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The case of equality in Young’s inequality for the

s-numbers in semi-finite von Neumann algebras.”

G. Larotondaf

Abstract

For a semi-finite von Neumann algebra A, we study the case of equality in Young’s
inequality of s-numbers for a pair of 7-measurable operators a, b, and we prove that
equality is only possible if |a|P = [b|9. We also extend the result to unbounded
operators affiliated with A, and relate this problem with other symmetric norm
Young inequalities.

1 Introduction

The well-known inequality, valid for p > 1 and 1/p+ 1/q = 1, named after W. H. Young,
is usually stated as
af < YpaP + 1Y B

for any «, 8 € RT, with equality if and only if of = 9.

In this paper, we establish an analogue for the case of equality in the setting of operators
affiliated to semi-finite von Neumann algebras. For more references and further discussion
on the subject of Young’s inequality for matrices and operators, we refer the reader to
[12] where the proof is given for the particular case of compact operators in B(H) -the
discrete (or atomic measure) case- of this fact. In particular, we remark that it was the
fundamental paper by T. Ando [I] which initiated the study of Young’s inequality for the
singular values of n x n matrices.

The emphasis in this paper is in the measure theoretic approach to operators affiliated
with a semi-finite von Neumann algebra, since the approach by induction used in [12] is
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not at hand. The inequality for s-numbers of operators a, b affiliated with a semi-finite
von Neuman algebra A, is stated as

ps(ab”) < pus (Yolal® +ab]), s >0 (1)

and extended here to unbounded operators; we are interested in the case of equality.

We remark that this result includes all semi-finite von Neumann algebras A, since by a
standard tensor product technique [8, p.286], we can always embed A into the diffuse
algebra A ® £°°([0, 1], dt) without altering the s-numbers.

This paper is organized as follows: Section 2 presents the general facts about s-numbers
recalling the well-known and establishing some simple lemmas used later. Section 3 deals
with some simplifications and reductions of the problem to deal with it in full generality.
Section 4, after certain technical propositions, contains the main result of this paper,
Theorem [1.7], that states that equality holds for all s-numbers in ([ if and only if |a|P =
|b|?, or equivalently, if equality of norms

lab™ |z = 1["/»|al” + /a [0

holds for some strictly increasing symmetric norm || - || g (definition given in Section 4.1,
just before the main theorem).

2 Singular numbers in von Neumann algebras

In this paper A stands for a finite or semi-finite von Neumann algebra with faithful normal
trace 7, which when convenient we will assume represented in a complex Hilbert space
H. The set of (self-adjoint) projections in A will be denoted by P(A).
We consider the topology of convergence in measure in A: a neighbourhood of 0 is given
by

Vie,0)={r e A:IpeP(A) st. 7(1 —p) < and |zp|| < e}.
We will denote with A the closure in measure of A, therefore Ais the ring of T-measurable
operators affiliated with A. In the atomic case, convergence in measure reduces to the
norm topology, therefore A = A in that case.

For 0 <z € A and s > 0, we denote the s-th singular number of z by ps(z):
ps(x) = inf{||zp| : p € P(A) with 7(1 — p) < s}.

With us(a) we denote the s-numbers of |a|, that is us(a) := ps(|a]). We remark that
lim+ is(z) = ||z|| including the posibility of +00 when z is unbounded. The standard
5—0

reference on the subject is the paper by Fack and Kosaki [g].
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We comment here on some useful characterizations (Proposition 3.1 in [10], Proposition
2.2, Lemma 2.5, Proposition 3.1 in [g]).

e The variational (min-max) characterization:

s(r) = inf sup (z€, &) = sup inf ||x€]|]. 2
)= inf [ s €8] = swp [l o] )
TA-p)Ss - gl=1 rp)>s =1

e The distribution characterization: if B C Rs( is a Borelian set and we denote
p*(B) = xg(|z|) (the range projections of |z|), then

pi(a) = min{s > 0 : 7(p“(s, +00)) < t}.

