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Abstract

We study 2-cocycle twists, or equivalently Zhang twists, of semigroup algebras over a field
k. If the underlying semigroup is affine, that is abelian, cancellative and finitely generated,
then Spec k[S] is an affine toric variety over k, and we refer to the twists of k[S] as quantum
affine toric varieties. We show that every quantum affine toric variety has a “dense quantum
torus”, in the sense that it has a localization isomorphic to a quantum torus. We study
quantum affine toric varieties and show that many geometric regularity properties of the
original toric variety survive the deformation process.
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Introduction.

Fix a field k. Let S be a commutative semigroup with identity. Classically, one associates to S
its semigroup algebra k[S] defined as follows: it is the k-vector space with basis {Xs | s ∈ S}
indexed by the elements of S, equipped with the unique associative product such that Xs ·Xs′ =
Xs+s′ for all s, s′ ∈ S; it is S-graded in a natural way. In the present paper we are interested
in noncommutative deformations of k[S]. Namely, we consider integral algebras which respect
the S-graded k-vector space structure of k[S] but with a possibly different associative product.
It is not difficult to see that such a deformation of k[S] is obtained by twisting the original
commutative multiplication by means of a 2-cocycle on S with values in k∗. The deformation of
k[S] corresponding to the 2-cocycle α : S × S −→ k∗ will be denoted kα[S]; its product, denoted
·α, satisfies Xs ·α Xs′ = α(s, s′)Xs+s′ for all s, s′ ∈ S.

We will focus on the case where S is an affine semigroup, that is, S is finitely generated and
isomorphic as semigroup to a subsemigroup of Zn for some positive integer n. In this case k[S]
is a finitely generated k-algebra and an integral domain. Its maximal spectrum is an affine toric
variety, and if k is algebraically closed then all affine toric varieties arise this way. With this
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fact in mind we adopt the point of view of noncommutative algebraic geometry and consider the
2-cocycle twists of semigroup algebras as noncommutative analogues of affine toric varieties, and
refer to them as quantum affine toric varieties. These objects were also studied in the unpublished
document [Ing], and some of our results are similar to those found there; however, our objectives,
methods and results are very different from those of [Ing].

Toric varieties have played a very important role in algebraic geometry in recent years, and we
expect that the same will happen with their quantum analogues in the context of noncommutative
algebraic geometry. We are particularly interested in classes of varieties which admit a toric de-
generation. For example, by a result due to P. Caldero in [Cal], a Schubert variety of an arbitrary
flag variety over C has a toric degeneration. This is useful for establishing the regularity proper-
ties of the original variety: by classical results, the latter inherits the regularity properties of its
toric degeneration, which are in principle easier to establish. Our main objective is to adapt this
method to the quantum world. In an upcoming paper, we will prove that quantum Schubert vari-
eties degenerate to quantum toric varieties, and that the former inherit the regularity properties
of the latter. The present paper is part of this program: it establishes the regularity properties of
quantum affine toric varieties. (A detailed account of these ideas can be found in the thesis [Zad].)

As it is our original motivation, we recall a few facts on quantum Schubert varieties and
explain what we mean by their degeneration to quantum toric verieties.

Let G be a simply connected, semisimple complex algebraic group and g its Lie algebra. Lak-
shmibai and Reshetikin [LR] and Soibelmann [S] have defined quantum flag varieties associated
to G as well as corresponding quantum Schubert subvarieties. This is done again in the spirit of
noncommutative geometry, that is to say, such a quantum variety is actually defined by means of
a noncommutative algebra, considered as its homogeneous coordinate ring. In the above setting,
the quantum flag varieties are defined as certain subalgebras of the Hopf dual of the quantum
enveloping algebra Uq(g), while the associated quantum Schubert varieties are quotients of the
former obtained by means of certain quantum Demazure modules. For details on the general
construction, the reader may consult chapter 6 of [Zad].

As stated above, it can be shown that quantum Schubert varieties degenerate into quantum
toric varieties; by this we mean that the noncommutative k-algebra which defines a quantum
Schubert variety may be equipped with a filtration whose associated graded ring is isomorphic
to a k-algebra of the form kα[S]. In [RZ] we proved that this result holds for the more general
class of quantum Richardson varieties when the quantum flag variety is a quantum Grassmanian
of type A. The interest of the above result is that it allows to establish a number of proper-
ties for quantum Schubert varieties by first proving them for quantum toric varieties and then
showing that the considered properties lift from the associated graded algebra to the original one.

Let us now come back to the material of the present work.

A guiding principle in noncommutative algebraic geometry is that if a geometric property
can be formulated in homological terms, then it should be stable by quantization, meaning that
if the property holds for a given coordinate ring it should also hold for its quantum analogues.
The properties that we have in mind are being Cohen-Macaulay, Gorenstein or regular. Recall
that these properties have been extended from the class of commutative k-algebras to the class of
N-graded not necessarily commutative algebras by Artin, Jørgensen, Van den Bergh, Yekutieli,
Zhang and others. It turns out that the guiding principle mentioned at the beginning of this
paragraph can be given a very concrete meaning for quantum affine toric varieties, and we finish
this introduction by discussing it in some detail since this is the main organizing principle of the
article.
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Fix a subsemigroup S ⊆ Nn+1 for some n ≥ 0. Any 2-cocycle deformation kα[S] of its
semigroup algebra has a natural Zn+1-grading, and since we wish to study this noncommutative
algebra in the context of the previous paragraph, we consider also the N-grading obtained by
taking the total degree. This second grading is induced by the group morphism φ : Zn+1 → Z
given by φ(a0, . . . , an) = a0 + . . . + an, in the sense of subsection 1.3. The regularity properties
of kα[S] are read from the category ZGrkα[S] of Z-graded kα[S]-modules, and we expect them to
be the same as those of k[S]. That this is indeed the case can be shown by mimicking the theory
developed for the study of the algebra k[S], for example in [BH; chapter 6]. However, the relation
between both algebras can be made more precise: by a theorem of J. Zhang, the categories
of Zn+1-graded modules Zn+1Gr k[S] and Zn+1Gr kα[S] are isomorphic; this isomorphism is
remarkably explicit and concrete, so information transfers between these two categories in a
straightforward manner. We are then left to study the relation between the categories of Zn+1

and Z-graded kα[S]-modules, and it turns out that this is controlled by three functors, induced
by the morphism φ, with very good homological properties. These functors fit into a diagram as
follows

Zn+1Grk[S] oo
∼= //

φ!
��

OO

φ∗ φ∗
��

Zn+1Grkα[S]

φ!
��

OO

φ∗ φ∗
��

ZGrk[S] ZGrkα[S]

The horizontal functor is an isomorphism of categories, hence the relation between the classical
and the quantum objects is very explicit at that level. We then use the vertical functors repeat-
edly to transfer information between the Z-graded and the Zn+1-graded levels. In this way we
effectively deduce the regularity properties of kα[S] from those of k[S].

The paper is organized as follows.

Section 1 establishes, in a fairly general setting, the fundamental properties that we need
on gradings and twistings. In the first subsection, generalities are recalled, including local co-
homology for noncommutative graded algebras. In the second, the notion of a Zhang twist is
introduced following [Z] and further properties concerning the behavior of classical homological
invariants with respect to such twists are established. This notion, more general than twistings
by 2-cocycles, turns out to be the proper one for our purposes. The last subsection deals with
change of gradings over the algebra. We consider a G-graded algebra A and a group morphism
φ : G −→ H. This morphism induces an H-grading over A, and an adjoint triple (φ!, φ

∗, φ∗)
relating the categories of G and H-graded modules. These functors are the main tools we use to
transfer homological information between both categories.

In section 2, we focus on the case where G = Zn+1, H = Z and φ : Zn+1 −→ Z sends an n+1-
tuple to the sum of its entries. In this context, the algebra A is Z-graded and the usual notions
of regularity from noncommutative algebraic geometry make sense. In the first subsection, we
study how the properties of being Cohen-Macaulay, Gorenstein or regular, which a priori concern
the category ZGrA, can actually be read in Zn+1GrA. We also study the behavior of the same
regularity conditions with respect to twistings. The main result of this section is Theorem 2.1.9
which, roughly speaking, asserts that a regularity property is true for A if and only if it is true
for any twist of A. In the second subsection, similar questions are treated at the level of the
derived categories of modules.

In Section 3 we study the class of algebras that were our original motivation: quantum affine
toric varieties. The first subsection collects basic facts on twisting of semigroup algebras by 2-
cocycles. The second subsection restricts the point of view to the case where the semigroup is

3



affine. It is shown that for such a semigroup S and for any 2-cocycle α, the algebra kα[S] is indeed
a Zhang twist of k[S], in particular Theorem 2.1.9 applies. In the same subsection we establish
a decomposition statement which asserts that a quantum affine toric variety whose underlying
semigroup is normal is the intersection of a certain family of subalgebras of its division ring of
fractions, each isomorphic to a quantum space localized at some of its generators, see Proposition
3.2.14. As a consequence we get a characterization by means of the underlying semigroup of
those quantum toric varieties which are normal domains, i.e. maximal orders in their division
ring of fractions, see Corollary 3.2.16. In the last subsection our attention restricts to the case of
twisted lattice algebras. These are examples of quantum affine toric varieties where the underly-
ing semigroup is built from a certain finite distributive lattice. These algebras arise naturally as
degenerations of quantum analogues of Richardson varieties in the quantum grassmannian and
more generally of symmetric quantum graded algebras with a straightening law, which were the
object of study of [RZ].

Acknowledgements. We would like to thank Andrea Solotar for her suggestions, which helped
improve this article.

Conventions and notation. Throughout, k denotes a field. Further, G and H denote com-
mutative groups for which we use additive notation.

1 Preliminaries on gradings and twistings.

1.1 Basic results.

Let A be a k-algebra. A G-grading on A is a direct sum decomposition of A as a k-vector space
A =

⊕
g∈GAg, such that AgAg′ ⊆ Ag+g′ for all g, g′ ∈ G. We then say that A is a G-graded

algebra.
In this context, our attention will focus on the category of G-graded left A-modules, which is

the subject of study of [NV; Chap. A]. A G-graded left A-module is a left A-module M together
with a direct sum decomposition M =

⊕
g∈GMg as k-vector space such that AgMg′ ⊆Mg+g′ for

all g, g′ ∈ G. The spaces Mg are called the homogeneous components of M ; the support of M is
the set suppM = {g |Mg 6= 0}.

Fix g ∈ G. A morphism f : M −→ N of A-modules is said to be homogeneous of degree g
if f(Mg′) ⊆ Mg′+g for all g′ ∈ G. We denote by GGrA the category whose objects are G-graded
A-modules and whose morphisms are homogeneous A-module morphisms of degree 0. It is easily
verified that GGrA is an abelian category with arbitrary products and coproducts, see [NV;
§I.1]. The g-suspension functor Σg : GGrA→ GGrA sends a graded module M to M [g], defined
as the graded module with the same underlying module structure as M and grading given by
M [g]g′ = Mg′+g, while leaving morphisms unchanged. This is an autoequivalence of the category
of G-graded modules, in particular it is exact and preserves projective and injective objects.

General homological methods apply to show that the category GGrA has enough injective
and projective objects. The projective and injective dimensions of a graded module M will be
denoted by GprojdimM and GinjdimM respectively.

Given objects M,N of GGrA and g ∈ G, an A-module morphism f : M −→ N is homogeneous
of degree g if and only if it belongs to HomGGrA(M,N [g]). With this in mind we set

HomGGrA(M,N) =
⊕
g∈G

HomGGrA(M,N [g]) ⊆ HomA(M,N),
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which makes HomGGrA(M,N) into a G-graded k-vector space. This inclusion is strict in general
but it is an equality if M is finitely generated, as the following lemma states. For a proof see
[NV; Corollary I.2.11].

Lemma 1.1.1. – Let A be a G-graded k-algebra and M,N objects of GGrA. If M is a finitely
generated A-module, then HomGGrA(M,N) = HomA(M,N).

