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Vol. 60, No. 2, 2019, Pages 539–566
Published online: November 27, 2019
https://doi.org/10.33044/revuma.v60n2a17

REGULARITY OF MAXIMAL FUNCTIONS ASSOCIATED
TO A CRITICAL RADIUS FUNCTION

BRUNO BONGIOANNI, ADRIÁN CABRAL, AND ELEONOR HARBOURE

Abstract. In this work we obtain boundedness on BMO and Lipschitz type
spaces in the context of a critical radius function. We deal with a local maximal
operator and a maximal operator of a one parameter family of operators with
certain conditions on its kernels that can be applied to the maximal of the
semi-group in the context of a Schrödinger operator.

1. Introduction and preliminaries

In this work we deal with the boundedness of some maximal operators acting on
BMO and Lipschitz type spaces that come from the localized analysis considering
a critical radius function ρ, i.e., a function that satisfies

c−1
ρ ρ(x)

(
1 + |x− y|

ρ(x)

)−N0

≤ ρ(y) ≤ cρ ρ(x)
(

1 + |x− y|
ρ(x)

) N0
N0+1

, (1.1)

for all x, y ∈ Rd (see [1] and [2]).
This analysis appears in the context of the Schrödinger operator L = −∆ + V

in Rd, d ≥ 3 (see for example [8], [13], and references therein).
For x ∈ Rd, a ball of the form B(x, ρ(x)) is called critical and a ball B(x, r) with

r < ρ(x) will be called sub-critical. We denote by Bρ the family of all sub-critical
balls.

One of the operators we are interested in is the localized maximal operator Mρ

defined for f ∈ L1
loc as

Mρf(x) = sup
x∈B∈Bρ

1
|B|

ˆ
B

|f |.

In [5] the authors prove that Mρ is bounded on Lp(w) for 1 < p < ∞, where w
belongs to a suitable class larger than classical Ap Muckenhoupt weights. Here we
deal with the boundedness of Mρ in a weighted BMO type space that appears in
[8] for w = 1, and in [3] with weighted versions.
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We also deal with some type of maximal operator of a family of operators pre-
sented in Section 5 that is a model to deal with semi-groups appearing in the theory
related to the Schrödinger operator L. Some results concerning this operator in a
more general context can be found in [14] and [16].

In the rest of this section we present some facts about the critical radius function.
Section 2 is devoted to present the classes of weights involved in this work and some
properties of them that will be useful. In Section 3 we present some properties of
BMOβ

ρ spaces that will be used later. In Section 4 and Section 5 we state and
prove the main results of this work finding the behavior of maximal operators we
have already talked about, and finally we present some applications to the context
of the Schrödinger operator in Section 6.
Remark 1.1. Inequality (1.1) implies that if σ > 0 and x, y ∈ σQ, where Q is a
critical ball, then ρ(x) ' ρ(y), with a constant that depends on σ. More precisely,
from (1.1) and the fact that both belong to σQ, we have

ρ(x) ≤ cσρ(y), (1.2)

where cσ = c2ρ(1+σ)
N2

0 +2N0
N0+1 , and cρ is the constant appearing in (1.1). If we change

the role of x and y we obtain ρ(x) ' ρ(y).
As a consequence of (1.1), we have the following result, which can be found in

[9], presenting a useful covering of Rd by critical balls.
Proposition 1.2. There exists a sequence of points xj, j ≥ 1, in Rd, so that the
family Qj = B(xj , ρ(xj)), j ≥ 1, satisfies

i) ∪jQj = Rd.
ii) For every σ ≥ 1 there exist constants C and N1 such that

∑
j χσQj ≤ CσN1 .

Given a ball B we shall also need a particular covering by critical balls with
centers inside B as the following lemma shows.
Lemma 1.3. Let B = B(x0, r) with x0 ∈ Rd and r ≥ ρ(x0). There exists a set
of points {xi}Ni=1 ⊂ B such that B ⊂ ∪Ni=1B(xi, ρ(xi)) and

∑N
i=1 χB(xi,ρ(xi)) ≤ C,

where C depends only on the constants in (1.1).
Proof. Consider the family of sets

F = {S ⊂ B : B(x, γρ(x)) ∩B(y, γρ(y)) = ∅, ∀x, y ∈ S, x 6= y},
with a constant γ < 1/(c21 + 1), where c1 is the constant in (1.2). It is clear that
F 6= ∅ since {x0} ∈ F . Observe that if C is a chain in F endowed with the order
of inclusion, then V = ∪S∈CS is an upper bound of C. Therefore, there exists a
maximal element Smax in F . The set Smax must be finite. In fact, due to (1.1),

ρ(x) ≥ c−1
0

(
1 + r

ρ(x0)

)−N0

ρ(x0) = δ0 > 0,

for all x ∈ B, and thus there are no more than N balls in Smax with N ≥
(
r+γδ0
γδ0

)d
.

Denote x1, x2, . . . , xN the elements of Smax. We shall see that B ⊂ ∪Ni=1B(xi, ρ(xi))
and the overlapping of the balls B(xi, ρ(xi)), i = 1, . . . , N , is finite.
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Suppose there exists y ∈ B such that y /∈ ∪Ni=1B(xi, ρ(xi)), which means |y −
xi| > ρ(xi), i = 1, . . . , N . Now let us see that B(y, γρ(y))∩B(xi, γρ(xi)) is empty.
In fact, suppose z ∈ B(y, γρ(y))∩B(xi, γρ(xi)), then |y−xi| ≤ |y− z|+ |z−xi| ≤
γ(ρ(y) + ρ(xi)) ≤ γ(c21 + 1)ρ(xi), which is a contradiction by the choice of γ. So
Smax ∪ {y} belongs to F and this means the contradiction that Smax is not a
maximal element of F .

Now we see that the overlapping {B(xi, ρ(xi))}Ni=1 is finite and depends only on
the constants in (1.1).

Suppose that m is such that ∩mi=1B(xi, ρ(xi)) 6= ∅ for some points xi ∈ S with

S ∈ F . Since 1
C ρ(x1) ≤ ρ(xi) ≤ Cρ(x1), i = 1, . . . ,m, with C = c2ρ2

N2
0 +2N0
N0+1 (see

inequality (1.2)), we have

∪mi=1B(xi, γρ(xi)) ⊂ B(x1, 3Cρ(x1)).

Now we use the fact that the balls {B(xi, γρ(xi))}mi=1 are disjoint to conclude

m

[
γ
ρ(x1)
C

]d
≤

m∑
i=1
|B(xi, γρ(xi))|

= | ∪mi=1 B(xi, γρ(xi))| ≤ |B(x1, 3Cρ(x1))|
= [3Cρ(x1)]d,

thus m ≤ 3dC2d

γd
. �

2. Weights

Following [5], for 1 < p <∞, we say that a weight w belongs to the class Aρ,loc
p

if there exists a constant C such that(ˆ
B

w

)(ˆ
B

w−
1
p−1

)p−1
≤ C|B|p, (2.1)

for every ball B = B(x, r) with x ∈ Rd and r ≤ ρ(x).
In the case p = 1 we define the class Aρ,loc

1 as those weights w satisfying

w(B) sup
B
w−1 ≤ C|B|, (2.2)

for every ball B = B(x, r) with x ∈ Rd and r ≤ ρ(x), for some constant C
independent of B. We denote Aρ,loc

∞ = ∪p≥1A
ρ,loc
p .

In the rest of this section we will state and prove some facts about weights in
the classes defined above which will be useful in what follows and are of interest
by themselves.

Proposition 2.1 (See [5, Corollary 1]). If 1 ≤ p < ∞ and c > 1, then Aρ,loc
p =

Acρ,loc
p .

Lemma 2.2. If w ∈ Aρ,loc
p and B = B(x, r), with p ≥ 1, x ∈ Rd and r ≤ cρ(x) for

some constant c > 1, then there exists a constant C such that for every measurable
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subset E ⊂ B, the following inequality holds:

w(B) ≤ Cw(E)
(
|B|
|E|

)p
. (2.3)

Proof. In the case p = 1, since w ∈ Aρ,loc
1 = Acρ,loc

1 (see Proposition 2.1) and
E ⊂ B, we have for some constant C,

w(B) ≤ C|B| inf
x∈B

w(x) ≤ C|B| inf
x∈E

w(x) ≤ C1w(E) |B|
|E|

.

