, trigger
and reconstructed physics objects satisfied data-quality se-
lection criteria. Beam background was rejected by requiring
at least one primary vertex in each event while selection re-
quirements were applied to the hard-scatter vertex to min-
imise contamination from pileup. For data collected during
2010, the event was required to have only one primary vertex
with five or more associated tracks; the proportion of such
events was 93% in the early low-luminosity runs, falling
to 21% in the high-luminosity runs at the end of the year.
For data collected during 2011, the hard-scatter vertex was

2 The electromagnetic scale is the basic calorimeter signal scale for
the ATLAS calorimeters. It gives the correct response for the energy
deposited in electromagnetic showers, but it does not correct for the
different response for hadrons.
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required to have at least three associated tracks. Jets aris-
ing from pileup were rejected using the jet vertex fraction
(JVF). The JVF takes all tracks matched to the jet of interest
and measures the ratio of ∑ pT from tracks which originated
in the hard-scatter vertex to the ∑ pT of all tracks matched
to the jet. For this analysis only jets with JVF > 0.75 were
used; all other jets were considered to have arisen from
pileup and were therefore ignored. Due to the limited cov-
erage of the tracking detectors, the JVF is only available for
jets satisfying |y|< 2.4, which limits the acceptance in ra-
pidity for 2011 data.

Due to the high instantaneous luminosity reached by
the LHC, only high-threshold jet triggers remained un-
prescaled throughout the data-taking period in question.
Jets with transverse momentum below the lowest-threshold
unprescaled trigger were therefore only recorded using
prescaled triggers. For data collected during 2011, the av-
erage transverse momentum (pT) of the dijets was used to
determine the most appropriate trigger to use for each event.
Among all of the triggers determined to be fully efficient at
the particular pT in question, the one which had been least
prescaled was selected: only events passing this trigger were
considered.

For the data collected during 2010, it was necessary to
combine triggers from the central region (|η | ≤ 3.2) and the
forward region (3.1 < |η | ≤ 4.9) of the detector, due to the
large ∆y span under consideration. In each of these regions,
efficiency curves as a function of jet transverse momentum
were calculated for each trigger on a per-jet basis, rather
than the per-event basis described above. The triggers were
ordered according to their prescales and a lookup table was
created, showing the point at which each trigger reached a
plateau of 99% efficiency.

An appropriate trigger was chosen for each of the two
leading (highest transverse momentum) jets in each event;
this was the lowest prescale trigger to have reached its ef-
ficiency plateau at the relevant pT and |y|. The dijet event
was then accepted if the event satisfied the trigger appropri-
ate to the leading jet, the subleading jet or both. This pro-
cedure maximised event acceptance, since the random fac-
tor inherent in the trigger prescale meant that some events
could be accepted based on the properties of the sublead-
ing jet even when the appropriate trigger for the leading jet
had not fired. In order to combine overlapping triggers with
different prescales, the procedure detailed in Ref. [59] was
followed. In some less well-instrumented or malfunctioning
regions of the detector, the per-jet trigger efficiency plateau
occurred at less than the usual 99% point. This introduced
a measurable trigger ineffiency, which was corrected for by
weighting events containing jets in these regions by the in-
verse of the efficiency.

Jets were required to have transverse momentum
pT > 20 (30) GeV for data collected during 2010 (2011),

thus ensuring that they remained in a region for which the
jet energy scale had been evaluated (see Sect. 4). Jets were
restricted in rapidity to |y|< 4.4 for data collected in 2010,
with a stricter requirement of |y|< 2.4 applied in 2011 to
ensure that the JVF could be determined for all jets. The
two leading jets satisfying these criteria were then identified
as the dijet system of interest. The event was rejected if the
transverse momentum of the leading jet was below 60 GeV
or if that of the subleading jet was below 50 GeV. For the
data collected during 2011, a minimum rapidity separation,
∆y≥ 1, was required to enhance the physics of interest. The
veto scale, Q0, was set to pT > 20 (30) GeV for data col-
lected in 2010 (2011).

Jet cleaning criteria [60, 61] were developed in order
to reject fake jets, those which come from cosmic rays,
beam halo or detector noise. These criteria also removed
jets which were badly measured due to falling into poorly
instrumented regions. Events collected in 2010 (2011) were
rejected if they contained any jet with transverse momentum
pT > 20 (30) GeV that failed these cleaning cuts. This re-
quirement was also applied to the simulated samples where
appropriate.

