HOCHSCHILD COHOMOLOGY OF FROBENIUS ALGEBRAS

JORGE A. GUCCIONE AND JUAN J. GUCCIONE

ABSTRACT. Let k be a field, A a finite dimensional Frobenius k-algebra and
p: A — A, the Nakayama automorphism of A with respect to a Frobenius
homomorphism ¢: A — k. Assume that p has finite order m and that k£ has
a primitive m-th root of unity w. Consider the decomposition A = Ay &
<o @ Am—1 of A, obtaingd defining A; = {a € A : p(a) = w'a}, and the
decomposition HH*(A) = :161 HH (A) of the Hochschild cohomology of A,
obtained from the decomposition of A. In this paper we prove that HH*(A) =
HH{ (A) and that if decomposition of A is strongly Z /m Z-graded, then Z /m7Z
acts on HH*(Ag) and HH*(A) = HH (A) = HH*(4q)%/™Z.

1. INTRODUCTION

Let k be a field, A a finite dimensional k-algebra and DA = Homg (A, k) endowed
with the usual A-bimodule structure. Recall that A is said to be a Frobenius algebra
if there exists a linear form ¢: A — k, such that the map A — DA, defined by
x +— xp is a left A-module isomorphism. This linear form ¢: A — k is called a
Frobenius homomorphism. It is well known that this is equivalent to say that the
map z — @, from A to DA, is an isomorphism of right A-modules. From this
it follows easily that there exists an automorphism p of A, called the Nakayama
automorphism of A with respect to ¢, such that xp = pp(z), for all z € A. Tt is
easy to check that a linear form @p: A — k is another Frobenius homomorphism
if and only if there exists z € A invertible, such that ¢ = xp. It is also easy to
check that the Nakayama automorphism of A with respect to ¢ is the map given
by a — p(x)~"p(a)p(z).

Let A be a Frobenius k-algebra, ¢: A — k a Frobenius homomorphism and
p: A — A the Nakayama automorphism of A with respect to (.

Definition 1.1. We say that p has order m € N and we write ord, = m if p"* = ida
and p” # idy, for all r < m.

Assume that p has finite order and that k has a primitive ord,-th root of unity
w. Since the polynomial X°9d» — 1 has distinct roots w® (0 < i < ord,), the algebra
Z

A becomes a m—graded algebra

A=A)® - @ Aod, -1, where A;={a€ A:p(a) = w'a}.

Let (Homy(A®*, A),b*) be the cochain Hochschild complex of A with coefficients
in A. For each 0 < < ord,, we let (Homj(A®*, A);,b*) denote the subcomplex of
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(Homy (A®*, A),b*), defined by
Homj (A", A); = @5 Homy (A, © -+ @ Ay, Ay),
B’L n

where B, = {(u1,...,un,v) such that v — uy —--- — u, =i (mod ord,)}. The
cochain Hochschild complex (Homy(A®", A),b*) decomposes as the direct sum
ord, —1
(Homi(A®", A),b*) = @D (Homy(A®", A);,b%).
i=0

Thus, the Hochschild cohomology HH™ (A), of A with coefficients in A, decomposes

as the direct sum
ord, —1

HH"(4) = D HH}(4),
=0
where HHI'(A) = H"(Homy (A®", A);, b*).

The aim of this paper is to prove the following results:

Theorem 1.2. Let A be a Frobenius k-algebra, ¢: A — k a Frobenius homomor-
phism and p: A — A the Nakayama automorphism of A with respect to w. If p has
finite order and k has a primitive ord,-th root of unity w, then

HH"(A) = HH{ (A),  for all n > 0.

Recall that A = A9 @ -+ @ Ao, —1 is said to be strongly 7 [ ord, Z-graded if
A;A; = Ay, for all 4,5 € {0,...,ord, —1}, where i 4+ j denotes the sum of 7 and j
inZ/ord, Z.

Theorem 1.3. Let A be a Frobenius k-algebra, p: A — k a Frobenius homomor-
phism and p: A — A the Nakayama automorphism of A with respect to p. If p has
finite order, k has a primitive ord,-th root of unity w and A= Ao @ -+ ® Aord, -1
is strongly Z [ ord, Z-graded, then

HH™(A) = HH™(Ag)2/ 42 for alln > 0.