From the very definition of A, the number 7(p®(s, +00)) is eventually finite, and
moreover 7(p*(s,+00)) — 0 when s — oc.

e For x € .Z, the following are equivalent:

1. 7(p*(t,+00)) < 400 for all ¢ > 0.
2. lim p(z) — 0.
t—00
3. There exists a sequence of bounded operators x, € £'(A) such that z, — x

in the measure topology.

Remark 2.1. With any of these three characterizations, we say that x is - compact;
these operators form a complete bilateral ideal in A that we will denote by %/(A)
note that a T-compact operator is not necessarily bounded. We will denote with
K (A)T the positive (z > 0) T-compact operators.

In the atomic case (when A = B(H)), then we recover the ordinary compact op-
erators K (H). If {\e(2)}ren, denotes the usual singular values of x (i.e. the
eigenvalues of |x|), and we arrange them in a right-continuos decreasing function
which is constant on [k, k + 1), then we obtain the distribution function us(x) as

follows:
r) = Z Ak X[k,k+1)(5>

keNg

In this lemma we collect some other known facts on s-numbers that we will use later.
Lemma 2.2. Letx,y € A, a,b € A. Then for each s > 0,
1. ps(ray) < [|z|l[[yllps(a), and if a < b then pg(a) < (D).
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2. pus(lab®[) = ps({lal[0[])-
3. /~Ls+t(a + b) < ,us(a) + /~Lt<b)7 s,t > 0.
4. If p € P(A) then us(ap) =0 for each s > 7(p).

5. 7(lal) = f;° no(a)ds.

6. If a,b>0,a€ #(A), ab=0 and ps(a+ b) = ps(a) for all s >0, then b = 0.

Proof. The first assertion is a consequence of the min-max characterization of the s-
numbers. To prove the second, note that if b = v|b| is the polar decomposition of b, a
straitghtforward computation using the functional calculus shows that

|ab*| = vl[al[b][v" and |[a][b]| = v|ab®|v.

Then by the first item we obtain pus(|ab*|) = us(||al|b]|). The proof of the third, fourth
and fifth assertion is due to Fack and Kosaki and can be found in their original paper
[8, Lemmas 2.5, 2.6 and Proposition 2.7]. The final assertion seems evident, but requires
some proof though. For ¢ > 0, let p®[t, +00) = X[t,+o0)(@) be the spectral projections of a,
and likewise for b,a+b. Then ps(a+0b) = us(a) for all s > 0 implies (since a is 7-compact
and ab = 0) that

7(p"(t, +00)) = T(p"(t, +00)) = 7(p"(t, +00)) + 7(p"(t, +00))
for all ¢ > 0 (cf. [8, Corollary 2.9]). Therefore 7(p°(t, +o0)) = 0 for all ¢ > 0, implying
b=0. O
3 Diffuse algebras

Recall that an algebra is diffuse if it has no minimal projections. Following Fack and
Kosaki [8 p.286], we can always embed A into the diffuse algebra A ® £°°([0, 1], dt)
without altering the s-numbers. Then, the following [8, Lemma 2.1] will be useful later:

Remark 3.1. If x > 0 is T-measurable, then for each t > 0

sup{7(xp) :p € P(A), 7(p) <t} = /0 ws(z)ds.



3.1 Complete flags

If0<ze #(A) and A is a diffuse von Neumann algebra, there exists an increasing
assignment Rsg 3 ¢t — e, € P(A) (es < ¢; for s < t) such that 7(e;) =t for all t > 0 and

x = /0 " (@) de(s).

Note the analogy with the atomic case, where x =, .\ A\x(x)pr with py, the projection to
the A\ eigenspace of x, and we assume the eigenvalues are arranged in decrasing order.

Since ey = 0, we denote e(s,t) = e; — e5 for s <t € Ry, and since A is diffuse,
e —es = e(s,t) =e[s, t) = e(s,t] = e[s, t].

