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The case of equality in Young’s inequality for the

s-numbers in semi-finite von Neumann algebras.∗

G. Larotonda†

Abstract

For a semi-finite von Neumann algebra A, we study the case of equality in Young’s

inequality of s-numbers for a pair of τ -measurable operators a, b, and we prove that

equality is only possible if |a|p = |b|q. We also extend the result to unbounded

operators affiliated with A, and relate this problem with other symmetric norm

Young inequalities.

1 Introduction

The well-known inequality, valid for p > 1 and 1/p+ 1/q = 1, named after W. H. Young,

is usually stated as

αβ ≤ 1/pαp + 1/q βq

for any α, β ∈ R
+, with equality if and only if αp = βq.

In this paper, we establish an analogue for the case of equality in the setting of operators

affiliated to semi-finite von Neumann algebras. For more references and further discussion

on the subject of Young’s inequality for matrices and operators, we refer the reader to

[12] where the proof is given for the particular case of compact operators in B(H) -the

discrete (or atomic measure) case- of this fact. In particular, we remark that it was the

fundamental paper by T. Ando [1] which initiated the study of Young’s inequality for the

singular values of n× n matrices.

The emphasis in this paper is in the measure theoretic approach to operators affiliated

with a semi-finite von Neumann algebra, since the approach by induction used in [12] is

∗2010 MSC. Primary 47B06, 47A63; Secondary 47A30.
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not at hand. The inequality for s-numbers of operators a, b affiliated with a semi-finite

von Neuman algebra A, is stated as

µs(ab
∗) ≤ µs (1/p |a|

p + 1/q |b|q) , s > 0 (1)

and extended here to unbounded operators; we are interested in the case of equality.

We remark that this result includes all semi-finite von Neumann algebras A, since by a

standard tensor product technique [8, p.286], we can always embed A into the diffuse

algebra A⊗ L ∞([0, 1], dt) without altering the s-numbers.

This paper is organized as follows: Section 2 presents the general facts about s-numbers

recalling the well-known and establishing some simple lemmas used later. Section 3 deals

with some simplifications and reductions of the problem to deal with it in full generality.

Section 4, after certain technical propositions, contains the main result of this paper,

Theorem 4.7, that states that equality holds for all s-numbers in (1) if and only if |a|p =

|b|q, or equivalently, if equality of norms

‖ab∗‖E = ‖1/p |a|p + 1/q |b|q‖E

holds for some strictly increasing symmetric norm ‖ · ‖E (definition given in Section 4.1,

just before the main theorem).

2 Singular numbers in von Neumann algebras

In this paper A stands for a finite or semi-finite von Neumann algebra with faithful normal

trace τ , which when convenient we will assume represented in a complex Hilbert space

H. The set of (self-adjoint) projections in A will be denoted by P(A).

We consider the topology of convergence in measure in A: a neighbourhood of 0 is given

by

V (ε, δ) = {x ∈ A : ∃ p ∈ P(A) s.t. τ(1− p) < δ and ‖xp‖ < ε}.

We will denote with Ã the closure in measure of A, therefore Ã is the ring of τ -measurable

operators affiliated with A. In the atomic case, convergence in measure reduces to the

norm topology, therefore Ã = A in that case.

For 0 ≤ x ∈ Ã and s > 0, we denote the s-th singular number of x by µs(x):

µs(x) = inf{‖xp‖ : p ∈ P(A) with τ(1− p) ≤ s}.

With µs(a) we denote the s-numbers of |a|, that is µs(a) := µs(|a|). We remark that

lim
s→0+

µs(x) = ‖x‖ including the posibility of +∞ when x is unbounded. The standard

reference on the subject is the paper by Fack and Kosaki [8].
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We comment here on some useful characterizations (Proposition 3.1 in [10], Proposition

2.2, Lemma 2.5, Proposition 3.1 in [8]).