For the case p > 1, using the condition w ∈ Acρ,loc
p and Hölder’s inequality we

get, for some constant C,

w(B) ≤ C|B|p

[w−1/(p−1)(B)]p−1 ≤ Cw(E)
(
|B|
|E|

)p
. �

Remark 2.3. The constant C in (2.3) is the constant appearing in (2.1) (or (2.2)
when p = 1) for the critical radius function cρ instead of ρ.

Given θ ≥ 0 and p > 1 we introduce the class Aρ,θp as those weights w such that(ˆ
B

w

)(ˆ
B

w−
1
p−1

)p−1
≤ C|B|

(
1 + r

ρ(x)

)pθ
, (2.4)

for every ball B = B(x, r). For p = 1 we define Aρ,θ1 as the set of weights w such
that ˆ

B

w ≤ C|B|
(

1 + r

ρ(x)

)θ
inf
x∈B

w (2.5)

holds for all balls B = B(x, r). We denote Aρp = ∪θ≥0A
ρ,θ
p .

Remark 2.4. It follows easily from their definitions that w ∈ Aρ,θp implies w ∈ Aρ,loc
p ,

for every θ ≥ 0.

Lemma 2.5. Let w ∈ Aρ,θp , with p ≥ 1, θ > 0, x ∈ Rd, and r ≤ R. Then there
exists a constant C such that

w(B(x,R)) ≤ Cw(B(x, r))
(
R

r

)dp(
1 + R

ρ(x)

)pθ
.

Proof. The proof follows the same lines as that of Lemma 2.2, with the correspond-
ing modifications. �

3. Weighted BMO type spaces

Let β ≥ 0, a weight w, f ∈ L1
loc and call fB = 1

|B|
´
B
f . Following [3] we say

that f belongs to the space BMOβ
ρ (w) ifˆ

B

|f − fB | ≤ C w(B) |B|β/d, for all B ∈ Bρ, (3.1)

and ˆ
B

|f | ≤ C w(B) |B|β/d, for all B /∈ Bρ, (3.2)
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where Bρ is the family of sub-critical balls defined in the Introduction.
We can give a norm in BMOβ

ρ (w) as the smallest constant that satisfies (3.1) and
(3.2), and we denote it by ‖f‖BMOβρ (w). It is not difficult to see that BMOβ

ρ (w) ⊂
BMOβ(w), where BMOβ(w) is the Lipschitz space appearing in [11] in the classical
context. On the other hand, if Q is a fixed ball in Rd, we call BMOβ

Q(w) the space
of locally integrable functions on Q that satisfy condition (3.1) for all balls B ⊂ Q.
From its definition, it is easy to see that

BMOβ
ρ (w) ⊂ BMOβ(w) ⊂ BMOβ

Q(w)

and
‖f‖BMOβ

Q
(w) ≤ ‖f‖BMOβ(w) ≤ 2‖f‖BMOβρ (w). (3.3)

Proposition 3.1. If w ∈ Aρ,loc
∞ and β ≥ 0 then BMOβ

ρ (w) = BMOβ
γρ(w) for all

γ > 0, with equivalent norms.

Proof. If γ > 0, let us observe that γρ is also a critical radius function.
Without loss of generality, we may suppose γ > 1 (otherwise, we can start with

γρ and then we multiply by 1/γ > 1).
Let us start with the inclusion BMOβ

ρ (w) ⊂ BMOβ
γρ(w). Given f ∈ BMOβ

ρ (w),
we know that f ∈ BMO(w) and also from (3.3) we have

‖f‖BMOβ(w) ≤ 2‖f‖BMOβρ (w).

In particular,
1

w(B)

ˆ
B

|f − fB | ≤ 2‖f‖BMOβρ (w) |B|
β/d, for all B ∈ Bγρ.

On the other hand, since Bρ ⊂ Bγρ, if B /∈ Bγρ then B /∈ Bρ, and therefore
1

w(B)

ˆ
B

|f | ≤ ‖f‖BMOβρ (w) |B|
β/d.

Thus, f ∈ BMOβ
γρ(w) and

‖f‖BMOβγρ(w) ≤ 2‖f‖BMOβρ (w).

Now, we will see the inclusion BMOβ
γρ(w) ⊂ BMOβ

ρ (w). Let f ∈ BMOβ
γρ(w).

From the fact that Bρ ⊂ Bγρ it follows that
1

w(B)

ˆ
B

|f − fB | ≤ ‖f‖BMOβγρ(w) |B|
β/d, for all B ∈ Bρ.

Therefore, it remains to see
1

w(B)

ˆ
B

|f(x)| dx ≤ C‖f‖BMOβγρ(w) |B|
β/d, for all B /∈ Bρ.

If B = B(x, r) /∈ Bγρ there is nothing to prove. On the other hand, if B ∈ Bγρ
and B /∈ Bρ, we have ρ(x) ≤ r < γρ(x). Since w ∈ Aρ,loc

∞ , there must exist p ≥ 1
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such that w ∈ Aρ,loc
p . Therefore, from Lemma 2.2, we get for some constant C,

1
w(B)

ˆ
B

|f(x)| dx ≤ w(B(x, γρ(x)))
w(B)

1
w(B(x, γρ(x)))

ˆ
B(x,γρ(x))

|f(x)| dx

≤ C |B(x, γρ(x))|p

|B|p
‖f‖BMOβγρ(w)|B(x, γρ(x))|β/d

≤ C
(
|B(x, γρ(x))|

|B|

)p+β/d
‖f‖BMOβγρ(w)|B|

β/p

≤ Cγβ+dp‖f‖BMOβγρ(w)|B|
β/p,

and the proof is finished. �

Proposition 3.2. Let w ∈ Aρ,loc
p , for some 1 ≤ p <∞, and f ∈ L1

loc. If

A = sup
x∈Rd

1
w(B(x, ρ(x)))|B(x, ρ(x)|β/d

ˆ
B(x,ρ(x))

|f | <∞, (3.4)

then there exists a constant C such that

sup
x∈Rd,r≥ρ(x)

1
w(B(x, r))|B(x, r)|β/d

ˆ
B(x,r)

|f | < CA.

Proof. Suppose (3.4) holds and consider a ball B = B(x, r), x ∈ Rd, and r ≥ ρ(x).
In the case that there exists y ∈ B such that ρ(y) > 2r then B ⊂ B(y, ρ(y)).
Therefore, by Lemma 2.2,

1
w(B)|B|β/d

ˆ
B

|f |

.

(
|B(y, ρ(y))|
|B|

) β
d+1 1

w(B(y, ρ(y)))|B(y, ρ(y))|β/d

ˆ
B(y,ρ(y))

|f |

. A

(
ρ(y)
r

)β+d

. A

(
ρ(y)
ρ(x)

)β+d
.

Since x ∈ B(y, ρ(y)), ρ(y) ' ρ(x) and thus the last quantity is constant.
Suppose now that for all y ∈ B, ρ(y) ≤ 2r. From Lemma 1.3, there exist N balls

Bi = B(xi, ρ(xi)), i = 1, . . . , N , such that B ⊂ ∪Ni=1Bi and
∑N
i=1 χB(xi,ρ(xi)) ≤ C,

where N and C depend only on the constants in (1.1) and the dimension d. Now
for each i = 1, . . . , N consider the ball Pi = B(zi, ρ(xi)/4), with zi = ρ(xi)

4|x−xi| (x −
xi) + xi, that satisfies Pi ⊂ B ∩Bi and |Bi|/|Pi| = 4d.
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Therefore,
ˆ
B

|f | ≤
N∑
i=1

ˆ
Bi

|f | ≤ A
N∑
i=1

w(Bi)|Bi|β/d = A

N∑
i=1

w(Pi)
w(Bi)
w(Pi)

|Bi|β/d

≤ AC4dp+β
N∑
i=1

w(Pi)|Pi|β/d ≤ C|B|β/dw(∪Ni=1Pi) ≤ C|B|β/dw(B),

where C is the constant of Lemma 2.2 and we also have used the bounded overlap-
ping property of the balls Bi (see Lemma 1.3). �

Following the previous proof, Corollary 1 in [3] may be improved. Actually,
instead of w ∈ Aρ,loc

p we only need to ask for a doubling condition for the weight
w on sub-critical balls.

