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CLOSED FORMULA FOR UNIVARIATE SUBRESULTANTS

IN MULTIPLE ROOTS

CARLOS D’ANDREA, TERESA KRICK, AGNES SZANTO,
AND MARCELO VALDETTARO

Abstract. We generalize Sylvester single sums to multisets and show
that these sums compute subresultants of two univariate polynomials as
a function of their roots independently of their multiplicity structure.
This is the first closed formula for subresultants in terms of roots that
works for arbitrary polynomials, previous efforts only handled special
cases. Our extension involves in some cases confluent Schur polynomials
and is obtained by using multivariate symmetric interpolation via an
Exchange Lemma.

1. Introduction

Let K be a field. Given two finite sets A,B ⊂ K of cardinalities m and
n respectively, and 0 ≤ d ≤ m, J.J. Sylvester introduced in [Syl1840b] the
following single sum:

(1) Syld(A,B)(x) =
∑

A′⊂A,|A′|=d

R(A\A′, B)R(x,A′)

R(A′, A\A′)
,

where R(X,Y ) :=
∏

x∈X
y∈Y

(x − y), with the convention that R(X,Y ) = 1 if

X = ∅ or Y = ∅, and A\A′ denotes as usual the set difference.
For f := fmxm + · · · + f0, g := gnx

n + · · · + g0 ∈ K[x], and 0 ≤ d ≤
min{m,n} when m 6= n or 0 ≤ d < m = n, Sylvester also introduced in
[Syl1839, Syl1840] the d-th order subresultant Sresd(f, g)(x) ∈ K[x] :

Sresd(f, g)(x) := det

m+n−2d

fm · · · · · · fd+1−(n−d−1) xn−d−1f
. . .

...
... n−d

fm . . . fd+1 f
gn · · · · · · gd+1−(m−d−1) xm−d−1g

. . .
...

... m−d

gn · · · gd+1 g

.

When

f =
∏

a∈A

(x− a) and g =
∏

b∈B

(x− b),
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that is, all roots of f and g are simple roots, the following relation between
Sylvester single sums and subresultants was stated in [Syl1840b] and then
established in [Syl1853, Section 2]: for d ≤ min{m,n} when m 6= n, or
d < m = n,

(2) Sresd(f, g)(x) = (−1)d(m−d)Syld(A,B)(x).

The interest for having formulas “in roots” for subresultants comes from the
fact that it is well-known that for 0 ≤ d ≤ min{m,n}, Sresd(f, g)(x) is “the”
polynomial of degree d appearing in the polynomial remainder sequence
starting with f and g, and whose last element is gcd(f, g). In the particular
case g = f ′, the derivative of f , the study of the variation of signs of the
elements of this sequence in a given interval leads to explicit criteria for
computing the number of real roots of f in that interval. This is the so-called
Sturm’s method which was actually the main focus of Sylvester’s papers in
[Syl1839, Syl1853]. These results allowed Sylvester to obtain formulas for
Sturm’s auxiliary functions in terms of the roots of f , and these expressions
became well-known in his lifetime (see [Syl1853, Art. 35]).

Note that (2) can be considered as a “Poisson formula” for the subresul-
tant, generalizing the well known Poisson formula for resultants

Res(f, g) = Sres0(f, g) =
∏

a∈A

g(a),

as it describes it in terms of the values of g in the roots of f :

Sresd(f, g)(x) = (−1)d(m−d)
∑

A′⊂A,|A′|=d

∏
a∈A\A′ g(a)R(x,A′)

R(A′, A\A′)
,

but this equality only holds in the case where the roots of f are all simple,
i.e. when f is squarefree, unlike the classical Poisson formula for resultants.

Even though there is a long history in the study of the connection be-
tween subresultants and Sylvester sums in the simple root case (see for
instance [Bor1860, ApJo2006, Cha1990, Hon1999, LaPr2001, DTGV2004,
DHKS2007, RoSz2011, KS2001, KSV2017] and the references therein), lit-
tle is known about extensions when the roots of f and g have multiplicities.
As noted above, the generalization is not straightforward, since some de-
nominators in the Sylvester sums turn zero in case of root multiplicities,
despite the fact that the left hand side of (2) is well defined even in these
cases. The article [DKS2013] describes formulas in terms of the roots of
arbitrary polynomials but only for the order d = 1 and d = min{m,n} − 1
subresultants, while formulas for the subresultants of any order d but only
for the extremal case when f = (x−a)m and g = (x− b)n in terms of a and
b have been developed in [BDKSV2017].

The present paper is the first one to give expressions for subresultants of
arbitrary polynomials f and g and arbitrary values of 0 ≤ d ≤ min{m,n}
that are a generalization of the classical Sylvester single sums.

To this aim, in Definitions 1.1 and 1.4, we present SylMd(A,B)(x), a gen-
eralization of the notion of Syld(A,B)(x) for multisets (sets where repeated
elements are allowed). First, in Definition 1.1, we consider the case when
A and B are multisets and d sufficiently large. Then, in Definition 1.4, we
extend our definition to any d with the aid of Schur functions. Both of these
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definitions coincides with Syld(A,B)(x) defined in (1) when A is a set, and
in Theorems 1.2 and 1.5 we show that our definitions also satisfy -as desired-
Identity (2).

In order to state our main results, we first introduce some notation we
extend from sets to multisets. Given a multiset X ⊂ K , we denote with |X|
its length (the number of elements counted with multiplicities). If X ′ ⊂ X
are multisets, then X \X ′ is the multiset difference, defined by the elements
of X with multiplicities equal to the difference between their values in X
and in X ′.

Definition 1.1. Let A, B ⊂ K be multisets with |A| = m, |B| = n and let
A ⊂ A and B ⊂ B be fixed subsets of the sets of distinct elements in A and
B respectively, and set m′ := m− |A| and n′ = n− |B|. For any d such that
m′ + n′ ≤ d ≤ min{m,n} if m 6= n or m′ + n′ ≤ d < m = n, we define

SylMd(A,B)(x) :=

(−1)m
′(m−d)

∑

A′⊂A
|A′|=d−m′

∑

B′⊂B
|B′|=m′

R(A\A,B\B′)R(A\A′, B\B′)R(x,A′)R(x,B′)

R(A′, A\A′)R(B′, B\B′)
.

It is straightforward to verify that when A is a set and A := A, i.e. m′ = 0,
then SylMd(A,B)(x) boils down to Syld(A,B)(x), the usual Sylvester sum
which appears in (1). We also note here that the definition of SylMd(A,B)(x)
depends on the choice of A ⊂ A and B ⊂ B, but since ultimately we prove
that they all agree with the subresultant independently of the choice of A
and B, we do not indicate this dependence in the notation for the sake of
simplicity.

We then have:

Theorem 1.2. Let f, g ∈ K[x] be monic polynomials of degrees m and n,
with multisets of roots A and B. Let A and B be subset of the sets of distinct
roots of f and g, respectively, and set m′ := m− |A| and n′ := n− |B|. For
any d such that m′+n′ ≤ d ≤ min{m,n} if m 6= n or m′+n′ ≤ d < m = n,
we have

Sresd(f, g)(x) = (−1)d(m−d)SylMd(A,B)(x).

One can wonder whether the lower bound stated for d in Theorem 1.2 is
sharp, since the definition of SylMd(A,B)(x) makes sense for more values of
d, more precisely for those d such that m′ ≤ min{d, |B|}. The next example
illustrates that the result holds for d in the right range and shows that the
constraint on it is necessary.

Example 1.3. Take f = (x − a1)(x − a2)
2 and g = (x − b1)

2, so A =
{a1, a2, a2}, B = {b1, b1}, and we take A = {a1, a2} and B = {b1}. For
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d = 2, one has Sres2(f, g)(x) = g(x) while SylM2(A,B)(x) equals

−
((a2 − b1)(x− a1)(x− b1)

a1 − a2
+

(a1 − b1)(x− a2)(x− b1)

a2 − a1

)

=

(
(a2 − b1)(x− a1)− (a1 − b1)(x− a2)

)
(x− b1)

a2 − a1
= (x− b1)(x− b1)

= g(x),

so Theorem 1.2 holds in this case, and we note that d = 2 is in the range of
Theorem 1.2 since (3− 2) + (2− 1) ≤ 2 ≤ min{3, 2}.

Now take f = (x − a1)(x − a2)
2 and g = (x − b1)

3. In this case, A =
{a1, a2, a2} and B = {b1, b1, b1}, and we again take A = {a1, a2} and B =
{b1}. For d = 2 we have Sres2(f, g)(x) = g(x) − f(x) and SylM2(A,B)(x)
can still be defined according to Definition 1.1 since m′ = 1 ≤ min{d, |B|},
but it is a multiple of x−b1, so the two expressions obviously do not coincide.
We note that here d = 2 is not in the range of Theorem 1.2 since 2 <
(3− 2) + (3− 1).

To extend the definition of SylMd(A,B)(x) for any d, we need to introduce

confluent Schur polynomials S
(R)
k (X), which are defined in (5) below, for a

multiset X of length r ≤ k, by removing a subset R of k − r rows in the
confluent Vandermonde matrix of X of size k × r.

Definition 1.4. Let A, B ⊂ K be multisets with |A| = m, |B| = n and let
A ⊂ A and B ⊂ B be subsets of the sets of distinct elements in A and B
respectively, with |A| = m, |B| = n. Set m′ := m−m and n′ := n− n. For
0 ≤ d ≤ min{m,n} if m 6= n or 0 ≤ d < m = n, we define

SylMd(A,B)(x) := (−1)m
′(m−d)·

·
∑

(−1)σR
R(A\A,B\B′)R(A\A′, B\B′)R(x,A′)R(x,B′)

R(A′, A\A′)R(B′, B\B′)
·

· S
(R̃1)
d+1 (A

′ ∪B′ ∪ {x})S
(R2)
m+n−d((A\A′) ∪B)S

(R3)
m+n−d(A ∪ (B\B′)),

where the sum is indexed by

• all possible disjoint unions R1 ⊔R2 ⊔R3 = {1, . . . ,m′ + n′ − d} with
R1 ⊂ {m + n − 2d, . . . ,m′ + n′ − d}, |R1| ≤ d − (m + n) + 1,
m′ − d ≤ |R2| ≤ m− d and n′ − d ≤ |R3| ≤ n− d,

• all subsets A′ ⊂ A, |A′| = |R2|+ d−m′,
• all subsets B′ ⊂ B, |B′| = |R3|+min{m′, d− n′},

σR is specified in (6) for R := (R1, R2, R3), and R̃1 := {i−(m+n−2d−1) :
i ∈ R1}.