The spectral resolution {e;};>¢ is called a complete flag for x; for more details on this
useful constructions in diffuse semi-finite algebras, we refer the reader to the papers [2, 3]
by Argerami and Massey. In particular, for each ¢ > 0,

[ stards = r(aer

3.2 Equality of singular numbers, T-compact operators

Let (A, 7) be a semi-finite von Neumann algebra with semi-finite trace (7(1) = +o0 here).
In [9, Theorem 1] Farenick and Manjegani proved the remarkable Young’s inequality for
the s-numbers: if p > 1, 1/p+1/g=1, and a,b € A, then

ps(ab”) < pus (Yo lal” +Y/ab]%) (3)

for all s > 0. The purpose of this paper is to attack the following conjecture:
Let p,q > 1 with 1/p+1/q = 1. Does

ps(ab®) = ps (Yo lal” +1/a[b]7) (4)

for all s > 0 imply |alP = |b]??

Remark 3.2. If the algebra A is atomic, we have already answered in the affirmative
the congecture in [12, Theorem 2.12]. There, we used the existence of eigenvectors for
each non-trivial eigenvalue. In this paper we will be dealing with the continuous case (that
contains the previous one, see Section[d), using continuous techniques.
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3.3 Extension to unbounded operators

We extend the inequality and the conjecture to unbounded operators.

Theorem 3.3. Let a,b € ./T, then for each s > 0

ps(ab®) < ps (plal” +a [0]7) . ()

Proof. Let a = ula|, b = v|b| be the polar decompositions of a,b. Approximating |al, ||
in measure from below with bounded operators x,,y, > 0, we have for each s > 0

fs(Tnyn) < prs (o} +3/ay) < ps (Yolal” +Ya [b]7)

by ([B)) applied to the pair x,,y, and Lemma 22 1. Since x, < |a|, y, < ||, it is easy to
check that |x,y,| < ||lal|b||; since |ab*| = v||a||b||v*, then ps(x,y,) < ps(ab®). Since z,y,
converges in measure to |a||b|, then by [8, Lemma 3.4], lim,, us(z,yn) = ps(ab*) for each
s > 0, proving the claim. ]

3.4 Some restrictions and simplifications

To make sense out of the conjecture (4]), we should ask for a complete description of an
operator in terms of its s-numbers. We therefore think that it is natural to the confine

the conjecture to the ideal J# (A) of T-compact operators (Remark 2.T]).

In fact, it is known that for z € #(A)*,
o(x) = clos{pus(z) : s > 0}

(see [16, Theorem 4.10]). On the other hand, if e, f are disjoint and infinite projections

(T(e) = 7(f) = 00), taking x = e + 5 f shows that o(z) = {1/2,1} while p(z) = 1 for all

s > 0, therefore it is hopeless to recover x from the data in p,(x).

Exchanging a with b, we can always assume that 1 < p < 2. Since Ay = ps(|ab*|) =

ws(|alb|), we can safely assume that a,b > 0. Moreover, we can assume (see Section [3)
t

that A is diffuse and there exist complete flags e;, ¢ € P(A) (t > 0, 7(e;) = 7(q;) =
such that

lab| = / Asde(s)  and —aP 4+ =b7 = / Asdq(s), (6)
0 p q 0

since a,b € & (Av)+ and 7T-compact operators form a (closed in measure) ideal of A.

Our arguments will be based on continuous majorization. We are therefore interested in
those operators that are locally integrable. More precisely, let 1 < p < oo, let z € A and
assume that there exists ¢ > 0 such that

5
/ ps(z)Pds < oo
0
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(hence the integral is finite for all finite 6 > 0). We will denote the set containing all these
(A) € A. Note that in particular, all bounded operators a € A are of
this class. Moreover,

operators by £7

loc

/0 5 pus()Pds > ps(x)?~! /0 5 ps(x)ds

shows that .£P (A) C £L.(A) for each p > 1.

loc

Lemma 3.4. Leta € A andp > 1. Then a € L7

loc

(A) if and only if a € LP(A) + A,

and in that case the decomposition can be taken as follows for some r > 0.
@ = apt(r, +00) + ap®[0, 7] (7)

Proof. By polar decomposition, it suffices to consider a > 0. Note that ap®[0,r] <r € A
and since a € A, eventually 7(p®(r, +00)) < oo for some r > 0. Likewise, for p > 1,

a? = aPp(r, +00) + a’p®[0, r].
These expressions imply the following (see [11, Proposition 1.2]):
a? € LL(A) < ab € LYA)+ A& there exists 7 > 0 such that a’p®(r, +00) € L (A).