Additionally, a problem developed in the LAr calorime-
ter during 2011 running, resulting in a region in which en-
ergies were not properly recorded. As a result, a veto was
applied to events that had at least one jet with pT > 30 GeV
falling in the vicinity of this region during the affected data-
taking periods. This effect was replicated in the relevant sim-
ulation samples, which were reweighted to the data to ensure
that an identical proportion of such events were included.

In total, 1188583 events were accepted from the data
collected in 2010, with 852030 of these being gap events:
those with no additional jets above the veto scale in the ra-
pidity interval between the dijets. For data collected dur-
ing 2011, 1411676 events were accepted, with 938086 of
these being gap events. Data from 2010 and from 2011 were
compared after being analysed separately and were found
to agree to within the experimental uncertainties in a region
kinematically accessible with both datasets. Figure 1 shows
the comparison between detector level data and PYTHIA 6.4
simulation in dijet events. The normalised number of events
is presented as a function of ∆y in Fig. 1(a) and of pT in
Fig. 1(b). In both cases, and in all similar distributions, the
PYTHIA 6.4 event generator and GEANT4 detector simula-
tion give a fair description of the uncorrected data.

6 Correction for detector effects

Before comparing to theoretical predictions, the data are
corrected for all experimental effects so that they corre-
spond to the particle-level final state. This comprises all sta-
ble particles, defined as those with a proper lifetime longer
than 10 ps, including muons and neutrinos from decaying
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Fig. 1: Comparison between uncorrected data (black points) and detector level PYTHIA 6.4 Monte Carlo events (solid line).
Statistical errors on the data are shown. The normalised distribution of events is presented as a function of (a) ∆y and (b) pT.
The ratio of the PYTHIA 6.4 prediction to the data is shown in the bottom panel.

hadrons [62]. The correction for detector resolutions and
inefficiencies is made by unfolding the measured distribu-
tions using the Bayesian procedure [63] implemented in the
RooUnfold framework [64].

Bayesian unfolding entails using simulated events to cal-
culate a transfer matrix which encodes bin-to-bin migrations
between particle-level distributions and the equivalent re-
constructed distributions at detector level. A series of bin
transition probabilities are obtained from the matrix, and
Bayes’ theorem is used to calculate the corresponding in-
verse probabilities; the process is then repeated iteratively.
In this paper, the unfolding is performed using the PYTHIA

6.4 samples described in Sect. 3 and the number of iterations
is set to two throughout, as this was found to be sufficient to
achieve convergence.

As the results shown here are constructed from multi-
dimensional distributions, this must also be taken into ac-
count when unfolding. Each distribution is unfolded in
two or three dimensions, with these dimensions being rel-
evant combinations of ∆φ , ∆y, pT, cos(π−∆φ), cos(2∆φ)

and the classification of the event as gap or non-gap. This
means that the transfer matrices are four-dimensional or six-
dimensional, rather than the usual two-dimensional case.
This allows the effect of all possible bin migrations to be
evaluated.

The statistical uncertainties are estimated by performing
pseudo-experiments [65]. Each event in data is assigned a

weight drawn from a Poisson distribution with unit mean for
each pseudo-experiment and these weighted events are used
to build a series of one thousand replicas for each distribu-
tion. Each of these replicas is unfolded, and the root-mean-
squared spread around the nominal value is used to measure
the statistical error on the unfolded result.

Possible bias arising from mismodelling of the distri-
butions considered here is evaluated by performing a self-
consistency check using PYTHIA 6.4 events. The PYTHIA

6.4 simulation is reweighted on an event-by-event basis us-
ing a three-dimensional function which is chosen in such
a way as to ensure that the output of this reweighting step
will approximate the uncorrected detector level data. For the
PYTHIA sample simulated to replicate 2010 data-taking con-
ditions, the reweighting is carried out as a function of ∆y,
∆φ and the highest pT among jets in the rapidity interval;
for the sample simulated to replicate 2011 data-taking con-
ditions, pT is used instead of ∆y. This reweighted detector
level PYTHIA 6.4 sample is then unfolded using the original
transfer matrix and the result is compared with the particle-
level spectrum, which was itself implicitly modified through
the event-by-event reweighting. Any remaining difference
between these distributions is then taken as a systematic un-
certainty associated with the unfolding procedure.
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7 Systematic uncertainties