It is easy to verify that this notion generalizes Definition 1.1, since when
m′ + n′ ≤ d, then m′ + n′ − d ≤ 0 which implies that the sets R1, R2

and R3 in the sum above are empty, and |B′| = m′. In this way, one
recovers the previous multiple sum straightforwardly. On the other hand,
when m′+n′ ≥ d, we have min{m′, d−n′} = d−n′, and one can easily check
that the three Schur polynomials are well defined, i.e. the submatrices of
confluent Vandermonde matrices appearing in the formula are all square.
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Furthermore, when A is a set and we choose A = A, that is m′ = 0, then
R3 = {1, . . . , n′ − d}, R1 = R2 = ∅, |A′| = d and |B′| = 0, and one can then
check that SylMd(A,B)(x) = Syld(A,B)(x).

An additional interesting feature of our formula is that when B is a set
instead of A, and we choose B = B, that is n′ = 0, then R2 = {1, . . . ,m′−d},
R1 = R3 = ∅, |A′| = 0 and |B′| = min{m′, d}. In this case one can check
that for m′ ≥ d, one has

SylMd(A,B)(x) = (−1)d(m−1)
∑

B′⊂B, |B′|=d

R(A,B\B′)R(x,B′)

R(B′, B\B′)

= (−1)mn−dSyld(B,A)(x).

When n′ = 0 and m′ < d, one can also prove that the same identity holds,
though it is not immediate and requires applying the Exchange Lemma
described in Section 2. In any case, the amazing fact is that SylMd(A,B)(x)
somehow “recognizes” when A or B are sets.

The main result of our paper is the following generalization of Theorem
1.2, which shows that SylMd(A,B)(x) computes the subresultant in all the
cases.

Theorem 1.5. Let f, g ∈ K[x] be monic polynomials of degrees m and n,
with multisets of roots A and B. Let A and B be subsets of the sets of distinct
roots of f and g, respectively, and set m′ := m−|A| and n′ := n−|B|. Then
for 0 ≤ d ≤ min{m,n} if m 6= n or 0 ≤ d < m = n, we have

Sresd(f, g)(x) = (−1)d(m−d)SylMd(A,B)(x).

We consider again Example 1.3 to illustrate how under Definition 1.4,
Theorem 1.5 indeed holds. The right-hand side SylMd(A,B)(x) in this ex-
ample is fully developed in Example 3.4 below.

Example 1.6. Take f = (x − a1)(x − a2)
2 and g = (x − b1)

3 associated
to the multisets A = {a1, a2, a2} with A = {a1, a2}, B = {b1, b1, b1} with
B = {b1} and d = 2. We have Sres2(f, g)(x) = g(x) − f(x) while in this
case SylM2(A,B)(x) equals

(a2 − b1)(x− a1)(x− a2)−
(a2 − b1)(a2 − b1)(x− a1)(x− b1)

a1 − a2
−

−
(a1 − b1)(a1 − b1)(x− a2)(x− b1)

a2 − a1
.

It is easy to check that the two expressions coincide.

Next, we also obtain analogous descriptions in term of roots for the Bézout
coefficients Fd(f, g)(x) and Gd(f, g)(x) that appear when expanding

Sresd(f, g)(x) = Fd(f, g)(x)f(x) +Gd(f, g)(x)g(x),
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with

Fd(f, g)(x) := det

m+n−2d

fm · · · · · · fd+1−(n−d−1) xn−d−1

. . .
...

... n−d

fm . . . fd+1 1
gn · · · · · · gd+1−(m−d−1) 0

. . .
...

... m−d

gn · · · gd+1 0

and

Gd(f, g)(x) := det

m+n−2d

fm · · · · · · fd+1−(n−d−1) 0
. . .

...
... n−d

fm . . . fd+1 0
gn · · · · · · gd+1−(m−d−1) xm−d−1

. . .
...

... m−d

gn · · · gd+1 1

.

Our new formulations extend the following formulas in case of simple roots
that already appear in [Syl1853, Art. 29] (see also [KSV2017, Cor. 3.10])
for 0 ≤ d < min{m,n}:

Fd(f, g)(x) = (−1)m−d
∑

B′⊂B,|B′|=d+1

R(A,B\B′)R(x,B\B′)

R(B′, B\B′)
,

Gd(f, g)(x) = (−1)d(m−d−1)
∑

A′⊂A,|A′|=d+1

R(A\A′, B)R(x,A\A′)

R(A′, A\A′)
.(3)

Our results are based on Lemma 4.1, where we relate the Bézout coeffi-
cients associated to f and g to principal subresultants of bivariate polyno-
mials in K[x, y] obtained from f(y) and g(y) by adding the variable x to
their roots. To our knowledge, this is the first result expressing the Bézout
coefficients as special cases of subresultants. This lemma allows us to use
the results of Theorems 1.2 and 1.5 to get formulas for Fd and Gd.

Theorem 1.7. Let f, g ∈ K[x] be monic polynomials of degrees m and n,
with multisets of roots A and B. Let A and B be subsets of the sets of
distinct roots of f and g, respectively, with m = |A| and n = |B|, and set
m′ := m−m and n′ := n−n. For any d such that m′+n′ ≤ d < min{m,n},
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we have

Fd(f, g)(x) =

(−1)m−d+n′(m−1)
∑

A′⊂A
|A′|=n′

∑

B′⊂B
|B′|=d+1−n′

R(A\A,B\B′)R(A\A′, B\B′)R(x,B\B′)

R(A′, A\A′)R(B′, B\B′),

Gd(f, g)(x) =

(−1)(d−m′)(m−d−1)
∑

A′⊂A
|A′|=d+1−m′

∑

B′⊂B
|B′|=m′

R(A\A′, B\B)R(A\A′, B\B′)R(x,A\A′)

R(A′, A\A′)R(B′, B\B′)
.

x

These identities are particular cases of Theorem 4.2, which deals with any
value of 0 ≤ d < min{m,n}.

The paper is organized as follows: in Section 2 we describe the main ingre-
dient in our proofs, Proposition 2.1, which is a generalization of a result by
F. Apéry and J.-P. Jouanolou. In Section 3, we apply this tool to justify the
definition of SylMd(A,B)(x) and show its connection with the subresultant.
For the sake of clarity, we first present our results for the case d big enough
and then in the following subsection, we recall the definition of confluent
Schur polynomial and extend our definition and result to arbitrary values of
d. Section 4 presents the formulas for the Bézout coefficients Fd(f, g)(x) and
Gd(f, g)(x). We conclude in Section 5 by comparing our results with previ-
ous literature in the topic. The Appendix at the end contains the technical
proofs of statements made in Sections 2, 3 and 4.

A Maple code [Map2016] computing the formulas described in Theorems
3.1 and 3.3 is freely available at
http://cms.dm.uba.ar/Members/mvaldettaro/code.mw

This code has been used for computing most of the examples which illustrate
this paper.
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2. A generalization of a result by Apéry & Jouanolou

This section deals with a generalization of a result by Apéry and Jouanolou
that appears in [ApJo2006, Prop.91], which is quite surprising and seems of
independent interest. No multisets are involved here.

Proposition 2.1. Let A,B ⊂ K be finite sets with |A| = m, |B| = n. Set
0 ≤ d ≤ m. Let X be a set of variables and E ⊂ K be any finite set satisfying

|E| ≥ max{|X| + d,m+ n− d,m}.

Then

∑

A1⊔A2=A
|A1|=d, |A2|=m−d

R(A2, B)R(X,A1)

R(A1, A2)
=

=
∑

E1⊔E2⊔E3=E
|E1|=d,|E2|=m−d,|E3|=|E|−m

R(A,E3)R(E2, B)R(X,E1)

R(E1, E2)R(E1, E3)R(E2, E3)
.

The original result in [ApJo2006, Prop.91] states that for |E| = m+n−d
and d ≤ min{m,n} for m 6= n or d < m = n, one has

Sresd(f, g)(x) =
∑

E1⊔E2⊔E3=E
|E1|=d,|E2|=m−d,|E3|=n−d

R(E3, A)R(E2, B)R(x,E1)

R(E2, E1)R(E3, E1)R(E3, E2)
.

This is a particular case of our result by (2) and the definition of the sum (1).
We illustrate the result with a toy example, which shows how the sym-

metric interpolation developed by W.Y. Chen and J.D. Louck [ChLo1996]
(or see Proposition A.2 below) applies here, and leave its technical proof to
Section A.1 in the Appendix.

Example 2.2. Take A = {a1, a2}, B = {b}, and d = 1. For X = {x} we
have

∑

A1⊔A2=A
|A1|=1, |A2|=1

R(A2, B)R(x,A1)

R(A1, A2)
=

(a1 − b)(x− a2)

a2 − a1
+

(a2 − b)(x− a1)

a1 − a2

= −(x− b).

On the other side, for E = {e1, e2} we have

∑

E1⊔E2⊔E3=E
|E1|=1,|E2|=1,|E3|=0

R(A,E3)R(E2, B)R(x,E1)

R(E1, E2)R(E1, E3)R(E2, E3)

=
(e1 − b)(x− e2)

e2 − e1
+

(e2 − b)(x− e1)

e1 − e2
= −(x− b) as well,

which is obvious in this case, or can be easily checked for instance by La-
grange interpolation in e1 and e2. This is an example of Apéry and Jouanolou’s
result.
Now consider X = {x1, x2}, E = {e1, e2, e3}, and A, B as above. On one
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hand we have
∑

A1⊔A2=A
|A1|=1, |A2|=1

R(A2, B)R(X,A1)

R(A1, A2)

=
(a1 − b)(x1 − a2)(x2 − a2)

a2 − a1
+

(a2 − b)(x1 − a1)(x2 − a1)

a1 − a2
= −x1x2 + b(x1 + x2) + a1a2 − b(a1 + a2) =: f(x1, x2).

