HOCHSCHILD COHOMOLOGY OF FROBENIUS ALGEBRAS

JORGE A. GUCCIONE AND JUAN J. GUCCIONE

ABSTRACT. Let k be a field, A a finite dimensional Frobenius k-algebra and $\rho\colon A\to A$, the Nakayama automorphism of A with respect to a Frobenius homomorphism $\varphi\colon A\to k$. Assume that ρ has finite order m and that k has a primitive m-th root of unity w. Consider the decomposition $A=A_0\oplus\cdots\oplus A_{m-1}$ of A, obtained defining $A_i=\{a\in A: \rho(a)=w^ia\}$, and the decomposition $\operatorname{HH}^*(A)=\bigoplus_{i=0}^{m-1}\operatorname{HH}^*_i(A)$ of the Hochschild cohomology of A, obtained from the decomposition of A. In this paper we prove that $\operatorname{HH}^*(A)=\operatorname{HH}^*_0(A)$ and that if decomposition of A is strongly $\mathbb{Z}/m\mathbb{Z}$ -graded, then $\mathbb{Z}/m\mathbb{Z}$ acts on $\operatorname{HH}^*(A_0)$ and $\operatorname{HH}^*(A)=\operatorname{HH}^*_0(A)=\operatorname{HH}^*(A_0)^{\mathbb{Z}/m\mathbb{Z}}$.

1. Introduction

Let k be a field, A a finite dimensional k-algebra and $DA = \operatorname{Hom}_k(A,k)$ endowed with the usual A-bimodule structure. Recall that A is said to be a Frobenius algebra if there exists a linear form $\varphi \colon A \to k$, such that the map $A \to DA$, defined by $x \mapsto x\varphi$ is a left A-module isomorphism. This linear form $\varphi \colon A \to k$ is called a Frobenius homomorphism. It is well known that this is equivalent to say that the map $x \mapsto \varphi x$, from A to DA, is an isomorphism of right A-modules. From this it follows easily that there exists an automorphism ρ of A, called the Nakayama automorphism of A with respect to φ , such that $x\varphi = \varphi \rho(x)$, for all $x \in A$. It is easy to check that a linear form $\widetilde{\varphi} \colon A \to k$ is another Frobenius homomorphism if and only if there exists $x \in A$ invertible, such that $\widetilde{\varphi} = x\varphi$. It is also easy to check that the Nakayama automorphism of A with respect to $\widetilde{\varphi}$ is the map given by $a \mapsto \rho(x)^{-1} \rho(a) \rho(x)$.

Let A be a Frobenius k-algebra, $\varphi \colon A \to k$ a Frobenius homomorphism and $\rho \colon A \to A$ the Nakayama automorphism of A with respect to φ .

Definition 1.1. We say that ρ has order $m \in \mathbb{N}$ and we write $\operatorname{ord}_{\rho} = m$ if $\rho^m = id_A$ and $\rho^r \neq id_A$, for all r < m.

Assume that ρ has finite order and that k has a primitive $\operatorname{ord}_{\rho}$ -th root of unity w. Since the polynomial $X^{\operatorname{ord}_{\rho}} - 1$ has distinct roots w^i $(0 \le i < \operatorname{ord}_{\rho})$, the algebra A becomes a $\frac{\mathbb{Z}}{\operatorname{ord}_{\rho}\mathbb{Z}}$ -graded algebra

$$A = A_0 \oplus \cdots \oplus A_{\mathsf{ord}_{\rho} - 1}$$
, where $A_i = \{a \in A : \rho(a) = w^i a\}$.

Let $(\mathsf{Hom}_k(A^{\otimes *}, A), b^*)$ be the cochain Hochschild complex of A with coefficients in A. For each $0 \le i < \mathsf{ord}_{\rho}$, we let $(\mathsf{Hom}_k(A^{\otimes *}, A)_i, b^*)$ denote the subcomplex of

 $^{2000\ \}textit{Mathematics Subject Classification}.\ \textit{Primary 16C40}; \ \textit{Secondary 16D20}.$

Supported by UBACYT X193 and CONICET.

Supported by UBACYT X193 and CONICET.

 $(\mathsf{Hom}_k(A^{\otimes *}, A), b^*)$, defined by

$$\operatorname{Hom}_k(A^{\otimes n},A)_i = \bigoplus_{\widetilde{B}_{i,n}} \operatorname{Hom}_k(A_{u_1} \otimes \cdots \otimes A_{u_n},A_v),$$

where $\widetilde{B}_{i,n} = \{(u_1, \dots, u_n, v) \text{ such that } v - u_1 - \dots - u_n \equiv i \pmod{\text{ord}_{\rho}} \}$. The cochain Hochschild complex $(\text{Hom}_k(A^{\otimes^*}, A), b^*)$ decomposes as the direct sum

$$(\operatorname{Hom}_k(A^{\otimes^*},A),b^*) = \bigoplus_{i=0}^{\operatorname{ord}_\rho - 1} (\operatorname{Hom}_k(A^{\otimes^*},A)_i,b^*).$$

Thus, the Hochschild cohomology $\mathsf{HH}^n(A)$, of A with coefficients in A, decomposes as the direct sum

$$\mathsf{HH}^n(A) = \bigoplus_{i=0}^{\mathsf{ord}_\rho - 1} \mathsf{HH}^n_i(A),$$

where $\mathsf{HH}_i^n(A) = H^n(\mathsf{Hom}_k(A^{\otimes^*}, A)_i, b^*)$.