For the most part, the dominant systematic uncertainty on
these measurements is the one coming from the jet en-
ergy scale (JES) calibration. This uncertainty was deter-
mined using a combination of in situ calibration techniques,
as detailed earlier, test-beam data and Monte Carlo mod-
elling [57, 58]. It comprises 13 independent components for
data taken in 2010 and 64 components for the 2011 data. The
uncertainty components fully account for the differences in
jet calibration discussed in Sect. 4, thus ensuring that data
collected in the two years are fully compatible within their
uncertainties.

For each component, all jet energies and transverse mo-
menta are shifted up or down by one standard deviation of
the uncertainty and the shifted jets are then passed through
the full analysis chain. The measured distributions are un-
folded and compared to the nominal distribution; the dif-
ference between these is taken as the uncertainty for the
component in question. These fractional differences are then
combined in quadrature, since the components are uncorre-
lated, to compute the jet energy scale uncertainty.

The uncertainty on the energy resolution of jets (JER)
is derived in situ, using dijet balance techniques and the bi-
sector method; it is then cross-checked through comparison
with simulation [66]. Jet angular resolutions are estimated
using simulated events and cross-checked using in situ tech-
niques, where good agreement is observed with the simula-
tion. These resolution uncertainties are propagated through
the unfolding procedure by smearing the energy or angle of
each reconstructed jet in each simulated event by a Gaus-
sian function, with its width given by the quadratic differ-
ence between the nominal resolution and the resolution af-
ter shifting by the resolution uncertainty. This procedure is
repeated one thousand times for each jet, to remove the ef-
fects of statistical fluctuations. The resulting smeared events
are used to calculate a modified transfer matrix incorporat-
ing the resolution uncertainty; this matrix is then used to
unfold the data. The ratio of this distribution to the distribu-
tion unfolded using the nominal transfer matrix is taken as a
systematic uncertainty.

The trigger efficiency correction which is applied to
events with jets falling into poorly measured detector re-
gions also has an associated systematic uncertainty. This is
determined by increasing or decreasing the measured inef-
ficiencies by an absolute shift of 10%, with a maximum ef-
ficiency of 100%. The full correction procedure is then car-
ried out using these new correction factors and the differ-
ence between this and the nominal distribution is taken as a
systematic uncertainty on the measurement.

The effect of statistical fluctuations in the samples used
to derive these uncertainties is also estimated by performing
pseudo-experiments. Each event in the sample is assigned

a weight drawn from a Poisson distribution with unit mean
for each pseudo-experiment and these weighted events are
used to build a series of one thousand replicas of the transfer
matrices. These replicas are then used to unfold the nominal
data sample; the root-mean-squared spread around the nom-
inal value provides the systematic error due to the limited
statistical precision of the Monte Carlo samples used.

For each of the systematic variations considered, the
pseudo-experiment approach applied to the data is used to
determine statistical uncertainties on each distribution and
correlations between bins. Each fractional uncertainty was
smoothed to remove these statistical fluctuations before the
uncertainties were combined. To do this, each systematic
component was rebinned until each bin showed a statis-
tically significant deviation from the nominal value. This
rebinned distribution was then smoothed using a Gaussian
kernel and the smoothed function was evaluated at each of
the original set of bin centres. The overall fractional uncer-
tainty was then obtained by summing the individual sources
in quadrature.

The uncertainty on the unfolding procedure, estimated
as described in Sect. 6 is also important in some distribu-
tions. Other sources of uncertainty, such as residual pileup
effects, were examined, found to be negligible and therefore
ignored. There is also an additional uncertainty on the lumi-
nosity calibration which is not included here. For the cross
sections this is 1.8% while it cancels for all other distribu-
tions. Figure 2 shows the summary of systematic uncertain-
ties for two sample distributions: Fig. 2(a) for the gap frac-
tion as a function of ∆y and Fig. 2(b) for the 〈cos(π−∆φ)〉
distribution as a function of pT.

8 Theoretical predictions

Two state-of-the-art theoretical predictions, namely HEJ

(High Energy Jets) [17,67] and the POWHEG BOX [68–70],
are considered in this paper.