For i ∈ N, we denote the right derived functors of HomGGrA(−,−) by ExtiGGrA(−,−). Lemma
1.1.1 extends to the following result, see [NV; Corollary I.2.12].

Lemma 1.1.2. – Let A be a left noetherian G-graded k-algebra and M,N objects of GGrA. If M
is a finitely generated A-module, then there exists a k-vector space isomorphism ExtiGGrA(M,N) ∼=
ExtiA(M,N) for all i ∈ N.

Our next aim is to introduce local cohomology in the present context. The definition is
completely analogous to that of local cohomology functors for commutative rings, and the proofs
found in [BS, chapter 1] adapt to our context almost verbatim. We fix a G-graded ideal a of A.
The torsion functor associated to a, denoted by

Γa,G : GGrA −→ GGrA,

is defined on objects as

Γa,G(M) = {m ∈M | anm = 0 for n� 0} ⊆M,

and sends a morphism M
f−→ N to its restriction Γa,G(M)

Γa,G(f)
−→ Γa,G(N). One can check that

Γa,G is left exact. We denote its i-th right derived functor by H i
a,G, and refer to it as the i-th

local cohomology functor.

On the other hand, we consider the functor

lim
−→

HomGGrA(A/an,−) : GGrA −→ GGrA.

It is easy to check that it is left exact and naturally isomorphic to Γa,G. Standard homological
algebra then yields for each i ∈ N a natural isomorphism

H i
a,G
∼= lim
−→

ExtiGGrA(A/an,−).

Definition 1.1.3. – We define the local cohomological dimension of A relative to its G-grading
and to the ideal a, denoted lcda,G(A), as the cohomological dimension of the functor Γa,G. That
is lcda,G(A) is the least integer d such that H i

a,G(M) = 0 for all integers i > d and all object M
of GGrA if such an integer exists, or +∞ otherwise.

Remark 1.1.4. – Fix i ∈ N and g ∈ G. Since suspension is exact and preserves injectives, the
families of functors (Σg ◦ H i

a,G)i≥0 and (H i
a,G ◦ Σg)i≥0 are universal ∂-functors. It is clear that

Σg ◦Γa,G = Γa,G ◦Σg, and so the general theory of ∂-functors states that there exist isomorphisms
Σg ◦H i

a,G
∼= H i

a,G ◦ Σg for all i ≥ 0.

Local cohomology for noncommutative N-graded algebras has been considered in several pre-
vious articles, for example [AZ], [Jor], [VdB], etc., and one of our motivations is to extend some
of the results of these articles to more general gradings, see section 2 for details.
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1.2 Zhang Twists.

Throughout this subsection A denotes a G-graded algebra. The material is mostly taken from
[Z], where the reader may find the missing proofs.

Definition 1.2.1. ([Z; Definitions 2.1, 4.1]) – A left twisting system on A over G is a family of
graded k-linear automorphisms τ = {τg|g ∈ G} such that for any g, g′, g′′ ∈ G and any a, a′ ∈ A,
homogeneous of degree g and g′ respectively,

τg′′(τg′(a)a′) = τg′+g′′(a)τg′′(a
′).

A right twisting system is similar, but the previous condition is replaced by

τg′′(aτg(a
′)) = τg′′(a)τg′′+g(a

′).

A normalized left, resp. right, twisting system on A over G is a left, resp. right twisting system
on A over G such that τ0(1) = 1.

It is easy to see that if τ is a left twisting system for A over G, then it is a right twisting
system for Aopp over G. This shows that every theorem on left twistings has an analogue for
right twistings, so we only state the left side versions. If τ = {τg|g ∈ G} is a normalized left
twisting system on A over G, then τg(1) = 1 for all g ∈ G, and τ0 = id. See [Z; Proposition 2.2].

Theorem 1.2.2. ([Z; Proposition/Definition 4.2]) – Let τ be a left twisting system on A. The
graded k-vector space A can be endowed with an associative product denoted by ◦, given by

a ◦ a′ = τg′(a)a′

for all g, g′ ∈ G, a ∈ Ag and a′ ∈ Ag′. With this product the k-vector space A becomes a unital
associative G-graded algebra whose unit is τ−1

0 (1). We denote this algebra by τA, and call it the
left twisting of A by τ .

We sometimes refer to τA as a Zhang twist of A. By [Z; Proposition 2.4], there is no loss of
generality if we only consider normalized twisting systems.

Two G-graded algebra structures over the underlying graded k-vector space of A are twist-
equivalent if one can be obtained from the other through a Zhang twist. This is an equivalence
relation by [Z; Proposition 2.5]. In particular, the following result holds:

Lemma 1.2.3. – For every left twisting system τ on A there is a left twisting system τ ′ on τA
such that τ

′
(τA) = A.

Let τ be a left twisting system on A, and let M be a G-graded A-module. Then there exists
a G-graded τA-module whose underlying graded k-vector space is equal to that of M , with the
action of an element a ∈ τA over m ∈Mg, with g ∈ G, is given by

a ◦m = τg(a) ·m

where · represents the action of A on M . We denote this τA-module by τM . If f : M → N is a
morphism of G-graded A-modules then the same function defines a τA-linear function τf : τM →
τN . This assignation defines a functor Fτ : GGrA → GGrτA. The following result is crucial for
us in the following sections.
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Theorem 1.2.4. ([Z; Theorem 3.1]) – The functor Fτ : GGrA −→ GGrτA sending an object M
to τM and leaving morphisms unchanged is an isomorphism of categories.

The isomorphism Fτ is an isomorphism of abelian categories and hence preserves all homo-
logical properties of objects.

Theorem 1.2.5. – Let τ be a left twisting system on A. For each g ∈ G, let νg be the k-linear
map defined as

νg(a) = τ−(g+g′)τ
−1
−g′(a).

for all g′ ∈ G and a ∈ Ag′. The following hold.

(i) The set ν = {νg}g∈G is a right twisting system on A.

(ii) The k-linear map θ : τA → Aν sending a ∈ τAg to θ(a) = τ−g(a) for each g ∈ G is an
isomorphism of G-graded algebras

(iii) The change of rings functor Θ : GGr(τA)opp → GGr(Aν)opp induced by θ−1 is an isomor-
phism of categories, and θ : Θ(τA)→ Aν is an isomorphism of G-graded right Aν-modules.

Proof. Points (i) and (ii) are [Z; Theorem 4.3]. Point (iii) follows at once.

Remark 1.2.6. – Let τ be a left twisting system on A. Using Theorem 1.2.4 and Theorem 1.2.5
we get that the category of right A-modules is isomorphic to the category of right τA-modules.

If V is a graded subspace of A, then by abuse of notation we write τV when we consider V as
a graded subspace of τA. Notice that if V is a left ideal of A then it is a graded submodule, and
so τV is a left ideal of τA. The following proposition, whose proof is straightforward, clarifies
eventual ambiguities that might arise due to this notation.

Proposition 1.2.7. – Let τ be a left twisting system on A over G and denote by ◦ the product
on A defined in Theorem 1.2.2.

1. Suppose B is a graded subalgebra of A such that τg(B) ⊆ B for all g ∈ G. Then (τB, ◦) is
a subalgebra of (τA, ◦). Furthermore τ induces by restriction a twisting system on B over
G, and the twist of B by this induced system is equal to (τB, ◦).

2. Suppose that a is a graded two-sided ideal of A such that τg(a) ⊆ a for all g ∈ G. Then τa
is a graded two-sided ideal of τA.

The following lemma shows that twisting commutes with local cohomology.

Lemma 1.2.8. – Let τ be a left twisting system on A over G and let a be a graded ideal of A such
that τg(a) = a for all g ∈ G. For all i ∈ N there are natural isomorphisms H i

τa,G ◦Fτ ∼= Fτ ◦H i
a,G.

Proof. An easy verification shows that Γτa,G ◦ Fτ = Fτ ◦ Γa,G. Since Fτ is exact and preserves
injectives, the families (Fτ ◦ H i

a,G)i∈N and (H i
τa,G ◦ Fτ )i∈N are universal ∂-functors. Hence the

equality extends to give natural isomorphisms H i
τa,G ◦ Fτ ∼= Fτ ◦H i

a,G for all i ∈ N.

We will need the following result in future sections. It is adapted from [Z; section 5].

Proposition 1.2.9. – For all i ∈ N, there are natural isomorphisms ExtiGGrτA(−, τA) ◦ Fτ ∼=
ExtiGGrA(−, A) seen as functors from GGrA to GGrk.

Proof. It is easy to see that (τA)[g]
τ−g−→ τ(A[g]) is an isomorphism in GGr(τA) for all g ∈ G,

see [Z ; Theorem 3.4]. It follows that we have natural isomorphisms HomGGrτA(−, τA) ◦ Fτ ∼=
HomGGrA(−, A) and, Fτ being an exact functor, (ExtiGGrτA(−, τA) ◦ Fτ )i is a (contravariant) ∂-
functor which is universal since Fτ preserves projectives. From this it follows that there exist
natural isomorphisms ExtiGGrτA(−, τA) ◦ Fτ ∼= ExtiGGrA(−, A) for all i ∈ N.
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1.3 Change of grading groups.

In this subsection, G and H are commutative groups and φ : G −→ H is a group homomorphism;
we view k as a G and H-graded algebra concentrated in degree 0.

The morphism φ induces three functors between the category of G-graded k-vector spaces and
the category of H-graded k-vector spaces, which we will now describe. Let M,M ′ be G-graded
k-vector spaces and f : M −→ M ′ a G-homogeneous morphism. Given g ∈ G we denote by
fg : Mg −→ M ′g the homogeneous component of f of degree g, so that f =

⊕
g∈G fg. The same

convention is adopted for morphisms of HGrA.

- The shriek functor, φ! : GGrk→ HGrk. For every h ∈ H, the homogeneous components of
degree h of φ!(M) and φ!(f) are given by

φ!(M)h =
⊕

g∈φ−1(h)

Mg, φ!(f)h =
⊕

g∈φ−1(h)

fg.

- The lower star functor, φ∗ : GGrk → HGrk. Once again we give the homogeneous com-
ponents of degree h of φ∗(M) and φ∗(f):

φ∗(M)h =
∏

g∈φ−1(h)

Mg, φ∗(f)h =
∏

g∈φ−1(h)

fg.

- The upper star functor, φ∗ : HGrk→ GGrk. Let N,N ′ be objects of HGrA, and f : N →
N ′ a morphism of H-graded modules. For every g ∈ G the homogeneous components of φ∗(N)
and φ∗(f) are given by

φ∗(N)g = Nφ(g), φ∗(f) = fφ(g).

Functoriality is easy to establish in all three cases. Notice that for every h ∈ H there are
several copies of the homogeneous component Nh inside φ∗(N); in particular if g, g′ ∈ φ−1(h)
then φ∗(N)g = φ∗(N)g′ = Nh. In order to distinguish the elements in these two homogeneous
components we will use the following notational device: for every n ∈ N we will denote by nug
the element n ∈ φ∗(N)g. Notice that nug makes sense only if deg n = φ(g).

Remark 1.3.1. –

1. There is a natural transformation φ! → φ∗ induced by the natural inclusion of the direct sum
of a family of k-vector spaces in its direct product. For a G-graded k-vector space M the
corresponding morphism φ!(M)→ φ∗(M) is an isomorphism if and only if supp(M)∩φ−1(h)
is a finite set for every h ∈ H. Any G-graded k-vector space with this property is called
φ-finite.

2. Let L,M,N be graded k-vector spaces and let

0→ L→M → N → 0

be a complex. This sequence is exact if and only if it is exact at each homogeneous com-
ponent. From this observation, it follows that the functors φ∗, φ! and φ∗ are exact.