• The variational (min-max) characterization:

µs(x) = inf
p∈P(A)
τ(1−p)≤s

[
sup

ξ∈Ran (p)
‖ξ‖=1

〈xξ, ξ〉
]
= sup

p∈P(A)
τ(p)≥s

[
inf

ξ∈Ran (p)
‖ξ‖=1

‖xξ‖
]
. (2)

• The distribution characterization: if B ⊂ R≥0 is a Borelian set and we denote

px(B) = χB(|x|) (the range projections of |x|), then

µt(a) = min{s ≥ 0 : τ(px(s,+∞)) ≤ t}.

From the very definition of Ã, the number τ(px(s,+∞)) is eventually finite, and

moreover τ(px(s,+∞)) → 0 when s→ ∞.

• For x ∈ Ã, the following are equivalent:

1. τ(px(t,+∞)) < +∞ for all t > 0.

2. lim
t→∞

µt(x) → 0.

3. There exists a sequence of bounded operators xn ∈ L 1(A) such that xn → x

in the measure topology.

Remark 2.1. With any of these three characterizations, we say that x is τ -compact;

these operators form a complete bilateral ideal in Ã that we will denote by K (Ã);

note that a τ -compact operator is not necessarily bounded. We will denote with

K (Ã)+ the positive (x ≥ 0) τ -compact operators.

In the atomic case (when A = B(H)), then we recover the ordinary compact op-

erators K (H). If {λk(x)}k∈N0
denotes the usual singular values of x (i.e. the

eigenvalues of |x|), and we arrange them in a right-continuos decreasing function

which is constant on [k, k + 1), then we obtain the distribution function µs(x) as

follows:

µs(x) =
∑

k∈N0

λk χ[k,k+1)(s)

In this lemma we collect some other known facts on s-numbers that we will use later.

Lemma 2.2. Let x, y ∈ A, a, b ∈ Ã. Then for each s > 0,

1. µs(xay) ≤ ‖x‖‖y‖µs(a), and if a ≤ b then µs(a) ≤ µs(b).

3



2. µs(|ab
∗|) = µs(||a||b||).

3. µs+t(a+ b) ≤ µs(a) + µt(b), s, t ≥ 0.

4. If p ∈ P(A) then µs(ap) = 0 for each s ≥ τ(p).

5. τ(|a|) =
∫∞

0
µs(a)ds.

6. If a, b ≥ 0, a ∈ K (Ã), ab = 0 and µs(a+ b) = µs(a) for all s > 0, then b = 0.

Proof. The first assertion is a consequence of the min-max characterization of the s-

numbers. To prove the second, note that if b = ν|b| is the polar decomposition of b, a

straitghtforward computation using the functional calculus shows that

|ab∗| = ν||a||b||ν∗ and ||a||b|| = ν|ab∗|ν.

Then by the first item we obtain µs(|ab
∗|) = µs(||a||b||). The proof of the third, fourth

and fifth assertion is due to Fack and Kosaki and can be found in their original paper

[8, Lemmas 2.5, 2.6 and Proposition 2.7]. The final assertion seems evident, but requires

some proof though. For t > 0, let pa[t,+∞) = χ[t,+∞)(a) be the spectral projections of a,

and likewise for b, a+ b. Then µs(a+ b) = µs(a) for all s > 0 implies (since a is τ -compact

and ab = 0) that

τ(pa(t,+∞)) = τ(pa+b(t,+∞)) = τ(pa(t,+∞)) + τ(pb(t,+∞))

for all t > 0 (cf. [8, Corollary 2.9]). Therefore τ(pb(t,+∞)) = 0 for all t > 0, implying

b = 0.

3 Diffuse algebras

Recall that an algebra is diffuse if it has no minimal projections. Following Fack and

Kosaki [8, p.286], we can always embed A into the diffuse algebra A ⊗ L ∞([0, 1], dt)

without altering the s-numbers. Then, the following [8, Lemma 2.1] will be useful later:

Remark 3.1. If x ≥ 0 is τ -measurable, then for each t ≥ 0

sup{τ(xp) : p ∈ P(A), τ(p) ≤ t} =

∫ t

0

µs(x)ds.
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3.1 Complete flags

If 0 ≤ x ∈ K (Ã) and A is a diffuse von Neumann algebra, there exists an increasing

assignment R≥0 ∋ t 7→ et ∈ P(A) (es ≤ et for s ≤ t) such that τ(et) = t for all t ≥ 0 and

x =

∫ ∞

0

µs(x)de(s).