Corollary 1.4. Assume that the hypothesis of Theorem 1.3 are verified. If the
Hochschild cohomology HH*(Ag) = 0, then A is rigid.

Remark 1.5. As it is well known, every finite dimensional Hopf algebra H is Frobe-
nius, being a Frobenius homomorphism any right integral ¢ € H*\ {0}. Moreover,
by Proposition 3.6 of [S], the composition inverse of the Nakayama map p with
respect to ¢, is given by

P (R) = alh1)) S (hea),

where o € H* is the modular element of H* and S is the composition inverse of
S (note that the automorphism of Nakayama considered in [S] is the composition
inverse of the one considered by us). Using this formula and that o 0 S? = q, it is
easy to check that p(h) = a(S(h)))S?(h()), and more generality, that

pl(h) = o' (S(h1)))S* (hez),
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where a*! denotes the I-fold convolution product of a. Since a has finite order
respect to the convolution product and, by the Radford formula for S* (see Theo-
rem 3.8 of [S]), the antipode S has finite order respect to the composition, we have
that p has finite order. So, the above theorems apply to finite dimensional Hopf
algebras.

We think that the decomposition of H associated with p can be useful to study
the structure of finite dimensional Hopf algebras. In this paper we exploit it in
a cohomological level. Recently has been considered another decomposition of H,
similar to this one, but distinct. Namely the one associated to S? (see [R-9]).

Example 1.6. Let k£ a field and N a natural number. Assume that k has a primitive
N-th root of unity w. Let H be the Taft algebra of order N. That is, H is the
algebra generated over k by two elements g and x subject to the relations gV =1,
2V = 0 and 2g = wgz. The Taft algebra H is a Hopf algebra with comultiplication
A, counity € and antipode S given by

Alg)=9®yg, Alr)=1Rz+z0y,

c(g) =1, e(x) =0,

S(g) =g ", S(z) = —xzg~ L

Using that t = ij:_ol wIgixN 1 is a right integral of H, it is easy to see that the
modular element o € H* verifies a(g) = w™! and a(x) = 0. By the remark above,

the Nakayama map p: H — H is given by p(g) = wg and p(z) = w™'z. Hence,
H=Hy® ---® Hny_1, where
H;={ac H:pla)=w"a}
— (zf,aitlg, . gNTIgN—im1 gN=i g N=itl im1oN=1y,

Let Oy = {1,t,...,t" =1} be the cyclic group of order N. It is easy to see that Cy
acts on Hy via t - 2'¢g" = w'ax’g® and that H is isomorphic to the skew product of
Hy#Cy. By Theorem 1.3,

HH"(H) = HH"(Hy)~  for all n > 0,
where the action of Cy on HH"(Hp) is induced by the one of Cr on Homy (HS™, Hp),
given by

tp(agt @ @atngn) =N ot 2t @ @t alg)g.
2. PROOF OoF THEOREMS 1.2 AND 1.3

Let k& be a field, A a k-algebra and V a k-module. To begin, we fix some
notations:

(1) As in the introduction, we let DA denote Homy (A, k), endowed with the
usual A-bimodule structure.

(2) We let V®™ denote the n-fold tensor product V@ - - @ V.

(3) Given x € AU DA, we write

{x ifx e A,

d =
0 ifzepa 4 Toal)

r ifxe DA,
Ta(z) =

0 ifxeA,
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(4) For n > 1, we let B" C (A ® DA)®" denote the vector subspace spanned
by n-tensors z1 ® - - ® x, such that exactly 1 of the z;’s belong to DA,
while the other x;’s belong to A.

(5) Given i < j and @4, %i11,...,2; € AUDA, we write X; ; = 2; ® - - - ® x5.

(6) For each map f: X — Y and each element x € X, we let (f,z) denote the
evaluation of f in x.