3. Let M be an object of GGrk. It is clear by definition that if φ!(M) = 0 or φ∗(M) = 0 then
M = 0. However this holds for φ∗ only if φ is surjective.
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4. From the above it follows that given any (co)chain complex C in GGrk, the complex φ!(C)
(resp. φ∗(C)) is exact at homological degree i ∈ Z if and only if C is exact at degree i.
This holds for φ∗ only if φ is surjective.

For the remainder of this subsection, we fix a G-graded k-algebra A. Clearly, the k-vector
space φ!(A) is an H-graded k-algebra. We will simply write A in both cases since the context will
always make it clear which grading we are considering. Notice that any G-homogeneous ideal of
A is also H-homogeneous.

Our aim now is to consider functors between the categories GGrA and HGrA naturally induced
from φ!, φ∗ and φ∗. We will denote by FG : GGrA → GGrk and FH : HGrA → HGrk the
corresponding forgetful functors.

Given G-graded A-modules M,M ′ and a morphism f : M →M ′, we define φ!(M) and φ!(f) as
before, and leave the action of A on M unchanged. We also define φ∗(M) and φ∗(f) as before. The
A-module structure on φ∗(M) is given as follows: for every h ∈ H and (mg)g∈φ−1(h) ∈ φ∗(M)h,
the action of a homogeneous element a ∈ Ag′ is given by a(mg)g∈φ−1(h) = (amg)g∈φ−1(h) ∈
φ∗(M)φ(g′)+h. Finally for H-graded modules N,N ′ and a morphism f : N → N ′, we set φ∗(N)
and φ∗(f) as before. The action of a homogeneous element a ∈ Ag′ over φ∗(N) is defined as
follows: for each nug ∈ φ∗(N)g we set a(nug) = (an)ug′+g. The fact that the action of A is
compatible with the gradings in each case is a routine verification.

Notice that by definition φ! ◦FG = FH ◦φ! and similar equalities hold for the other change of
grading functors; it follows that Remark 1.3.1 extends to the three functors defined at the level
of graded A-modules. From this point on φ!, φ∗ and φ∗ will denote the functors defined at the
level of graded A-modules; of course this includes the case A = k. The main result regarding
them is the following, which asserts that (φ!, φ

∗, φ∗) is an adjoint triple.

Proposition 1.3.2. – The functor φ∗ is right adjoint to φ! and left adjoint to φ∗

Proof. Let M be an object in GGrA and N be an object in HGrA. We first prove the existence
of an isomorphism

α : HomHGrA(φ!(M), N)→ HomGGrA(M,φ∗(N)).

Given f : φ!(M) → N of degree 0H , set α(f) : M → φ∗(N) to be the morphism given by the
assignation m ∈Mg 7→ f(m)ug. It is routine to check that this is an A-linear morphism of degree
0G. Now given f ∈ HomGGrA(M,φ∗(N)), we define β(f) : φ!(M) → N as follows: notice that it
is enough to define β(f) over G-homogeneous elements of M and that given m ∈ Mg we know
that f(m) = nug with deg n = φ(g), so setting β(f)(m) = n we get an H-homogeneous A-linear
morphism. Once again it is routine to check that α and β are inverses, and that they are in fact
natural in both variables.

Now we establish the existence of an isomorphism

ρ : HomHGrA(N,φ∗(M))→ HomGGrA(φ∗(N),M).

Fix f : N → φ∗(M). For every g ∈ G and every nug ∈ φ∗(N)g, we know that f(n) =
(mg′)g′∈φ−1(φ(g)), so we set ρ(f)(nug) = mg. Its inverse is given as follows: for every f ∈
HomGGrA(φ∗(N),M) and every n ∈ Nh with h ∈ H, we set ε(f)(n) = (f(nug))g∈φ−1(h) if
h ∈ imφ, and 0 otherwise. We leave the task of checking the good-definition and naturality
of both morphisms, as well as the proof that ρ and ε are inverses, to the interested reader.

Since the change of grading functors are exact, Proposition 1.3.2 has the following conse-
quence. The proof is standard homological algebra, and can be found for example in [W, Propo-
sition 2.3.10].
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Corollary 1.3.3. – The following properties hold:

1. the image by φ! of a projective object is projective;

2. the image by φ∗ of an injective object is injective;

3. the image by φ∗ of an injective (resp. projective) object is injective (resp. projective).

The next two corollaries refine this last result.

Corollary 1.3.4. – Let M be an object of GGrA.

1. GprojdimM = Hprojdimφ!(M);

2. GinjdimM ≤ H injdimφ!(M).

Proof. Corollary 1.3.3 implies Gprojdimφ∗(φ!(M)) ≤ Hprojdimφ!(M) ≤ GprojdimM . We point
out that there is an isomorphism in GGrA

φ∗(φ!(M)) ∼=
⊕

l∈ker(φ)

M [l],

from which it follows that Gprojdimφ∗(φ!(M)) = sup{GprojdimM [l] | l ∈ kerφ}; since suspension
functors are auto-equivalences, they preserve projective dimensions, so this supremum is equal to
GprojdimM . This implies the previous inequalities are all equalities and proves the first point.

For the second, suppose to the contrary that GinjdimM > H injdimφ!(M). By Corollary 1.3.3
it follows that Ginjdimφ∗(φ!(M)) ≤ H injdimφ!(M) < GinjdimM , which can not happen since M
is a direct summand of φ∗(φ!(M)) in GGrA.

Corollary 1.3.5. – Let M be an object of GGrA.

1. GinjdimM = H injdimφ∗(M);

2. GprojdimM ≤ Hprojdimφ∗(M).

Proof. For every G-graded A-module M there is an isomorphism

φ∗(φ∗(M)) ∼=
∏

l∈ker(φ)

M [l].

The proof follows the same pattern as that of Corollary 1.3.4.

Recalling from Remark 1.3.1 that φ!(M) = φ∗(M) if and only if M is φ-finite, we can sum up
our results in the following table:

φ! φ∗ φ∗

projdim is preserved does not decrease does not increase
(preserved for φ-finite modules)

injdim does not decrease is preserved does not increase
(preserved for φ-finite modules)

Table 1: Homological dimensions and functors associated to φ.
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Remark 1.3.6. – We point out that these inequalities are sharp. Consider A = k[x, x−1] with
the obvious Z-grading and let φ : Z → {0} be the trivial morphism. The category ZGrA is
semisimple, and hence all its objects are projective and injective. However φ!(A) is not an
injective A-module since it is not divisible as A-module. Since φ∗(φ!(A)) is injective, in this
case φ! increases injective dimension and φ∗ decreases it. Also φ∗(A) is not projective since the
element (xn)n∈Z is annihilated by x−1 ∈ A, but φ∗(φ∗(A)) is projective, so φ∗ increases projective
dimension and φ∗ decreases it in this case.

We now study the relationship between the functors φ!, φ
∗ and both extension and local

cohomology functors. We denote by GgrA, resp. HgrA, the full subcategory of GGrA, resp.
HGrA, whose objects are finitely generated. Let us fix a G-homogeneous ideal a of A. The ideal
a is also H-homogeneous, so we have the two functors Γa,G and Γa,H as well as their respective
right derived functors. In order to study the relation between these derived functors we need the
following result.

Proposition 1.3.7. – Suppose A is left noetherian and let M be an object of GGrA. Then, for
all i ∈ N, there are natural isomorphisms

φ! ◦ ExtiGGrA(−,M) ∼= ExtiHGrA(−, φ!(M)) ◦ φ!,

as functors from Ggr(A) to HGr(k).

Proof. Notice that, since A is noetherian, the category Ggr(A) has enough projectives. From
lemma 1.1.1 we see that

φ! ◦ HomGGrA(−,M) = HomHGrA(−, φ!(M)) ◦ φ!.

Since φ! is exact and preserves projectives, the families of functors (φ! ◦ ExtiGGrA(−,M))i≥0 and
(ExtiHGrA(−, φ!(M)) ◦ φ!)i≥0 form universal contravariant homological ∂-functors, so the equality
extends to the desired isomorphisms by standard homological algebra.

We can now prove the following result.

Proposition 1.3.8. – Fix i ∈ N.

1. Suppose A is left noetherian. There are natural isomorphisms of functors as follows:

φ! ◦H i
a,G
∼= H i

a,H ◦ φ!.

2. There are natural isomorphisms of functors as follows:

φ∗ ◦H i
a,H
∼= H i

a,G ◦ φ∗.

Proof. Since φ! is an exact functor the families (φ! ◦H i
a,G)i and (H i

a,H ◦ φ!)i form cohomological
∂-functors. Clearly each functor in the first family annihilates injective objects, so this is a
universal ∂-functor. If I is an injective object in GGrA then

H i
a,H ◦ φ!(I) ∼= lim−→ExtiHGrA(A/an, φ!(I)),

and using Proposition 1.3.7 we conclude that ExtiHGrA(A/an, φ!(I)) ∼= ExtiGGrA(A/an, I) = 0. As
a consequence, (H i

a,H ◦ φ!)i is also a universal ∂-functor. Since φ! ◦ Γa,H = Γa,G ◦ φ!, standard
homological algebra implies the existence of the isomorphisms of the first item. The second item
is proved in the same way, using the fact that φ∗ preserves injectives, see Corollary 1.3.3.
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Recall that the local cohomological dimension relative to G and a, denote by lcda,GA, is the
cohomological dimension of the functor Γa,G.

Corollary 1.3.9. – If A is left noetherian, then lcda,GA = lcda,HA.

Proof. Let i be an integer such that H i
a,H 6= 0, i.e. there is an object M of HGrA such that

H i
a,H(M) 6= 0. Since local cohomology commutes with suspension functors, see Remark 1.1.4,

we may assume that the component of degree 0H of H i
a,H(M) is non-zero. By the second item

of Proposition 1.3.8, H i
a,G(φ∗(M))0G = H i

a,H(M)0H 6= 0, so lcda,GA ≥ lcda,HA. Since A is
noetherian we use the first item of Proposition 1.3.8 and the fact that φ! sends nonzero modules
to nonzero modules in an analogous fashion to get lcda,GA ≤ lcda,HA.

2 Regularity of Zr+1-graded algebras and their Zhang twists.

Throughout this section A denotes a noetherian connected Zr+1-graded k-algebra for some r ∈ N.
In this context connected means that supp(A) ⊆ Nr+1 and A0 = k. We denote by m the ideal
generated by all homogeneous elements of nonzero degree, which is clearly the unique maximal
graded ideal of A. Since m is a graded ideal, we can consider the local cohomology functors
H i

m,Zr+1 as defined in section 1.

Let φ : Zr+1 → Z be the group morphism (a0, . . . , ar) 7→ a0+. . .+ar for all (a0, . . . , ar) ∈ Zr+1.
We are in position to apply the procedure described in subsection 1.3 and view A as a Z-graded
k-algebra with the grading induced by φ; notice that A is also connected with this grading. We
can now consider the categories of Zr+1-graded and Z-graded A-modules.

Various noncommutative analogues of regularity conditions for algebraic varieties have been
introduced in the study of connected N-graded algebras, for example the AS-Cohen-Macaulay,
AS-Gorenstein, AS-regular properties, or having dualizing complexes, to name a few. We are
interested in the following question: given a twisting system τ on A over Zr+1, is it true that
A and τA have the same regularity properties when seen as N-graded algebras? In order to
answer this question we prove that these properties, which a priori are read from the category of
Z-graded modules, can also be read from the category of Zr+1-graded modules.

The section is organized as follows. In the first subsection we consider Zr+1-graded analogues
of the AS-Cohen-Macaulay, AS-Gorenstein and AS-regular properties, and show that they are
stable under change of grading and twisting. In the second subsection we recall the definition of a
balanced dualizing complex, and show that the property of having a balanced dualizing complex
is also invariant under twisting.

2.1 Homological regularity conditions.

We start by introducing Zr+1-graded analogues of the AS-Cohen-Macaulay, AS-Gorenstein and
AS-regular conditions for connected N-graded algebras. These conditions can be found for exam-
ple in the introduction to [JZ].