Note the analogy with the atomic case, where x =
∑

k∈N λk(x)pk with pk the projection to

the λk eigenspace of x, and we assume the eigenvalues are arranged in decrasing order.

Since e0 = 0, we denote e(s, t) = et − es for s ≤ t ∈ R≥0 and since A is diffuse,

et − es = e(s, t) = e[s, t) = e(s, t] = e[s, t].

The spectral resolution {et}t≥0 is called a complete flag for x; for more details on this

useful constructions in diffuse semi-finite algebras, we refer the reader to the papers [2, 3]

by Argerami and Massey. In particular, for each t > 0,

∫ t

0

µs(x)ds = τ(xet).

3.2 Equality of singular numbers, τ-compact operators

Let (A, τ) be a semi-finite von Neumann algebra with semi-finite trace (τ(1) = +∞ here).

In [9, Theorem 1] Farenick and Manjegani proved the remarkable Young’s inequality for

the s-numbers: if p > 1, 1/p+ 1/q = 1, and a, b ∈ A, then

µs(ab
∗) ≤ µs (1/p |a|

p + 1/q |b|q) (3)

for all s ≥ 0. The purpose of this paper is to attack the following conjecture:

Let p, q > 1 with 1/p+ 1/q = 1. Does

µs(ab
∗) = µs (1/p |a|

p + 1/q |b|q) (4)

for all s > 0 imply |a|p = |b|q?

Remark 3.2. If the algebra A is atomic, we have already answered in the affirmative

the conjecture in [12, Theorem 2.12]. There, we used the existence of eigenvectors for

each non-trivial eigenvalue. In this paper we will be dealing with the continuous case (that

contains the previous one, see Section 3), using continuous techniques.
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3.3 Extension to unbounded operators

We extend the inequality and the conjecture to unbounded operators.

Theorem 3.3. Let a, b ∈ Ã, then for each s > 0

µs(ab
∗) ≤ µs (1/p |a|

p + 1/q |b|q) . (5)

Proof. Let a = u|a|, b = ν|b| be the polar decompositions of a, b. Approximating |a|, |b|

in measure from below with bounded operators xn, yn ≥ 0, we have for each s > 0

µs(xnyn) ≤ µs (1/p x
p
n + 1/q yqn) ≤ µs (1/p |a|

p + 1/q |b|q)

by (3) applied to the pair xn, yn and Lemma 2.2.1. Since xn ≤ |a|, yn ≤ |b|, it is easy to

check that |xnyn| ≤ ||a||b||; since |ab∗| = ν||a||b||ν∗, then µs(xnyn) ≤ µs(ab
∗). Since xnyn

converges in measure to |a||b|, then by [8, Lemma 3.4], limn µs(xnyn) = µs(ab
∗) for each

s > 0, proving the claim.

3.4 Some restrictions and simplifications

To make sense out of the conjecture (4), we should ask for a complete description of an

operator in terms of its s-numbers. We therefore think that it is natural to the confine

the conjecture to the ideal K (Ã) of τ -compact operators (Remark 2.1).

In fact, it is known that for x ∈ K (Ã)+,

σ(x) = clos{µs(x) : s > 0}

(see [16, Theorem 4.10]). On the other hand, if e, f are disjoint and infinite projections

(τ(e) = τ(f) = ∞), taking x = e+ 1
2
f shows that σ(x) = {1/2, 1} while µs(x) = 1 for all

s > 0, therefore it is hopeless to recover x from the data in µs(x).