2.1. The complex X**(A). For each k-algebra A, we consider the double complex

b0,4 b1’4

Homy (A®3, A) —2"> Homy (B*, DA)

p0:3 plo3
X" (A) = Hom, (A®2, A) i Homy (B3, DA)
b0,2 b1’2
Homy, (A, A) —2""~ Homy,(B2, DA)

p01 plil

Homy (k, A) & Homy (B!, DA),
where

n
(O™ )y X1 n1) = 21{f, X2 1) + Z(*l)%fa X1,i1 © TiTiy1 © Xig1,n41)
i=1

+ (_1)n+1<f7 Xl,n>xn+17

(1", 9), Y1m41) = (T, y1)(g, Yoms1) + D (1) (0, ¥1i-1 @ Yithis1 ® Yit1.m1)
i=1

+ (_1)n+1<g7yl,n><7TA7yn+1>a
<<51’naf>»§’1,n+1> = (mpa,y1){f;¥2.nt1) + (—1)n+1<f7Y1,n><7TDA,yn+1>,

for f € Homy (A%, A), g € Homy(B™, DA), X1 n41 =21 @+ @ 2ny1 € AP+ and
Yintl = Y1 @+ @ Ypy1 € B".

Proposition 2.1. Let X*(A) be the total complex of X**(A). It is true that

HO(X%*(A)) ifn=0,

Proof. Let
5 (Homy(A%%, A4), ~b"*+1)  (Homy (B, DA),b1++1)
be the map defined by

(88", ), %1 me1) = (Tpas 21)(fr X2 mr1) + (1) T, X100 ) (MDA, Tngr).
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Since X*(A) is the mapping cone of 6%*, in order to obtain the result it suffices to

check that §* is null homotopic. Let o,: Homy(A®*, A) — Homy(B*, DA) be the
family of maps defined by

({lon, flixin),a) = (1) Ny, (f, x40 @ a@x15-1))  if z; € DA,
We assert that o, is an homotopy from §* to 0. By definition,
(1" (on 1) X na1) = (ma,21) ({00 f)y X2,041)
+ Z (o, ), X1,i-1 @ T;Tigy1 @ Xigont1)
+ (—1)"“((07“ Fhxin)(ma, tnga).
Hence, if 1 € DA, then

("™ (oms 1)) X1 g1 )s Tng2) = (—1)" 2 (21, 22 (f, X3.n42))
n+1

- Z D™ w1, (f, %21 ® 21 © Xiva,nt2));

ifx; € DA for 1 < j <n, then

(O™ (s 1)) X1 ms1)s To) = (=)D (@) (f, %41 041 ® Xo,j—2)Tj-1)

j—2
= (=) g (X1 ® Xo,io1 ® Tl ® Xig2,j-1))
=0
— (=1 (@), w1 (f Xjg2,nt1 ® Xo,j—1))
n
= ) (M, (X1 ® i @ Xiga i1 @ Xojo1))
i=j+1

+ (=)@, (f, X410 @ Tpg1To © X1 j-1));

and if x,11 € DA, then

|
—

n

<<<b1’"’ (on, f>>7X1,n+1>7 To) = (—1)n+i+l<$n+1a <fa X0,i—1 @ TiTiy1 & Xi+27n>>

— Tn+1, <f’ XO,n—1>xn>~

(=)

On the other hand, if 1 € DA, then

((ong1, =" ) X1 1), Tng) = (—1)" Ty (00" f) (x2,n42))

= (—1)n+1<5€1,1‘2<f, X37n+2>> + <$1a <fa X2,n+1>xn+2>
n+1
+Z 1) (2, (f,%2,i-1 @ TiTit1 @ Xit2,n42));
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ifx; € DA for 1 < j <n, then
<<<UTL+1, - <b07n+17 f>>a X17n+1>’ $0>
= (71)j(n+1) <Ija <<b0’n+17 f>a Xj+1,n+1 ® XO,j—l>>

= (_1>j(n+1) (@, 2j41(f, Xjt2,n41 @ Xo,j—1))

n

+ Z (—1)j(n+1)+i_j (@, (fiXj41,i-1 @ TiTip1 ® Xigp2nt1 ® Xo,j—1))
i=j+1

+ (*1)j(n+1)+nfj+1<xja (f,Xj41,n ® Tpy1T0 @ X1 j-1))
Jj—2

+ Z(_l)J(nJrlHHni] (25, (f, Xj41,n41 @ X0,i-1 @ TiTip1 @ Xiy2,5-1))
=0

+ (_1)j("+1)+n+1<$g‘, (f, Xj41,m41 @ Xoj—2)Tj—1);
and if z,11 € DA, then
(({ong1, =" ) X1 mr1), 2o) = (1) g, (0", ), %0m))