The aim of this paper is to prove the following results:

Theorem 1.2. Let A be a Frobenius k-algebra, $\varphi \colon A \to k$ a Frobenius homomorphism and $\rho \colon A \to A$ the Nakayama automorphism of A with respect to φ . If ρ has finite order and k has a primitive $\operatorname{ord}_{\varrho}$ -th root of unity w, then

$$\mathsf{HH}^n(A) = \mathsf{HH}^n_0(A), \quad \textit{for all } n \ge 0.$$

Recall that $A = A_0 \oplus \cdots \oplus A_{\mathsf{ord}_{\rho}-1}$ is said to be strongly $\mathbb{Z} / \mathsf{ord}_{\rho} \mathbb{Z}$ -graded if $A_i A_j = A_{i+j}$, for all $i, j \in \{0, \ldots, \mathsf{ord}_{\rho} - 1\}$, where i + j denotes the sum of i and j in $\mathbb{Z} / \mathsf{ord}_{\rho} \mathbb{Z}$.

Theorem 1.3. Let A be a Frobenius k-algebra, $\varphi \colon A \to k$ a Frobenius homomorphism and $\rho \colon A \to A$ the Nakayama automorphism of A with respect to φ . If ρ has finite order, k has a primitive $\operatorname{ord}_{\rho}$ -th root of unity w and $A = A_0 \oplus \cdots \oplus A_{\operatorname{ord}_{\rho} - 1}$ is strongly $\mathbb{Z} / \operatorname{ord}_{\rho} \mathbb{Z}$ -graded, then

$$\mathsf{HH}^n(A) = \mathsf{HH}^n(A_0)^{\mathbb{Z}/\operatorname{ord}_{\rho}\mathbb{Z}}, \quad \textit{for all } n \geq 0.$$

Corollary 1.4. Assume that the hypothesis of Theorem 1.3 are verified. If the Hochschild cohomology $HH^2(A_0) = 0$, then A is rigid.

Remark 1.5. As it is well known, every finite dimensional Hopf algebra H is Frobenius, being a Frobenius homomorphism any right integral $\varphi \in H^* \setminus \{0\}$. Moreover, by Proposition 3.6 of [S], the composition inverse of the Nakayama map ρ with respect to φ , is given by

$$\rho^{-1}(h) = \alpha(h_{(1)})\overline{S}^{2}(h_{(2)}),$$

where $\alpha \in H^*$ is the modular element of H^* and \overline{S} is the composition inverse of S (note that the automorphism of Nakayama considered in [S] is the composition inverse of the one considered by us). Using this formula and that $\alpha \circ S^2 = \alpha$, it is easy to check that $\rho(h) = \alpha(S(h_{(1)}))S^2(h_{(2)})$, and more generality, that

$$\rho^l(h) = \alpha^{*l}(S(h_{(1)}))S^{2l}(h_{(2)}),$$

where α^{*l} denotes the *l*-fold convolution product of α . Since α has finite order respect to the convolution product and, by the Radford formula for S^4 (see Theorem 3.8 of [S]), the antipode S has finite order respect to the composition, we have that ρ has finite order. So, the above theorems apply to finite dimensional Hopf algebras.

We think that the decomposition of H associated with ρ can be useful to study the structure of finite dimensional Hopf algebras. In this paper we exploit it in a cohomological level. Recently has been considered another decomposition of H, similar to this one, but distinct. Namely the one associated to S^2 (see [R-S]).

Example 1.6. Let k a field and N a natural number. Assume that k has a primitive N-th root of unity w. Let H be the Taft algebra of order N. That is, H is the algebra generated over k by two elements g and x subject to the relations $g^N = 1$, $x^N = 0$ and xg = wgx. The Taft algebra H is a Hopf algebra with comultiplication Δ , counity ϵ and antipode S given by

$$\Delta(g) = g \otimes g, \qquad \Delta(x) = 1 \otimes x + x \otimes g,$$

$$\epsilon(g) = 1, \qquad \epsilon(x) = 0,$$

$$S(g) = g^{-1}, \qquad S(x) = -xg^{-1}.$$

Using that $t = \sum_{j=0}^{N-1} w^{-j} g^j x^{N-1}$ is a right integral of H, it is easy to see that the modular element $\alpha \in H^*$ verifies $\alpha(g) = w^{-1}$ and $\alpha(x) = 0$. By the remark above, the Nakayama map $\rho \colon H \to H$ is given by $\rho(g) = wg$ and $\rho(x) = w^{-1}x$. Hence, $H = H_0 \oplus \cdots \oplus H_{N-1}$, where

$$H_i = \{ a \in H : \rho(a) = w^{-i}a \}$$

= $\langle x^i, x^{i+1}g, \dots, x^{N-1}g^{N-i-1}, g^{N-i}, xg^{N-i+1}, \dots, x^{i-1}g^{N-1} \rangle.$

Let $C_N = \{1, t, \dots, t^{N-1}\}$ be the cyclic group of order N. It is easy to see that C_N acts on H_0 via $t \cdot x^i g^i = w^i x^i g^i$ and that H is isomorphic to the skew product of $H_0 \# C_N$. By Theorem 1.3,

$$\mathsf{HH}^n(H) = \mathsf{HH}^n(H_0)^{C_N}$$
 for all $n \ge 0$,

where the action of C_N on $\mathsf{HH}^n(H_0)$ is induced by the one of C_N on $\mathsf{Hom}_k(H_0^{\otimes n}, H_0)$, given by

$$t \cdot \varphi(x^{i_1}g^{i_1} \otimes \cdots \otimes x^{i_n}g^{i_n}) = g^{N-1}\varphi(t \cdot x^{i_1}g^{i_1} \otimes \cdots \otimes t \cdot x^{i_q}g^{i_q})g.$$