Exchanging a with b, we can always assume that 1 < p ≤ 2. Since λs = µs(|ab
∗|) =

µs(|a||b|), we can safely assume that a, b ≥ 0. Moreover, we can assume (see Section 3)

that A is diffuse and there exist complete flags et, qt ∈ P(A) (t ≥ 0, τ(et) = τ(qt) = t)

such that

|ab| =

∫ ∞

0

λsde(s) and
1

p
ap +

1

q
bq =

∫ ∞

0

λsdq(s), (6)

since a, b ∈ K (Ã)+ and τ -compact operators form a (closed in measure) ideal of Ã.

Our arguments will be based on continuous majorization. We are therefore interested in

those operators that are locally integrable. More precisely, let 1 ≤ p <∞, let x ∈ A and

assume that there exists δ > 0 such that
∫ δ

0

µs(x)
pds <∞
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(hence the integral is finite for all finite δ > 0). We will denote the set containing all these

operators by L
p
loc(A) ⊂ Ã. Note that in particular, all bounded operators a ∈ A are of

this class. Moreover, ∫ δ

0

µs(x)
pds ≥ µδ(x)

p−1

∫ δ

0

µs(x)ds

shows that L
p
loc(A) ⊂ L 1

loc(A) for each p ≥ 1.

Lemma 3.4. Let a ∈ Ã and p ≥ 1. Then a ∈ L
p
loc(A) if and only if a ∈ L p(A) + A,

and in that case the decomposition can be taken as follows for some r > 0.

a = apa(r,+∞) + apa[0, r]. (7)

Proof. By polar decomposition, it suffices to consider a ≥ 0. Note that apa[0, r] ≤ r ∈ A

and since a ∈ A, eventually τ(pa(r,+∞)) <∞ for some r > 0. Likewise, for p > 1,

ap = appa(r,+∞) + appa[0, r].

These expressions imply the following (see [11, Proposition 1.2]):

ap ∈ L
1
loc(A) ⇔ ap ∈ L

1(A) +A ⇔ there exists r > 0 such that appa(r,+∞) ∈ L
1(A).

Note that then apa(r,+∞) ∈ L p(A) for the same r, therefore a ∈ L p(A)+A by (7). On

the other hand, if a = l +m ∈ L
p(A) +A, then taking f(x) = xp which is continuous,

convex and increasing in [0,+∞),

∫ t

0

µs(a)
pds =

∫ t

0

µs(l +m)pds ≤

∫ t

0

(µs(l) + µs(m))pds

by [8, Lemma 4.4.iii]. Therefore for any t > 0

(∫ t

0

µs(a)
pds

)1/p

≤

(∫ t

0

(µs(l) + µs(m))pds

)1/p

≤

(∫ t

0

µs(l)
pds

)1/p

+

(∫ t

0

µs(m)pds

)1/p

≤

(∫ t

0

µs(l)
pds

)1/p

+ ‖m‖t1/p <∞

by the classical Mikowkski inequality, therefore a ∈ L
p
loc(A). Take r = µt(a), and note

that for all s > 0,

µs(ap
a(r,+∞)) =

{
µs(a) 0 < s < t

0 s ≥ t
,

therefore (7) gives the stated decomposition.

7



4 Main results

We start by examining the ranges of a, b. Throughout, p, q are positive with 1/p+1/q = 1.

Proposition 4.1. Let 0 ≤ a, b ∈ K (Ã) with ab ∈ L 2
loc(A). If p 6= 2 and

µs(ab) = µs

(
1

p
ap +

1

q
bq
)

for all s > 0

then Ran (a) = Ran (b).

Proof. Exchanging a, b it will suffice to consider 1 < p < 2. Let pb be the projection

onto the closure of the range of b. Let bε = b + ε(1 − pb), then bqε = bq + εq(1 − pb)

and b2ε = b2 + ε2(1 − pb). Fix t > 0, let {es} be a complete flag for |ba|, then denoting

λs = µs(ab) we have

∫ t

0

λ2sde(s) + ε2eta(1 − pb)aet = et|ba|
2et + ε2eta(1− pb)aet = et|bεa|

2et.