= (=1)" "N zpp1, 2o (f, X1,0)) + (@Tnt1, (s X0.n—1)Tn)
n—1

+ Z(_l)n+i<xn+la (f,%0,i—1 ® TiTit1 @ Xiga,n))-
i=0

The assertion follows immediately from these equalities. O

2.2. The complex Y**(A). From now on we fix a Frobenius algebra A, a Frobe-
nius homomorphism p: A — k of A and we let denote p the Nakayama automor-
phism of A with respect to ¢. Let A, be A, endowed with the A-bimodule structure
given by a-x-b := p(a)xb. Let ©: DA — A, be the A-bimodule isomorphism given
by O(px) = x and let

b’ b b b
Ayt AR A, < A2 Q A, « 2 A QA <> AP @A, <t -
be the bar resolution of A,.

Proposition 2.2. The following assertions hold:
(1) The complex

" 1 1"

DA<7#A®Bl®A<71A®B2®A<7ZA®B3®A<73""

where (i, xo ® x1 ® x2) = Tor122 and

n
<b/ri? X0nt2) = To{Ta,T1) ® X2 42 1 Z(*l)ixo,i—l QTiTir1 Q@ Xj42,n+2
i=1
+ (_1)n+1XO,n b2y <7TA7 xn+1>xn+27
is a projective resolution of DA.
(2) There is a chain map V',: (A®*T1® A, V.) — (A B*T' ® A,b)), given by
n

(U Xomt1) = D (=1)" %0, © 9 @ (p, 2i11) @ - @ (9, %) @ Ty
=0
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(3) @00 W) = p.

Proof. Ttems (2) and (3) follow by a direct computation and item (1) is well known.
For instance, the family of maps

00: DA —-A®B'®A and 0,: A®B"®A—A@B" "' @A (n>1),
given by
(00,2) =1®@2z®1,

1@ X041+ (—1)" @ mor1 @ X911 @1 if 21 € DA,

On+1,X0,n = .
< +1, X0, +1> {1®X07n+1 if ¢ DA,

where Xg 41 =20 ® - @ Tpy1 € A® B" ® A, is a contracting homotopy of the
complex of item (1) as a k-module complex. O

Let Y**(A) be the double complex

§0,4 9114

Homy, (A3, A) ~=" Hom),(A®3, A)

90,3 gl,S
Y*or(A) = Homy (A®2, A) =+ Homy,(A®2, A)
90,2 gl,z

Homy (A, A) & Homg (A, A)

90,1 @111

Homy (k, A) L Homy(k, A),

with boundary maps

n—1

("7 f)s%am) = @1 f (X2,0) + D (=1 (f, X1,i-1 © Bitip1 © Xiga,n)

i=1
+ (=1)"(f, x1,n-1)Tn,
(@ ) xam1) = (D)™(f,X10o1)
+ (0" L (f o) @ - @ (py 1)),
where u = 0,1, f € Homy(A®"~1 A) and x1,, =21 ® - - - @ 1, € A®™.
Proposition 2.3. The double complexes X**(A) and Y**(A) are quasiisomorphic.

Proof. Tt is immediate that X1*(A) ~ Hom e ((A® B* Tt ® A, b”), DA). Moreover,
by Proposition 2.2, the map ¥* := Hom (P!, DA) is a quasiisomorphism from
Hom e ((A ® B**' @ A, 1), DA) to Homue ((A®*T! @ A,,b,), DA). On the other
hand the family of bijective maps

Y™ YE(A) — Homae (A®" T @ A,, DA)  (n >0),
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defined by (Y™, f),X0,n+1) = Zo(f,X1,n)@Tn+1, is an isomorphism of complexes
from Y*(A) to Hom e ((A®**t @ A,,b,), DA). In fact, we have

<<Tn+17 <Z1’n+1a f>>7 xO,n+2> = x0<<51,n+1’ f>7 Xl,n+1>§0$n+2

= 2021 (f, X2,n11)PTny2
+ Z J'30 (fyX1,i—1 ® TiTit1 @ Xit2,n+1)PTnt2

+ (_1)n+1x0<f7 Xl,n>xn+1§0xn+2

= 2021 (f, X2,n41)PTni2
+ Z ) 20 (fX1,i-1 @ Tiit1 @ Xigant1)PLnt2
+ (_1)n+1$0<fa X17n>30<p7 $n+1>xn+2

n

(— )i<<T"’ [),X0,i-1 @ TiTiy1 @ Xiy2,nt2)