The following result was proved in [4] for w in the Muckenhoupt class Ap. Here
we shall prove an extension of that result for w ∈ Aρ,loc

p .

Lemma 3.3. Let 0 ≤ β < 1, w ∈ Aρ,loc
p , 1 < s ≤ p′, and f ∈ BMOβ

ρ (w). Then,(ˆ
B

|f |sw1−s
)1/s

. w(B)1/s|B|β/d‖f‖BMOβρ (w), (3.5)

for every ball B = B(x, r) with r ≥ ρ(x), and(ˆ
B

|f − fB |sw1−s
)1/s

. w(B)1/s|B|β/d‖f‖BMOβρ (w), (3.6)

for every ball B = B(x, r) with r ≤ ρ(x).

Proof. First, we will prove that (3.6) holds. Let us consider the covering {Qk}
of critical balls given by Proposition 1.2 and a ball B = B(x, r) with r ≤ ρ(x).
Then, there exists Qk such that x ∈ Qk = B(xk, ρ(xk)), and by (1.2) we have
B ⊂ Q̃k = B(xk, Cρ(xk)) for a constant C independent of x and r. If we have a
cube Q and we call BMOβ,s

Q (w) the space of functions f such that

‖f‖BMOβ,s(w) = sup
B⊂Q

1
|B|β/d

(
1

w(B)

ˆ
B

|f − fB |sw1−s
)1/s

<∞, (3.7)

and BMOβ,s(w) the space of functions when the supremum (3.7) is considered for
all balls B ⊂ Rd, according to [4], it follows that BMOβ,s(w) ≡ BMOβ(w) with
‖f‖BMOβ,s(w)

∼= ‖f‖BMOβ(w), and also BMOβ,s(w) ⊂ BMOβ,s
Q (w) with

‖f‖BMOβ,s
Q

(w) ≤ ‖f‖BMOβ,s(w).

Therefore, since B ⊂ Q̃k, we get

1
|B|β/d

(
1

w(B)

ˆ
B

|f − fB |sw1−s
)1/s

≤ ‖f‖BMOβ,s(w) . ‖f‖BMOβ(w),

and thus (3.6) is a consequence of inequality (3.3).
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From Proposition 3.2, it is enough to check (3.5) over a critical ball B̃ =
B(x, ρ(x)) with x ∈ R. Observe that(ˆ

B̃

|f |sw1−s
)1/s

.

(ˆ
B̃

|f − fB̃ |
sw1−s

)1/s
+ |fB̃ |

(
w1−s(B̃)

)1/s
.

The first term of the right side is bounded following the same argument as before.
For the second term, observe that w1−s ∈ Aρ,loc

s , since w ∈ Aρ,loc
p and p ≤ s′. Then(

w1−s(B̃)
)1/s |fB̃ | . |B̃|

w1/s′(B̃)
|fB̃ | =

1
w1/s′(B̃)

ˆ
B̃

|f |

.
w(B̃)

w1/s′(B̃)
|B̃|β/d‖f‖BMOβρ (w)

= w1/s(B̃)|B̃|β/d‖f‖BMOβρ (w). �

4. The localized maximal operator associated to ρ

In [5] (see Theorem 1 therein) the behavior of Mρ is studied, and it is proved
that Mρ is bounded on weighted Lebesgue spaces for localized weights, as is stated
in the following theorem.

Proposition 4.1. The operator Mρ is bounded on Lp(w), 1 < p < ∞, for w ∈
Aρ,loc
p , and it is of weak type (1, 1) for w ∈ Aρ,loc

1 .

Now we present one of the main results of this work, which tells us about the
behavior of Mρ in the extreme BMOρ(w).

Theorem 4.2. Let w ∈ Aρ,loc
1 . There exists a constant C such that
‖Mρf‖BMOρ(w) ≤ C‖f‖BMOρ(w),

for every f ∈ BMOρ(w).

Proof. Let f ∈ BMOρ(w). We start by proving condition (3.1) for Mρf . For
B ∈ Bρ, with B = B(x0, r), as it is well known it shall be enough to see

1
w(B)

ˆ
B

|Mρf(x)− c| dx ≤ C‖f‖BMOρ(w),

for some constant c that depends only on f and B. Before starting, observe that
if z ∈ B is given and P is a ball such that z ∈ P and P ∈ Bρ, it follows from (1.1)
that P ⊂ B̃ = B(x0, c0ρ(x0)), with c0 = 1 + c2ρ2

N0+1+ N0
N0+1 . Therefore, for x ∈ B,

we have
Mρf(x) = Mρ(fχB̃)(x). (4.1)

On the other hand, there exist a constant C̃ and a ball Q0 = B(y0, ρ(y0)) of the
covering given by Proposition 1.2, such that x0 ∈ Q0 and B̃ ⊂ Q̃0 = C̃Q0, with
C̃ = 1 + cρ2

N0
N0+1 c0.

Therefore, for x ∈ B,
Mρf(x) ≤MQ̃0

f(x),
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REGULARITY OF MAXIMAL FUNCTIONS 547

where the maximal operator MQ̃0
is defined as

MQ̃0
f(x) = sup

x∈B⊂Q̃

1
|B|

ˆ
B

|f |.

Thus, for any constant c,
1

w(B)

ˆ
B

|Mρf(x)− c| dx ≤ 1
w(B)

ˆ
B

|Mρf(x)−MQ̃0
f(x)| dx

+ 1
w(B)

ˆ
B

|MQ̃0
f(x)− c| dx = I + II .

Since for every x ∈ B we have
Mρf(x) ≤MQ̃0

f(x) ≤Mρf(x) + M̃ρf(x),
where

M̃ρf(x) = sup
x∈P⊂Q̃0
P /∈Bρ

1
|P |

ˆ
P

|f(y)| dy,

we get

I ≤ 1
w(B)

ˆ
B

M̃ρf(x) dx.

It is not difficult to deduce from (1.1) that if P = B(xP , rP ), such that P ⊂ Q̃0
and P /∈ Bρ, then rP ' ρ(y0). In fact, rP ≤ C̃ρ(y0) and also, rP ≥ ρ(xP ) and
ρ(xP ) ' ρ(y0) (since xP ∈ Q̃0 = B(y0, C̃ρ(y0))). Therefore, for every x ∈ B we
obtain

M̃ρf(x) ≤ C 1
|Q̃0|

ˆ
Q̃0

|f(y)| dy ≤ C‖f‖BMOρ(w)
w(Q̃0)
|Q̃0|

.

Thus,

I ≤ C‖f‖BMOρ(w)
|B|
w(B)

w(Q̃0)
|Q̃0|

. (4.2)

As w ∈ Aρ,loc
1 , from Lemma 2.2 and the fact that B ⊂ Q̃0 we have

w(Q̃0) ≤ C(w) |Q̃0|
|B|

w(B). (4.3)

With (4.2) and (4.3) we can conclude that I . ‖f‖BMOρ(w).
In order to deal with II , we will use the local boundedness ofMQ̃0

f on BMO(Q̃0),
a result that appears in [6, Theorem 2.3]. Since f ∈ BMO(w), we have MQ̃0

f <∞
almost everywhere. On the other hand, since w ∈ Aρ,loc

1 from Lemma 2.1, it follows
that w ∈ AC̃ρ,loc

1 , and thus there exists a constant C depending on w such that
w(B) ≤ C|B| inf

B
w,

whenever B = B(x, r) with r ≤ C̃ρ(x). It is clear then that w ∈ A1(Q̃0). Therefore,
if we choose c = (MQ̃0

f)B , by using [6, Theorem 2.3] applied to the ball Q̃0, we
obtain II ≤ C‖f‖BMOQ̃0 (w) ≤ C‖f‖BMOρ(w).
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Now we are going to prove (3.2) for Mρf . From Proposition 3.2, it is enough to
check the condition over a critical ball B0 = B(x0, ρ(x0)) with x0 ∈ R.

Let f = f1 +f2, where f1 = fχB∗0 , with B∗0 = B(x0, αρ(x0)) and α = 22N0c2ρ+2.
We first consider Mρf1. By Hölder’s inequality

1
w(B0)

ˆ
B0

|Mρf1(x)| dx = 1
w(B0)

ˆ
B0

|Mρf1(x)|w−1/2(x)w1/2(x) dx

≤
(

1
w(B0)

ˆ
B0

|Mρf1(x)|2w−1(x) dx
)1/2

.