Taking the trace, it follows that

∫ t

0

λ2sds+ ε2τ(eta(1− pb)aet) = τ(et|bεa|
2) ≤

∫ t

0

µs(|bεa|)
2

by Remark 3.1. On the other hand, by (5) applied to a, bε,

µs(|bεa|) ≤ µs

(
1

p
ap +

1

q
bqε

)
= µs

(
1

p
ap +

1

q
bq +

1

q
εq(1− pb)

)

≤ µs

(
1

p
ap +

1

q
bq
)
+

1

q
εq = µs(ab) +

1

q
εq = λs +

1

q
εq.

Note that in particular, all the integrals computed up to now are finite by the hypothesis

on ab, and

∫ t

0

λ2sds+ ε2τ(eta(1− pb)aet) ≤

∫ t

0

λ2sds+
1

q2
tε2q +

2

q
εq

∫ t

0

λsds.

Cancelling
∫ t

0
λ2sds and dividing by ε2, noting that q > 2 and letting ε → 0 gives us that

τ(eta(1 − pb)aet) = 0. Since the trace is faithful, we conclude that (1 − pb)aet = 0 or

equivalently, aet = pbaet for all t > 0. Then

pba|ba| = pba

∫ ∞

0

λtde(t) =

∫ ∞

0

λtpbade(t) =

∫ ∞

0

λtade(t) = a|ba|,
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that is a(Ran |ba|) ⊂ Ran (b).

Now if ξ ∈ H, then a|ba|ξ ∈ Ran (b), therefore a2|ba|ξ = a(a|ba|ξ) ∈ aRan (b) ⊂

Ran (ab) = Ran |ba|, and a3|ba|ξ = a(a2|ba|ξ) ∈ aRan |ba| ⊂ Ran (b). Iterating this

argument, we arrive to the conclusion that a2n+1(Ran |ba|) ⊂ Ran (b) for all n ∈ N0.

Using an approximation of f = χσ(a) by odd functions, we conclude that pa(Ran |ba|) =

f(a)(Ran |ba|) ⊂ Ran (b) where pa is the projection onto the closure of the range of

a. Therefore |ba|2ξ = ab2aξ = paab
2aξ = pa|ba|

2ξ ⊂ Ran (b), which gives Ran |ba| =

Ran (|ba|2) ⊂ Ran (b). But then

aRan (b) = Ran (ab) = Ran |ba| ⊂ Ran (b)

which proves that the range of b is invariant for a; since a ≥ 0 the same is true for

the kernel of b. Therefore we can write a = ab + a⊥, with ab = pbapb ≥ 0 and a⊥ =

(1− pb)a(1− pb) ≥ 0. Note that ba2b = ba2bb and a
p = apb + ap⊥, thus for all s > 0,

µs

(
1

p
apb +

1

q
bq
)

≤ µs

(
1

p
apb +

1

q
bq +

1

p
ap⊥

)
= µs

(
1

p
ap +

1

q
bq
)

= µs(ab)

= µs(abb) ≤ µs

(
1

p
apb +

1

q
bq
)

by the hypothesis and (5) applied to ab, b. This proves that for all s > 0

µs

(
1

p
apb +

1

q
bq
)

= µs

(
1

p
apb +

1

q
bq +

1

p
ap⊥

)

which (by Lemma 2.2.5) is only possible if a⊥ = 0, proving the assertion of the proposition.

The following will be used twice throughout the proof of the main theorem, therefore we

preferred to state it as a separate lemma:

Lemma 4.2. Let 0 ≤ x ∈ L 1
loc(A) and p ∈ A a projection with finite trace. Then

τ(px) =

∫ τ(p)

0

µs(x)ds

implies xp = px.