Definition 2.1.1. – We keep the notation from the introduction to this section.

1. A is called Zr+1-AS-Cohen-Macaulay if there exists n ∈ N such that H i
m,Zr+1(A) = 0 and

H i
mopp,Zr+1(A) = 0 for all i 6= n.
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2. A is called left Zr+1-AS-Gorenstein if it has finite left graded injective dimension n and
there exists ` ∈ Zr+1, called the Gorenstein shift of A, such that

ExtiZr+1GrA(k, A) ∼=

{
k[`] for i = n

0 for i 6= n

as Zr+1-graded Aopp-modules. We say A is right Zr+1-AS-Gorenstein if Aopp is left Zr+1-
AS-Gorenstein. Finally A is Zr+1-AS-Gorenstein if both A and Aopp are left Zr+1-AS-
Gorenstein, with the same injective dimensions and Gorenstein shifts.

3. A is called Zr+1-AS-regular if it is Zr+1-AS-Gorenstein, it has finite graded global dimension
both on the left and on the right, and both dimensions coincide.

The usual notions of AS-Cohen-Macaulay, AS-Gorenstein and AS-regular N-graded algebras
correspond to the case r = 0. We will soon see that one may omit the Zr+1 of the definitions, since
they are stable by re-grading through a group morphism. For a precise statement see Theorem
2.1.6.

Remark 2.1.2. – Let B be a commutative noetherian connected N-graded k-algebra, with
maximal homogeneous ideal n. The algebra B is Cohen-Macaulay, resp. Gorenstein, in the
classical sense if and only if B is AS-Cohen-Macaulay, resp. AS-Gorenstein, see [LR1; Remark
2.1.10]. The same result holds for the AS-regular property, as we now show.

First suppose B is regular in the classical sense [Mat, p. 157]. Then Bn is local regular and
by [Mat; ex. 19.1] it follows that B is a polynomial ring, which implies that B is AS-regular. On
the other hand, if B is AS-regular then by [Lev; 3.3] it has finite ungraded global dimension and
so does each of its localizatons at maximal ideals. By the Auslander-Buchsbaum-Serre theorem
[BH; Theorem 2.2.7] said localizations are regular in the classical sense, and hence so is B.

Remark 2.1.3. – If M is an object of Zr+1GrA with dimkM = 1 then it is clear that it is
isomorphic to k[`] for some ` ∈ Zr+1 as an object of Zr+1GrA. Thus to prove that an algebra is
left or right AS-Gorenstein it is enough to check that it has finite graded injective dimension n
and that dimk Ext

i
Zr+1GrA(k, A) = δi,n.

The following two lemmas will be used in the proof of the invariance of the regularity properties
by change of grading.

Lemma 2.1.4. If A is both left and right Zr+1-AS-Gorenstein, it is Zr+1-AS-Gorenstein.

Proof. Let φ : Zr+1 → Z be the morphism that sends an r+ 1-uple to the sum of its coordinates.
By Corollary 1.3.5 the Zr+1-graded injective dimension of A is equal to that of φ!(A) and by
[Lev; Lemma 3.3] this is equal to the injective dimension of A over itself; thus the graded and
ungraded injective dimensions of A coincide. By [Zak; Lemma A], it is also equal to the injective
dimension of Aopp, so the graded injective dimensions of A and Aopp coincide. All that is left to
do is to prove that the left and right Gorenstein shifts of A are equal.

Let ` and r be the left and right Gorenstein shifts of A respectively, and let d be its left or
right injective dimension. Using the Zr+1-graded analogue of the Ischebeck spectral sequence
first introduced in [Isch, Theorem 1.8], we obtain a spectral sequence in Zr+1GrA:

Ep,q2 : ExtpZr+1GrAopp(Ext−qZr+1GrA
(k, A), A)⇒ Hp+q(k) =

{
k if p+ q = 0

0 otherwise.

By hypothesis, page two of this spectral sequence has k[r − `] in position (d,−d) and zero
elsewhere, so r and ` must be equal.
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Lemma 2.1.5. – The global dimension of Zr+1GrA is equal to the projective dimension of the
trivial module k seen as an object of this category.

Proof. By Corollary 1.3.4, the ungraded global dimension of A is an upper bound for the graded
global dimension of A. The same result implies projdimk = Zr+1projdimk = n, which is obviously
a lower bound. By [Ber; Théorème 3.3] these three numbers are equal.

We now prove the result announced at the beginning of this subsection. Recall that we denote
by φ : Zr+1 → Z the morphism that sends an r + 1-uple to the sum of its coordinates.

Theorem 2.1.6. – Let A be a connected Zr+1-graded algebra.

1. A is Zr+1-AS-Cohen-Macaulay if and only if φ!(A) is Z-AS-Cohen-Macaulay.

2. A is Zr+1-AS-Gorenstein if and only if φ!(A) is Z-AS-Gorenstein.

3. A is Zr+1-AS-regular if and only if φ!(A) is Z-AS-regular.

Proof. The first item follows immediately from the first statement in Proposition 1.3.8.
Since φ!(A) is connected and noetherian, each of its homogeneous components is finite di-

mensional, which implies that A is φ-finite, so φ!(A) = φ∗(A). Using Corollary 1.3.5 we get
Zr+1injdimA = Zinjdimφ!(A) and Zr+1injdimAopp = Zinjdimφ!(A)opp. By Proposition 1.3.7

dimk Ext
i
Zr+1GrA(k, A) = dimk Ext

i
ZGrφ!(A)(k, φ!(A))

for all i ≥ 0, so using Remark 2.1.3 we see that A is left Zr+1-AS-Gorenstein if and only if φ!(A)
is left Z-AS-Gorenstein; an analogous argument works for Aopp. The second item follows from
Lemma 2.1.4.

By Corollary 1.3.4 the graded projective dimension of k as a graded A or φ!(A)-module
coincide, so item 3 follows from item 2 and Lemma 2.1.5.

Remark 2.1.7. – Replacing φ with the trivial morphism Zr+1 → {0} in the proof of Theorem
2.1.6, one can give necessary and sufficient conditions for A to be Zr+1-AS-Cohen-Macaulay,
Zr+1-AS-Gorenstein or Zr+1-AS-regular in terms of the category Mod A. In particular we see
that if A can be endowed with a different connected grading such that m is its unique maximal
graded ideal, then A has any of the aforementioned properties with respect to the new grading
if and only if it has this property with respect to the original grading. Hence the AS-properties
may be seen as invariants of the algebra A and the ideal m, regardless of the grading. This is the
point of view adopted in the article [BZ], where analogues of the AS-Gorenstein and AS-regular
properties are given for augmented algebras.

In view of Theorem 2.1.6 (or Remark 2.1.7), from now on we omit the prefix “Zr+1-” from the
regularity properties mentioned there. We now focus on showing these properties are invariant
under twisting. We begin with an auxiliary lemma.

Lemma 2.1.8. – Let τ be a normalized left twisting system on A over Zr+1. For all i ∈ N there
is a natural isomorphism of functors ExtiZr+1GrA(k,−) ∼= ExtiZr+1GrτA(k,−) ◦ Fτ , seen as functors
from Zr+1GrA to Zr+1Grk.

Proof. Let M be an object of Zr+1GrA. It is routine to check that, for every ξ ∈ Zr+1, every
A-linear function f : k → M [ξ] also defines a τA-linear function from τk to (τM)[ξ]; notice
that twists and shifts do not commute, so this is not true if we change k for any graded A-
module. This shows that HomZr+1GrA(k,M) and HomZr+1GrτA(k, τM) coincide as k-subspaces of
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HomZr+1Grk(k,M), and so HomZr+1GrA(k,−) = HomZr+1GrτA(k,−)◦Fτ as functors from Zr+1GrA
to Zr+1Grk. Since Fτ preserves injectives, the ∂-functor (ExtiZr+1GrτA(k,−) ◦ Fτ )i≥0 is univer-
sal and so by standard homological algebra we get a natural isomorphism ExtiZr+1GrA(k,−) ∼=
ExtiZr+1GrτA(k,−) ◦ Fτ for all i ≥ 0.

We are now ready to prove the result announced in the introduction to this subsection.

Theorem 2.1.9. Let τ be a normalized left twisting system on A over Zr+1.

1. A is AS-Cohen-Macaulay if and only if τA is AS-Cohen Macaulay.

2. A is AS-Gorenstein if and only if τA is AS-Gorenstein.

3. A is AS-regular if and only if τA is AS-regular.

Proof. Recall from Theorem 1.2.5 that there exists a right-twisting system ν on A and an iso-
morphism θ : τA → Aν . If we denote by Θ the change of rings functor induced by θ−1, then
Θ(τA) = Aν .

1. Fix i ∈ N. Lemma 1.2.8 shows that H i
m,Zr+1(A) = 0 if and only if H i

τm,Zr+1(τA) = 0. Since
Θ is an isomorphism of categories, the proof of Lemma 1.2.8 can be adapted to show that
there is a natural isomorphism

H i
(τm)opp,Zr+1

∼= Θ−1 ◦H i
(mν)opp,Zr+1 ◦Θ.

Using this and the right-sided version of Lemma 1.2.8, we get that H i
mopp,Zr+1(A) = 0 if and

only if H i
(τm)opp,Zr+1(τA) = 0.

2. As we pointed out before, Zr+1GrA and Zr+1Gr τA are isomorphic categories, and the
same holds for Zr+1GrAopp and Zr+1Gr(τA)opp. It follows that the left and right graded
injective dimensions of A are equal to the corresponding graded injective dimensions of
τA. By Lemma 2.1.8 there are graded k-vector space isomorphisms ExtiZr+1GrτA(k, τA) ∼=
ExtiZr+1GrA(k, A) for all i ≥ 0; arguing as for item 1, we also get isomorphisms of graded
k-vector spaces ExtiZr+1Gr(τA)opp(k, τA) ∼= ExtiZr+1GrAopp(k, A). From this we deduce that A
is left, resp. right AS-Gorenstein if and only if τA is left, resp. right, AS-Gorenstein; using
Remark 2.1.3, the result follows by Lemma 2.1.4.

3. The details concerning the AS-regular property are similar.

2.2 Dualizing complexes

Recall that we denote by A a noetherian connected Nr+1-graded k-algebra, and by φ : Zr+1 → Z
the group morphism defined by the assignation (a0, . . . , ar) 7→ a0 + . . . + ar. We will consider
A as a connected N-graded k-algebra with the grading induced by φ. Our main concern in
this subsection is whether the existence of a balanced dualizing complex is a twisting invariant
property.

We quickly recall some basic notions concerning dualizing complexes for the convenience of
the reader. Fix a noetherian connected N-graded k-algebra B and set Be = B ⊗ Bopp. We
denote by D(ZGrB) the derived category of ZGrB; we denote by D+(ZGrB), D−(ZGrB) and
Db(ZGrB) the full subcategories of D(ZGrB) whose objects are bounded below, bounded above
and bounded complexes, respectively. Of course we may replace B with Bopp and Be, and we
denote by ResB : D(ZGrBe)→ D(ZGrB) the obvious restriction functor, with an analogous one
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ResBopp for Bopp. These functors preserve projectives and injectives, see [Y; §2] for details. We
write HomB instead of HomZGrB, and denote its i-th derived functor by ExtiB for all i ≥ 0.

The functor HomB : (ZGrBe)opp × ZGrBe −→ ZGrBe has a derived functor, RHomB :
D((ZGrBe)opp) × D+(ZGrBe) −→ D(ZGrBe) which can be calculated using resolutions by bi-
modules that are projective as left B-modules on the first variable, or resolutions by bimodules
that are injective as left B-modules in the second variable. For more details, see [Y; Theorem
2.2].