Note that then ap®(r, +00) € £?(A) for the same r, therefore a € £?(A)+ A by (). On
the other hand, if a = I +m € ZP(A) + A, then taking f(xz) = 2P which is continuous,
convex and increasing in [0, +00),

/Ot fis(a)Pds = /Ot 115(1 + m)Pds < /Ot(ﬂs(g) + pg(m))Pds

by [8, Lemma 4.4.iii]. Therefore for any ¢t > 0

(Aﬂgmvw)m)s (AQMU»+MOMV@)MQ
< ([ o) " ([ ntmyras) v

t 1/p
< ([ mttras) o+l < o0
0

by the classical Mikowkski inequality, therefore a € ZF (A). Take r = p;(a), and note
that for all s > 0,
pus(a) 0<s<t

plapt(rbo0)) = { 70 9S8

therefore ([7)) gives the stated decomposition. O
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4 Main results

We start by examining the ranges of a, b. Throughout, p, g are positive with 1/p+1/q = 1.

Proposition 4.1. Let 0 < a,b € & (A) with ab € £}

loc

(A). If p#2 and

1 1
ps(ab) = pg (]—9(1” + gbq) forall s >0

then Ran (a) = Ran (b).

Proof. Exchanging a, b it will suffice to consider 1 < p < 2. Let p, be the projection
onto the closure of the range of b. Let b. = b+ (1 — p;), then b2 = b9 + 9(1 — py)
and b2 = b? + 2(1 — py). Fixt > 0, let {es} be a complete flag for |bal, then denoting
As = ps(ab) we have

¢
/ Mde(s) + e%e;a(l — py)ae, = ei|bal’e; + e2eia(1 — py)ae; = e|b.al’e;.
0

Taking the trace, it follows that

¢ ¢
/ )\gds + 527'(eta(1 — pp)ae;) = T(et|b€a|2) < / us(|b€a|)2
0 0

by Remark Bl On the other hand, by (Bl applied to a, b,
1 1 1 1 1
ps(lbeal) < g (—a” + —b§> = Il (—a” + b7+ —e(1 - pb))
p q p q q

1 1 1 1 1
< s (—a” + —bq) + —e? = pg(ab) + —e? = A\ + —€.
p q q q q

Note that in particular, all the integrals computed up to now are finite by the hypothesis
on ab, and

t t 1 9 t
/ Mds + 27 (esa(1 — py)aey) < / Mds + —2t52q + —5q/ Asds.
0 0 q 4 Jo

Cancelling [, A2ds and dividing by €2, noting that ¢ > 2 and letting & — 0 gives us that
T(e;a(l — pp)ae,) = 0. Since the trace is faithful, we conclude that (1 — py)ae; = 0 or
equivalently, ae; = pyae; for all t > 0. Then

pyalbal :pba/ Ade(t) :/ Aippade(t) :/ Aade(t) = albal,
0 0 0
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that is a(Ran |ba|) C Ran (b).

Now if & € H, then alba|¢ € Ran(b), therefore a?|ba|lé = a(albalf) € aRan(b) C
Ran (ab) = Ran |ba|, and a®|balé = a(a®bal¢) € aRan|ba|] C Ran(b). Iterating this
argument, we arrive to the conclusion that a***!(Ran |ba|) C Ran (b) for all n € Ny.
Using an approximation of f = X, by odd functions, we conclude that p,(Ran|ba|) =

f(a)(Ran|ba|) C Ran(b) where p, is the projection onto the closure of the range of
a. Therefore |[bal*¢ = ab*aé = pyab*aé = p,|bal*¢ C Ran (b), which gives Ran|ba| =
Ran (]ba|?) C Ran (b). But then

aRan (b) = Ran (ab) = Ran |ba| C Ran (b)

which proves that the range of b is invariant for a; since a > 0 the same is true for
the kernel of b. Therefore we can write a = a, + a,, with a, = pyap, > 0 and a, =
(1 —pp)a(l — py) > 0. Note that ba?b = baib and a? = aj + o, thus for all s > 0,