On the other hand, for E = {e1, e2, e3},
∑

E1⊔E2⊔E3=E
|E1|=1,|E2|=1,|E3|=1

R(A,E3)R(E2, B)R(X,E1)

R(E1, E2)R(E1, E3)R(E2, E3)
,

is a symmetric polynomial g in 2 variables of multidegree bounded by 1,
which, by symmetric interpolation (see Proposition A.2 below), is determined
by its value on all subsets of size 2 of E = {e1, e2, e3}. Let us check that
the symmetric polynomial g agrees with the above symmetric polynomial f
in all subsets of size 2 of E: for 1 ≤ i < j ≤ 3, one has

g(ei, ej) =
(a1 − ei)(a2 − ei)(ej − b)

ej − ei
+

(a1 − ej)(a2 − ej)(ei − b)

ei − ej

= −eiej + b(ei + ej) + a1a2 − b(a1 + a2) = f(ei, ej).

Thus, f = g.
Finally, since the two bivariate polynomials f and g coincide, their leading
coefficient with respect to x2 also coincide, which implies that

∑

A1⊔A2=A
|A1|=1, |A2|=1

R(A2, B)R(x1, A1)

R(A1, A2)

=
∑

E1⊔E2⊔E3=E
|E1|=1,|E2|=1,|E3|=1

R(A,E3)R(E2, B)R(x1, E1)

R(E1, E2)R(E1, E3)R(E2, E3)

as well. This means that the equality also holds for one variable x, which is
an example of a case where |E| > max{|X|+ d,m+ n− d,m}.

A prominent consequence of Proposition 2.1 is that the sum in its right-
hand side, since it coincides with the sum in the left-hand side, does not
depend on the particular choice of the set E, as soon as it is large enough,
but only on the sets A and B. This enables us to compute it by any suitable
specialization of the set E.

3. Application to subresultants

This section is devoted to motivate Definitions 1.1 and 1.4, and prove
Theorems 1.2 and 1.5 of the introduction. This will be done via Theorems 3.1
and 3.3 below, where A and B are assumed to be sets instead of multisets,
and A, B are arbitrary subsets of A, B respectively. Proposition 2.1, which
can be interpreted as a multivariate version of Syld(A,B)(x) by means of
an arbitrary auxiliary set E (where only the size of E matters), allows us
to specialize E on sets in such a way that the denominators only depend
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on these A and B. Then, in the proofs of Theorems 1.2 and 1.5, we let the
elements of A or B collide, and our formulas remain well defined as long as
we assume that the elements of A and B are all distinct.

We start with the easier case of d sufficiently large to be in the range of
Definition 1.1.

3.1. The case of d sufficiently large.

Theorem 3.1. Let A,B ⊂ K be sets with |A| = m and |B| = n. Let
A ⊆ A and B ⊆ B be any non-empty subsets of A and B respectively, with
|A| = m, |B| = n, and set m′ := m − m, n′ := n − n. Assume that d
satisfies m′ + n′ ≤ d ≤ min{m,n}, and let X be a set of variables with
|X| ≤ m+ n− 2d. Then

∑

A1⊔A2=A
|A1|=d, |A2|=m−d

R(A2, B)R(X,A1)

R(A1, A2)
= (−1)m

′(m−d) ·

·
∑

A′⊂A
|A′|=d−m′

∑

B′⊂B
|B′|=m′

R(A\A,B\B′)R(A\A′, B\B′)R(X,A′)R(X,B′)

R(A′, A\A′)R(B′, B\B′)
.

Proof. We first assume that A ∩ B = ∅. By Corollary 2.1 applied to E :=
A ∪B, with |E| = m+ n ≥ m+ n− d by assumption, we have

∑

A1⊔A2=A
|A1|=d,

|A2|=m−d

R(A2, B)R(X,A1)

R(A1, A2)
=

∑

E1⊔E2⊔E3=A∪B
|E1|=d,|E2|=m−d
|E3|=m+n−m

R(A,E3)R(E2, B)R(X,E1)

R(E1, E2)R(E1, E3)R(E2, E3)
.

Now, if A∩E3 6= ∅ then R(A,E3) = 0 and if E2∩B 6= ∅ then R(E2, B) = 0.
Therefore, in each non-zero summand on the right hand side we have E3 ⊂ B
and E2 ⊂ A. Setting A′ = A\E2 and B′ = B\E3, we get that E3 = B\B′,
E2 = A\A′ and E1 = A′ ∪ B′, and therefore we can rewrite the right hand
side as

∑

A′⊂A
|A′|=d−m′

∑

B′⊂B
|B′|=m′

R(A,B\B′)R(A\A′, B)R(X,A′)R(X,B′)

R(A′ ∪B′, A\A′)R(A′ ∪B′, B\B′)R(A\A′, B\B′)

=
∑

A′⊂A
|A′|=d−m′

∑

B′⊂B
|B′|=m′

R(A,B\B′)R(A\A′, B)R(X,A′)R(X,B′)

R(A′, A\A′)R(B′, A\A′)R(A,B\B′)R(B′, B\B′)

= (−1)|B
′|·|A\A′|

∑

A′⊂A
|A′|=d−m′

∑

B′⊂B
|B′|=m′

R(A\A,B\B′)R(A\A′, B\B′)R(X,A′)R(X,B′)

R(A′, A\A′)R(B′, B\B′)

as desired, since |B′| · |A\A′| = m′(m− d).
The general statement follows from the fact that the two expressions

generically coincide. �

We note that the right-hand side of the equality in Theorem 3.1 makes
sense even when A,B are multisets instead of sets, for one only needs A, B
to be sets. For X = {x} we can then define, as stated in Definition 1.1, the
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notion of Sylvester sum for multisets A and B and d within the bounds of
Theorem 3.1, which extends the usual notion of Sylvester sums for sets.

Proof of Theorem 1.2. Since neither SylMd(A,B) nor Sresd(f, g) depends
on the ordering of the elements in A and B, we can assume without loss
of generality that the distinct elements of A and B appear as the first m
and n elements of A and B, respectively. Define sets of indeterminates
Y = {y1, . . . , ym} and Z = {z1, , . . . , xn}, and set fY =

∏m
i=1(x − yi) and

gZ =
∏n

i=1(x − zi). Then if we set Y := {y1, . . . , ym} ⊂ Y and Z =
{z1, . . . , zn} ⊆ Z and m′ + n′′ ≤ d ≤ min{m,n} if m 6= n or m′ + n′ ≤ d <
m = n, according to Theorem 3.1 we have

Syld(Y, Z)(x) =

(−1)m
′(m−d)

∑

Y ′⊂Y
|Y ′|=d−m′

∑

Z′⊂Z
|Z′|=m′

R(Y \Y , Z\Z ′)R(Y \Y ′, Z\Z ′)R(x, Y ′)R(x, Z ′)

R(Y ′, Y \Y ′)R(Z ′, Z\Z ′)
.

On the other hand, by (2), Sresd(f
Y , gZ)(x) = (−1)d(m−d)Syld(Y,Z)(x).

Therefore, for d within the stated bounds,

Sresd(f
Y , gZ)(x) =

(−1)(d−m′)(m−d)
∑

Y ′⊂Y
|Y ′|=d−m′

∑

Z′⊂Z
|Z′|=m′

R(Y \Y , Z\Z ′)R(Y \Y ′, Z\Z ′)R(x, Y ′)R(x, Z ′)

R(Y ′, Y \Y ′)R(Z ′, Z\Z ′)
.

We end the proof by setting y1 → a1, . . . , ym → am, . . . , ym → am, z1 →
b1, . . . , zn → bn, . . . , zn → bn noting that both sides of the equality are
well-defined after this specialization. �

3.2. The general case. In order to deal with the situation where 0 ≤
d < m′ + n′ we need to recall the definition of Schur polynomials. Given a
partition

λ = (λ1, λ2, . . . , λr), λi ∈ Z≥0 for 1 ≤ i ≤ r, with λ1 ≥ λ2 ≥ · · · ≥ λr,

the Schur polynomial sλ(X) for a set X = {x1, . . . , xr} is defined as the
ratio

sλ(X) =

det




xλ1+r−1
1 xλ1+r−1

2 · · · xλ1+r−1
r

xλ2+r−2
1 xλ2+r−2

2 · · · xλ2+r−2
r

...
...

. . .
...

xλr

1 xλr

2 · · · xλr

r




det




xr−1
1 . . . xr−1

r
...

...
1 . . . 1




.

That is, Schur polynomials are ratios of subdeterminants of Vandermonde
matrices, where in the numerator some rows of a regular Vandermonde ma-
trix are deleted, while in the denominator a regular Vandermonde matrix
occurs. Note that Schur polynomials are symmetric in x1, . . . , xr, and thus
it makes sense to write sλ(X) for a set X. For convenience here, we will
not follow this usual notation for Schur polynomials given by partitions but
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introduce a notation with a set of exponents as follows: for k, r ∈ N, k ≥ r,
we set

Vk(X) =




xk−1
1 . . . xk−1

r
...

...
1 . . . 1




to be the regular rectangular Vandermonde matrix of size k × r. When
k = r we write V (X) for simplicity. For a subset of row indexes R =

{i1, . . . , ik−r} ⊂ {1, . . . , k}, we will denote by V
(R)
k (X) the square submatrix

of Vk(X) obtained by removing the rows indexed by R. We then define

(4) S
(R)
k (X) :=

det(V
(R)
k (X))

det(V (X))
,

that is S
(R)
k (X) is the Schur polynomial associated to the set of indexes

{1, . . . , k} \R.
In a more general setting, if X = {x1, . . . , x1︸ ︷︷ ︸

j1

, . . . , xr, . . . , xr︸ ︷︷ ︸
jr

} is a multiset

with r = j1 + · · · + jr, we define a generalized or confluent Vandermonde
matrix instead of the regular Vandermonde matrix of size k × r as (c.f.
[Kal1984])

Vk(X) =
(
Vk(x1, j1) . . . Vk(xr, jr)

)

where for any j, Vk(xi, j) of size k × j is defined by

Vk(xi, j) :=




xk−1
i (k − 1)xk−2

i (k − 1)(k − 2)xk−3
i . . . (k−1)!

(k−j)!x
k−j
i

...
...