2. Proof of Theorems 1.2 and 1.3

Let k be a field, A a k-algebra and V a k-module. To begin, we fix some notations:

- (1) As in the introduction, we let DA denote $\mathsf{Hom}_k(A,k)$, endowed with the usual A-bimodule structure.
- (2) We let $V^{\otimes n}$ denote the *n*-fold tensor product $V \otimes \cdots \otimes V$.
- (3) Given $x \in A \cup DA$, we write

$$\pi_A(x) = \begin{cases} x & \text{if } x \in A, \\ 0 & \text{if } x \in DA, \end{cases} \quad \text{and} \quad \pi_{DA}(x) = \begin{cases} x & \text{if } x \in DA, \\ 0 & \text{if } x \in A, \end{cases}$$

- (4) For $n \geq 1$, we let $B^n \subseteq (A \oplus DA)^{\otimes n}$ denote the vector subspace spanned by n-tensors $x_1 \otimes \cdots \otimes x_n$ such that exactly 1 of the x_i 's belong to DA, while the other x_i 's belong to A.
- (5) Given i < j and $x_i, x_{i+1}, \dots, x_j \in A \cup DA$, we write $\mathbf{x}_{i,j} = x_i \otimes \dots \otimes x_j$.
- (6) For each map $f: X \to Y$ and each element $x \in X$, we let $\langle f, x \rangle$ denote the evaluation of f in x.
- 2.1. The complex $X^{*,*}(A)$. For each k-algebra A, we consider the double complex

$$\begin{array}{c} \vdots \\ b^{0,4} \\ b^{0,4} \\ \end{array} \begin{array}{c} \vdots \\ b^{1,4} \\ \end{array} \\ \operatorname{Hom}_k(A^{\otimes 3},A) \xrightarrow{\delta^{1,3}} \operatorname{Hom}_k(B^4,DA) \\ & & & \downarrow b^{0,3} \\ \end{array} \begin{array}{c} b^{0,3} \\ b^{1,3} \\ \end{array} \\ \operatorname{Hom}_k(A^{\otimes 2},A) \xrightarrow{\delta^{1,2}} \operatorname{Hom}_k(B^3,DA) \\ & & & \downarrow b^{0,2} \\ & & & \downarrow b^{1,2} \\ \operatorname{Hom}_k(A,A) \xrightarrow{\delta^{1,1}} \operatorname{Hom}_k(B^2,DA) \\ & & & \downarrow b^{0,1} \\ & & & \downarrow b^{0,1} \\ & & & \downarrow b^{1,1} \\ \operatorname{Hom}_k(k,A) \xrightarrow{\delta^{1,0}} \operatorname{Hom}_k(B^1,DA), \end{array}$$

where

$$\langle \langle b^{0,n+1},f\rangle,\mathbf{x}_{1,n+1}\rangle = x_1 \langle f,\mathbf{x}_{2,n+1}\rangle + \sum_{i=1}^n (-1)^i \langle f,\mathbf{x}_{1,i-1}\otimes x_i x_{i+1}\otimes \mathbf{x}_{i+1,n+1}\rangle \\ + (-1)^{n+1} \langle f,\mathbf{x}_{1,n}\rangle x_{n+1},$$

$$\langle \langle b^{1,n},g\rangle,\mathbf{y}_{1,n+1}\rangle = \langle \pi_A,y_1\rangle \langle g,\mathbf{y}_{2,n+1}\rangle + \sum_{i=1}^n (-1)^i \langle g,\mathbf{y}_{1,i-1}\otimes y_i y_{i+1}\otimes \mathbf{y}_{i+1,n+1}\rangle \\ + (-1)^{n+1} \langle g,\mathbf{y}_{1,n}\rangle \langle \pi_A,y_{n+1}\rangle,$$

$$\langle \langle \delta^{1,n},f\rangle,\mathbf{y}_{1,n+1}\rangle = \langle \pi_{DA},y_1\rangle \langle f,\mathbf{y}_{2,n+1}\rangle + (-1)^{n+1} \langle f,\mathbf{y}_{1,n}\rangle \langle \pi_{DA},y_{n+1}\rangle,$$
for $f\in \operatorname{Hom}_k(A^{\otimes n},A), g\in \operatorname{Hom}_k(B^n,DA), \mathbf{x}_{1,n+1} = x_1\otimes \cdots \otimes x_{n+1}\in A^{\otimes n+1} \text{ and } \mathbf{y}_{1,n+1} = y_1\otimes \cdots \otimes y_{n+1}\in B^n.$

Proposition 2.1. Let $X^*(A)$ be the total complex of $X^{*,*}(A)$. It is true that

$$H^{n}(X^{*}(A)) = \begin{cases} H^{0}(X^{0,*}(A)) & \text{if } n = 0, \\ H^{n}(X^{0,*}(A)) \oplus H^{n-1}(X^{0,*}(A)) & \text{if } n \ge 1. \end{cases}$$