Denote by n the maximal graded ideal of B. The torsion functor Γn : ZGrB −→ ZGrB has
a right derived functor RΓn : D+(ZGrB) −→ D+(ZGrB). Notice that Γn sends bimodules to
bimodules, and so it induces an endofunctor of ZGrBe. By abuse of notation we denote the
torsion functor on bimodules by Γn and its right derived functor by RΓn. This abuse is justified
since Γn commutes with ResB and this last functor preserves injectives, so for any left bounded
complex of bimodules M• we have RΓn(ResB(M•)) = ResB(RΓn(M

•)).
Given a complex of Z-graded k-vector spaces V • we denote by (V •)′ its Matlis dual. Details

on Matlis duals can be found in [VdB; §3]. The following definition is found in [Y; Definitions
3.3 and 4.1] and [VdB; Definition 6.2].

Definition 2.2.1. – An object R• of D+(ZGrBe) is called a dualizing complex if it satisfies the
following conditions:

1. The objects ResB(R•) of D(ZGrB) and ResBopp(R•) of D(ZGrBopp) have finite injective
dimension.

2. The objects ResB(R•) of D(ZGrB) and ResBopp(R•) of D(ZGrBopp) have finitely generated
cohomology.

3. The natural morphisms Bopp −→ RHomB(R•, R•) and B −→ RHomBopp(R•, R•) are iso-
morphisms in D(ZGrBe).

A dualizing complex R• is said to be balanced if RΓn(R
•) ∼= B′ ∼= RΓnopp(R•) in D(ZGrBe).

As shown in [Y; Corollary 4.21], if a balanced dualizing complex exists then it is unique up
to isomorphism, and given by RΓn(B)′.

Remark 2.2.2. – Recall that the local cohomological dimension of B, denoted by lcdn,ZB, is the
cohomological dimension of the functor Γn over ZGrB; since RΓn commutes with the restriction
functor, the cohomological dimension of Γn over ZGrBe is bounded by this number.

If lcdn,ZB = d < ∞ then RΓn(B) ∈ Db(ZGrBe). Indeed, let I• be an injective resolution of
B in ZGrBe. Truncating at position d we get the complex

J• = 0 −→ I0 −→ I1 −→ . . . −→ Id−1 −→ ker(fd) −→ 0 −→ . . .

which is a Γn-acyclic resolution of B in ZGrBe, so RΓn(B) ∼= Γn(J
•) is a bounded complex.

The following property was introduced in the seminal paper [AZ].

Definition 2.2.3. The algebra B is said to have property χ (on the left) if for every finitely
generated object M of ZGrB, ExtiB(k,M) has right bounded grading for all i ∈ N. Further, B is
said to satisfy property χ on the right if Bopp satisfies property χ.

The following observations on property χ will be useful later. For proofs and more information,
the reader is referred to section 3 in [AZ].
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Remark 2.2.4. – Recall that a Z-graded k-vector space is said to be locally finite if each of
its homogeneous components is a finite dimensional k-vector space. Since B is connected and
noetherian, it is locally finite, and so is any object of ZgrB. If N and M are objects of ZgrB with
N finitely generated and M left bounded and locally finite, then for each i ≥ 0 the k-vector spaces
ExtiZGrB(N,M) are left bounded and locally finite. It follows at once that B satisfies property χ
if and only if for every object M of ZgrB and each i ≥ 0 the k-vector space ExtiB(k,M) is finite
dimensional.

As stated in [AZ, Corollary 3.6], B satisfies property χ if and only if, for every object M
of ZgrB, the cohomology module H i

m(M) has right bounded grading for all i ∈ N. Notice that
property χ◦ mentioned in the reference is equivalent to χ because B is locally finite, see [AZ,
Proposition 3.11 (2)].

The following is a result relating property χ with the existence of a balanced dualizing complex
for B, see [VdB; Theorem 6.3].

Theorem 2.2.5. – Existence criterion for balanced dualizing complexes
The algebra B has a balanced dualizing complex if and only if both B and Bopp have finite local
cohomological dimension and satisfy property χ.

We will use Van den Bergh’s criterion to show that A has a balanced dualizing complex if
and only if any twist τA has a balanced dualizing complex. For this we need the following result.

Proposition 2.2.6. – Suppose B has finite local cohomological dimension. In that case B has
property χ if and only if the Z-graded k-vector spaces ExtiB(k, B) are finite dimensional for all
i ≥ 0.

Proof. We have already stated that property χ implies that ExtiB(k,M) is finite dimensional for
all i, so the “only if” part is clear.

For the “if” part, we use the local duality theorem for connected graded algebras, see [VdB;
Theorem 5.1] or [Jor; Theorem 2.3]: under the hypothesis, for every object M of ZgrB there
exists an isomorphism

RΓn(M)′ ∼= RHomB(M,RΓn(B)′)

in D(ZGrBopp). Since B has property χ if and only if H i
n(M) has right bounded grading for all

M in ZgrB, it is enough to check that the cohomology modules of the complex on the left hand
side of this isomorphism have left bounded grading.

Let A, resp B, be the category ZGrBe, resp. ZGrBopp, and let A′ and B′ be the corresponding
thick subcategories consisting of objects with left bounded grading. For every object M of ZgrB
we consider the functor

RHomB(M,−) : D+(A) −→ D(B).

Let X be an object of A′. We can compute ExtiB(M,X) using a finitely generated free resolution
of M , say P •. Since B has left bounded grading, the same holds for all the Bopp-modules of the
complex HomB(P •, X), and hence also for ExtiB(M,X), being a subquotient of HomB(P−i, X);
in other words ExtiB(M,X) lies in B′. By [Hart; Proposition 7.3(i)], given any complex X• with
cohomology modules in A′, the cohomology modules of RHomB(M,X•) are in B′.

By Remark 2.2.2, RΓn(B) and RΓn(B)′ lie in Db(ZGrBe). The hypothesis on B together
with [AZ; corollary 3.6(3)] ensures that the cohomology modules of this complex lie in A′, so
the cohomology modules of RHomB(M,RΓn(B)′) ∼= RΓn(M)′ lie in B′, that is they have left
bounded grading.
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We are now ready to prove that having a balanced dualizing complex is a twisting-invariant
property. Once again we regard A as being N-graded connected with the grading induced by φ.

Proposition 2.2.7. – Let τ be a normalized left twisting system on A over Zr+1.

1. lcdm,Z(A) = lcdτm,Z(τA).

2. Suppose lcdm,ZA is finite. In that case A has property χ if and only if τA has property χ.

3. A has a balanced dualizing complex if and only if τA has a balanced dualizing complex.

Proof. By Corollary 1.3.9 we know that lcdm,ZA = lcdm,Zr+1A and the same holds for τA, so item
1 follows from Lemma 1.2.8. By Proposition 1.3.7 and Lemma 2.1.8, for every i ≥ 0, the k-vector
spaces ExtiZGrA(k, A),ExtiZr+1GrA(k, A),ExtiZGrτA(k, τA) and ExtiZr+1GrτA(k, τA) are isomorphic, so
item 2 follows from Proposition 2.2.6. Finally item 3 follows from 1 and 2 by Van den Bergh’s
criterion, Theorem 2.2.5.

3 Twisted semigroup algebras.

In this section, we introduce some specific types of noncommutative deformations of semigroup
algebras. The study of these algebras is the main goal of this work. Although the hypothesis is
not always necessary, we will always assume that semigroups are commutative, cancellative and
have a neutral element; accordingly, subsemigroups must contain the neutral element and we only
consider morphisms compatible with this structure. Any semigroup S with these properties has a
group of fractions G, obtained by adding formal inverses to all elements by a process completely
analogous to that of passing from Z to Q, with the property that any semigroup morphism S → H
with H a group factors through G. We will often identify a semigroup with its image inside its
group of fractions. The definition of a G-graded k-algebra for a given commutative group G
extends in an obvious way to the notion of an S-graded k-algebra, and any S-graded k-algebra
can be seen as a G-graded k-algebra, G being the group of fractions of S, where the homogeneous
component of an element of G not in S is trivial.

The section is organized as follows. In subsection 3.1 we define certain noncommutative de-
formations of a semigroup algebra by means of 2-cocycles over the corresponding semigroup. In
subsection 3.2 we focus on the case where the semigroup is a finitely generated sub-semigroup of
Zn+1 for some n ∈ N, and apply the results obtained in the previous sections to establish results
regarding their homological regularity properties; we also prove some ring theoretical properties
of these algebras. In section 3.3 we study twisted lattice algebras, which were introduced in [LR1]
as degenerations of quantum analogues of Schubert varieties, and show that they fall under the
scope of the previous subsection.

3.1 Twisted semigroup algebras.

Let (S,+) be a commutative cancellative semigroup and let G be its group of fractions. Recall
that the semigroup algebra k[S] is by definition the k-vector space with basis {Xs | s ∈ S}
and multiplication defined on the generators by Xs · Xt = Xs+t and extended bilinearly. The
semigroup algebra is a G-graded k-algebra, where the homogeneous component of degree s of
k[S] is kXs if s ∈ S and {0} if s ∈ G \ S.

18



We are interested in the possible associative unitary integral algebra structures one can give
to the underlying k-vector space of k[S] which respect its G-grading. Given s, t ∈ S and any such
product ∗ over k[S],

Xs ∗Xt = α(s, t)Xs+t (†)

where α(s, t) ∈ k∗, so ∗ induces a map α : S × S −→ k∗. We will prove that this is enough
to guarantee integrality under a mild hypothesis on the semigroup. In order to guarantee as-
sociativity α must fulfill a 2-cocycle condition: for any three elements s, t, u ∈ S we must have
α(s, t)α(s + t, u) = α(t, u)α(s, t + u). Conversely any 2-cocycle over S with coefficients in k∗
defines an associative product on the k-vector space k[S] by means of formula (†). We denote
by ·α this product, and by kα[S] the algebra thus obtained. This is a unitary algebra with
1kα[S] = α(0S , 0S)−1X0.

The 2-cocycles of S with coefficients in the group k∗ form a group with pointwise multipli-
cation, denoted by C2(S,k∗). The unit of this group is the map 1 : S × S −→ k∗, defined by
(s, t) 7→ 1. Clearly k1[S] = k[S].

Definition 3.1.1. – Let α ∈ C2(S, k∗). We refer to kα[S] as the α-twisting of k[S].

Remark 3.1.2. – A 2-cocycle α of S with coefficients in k∗ will be called normalized if α(0, 0) = 1.
For such a 2-cocycle, the unit of kα[S] is X0. We denote by C2

norm(S,k∗) the subgroup of C2(S, k∗)
consisting of normalized 2-cocycles. Given α ∈ C2(S, k∗) and a = α(0, 0), the 2-cocycle α′ = a−1α
is normalized, and we call it the normalization of α. Multiplication by the constant a ∈ k∗
provides an isomorphism of S-graded k-algebras between kα[S] and kα′ [S], so without loss of
generality we may always consider normalized 2-cocycles.

Given a function f : S → k∗, the associated coboundary ∂f : S × S → k∗ is defined by

∂f(s, t) =
f(s)f(t)

f(s+ t)
.

This is always a 2-cocycle. The 2-coboundaries form a subgroup of C2(S, k∗) denoted byB2(S,k∗).
A 2-coboundary ∂f is normalized if and only if f(0) = 1. The following lemma proves that the
cohomology group H2(S, k∗) = C2(S,k∗)/B2(S,k∗) parametrizes the isomorphism classes of G-
graded integral unitary algebra structures over k[S].

Lemma 3.1.3. – Given α, β ∈ C2(S, k∗), the algebras kα[S] and kβ[S] are isomorphic as unitary
S-graded k-algebras if and only if there exists a 2-coboundary ∂f such that α = (∂f)β.

Proof. First assume α, β are elements of C2(S, k∗) such that α = (∂f)β for some ∂f ∈ B2(S,k∗).
The S-graded k-linear isomorphism F : kα[S] −→ kβ[S] mappingXs 7→ f(s)Xs is an isomorphism
of unitary k-algebras. Conversely, suppose α, β are elements of C2(S,k∗) such that there exists
an isomorphism F : kα[S] −→ kβ[S] of unitary, S-graded k-algebras. Then for each s ∈ S the
element Xs must be an eigenvector of F of non-zero eigenvalue, which we denote by f(s). It is
then easily seen that α = (∂f)β.