...
...

x2i 2xi 2 . . . 0
xi 1 0 . . . 0
1 0 0 . . . 0




,

where when k = r one writes again V (X) for simplicity. It is known that
V (X) is invertible when xi 6= xj for i 6= j.

Then one can define confluent Schur polynomials in the same way as
before: let R = {i1, . . . , ik−r} ⊂ {1, . . . , k} be a subset of the row indexes,

then we will denote by V
(R)
k (X) the square submatrix of Vk(X) obtained by

removing from it the rows indexed by R, and define

(5) S
(R)
k (X) :=

det(V
(R)
k (X))

det(V (X))
.

Note that in principle S
(R)
k (X) is a rational function, and it may not be

defined over fields of positive small characteristic. The next result shows
that it is actually a polynomial, and hence its definition can be done over
any field K.

Lemma 3.2. S
(R)
k (X) is a symmetric polynomial in the X-variables with

coefficients in K.

Proof. When X is a set instead of being a multiset, the Schur function
defined in (5) coincides with the Schur polynomial defined in (4), so the claim
obviously holds in this situation. To prove the statement in the general case,
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consider a set X = {x1,1, . . . , x1,j1 , . . . , xr,1, . . . , xr,ir} which will “converge”
to a multiset Y by setting x1,i → y1 for 1 ≤ i ≤ j1, . . . , xr,i → yr for
1 ≤ i ≤ jr. Then

S
(R)
k (X) → S

(R)
k (Y )

as it can be seen for instance by computing the limits for x1,2 → x1,1 by
L’Hôpital rule, for xi,3 → xi,1 if necessary, and repeating the same for the

other terms xk,2 → xk,1, etc. This shows that S
(R)
k (Y ) ∈ K[Y ]. �

For a given (increasingly ordered) set R ⊂ {1, . . . , r}, we set sgr(R) :=
(−1)σ , where σ is a number of transpositions needed to move this set to the
first positions in {1, . . . , r}, i.e. if R = {i1, . . . is} with 1 ≤ i1 < · · · < is ≤ r,
then σ is the parity of the number of transpositions needed to bring (1, . . . , r)
to (i1, . . . is, . . . ), without changing the relative order of the other elements.

Also, for a given partition {1, . . . , r} = R1 ⊔ R2 ⊔ . . . ⊔ Rℓ, with R :=
(R1, . . . Rℓ) we denote sg(R) = (−1)σ , where σ is the parity of the number
of transpositions needed to bring the ordered set (R1, . . . , Rℓ) (we assume
that each of them is also increasingly ordered) to {1, . . . , r}.

Theorem 3.3. Let A,B ⊂ K be sets with |A| = m and |B| = n. Let
A ⊆ A and B ⊆ B be any non-empty subsets of A and B respectively, with
|A| = m and |B| = n and set m′ := m − m and n′ := n − n. Assume
that 0 ≤ d ≤ min{m,n} if m 6= n or 0 ≤ d < m = n satisfies in addition
d < m′ + n′. Then:

(1) If 0 ≤ d < m+ n then

∑

A1⊔A2=A
|A1|=d,

|A2|=m−d

R(A2, B)R(x,A1)

R(A1, A2)
= (−1)m

′(m−d)
∑

R2⊔R3={1,...,m′+n′−d}
|R2|=r2,m

′−d≤r2≤m−d
|R3|=r3, n

′−d≤r3≤n−d

(−1)σR ·

·
∑

A′⊂A
|A′|=r2−(m′−d)

∑

B′⊂B
|B′|=r3−(n′−d)

R(A\A,B\B′)R(A\A′, B\B′)R(x,A′)R(x,B′)

R(A′, A\A′)R(B′, B\B′)
·

· S
(R2)
m+n−d((A\A′) ∪B)S

(R3)
m+n−d(A ∪ (B\B′)),

where for the partition R2 ⊔R3 = {1, . . . ,m′ + n′ − d} and R = (R2, R3)

(−1)σR := (−1)r2(m−1)+r3(m′+n′−d−1)+r2r3sg(R).

(2) If m+ n ≤ d < m′ + n′,
∑

A1⊔A2=A
|A1|=d,

|A2|=m−d

R(A2, B)R(x,A1)

R(A1, A2)
= (−1)m

′(m−d)
∑

R1⊔R2⊔R3={1,...,m′+n′−d}
R1⊂{m+n−2d,...,m′+n′−d},
|R1|=r1, r1≤d−(m+n)+1
|R2|=r2,m

′−d≤r2≤m−d

|R3|=r3, n
′−d≤r3≤n−d

(−1)σR ·

·
∑

A′⊂A
|A′|=r2−(m′−d)

∑

B′⊂B
|B′|=r3−(n′−d)

R(A\A,B\B′)R(A\A′, B\B′)R(x,A′)R(x,B′)

R(A′, A\A′)R(B′, B\B′)
·

· S
(R̃1)
d+1 (A

′ ∪B′ ∪ x)S
(R2)
m+n−d((A\A

′) ∪B)S
(R3)
m+n−d(A ∪ (B\B′)),
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where R̃1 := {i − (m + n − 2d − 1) : i ∈ R1}, and for the partition R1 ⊔
R2 ⊔R3 = {1, . . . ,m′ + n′ − d} and R = (R1, R2, R3)

(6) (−1)σR := (−1)r1(n−d+r2+r3)+r2(m−1)+r3(m′+n′−d−1)+r2r3sg(R).

We leave the proof of Theorem 3.3 to Section A.2 in the Appendix. Here
we illustrate this theorem by working out the full details the case corre-
sponding to Example 1.6 of the introduction.

Example 3.4. Let A = {a1, a2, a3}, A = {a1, a2}, B = {b1, b2, b3}, B =
{b1}, and d = 2. Set f = (x − a1)(x − a2)(x − a3) and g = (x − b1)(x −
b2)(x− b3). On one side we have

∑

A1⊔A2=A
|A1|=2,|A2|=1

R(A2, B)R(x,A1)

R(A1, A2)
=

g(a1)(x− a2)(x− a3)

(a2 − a1)(a3 − a1)
+

+
g(a2)(x− a1)(x− a3)

(a1 − a2)(a3 − a2)
+

g(a3)(x− a1)(x− a2)

(a1 − a3)(a2 − a3)
= g(x)− f(x),

since, by Lagrange interpolation, these two polynomials of degree ≤ 2 agree
on a1, a2 and a3.
Now, since d ≤ m+ n in this case, we need to compute the right-hand side
in (1) above. First, m′(m − d) = 1. Also, R2 ⊔ R3 = {1}. For R2 = {1},
r2 = 1, |A′| = 1 , and R3 = ∅, r3 = 0, |B′| = 0, (−1)σR = −1, and one can

check that S
(1)
4 (∅ ∪B) = 1 and S

(∅)
4 (A ∪ {b1}) = 1. This gives the term

(a3 − b1)(x− a1)(x− a2).

Similarly, for r2 = 0 and r3 = 1, |A′| = 1 and |B′| = 1. The computation
gives two terms depending on A′ = {a1} and A′ = {a2}:

−
(a2 − b2)(a2 − b3)(x− a1)(x− b1)

a1 − a2
−

(a1 − b2)(a1 − b3)(x− a2)(x− b1)

a2 − a1
.

So the final sum equals

(a3 − b1)(x− a1)(x− a2)−
(a2 − b2)(a2 − b3)(x− a1)(x− b1)

a1 − a2
−

−
(a1 − b2)(a1 − b3)(x− a2)(x− b1)

a2 − a1
.

One can easily verify that this expression coincides with g(x) − f(x) by in-
terpolating in a1, a2 and b1 for instance. The expression in Example 1.6 is
obtained by setting a2 = a3 and b1 = b2 = b3.

We are ready now to conclude the proof of Theorem 1.5.

Proof of Theorem 1.5. First we note that SylMd(A,B)(x) introduced in Def-
inition 1.4 not only generalizes Definition 1.1 as mentioned in the introduc-
tion, but also generalizes the term in the right-hand side of Theorem 3.3(1)
for sets, since when d < m + n, R1 ⊂ {m + n − 2d, . . . ,m′ + n′ − d} = ∅.
Therefore, thanks to Identity (2), Theorems 3.1 and 3.3, one has that the
following equality holds for sets A and B, any subsets A ⊂ A and B ⊂ B
and any 0 ≤ d ≤ min{m,n} if m 6= n or 0 ≤ d < m = n:

Sresd(f, g)(x) = (−1)d(m−d)SylMd(A,B)(x).
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The transition from sets to multisets is then straightforward by taking limits
of sets to multisets, as in the proof of Theorem 1.2, thanks to Lemma 3.2
and its proof, since both quantities are well-defined for multisets. �

4. Application to the Bézout coefficients

We first show an interesting new connection between the Bézout coeffi-
cients Fd(f, g)(x) and Gd(f, g)(x) and the order d+1 principal subresultants
of bivariate polynomials obtained from f and g.

Lemma 4.1. Let f, g ∈ K[x] be polynomials of degrees m and n, respectively,

and define f̃ = f(y) · (y − x) ∈ K(x)[y] and g̃ = g(y) · (y − x) ∈ K(x)[y].
Then for any 0 ≤ d < min{m,n}, we have

Fd(f, g)(x) = (−1)m−dcoeffyd+1

(
Sresd+1(f̃ , g(y))

)
,

Gd(f, g)(x) = coeffyd+1

(
Sresd+1(f(y), g̃)

)
.

Proof. We first consider the case when f and g have distinct roots A and
B. By Identity (3) we have

Gd(f, g)(x) = (−1)d(m−d−1)
∑

A′⊂A,|A′|=d+1

R(A\A′, B)R(x,A\A′)

R(A′, A\A′)

= (−1)(d+1)(m−d−1)
∑

A′⊂A,|A′|=d+1

R(A\A′, B ∪ {x})

R(A′, A\A′)

= (−1)(d+1)(m−d−1)coeffyd+1

( ∑

A′⊂A,|A′|=d+1

R(A\A′, B ∪ {x})R(y,A′)

R(A′, A\A′)

)

= (−1)(d+1)(m−d−1)coeffyd+1

(
Syld+1(A,B ∪ {x})(y)

)

= coeffyd+1

(
Sresd+1(f(y), g̃)

)

and

Fd(f, g)(x) = (−1)(m−d)(n−d)Gd(g, f)(x)

= (−1)(m−d)(n−d)coeffyd+1

(
Sresd+1(g(y), f̃ )

)

= (−1)m−dcoeffyd+1

(
Sresd+1(f̃ , g(y))

)
.