Proof. Let

$$\delta^{1,*} \colon (\mathsf{Hom}_k(A^{\otimes *},A), -b^{0,*+1}) \to (\mathsf{Hom}_k(B^{*+1},DA), b^{1,*+1})$$

be the map defined by

$$\langle \langle \delta^{1,n}, f \rangle, \mathbf{x}_{1,n+1} \rangle = \langle \pi_{DA}, x_1 \rangle \langle f, \mathbf{x}_{2,n+1} \rangle + (-1)^{n+1} \langle f, \mathbf{x}_{1,n} \rangle \langle \pi_{DA}, x_{n+1} \rangle.$$

Since $X^*(A)$ is the mapping cone of $\delta^{1,*}$, in order to obtain the result it suffices to check that $\delta^{1,*}$ is null homotopic. Let σ_* : $\mathsf{Hom}_k(A^{\otimes *},A) \to \mathsf{Hom}_k(B^*,DA)$ be the family of maps defined by

$$\langle \langle \langle \sigma_n, f \rangle, \mathbf{x}_{1,n} \rangle, a \rangle = (-1)^{jn+1} \langle x_j, \langle f, \mathbf{x}_{j+1,n} \otimes a \otimes \mathbf{x}_{1,j-1} \rangle \rangle$$
 if $x_j \in DA$.

We assert that σ_* is an homotopy from $\delta^{1,*}$ to 0. By definition,

$$\langle \langle b^{1,n}, \langle \sigma_n, f \rangle \rangle, \mathbf{x}_{1,n+1} \rangle = \langle \pi_A, x_1 \rangle \langle \langle \sigma_n, f \rangle, \mathbf{x}_{2,n+1} \rangle$$

$$+ \sum_{i=1}^n (-1)^i \langle \langle \sigma_n, f \rangle, \mathbf{x}_{1,i-1} \otimes x_i x_{i+1} \otimes \mathbf{x}_{i+2,n+1} \rangle$$

$$+ (-1)^{n+1} \langle \langle \sigma_n, f \rangle, \mathbf{x}_{1,n} \rangle \langle \pi_A, x_{n+1} \rangle.$$

Hence, if $x_1 \in DA$, then

$$\langle \langle \langle b^{1,n}, \langle \sigma_n, f \rangle \rangle, \mathbf{x}_{1,n+1} \rangle, x_{n+2} \rangle = (-1)^{n+2} \langle x_1, x_2 \langle f, \mathbf{x}_{3,n+2} \rangle \rangle$$
$$- \sum_{i=2}^{n+1} (-1)^{n+i} \langle x_1, \langle f, \mathbf{x}_{2,i-1} \otimes x_i x_{i+1} \otimes \mathbf{x}_{i+2,n+2} \rangle \rangle;$$

if $x_i \in DA$ for $1 < j \le n$, then

$$\langle \langle \langle b^{1,n}, \langle \sigma_n, f \rangle \rangle, \mathbf{x}_{1,n+1} \rangle, x_0 \rangle = (-1)^{(j-1)n+j} \langle x_j, \langle f, \mathbf{x}_{j+1,n+1} \otimes \mathbf{x}_{0,j-2} \rangle x_{j-1} \rangle$$

$$- \sum_{i=0}^{j-2} (-1)^{(j-1)n+i} \langle x_j, \langle f, \mathbf{x}_{j+1,n+1} \otimes \mathbf{x}_{0,i-1} \otimes x_i x_{i+1} \otimes \mathbf{x}_{i+2,j-1} \rangle \rangle$$

$$- (-1)^{jn+j} \langle x_j, x_{j+1} \langle f, \mathbf{x}_{j+2,n+1} \otimes \mathbf{x}_{0,j-1} \rangle \rangle$$

$$- \sum_{i=j+1}^{n} (-1)^{jn+i} \langle x_j, \langle f, \mathbf{x}_{j+1,i-1} \otimes x_i x_{i+1} \otimes \mathbf{x}_{i+2,n+1} \otimes \mathbf{x}_{0,j-1} \rangle \rangle$$

$$+ (-1)^{jn+n} \langle x_j, \langle f, \mathbf{x}_{j+1,n} \otimes x_{n+1} x_0 \otimes \mathbf{x}_{1,j-1} \rangle \rangle;$$

and if $x_{n+1} \in DA$, then

$$\langle \langle \langle b^{1,n}, \langle \sigma_n, f \rangle \rangle, \mathbf{x}_{1,n+1} \rangle, x_0 \rangle = \sum_{i=0}^{n-1} (-1)^{n+i+1} \langle x_{n+1}, \langle f, \mathbf{x}_{0,i-1} \otimes x_i x_{i+1} \otimes \mathbf{x}_{i+2,n} \rangle \rangle - \langle x_{n+1}, \langle f, \mathbf{x}_{0,n-1} \rangle x_n \rangle.$$

On the other hand, if $x_1 \in DA$, then

$$\langle \langle \langle \sigma_{n+1}, -\langle b^{0,n+1}, f \rangle \rangle, \mathbf{x}_{1,n+1} \rangle, x_{n+2} \rangle = (-1)^{n+1} x_1 (b^{0,n+1}(f)(\mathbf{x}_{2,n+2}))$$

$$= (-1)^{n+1} \langle x_1, x_2 \langle f, \mathbf{x}_{3,n+2} \rangle \rangle + \langle x_1, \langle f, \mathbf{x}_{2,n+1} \rangle x_{n+2} \rangle$$

$$+ \sum_{i=2}^{n+1} (-1)^{n+i} \langle x_1, \langle f, \mathbf{x}_{2,i-1} \otimes x_i x_{i+1} \otimes \mathbf{x}_{i+2,n+2} \rangle \rangle;$$