(4.4)

Since w ∈ Aρ,loc
1 ⊂ Aρ,loc

2 it follows that w−1 ∈ Aρ,loc
2 . From [5, Theorem 1], we

know that Mρ is bounded on L2(v) with v = w−1. Therefore,

1
w(B0)

ˆ
B0

|Mρf1(x)| dx .
(

1
w(B0)

ˆ
Rd
|f1(x)|2w−1(x) dx

)1/2

=
(

1
w(B0)

ˆ
B∗0

|f(x)|2w−1(x) dx
)1/2

.

Since |B∗0 | = αd|B0|, by Lemma 2.2 we have w(B∗0) ≤ Cw(B0) and then

1
w(B0)

ˆ
B0

|Mρf1(x)| dx .
(

1
w(B∗0)

ˆ
B∗0

|f(x)|2w−1(x) dx
)1/2

.

In this way, considering that B∗0 /∈ Bρ and Lemma 3.3 it follows that the left-
hand side of (4.4) is bounded by a constant times ‖f‖BMOρ(w).

Now, for x ∈ B0 we will deal with Mρf2(x). It follows from the definition of f2
that it is enough to take the supremum of the averages over those balls B ∈ Bρ
such that x ∈ B and B ∩ (B∗0)c 6= ∅. Let B = B(xB , rB) be one of those balls.
From (1.1), it follows easily that ρ(x0) ' ρ(x) ' ρ(xB). More precisely, we have
ρ(xB) ≤ 22N0c2ρρ(x0). Then,

|x0 − xB | ≤ |x0 − x|+ |x− xB | < ρ(x0) + rB ≤ ρ(x0) + ρ(xB) ≤ (22N0c2ρ + 1)ρ(x0).

On the other hand, since B ∩ (B∗0)c 6= ∅, there exists a point z such that z ∈ B
and z /∈ B∗0 ; then

rB ≥ |z − xB | ≥ |z − x0| − |x0 − xB | ≥ αρ(x0)− (22N0c2ρ + 1)ρ(x0) = ρ(x0).

If we denote B∗∗0 = 2B∗0 , it is clear that B∗0 ⊂ B∗∗0 . Moreover, B ⊂ B∗∗0 . In fact,
given y ∈ B, it follows that

|y − x0| ≤ |y − xB |+ |xB − x0|
≤ ρ(xB) + (22N0c2ρ + 1)ρ(x0)
≤ (22N0+1c2ρ + 1)ρ(x0)
< 2αρ(x0).
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Therefore, for all x ∈ B0 we have

Mρf2(x) = sup
x∈B∈Bρ

B∩(B∗0 )c 6=∅

1
|B|

ˆ
B

|f(y)| dy

≤ C

|B∗∗0 |

ˆ
B∗∗0

|f(y)| dy

≤ C‖f‖BMOρ(w)
w(B∗∗0 )
|B∗∗0 |

.

(4.5)

From the bound of Mρf2(x), for every x ∈ B0 given by (4.5) and Lemma 2.2 we
get

1
w(B0)

ˆ
B0

|Mρf2(x)| dx ≤ C‖f‖BMOρ(w)
|B0|
w(B0)

w(B∗∗0 )
|B∗∗0 |

≤ C‖f‖BMOρ(w),

and this completes the proof. �

5. The maximal operator of a family of operators

Let {Tt}t>0 be a family of bounded integral operators on L2(Rd) with integrable
kernels {Tt(x, y)}t>0. Suppose also that there exist constants C, γ, γ′, δ, σ, σ′ and
ε such that for all t > 0 and x, x0, y ∈ Rd with |x− x0| ≤ t/2 and ρ(x0) ' ρ(x) the
following inequalities hold:

|Tt(x, y)| ≤ C 1
td + |x− y|d

(
t

t+ |x− y|

)γ (
ρ(x)

t+ ρ(x)

)σ
, (5.1)

|Tt(x, y)− Tt(x0, y)| ≤ C

td + |x− y|d

(
t

t+ |x− y|

)γ′ ( |x− x0|
t

)δ (
ρ(x)

t+ ρ(x)

)σ′
,

(5.2)
and

|1− Tt(1)(x)| ≤ C
(

t

t+ ρ(x)

)ε
. (5.3)

For that family of operators we define the maximal operator T ∗ = supt>0 |Tt|.
We present the following technical lemmas that will be used in the proof of

Theorem 5.3.

Lemma 5.1. Let B = B(x0, r) with r < ρ(x0) and f ∈ BMOβ
ρ (w) with w ∈ Aρ,θp ,

where β > 0, p > 1, and θ > 0. Then

|fB | ≤ 2ηC‖f‖BMOρ
β

(w)
w(B)
|B|
|B|β/d

(
ρ(x0)
r

)d(p−1)+β
,

where η = p(d+ 2θ) + β + 1 and C is the constant appearing in (2.4).
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Proof. Let f ∈ BMOβ
ρ (w) and j0 ∈ N such that 2j0−1r < ρ(x) ≤ 2j0r. Then

|fB | ≤
1
|B|

ˆ
B

|f − fB |+
j0−1∑
j=1
|f2j−1B − f2jB |+ |f2j0−1B |

≤ 1
|B|

ˆ
B

|f − fB |+
j0−1∑
j=1

2d

|2jB|

ˆ
2jB
|f − f2jB |+

2d

|2j0B|

ˆ
2j0B

|f |

≤
j0−1∑
j=0

2d

|2jB|

ˆ
2jB
|f − f2jB |+

2d

|2j0B|

ˆ
2j0B

|f |

≤ 2d‖f‖BMOβρ (w)

j0∑
j=0

w(2jB)
|2jB| |2

jB|β/d,

where in the last inequality we have used (3.1) and (3.2) since 2j0−1r < ρ(x) ≤ 2j0r.
From Lemma 2.5, we get

|fB | ≤ 2d+2pθC‖f‖BMOβρ (w)w(B)|B|β/d−1
j0∑
j=0

2j(pd−d+β)

≤ 2d+2pθ+12j0(d(p−1)+β)C‖f‖BMOβρ (w)w(B)|B|β/d−1

≤ 2p(d+2θ)+β+1C‖f‖BMOρ
β

(w)
w(B)
|B|
|B|β/d

(
ρ(x0)
r

)d(p−1)+β
. �

Lemma 5.2. Let z ∈ Rd, 0 < r < R, and f ∈ BMOβ
ρ (w) with w ∈ Aρ,θp , where

p > 1, β > 0, and θ > 0. Then

ˆ
B(z,R)

|f−fB(z,r)| . C‖f‖BMOρ
β

(w)w(B(z, r))|B(z, r)|β/d
(
R

r

)pd+β (
1 + R

ρ(z)

)pθ
,

where C is the constant appearing in (2.4).
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Proof. Let j0 ∈ N such that 2j0−1r < R ≤ 2j0r. For simplicity, let us denote
Bt = B(z, t) for any t > 0.ˆ

BR

|f − fBr |

≤
ˆ
BR

|f − fBR | + |BR|
j0−1∑
j=0
|fBR/2j

− fBR/2j+1 | + |BR||fB
R/2j0

− fBr |

≤
ˆ
BR

|f − fBR | +
j0−1∑
j=0

2d(j+1)
ˆ
BR/2j

|f − fBR/2j
| + 2j0d

ˆ
Br

|f − fBr |

≤ 2
j0−1∑
j=0

2d(j+1)
ˆ
BR/2j

|f − fBR/2j
| + 2j0d

ˆ
Br

|f − fBr |

≤ 2‖f‖BMOβρ (w)

j0−1∑
j=0

2d(j+1)|BR/2j |β/dw(BR/2j )

+ 2j0d‖f‖BMOβρ (w)|Br|
β/dw(Br).

Again, applying Lemma 2.5, we obtainˆ
BR

|f − fBr |

≤ 2C‖f‖BMOβρ (w)

j0−1∑
j=0

2d(j+1)|BR/2j |β/dw(Br)
(
R/2j

r

)dp(
1 + R/2j

ρ(z)

)pθ

+ 2d
(
R

r

)d
‖f‖BMOβρ (w)|Br|

β/dw(Br)

≤ C‖f‖BMOβρ (w)w(Br)|Br|β/d
(
R

r

)dp+β (
1 + R

ρ(z)

)pθ
×

2(d+1)
j0∑
j=0

2−j[d(p−1)+β] + 2d


. C‖f‖BMOβρ (w)w(Br)|Br|β/d
(
R

r

)dp+β (
1 + R

ρ(z)

)pθ
. �

Now we state the main result of this section.