Proof. Since p is a projection and x ≥ 0,

(pxp)2 = pxpxp ≤ px2p = |xp|2.
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Since the square root is operator monotone, pxp ≤ |xp|. Take the trace and invoke items

4 and 5 of Lemma 2.2, then

τ(|xp|) =

∫ ∞

0

µs(xp)ds =

∫ τ(p)

0

µs(xp)ds ≤

∫ τ(p)

0

µs(x)ds,

thus by the hypothesis pxp and |xp| have equal (and finite) trace. Since the trace is

faithful this is only possible if pxp = |xp|, or equivalently if pxpxp = px2p. This implies

that

〈px, xp〉2 = τ(pxpx) = τ(px2p) = ‖px‖22 = ‖px‖2‖xp‖2,

which by the case of equality in Cauchy-Schwarz inequality implies xp = px.

We will also need the following classical result on operator ranges for [6, Theorem 2].

Remark 4.3. (Douglas’ Lemma). Let x, y ∈ Ã. If xx∗ ≤ λyy∗ for some λ ≥ 0, there

exists a contraction c such that x = yc, therefore Ran (x) ⊂ Ran (y).

With this tools at hand, we are now able to prove the main theorem.

Theorem 4.4. Let 0 ≤ a, b ∈ K (Ã) with ab ∈ L 2
loc(A). If

µs(ab) = µs

(
1

p
ap +

1

q
bq
)

for all s > 0,

then ap = bq. When p = q = 2 it suffices to assume ab ∈ L
1
loc(A).

Proof. Exchanging a, b it will suffice to consider 1 < p ≤ 2. Denoting λs = µs(ab) we write

ba2b = |ab|2 =
∫∞

0
λ2sde(s) with a complete flag {es}s≥0 ⊂ P(A). For I = [s, t] ⊂ [0,+∞)

denote eI = es − et = e(s, t), then et = e[0,t]. Since λs is non-increasing,

ba2b = ba(ba)∗ = |ab|2 =

∫ ∞

0

λ2sde(s) ≥

∫

I

λ2sde(s) ≥ λ2t

∫ t

s

de(s) = λ2t eI , (8)

and the previous lemma ensures that Ran (eI) ⊂ Ran (|ab|) = Ran (ba) ⊂ Ran (b) for each

interval I = [s, t]. Moreover, if e =
∨

s≥0 es is the join of the increasing projections, clearly

e = p|ab|, the projection onto the closure of the range of |ab|.

We now treat three cases separately.

Case 4/3 ≤ p < 2. By Proposition 4.1 we can consider H = Ran (a) = Ran (b), and

the semi-finite von Neumann subalgebra M ⊂ A generated by the (finitely supported)

spectral projections of a, b, ab. We give M the inherited trace τ and identity 1 = 1M =

PH = pb. All the operators involved a, b, ab, ap, bq are in M̃, and M can be faithfully
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represented in this B(H). Then we can safely assume that b is injective, e, eI ∈ M for

each interval I, and M ⊂ H is a common core for all x ∈ M̃.

We remark that in what follows, we will only use that b is injective, or equivalently, that

the range of b is dense.

Again for each interval I, let HI be the closure of b−1Ran (eI) ⊂ H. Let fI = PHI
and

f =
∨

s≥0 fs the closed join of all projections, where fs = f[0,s]. We divide the proof in

several smaller claims.

Claim: f = pa, the projection onto the closure of the range of a. Let η ∈ Ran (fs);

then η = limn ηn with bηn = esξn; since Ran (es) ⊂ Ran (|ab|) = Ran (ba), it must be

bηn = baψn for some ψn ∈ H, and by the injectivity of b, we obtain ηn ∈ Ran (a),

therefore η ∈ Ran (a). This proves that f ≤ pa. On the other hand, if η ∈ Ran (a), then

bη ∈ Ran (ba) = Ran |ab| ⊂ Ran (e), therefore bη = lim ξn with ξn ∈ Ran (esn) for some

sn > 0. Therefore ξn = bηn with ηn ∈ Ran (fsn) ⊂ Ran (f) for each n. Now

|〈ηn − ηm, bξ〉| = |〈bηn − bηm, ξ〉| = |〈ξn − ξm, ξ〉| ≤ ‖ξn − ξm‖‖ξ‖

and since the range of b is dense, {ηn}n is a weak Cauchy sequence in Ran (f) which, being

closed and linear, it is weakly closed. Therefore ηn converges weakly to some η0 ∈ Ran (f).