if $x_j \in DA$ for $1 < j \le n$, then

$$\langle \langle \langle \sigma_{n+1}, -\langle b^{0,n+1}, f \rangle \rangle, \mathbf{x}_{1,n+1} \rangle, x_0 \rangle$$

$$= (-1)^{j(n+1)} \langle x_j, \langle \langle b^{0,n+1}, f \rangle, \mathbf{x}_{j+1,n+1} \otimes \mathbf{x}_{0,j-1} \rangle \rangle$$

$$= (-1)^{j(n+1)} \langle x_j, x_{j+1} \langle f, \mathbf{x}_{j+2,n+1} \otimes \mathbf{x}_{0,j-1} \rangle \rangle$$

$$+ \sum_{i=j+1}^{n} (-1)^{j(n+1)+i-j} \langle x_j, \langle f, \mathbf{x}_{j+1,i-1} \otimes x_i x_{i+1} \otimes \mathbf{x}_{i+2,n+1} \otimes \mathbf{x}_{0,j-1} \rangle \rangle$$

$$+ (-1)^{j(n+1)+n-j+1} \langle x_j, \langle f, \mathbf{x}_{j+1,n} \otimes x_{n+1} x_0 \otimes \mathbf{x}_{1,j-1} \rangle \rangle$$

$$+ \sum_{i=0}^{j-2} (-1)^{j(n+1)+i+n-j} \langle x_j, \langle f, \mathbf{x}_{j+1,n+1} \otimes \mathbf{x}_{0,i-1} \otimes x_i x_{i+1} \otimes \mathbf{x}_{i+2,j-1} \rangle \rangle$$

$$+ (-1)^{j(n+1)+n+1} \langle x_j, \langle f, \mathbf{x}_{j+1,n+1} \otimes \mathbf{x}_{0,j-2} \rangle x_{j-1} \rangle;$$

and if $x_{n+1} \in DA$, then

$$\langle \langle \langle \sigma_{n+1}, -\langle b^{0,n+1}, f \rangle \rangle, \mathbf{x}_{1,n+1} \rangle, x_0 \rangle = (-1)^{n+1} \langle x_{n+1}, \langle \langle b^{0,n+1}, f \rangle, \mathbf{x}_{0,n} \rangle \rangle$$

$$= (-1)^{n+1} \langle x_{n+1}, x_0 \langle f, \mathbf{x}_{1,n} \rangle \rangle + \langle x_{n+1}, \langle f, \mathbf{x}_{0,n-1} \rangle x_n \rangle$$

$$+ \sum_{i=0}^{n-1} (-1)^{n+i} \langle x_{n+1}, \langle f, \mathbf{x}_{0,i-1} \otimes x_i x_{i+1} \otimes \mathbf{x}_{i+2,n} \rangle \rangle.$$

The assertion follows immediately from these equalities.

2.2. The complex $Y^{*,*}(A)$. From now on we fix a Frobenius algebra A, a Frobenius homomorphism $\varphi \colon A \to k$ of A and we let denote ρ the Nakayama automorphism of A with respect to φ . Let A_{ρ} be A, endowed with the A-bimodule structure given by $a \cdot x \cdot b := \rho(a)xb$. Let $\Theta \colon DA \to A_{\rho}$ be the A-bimodule isomorphism given by $\Theta(\varphi x) = x$ and let

$$A_{\rho} \overset{\mu}{\longleftarrow} A \otimes A_{\rho} \overset{b_1'}{\longleftarrow} A^{\otimes 2} \otimes A_{\rho} \overset{b_2'}{\longleftarrow} A^{\otimes 3} \otimes A_{\rho} \overset{b_3'}{\longleftarrow} A^{\otimes 4} \otimes A_{\rho} \overset{b_4'}{\longleftarrow} \cdots,$$

be the bar resolution of A_{ρ} .

Proposition 2.2. The following assertions hold:

(1) The complex

$$DA \stackrel{\mu'}{\longleftarrow} A \otimes B^{1} \otimes A \stackrel{b_{1}''}{\longleftarrow} A \otimes B^{2} \otimes A \stackrel{b_{2}''}{\longleftarrow} A \otimes B^{3} \otimes A \stackrel{b_{3}''}{\longleftarrow} \cdots,$$

$$where \langle \mu', x_{0} \otimes x_{1} \otimes x_{2} \rangle = x_{0}x_{1}x_{2} \text{ and}$$

$$\langle b_{n}'', \mathbf{x}_{0,n+2} \rangle = x_{0}\langle \pi_{A}, x_{1} \rangle \otimes \mathbf{x}_{2,n+2} + \sum_{i=1}^{n} (-1)^{i} \mathbf{x}_{0,i-1} \otimes x_{i}x_{i+1} \otimes \mathbf{x}_{i+2,n+2} + (-1)^{n+1} \mathbf{x}_{0,n} \otimes \langle \pi_{A}, x_{n+1} \rangle x_{n+2},$$

is a projective resolution of DA.

(2) There is a chain map $\Psi'_*: (A^{\otimes *+1} \otimes A_{\rho}, b'_*) \to (A \otimes B^{*+1} \otimes A, b''_*)$, given by $\langle \Psi'_n, \mathbf{x}_{0,n+1} \rangle = \sum_{i=1}^n (-1)^{i+n} \mathbf{x}_{0,i} \otimes \varphi \otimes \langle \rho, x_{i+1} \rangle \otimes \cdots \otimes \langle \rho, x_n \rangle \otimes x_{n+1}.$

(3)
$$\Theta \circ \mu' \circ \Psi'_0 = \mu$$
.