Let B2
norm(S, k∗) = C2

norm(S,k∗)∩B2(S,k∗). Since constant 2-cocycles are 2-coboundaries and
every 2-cocycle can be written as a constant cocycle times a normalized one, we get H2(S, k∗) ∼=
C2
norm(S, k∗)/Bnorm(S, k∗). This is reflected in the following fact: if the 2-cocycles in the previous

lemma are normalized, then the 2-coboundary ∂f is also a normalized 2-cocycle.
We recall that the semigroup S is said to be totally ordered if the underlying set of S has a

total order with the following property: given s, s′ ∈ S such that s ≤ s′, then s + t ≤ s′ + t for
all t ∈ S. The following lemma is easily proved using a “leading term” argument.
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Lemma 3.1.4. – If S is totally ordered then the algebra kα[S] is an integral domain for all
α ∈ C2(S,k∗).

For the purpose of the next lemma we need to recall the definition of a quantum affine space.
Let l ∈ N and consider a multiplicatively skew-symmetric matrix q = (qij)0≤i,j≤l with entries
in k∗. The associated quantum affine space, denoted by kq[X0, . . . , Xl], is the k-algebra with
generators X0, . . . , Xl and relations XiXj = qijXjXi for 0 ≤ i, j ≤ l. Quantum affine spaces are
iterated Ore extensions of k and therefore noetherian.

Lemma 3.1.5. – If S is finitely generated as a semigroup then kα[S] is a noetherian algebra for
all α ∈ C2(S,k∗).

Proof. Suppose S is generated as a semigroup by s0, . . . , sl for some l ∈ N. The algebra kα[S] is
generated as a k-algebra by Xs0 , . . . , Xsl , and for 0 ≤ i, j ≤ l we have α(si, sj)

−1Xsi ·α Xsj =

Xsi+sj = α(sj , si)
−1Xsj ·α Xsi , so Xsi ·α Xsj =

α(si,sj)
α(sj ,si)

Xsj ·α Xsi . Setting qij =
α(si,sj)
α(sj ,si)

for 0 ≤
i, j ≤ l we obtain a multiplicatively skew-symmetric matrix q = (qij)i,j , and the assignation Xi 7→
Xsi defines a surjective morphism of k-algebras kq[X0, . . . , Xl] −→ kα[S]; since kq[X0, . . . , Xl] is
noetherian, so is kα[S].

Remark 3.1.6. – By [CE; Chapter X, Proposition 4.1] the inclusion i : S → G induces an
isomorphism i∗ : H2(G,k∗) → H2(S,k∗). Setting ι = i × i : S × S → G ×G, this result implies
that given α ∈ C2(S,k∗) one can always find a 2-cocycle β ∈ C2(G,k∗) such that α and β ◦ ι are
cohomologous. Hence there is a chain of k-algebra morphisms

kα[S]
∼=→ kβ◦ι[S] ↪→ kβ[G],

with the last one given by the assignation Xs 7→ Xi(s). From this we deduce that every twist of
k[S] by a 2-cocycle is isomorphic to a G-graded subalgebra of a twist of k[G] by a 2-cocycle. This
construction works for any monoid that embeds injectively in its fraction group. We will give an
explicit proof of this for a special class of semigroups in the next section, see Proposition 3.2.5.

3.2 Twisted affine semigroup algebras.

We now introduce our main object of interest, twisted affine semigroup algebras. These are
twisted semigroup algebras where S is an affine semigroup. We start by recalling some facts on
affine semigroups.

Definition 3.2.1. – An affine semigroup is a finitely generated semigroup S which is isomorphic
as a semigroup to a sub-semigroup of Zl for some l ≥ 0. An affine semigroup S is positive if it
is isomorphic to a sub-semigroup of Nl for some l ≥ 0.

Let S be an affine semigroup. By definition there exist l ∈ N and an injective morphism
i : S −→ Zl of semigroups, so S is abelian and cancellative. Its group of fractions G identifies
with a subgroup of Zl, so it is isomorphic as a group to Zr for some r ≥ 0. Clearly such an integer

r is independent of the choice of l and i; it is called the rank of S. An embedding S
i−→ Zl is

called a full embedding whenever the group generated by the image of S is Zl. Clearly any affine
semigroup of rank r has a full embedding in Zr.

Definition 3.2.2. – A twisted affine semigroup algebra is an algebra kα[S] where S is an affine
semigroup and α an element of C2

norm(S,k∗).
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Lemma 3.2.3. – A twisted affine semigroup kα[S] is a noetherian integral domain.

Proof. Suppose the rank of S is r and fix an embedding S → Zr. We can endow S with a total
order by pulling back the lexicographic order of Zr; by Lemma 3.1.4 kα[S] is an integral domain.
Since S is finitely generated, Lemma 3.1.5 implies kα[S] is noetherian.

Remark 3.2.4. – Let S be an affine semigroup and let α ∈ C2
norm(S,k∗). Definition 3.2.2

associates to the pair (S, α) the twisted affine semigroup algebra kα[S]. As discussed in the
introduction to this section, kα[S] has a natural G-grading where G is the group of fractions of
S. Fixing an isomorphism G ∼= Zr, with r the rank of S, we obtain a full embedding ι : S → Zr.
From this point on we assume that any affine semigroup comes with one such embedding, so
given any α ∈ C2

norm(S,k∗) we will be in position to associate to the triple (S, ι, α) the Zr-graded
twisted affine semigroup algebra kα[S]. The corresponding grading will be called the grading of
kα[S] associated to ι, or simply the natural grading.

We now describe a way to produce twisted affine semigroup algebras as subalgebras of quan-
tum tori. Fix l ∈ N and a skew-symmetric matrix q = (qij)0≤i,j≤l with entries in k∗. Con-
sider the associated quantum affine space kq[X0, . . . , Xl]. As already noted this is a noetherian
integral domain and the generators X0, . . . , Xl are normal regular, so we may form the local-
ization of kq[X0, . . . , Xl] at the multiplicative set generated by X0, . . . , Xl which we denote by
kq[X±1

0 , . . . , X±1
l ] and call the quantum torus associated to l and q. In this context, we fix the

following notation: for s = (s0, . . . , sl) ∈ Zl+1 we write Xs for Xs0
0 · · ·X

sl
l ∈ kq[X±1

0 , . . . , X±1
l ].

Clearly the set {Xs | s ∈ Zl+1} is a basis of the k-vector space kq[X±1
0 , . . . , X±1

l ]. We consider
two gradings on this algebra: the first one is a Zl+1-grading obtained by assigning degree ei to
Xi for all 0 ≤ i ≤ l, where {e0, · · · , el} is the canonical basis of Zl+1. The second is a Z-grading
obtained by assigning degree 1 to each Xi.

Let S be any finitely generated sub-semigroup of Zl+1. It is clear that the k-subspace of
kq[X±1

0 , . . . , X±1
l ] generated by {Xs | s ∈ S} is a k-subalgebra, which we denote by kq[S]; this

subalgebra inherits both the Zr+1 and the Z-grading of the ambient quantum torus. Notice that
for all s, t ∈ S there exists α(s, t) ∈ k∗ such that XsXt = α(s, t)Xs+t, so associated to this
algebra we obtain a map α : S × S −→ k∗. It follows from the associativity of the product of
kq[S] that α is a 2-cocycle over S with coefficients in k∗ and so kq[S] is isomorphic to kα[S], that
is kq[S] is a twisted affine semigroup algebra. The next proposition shows that all twisted affine
semigroup algebras arise this way.

Proposition 3.2.5. – Let S be an affine semigroup, α ∈ C2
norm(S, k∗), and ι : S −→ Zn+1 a full

embedding of S. There exists a multiplicatively skew-symmetric matrix q = (qij)0≤i,j≤n and an
injective morphism of k-algebras

kα[S] −→ kq[X±1
0 , . . . , X±1

n ]

which for every s ∈ S sends Xs to a nonzero scalar multiple of Xι(s), and whose image is kq[ι(S)].

Proof. Since ι is a full embedding, the rank of S is n + 1. Put A = kα[S]. Clearly for every
s ∈ S the element Xs is normal, so we may consider the localization of A at the multiplicative
set generated by all these elements, which we denote by A◦. As discussed before A has a Zn+1

grading induced by ι, and since we have only inverted homogeneous elements, so does A◦. By
Lemma 3.2.3 every element we have inverted is normal regular, so the natural map A → A◦ is
an injective morphism of Zn+1-graded k-algebras. We will finish the proof by showing that A◦ is
isomorphic to a quantum torus in n+ 1-variables.
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Given u ∈ Zn+1, the homogeneous component A◦u is generated by all monomials of the form
Xs(Xt)−1 with ι(s) − ι(t) = u; notice that there always exist s, t ∈ S with this property since
ι is a full embedding. A simple algebraic manipulation shows that any two such monomials are
scalar multiples, so dimkA

◦
u = 1 for all u ∈ Zn+1.

For each element ei of the canonical basis of Zn+1 we choose elements si, ti ∈ S such that
ι(si) − ι(ti) = ei, and write Yi := Xsi(Xti)−1 for 0 ≤ i ≤ n. Since the elements Xs commute
up to nonzero scalars with each other, the same must be true of the Yi, so there exist qij ∈
k∗ such that YiYj = qijYjYi; since A◦ is an integral domain, q = (qij) is a multiplicatively
skew-symmetric matrix. In addition, ordered monomials in Y0, . . . , Yn with powers in Z form
a basis of homogeneous elements for A◦, so there is a Zn+1-graded k-algebra morphism ψ :
kq[X±1

0 , · · · , X±1
n ]→ A◦ such that ψ(Xi) = Yi for each 0 ≤ i ≤ n; since both algebras have one-

dimensional homogeneous components, ψ is an isomorphism, and clearly ψ(kq[ι(S)]) = A.

Thanks to Proposition 3.2.5, in order to study twisted affine semigroup algebras we can
restrict to the following setting: we start with n ∈ N, a finitely generated subsemigroup S of
Zn+1 and a multiplicatively skew-symmetric matrix q = (qij)0≤i,j≤n with entries in k∗. We then
consider the k-subalgebra kq[S] of kq[X±1

0 , · · · , X±1
n ], equipped with the Zn+1-grading it inherits

from kq[X±1
0 , · · · , X±1

n ].

Proposition 3.2.6. – In the setting of the last paragraph, the k-algebra kq[S] is a left twist of
k[S] over Zn+1.

Proof. Using a reasoning similar to the one found in [Z; section 6] to study twists of quantum
affine spaces, one can prove that the Zn+1-graded algebra kq[X±1

0 , . . . , X±1
n ] is a left twist of the

Laurent polynomial algebra k[X±1
0 , . . . , X±1

n ]. The result follows by applying Proposition 1.2.7
to the subalgebra k[S] of k[X±1

0 , . . . , X±1
n ].

We are now in position to study the homological regularity properties of twisted affine semi-
group algebras for positive affine semigroups. This is done in Theorems 3.2.7 and 3.2.9. For both
statements we fix an affine semigroup S with an embedding of semigroups ι : S −→ Zn+1 such
that ι(S) ⊆ Nn+1. As specified in remark 3.2.4, for any α ∈ C2(S,k∗) the algebra kα[S] comes
equipped with a natural Zn+1-grading and is connected with respect to this grading, so we are
in the context of the introduction to section 2.

Theorem 3.2.7. – With the previous notation and for all α ∈ C2
norm(S,k∗), the following holds:

1. kα[S] is AS-Cohen-Macaulay if and only if k[S] is AS-Cohen-Macaulay.

2. kα[S] is AS-Gorenstein if and only if k[S] is AS-Gorenstein.

3. kα[S] is AS-regular if and only if k[S] is AS-regular.

Proof. Since kα[S] is a twist of k[S], the result follows at once from Theorem 2.1.9.