1 1 1 1 1 1 1
Is (—a{j + —bq) < s <—a€ + -0 + —a’i) = [ls <—ap + —bq) = ps(ab)
p q p q p p q

1 1
~ plant) < (St + o)
q

by the hypothesis and (Bl applied to ay, b. This proves that for all s > 0

1 1 1 1 1
fs (—a{,’ + —bq) = UUs (—a{,’ + b7+ —a’i)
p 4q p 4q p

which (by Lemma[2.215) is only possible if a; = 0, proving the assertion of the proposition.
]

The following will be used twice throughout the proof of the main theorem, therefore we
preferred to state it as a separate lemma:

Lemma 4.2. Let 0 < x € &L}

loc

(A) and p € A a projection with finite trace. Then

7(p)
T(px) = / ps(x)ds
0
implies xp = px.

Proof. Since p is a projection and = > 0,

(prp)? = prprp < pr’p = |zp|*.



Since the square root is operator monotone, pxp < |zp|. Take the trace and invoke items

4 and 5 of Lemma 2.2 then

00 7(p) 7(p)
(lep]) = / 1y (ep)ds = / o (ep)ds < / 1y(2)ds,

thus by the hypothesis prp and |rp| have equal (and finite) trace. Since the trace is
faithful this is only possible if pxp = |zp|, or equivalently if prpxp = pax®p. This implies
that

(px, ap)s = 7(papr) = 7(pa®p) = |Ipz[|3 = |px|allzpll2,

which by the case of equality in Cauchy-Schwarz inequality implies xp = pz. O

We will also need the following classical result on operator ranges for [6, Theorem 2.

Remark 4.3. (Douglas’ Lemma). Let x,y € A. If xx* < Ayy* for some X\ > 0, there
exists a contraction ¢ such that x = yc, therefore Ran (z) C Ran (y).

With this tools at hand, we are now able to prove the main theorem.

Theorem 4.4. Let 0 < a,b € X (A) with ab € £2.(A). If

1 1
ps(ab) = ps (ﬁap + 5bq) for all s > 0,

then a? = b?. When p = q = 2 it suffices to assume ab € £}

loc

(A).

Proof. Exchanging a, b it will suffice to consider 1 < p < 2. Denoting Ay = u5(ab) we write
ba®b = |abl® = [;° A2de(s) with a complete flag {e;}s>0 C P(A). For I = [s,t] C [0, +00)
denote e; = e; — e; = e(s,t), then e; = ejg . Since A, is non-increasing,

t

ba*b = ba(ba)* = |ab|* = / Mde(s) > /)\gde(s) > )\f/ de(s) = Ney, (8)
0 1 s
and the previous lemma ensures that Ran (e;) C Ran (|ab|) = Ran (ba) C Ran (b) for each
interval I = [s,t]. Moreover, if e = \/s20 es is the join of the increasing projections, clearly
e = Pjas|, the projection onto the closure of the range of |ab|.
We now treat three cases separately.

Case 4/3 < p < 2. By Proposition [L1] we can consider H = Ran (a) = Ran (b), and
the semi-finite von Neumann subalgebra M C A generated by the (finitely supported)
spectral projections of a,b,ab. We give M the inherited trace 7 and identity 1 = 1, =
Py, = py. All the operators involved a, b, ab, a?, b? are in Mv, and M can be faithfully
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represented in this B(#H). Then we can safely assume that b is injective, e,e; € M for
each interval I, and M C H is a common core for all x € M.

We remark that in what follows, we will only use that b is injective, or equivalently, that
the range of b is dense.

Again for each interval I, let H; be the closure of b='Ran (e;) C H. Let f; = Py, and
f = Vs fs the closed join of all projections, where f; = fj). We divide the proof in
several smaller claims.