But for each ξ ∈ H,

〈bη, ξ〉 = lim
n
〈bηn, ξ〉 = lim

n
〈ηn, bξ〉 = 〈η0, bξ〉 = 〈bη0, ξ〉,

which implies that bη = bη0, and by the injectivity of b, we obtain η = η0 ∈ Ran (f), thus

pa ≤ f . This proves that f = pa.

Claim: there exists a closed operator cI = ”b−1eIb
−1” defined on Ran (b) such that 0 ≤

cI ≤ 1
λ2
t

a2. Since b is injective and Ran (eI) ⊂ Ran (b), for each ξ ∈ H there exists a

unique η ∈ HI such that bη = eIξ. Define cI in Ran (b) as follows: cIbξ = η. We now

compute

〈cIbξ1, bξ2〉 = 〈η1, bξ2〉 = 〈bη1, ξ2〉 = 〈eIξ1, ξ2〉

which shows that cI is a symmetric operator on Ran (b). Moreover, since eI ≤ 1
λ2
t

ba2b

(recall I = [s, t] and equation (8)), it follows that

〈cIbξ, bξ〉 = 〈η, bξ〉 = 〈eIξ, ξ〉 ≤
1

λ2t
〈ba2bξ, ξ〉 =

1

λ2t
〈a2bξ, bξ〉,

therefore cI has a self-adjoint extension (c.f. [15, Theorem 5.1.13], that we still denote

cI), and 0 ≤ cI ≤
1
λ2
t

a2.

Claim: cI ∈ M̃. Let u ∈ M′, let ξ ∈ H. Then there exists unique η, ψ ∈ H such that

eIξ = bψ and eI(uξ) = bη. Now eIuξ = ueIξ since u ∈ M′, therefore

bη = eIuξ = ueIξ = ubψ = buψ,

11



and since b is injective, uψ = η. We now compute

cIu(bξ) = cIb(uξ) = η = uψ = u(cIbξ) = ucI(bξ),

which shows that cIu = ucI , proving that cI ∈ M̃.

Claim: bcIb = eI , eIbfI = bfI and fIb
2fIcI = fI for each I. From the very definition,

bcIb = eI . On the other hand note that if η ∈ fI then η = limn ηn with bηn ∈ Ran (eI)

and for any ξ ∈ H

|〈bηn − bη, ξ〉| = |〈ηn − η, bξ| ≤ ‖ηn − η‖‖bξ‖

therefore bηn ∈ Ran (eI) converges weakly to bη, therefore bη ∈ Ran (eI) and we obtain

eIbfI = bfI . Taking adjoints, fIb = fIbeI , hence for each ξ ∈ H,

fIb
2fIcI(bξ) = fIb

2fIη = fIb
2η = (fIb)(bη) = (fIb)(eIξ) = fI(bξ),

which proves that fIb
2fIcI = fI for any I.

Claim: fIcJ = cJfI for any I, J . Since when eIξ = bη, then η ∈ Ran (fI), clearly

fIcI = cI = cIfI . Moreover it is not hard to see that fIcJ = cI∩J for any pair of intervals

I, J by the injectivity of b, therefore fIcJ = cJfI .

Claim: fI ∼ eI . Inspection of the ranges shows that (again by the injectivity of b)

Ran (eI) = Ran (bcI) and Ran (fI) = Ran (cIb),

and since cIb = (bcI)
∗, it follows that eI is von Neumann equivalent to fI , which implies

that f, fI ∈ M and moreover τ(fI) = τ(eI) for each I.