HEJ provides a leading-logarithmic (LL) calculation
of the perturbative terms that dominate the production of
multi-jet events when the jets span a large range in rapid-
ity [16, 67, 71]. This formalism resums logarithms relevant
in the Mueller-Navelet [72] limit, and incorporates a con-
tribution from all final states with at least two hard jets.
The purely partonic multi-jet output from HEJ can also be
interfaced to the ARIADNE parton shower framework [73]
to evolve the prediction to the hadron-level final state [74].
The ARIADNE program is based on the colour-dipole cas-
cade model [75] in which gluon emissions are modelled as
radiation from colour-connected partons, and provides soft
and collinear radiation down to the hadronic scale, using
PYTHIA 6.4 for hadronisation. This accounts for radiation in
the rapidity region outside the multi-jet system modelled by
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Fig. 2: Summary of systematic uncertainties on (a) the gap fraction as a function of ∆y and (b) the 〈cos(π−∆φ)〉 distribution
as a function of pT. Here the systematic uncertainties from the jet energy scale (dark dashes), Monte Carlo statistical precision
(dark dots), jet energy resolution as (dark dashed-dots), unfolding (light dashes), jet φ resolution (light dots) and from residual
trigger inefficiencies (light dashed-dots) are shown. The total systematic uncertainty (light cross-hatched area) is also shown.

HEJ and represents a contribution from small-x, BFKL-like,
logarithmic terms.

The POWHEG Box (version r2169) provides a full next-
to-leading-order dijet calculation and is interfaced to either
PYTHIA 8 [76] (AU2 tune with αs matching for the ISR [77])
or HERWIG [78] (AUET1 tune [79]) to provide all-order re-
summation of soft and collinear emissions using the par-
ton shower approximation. The advantage over the simple
2→ 2 matrix elements is that the emission of an additional
third hard parton is calculated exactly in pQCD, allowing
observables that depend on the third jet to be calculated with
good accuracy [80].

The prediction provided by POWHEG uses the DGLAP
formalism, while that provided by HEJ is based on BFKL.
For all theoretical predictions, events were generated using
the CT10 PDF set [81]. The orthogonal error sets provided
as part of the CT10 PDF set were used in order to evalu-
ate the uncertainty inherent in the PDF, at the 68% confi-
dence level, following the CTEQ prescription [82]. The de-
fault choice for the renormalisation and factorisation scales,
which are constrained to be identical in HEJ, was the trans-
verse momentum of the leading parton in each event. The
uncertainty due to higher-order corrections was estimated,
for both the POWHEG and HEJ predictions, by increasing
and decreasing the scale by a factor of two and taking the
envelope of these variations.

The scale uncertainty and PDF uncertainties were com-
bined in quadrature to construct an overall uncertainty for
each prediction. The PDF uncertainties are small across
all of the phase-space regions considered in this paper and
hence the predominant contribution to the uncertainty comes
from the scale uncertainty. Theoretical uncertainties on the
HEJ+ARIADNE prediction are not currently calculable and
are not shown here. The range covered by the central values
of the POWHEG+PYTHIA 8 and POWHEG+HERWIG predic-
tions gives an estimate of the uncertainty inherent in the par-
ton shower matching procedure. This range, together with
the uncertainty band on the POWHEG+PYTHIA 8 prediction,
can be considered together as a total theoretical uncertainty
on the NLO+DGLAP prediction that can be compared to the
predictions given by HEJ and HEJ+ARIADNE.

Finally, in order to allow comparisons against the
fully corrected data distributions presented in this
paper, the partons from HEJ or the final-state parti-
cles from HEJ+ARIADNE, POWHEG+PYTHIA 8 and
POWHEG+HERWIG were clustered together using the same
jet algorithm and parameters as for the data.

9 Results and discussion

The fully corrected data are compared to next-to-leading-
order theoretical predictions from POWHEG and HEJ, as
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explained in Sect. 8. The POWHEG prediction is pre-
sented after parton showering, hadronisation and under-
lying event simulation with either PYTHIA 8 or HERWIG.
As the uncertainties on these two POWHEG predictions
are highly correlated, uncertainties are only shown on the
POWHEG+PYTHIA 8 prediction, with only the central value
of the POWHEG+HERWIG prediction presented. Two HEJ

curves are presented: one a pure parton-level prediction
and the second after interfacing with the ARIADNE parton
shower. The central value of the HEJ+ARIADNE prediction
is shown, together with the statistical uncertainty on this pre-
diction.