Theorem 5.3. Let w ∈ Aρ,θp with p > 1 and θ ≥ 0. If β ≥ 0 and {Tt}t>0 is a
family of operators satisfying (5.1), (5.2), and (5.3) with σ, γ, γ′ ≥ β+pθ+d(p−1),
σ′ > pθ, and εδ

δ+ε ≥ d(p− 1) + β, then there exists a constant C such that

‖T ∗f‖BMOβρ (w) ≤ C‖f‖BMOβρ (w),

for every f ∈ BMOβ
ρ (w).
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Proof. Let f ∈ BMOβ
ρ (w). We start by proving that condition (3.4) is satisfied by

T ∗f . To this end, we shall use the hypothesis on the exponents σ ≥ β+pθ+d(p−1)
and γ > β + pθ + d(p+ 1).

If B0 = B(x0, ρ(x0)) thenˆ
B0

sup
t>0
|Ttf(x)| dx ≤

ˆ
B0

sup
t≥ρ(x)

|Ttf(x)| dx+
ˆ
B0

sup
t<ρ(x)

|Ttf(x)− T 0
t f(x)| dx

+
ˆ
B0

sup
t<ρ(x)

|T 0
t f(x)| dx = I + II + III,

where, for x ∈ Rd,

T 0
t f(x) =

ˆ
|x−y|<ρ(x)

Tt(x, y)f(y) dy.

Let us start with III. If x ∈ B0 and 0 < t < ρ(x), then

|T 0
t f(x)| ≤

ˆ
|x−y|<t

|Tt(x, y)||f(y)| dy +
ˆ
t<|x−y|<ρ(x)

|Tt(x, y)||f(y)| dy. (5.4)

From (5.1) and the definition of Mρ it follows easily thatˆ
|x−y|<t

|Tt(x, y)||f(y)| dy . 1
td

ˆ
|x−y|<t

|f(y)| dy .Mρf(x).

For the second term of (5.4), if k0 ∈ N0 is such that 2k0t ≤ ρ(x) < 2k0+1t and
we call Bk = B(x, 2kt), we getˆ

t<|x−y|<ρ(x)
|Tt(x, y)||f(y)| dy

. tγ
ˆ
t<|x−y|<ρ(x)

|f(y)|
|x− y|d+γ dy

. tγ
k0−1∑
k=0

ˆ
Bk+1\Bk

|f(y)|
|x− y|d+γ dy

+ tγ
ˆ

2k0 t<|x−y|<ρ(x)

|f(y)|
|x− y|d+γ dy

.
k0∑
k=1

2−kγ

|Bk|

ˆ
Bk

|f(y)| dy

+
(
ρ(x)
2k0t

)d 2−k0γ

|B(x, ρ(x))|

ˆ
B(x,ρ(x))

|f(y)| dy

.Mρf(x)
k0∑
k=1

2−kγ .

In this way, we have supt<ρ(x) |T 0
t f(x)| uniformly bounded in B0 by a constant

times Mρf(x). Since w ∈ Aρ,θp , by Remark 2.4 it also belongs to Aρ,loc
p . Now, if
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1 < s < p′, it follows that w ∈ Aρ,loc
s′ and then the operator Mρ is bounded on

Lp(w1−s) (see Proposition 4.1). Therefore, if B̃0 = c0B0 with c0 as in (4.1), from
Hölder’s inequality, Lemma 3.3, and Lemma 2.2, we get

III .
ˆ
B0

Mρf(x) dx =
ˆ
B0

Mρ(fχB̃0
)(x) dx

≤
(ˆ

B0

Mρ(fχB̃0
)sw1−s dx

)1/s
w(B0)1/s′

. w(B̃0)|B̃0|β/d‖f‖BMOβρ (w)

. w(B0)|B0|β/d‖f‖BMOβρ (w).

Now, we deal with I. Consider x ∈ B0 and t ≥ ρ(x). Then,

|Ttf(x)| ≤
ˆ
|x−y|<t

|Tt(x, y)||f(y)| dy +
ˆ
|x−y|≥t

|Tt(x, y)||f(y)| dy.

Bearing in mind that B(x, t) /∈ Bρ and B(x, ρ(x)) ⊂ B(x0, c1ρ(x0)) (with c1 =
1 + cρ2

N0
N0+1 ), from (5.1), Lemma 2.5, we have

ˆ
|x−y|<t

|Tt(x, y)||f(y)| dy

.

(
ρ(x)
t

)σ 1
td

ˆ
|x−y|<t

|f(y)| dy

.

(
ρ(x)
t

)σ
w(B(x, t))
|B(x, t)| |B(x, t)|β/d‖f‖BMOβρ (w),

.

(
ρ(x)
t

)σ−β−pθ−d(p−1)
w(B(x, ρ(x))) ρ(x)β−d‖f‖BMOβρ (w)

. w(B(x0, c1ρ(x0))) ρ(x)β−d‖f‖BMOβρ (w),

where in the last inequality we have used the hypothesis σ ≥ β + pθ + d(p− 1).
Now, from Lemma 2.2 and the fact that ρ(x) ' ρ(x0) (see Remark 1.1), we

obtain that the last expression is bounded by w(B0)|B0|β/d−1‖f‖BMOβρ (w).
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On the other hand, if we denote Bk = B(x, 2kt), then Bk /∈ Bρ, for any k ∈ N.
Hence, from (5.1) and the definition of BMOβ

ρ (w) we obtainˆ
|x−y|≥t

|Tt(x, y)||f(y)| dy

.

(
ρ(x)
t

)σ ˆ
|x−y|>t

1
|x− y|d

(
t

|x− y|

)γ
|f(y)| dy

.

(
ρ(x)
t

)σ∑
k≥1

tγ
ˆ
|x−y|'2kt

|f(y)|
|x− y|d+γ dy

.

(
ρ(x)
t

)σ∑
k≥1

2−kγ

|Bk|

ˆ
Bk

|f(y)| dy

. ‖f‖BMOβρ (w)

(
ρ(x)
t

)σ∑
k≥1

2−kγw(Bk)|Bk|β/d−1.

(5.5)

Moreover, taking into account that ρ(x0) ≤ cρ2N0ρ(x) and 2kt ≥ ρ(x), it follows
that Bk ⊂ B(x0, c22kt) with c2 = 1 + 2N0cρ. Then, applying Lemma 2.5, we get(

ρ(x)
t

)σ∑
k≥1

2−kγw(Bk)|Bk|β/d−1

.

(
ρ(x)
t

)σ∑
k≥1

2−kγw(B(x0, c22kt))|Bk|β/d−1

.

(
ρ(x)
t

)σ
w(B0)

∑
k≥1

2−kγ
(

2ktc2
ρ(x0)

)dp(
1 + c22kt

ρ(x0)

)pθ
(2kt)β−d

.

(
ρ(x0)
t

)σ−β−pθ−d(p−1)
w(B0)ρ(x0)β−d

∑
k≥1

2−k[γ−β−pθ−d(p−1)]

.
w(B0)
|B0|

|B0|β/d,

(5.6)

where in the last inequality we have used the hypotheses σ ≥ β+ pθ+d(p− 1) and
γ > β + pθ + d(p− 1). Therefore, from (5.5) and (5.6) we getˆ

|x−y|≥t
|Tt(x, y)||f(y)| dy . ‖f‖BMOβρ (w)

w(B0)
|B0|

|B0|β/d,

and thus we have

I .
ˆ
B0

sup
t≥ρ(x)

|Ttf(x)| dx . ‖f‖BMOβρ (w)w(B0)|B0|β/d.