Proof. Items (2) and (3) follow by a direct computation and item (1) is well known. For instance, the family of maps

$$\sigma_0 \colon DA \to A \otimes B^1 \otimes A$$
 and $\sigma_n \colon A \otimes B^n \otimes A \to A \otimes B^{n+1} \otimes A \ (n \ge 1)$, given by

$$\langle \sigma_0, x \rangle = 1 \otimes x \otimes 1,$$

$$\langle \sigma_{n+1}, \mathbf{x}_{0,n+1} \rangle = \begin{cases} 1 \otimes \mathbf{x}_{0,n+1} + (-1)^{n+1} \otimes x_0 x_1 \otimes \mathbf{x}_{2,n+1} \otimes 1 & \text{if } x_1 \in DA, \\ 1 \otimes \mathbf{x}_{0,n+1} & \text{if } x_1 \notin DA, \end{cases}$$

where $\mathbf{x}_{0,n+1} = x_0 \otimes \cdots \otimes x_{n+1} \in A \otimes B^n \otimes A$, is a contracting homotopy of the complex of item (1) as a k-module complex.

Let $Y^{*,*}(A)$ be the double complex

$$\begin{array}{c} \vdots \\ & \stackrel{\vdots}{\widetilde{b}^{0,4}} \\ & \stackrel{\vdots}{\widetilde{b}^{1,4}} \\ & \operatorname{Hom}_k(A^{\otimes 3},A) \xrightarrow{\widetilde{\delta}^{1,3}} \operatorname{Hom}_k(A^{\otimes 3},A) \\ & \stackrel{\downarrow}{\widetilde{b}^{0,3}} \\ & \stackrel{\downarrow}{\widetilde{b}^{0,3}} \\ & \stackrel{\downarrow}{\widetilde{b}^{0,3}} \\ & \operatorname{Hom}_k(A^{\otimes 2},A) \xrightarrow{\widetilde{\delta}^{1,2}} \operatorname{Hom}_k(A^{\otimes 2},A) \\ & \stackrel{\downarrow}{\widetilde{b}^{0,2}} \\ & \stackrel{\downarrow}{\widetilde{b}^{0,2}} \\ & \stackrel{\downarrow}{\widetilde{b}^{0,2}} \\ & \operatorname{Hom}_k(A,A) \xrightarrow{\widetilde{\delta}^{1,1}} \operatorname{Hom}_k(A,A) \\ & \stackrel{\downarrow}{\widetilde{b}^{0,1}} \\ & \stackrel{\downarrow}{\widetilde{b}^{0,1}} \\ & \operatorname{Hom}_k(k,A) \xrightarrow{\widetilde{\delta}^{1,0}} \operatorname{Hom}_k(k,A), \end{array}$$

with boundary maps

$$\langle \langle \widetilde{b}^{u,n}, f \rangle, \mathbf{x}_{1,n} \rangle = x_1 f(\mathbf{x}_{2,n}) + \sum_{i=1}^{n-1} (-1)^i \langle f, \mathbf{x}_{1,i-1} \otimes x_i x_{i+1} \otimes \mathbf{x}_{i+2,n} \rangle$$

$$+ (-1)^n \langle f, \mathbf{x}_{1,n-1} \rangle x_n,$$

$$\langle \langle \widetilde{b}^{1,n-1}, f \rangle, \mathbf{x}_{1,n-1} \rangle = (-1)^n \langle f, \mathbf{x}_{1,n-1} \rangle$$

$$+ (-1)^{n-1} \langle \rho^{-1}, \langle f, \langle \rho, x_1 \rangle \otimes \cdots \otimes \langle \rho, x_{n-1} \rangle \rangle \rangle,$$

where $u = 0, 1, f \in \mathsf{Hom}_k(A^{\otimes n-1}, A)$ and $\mathbf{x}_{1,n} = x_1 \otimes \cdots \otimes x_n \in A^{\otimes n}$.

Proposition 2.3. The double complexes $X^{*,*}(A)$ and $Y^{*,*}(A)$ are quasiisomorphic.

Proof. It is immediate that $X^{1,*}(A) \simeq \operatorname{Hom}_{A^e}((A \otimes B^{*+1} \otimes A, b_*''), DA)$. Moreover, by Proposition 2.2, the map $\Psi^* := \operatorname{Hom}_{A^e}(\Psi_*', DA)$ is a quasiisomorphism from $\operatorname{Hom}_{A^e}((A \otimes B^{*+1} \otimes A, b_*''), DA)$ to $\operatorname{Hom}_{A^e}((A^{\otimes *+1} \otimes A_{\rho}, b_*'), DA)$. On the other hand the family of bijective maps

$$\Upsilon^n: Y^{1,n}(A) \to \mathsf{Hom}_{A^e}(A^{\otimes n+1} \otimes A_\rho, DA) \qquad (n \ge 0),$$

defined by $\langle \langle \Upsilon^n, f \rangle, \mathbf{x}_{0,n+1} \rangle = x_0 \langle f, \mathbf{x}_{1,n} \rangle \varphi x_{n+1}$, is an isomorphism of complexes from $Y^{1,*}(A)$ to $\mathsf{Hom}_{A^e}((A^{\otimes *+1} \otimes A_\rho, b'_*), DA)$. In fact, we have

$$\langle \langle \Upsilon^{n+1}, \langle \widetilde{b}^{1,n+1}, f \rangle \rangle, \mathbf{x}_{0,n+2} \rangle = x_0 \langle \langle \widetilde{b}^{1,n+1}, f \rangle, \mathbf{x}_{1,n+1} \rangle \varphi x_{n+2}$$