Claim: f = p,, the projection onto the closure of the range of a. Let n € Ran (fs);
then n = lim, n, with bn, = e,; since Ran(e;) C Ran(|ab]) = Ran (ba), it must be
bn, = bay, for some 1, € H, and by the injectivity of b, we obtain 7, € Ran(a),
therefore n € Ran (a). This proves that f < p,. On the other hand, if n € Ran (a), then
bn € Ran (ba) = Ran|ab| C Ran (e), therefore bn = lim¢,, with &, € Ran (e,,) for some
sp > 0. Therefore &, = bn, with 1, € Ran(fs,) C Ran (f) for each n. Now

[ = 1, 0E)] = [0 = 01, )| = [(6n = &m ) < [|€n = Emnll €]

and since the range of b is dense, {1, }, is a weak Cauchy sequence in Ran ( f) which, being

closed and linear, it is weakly closed. Therefore 7, converges weakly to some 7y € Ran (f).
But for each £ € H,

(bn, &) = Tim(bn,, &) = lim(n,, bg) = (1o, b§) = (bno, ),

which implies that by = b, and by the injectivity of b, we obtain n = 1y € Ran (f), thus
Pa < f. This proves that f = p,.
Claim: there exists a closed operator ¢; = "b~lerb™!” defined on Ran (b) such that 0 <
cr < A—I%az. Since b is injective and Ran (e;) C Ran (b), for each £ € H there exists a
unique 7 € H; such that by = e;€. Define ¢; in Ran (b) as follows: ¢;b§ = n. We now
compute

(crb€i, b&2) = (m, b&2) = (b, &2) = (€11, &)
which shows that ¢; is a symmetric operator on Ran (b). Moreover, since e; < /\%ba%
(recall T = [s,t] and equation (), it follows that

(c1bE,bE) = (1,bE) = (e16,€) < Ai%wa?b&,@ - A%(a?bf,b@,

therefore ¢; has a self-adjoint extension (c.f. [I5, Theorem 5.1.13], that we still denote
cr),and 0 < ¢; < )\—12(12.
Claim: ¢; € M. Let u € M, let £ € H. Then there exists unique 7,1 € H such that
er§ = by and e;(ué) = bn. Now ejué = ue € since u € M’ therefore

bn = erué = ueré = uby) = bup,
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and since b is injective, uy) = n. We now compute

cru(b§) = crb(uf) = n = uy = u(crb§) = ucr(bg),
which shows that c;u = ucy, proving that ¢; € M.

Claim: berb = ef, erbfr = bfr and frb%fre; = fr for each I. From the very definition,
berb = er. On the other hand note that if n € f; then n = lim,, n, with bn, € Ran (e;)
and for any £ € H

|01 — 0, )] = (e — 1, 6| < |1 — | [1D]]

therefore bn, € Ran (ey) converges weakly to b, therefore by € Ran (e;) and we obtain
erbfr = bfr. Taking adjoints, f;b = f;bes, hence for each & € H,

fi0 frer(b€) = fib? fin = fib®n = (f10)(bn) = (f1b)(er€) = fr(bE),
which proves that f;b%frc; = fr for any I.
Claim: fjc; = cyfr for any I,J. Since when e;§ = bn, then n € Ran(f), clearly
frer = ¢r = ¢ f1. Moreover it is not hard to see that frc; = c;ny for any pair of intervals
I, J by the injectivity of b, therefore frc; = c;f;.
Claim: f; ~ e;. Inspection of the ranges shows that (again by the injectivity of b)

Ran (e;) = Ran (bey) and Ran (f;) = Ran (¢/b),

and since ¢;b = (bey)*, it follows that e; is von Neumann equivalent to f;, which implies
that f, fr € M and moreover 7(f;) = 7(ey) for each I.

Summing up our findings: for any interval I = [s,t] C [0,+00), we have e ey, f, f1 €
P(M) with fr ~e;, 7(f1) = 7(eg) =t —s, efbfr = bfr, fib = frbe;. Moreover ¢; € M,
bC[b =€y,

fres =cing=cyfr, fib’frer= fr=cifib®fr, a®> > Necp and fra®fr > Xer. (9)

Claim: a?f; = fsa? for all s > 0. Let m = {I;};=1.., with I; = [s;, s;11] be a partition of
[0, 4+00), and denote e; = e;, and likewise with f;, ¢;, We have

ba2b>2/ N2de(s >Z)\8+1 ZASHch

which implies a® > .\
partition

i AS +1C’ since b is injective with dense range. Now refining the

wiee) ~ anee) ([ " Nde()€,€) = tim ( (326

|| =0

= lim ( )\sﬂclbé be)

|7r\~>0
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for any £ € ‘H. Since the range of b is dense and the operators involved are positive, we
conclude that lim . A

|7|—0

Clo,sn1;), We conclude that fsa? = a®f, for all s > 0, which implies that a? f; = f;a? for all
1.