The identities for arbitrary polynomials f and g follow by continuity, since
all expressions are well-defined in case of multiple roots. �

Now we are ready to state our general expressions for the Bézout coeffi-
cients, generalizing Theorem 1.7 in the Introduction.

Theorem 4.2. Let f, g ∈ K[x] be monic polynomials of degrees m and n,
with multisets of roots A and B, and A and B are subsets of the sets of
distinct roots of f and g, respectively, with m = |A| and n = |B|, and set
m′ := m−m and n′ := n− n. For any d such that 0 ≤ d < min{m,n}, we
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have

Fd(f, g)(x) = (−1)m−d+(n−d−1)(m−n′)
∑

R1⊔R2⊔R3={1,...,m′+n′−d}
R1⊂{m+n−2d,...,m′+n′−d},
|R1|=r1,r1≤d+2−(m+n)

|R2|=r2, n
′−d−1≤r2≤n−d−1

|R3|=r3,m
′−d≤r3≤m−d

(−1)σR ·

·
∑

A′⊂A
|A′|=r3+min{n′,d−m′}

∑

B′⊂B
|B′|=r2−(n′−d−1)

R(B\B,A\A′)R(B\B′, A\A′)R(x,B\B′)

R(A′, A\A′)R(B′, B\B′)
·

· S
(R̃1)
d+1 (A

′ ∪B′)S
(R2)
m+n−d(A ∪ (B\B′) ∪ {x})S

(R3)
m+n−d((A\A′) ∪B),

Gd(f, g)(x) = (−1)(m−d−1)(d−m′)
∑

R1⊔R2⊔R3={1,...,m′+n′−d}
R1⊂{m+n−2d,...,m′+n′−d},
|R1|=r1,r1≤d+2−(m+n)

|R2|=r2,m
′−d−1≤r2≤m−d−1

|R3|=r3, n
′−d≤r3≤n−d

(−1)σ̃R ·

·
∑

A′⊂A
|A′|=r2−(m′−d−1)

∑

B′⊂B
|B′|=r3+min{m′,d−n′}

R(A\A,B\B′)R(A\A′, B\B′)R(x,A\A′)

R(A′, A\A′)R(B′, B\B′)
·

· S
(R̃1)
d+1 (A

′ ∪B′)S
(R2)
m+n−d((A\A′) ∪B ∪ {x})S

(R3)
m+n−d(A ∪ (B\B′)),

where

(−1)σR := (−1)r1(m−d+r2+r3)+r2n+r3(m′+n′−d−1)+r2r3sg(R),

(−1)σ̃R := (−1)r1(n−d+r2+r3)+r2m+r3(m′+n′−d−1)+r2r3sg(R)

and

R̃1 := {i− (m+ n− 2d− 2) : i ∈ R1}.

Again, we illustrate this result with a toy example, leaving the proof to
Section A.3 in the Appendix. We do not treat here the case f = (x−a1)(x−
a2)

2 and g = (x−b)3 as we did for Sres2(f, g) in the introduction, because in
this case F2(f, g) = −1 and G2(f, g) = 1 which do not have a lot of interest.

Example 4.3. Take f = (x − a)3 and g = (x − b)2. For d = 1, we easily
compute that

F1(f, g)(x) = 1 and G1(f, g)(x) = −x+ 3a− b.

We now compute the expressions at the right-hand side in Theorem 4.2.
For the first expression, corresponding to F1(f, g)(x), we have R1 = R2 =
∅, R3 = {1, 2}. This gives A′ = A and B′ = B. We then get that the sum
equals 1 and the initial sign equals 1. That is, the right-hand side equals 1,
as expected.
For the second expression, corresponding to G1(f, g)(x), the initial sign
equals −1. We have R1 = ∅, and R2 = {1}, R3 = {2} or R2 = {2},
R3 = {1}. In the first case, (−1)σ̃R = −1 while in the second case (−1)σ̃R =
1. In both cases A′ = A and B′ = B, so what is left to compute in each sum
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is S
(R2)
4 (B ∪ {x}) and S

(R3)
4 (A). When R2 = {1}, S

(R2)
4 (B ∪ {x}) = 1 and

S
(R3)
4 (A) = −3a, while when R2 = {2},

S
(R2)
4 (B ∪ {x}) =

det




b3 3b2 x3

b 1 x
1 0 1




det




b2 2b x2

b 1 x
1 0 1




= x+ 2b,

and S
(R3)
4 (A) = 1.

We finally get that the expression in the right-hand side equals 3a− x− 2b
which coincides with what is expected.

5. Comparisons with previous results

In this paper we have succeeded in defining an expression in roots with
multiplicities SylMd(A,B)(x) (Definitions 1.1 and 1.4) which extends the
classical Sylvester sum Syld(A,B)(x). However, in [Syl1853] Sylvester also
introduced the following double sum: for 0 ≤ p ≤ m, 0 ≤ q ≤ n,

Sylp,q(A,B)(x) :=
∑

A′⊂A,B′⊂B

|A′|=p, |B′|=q

R(A′, B′)R(A\A′, B\B′)
R(x,A′)R(x,B′)

R(A′, A\A′)R(B′, B\B′)
,

and showed that if we set d := p + q; for d ≤ min{m,n} when m 6= n, or
d < m = n,

Sylp,q(A,B)(x) = (−1)p(m−d)

(
d

p

)
Sresd(f, g)(x).

It would be interesting to produce expressions SylMp,q(A,B)(x) for general
multisets A and B, which specialize to the above double sums in the case of
A and B being sets. Some extensions have been described in [Val17, Section
4.2] for the case p and q “large enough”, but still more work has to be done
in this direction.

Recently, several explicit formulas “in roots” for univariate subresultants
with multiplicities have been presented. We describe some of them and show
that in all the cases, our SylMd(A,B)(x) essentially produces new formulas.

5.1. m = n = 1. In [BDKSV2017], the authors, in a joint work with Alin
Bostan, developed a formula for the subresultants in the extremal case when
both polynomials f and g have only one (multiple) root each, that is when
f = (x− a)m and g = (x− b)n. More precisely,

Theorem 5.1. ([BDKSV2017, Th.1.1, Th.1.2]) Let m,n, d ∈ N with 0 ≤
d < min{m,n}, and a, b ∈ K. Then

Sresd((x− a)m, (x− b)n)(x)

= (−1)(
d

2)(a− b)(m−d)(n−d)
d∑

j=0

qj(m,n, d)(x − a)j(x− b)d−j ,



18 C. D’ANDREA, T. KRICK, A. SZANTO, AND M. VALDETTARO

where the coefficients q0(m,n, d), . . . , qd(m,n, d) satisfy

q0(m,n, d) = (−1)(
d

2)
d∏

i=1

(i− 1)! (m+ n− d− i− 1)!

(m− i− 1)!(n − i)!
,

qj(m,n, d) =

(
d
j

)(
n−d+j−1

j

)
(
m−1
j

) q0(m,n, d) for 1 ≤ j ≤ d.

Comparing the expression above with the formula given in Theorem 3.3
applied to the case m = n = 1, we get the following result:

Proposition 5.2. Let m,n, d ∈ N with 1 ≤ d < min{m,n}, and a, b ∈ K.
Let A = {a, . . . , a︸ ︷︷ ︸

m

} and B = {b, . . . , b︸ ︷︷ ︸
n

}. Then

Sresd((x − a)m, (x− b)n)(x)

= (a− b)n−1(x− b)S0(d) + (a− b)m−1(x− a)S1(d) + (x − a)(x− b)S2(d),

where

• S0(d) :=
∑

R2∪R3={1,...,m+n−2d−1}
|R2|=m−d−1,|R3|=n−d

(−1)σRS
(R2)
m+n−d({a} ∪B)S

(R3)
m+n−d(A),

• S1(d) :=
∑

R2∪R3={1,...,m+n−2d−1}
|R2|=m−d,|R3|=n−d−1

(−1)σRS
(R2)
m+n−d(B)S

(R3)
m+n−d(A ∪ {b}),

• S2(d) = 0 for d = 1, and for d > 1,

S2(d) :=

d−1∑

i=1

∑

R2∪R3={1,...,m+n−2d−1}∪{m+n−2d−1+i}
|R2|=m−d,|R3|=n−d

(−1)σRS
({1,...,d−1}\{i})
d+1 ({a, b, x})S

(R2)
m+n−d(B)S

(R3)
m+n−d(A).

As an example, for m = 3, n = 2, m = n = 1 and d = 1, we get from
Theorem 3.3 that

Sres1((x− a)3, (x− b)2)(x) = (a− b)(x− b)(3a+
−a2 − ab+ 2b2

a− b
)

+ (a− b)2(x− a)

= (a− b)2(2(x− b) + (x− a)),

which is consistent with the values q0(3, 2, 1) = 2 and q1(3, 2, 1) = 1 obtained
in Theorem 5.1.

Note however that the subresultant in Theorem 5.1 is expressed as a linear
combination of the family (x− a)j(x− b)d−j while in Proposition 5.2 we get
a combination of different powers (x− a)i(x− b)j for i+ j ≤ d. This shows
that these expressions are different except in the case where d = 1 which
appears below.

5.2. d = m − 1 < n. In [DKS2013], the first three authors of this paper
developed a general formula for the cases d = m−1 < n. Indeed, Proposition
2.6 in [DKS2013] states that for

f = (x− a1)
j1 · · · (x− am)jm ,
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with j1 + · · · + jm = m, Sresm−1(f, g) is the unique Hermite interpolant h
of degree ≤ m− 1 satisfying the m conditions

h(ki)(ai) = g(ki)(ai), 0 ≤ ki < ji, 1 ≤ i ≤ m.