$$= x_0 x_1 \langle f, \mathbf{x}_{2,n+1} \rangle \varphi x_{n+2}$$

$$+ \sum_{i=1}^{n} (-1)^i x_0 \langle f, \mathbf{x}_{1,i-1} \otimes x_i x_{i+1} \otimes \mathbf{x}_{i+2,n+1} \rangle \varphi x_{n+2}$$

$$+ (-1)^{n+1} x_0 \langle f, \mathbf{x}_{1,n} \rangle x_{n+1} \varphi x_{n+2}$$

$$= x_0 x_1 \langle f, \mathbf{x}_{2,n+1} \rangle \varphi x_{n+2}$$

$$+ \sum_{i=1}^{n} (-1)^i x_0 \langle f, \mathbf{x}_{1,i-1} \otimes x_i x_{i+1} \otimes \mathbf{x}_{i+2,n+1} \rangle \varphi x_{n+2}$$

$$+ (-1)^{n+1} x_0 \langle f, \mathbf{x}_{1,n} \rangle \varphi \langle \rho, x_{n+1} \rangle x_{n+2}$$

$$= \sum_{i=0}^{n} (-1)^i \langle \langle \Upsilon^n, f \rangle, \mathbf{x}_{0,i-1} \otimes x_i x_{i+1} \otimes \mathbf{x}_{i+2,n+2} \rangle$$

$$+ (-1)^{n+1} \langle \langle \Upsilon^n, f \rangle, \mathbf{x}_{0,n} \otimes \langle \rho, x_{n+1} \rangle x_{n+2}$$

$$= \langle \langle \Upsilon^n, f \rangle, \langle b'_{n+1}, \mathbf{x}_{0,n+2} \rangle \rangle.$$

Hence, to finish the proof it suffices to check that $\Upsilon^* \circ \widetilde{\delta}^{1,*} = \Psi^* \circ \delta^{1,*}$. But,

$$\langle \langle \Psi^{n}, \langle \delta^{1,n}, f \rangle \rangle, \mathbf{x}_{0,n+1} \rangle$$

$$= \sum_{i=0}^{n} (-1)^{i+n} x_{0} \langle \langle \delta^{1,n}, f \rangle, \mathbf{x}_{1,i} \otimes \varphi \otimes \langle \rho, x_{i+1} \rangle \otimes \cdots \otimes \langle \rho, x_{n} \rangle \rangle x_{n+1}$$

$$= (-1)^{n} x_{0} \varphi \langle f, \langle \rho, x_{1} \rangle \otimes \cdots \otimes \langle \rho, x_{n} \rangle \rangle x_{n+1} + (-1)^{n+1} x_{0} \langle f, \mathbf{x}_{1,n} \rangle \varphi x_{n+1}$$

$$= (-1)^{n} x_{0} \langle \rho^{-1}, \langle f, \langle \rho, x_{1} \rangle \otimes \cdots \otimes \langle \rho, x_{n} \rangle \rangle \rangle \varphi x_{n+1} + (-1)^{n+1} x_{0} \langle f, \mathbf{x}_{1,n} \rangle \varphi x_{n+1}$$

$$= x_{0} \langle \langle \widetilde{\delta}^{1,n}, f \rangle, \mathbf{x}_{1,n} \rangle \varphi x_{n+1}$$

$$= \langle \langle \Upsilon^{n}, \langle \widetilde{\delta}^{1,n}, f \rangle \rangle, \mathbf{x}_{0,n+1} \rangle,$$
as desired.

Proposition 2.4. Let $Y^*(A)$ denote the total complex of $Y^{*,*}(A)$. If the Nakayama automorphism ρ has finite order and k has a primitive $\operatorname{ord}_{\rho}$ -th root of unity w, then

$$H^{n}(Y^{*}(A)) = \begin{cases} \mathsf{HH}_{0}^{0}(A) & \text{if } n = 0, \\ \mathsf{HH}_{0}^{n}(A) \oplus \mathsf{HH}_{0}^{n-1}(A) & \text{if } n \ge 1. \end{cases}$$

Proof. For each $0 \le i < \operatorname{ord}_{\rho}$, let $Y_i^{*,*}(A)$ be the subcomplex of $Y^{*,*}(A)$ defined by

$$Y_i^{u,n} = \bigoplus_{B_{i,n}} \mathsf{Hom}(A_{u_1} \otimes \cdots \otimes A_{u_n}, A_v),$$

where $B_{i,n} = \{(u_1, \dots, u_n, v) \text{ such that } v - u_1 - \dots - u_n \equiv i \pmod{\mathsf{ord}_\rho}\}$. It is clear that $Y^{*,*}(A) = \bigoplus_{i=0}^{\mathsf{ord}_\rho} Y_i^{*,*}(A)$. Let $f \in Y_i^{0,n}(A)$. A direct computation shows that

$$\langle \langle \widetilde{\delta}_{1,n}, f \rangle, \mathbf{x}_{1,n} \rangle = (-1)^{n+1} (1 - w^{-i}) \langle f, \mathbf{x}_{1,n} \rangle.$$

Hence the horizontal boundary maps of $Y_i^{*,*}(A)$ are isomorphisms if $i \neq 0$, and they are zero maps if i = 0. So,

$$H^{n}(Y_{i}^{*}(A)) = \begin{cases} 0 & \text{if } i \neq 0, \\ H^{0}(Y_{i}^{0,*}(A)) & \text{if } i = 0 \text{ and } n = 0, \\ H^{n}(Y_{i}^{0,*}(A)) \oplus H^{n-1}(Y_{i}^{1,*}(A)) & \text{if } i = 0 \text{ and } n > 0, \end{cases}$$

where $Y_i^*(A)$ is the total complex of $Y_i^{*,*}(A)$. The result follows easily from this fact, since $Y_0^{0,*}(A) = Y_0^{1,*}(A) \simeq (\mathsf{Hom}_k(A^{\otimes *},A)_0,b^*)$.