In order to finish this part, let us see II. Observe that

sup
t<ρ(x)

|Ttf(x)− T 0
t f(x)| ≤ sup

t<ρ(x)

ˆ
|x−y|>ρ(x)

|Tt(x, y)||f(y)| dy.
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If t < ρ(x) and B̃k = B(x, 2kρ(x)), k ∈ N, then from (5.1)ˆ
|x−y|>ρ(x)

|Tt(x, y)||f(y)| dy .
ˆ
|x−y|>ρ(x)

1
|x− y|d

(
t

|x− y|

)γ
|f(y)| dy

.
∑
k≥1

ˆ
|x−y|'2ρ(x)

1
|x− y|d

(
ρ(x)
|x− y|

)γ
|f(y)| dy

.
∑
k≥1

2−kγ

|B̃k|

ˆ
B̃k

|f(y)| dy

. ‖f‖BMOβρ (w)

∑
k≥1

2−kγw(B̃k)|B̃k|β/d−1.

From here, we can proceed as in (5.5) and (5.6), replacing Bk and t by B̃k and
ρ(x), respectively. Therefore,ˆ

|x−y|>ρ(x)
|Tt(x, y)||f(y)| dy . ‖f‖BMOβρ (w)

w(B0)
|B0|

|B0|β/d,

whenever γ > β + pθ + d(p− 1).
Thus

II =
ˆ
B0

sup
t<ρ(x)

|Ttf(x)− T 0
t f(x)| dx . ‖f‖BMOβρ (w)w(B0)|B0|β/d,

and this finishes the proof that T ∗f satisfies (3.4) and then condition (3.2) (see
Proposition 3.2).

To estimate the oscillation of T ∗f we consider a ball B = B(x0, r) with 0 < r <
ρ(x0). We decompose f = f1+f2+f3, where f1 = (f−fB)χ2B , f2 = (f−fB)χ(2B)c ,
and f3 = fB , to deal with each one separately.

We start with f1. In this case it is enough to estimate the average supt>0 |Ttf1|.
For x ∈ B, we have

sup
t>0
|Ttf1(x)| ≤ sup

0<t<r
|Ttf1(x)|+ sup

t>r
|Ttf1(x)|.

If t < r, since f1 is supported on 2B and considering (5.1), it follows that

|Ttf1(x)| ≤
ˆ
|x0−y|<2r

|Tt(x, y)||f1(y)| dy

≤
ˆ
|x−y|<3r

|Tt(x, y)||f1(y)| dy

.
1
td

ˆ
|x−y|<t

|f1(y)| dy + tγ
ˆ
t≤|x−y|<3r

1
|x− y|d+γ |f1(y)| dy

.Mρ′f1(x) +
j0∑
j=1

2−jγ 1
(2jt)d

ˆ
|x−y|<2jt

|f1(y)| dy,

where ρ′(x) = 2N0cρρ(x) (see inequality (1.1)) and j0 ∈ N is such that 2j0−1t <
3r ≤ 2j0t. In this way, since x ∈ B, we have 2jt ≤ 6ρ(x0) ≤ 6 2N0cρρ(x), for all
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0 < j ≤ j0. Now, if we denote ρ̃(x) = 6 2N0cρρ(x), the second term is bounded by
a constant times Mρ̃f1(x). From the fact that Mρ′ ≤ Mρ̃ and applying Hölder’s
inequality with exponent s > 1, we obtain

ˆ
B

sup
t<r
|Ttf1(x)| dx .

ˆ
B

Mρ̃f1(x) dx ≤
(ˆ

B

Mρ̃f1(x)sw1−s dx

)1/s
w(B)1/s′ .

As Aρp ⊂ Aρ,loc
p implies w1−p′ ∈ Aρ,loc

p′ = Aρ̃,loc
p′ , setting s = p′ in the last

expression and using Proposition 4.1 we have

ˆ
B

sup
t<r
|Ttf1(x)| dx .

(ˆ
2B
|f1(x)|p

′
w1−p′ dx

)1/p′

w(B)1/p

=
(ˆ

2B
|f(x)− fB |p

′
w1−p′ dx

)1/p′

w(B)1/p

.

(ˆ
2B
|f(x)− f2B |p

′
w1−p′ dx

)1/p′

w(B)1/p

+ |f2B − fB |
(ˆ

2B
w1−p′ dx

)1/p′

w(B)1/p.

(5.7)

For the first term we use Lemma 3.3 (having in mind that 2B ∈ Bρ̃ and
BMOβ

ρ (w) = BMOβ
ρ̃ (w)) and we obtain

(ˆ
2B
|f(x)− f2B |p

′
w1−p′ dx

)1/p′

w(B)1/p . ‖f‖BMOρ
β

(w) w(B) |B|β/d. (5.8)

On the other hand, from the fact that |f2B−fB | is bounded by a constant times
‖f‖BMOβρ̃ (w) w(2B) |2B|β/d−1 and the condition Aρ̃,loc

p , we have

|f2B − fB |
(ˆ

2B
w1−p′ dx

)1/p′

w(B)1/p . ‖f‖BMOβρ̃ (w) w(2B) |2B|β/d−1|2B|

. ‖f‖BMOβρ̃ (w) w(2B) |2B|β/d

. ‖f‖BMOβρ (w) w(B) |B|β/d,
(5.9)

where in the last inequality we have used (3.3) and Lemma 2.2.
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Suppose now t > r. From the definition of the space BMOβ
ρ̃ (w), using (5.1), and

Lemma 2.2, it follows that

|Ttf1(x)| ≤
ˆ
|x0−y|<2r

|Tt(x, y)||f1(y)| dy

≤ 1
td

ˆ
2B
|f1(y)| dy

.
1
rd

ˆ
2B
|f(y)− fB | dy

.
1
rd
‖f‖BMOβρ̃ (w)w(2B)|2B|β/d

.
1
|B|
‖f‖BMOβρ (w)w(B)|B|β/d.

(5.10)

From (5.7), (5.8), (5.9) and (5.10) we conclude that

ˆ
B

sup
t>0
|Ttf1(x)| dx . ‖f‖BMOρ

β
(w) w(B) |B|β/d.

To deal with the term with f2, if cB = T ∗f2(x0) then

ˆ
B

|T ∗f2(x)− T ∗f2(x0)| dx ≤
ˆ
B

sup
t>0
|Ttf2(x)− Ttf2(x0)| dx.

Now, for x ∈ B and t > 0 we have

|Ttf2(x)− Ttf2(x0)| ≤
ˆ
|x0−y|>2r

|Tt(x, y)− Tt(x0, y)||f2(y)| dy. (5.11)

Suppose first that r ≤ t/2. In this case, we have |x− x0| < t/2. We now divide
the integral (5.11) in two parts |x − y| < t and |x − y| > t. When |x − y| < t,
we denote by k1 the first integer such that 2k1−1r ≤ 2t < 2k1r. Having in mind
condition (5.2) and the fact that ρ(x) ' ρ(x0) we obtain

ˆ
|x0−y|>2r
|x−y|<t

|Tt(x, y)− Tt(x0, y)||f2(y)| dy

.

(
1 + t

ρ(x0)

)−σ′ (r
t

)δ 1
td

ˆ
2r<|x0−y|<2t

|f2(y)| dy

.

(
1 + t

ρ(x0)

)−σ′ (r
t

)δ 1
td

k1∑
k=2

ˆ
2kB
|f(y)− fB | dy.
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Applying Lemma 5.2, since 2k1r ' t we have
k1∑
k=2

ˆ
2kB
|f(y)− fB | dy . ‖f‖BMOβρ (w)w(B)rβ

k1∑
k=2

2k(pd+β)
(

1 + 2kr
ρ(x0)

)pθ

. ‖f‖BMOβρ (w)w(B)rβ
(

1 + 2k1r

ρ(x0)

)pθ k1∑
k=1

2k(pd+β)

. ‖f‖BMOβρ (w)w(B)rβ
(

1 + t

ρ(x0)

)pθ (
t

r

)pd+β
.

Therefore,ˆ
|x0−y|>2r
|x−y|<t

|Tt(x, y)− Tt(x0, y)||f2(y)| dy

.

(
1 + t

ρ(x0)

)−σ′+pθ (r
t

)δ−d(p−1)−β w(B)
|B|

rβ‖f‖BMOβρ (w)

.
w(B)
|B|

rβ‖f‖BMOβρ (w),

(5.12)

whenever σ′ > pθ and δ ≥ d(p− 1) + β.
In the part |x− y| > t, we use again estimate (5.2) to getˆ
|x0−y|>2r
|x−y|>t

|Tt(x, y)− Tt(x0, y)||f2(y)| dy

.