= a? in the strong operator topology. Since f.c; = ¢;fs(=

i Sz+1 Ci

We now take the p/2-th root in (), which is a monotone operator function since 1 < p < 2.
Thus
2
slﬂcp/ < a? and )\i’ﬂcp/ < fid fi = a’f;. (10)
Since 4/3 < p < 2, this implies that 2 < ¢ < 4. Then ¢ ~— t%/? is operator convex [I5,
Theorem 2.4] and (f;b%f;)9/? < f;b9f;. By Young’s inequality in the commutative algebra

generated by ¢;, f; [T, Lemma 2.2]

Nenfi = A= ”2<fib?fi>1/2< S <f,b2f>q/2 (11)

Si+1 Z Si+1 1
1 1
< Yparp Lpaeg o g, (—ap+ bq) fi = iDf:
p q

where D = %a” + %bq for short.
Claim: f;D = Df, for all ¢ > 0. Assume that 7 is a partition of [0,¢]. Summing over i,
we obtain ), A, fi <>, fiDfi, and taking traces

t t
Z Asir (8i01 — 83) < Z (fiD)=71(Df;) < / ps(D)ds = / Asds < 00
- 0 0

by (@), Remark 3.1l and the assumption on a, b (recall Z2.(A) C 4L (A)). Refining the

partition , it follows that fot Asds = T7(Df). Since A\ = ps(D) and 7(f;) = t, Lemma [£.2]
implies that f;D = D f;.

Claim: D = fooo Asdf (s). Since t was arbitrary, f;D = D f; also holds. Returning to the
previous inequality (1) we now sum over i to obtain

Z Ao fi < Z fiDf; = Z f;D=f,D=f,D

Let D = [ Adf(s), then (1 — f)D = 0 and Df, = fot Asdf (s). Refining the partition
7 of [0,t] we obtain Df; < f,D, and since 7(Df;) = 7(f;D) = fot Asds, it must be
Df, = Df, = f.D for each t > 0. Recall f =/, f; is the union of the projections f;, then
clearly D = Df = fD; on the other hand

and by Lemma 223 it is only possible if (1 — f)D = 0, or equivalently D = D.
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Claim: a commutes with b, b commutes with all f; and b?f = b?. Since a? commutes with
all fy, then a? commutes with

D= /)\df :—ap+ bq

Then a? commutes with b? or equivalently, a commutes with . Note that since f = p,,
then 1 1

—af + bq D=Df=-d"+ bqf

p q p
therefore b7 f = b?. Since a? commutes with all f; and %bq =D — %a”, then b7 commutes

with all f;.
Claim: f; = e; for all t. Recall that for all ¢, bf; = e;bf;, therefore f,be; = f;b. Since f;
commutes with b, bfie; = bf;; since b is injective, fie; = f;. Therefore f; = fie; = e, frep <
er, and since 7(f;) = 7(e;) = ¢, it must be f; = ¢, for all t.
Finally, .

|ab| = ab = / Asdf (s) = 1a” + 1bq.

0 p q

Let a; = af;, by = bf;, then %us(at)p < ps(Dy) = A € LL(A) for 0 < s < t and likewise
with b. This means that o}, b} € £} (A) and

loc

t 1 1
|atbt‘ = by = abfy = / )\sdf(s) = —af + _bga
0 p q

and all the operators involved have finite trace. Farenick and Manjegani proved that in
that case (see [9, Theorem 3.1] or [14, Theorem 2.1]), it must be a?f; = af = b = b9 ;.
We give here an alternative argument: taking traces

1 1 1 1 1 1
5HatH£+5HthZ =T (5@5) + gbg) = T(Jabe]) = llabellr < llacllpl|be]lq < ];+Hat|!£+5|!th;’

by the operator Holder inequality (applied to |la;b||1) and Young’s numeric inequality
(applied to ||a||p, ||be]|p). This implies |[abe|ls = ||a¢l|,||be]|q, and this is only possible if
ay = b} [4, 13]. Since this holds for all t > 0, a? = a?f = b9f = b? as we claimed.