We observe that the formula described in Theorem 1.5, expressed in
terms of roots of f and g, gives an alternative –though completely different
and not at all obvious– description of the Hermite interpolant h. For in-
stance, thanks to symmetric interpolation, we can check how the polynomial
SylMm−1(A,B)(x) described in Definition 1.1 satisfies (at least) the condi-

tions SylMm−1(A,B)(ai) = (−1)m−1g(ai) for all ai ∈ A when n−n ≤ m−1:
from its definition,

SylMm−1(A,B)(ai) =

(−1)m−m
∑

B′⊂B
|B′|=m−m

R(A\A,B\B′)R(ai, B\B′)
∏

j 6=i(ai − aj)R(ai, B
′)

∏
j 6=i(aj − ai)R(B′, B\B′)

= (−1)m−1R(ai, B
′)

∑

B′⊂B
|B′|=m−m

R(A\A,B\B′)

R(B′, B\B′)

= (−1)m−1g(ai),

since by symmetric interpolation (Prop. A.2), one has forX = (x1, . . . , xm−m),

1 =
∑

B′⊂B
|B′|=m−m

R(X,B\B′)

R(B′, B\B′)
=

∑

B′⊂B
|B′|=m−m

R(A\A,B\B′)

R(B′, B\B′)
.

5.3. d = 1. In the same paper [DKS2013], an explicit formula for Sres1(f, g)(x)
in terms of their multiple roots is given. To be more precise, [DKS2013,
Thm. 2.7.] states:

Sres1(f, g)(x) = (−1)mg(a1)
( ∏

2≤k≤m−1

g(ak)

a1 − ak

)
(x− a1)·

·
( ∑

2≤k≤m−1

1

a1 − ak
+

2

a1 − b1
+

∑

2≤k≤n−1

1

a1 − bk
+ 1

)

+ (−1)m−1
∑

2≤i≤m−1

g(a1)
2

(ai − a1)2

( ∏

2≤k≤m−1
k 6=i

g(ak)

ai − ak

)
(x− ai),

which is an expression in the roots of f and their values in g. On the other
hand, Theorem 1.5 for d = 1 and m′ := m−m > 0, n′ := n− n > 0, gives

Sres1(f, g)(x) = (−1)m−1
(
R(A,B\B)

∑

b∈B

R(A,B\b)

R(b,B\b)
(x− b)T1

+R(A\A,B)
∑

a∈A

R(A\a,B)

R(a,A\a)
(x− a)T2

)
,

where
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• T1 :=
∑

R2∪R3={1,...,m′+n′−1}
|R2|=m′−1,|R3|=n′

(−1)σRS
(R2)
m+n−1(A ∪B)S

(R3)
m+n−1(A ∪ (B\b)),

• T2 :=
∑

R2∪R3={1,...,m′+n′−1}
|R2|=m′,|R3|=n′−1

(−1)σRS
(R2)
m+n−1((A\a) ∪B)S

(R3)
m+n−1(A ∪B),

which are expressions in both the roots of f and g. Note also that the
first formulation is given as a linear combination of (x − a), a ∈ A and
constants, while the second one is a linear combination of (x − a), a ∈ A
and (x− b), b ∈ B. So their presentation is not the same.
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Appendix A.

A.1. Proof of Proposition 2.1. The proof follows from a suitable exten-
sion of the next Exchange Lemma that appears in [KSV2017, Lem.3.1 &
Cor.3.2].

Lemma A.1. Set d ≥ 0. Let A, B ⊂ K be finite sets with |A|, |B| ≥ d, and
X a set of variables with |X| ≤ |A| − d. Then

∑

A′⊂A,|A′|=d

R(A\A′, B)
R(X,A′)

R(A\A′, A′)
=

∑

B′⊆B,|B′|=d

R(A,B\B′)
R(X,B′)

R(B′, B\B′)
.

Lemma A.1 turns out to be a consequence of the symmetric interpolation
developed in [ChLo1996] (see also [KSV2017]) that we state here as we will
need it for the proof of Lemma A.3.

Proposition A.2. Let E ⊂ K be a finite set of size |E| = e. Set 0 ≤ d < e,
and let X be a set of variables with |X| = e− d. Then,

B :=
{
R(X,E′) ; E′ ⊆ E, |E′| = d

}

is a basis of the K-vector space S(e−d,d) of symmetric polynomials h in X =
{x1, . . . , xe−d} over K such that degxi

(h) ≤ d for all 1 ≤ i ≤ e− d.
Moreover, any polynomial h(X) ∈ S(e−d,d) can be uniquely written as

h(X) =
∑

E′⊆E,|E′|=d

h(E\E′)
R(X,E′)

R(E\E′, E′)

where h(E\E′) := h(e1, . . . , ee−d) for E\E′ = {e1, . . . , ee−d}.

Our next extension of Lemma A.1 relaxes slightly the condition on the
size of X. Item (2) is presented for sake of completeness, we do not use it
in the sequel.

Lemma A.3. Set d ≥ 0. Let A,B ⊂ K be finite sets with |A| ≥ d, and X
be a set of variables with |X| ≤ |A|+ |B| − 2d. Then

http://cms.dm.uba.ar/academico/carreras/doctorado/tesis-Valdettaro.pdf
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(1) If |B| ≥ d, then

∑

A1⊔A2=A
|A1|=d,|A2|=|A|−d

R(A2, B)R(X,A1)

R(A1, A2)
=

= (−1)d(|A|−d)
∑

B1⊔B2=B
|B1|=d, |B2|=|B|−d

R(A,B2)R(X,B1)

R(B1, B2)
.

(2) If |B| < d, then

∑

A1⊔A2=A
|A1|=d, |A2|=|A|−d

R(A2, B)R(X,A1)

R(A1, A2)
= 0.

Proof. (1) When |B| ≥ d, if |X| ≤ |A| − d holds, we are in the conditions of
Lemma A.1 and the statement holds by simply correcting the sign.

Now assume |B| ≥ d and r := |X| > |A| − d. Write X = Y ∪ Z, with
Y = {x1, · · · , x|A|−d} and Z = {x|A|−d+1, · · · , xr}. We define

h(Y,Z) =
∑

A1⊔A2=A
|A1|=d,|A2|=|A|−d

R(A2, B)R(Y,A1)R(Z,A1)

R(A1, A2)
,

and

g(Y,Z) =
∑

B1⊔B2=B
|B1|=d, |B2|=|B|−d

R(A,B2)R(Y,B1)R(Z,B1)

R(B1, B2)
,

and show that h = (−1)d(|A|−d)g. For this purpose, we consider g, h ∈
K(Z)[Y ], i.e. with coefficients in the field K(Z). Both polynomials are
symmetric in Y and have multidegree in Y bounded by d. So h, g ∈
Sn−d,d(K(Z)). Using Proposition A.2, it is enough to verify that h(A2, Z) =

(−1)d(|A|−d)g(A2, Z), for all A2 ⊆ A with |A2| = |A|−d. Clearly, for a given

A2, h(A2, Z) = (−1)d(|A|−d)R(A2, B)R(Z,A1) where A1 := A\A2. Let us
compute g(A2, Z):

g(A2, Z) =
∑

B1⊔B2=B
|B1|=d, |B2|=|B|−d

R(A,B2)R(A2, B1)R(Z,B1)

R(B1, B2)

= R(A2, B)
∑

B1⊔B2=B
|B1|=d, |B2|=|B|−d

R(A1, B2)R(Z,B1)

R(B1, B2)
.

Thus it suffices to show that

(7)
∑

B1⊔B2=B
|B1|=d, |B2|=|B|−d

R(A1, B2)R(Z,B1)

R(B1, B2)
= R(Z,A1).

But this holds again by Lemma A.1 for B instead of A, A1 instead of B and
Z instead of X, since |Z| = |X| − (|A| − d) ≤ |B| − d by hypothesis (in this
case the only subset of A1 of size d is A1 itself).
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(2) When |B| < d, we enlarge B by adding variables Y so that |B∪Y | = d,
say Y = {y1, · · · , ys}, with s = d− |B|. So we get, by applying the previous
item, that

∑

A1⊔A2=A
|A1|=d,|A2|=|A|−d

R(A2, B)R(X,A1)

R(A1, A2)
=

= (−1)(|A|−d)|Y | coeff
y
|A|−d

1
···y

|A|−d

s




∑

A1⊔A2=A
|A1|=d,|A2|=|A|−d

R(A2, B ∪ Y )R(X,A1)

R(A1, A2)




= (−1)(|A|−d)|Y | coeff
y
|A|−d

1
···y

|A|−d

s

R(X,B ∪ Y ) = 0,

since in this case the hypothesis |X| ≤ |A|+ |B| − 2d together with |B| < d
implies that |X| < |A|−d, and therefore there is no coefficient in yi of degree
|A| − d. �

Proof of Proposition 2.1. Set e := |E|, m := |A| and n := |B|. The right-
hand side of the equality we want to show can be rewritten as

∑

E1⊔E′=E
|E1|=d, |E′|=e−d

∑

E2⊔E3=E′

|E2|=m−d, |E3|=e−m

R(A,E3)R(E2, B)R(X,E1)

R(E1, E′)R(E2, E3)

=
∑

E1⊔E′=E
|E1|=d, |E′|=e−d

R(X,E1)

R(E1, E′)

∑

E2⊔E3=E′

|E2|=m−d, |E3|=e−m

R(A,E3)R(E2, B)

R(E2, E3)

= (−1)m(e−m)+n(m−d)
∑

E1⊔E′=E
|E1|=d, |E′|=e−d

R(X,E1)

R(E1, E′)

∑

E2⊔E3=E′

|E2|=m−d, |E3|=e−m

R(E3, A)R(B,E2)

R(E2, E3)

= (−1)d(e−m)+n(m−d)
∑

E1⊔E′=E
|E1|=d, |E′|=e−d

R(X,E1)

R(E1, E′)

∑

A2⊔A1=A
|A2|=m−d, |A1|=d

R(E′, A′)R(B,A2)

R(A2, A1)

(8)

= (−1)d(e−m)
∑

A2⊔A1=A
|A2|=m−d, |A1|=d

R(A2, B)

R(A2, A1)

∑

E1⊔E′=E
|E1|=d, |E′|=e−d

R(E′, A1)R(X,E1)

R(E1, E′)

= (−1)d(m−d)
∑

A2⊔A1=A
|A2|=m−d, |A1|=d

R(A2, B)

R(A2, A1)
R(X,A1)

(9)

=
∑

A1⊔A2=A
|A1|=d, |A2|=m−d

R(A2, B)R(X,A1)

R(A1, A2)
,

where (8) is Lemma A.3(1) applied to E′ instead of A, A instead of B and
B instead of X since |B| ≤ |E′| + |A| − 2(m − d), i.e. n ≤ e − m + d by
hypothesis, and (9) is the same lemma applied to E instead of A, A1 instead
of B and X since |X| ≤ |E|+ |A1| − 2d, i.e. |X| ≤ e− d by hypothesis (note
that in this case, the only subset of A1 of size d is A1 itself and therefore
the second sum in Lemma A.3 simply equals R(X,A1)). �
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A.2. Proof of Theorem 3.3. As in the proof of Theorem 3.1, we can
assume that A ∩B = ∅. The idea of the proof is to add an auxiliary set of
variables T = {t1, · · · , tr} with r = m′ + n′ − d so that E := A ∪B ∪ T has
size |E| = m + n − d, which allows us to apply Proposition 2.1 to E and
X = {x}, and then to compare coefficients in the obtained expression.
Applying Proposition 2.1 we get

∑

A1⊔A2=A
|A1|=d,

|A2|=m−d

R(A2, B)R(x,A1)

R(A1, A2)
=

∑

E1⊔E2⊔E3=A∪B∪T
|E1|=d,|E2|=m−d

|E3|=n−d

R(A,E3)R(E2, B)R(x,E1)

R(E1, E2)R(E1, E3)R(E2, E3)
.