Remark 3.2.8. – For a precise account on the regularity of affine semigroup algebras in the
commutative setting, the reader is referred to [BH; Chap. 6], in particular to statements 6.3.5
and 6.3.8.

Theorem 3.2.9. – In the above notation and for all α ∈ C2
norm(S, k∗), the algebra kα[S] has a

balanced dualizing complex.
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Proof. Notice first that k[S] is a commutative noetherian connected N-graded k-algebra of finite
Krull dimension. By Grothendieck’s vanishing theorem [BS; Theorem 6.1.12] and Corollary 1.3.9,
the local cohomological dimension of k[S] is finite, and by [AZ; Prop. 3.11] it has property χ.
Thus Theorem 2.2.5 states that k[S] has a balanced dualizing complex. Since kα[S] is a twist of
k[S], the result follows from Proposition 2.2.7.

We finish this subsection by establishing certain ring theoretic properties of twisted affine semi-
group algebras. We show that, under a mild hypothesis on the underlying semigroup, a twisted
affine semigroup algebra can be written as the intersection of a finite family of sub-algebras of its
skew-field of fractions, each isomorphic to a twisted semigroup algebra with underlying semigroup
Zn⊕N, see Proposition 3.2.14. As a consequence, we get a characterization of those twisted affine
semigroup algebras which are maximal orders in their skew-field of fractions. For this we need
to recall some geometric information on affine semigroups, which we quote without proof. The
interested reader will find a more thorough treatment of the subject in [F; Chapter 1] or [BH;
Chapter 6].

Let S be a finitely generated sub-semigroup of Zn+1 for some n ≥ 0, and assume that S
generates Zn+1 as a group. We may see S as a subset of Rn+1 and consider R+S ⊂ Rn+1, the
set formed by R-linear combinations of elements of S with coefficients in the set of non-negative
real numbers, called the cone generated by S in Rn+1. Notice that any generating set of the
semigroup S generates Rn+1 as an R-vector space and that, if {s1, . . . , sl} is such a generating
set, then R+S = {r1s1 + . . .+ rlsl | (r1, . . . , rl) ∈ Rl+}. In particular, R+S is a convex polyhedral
cone in the sense of [F; Section 1.2].

A supporting hyperplane of R+S is a hyperplane that divides Rn+1 in two connected compo-
nents such that S, and hence R+S, is contained in the closure of one of them. A face of R+S is
the intersection of R+S with a supporting hyperplane; a facet is a face of codimension one, i.e.
a face that generates a hyperplane of Rn+1. We write τ < R+S if τ is a facet of R+S, and Hτ

for the unique supporting hyperplane which contains τ .
Let τ < R+S. We denote by Dτ the closure of the connected component of Rn+1 \ Hτ

containing S. By [F; Section 1.2, Point (8)], if R+S 6= Rn+1 then

R+S =
⋂

τ<R+S

Dτ .

For any facet τ of R+S let Sτ = Dτ ∩ Zn+1. This is clearly a sub-semigroup of Zn+1, and we
always have

S ⊆ R+S ∩ Zn+1 =

 ⋂
τ<R+S

Dτ

 ∩ Zn+1 =
⋂

τ<R+S

Sτ . (‡)

However, equality does not hold unless an additional assumption is made on S.

Definition 3.2.10. – Let G be the group of fractions of S. We say that S is normal if it satisfies
the following condition: if g ∈ G and there exists p ∈ N∗ such that pg ∈ S, then g ∈ S.

With the notation of the previous discussion, the semigroup Sτ is always normal, hence so
is

⋂
τ<R+S

Sτ . Thus for S to be equal to this intersection, it must be normal. The following
proposition shows that this condition is not only necessary but sufficient. Gordan’s Lemma [BH;
Proposition 6.1.2] states that if S is normal then S = R+S∩Zn+1, which combined with (‡) gives
the following result.
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Proposition 3.2.11. – Let S be a finitely generated subsemigroup of Zn+1 that generates Zn+1

as a group. If S is normal, then

S =
⋂

τ<R+S

Sτ .

The previous proposition shows that one may recover a normal affine semigroup from the
facets of its cone. The following is a related result that characterizes the semigroup Sτ .

Proposition 3.2.12. – Let S be a finitely generated subsemigroup of Zn+1 which generates Zn+1

as a group. If τ is any facet of R+S, then Sτ ∼= Zn ⊕ N as a semigroup.

Proof. Let τ < R+S and let S∗τ be the set of invertible elements of Sτ ; notice that S∗τ = Hτ∩Zn+1,
and that the inclusion S∗τ ⊂ Sτ is strict, since otherwise S would be contained in Hτ . Clearly
S∗τ is a subgroup of Zn+1, and by [F; 1.2(2)] it generates Hτ as a k-vector space, so it is a free
abelian group of rank n. Since Sτ is normal and generates Zn+1, the factor group Zn+1/S∗τ is
torsion free and hence S∗τ is a direct summand of Sτ ; we fix a complement Cτ . Since Sτ is normal
so is Cτ , so this last one must be a normal affine semigroup of rank 1. The result follows from
the fact that any normal affine semigroup of rank 1 is isomorphic to either N or Z, and Cτ is not
a group.

The next observation will be useful latter.

Remark 3.2.13. – Let S be a finitely generated subsemigroup of Zn+1 that generates Zn+1 as
a group, with a set of generators X = {s1, . . . , sl}, and let τ be any facet of R+S. Recall from
[F; 1.2 (2)] that Hτ is generated by X ∩ τ , so without loss of generality we may assume that
{s1, s2, . . . , sn} is a basis of Hτ ; we may also assume that sn+1 /∈ Hτ . Since Sτ = Dτ ∩ Zn+1, it
follows that S̃ = Zs1 + · · ·+ Zsn + Nsn+1 + · · ·+ Nsl ⊆ Sτ . We now prove that, if S is normal,
this inclusion is an equality.

A simple induction shows that for every 1 ≤ k ≤ l the semigroup Zs1 + · · ·+ Zsk + Nsk+1 +
· · ·+ Nsl is normal, so in particular S̃ is normal. Let x ∈ Sτ . Since {s1, . . . , sn} is a basis of Hτ

and sn+1 /∈ Hτ , the set {s1, . . . , sn, sn+1} is a basis of Qn+1. Now x has integral coordinates, so
there exist a1, . . . , an, an+1 ∈ Q such that x = a1s1 + · · ·+ ansn + an+1sn+1, and since x ∈ Dτ we
deduce that an+1 ≥ 0. This implies there exists c ∈ N∗ such that cx ∈ S̃, and since S̃ is normal
x ∈ S̃, so Sτ ⊆ S̃.

Propositions 3.2.11 and 3.2.12 have the following consequence.

Proposition 3.2.14. – Let S be a finitely generated subsemigroup of Zn+1 which generates Zn+1

as a group, and let q = (qij)0≤i,j≤n be any skew-symmetric matrix with entries in k∗.

1. If S is normal then kq[S] =
⋂

τ<R+S

kq[Sτ ] ⊆ kq[Zn+1].

2. For all τ < R+S, there exists a skew-symmetric (n+1)× (n+1) matrix qτ such that kq[Sτ ]
is isomorphic to the subalgebra kqτ [Zn ⊕ N] of kqτ [Zn+1].

3. If S is normal, then for all τ < R+S the algebra kq[Sτ ] is isomorphic to a left and a right
localization of kq[S].

Proof. Item 1 follows at once from Proposition 3.2.11. Let us prove item 2. By Proposition
3.2.12, Sτ is isomorphic to Zn⊕N as semigroup. Fix a semigroup isomorphism φ : Zn⊕N −→ Sτ
and set ti = φ(ei), where ei is the i-th element of the canonical basis of Zn+1. For 0 ≤ i, j ≤ n,
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there is an element q′ij ∈ k∗ such that the equality XtiXtj = q′ijX
tjXti holds in kq[Zn+1], and

qτ = (q′ij)0≤i,j≤n is a skew-symmetric matrix with entries in k∗. The morphism of k-algebras
kqτ [Zn ⊕ N] −→ kq[Sτ ] Xi 7→ Xti , which is evidently an isomorphism.

We now prove item 3. Remark 3.2.13 implies that there is a set of generators {s1, . . . , sl} of S
such that Sτ = (Zs1 + · · ·+Zsj) + (Nsj+1 + · · ·+Nsl) for some integer j. It follows immediately
that kq[Sτ ] is the localization of kq[S] at the multiplicative set generated by Xs1 , . . . , Xsj .

By a well-known result the ring k[S] is normal, i.e. it is an integral domain which is integrally
closed in its field of fractions, if and only if the affine semigroup S is normal; see [BH; 6.1.4] for
a proof. We now show that the result extends to the noncommutative situation with a suitable
generalization of normality.

Let R be a noetherian integral domain, and let Frac(R) be its skew-field of fractions, in the
sense of [MR; Chapter 1] or [McCR; Chapter 2, §1]. It is then immediate that R is an order of
Frac(R) as in [MR; chap. I, §2]. By definition R is a maximal order of Frac(R) if it satisfies the
following condition: if T is any subring of Frac(R) such that R ⊆ T ⊆ Frac(R) and if there exist
a, b ∈ R \ {0} such that aTb ⊆ R, then T = R. We refer the reader to [MR; Chapter 1] for a
general account on maximal orders.

For every non-zero ideal I ⊆ R we set Ol(I) = {q ∈ Frac(R) | qI ⊆ I} and Or(I) = {q ∈
Frac(R) | Iq ⊆ I}, called the left and right order of I in Frac(R), respectively. By [MR; Chap. I,
3.1], R is a maximal order of Frac(R) if and only if Ol(I) = Or(I) = R for any non-zero ideal I
of R. We use this criterion to prove the following auxiliary result.

Lemma 3.2.15. – Let R be a noetherian integral domain and I a nonempty set of left and right
Ore sets of R. Suppose that for every O ∈ I the left and right localization R[O−1] is a maximal
order in Frac(R). If R =

⋂
O∈I R[O−1], then R is a maximal order in Frac(R).

Proof. Put Q = Frac(R) and RO = R[O−1] for each O ∈ I; notice that these are noetherian
integral domains by [McCR; 2.1.16]. Let I be a non-zero ideal of R. Recall that both IRO and
ROI are equal to the two-sided ideal of RO generated by I, see [McCR; 2.1.16]. Now for each
q ∈ Ol(I), we have qI ⊆ I, so qIRO ⊆ IRO and by the criterion mentioned in the preamble to
this lemma we get that q ∈ RO for all O ∈ I; the same argument holds for q ∈ Or(I). Since
R = ∩O∈IRO this shows that R = Or(I) = Ol(I), and hence R is a maximal order in Q.

Corollary 3.2.16. – Let S be an affine semigroup. The following statements are equivalent:

(i) S is normal.

(ii) kα[S] is a maximal order in its division ring of fractions for each α ∈ C2
norm(S,k∗).

(iii) There exists α ∈ C2
norm(S, k∗) such that kα[S] is a maximal order in its division ring of

fractions.

Proof. Fix an integer n ∈ N such that S identifies with a sub-semigroup of Zn+1 which gen-
erates Zn+1 as a group. By Proposition 3.2.5, given any α ∈ C2

norm(S,k∗), the algebra kα[S]
identifies with kq[S] ⊆ kq[X±1

0 , . . . , X±1
n ] for some skew-symmetric matrix q. We will make this

identification without further comment.

We first show that (i) implies (ii). We are in position to apply Proposition 3.2.14 so kq[S] =⋂
τ<R+S

kq[Sτ ]; now for each facet τ < R+S, the algebra kq[Sτ ] is isomorphic to a quantum affine

space localized at some of its canonical generators, so it is a maximal order by [MR; Chapitre V,
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Corollaire 2.6 and Chapitre IV, Proposition 2.1]. Also kq[Sτ ] is a localization of kq[S], so it is
enough to apply Lemma 3.2.15. Obviously (ii) implies (iii).