Case 1 < p < 4/3. This implies that ¢ > 4, but since the ranges of a and b still match by
Proposition 4.1}, we can assume that b is injective with dense range, and the computation

goes through the same lines, modifying the step regarding the commutative operator
Young inequality (1) according to [I, Theorem 2] or [7, Proposition 2.3].

Case p = ¢ = 2. First note that

1

1 1
gl < e (50 57) = plab) € LEA) LA
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therefore p,(a) € £?

loc

(A) and likewise with b. Proposition . ]is of no use here, therefore
it suffices to assume pu,(ab) € £}

loc(A)'
Let @ = (pya®py)/?. Then Ran (@) C Ran (b) and ba2b = ba?b, therefore |ab| = |ab|. Hence

1, 1, 1, 1, 1, 1, )
— _ — — — < — — = =
ILs <2a + 2b ) s <pb(2a + 26 oo ) < s 5% + 2b ps(ab) = ps(ab)

1. 1
< s <§a2 + 552)

by (B) applied to the pair a,b. Therefore, for all s > 0,

1., 1
J(ab) = g ( =2+ =b?) .
is(ab) M(Qa +3 )

Since Ran (@) C Ran (b), we can assume that b is injective, and argumenting as in the
previous cases, arrive to a* = b%, that is pya®p, = b*. In particular p,(b)* < p,(a)? for all
s > 0. Reversing the argument, we also get p,b*p, = a?, therefore u,(a) = p,(b) for all
s> 0.

Let {bs}s>0 be a complete flag for b = [ yu,(b)db(s) with 7(b,) = t. Then for all t > 0, b,
commutes with b, we have bb = fot s(b)db(s) and since by < py, bypp = b;. Therefore from
ppa’p, = b we obtain b,a?b, = bb?, which implies that

t

T(bia?) = T(b,b?) = /0 t 11,(b)2ds = /0 1,(a)2ds < oo.

By Lemma [4.2] this is only possible if a commutes with b;. Therefore, a commutes with
b, then from p,b*p, = a® we have bp, = p,b = a. But

:us(a“) = Ms(b) = Ms(bpa + (1 - pa)b) = Ms(a + (1 - pa)b)

implies (Lemma 2.216) b = p,b = a. O

Remark 4.5. As the proof goes, it suffices to consider ab € £}

loc

(A) if either

Ran (a) C Ran (b) or Ran (b) C Ran (a).

Corollary 4.6. Let 0 < a,b € AN # (A) and assume

1 1
ts(ab) = pg (—ap + —bq) for all s > 0.
D q

Then aP = be.
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4.1 Symmetric norms

We close the paper putting this result in context with the theory of symmetric norms on
A, see for instance [5] and the references therein.

We say that a symmetric norm | - || is strictly increasing if z,y € E C A, ps(z) < ps(y)
for all s > 0 and ||z||p = [|y|lg implies ps(x) = ps(y) for all s > 0. All £P-norms
are strictly increasing for 1 < p < oo, while the uniform norm or the Ky-Fan norms
|zl = fot is(x)ds are not.

Theorem 4.7. Let a,b € & (A)N.L2

loc

(A). Ifp > 1 and 1/p+1/q = 1, then the following
are equivalent:

1. |al? = |bJ9.
2. zlab*|z* = I—lj\a|p + é\b|q for some contraction z € A

3. |lzlab*|w||g = H%\CLP’ + %\b|qHE for a pair of contractions z,w € A and || - ||g a
strictly increasing symmetric norm.

4. ps(ab*) = s (i|a|p + %|b|q) for all s > 0.
Proof. The proof is much like as in [I2, Theorem 2.13], therefore it is omitted. O

As in Theorem .4, Remark EL5] or Corollary .6, the hypothesis ab € £2,(A) is unnec-

essary when ab is bounded, and can be relaxed to ab € 4! (A) if p = g = 2 or if there is

an inclusion of ranges.
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