9.1 Gap fraction and mean jet multiplicity

Figures 3 and 4 show the gap fraction and the number of jets
in the rapidity gap, respectively, as functions of ∆y and pT.
Naı̈vely, it is expected from pQCD that the number of events
passing the jet veto should be exponentially suppressed as a
function of ∆y and ln(pT/Q0) due to the exchange of colour
in the t-channel [20]. However, non-exponential behaviour
may become apparent in the tails of these distributions as
the steeply falling parton distribution functions can reduce
the probability of additional quark and gluon radiation from
the dijet system and increase the gap fraction [15]. This can
be understood by considering the behaviour at extreme val-
ues of ∆y or pT, when all of the collision energy is used
to create the dijet pair and little is available for additional
radiation. As the gap fraction is expected to be smooth it
must therefore begin increasing at some point, so as to reach
unity when this kinematic limit is obtained. Furthermore,
since the cross section for QCD colour-singlet exchange in-
creases with jet separation [22], any contribution from such
processes would also lead to an increase in the gap fraction
at large ∆y.

The data do indeed show exponential behaviour in Fig. 3
at low values of ∆y and pT, but deviate from purely expo-
nential behaviour at the highest values of ∆y and pT, with
the gap fraction reaching a plateau in both distributions.
For the pT distribution, this plateau is qualitatively repro-
duced by all the predictions considered here, even those
which do not provide good overall agreement with the data.
The plateau observed in data for the ∆y distribution is not,
however, as prominent in any of the theoretical predictions,
which all continue to fall as ∆y increases. A similar excess
was observed in previous experiments [29–36] and was at-
tributed to colour-singlet exchange effects. However, here
the spread of theoretical predictions is too large to allow def-
inite conclusions to be drawn and improved calculations are
needed before a quantitative statement can be made.

In the high-∆y region, both POWHEG predictions slightly
underestimate the gap fraction and hence overestimate the
mean jet multiplicity in the rapidity interval. Partonic HEJ

slightly overestimates the gap fraction for intermediate val-
ues of ∆y. Interfacing HEJ to ARIADNE improves the de-
scription of the data across the ∆y spectrum.

POWHEG+PYTHIA 8, which resums soft and collinear
emissions through the parton shower approximation, pro-
vides a good description of the gap fraction and the mean jet
multiplicity distributions as a function of pT. On the other
hand, the POWHEG+HERWIG model, which also provides
a similar resummation, consistently predicts too much jet
activity across the pT range. Conversely, HEJ, which does
not attempt to resum these soft and collinear terms, pro-
vides a poor description of the data in the large ln(pT/Q0)

limit. Significantly improved agreement with the data is
seen when interfacing HEJ to the ARIADNE parton shower
model, which performs a resummation of these terms. In
fact, the prediction from HEJ+ARIADNE is similar to that
from POWHEG+PYTHIA 8 for most values of ∆y and pT.

9.2 Azimuthal decorrelations

Figure 5 shows the 〈cos(π−∆φ)〉 and
〈cos(2∆φ)〉/〈cos(π−∆φ)〉〉 distributions, as functions of
∆y and pT, for inclusive dijet events. For the azimuthal
moments, 〈cos(n(π−∆φ))〉, a decrease (increase) in
azimuthal correlation manifests as a decrease (increase) in
the azimuthal moment. As the dijets deviate from a back-
to-back topology, the second azimuthal moment falls more
rapidly than the first (in the region ∆φ > π/2 where the ma-
jority of events lie). The ratio 〈cos(2∆φ)〉/〈cos(π−∆φ)〉〉
is, therefore, expected to show a similar, but more pro-
nounced, dependence on azimuthal correlation to that seen
in the moments.

The data show the expected qualitative behaviour of a
decrease in azimuthal correlation with increasing ∆y and
increase in azimuthal correlation with increasing pT. Both
POWHEG predictions underestimate the degree of azimuthal
correlation except in the high-pT region, while HEJ predicts
too much azimuthal correlation. In both cases, the changing
degree of correlation with ∆y and pT is, for the most part,
well described by the predictions. The largest differences be-
tween the predictions and the data are seen at high ∆y and
low pT.