(
1 + t

ρ(x0)

)−σ′ (r
t

)δ
tγ
′
ˆ
|x−y|>t

|f2(y)|
|x− y|d+γ′ dy

.

(
1 + t

ρ(x0)

)−σ′ (r
t

)δ 1
td

∑
k≥1

2−k(d+γ′)
ˆ
B(x,2kt)

|f(y)− fB | dy

.

(
1 + t

ρ(x0)

)−σ′ (r
t

)δ 1
td

∑
k≥1

2−k(d+γ′)
ˆ

2kB
|f(y)− fB | dy.

(5.13)

Applying Lemma 5.2 with R = 2kt, the sum in the last expression can be
bounded by a constant times

‖f‖BMOβρ (w)w(B)rβ
∑
k≥0

2−k(d+γ′)
(

2kt
r

)pd+β (
1 + 2kt

ρ(x0)

)pθ

. ‖f‖BMOβρ (w)w(B)rβ
(
t

r

)pd+β (
1 + t

ρ(x0)

)pθ∑
k≥0

2−k(d+γ′−pd−β−pθ)


. ‖f‖BMOβρ (w)w(B)rβ

(
1 + t

ρ(x0)

)pθ (
t

r

)pd+β
,
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whenever γ′ > β + d(p− 1) + pθ.
Getting back to (5.13) it follows as before thatˆ
|x0−y|>2r
|x−y|>t

|Tt(x, y)− Tt(x0, y)||f2(y)| dy

.

(
1 + t

ρ(x0)

)−σ′+pθ (r
t

)δ−d(p−1)−β w(B)
|B|

rβ‖f‖BMOβρ (w)

.
w(B)
|B|

rβ‖f‖BMOβρ (w),

(5.14)

whenever σ′ > pθ and δ ≥ d(p− 1) + β.
Let us see the case r ≥ t/2. In this case, we estimate the difference by the sum

as followsˆ
|x0−y|>2r

|Tt(x, y)− Tt(x0, y)|f2(y) dy

≤
ˆ
|x0−y|>2r

|Tt(x, y)||f2(y)| dy +
ˆ
|x0−y|>2r

|Tt(x0, y)||f2(y)| dy

= A + B.
We only deal with A; the term B can be estimated analogously.
Since in the domain of integration we have |x0 − y| ≥ 2r ≥ t and also |x− y| ≥

|x0 − y| − |x− x0| > r ≥ t/2, using condition (5.1) and Lemma 5.2 we obtainˆ
|x0−y|>2r

|Tt(x, y)||f2(y)| dy

. tγ
ˆ
|x−y|>r

|f2(y)|
|x− y|d+γ dy

.
tγ

rd+γ

∑
k≥1

2−k(d+γ)
ˆ
B(x,2kr)

|f(y)− fB | dy

.
1
rd

∑
k≥1

2−k(d+γ)
ˆ

2kB
|f(y)− fB | dy

.
w(B)
rd

rβ‖f‖BMOβρ (w)

∑
k≥1

2−k(d+γ−pd−β)
(

1 + 2kr
ρ(x0)

)pθ
.
w(B)
rd

rβ‖f‖BMOβρ (w)

∑
k≥1

2−k(d+γ−pd−β−pθ)

.
w(B)
rd

rβ‖f‖BMOβρ (w),

(5.15)

whenever γ > β + d(p− 1) + pθ.
Therefore, from (5.12), (5.14) and (5.15), we obtain for x ∈ B

sup
t>0
|Ttf2(x)− Ttf2(x0)| . w(B)

rd
rβ‖f‖BMOρ

β
.
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Hence, it follows thatˆ
B

|T ∗f2(x)− T ∗f2(x0)| dx . w(B)rβ‖f‖BMOρ
β
,

and this finishes the term with f2.
To deal with the term with f3, we shall find a bound for T ∗f3 = T ∗fB =

|fB |T ∗1. We will estimate the oscillation of T ∗f3 over B subtracting the constant
cB = |fB |T ∗1(x0).

Observe thatˆ
B

|T ∗f3(x)− T ∗f3(x0)| ≤ |fB |
ˆ
B

sup
t>0
|Tt1(x)− Tt1(x0)| dx

and
|Tt1(x)− Tt1(x0)| ≤

ˆ
Rd
|Tt(x, y)− Tt(x0, y)| dy.

As before, we consider separately the cases t ≥ 2r and t < 2r. We start by
assuming t ≥ 2r and then |x − x0| ≤ t/2, which allows us to use condition (5.2).
We also divide the domain as before asˆ

Rd
|Tt(x, y)− Tt(x0, y)| dy ≤

ˆ
|x−y|<t

+
ˆ
|x−y|>t

= C + D.

Thus condition (5.2) implies

C .
(

1 + t

ρ(x0)

)−σ′ (r
t

)δ 1
td

ˆ
|x−y|<t

dy .
(r
t

)δ
,

and also

D .
(

1 + t

ρ(x0)

)−σ′ (r
t

)δ ˆ
|x−y|>t

tγ
′

|x− y|d+γ′ dy .
(r
t

)δ
,

whenever σ′ > 0.
On the other hand, considering the inequality

|Tt1(x)− Tt1(x0)| ≤ |Tt1(x)− 1|+ |Tt1(x0)− 1|, (5.16)
from condition (5.3) it is clear that

|Tt1(x)− 1| .
(

t

t+ ρ(x)

)ε
.

(
t

t+ ρ(x0)

)ε
≤
(

t

ρ(x0)

)ε
, (5.17)

where we have used the fact that ρ(x) ' ρ(x0). The same estimate is valid for the
second term.

Therefore, we may bound a convex combination of the previous estimates to get

|Tt1(x)− Tt1(x0)| .
(r
t

)δ(1−a)
(

t

ρ(x0)

)εa
.

In this way, denoting a = δ/(δ + ε), we have εa = δ(1 − a). Then, for all t ≥ 2r
and x ∈ B we obtain

|Tt1(x)− Tt1(x0)| .
(

r

ρ(x0)

)εa
. (5.18)
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In the case t < 2r, proceeding in the same way as in (5.16) and (5.17) it follows
that

|Tt1(x)− Tt1(x0)| .
(

r

ρ(x0)

)ε
. (5.19)

Having in mind that a < 1 and r/ρ(x0) ≤ 1 we obtain from (5.18) and (5.19) that

sup
t>0
|Tt1(x)− Tt1(x0)| .

(
r

ρ(x0)

)εa
.

Finally, from Lemma 5.1 it follows thatˆ
B

|T ∗f3(x)− T ∗f3(x0)| ≤ |fB |
ˆ
B

sup
t>0
|Tt1(x)− Tt1(x0)| dx

. ‖f‖BMOβρ (w)w(B)rβ
(
ρ(x0)
r

)d(p−1)+β (
r

ρ(x0)

)εa
. ‖f‖BMOβρ (w)w(B)rβ ,

whenever ε δ
δ+ε ≥ d(p− 1) + β. And this finishes the proof of the theorem. �

Now will will consider the Poisson maximal operator P ∗ = supt>0 |Pt|, where

Pt =
ˆ ∞

0

e−s√
t
Tt/(2

√
s) ds

and {Tt}t>0 is a family of integral operators bounded on L2(Rd).

Lemma 5.4. Suppose {Tt}t>0 satisfies (5.1), (5.2) and (5.3) with constants γ, γ′,
δ, σ, σ′, and ε. Then, {Pt}t>0 also satisfies (5.1), (5.2) and (5.3) with constants
γ1, γ′1, δ, σ, σ′1, and ε′, where γ1 ∈ (0, 1 + δ) ∩ (0, γ], γ′1 ∈ (0, 1) ∩ (0,min{γ, γ′}],
σ′1 = min{σ, σ′}, and ε1 ∈ (0, 1) ∩ (0, ε].

Proof. From the inequality
t/s

t/s+ a
≤ (1 + s−1) t

t+ a
,

valid for all a > 0, s > 0, and t > 0, and proceeding as in [15, Lemma 3.1] we
obtain (5.1) and (5.3) with the mentioned constants.

Hence, we only have to prove condition (5.2), i.e., that for all t > 0 and x, x0, y ∈
Rd with |x− x0| ≤ t/2 and ρ(x0) ' ρ(x), the following inequality is valid:

|Pt(x, y)− Pt(x0, y)| ≤ C

td + |x− y|d

(
t

t+ |x− y|

)γ′1 ( |x− x0|
t

)δ (
ρ(x)

t+ ρ(x)

)σ′1
.