We now prove that (iii) implies (i). Consider t = (t0, . . . , tn) ∈ Zn+1 and suppose that kt ∈ S
for some positive integer k. We denote by T the left kq[S]-submodule of Frac(kq[S]) generated
by the set {(Xt)l | l ∈ N}, where Xt = Xt0

0 . . . Xtn
n . Since Xt commutes up to non-zero scalars

with all Xs for s ∈ S, we see that T is a subring of Frac(kq[S]) which clearly contains kq[S].

The hypothesis on t implies that T is finitely generated, since T =
∑k−1

l=0 kq[S](Xt)l. For each
0 ≤ l < k fix sl, tl ∈ S such that tl = sl − tl, so (Xt)l and Xsl(Xtl)−1 coincide up to a non-zero
scalar. Taking a = 1 and b =

∏
0≤l<kX

tl we get that aTb ⊆ kq[S]; since kq[S] is a maximal order
in its division ring of fractions T ⊆ kq[S], in particular Xt ∈ kq[S], so t ∈ S.

3.3 Twisted lattice algebras.

In this subsection we consider a class of algebras arising in a natural way from a given finite
distributive lattice together with some additional data. These algebras, which we call twisted
lattice algebras, were introduced in [RZ; Section 2] where they appeared as degenerations of some
quantum Schubert and Richardson varieties; their study was the original motivation for this work.
In the course of this subsection we show that they are twisted affine semigroup algebras, so the
results from the previous subsection apply to them.

For the basic notions concerning ordered sets and lattices, as well as all unexplained termi-
nology and notation, we refer to [RZ; Section 1] and the references therein. Recall in particular
the following classical result.

Theorem 3.3.1. (Birkhoff) – Let Π be a finite distributive lattice. Denote by Π0 = irr(Π) the
set of its join-irreducible elements and by J(Π0) the set of Π0-ideals, ordered by inclusion. The
map

ϕ : Π −→ J(Π0)
α 7−→ {π ∈ Π0 | π ≤ α}

is an isomorphism of lattices, and the rank of Π coincides with the cardinality of Π0.

For the rest of this sub-section we fix a finite distributive lattice (Π,≤). We will associate to
Π a normal affine semigroup. Let fr(Π) be the free commutative monoid over Π. For x in fr(Π)
different from the unit element we define the length of x, denoted `(x), as the unique element
l of N∗ such that x may be written as the product of l elements of Π. By convention the unit
element has length 0.

We consider the equivalence relation on fr(Π) compatible with the product generated by the
set {(αβ, (α ∧ β)(β ∨ α)) | α, β ∈ Π} ⊆ fr(Π)× fr(Π). We denote by str(Π) the quotient monoid

str(Π) = fr(Π)/ ∼ .

which we call the straightening semigroup of Π.

Lemma 3.3.2. – Any element of str(Π) different from the unit element may be written as a
product π1 . . . πs, with s ∈ N∗ and π1 ≤ · · · ≤ πs.

Proof. The argument is an easy double induction on s and the depth of πs in Π, analogous to
the proof of [RZ; Lemma 2.5].

We now want to show that str(Π) is actually a normal affine semigroup. For this we follow
[H]. Let n ∈ N be the rank of Π. We consider on Π0 ⊆ Π the induced order, and extend it a total
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order ≤tot. We denote by p1 <tot · · · <tot pn the strictly increasing sequence of elements of Π0

with respect to ≤tot, and consider the morphism of monoids

fr(Π) −→ Zn+1

π 7−→ e0 +
∑

{i|pi≤π}

ei,

where {e0, . . . , en} is the canonical basis of Zn+1. It is clear that for α, β ∈ Π the images of αβ
and (α ∧ β)(α ∨ β) by this map coincide. As a consequence we get an induced morphism

i : str(Π)→ Zn+1.

We consider now the following sub-semigroups of Zn+1. Set

T = {(s0, . . . , sn) ∈ Nn+1 | s0 ≥ max{s1, . . . , sn}}.

Given α, β ∈ Π0 we say that β is consecutive to α, which we denote by α ≺ β, if α < β and there
is no γ ∈ Π0 such that α < γ < β. Now for each pair (pi, pj) of elements of Π0 such that pj is
consecutive to pi we define

Sij = {(s0, . . . , sn) ∈ Nn+1 | si ≥ sj}.

Finally, set

S = T ∩

 ⋂
pi≺pj

Sij

 .

We will prove that the semigroup str(Π) is isomorphic to S.

Proposition 3.3.3. – Keep the notation from the previous paragraph.

(i) The map i is injective and its image is equal to S.

(ii) The semigroup S generates Zn+1 as a group.

(iii) The semigroup str(Π) is a normal affine semigroup of rank n.

Proof. By definition S is a sub-semigroup of Zn+1, and since i(π) ∈ S for all π ∈ Π we get that
i(str(Π)) ⊆ S.

To prove (i) we find an inverse to i. Let s = (s0, s1, . . . , sn) ∈ S and define the support of
s by supp(s) = {pi, 1 ≤ i ≤ n | si 6= 0}. We easily see that supp(s) ∈ J(Π0), so whenever s is a
non-zero element of S we may consider the element s′ obtained from s by subtracting 1 from any
nonzero entry of s, that is s′ = s − i(ϕ−1(supp(s))). By definition s′ belongs to S, and its first
entry equals the first entry of s minus 1.

Now, let s = (s0, s1, . . . , sn) ∈ S be a non-zero element. Applying the construction of the
last paragraph inductively s0 times we produce a sequence s = s(0), s(1), . . . , s(s0) = 0 of elements
of S and a corresponding sequence supp(s) = supp(s(0)) ≥ supp(s(1)) ≥ · · · ≥ supp(s(s0)) = ∅ of
elements of Π. Thus

s = i ◦ ϕ−1(supp(s(0))) + · · ·+ i ◦ ϕ−1(supp(s(s0−1))).

We then define a map ψ : S −→ str(Π) as follows: we set ψ(0) = 1, and for all s ∈ S \ {0} set
ψ(s) = ϕ−1(supp(s(0))) . . . ϕ−1supp(s(s0−1)); by the previous discussion i ◦ ψ = id. We now prove
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that ψ ◦ i = id. In view of lemma 3.3.2, it is enough to show that ψ ◦ i(π1π2 . . . , πs) = π1π2 . . . πs
for all s ∈ N∗ and π1, . . . , πs ∈ Π such that π1 ≤ · · · ≤ πs ∈ Π. An elementary proof shows
that in this context, i(π1 . . . πs) is a nonzero element of S to which the process described before
associates the decreasing sequence πs ≥ · · · ≥ π1 in Π, so ψ ◦ i(s) = s.

We now show that S generates Zn+1 as a group. It is clear that e0 ∈ S and that, given
1 ≤ i ≤ n, the sets I = {π ∈ Π0 |π ≤ pi} and J = {π ∈ Π0 |π < pi} are poset ideals of Π0.
Put πI = ϕ−1(I) and πJ = ϕ−1(J); as we have seen i(πI), i(πJ) ∈ S and ei = ϕ(πJ) − ϕ(πI),
which proves item (ii). Item (iii) follows immediately from the previous items and the definition
of S.

By an argument similar to the one used in the proof of item (i) of Proposition 3.3.3 we get
the following statement, which strengthens the existence statement of Lemma 3.3.2.

Proposition 3.3.4. – Keep the notation from the previous paragraph. To any element a of
str(Π) different from the unit element we may associate in a unique way an integer t ∈ N∗ and
an increasing sequence π1 ≤ · · · ≤ πt ∈ Π such that a = π1 . . . πt.

Definition 3.3.5. – Let Π be a finite distributive lattice and α a normalized 2-cocycle on str(Π).
We call the k-algebra kα[str(Π)] the twisted lattice algebra associated with Π and α.

We finish this article with a proof of the result announced in [RZ; Remark 5.2.8]. First we
show that quantum toric algebras as defined in [RZ; Section 2] are examples of twisted lattice
algebras.

Example 3.3.6. – Let Π be a finite distributive lattice and consider maps q : Π × Π −→ k∗
and c : inc(Π × Π) −→ k∗, where inc(Π × Π) is the set of pairs (α, β) ∈ Π × Π such that α
and β are incomparable elements of Π. To the data consisting of Π,q and c we associate the
quantum toric algebra AΠ,q,c defined in [RZ; Section 2]. Assume that standard monomials on
Π form a k-linear basis of AΠ,q,c as in [RZ; Remark 2.1], and let ψ : AΠ,q,c −→ k[str(Π)] be
the k-linear morphism that sends 1 to 1 and a standard monomial Xπ1 . . . Xπt ∈ AΠ,q,c to the
element π1 . . . πt ∈ k[str(Π)] for any t ∈ N∗ and any increasing sequence π1 ≤ · · · ≤ πt ∈ Π.
The map ψ is an isomorphism of k-vector spaces by Proposition 3.3.4, and so the product of
AΠ,q,c induces a product on k[str(Π)], which is compatible with the Zn+1-grading induced by the
morphism i : str(Π) → Zn+1. Hence there exists a unique normalized 2-cocycle α on fr(Π) such
that k[str(Π)] endowed with this new associative algebra structure equals kα[str(Π)].

For the benefit of the reader we make a quick review of the context of [RZ; Remark 5.2.8].
All unexplained terminology can be found in [RZ; section 5] and the references therein.

Fix q ∈ k∗ and let m,n be integers such that 1 ≤ m ≤ n. Consider the quantum analogue of
the coordinate ring on the affine space of n×m matrices: Oq(Mn,m(k)), and let Πm,n ⊂ Nm be
the set of m-tuples (i1, . . . , im) such that 1 ≤ i1 < . . . < im ≤ n with the obvious product order
inherited from Nm; it follows that Πm,n is a distributive lattice. To any element I ∈ Πm,n we may
associate the quantum minor, denoted [I], of Oq(Mn,m(k)) built on the rows with index in I and
columns 1 to m of the generic matrix ofOq(Mn,m(k)). The subalgebra, Oq(Gm,n), ofOq(Mn,m(k))
generated by these quantum minors is a natural analogue of the homogeneous coordinate ring
of the grassmannian with respect to the Plücker embedding. It is then easy to associate to any
element I ∈ Πm,n a quantum Schubert and quantum opposite Schubert variety by considering
the factor algebras Oq(Gm,n)/〈[K], K ∈ Πm,n, K 6≤ I〉 and Oq(Gm,n)/〈[K], K ∈ Πm,n, K 6≥ I〉,
respectively. A natural analogue of the Richardson variety associated to a pair (I, J) of elements
of Πm,n being then defined as the factor algebra Oq(Gm,n)/〈[K], K ∈ Πm,n, K 6∈ [I, J ]〉.
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As proved in [RZ; Theorem 5.2.2], quantum Richardson varieties belong to the class of sym-
metric quantum algebras with a straightening law satisfying condition (C), see [RZ; Definition
3.1, Definition 4.1]. We are now in position to complete the proof of [RZ; Remark 5.2.8].

Proposition 3.3.7. – Suppose A is a symmetric quantum graded algebra with a straightening
law on the finite partially ordered set Π, and suppose that A satisfies condition (C). Then A is a
normal integral domain in the sense of [RZ; Remark 5.2.8]. In particular, quantum Richardson
varieties are normal domains.

Proof. By [RZ; Remark 5.2.8], it suffices to show that, if Π is a finite distributive lattice and
q : Π × Π −→ k∗ and c : inc(Π × Π) −→ k∗ are maps such that standard monomials on Π
form a k-linear basis of AΠ,q,c, then AΠ,q,c is a normal domain. As stated in Example 3.3.6, the
algebra AΠ,q,c is isomorphic to a 2-cocycle twist of k[str(Π)]. On the other hand Proposition 3.3.3
shows that str(Π) is a normal affine semigroup, so applying Corollary 3.2.16 we prove the general
statement. Since quantum Richardson varieties fall under this context, the claim follows.
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