Additionally, it can be seen that the separa-
tion between theoretical predictions for the ratio
〈cos(2∆φ)〉/〈cos(π−∆φ)〉〉 is significantly greater
than for the 〈cos(π−∆φ)〉 distribution alone, considering
the uncertainties of these predictions. This means that the
ratio gives enhanced discrimination between the DGLAP-
like POWHEG and BFKL-like HEJ predictions, as predicted
by theoretical calculations [83]. Here, neither HEJ nor
POWHEG provide good agreement with the data. However,
the HEJ+ARIADNE prediction gives a good description of
the data for both low-pT and for ∆y.
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predictions are presented in the same way as Fig. 3.
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Fig. 5: The measured (a)(b) 〈cos(π−∆φ)〉 and (c)(d) 〈cos(2∆φ)〉/〈cos(π−∆φ)〉〉 distributions as a function of (a)(c)
∆y and (b)(d) pT. For comparison, the HEJ, HEJ+ARIADNE, POWHEG+PYTHIA 8 and POWHEG+HERWIG predictions are
presented in the same way as Fig. 3.

Figure 6 shows the corresponding 〈cos(π−∆φ)〉 and
〈cos(2∆φ)〉/〈cos(π−∆φ)〉〉 distributions for events that
pass the veto requirement on additional jet activity in the
rapidity interval bounded by the dijet system. In this case,
with the jet veto suppressing additional quark and gluon ra-
diation, the spectra show the opposite behaviour, namely a

slight increase in correlation with ∆y, which now agrees
with the rise seen in the pT distribution. This can be ex-
plained by considering that as ∆y or pT increase, the veto
requirement imposes an increasingly back-to-back topology
on the dijet system. The spread of theoretical predictions is
again large in each distribution, with the POWHEG predic-
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Fig. 6: The measured (a)(b) 〈cos(π−∆φ)〉 and (c)(d) 〈cos(2∆φ)〉/〈cos(π−∆φ)〉〉 distributions, for gap events as a function
of (a)(c) 〈cos(π−∆φ)〉 ∆y and (b)(d) 〈cos(π−∆φ)〉 pT. The veto scale is Q0 = 20 (30) GeV for data collected during 2010
(2011). For comparison, the HEJ, HEJ+ARIADNE, POWHEG+PYTHIA 8 and POWHEG+HERWIG predictions are presented in
the same way as Fig. 3.
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tions having too much decorrelation and HEJ predicting too
little decorrelation.

The use of the ARIADNE parton shower again brings
HEJ into better agreement with the data, although not as
well as in the inclusive case. The best agreement is given
by POWHEG+PYTHIA 8, especially in the highest pT bins.
HEJ agrees less well with the data than in the inclusive case,
showing that this region of widely separated hard jets with-
out additional radiation in the event is not well reproduced
by the HEJ calculation. A quantitative statement about the
degree of agreement seen here between HEJ+ARIADNE and
the data cannot, however, be made in the absence of theoret-
ical uncertainties on this calculation.

Figures 7 and 8 show the double-differential dijet
cross sections as functions of ∆φ and ∆y for inclu-
sive and gap events respectively. The predictions from
POWHEG+PYTHIA 8 and POWHEG+HERWIG provide a good
overall description of the measured cross sections, within
the experimental and theoretical uncertainties, with the only
notable deviations occurring at high ∆φ in the lowest ∆y
bins. This is in agreement with the observations in previ-
ous ATLAS studies [1]. HEJ underestimates the cross section
seen in data throughout the ∆y range, although it provides a
good description of the overall shape. This underestimate is
noticeably enhanced when only gap events are considered,
which is a regime far from the wide-angle, hard-emission
limit for which the underlying resummation procedure is
valid.

10 Summary

Theoretical predictions based on perturbative QCD are
tested by studying dijet events in extreme regions of phase
space. Measurements of the gap fraction, as a function of
both the rapidity separation and the average dijet trans-
verse momentum, together with the azimuthal decorrelation
are presented as functions of ∆y and pT, extending previ-
ous studies up to eight rapidity units in ∆y and 1.5 TeV
in pT. The measurements are used to investigate the pre-
dicted breakdown of DGLAP evolution and the appearance
of BFKL effects by comparing the data to the all-order re-
summed leading-logarithmic calculations of HEJ and the full
next-to-leading-order calculations of POWHEG. The full data
sample collected with the ATLAS detector in 7 TeV pp col-
lisions at the LHC is used, corresponding to integrated lumi-
nosities of 36.1 pb−1 and 4.5 fb−1 for data collected during
2010 and 2011 respectively.