Again, R(A,E3) = 0 when E3∩A 6= ∅ andR(E2, B) = 0 when E2∩B 6= ∅.
Therefore E3 ⊂ B ∪ T and E2 ⊂ A ∪ T . Let us write E2 = (A\A′) ∪ T2

with A′ ⊂ A and T2 ⊂ T , E3 = (B\B′) ∪ T3 with B′ ⊂ B and T3 ⊂ T with
T2 ∩ T3 = ∅. Then E1 = (A′ ∪B′)∪ T1 where T1 = T\(T2 ∪ T3), and we can
rewrite the sum as we did in Theorem 3.1:

∑

T1⊔T2⊔T3=T
|T1|=r1,0≤r1≤d

|T2|=r2,0≤r2≤m−d

|T3|=r3,0≤r3≤n−d

∑

A′⊂A
|A′|=r2+d−m′

0≤|A′|≤m

∑

B′⊂B
|B′|=r3+d−n′

0≤|B′|≤n

R(A, (B\B′) ∪ T3)R((A\A′) ∪ T2, B)R(x, (A′ ∪B′) ∪ T1)

R((A′ ∪B′) ∪ T1, (A\A′) ∪ T2)R((A′ ∪B′) ∪ T1, (B\B′) ∪ T3)R((A\A′) ∪ T2, (B\B′) ∪ T3)

=
∑

T1⊔T2⊔T3=T
|T1|=r1,0≤r1≤d

|T2|=r2,max{0,m′−d}≤r2≤m−d

|T3|=r3,max{0,n′−d}≤r3≤n−d

∑

A′⊂A
|A′|=r2−(m′−d)

∑

B′⊂B
|B′|=r3−(n′−d)

R(A, (B\B′) ∪ T3)R((A\A′) ∪ T2, B)R(x, (A′ ∪B′) ∪ T1)

R((A′ ∪B′) ∪ T1, (A\A′) ∪ T2)R((A′ ∪B′) ∪ T1, (B\B′) ∪ T3)R((A\A′) ∪ T2, (B\B′) ∪ T3)

Here, for each choice of T1, T2, T3 and A′, B′, the numerator equals

R(A,B\B′)R(A,T3)R(A\A′, B)R(T2, B)R(x,A′)R(x,B′)R(x, T1),

while the denominator can be rewritten as

R(A′ ∪B′, A\A′)R(A′ ∪B′, T2)R(T1, A\A′)R(T1, T2)·

· R(A′ ∪B′, B\B′)R(A′ ∪B′, T3)R(T1, B\B′)R(T1, T3)·

· R(A\A′, B\B′)R(A\A′, T3)R(T2, B\B′)R(T2, T3).

Therefore, the part of the quotient which is free of Tℓ’s equals, as in Theo-
rem 3.1,

= (−1)σ1

∑

A′⊂A
|A′|=r2−(m′−d)

∑

B′⊂B
|B′|=r3−(n′−d)

R(A\A,B\B′)R(A\A′, B\B′)R(x,A′)R(x,B′)

R(A′, A\A′)R(B′, B\B′)

with σ1 := |B′| |A\A′|.
We deal now with the part of the quotient that involves some Tℓ. Multiplying
and dividing by R(T1, A

′ ∪ B′)R(T2, A\A′)R(T3, B\B′), we get that this
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quotient equals

(−1)σ2
R(T3, A ∪ (B\B′))R(T2, (A\A′) ∪B)R(T1, A

′ ∪B′ ∪ x)

R(T,A ∪B)R(T1, T2)R(T1, T3)R(T2, T3)
,

where σ2 := |T3| |A\A′|+ (|T2|+ |T3|)|A
′ ∪B′|+ |T3| |A| + |T1|.

Next we multiply and divide by the product of Vandermonde determinants
det(V (T1)) det(V (T2)) det(V (T3)), where we consider in each Tℓ the elements
ti with the indices i in increasing order, and get

R(T3, A ∪ (B\B′))R(T2, (A\A′) ∪B)R(T1, A
′ ∪B′ ∪ x) det(V (T1)) det(V (T2)) det(V (T3))

R(T,A ∪B)R(T1, T2)R(T1, T3)R(T2, T3) det(V (T1)) det(V (T2)) det(V (T3))
=

= sg(T1, T2, T3)·

·
R(T3, A ∪ (B\B′))R(T2, (A\A′) ∪B)R(T1, A

′ ∪B′ ∪ x) det(V (T1)) det(V (T2)) det(V (T3))

R(T,A ∪B) det(V (T ))
,

where sg(T1, T2, T3) := (−1)σ where σ is the parity of the number of trans-
positions needed to bring the ordered set T1 ⊔ T2 ⊔ T3 to {t1, . . . , tr}.

Since the denominator is independent of the choices of Tℓ, going back to
the first expression, we have

R(T,A ∪B) det(V (T ))
∑

A1⊔A2=A
|A1|=d, |A2|=m−d

R(A2, B)R(x,A1)

R(A1, A2)
=

=
∑

T1⊔T2⊔T3=T
|T1|=r1,0≤r1≤d

|T2|=r2,max{0,m′−d}≤r2≤m−d

|T3|=r3,max{0,n′−d}≤r3≤n−d

(−1)σ
′

sg(T1, T2, T3) ·

·
∑

A′⊂A
|A′|=r2−(m′−d))

∑

B′⊂B
|B′|=r3−(n′−d)

R(A\A,B\B′)R(A\A′, B\B′)R(x,A′)R(x,B′)

R(A′, A\A′)R(B′, B\B′)
·

· R(T3, A ∪ (B\B′))R(T2, (A\A
′) ∪B)R(T1, A

′ ∪B′ ∪ x)·

· det(V (T1)) det(V (T2)) det(V (T3)),

where

σ′ : = σ1 + σ2

= (|B′|+ |T3|)|A\A
′|+ (|T2|+ |T3|)|A

′ ∪B′|+ |T3| |A|+ |T1|

≡ (n′ − d)(m− d) + r1 + r2(m
′ − d+ 1) + r3(n

′ −m+ 1) (mod 2)

≡ m′(m− d) + r1(m− d− 1) + r2(m− 1) + r3(m
′ + n′ − d− 1) (mod 2).

(The last row is written in a way that it coincides with the exponent in
Theorem 3.1, when r < 0 is interpreted as r1 = r2 = r3 = 0.)

To recover the sum we are looking for, we take a specific coefficient in
(t1, . . . , tr) in both sides. Note that the leading coefficient of R(T,A ∪
B) det(V (T )) w.r.t. the lexicographic term order t1 > · · · > tr equals

coeff
tm+n−d−1

1
tm+n−d−2

2
···tm+n−d−r

r

(
R(T,A ∪B) det(V (T ))

)
= 1.

We now look for this coefficient on the right hand side of the expression
above. We do it by keeping track of the variables ti that belong to each
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Tℓ. We go first after the variables in T2, and then in T3, since they behave
similarly. Observe that

R(T2, (A\A′) ∪B) det(V (T2)) =
det(V (T2 ∪ (A\A′) ∪B))

det(V ((A\A′) ∪B))
,

and

R(T3, A ∪ (B\B′)) det(V (T3)) =
det(V (T3 ∪A ∪ (B\B′)))

det(V (A ∪ (B\B′)))
,

where the matrices in the numerator of the right-hand sides are both of size
(m+n− d)× (m+n− d). The coefficient of the monomial

∏
ti∈T2

tm+n−d−i
i

corresponds to the submatrix of Vm+n−d((A\A′)∪B) where the rows indexed
by R2 := {i : ti ∈ T2} have been erased. Then

coeff∏
ti∈T2

t
m+n−d−i

i

(
det(V (T2 ∪ (A\A′) ∪B))

det(V ((A\A′) ∪B))

)
= sgm+n−d(R2)S

(R2)
m+n−d((A\A′) ∪B)

= sgm′+n′−d(R2)S
(R2)
m+n−d((A\A′) ∪B)

since R2 ⊂ {1, . . . ,m′ + n′ − d}. Analogously

coeff∏
ti∈T3

t
m+n−d−i

i

(
det(V (T3 ∪A ∪ (B\B′)))

det(V (A ∪ (B\B′)))

)
= sgm′+n′−d(R3)S

(R3)
m+n−d(A∪(B\B′)),

where R3 := {i : ti ∈ T3}.
Now we deal with variables in T1. Note that

R(T1, A
′ ∪B′ ∪ x) det(V (T1)) =

det(V (T1 ∪A′ ∪B′ ∪ x))

det(V (A′ ∪B′ ∪ x))
.