+

(— 1)"“(( ) Xom @ (P, Tng1)Tnt2)
<< >a< n+15 X0, n+2>>

Hence, to finish the proof it suffices to check that YT* o §1* = U* o §1*. But,
<<\11n7 <61’n7 f>>7 XO,TL+1>

n

(—1)i+n$0<<51’n» X1 @0 (P, Tit1) ® - Q@ (0, Tn)) Trt1

( ) <f7 (pra1) @ - @ (p,xn))tnr1 + (=1)" 1 ao(f,X1n) P11
(=1)"zo(p™ " (f (py 1) @ - @ (py @) pnia + (=1)" o (f, X1 n) i1
= 2o{(0", £), X1n)$PTn 11
= (1", <51 ")) Xont1),s
as desired. O

Proposition 2.4. Let Y*(A) denote the total complex of Y**(A). If the Nakayama

automorphism p has finite order and k has a primitive ord,-th root of unity w, then
N HHO (A ifn=0,

ey =
B(A) @& HHE I (4) ifn > L.

Proof. For each 0 < i < ord,, let Y;""(A) be the subcomplex of Y**(A) defined by
V" = @D Hom(Ay, @ -+ @ Ay, , Ay),

where B;, = {(u1,...,upn,v) such that v —uy —--- —u,, =4 (mod ord,)}. It is
clear that Y**(A) = @ff{j Y;"*(A). Let f € Y,""(A). A direct computation shows
that

<<51,n7 f>a Xl,n> = (_1)n+1(1 - w_l)<fu Xl,n>-
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Hence the horizontal boundary maps of Y;""(A) are isomorphisms if i # 0, and
they are zero maps if i = 0. So,

0 if i £ 0,
H™(Y;7(A)) = ¢ HO(Y*(A)) if i =0 and n =0,
H™(Y*(A) @ HY(Y,"*(A)) ifi=0and n >0,
where Y;*(A) is the total complex of Y;""(A). The result follows easily from this
fact, since Yy *(A) = Yy '*(A) ~ (Homy(A®*, A)g, b*). O
Proof of Theorem 1.2. By Proposition 2.3,
H"(Y*(A)) = H"(X*(A)) and H"(Y“*(A))=H"(X"“*(A)), foru=0,1.
Hence, by Propositions 2.1 and 2.4,
HH{(A) = HO(Y*(4)) = H°(X*(A4))
= H(X%"(4)) = H'(Y*"(4)) = HH’(4)

and

HHG (A) & HHE~1(A) = H™(Y*(A)) = H"(X*(A))

= H"(X""(4)) ® H" 1 (X"*(A))
= H"(Y?*(A)) @ H* (Y1 (A))
= HH"(A) @ HH" " (A),

for all n > 1. From this it follows easily that HH"(A) = HHy (4), for all n > 0, as
desired. g

Proof of Theorem 1.3. By [St] or the cohomological version of [L], Z /ord, Z acts
on H*(Ap, A) and there is a converging spectral sequence

P4 — HP(Z [ ord, 7, HY( A, A)) = HHPTI(A).

Since k has a primitive ord,-th root of unity, ord, is invertible in k. Hence, the
above spectral sequence gives isomorphisms

HH™(A) = H"(Aq, A)" /%% (n > 0).

These maps are induced by the canonical inclusion of Ay in A, and the action of
i €Z/ord,Z on H"(Ag, A) is induced by the map of complexes

07 : (Homy(AS*, A),b*) — (Homy(AF*, A),b*),
defined by
07 (p) a1 © - @ ap)

J— / . .
= E Sig1 ‘P(Smlalsz g2 @ 817J2a281 s @ ® Smnansz ],L+1)S'L7Jn+1’

where (s; ;)jes, and (s; ;)jes, are families of elements of A; and A,_; respectively,
that satisfy > jedi s} sz = 1. From this it follows easily that we have isomorphisms

HH; (A) = H" (Ao, A; )Z/ord z (n>0,0<1i<ord,).
By combining this result with Theorem 1.2, we obtain the desired result. ([
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