The data show the expected behaviour of a reduction of
gap events, or equivalently, an increase in jet activity, for
large values of pT and ∆y, together with an associated rise
in the number of jets in the rapidity interval. The azimuthal
moments show an increase in correlation with increasing pT
and an increase in (de)correlation with increasing ∆y for gap

(all) events. The expected increase in cross section with ∆φ

is also seen.
The POWHEG+PYTHIA 8 prediction provides a reason-

able description of the data in most distributions, but shows
disagreement in some areas of phase-space, particularly for
the inclusive azimuthal distributions in the limit of large ∆y
or small pT/Q0. When the HERWIG parton shower is used
instead of PYTHIA 8, the agreement with data worsens as
HERWIG predicts too many jets above the veto scale. The
partonic HEJ prediction provides a poor description of the
data in most of the distributions presented, with the excep-
tion of the gap fraction and jet multiplicity distributions as a
function of ∆y. The addition of the ARIADNE parton shower,
which accounts for some of the soft and collinear terms ig-
nored in the HEJ approximation, brings the prediction closer
to POWHEG+PYTHIA 8.

No single theoretical prediction is able to simultaneously
describe the data over the full phase-space region consid-
ered here; in general, however, the best agreement is given
by POWHEG+PYTHIA 8 and HEJ+ARIADNE. The variable
best able to discrimate between the DGLAP-like predic-
tion from POWHEG+PYTHIA 8 and the BFKL-like predic-
tion from HEJ is 〈cos(2∆φ)〉/〈cos(π−∆φ)〉〉. Here, it can
clearly be seen that neither of these predictions describe the
data accurately as a function of either ∆y or pT. It should be
noted, however, that when the inclusive event sample is con-
sidered, the HEJ+ARIADNE model, a combination of BFKL-
like parton dynamics with the colour-dipole cascade model,
provides a good description of 〈cos(2∆φ)〉/〈cos(π−∆φ)〉〉
in the large ∆y and small pT regions, where the POWHEG

models fail to describe the data.
In most of the phase-space regions presented, the exper-