We start by observing that |x − x0| ≤ t/(2s) if and only if s ≤ t/(2|x − x0|).
Then we see that

|Pt(x, y)− Pt(x0, y)| .
ˆ ∞

0
e−s

2/4|Tt/s(x, y)− Tt/s(x0, y)| ds

= I + II ,
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with

I =
ˆ t/(2|x−x0|)

0
e−s

2/4|Tt/s(x, y)− Tt/s(x0, y)| ds.

From (5.2) it follows that

I .
ˆ t/(2|x−x0|)

0

e−s
2/4

(t/s)d + |x− y|d

(
t/s

t/s+ |x− y|

)γ′ ( |x− x0|
t/s

)δ (
ρ(x)

t/s+ ρ(x)

)σ′
ds

.
1

td + |x− y|d

(
t

t+ |x− y|

)γ′1 ( |x− x0|
t

)δ (
ρ(x)

t+ ρ(x)

)σ′
×
ˆ ∞

0
e−s

2/4(1 + s)d+σ′(1 + s−γ
′
1) sδ ds

.
1

td + |x− y|d

(
t

t+ |x− y|

)γ′1 ( |x− x0|
t

)δ (
ρ(x)

t+ ρ(x)

)σ′
.

To deal with II , we write

II ≤
ˆ ∞
t/(2|x−x0|)

e−s
2/4(|Tt/s(x, y)|+ |Tt/s(x0, y)|) ds = II 1 + II 2.

Now we use (5.1) to get

II 1 =
ˆ ∞
t/(2|x−x0|)

e−s
2/4|Tt/s(x, y)|s−δsδ ds

.

(
|x− x0|

t

)δ ˆ ∞
t/(2|x−x0|)

e−s
2/4

(t/s)d + |x− y|d

(
t/s

t/s+ |x− y|

)γ
×
(

ρ(x)
t/s+ ρ(x)

)σ
sδds

.
1

td + |x− y|d

(
t

t+ |x− y|

)γ′1 ( |x− x0|
t

)δ (
ρ(x)

t+ ρ(x)

)σ
×
ˆ ∞

0
e−s

2/4(1 + s)d+σ(1 + s−γ
′
1) sδ ds

.
1

td + |x− y|d

(
t

t+ |x− y|

)γ′1 ( |x− x0|
t

)δ (
ρ(x)

t+ ρ(x)

)σ
.

The term II 2 can be bounded in the same way as II 1 using the fact that ρ(x0) '
ρ(x) and that tk + |x0 − y|k ' tk + |x− y|k for all k ≥ 1 (provided that |x− x0| ≤
t/2). �

As a consequence of Lemma 5.4 we have the following result for the maximal of
the Poisson semigroup.

Theorem 5.5. Let w ∈ Aρ,θp , β ≥ 0, and {Tt}t>0 be a family of operators satisfying
(5.1), (5.2), and (5.3) with the constants γ, γ′, δ, σ, σ′, and ε, and let γ1, γ′1, δ,
σ, σ′1, and ε′ be positive constants such that γ1 ∈ (0, 1) ∩ (0, γ], γ′1 ∈ (0, 1 +
δ) ∩ (0,min{γ, γ′}], σ′1 = min{σ, σ′}, and ε1 ∈ (0, 1) ∩ (0, ε]. Then if γ1, γ

′
1, σ ≥
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β+ pθ+ d(p− 1), σ′1 > pθ, and ε1δ
δ+ε1

≥ d(p− 1) +β, there exists a constant C such
that

‖P ∗f‖BMOβρ (w) ≤ C‖f‖BMOβρ (w),

for every f ∈ BMOβ
ρ (w).

6. Application to the context of the Schrödinger operator

In this section we consider a Schrödinger operator in Rd with d ≥ 3,
L = −4+ V,

where V ≥ 0, not identically zero, is a function that satisfies for q > d/2 the reverse
Hölder inequality (

1
|B|

ˆ
B

V (y)q dy
)1/q

≤ C

|B|

ˆ
B

V (y) dy,

for every ball B ⊂ Rd. The set of functions with the last property is usually
denoted by RHq.

For a given potential V ∈ RHq, with q > d/2, as in [13], we consider the auxiliary
function ρ defined for x ∈ Rd as

ρ(x) = sup
{
r > 0 : 1

rd−2

ˆ
B(x,r)

V ≤ 1
}
.

Under the above conditions on V we have 0 < ρ(x) <∞. Furthermore, according
to [13, Lemma 1.4], if V ∈ RHq/2 the associated function ρ verifies (1.1).

Let kt be the kernel of e−tL, t > 0, where {e−tL}t>0 is called the heat semigroup
associated to L. The following estimates for kt are know (see [12] and [10]).

Proposition 6.1. Let V ∈ RHq, q > d/2, N > 0, and 0 < λ < min
{

1, 2 − d
q

}
.

Then there exist positive constants C, C̃ and CN such that for all t > 0 and
x, y, x0 ∈ Rd with |x− x0| <

√
t we have

|kt(x, y)| ≤ CN t−d/2 e−
|x−y|2
C t

(
1 +

√
t

ρ(x) +
√
t

ρ(y)

)−N
, (6.1)

|kt(x, y)− kt(x0, y)| ≤ CN
(
|x− x0|√

t

)λ
t−d/2 e−

|x−y|2
C t

(
1 +

√
t

ρ(x) +
√
t

ρ(y)

)−N
,

(6.2)
and

|kt(x, y)− k̃t(x, y)| ≤ C̃t−d/2 e−
|x−y|2
C t

(
1 + ρ(x)√

t

) d
q−2

, (6.3)

where k̃t denotes the kernel of e−t∆, t > 0.

We end this section with the following result where we apply Theorem 2 to the
maximal operator

T ∗ = sup
t>0
|e−tL|.
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Theorem 6.2. Let V ∈ RHq for some q > d/2, ε = 2 − d
q , 0 < δ < min{1, ε},

and w ∈ Aρp. If 1 < p < 1 + κ
d and 0 ≤ β ≤ κ− d(p− 1), with κ = εδ

ε+δ , then there
exists a constant C such that

‖T ∗f‖BMOβρ (w) ≤ C‖f‖BMOβρ (w),

for every f ∈ BMOβ
ρ (w).

Proof. It is enough to prove that the family {e−t2L}t>0 satisfies the hypothesis of
Theorem 5.3. Let us start by proving that from (6.1) we can get (5.1). In fact,
given C > 0 and M > 0, there exists CM > 0 such that

e−
|x−y|2

C t2 ≤ CM
(

t2

t2 + |x− y|2

)M
≤ 4MCM

(
t

t+ |x− y|

)2M
.

Therefore, if we choose M > d/2, from (6.1) with t2 instead of t, we have

kt2(x, y) . t−d
(

t

t+ |x− y|

)2M (
ρ(x)

t+ ρ(x)

)N
.

1
td + |x− y|d

(
t

t+ |x− y|

)2M−d(
ρ(x)

t+ ρ(x)

)N
,

which is (5.1) with γ = 2M − d and σ = N .
In the same way we can obtain (5.2) from (6.2) with γ′ = 2M − d, σ′ = N , and

δ = λ.
Now we will see that (6.3) implies (5.3) with ε = 2− d/q. It is known (see [7] or

[10] for example), that k̃t2(1) = 1 for every t > 0, and thus
|1− kt2(1)(x)| ≤ |1− k̃t2(1)(x)|+ |k̃t2(1)(x)− kt2(1)(x)|

= |k̃t2(1)(x)− kt2(1)(x)|.
Therefore from (6.3) we obtain

|k̃t2(1)(x)− kt2(1)(x)| ≤
ˆ
Rd
|kt2(x, y)− k̃t2(x, y)| dy

.
ˆ
Rd
t−d e−

|x−y|2

C t2

(
1 + ρ(x)

t

) d
q−2

dy

. t−d
(

t

t+ ρ(x)

)2− dq ˆ
Rd
e−
|x−y|2

C t2 dy

.

(
t

t+ ρ(x)

)ε
. �
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Instituto de Matemática Aplicada del Litoral CONICET-UNL and Facultad de Ingenieŕıa
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