Here the matrix in the numerator is a Vandermonde matrix of size (d+1)×
(d+1) and the maximal exponent of ti for ti ∈ T1 that can appear equals tdi .
Set R1 := {i : ti ∈ T1}. Therefore, for all i ∈ R1 one needs m+ n− d− i ⊂
{0, 1, . . . , d}, i.e. m+n− 2d ≤ i ≤ m+n− d. Since i ≤ r = m′ +n′ − d, we
need m+ n− 2d ≤ m′ + n′ − d and R1 ⊂ {m+ n− 2d, . . . ,m′ + n′ − d}.
In particular, when m+ n− 2d > m′ + n′ − d, i.e. when d < m+ n there is
no choice of R1. In that case, we conclude

∑

A1⊔A2=A
|A1|=d,

|A2|=m−d

R(A2, B)R(x,A1)

R(A1, A2)
= (−1)m

′(m−d)
∑

R2⊔R3={1,...,m′+n′−d}
|R2|=r2,max{0,m′−d}≤r2≤m−d

|R3|=r3,max{0,n′−d}≤r3≤n−d

(−1)σ sg(R2, R3)·

·
∑

A′⊂A
|A′|=r2−(m′−d)

∑

B′⊂B
|B′|=r3−(n′−d)

R(A\A,B\B′)R(A\A′, B\B′)R(x,A′)R(x,B′)

R(A′, A\A′)R(B′, B\B′)
·

· S
(R2)
m+n−d((A\A′) ∪B)S

(R3)
m+n−d(A ∪ (B\B′)),

where

σ := r2(m− 1) + r3(m
′ + n′ − d− 1) + r2r3,

since it is easy to check that sgm′+n′−d(R2)sgm′+n′−d(R3) = (−1)r2r3 as R2

and R3 are complementary sets in {1, . . . ,m′ + n′ − d} (or see Lemma A.4
below).
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Now, when d ≥ m+n andR1 = {i : ti ∈ T1} ⊂ {m+n−2d, . . . ,m′+n′−d}
we have

coeff∏
ti∈T1

tm+n−d−i

i

(
det(V (T1 ∪A′ ∪B′ ∪ x))

det(V (A′ ∪B′ ∪ x))

)
= sgd+1(R̃1)S

(R̃1)
d+1 (A

′∪B′∪x),

where R̃1 := {i− (m+n− 2d− 1) : i ∈ R1} ⊂ {1, . . . , d+1− (m+n)}. We
prove in Lemma A.4 below that

sgd+1(R̃1)sgm′+n′−d(R2)sgm′+n′−d(R3) = (−1)r1(r2+r3+m+n−1)+r2r3 .

Therefore we get

∑

A1⊔A2=A
|A1|=d,

|A2|=m−d

R(A2, B)R(x,A1)

R(A1, A2)
= (−1)m

′(m−d) ·

·
∑

R1⊔R2⊔R3={1,...,m′+n′−d}
R1⊂{m+n−2d,...,m′+n′−d},
|R1|=r1,0≤r1≤d−(m+n)+1

|R2|=r2,max{0,m′−d}≤r2≤m−d

|R3|=r3,max{0,n′−d}≤r3≤n−d

(−1)σ sg(R1, R2, R3)

·
∑

A′⊂A
|A′|=r2−(m′−d)

∑

B′⊂B
|B′|=r3−(n′−d)

R(A\A,B\B′)R(A\A′, B\B′)R(x,A′)R(x,B′)

R(A′, A\A′)R(B′, B\B′)
·

· S
(R̃1)
d+1 (A

′ ∪B′ ∪ x)S
(R2)
m+n−d((A\A′) ∪B)S

(R3)
m+n−d(A ∪ (B\B′)),

where

σ := r1(n− d+ r2 + r3) + r2(m− 1) + r3(m
′ + n′ − d− 1) + r2r3.

Lemma A.4. Let R1⊔R2⊔R3 be a partition of {1, . . . , r} with |Ri| = ri for

1 ≤ i ≤ 3, and 0 ≤ s ≤ r be such that R̃1 = {i−s : i ∈ R1} ⊂ {1, . . . , r−s}.
Then

sgr−s(R̃1) sgr(R2) sgr(R3) = (−1)r1(r2+r3+s)+r2r3 .

Proof. We set R1 = {i1, . . . , ir1}, R2 = {j1, . . . , jr2} and R3 = {k1, . . . , kr3}.
Then

sgr−s(R̃1) sgr(R2) sgr(R3) =
∑

1≤ℓ≤r1

(iℓ − s− ℓ) +
∑

1≤ℓ≤r2

(jℓ − ℓ) +
∑

1≤ℓ≤r3

(kℓ − ℓ)

=
r(r + 1)

2
− r1s−

r1(r1 + 1)

2
−

r2(r2 + 1)

2
−

r3(r3 + 1)

2

=
r2 − r21 − r22 − r23

2
− r1s

=
r2 − (r1 + r2 + r3)

2 + 2r1r2 + 2r1r3 + 2r2r3
2

− r1s

≡ r1r2 + r1r3 + r2r3 + r1s (mod 2).

�
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A.3. Proof of Theorem 4.2. First note that the statement of Theorem 4.2
implies the expressions in Theorem 1.7 for the case when m′ + n′ ≤ d since
in this case r1 = r2 = r3 = 0. Here we prove the statement for Gd(f, g), the
statement for Fd(f, g) in follows from the identity

Fd(f, g) = (−1)(m−d)(n−d)Gd(g, f).

By Lemma 4.1 and Theorem 1.5 we have

(10) Gd(f, g)(x) = (−1)(d+1)(m−d−1)coeffyd+1

(
SylMd+1(A,B ∪ {x})(y)

)
.

Now we use Definition 1.4 for A and B ∪ {x} and choose A ⊂ A and B ⊂
B ⊂ B ∪ {x} as subsets of the sets of distinct roots in f and g̃ respectively,
and get that

SylMd+1(A,B ∪ {x})(y) = (−1)m
′(m−d)·

·
∑

R1⊔R2⊔R3={1,...,m′+n′−d}
R1⊂{m+n−2d−1,...,m′+n′−d},

|R1|=r1,r1≤d+2−(m+n)
|R2|=r2, m

′−d−1≤r2≤m−d−1
|R3|=r3, n

′−d≤r3≤n−d

(−1)σR
R(A\A,B ∪ {x}\B′)R(A\A′, B ∪ {x}\B′)R(y,A′)R(y,B′)

R(A′, A\A′)R(B′, B\B′)
·

· S
(R̃1)
d+2 (A

′ ∪B′ ∪ {y})S
(R2)
m+n−d((A\A′) ∪B ∪ {x})S

(R3)
m+n−d(A ∪ (B\B′)).

We have to consider S
(R̃1)
d+2 (A

′∪B′∪{y}) for R1 ⊂ {m+n−2d−1, . . . ,m′+

n′−d} and R̃1 = {i−(m+n−2d−2) : i ∈ R1}. Since degy
(
R(y,A′∪B′)) =

|A′|+ |B′|, we first observe that

degy
(
S
(R̃1)
d+2 (A

′ ∪B′ ∪ {y})
)
≤ d+ 1− |A′| − |B′|

and moreover, if 1 ∈ R̃1, i.e, if m+ n− 2d− 1 ∈ R1, then

coeffyd+1−|A′|−|B′|

(
S
(R̃1)
d+2 (A

′ ∪B′ ∪ {y})
)
= 0,

while if 1 /∈ R̃1, i.e, if m+ n− 2d− 1 /∈ R1, then

coeffyd+1−|A′|−|B′|

(
S
(R̃1)
d+2 (A

′ ∪B′ ∪ {y})
)
= (−1)|A

′|+|B′|S
(R̃1)
d+1 (A

′ ∪B′).

Therefore the only subsets R1 that produce non-zero terms satisfy R1 ⊂
{m+ n− 2d, . . . ,m′ + n′ − d} and for these R1,

coeffyd+1

(
R(y,A′ ∪B′)S

(R̃1)
d+2 (A

′ ∪B′ ∪ {y})
)
= (−1)|A

′|+|B′|S
(R̃1)
d+1 (A

′ ∪B′).
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Hence,

coeffyd+1

(
SylMd+1(A,B ∪ {x})(y)

)
= (−1)m

′(m−d−1) ·

·
∑

R1⊔R2⊔R3={1,...,m′+n′−d}
R1⊂{m+n−2d,...,m′+n′−d},
|R1|=r1,r1≤d+2−(m+n)

|R2|=r2,m
′−d−1≤r2≤m−d−1

|R3|=r3, n
′−d≤r3≤n−d

(−1)σR ·

·
∑

A′⊂A
|A′|=r2−(m′−d−1)

∑

B′⊂B
|B′|=r3−(n′−d)

R(A\A,B\B′)R(A\A′, B\B′)R(A\A′, x)

R(A′, A\A′)R(B′, B\B′)
·

· S
(R̃1)
d+1 (A

′ ∪B′)S
(R2)
m+n−d((A\A′) ∪B ∪ {x})S

(R3)
m+n−d(A ∪ (B\B′)),

where for the partition R1 ⊔ R2 ⊔ R3 = {1, . . . ,m′ + n′ − d} and R =
(R1, R2, R3)

(−1)σR = (−1)r1(n−d+r2+r3)+r2(m−1)+r3(m′+n′−d−1)+r2r3sg(R).

We conclude the proof by applying again Identity (10) and by permuting x
and A\A′ in R(A\A′, x):

Gd(f, g)(x) = (−1)(d−m′)(m−d−1)
∑

R1⊔R2⊔R3={1,...,m′+n′−d}
R1⊂{m+n−2d,...,m′+n′−d},
|R1|=r1,r1≤d+2−(m+n)

|R2|=r2,m
′−d−1≤r2≤m−d−1

|R3|=r3, n
′−d≤r3≤n−d

(−1)σ̃R ·

·
∑

A′⊂A
|A′|=r2−(m′−d−1)

∑

B′⊂B
|B′|=r3−(n′−d)

R(A\A,B\B′)R(A\A′, B\B′)R(x,A\A′)

R(A′, A\A′)R(B′, B\B′)
·

· S
(R̃1)
d+1 (A

′ ∪B′)S
(R2)
m+n−d((A\A′) ∪B ∪ {x})S

(R3)
m+n−d(A ∪ (B\B′)),

where (−1)σ̃R := (−1)r1(n−d+r2+r3)+r2m+r3(m′+n′−d−1)+r2r3sg(R).
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