imental uncertainty is smaller than the spread of theoreti-
cal predictions. These disparities between predictions repre-
sent a genuine difference in the modelling of the underlying
physics and the data can, therefore, provide a crucial input
for constraining parton-shower models in the future – par-
ticularly in the case of QCD radiation between widely sep-
arated or high transverse momentum dijets. Improved theo-
retical predictions are essential before any conclusions can
be drawn about the presence or otherwise of BFKL effects
or colour-singlet exchange in these data.
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M. Crispin Ortuzar119, M. Cristinziani21, V. Croft105, G. Crosetti37a,37b, C.-M. Cuciuc26a, T. Cuhadar Donszelmann140,
J. Cummings177, M. Curatolo47, C. Cuthbert151, H. Czirr142, P. Czodrowski3, Z. Czyczula177, S. D’Auria53,
M. D’Onofrio73, M.J. Da Cunha Sargedas De Sousa125a,125b, C. Da Via83, W. Dabrowski38a, A. Dafinca119, T. Dai88,
O. Dale14, F. Dallaire94, C. Dallapiccola85, M. Dam36, A.C. Daniells18, M. Dano Hoffmann137, V. Dao48, G. Darbo50a,
S. Darmora8, J.A. Dassoulas42, A. Dattagupta60, W. Davey21, C. David170, T. Davidek128, E. Davies119,c, M. Davies154,
O. Davignon79, A.R. Davison77, P. Davison77, Y. Davygora58a, E. Dawe143, I. Dawson140, R.K. Daya-Ishmukhametova85,
K. De8, R. de Asmundis103a, S. De Castro20a,20b, S. De Cecco79, N. De Groot105, P. de Jong106, H. De la Torre81,
F. De Lorenzi63, L. De Nooij106, D. De Pedis133a, A. De Salvo133a, U. De Sanctis165a,165b, A. De Santo150,
J.B. De Vivie De Regie116, W.J. Dearnaley71, R. Debbe25, C. Debenedetti138, B. Dechenaux55, D.V. Dedovich64,
I. Deigaard106, J. Del Peso81, T. Del Prete123a,123b, F. Deliot137, C.M. Delitzsch49, M. Deliyergiyev74, A. Dell’Acqua30,
L. Dell’Asta22, M. Dell’Orso123a,123b, M. Della Pietra103a,h, D. della Volpe49, M. Delmastro5, P.A. Delsart55, C. Deluca106,
S. Demers177, M. Demichev64, A. Demilly79, S.P. Denisov129, D. Derendarz39, J.E. Derkaoui136d, F. Derue79, P. Dervan73,
K. Desch21, C. Deterre42, P.O. Deviveiros106, A. Dewhurst130, S. Dhaliwal106, A. Di Ciaccio134a,134b, L. Di Ciaccio5,
A. Di Domenico133a,133b, C. Di Donato103a,103b, A. Di Girolamo30, B. Di Girolamo30, A. Di Mattia153, B. Di Micco135a,135b,
R. Di Nardo47, A. Di Simone48, R. Di Sipio20a,20b, D. Di Valentino29, F.A. Dias46, M.A. Diaz32a, E.B. Diehl88,
J. Dietrich42, T.A. Dietzsch58a, S. Diglio84, A. Dimitrievska13a, J. Dingfelder21, C. Dionisi133a,133b, P. Dita26a, S. Dita26a,
F. Dittus30, F. Djama84, T. Djobava51b, M.A.B. do Vale24c, A. Do Valle Wemans125a,125g, T.K.O. Doan5, D. Dobos30,
C. Doglioni49, T. Doherty53, T. Dohmae156, J. Dolejsi128, Z. Dolezal128, B.A. Dolgoshein97,∗, M. Donadelli24d,
S. Donati123a,123b, P. Dondero120a,120b, J. Donini34, J. Dopke130, A. Doria103a, M.T. Dova70, A.T. Doyle53, M. Dris10,
J. Dubbert88, S. Dube15, E. Dubreuil34, E. Duchovni173, G. Duckeck99, O.A. Ducu26a, D. Duda176, A. Dudarev30,
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N. Haddad136e, P. Haefner21, S. Hageböck21, Z. Hajduk39, H. Hakobyan178, M. Haleem42, D. Hall119, G. Halladjian89,
K. Hamacher176, P. Hamal114, K. Hamano170, M. Hamer54, A. Hamilton146a, S. Hamilton162, G.N. Hamity146c,
P.G. Hamnett42, L. Han33b, K. Hanagaki117, K. Hanawa156, M. Hance15, P. Hanke58a, R. Hanna137, J.B. Hansen36,
J.D. Hansen36, P.H. Hansen36, K. Hara161, A.S. Hard174, T. Harenberg176, F. Hariri116, S. Harkusha91, D. Harper88,
R.D. Harrington46, O.M. Harris139, P.F. Harrison171, F. Hartjes106, M. Hasegawa66, S. Hasegawa102, Y. Hasegawa141,
A. Hasib112, S. Hassani137, S. Haug17, M. Hauschild30, R. Hauser89, M. Havranek126, C.M. Hawkes18, R.J. Hawkings30,
A.D. Hawkins80, T. Hayashi161, D. Hayden89, C.P. Hays119, H.S. Hayward73, S.J. Haywood130, S.J. Head18, T. Heck82,
V. Hedberg80, L. Heelan8, S. Heim121, T. Heim176, B. Heinemann15, L. Heinrich109, J. Hejbal126, L. Helary22, C. Heller99,
M. Heller30, S. Hellman147a,147b, D. Hellmich21, C. Helsens30, J. Henderson119, R.C.W. Henderson71, Y. Heng174,
C. Hengler42, A. Henrichs177, A.M. Henriques Correia30, S. Henrot-Versille116, C. Hensel54, G.H. Herbert16,
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Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco
137 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie
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France
a Also at Department of Physics, King’s College London, London, United Kingdom
b Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
c Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
d Also at TRIUMF, Vancouver BC, Canada
e Also at Department of Physics, California State University, Fresno CA, United States of America
f Also at Tomsk State University, Tomsk, Russia
g Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
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