Proof of Theorem 1.2. By Proposition 2.3,

$$H^n(Y^*(A)) = H^n(X^*(A))$$
 and $H^n(Y^{u,*}(A)) = H^n(X^{u,*}(A))$, for $u = 0, 1$.

Hence, by Propositions 2.1 and 2.4,

$$\begin{aligned} \mathsf{HH}^0_0(A) &= H^0(Y^*(A)) = H^0(X^*(A)) \\ &= H^0(X^{0,*}(A)) = H^0(Y^{0,*}(A)) = \mathsf{HH}^0(A) \end{aligned}$$

and

$$\begin{split} \mathsf{HH}^n_0(A) \oplus \mathsf{HH}^{n-1}_0(A) &= H^n(Y^*(A)) = H^n(X^*(A)) \\ &= H^n(X^{0,*}(A)) \oplus H^{n-1}(X^{1,*}(A)) \\ &= H^n(Y^{0,*}(A)) \oplus H^{n-1}(Y^{1,*}(A)) \\ &= \mathsf{HH}^n(A) \oplus \mathsf{HH}^{n-1}(A), \end{split}$$

for all $n \ge 1$. From this it follows easily that $\mathsf{HH}^n(A) = \mathsf{HH}^n_0(A)$, for all $n \ge 0$, as desired. \square

Proof of Theorem 1.3. By [St] or the cohomological version of [L], $\mathbb{Z}/\operatorname{ord}_{\rho}\mathbb{Z}$ acts on $\mathsf{H}^*(A_0,A)$ and there is a converging spectral sequence

$$E_2^{pq} = \mathsf{H}^p(\mathbb{Z} / \mathsf{ord}_{\varrho} \mathbb{Z}, \mathsf{H}^q(A_0, A)) \Rightarrow \mathsf{HH}^{p+q}(A).$$

Since k has a primitive $\operatorname{ord}_{\rho}$ -th root of unity, $\operatorname{ord}_{\rho}$ is invertible in k. Hence, the above spectral sequence gives isomorphisms

$$\mathsf{HH}^n(A) = \mathsf{H}^n(A_0, A)^{\mathbb{Z}/\operatorname{ord}_{\rho}\mathbb{Z}} \qquad (n \ge 0).$$

These maps are induced by the canonical inclusion of A_0 in A, and the action of $i \in \mathbb{Z} / \operatorname{ord}_{\rho} \mathbb{Z}$ on $\operatorname{H}^n(A_0, A)$ is induced by the map of complexes

$$\theta_i^* : (\mathsf{Hom}_k(A_0^{\otimes *}, A), b^*) \to (\mathsf{Hom}_k(A_0^{\otimes *}, A), b^*),$$

defined by

$$\theta_i^n(\varphi)(a_1 \otimes \cdots \otimes a_n)$$

$$= \sum_{j_1, \dots, j_{n+1} \in J_i} s'_{i,j_1} \varphi(s_{i,j_1} a_1 s'_{i,j_2} \otimes s_{i,j_2} a_2 s'_{i,j_3} \otimes \cdots \otimes s_{i,j_n} a_n s'_{i,j_{n+1}}) s_{i,j_{n+1}},$$

where $(s_{i,j})_{j\in J_i}$ and $(s'_{i,j})_{j\in J_i}$ are families of elements of A_i and A_{n-i} respectively, that satisfy $\sum_{j\in J_i} s'_{i,j} s_{i,j} = 1$. From this it follows easily that we have isomorphisms

$$\mathsf{HH}^n_i(A) = \mathsf{H}^n(A_0,A_i)^{\mathbb{Z}\,/\,\mathsf{ord}_\rho\,\mathbb{Z}} \qquad (n \geq 0,\, 0 \leq i < \mathsf{ord}_\rho).$$

By combining this result with Theorem 1.2, we obtain the desired result. \Box

References

- [L] M. Lorenz On the homology of graded algebras, Communications in Algebra, vol. 20 (2) (1992) 489–507.
- [R-S] R. Radford and H. J. Schneider On the even powers of the antipode of a finite dimensional Hopf algebra, Preprint.
- [S] H. J. Schneider. Lectures on Hopf algebras, vol. 31 of Trabajos de Matemática. F.A.M.A.F, Córdoba, 1995.
- [St] D. Stefan Hochschild cohomology of Hopf Galois extensions, Journal of Pure and Applied Algebra, vol. 103 (1995) 221–233

Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Pabellón 1 - Ciudad Universitaria, (1428) Buenos Aires, Argentina.

E-mail address: vanderdm.uba.ar

DEPARTAMENTO DE MATEMÁTICA, FACULTAD DE CIENCIAS EXACTAS Y NATURALES, PABELLÓN 1 - CIUDAD UNIVERSITARIA, (1428) BUENOS AIRES, ARGENTINA.

 $E ext{-}mail\ address: jjguccidm.uba.ar}$