Summing up our findings: for any interval I = [s, t] ⊂ [0,+∞), we have e, eI , f, fI ∈

P(M) with fI ≃ eI , τ(fI) = τ(eI) = t− s, eIbfI = bfI , fIb = fIbeI . Moreover cI ∈ M̃,

bcIb = eI ,

fIcJ = cI∩J = cJfI , fIb
2fIcI = fI = cIfIb

2fI , a2 ≥ λ2t cI and fIa
2fI ≥ λ2t cI . (9)

Claim: apfs = fsa
p for all s > 0. Let π = {Ii}i=1···n with Ii = [si, si+1] be a partition of

[0,+∞), and denote ei = eIi and likewise with fi, ci. We have

ba2b ≥
∑

i

∫

Ii

λ2sde(s) ≥
∑

i

λ2si+1
ei =

∑

i

λ2si+1
bcib

which implies a2 ≥
∑

i λ
2
si+1

ci since b is injective with dense range. Now refining the

partition

〈a2bξ, bξ〉 = 〈ba2bξ, ξ〉 = 〈

∫ +∞

0

λ2sde(s)ξ, ξ〉 = lim
|π|→0

〈
∑

i

λ2si+1
eiξ, ξ〉

= lim
|π|→0

〈
∑

i

λ2si+1
ci bξ, bξ〉

12



for any ξ ∈ H. Since the range of b is dense and the operators involved are positive, we

conclude that lim
|π|→0

∑
i λ

2
si+1

ci = a2 in the strong operator topology. Since fsci = cifs(=

c[0,s]∩Ii), we conclude that fsa
2 = a2fs for all s ≥ 0, which implies that apfi = fia

p for all

i.

We now take the p/2-th root in (9), which is a monotone operator function since 1 < p < 2.

Thus

λpsi+1
c
p/2
i ≤ ap and λpsi+1

c
p/2
i ≤ fia

pfi = apfi. (10)

Since 4/3 ≤ p < 2, this implies that 2 < q ≤ 4. Then t 7→ tq/2 is operator convex [15,

Theorem 2.4] and (fib
2fi)

q/2 ≤ fib
qfi. By Young’s inequality in the commutative algebra

generated by ci, fi [7, Lemma 2.2]

λsi+1
fi = λsi+1

f
1/2
i = λsi+1

c
1/2
i (fib

2fi)
1/2 ≤

1

p
λpsi+1

c
p/2
i +

1

q
(fib

2fi)
q/2 (11)

≤
1

p
fia

pfi +
1

q
fib

qfi = fi

(
1

p
ap +

1

q
bq
)
fi = fiDfi,

where D = 1
p
ap + 1

q
bq for short.

Claim: ftD = Dft for all t > 0. Assume that π is a partition of [0, t]. Summing over i,

we obtain
∑

i λsi+1
fi ≤

∑
i fiDfi, and taking traces

∑

i

λsi+1
(si+1 − si) ≤

∑

i

τ(fiD) = τ(Dft) ≤

∫ t

0

µs(D)ds =

∫ t

0

λsds <∞

by (6), Remark 3.1 and the assumption on a, b (recall L 2
loc(A) ⊂ L 1

loc(A)). Refining the

partition π, it follows that
∫ t

0
λsds = τ(Dft). Since λs = µs(D) and τ(ft) = t, Lemma 4.2

implies that ftD = Dft.

Claim: D =
∫∞

0
λsdf(s). Since t was arbitrary, fiD = Dfi also holds. Returning to the

previous inequality (11) we now sum over i to obtain
∑

i

λsi+1
fi ≤

∑

i

fiDfi =
∑

i

fiD = ftD = ftD.

Let D =
∫∞

0
λsdf(s), then (1 − f)D = 0 and Dft =

∫ t

0
λsdf(s). Refining the partition

π of [0, t] we obtain Dft ≤ ftD, and since τ(Dft) = τ(ftD) =
∫ t

0
λsds, it must be

Dft = Dft = ftD for each t > 0. Recall f =
∨

t ft is the union of the projections ft, then

clearly D = Df = fD; on the other hand

µs(D) = λs = µs(D) = µs(Df + (1− f)D) = µs(D + (1− f)D)

and by Lemma 2.2.3 it is only possible if (1− f)D = 0, or equivalently D = D.

13



Claim: a commutes with b, b commutes with all ft and b
qf = bq. Since ap commutes with

all fs, then a
p commutes with

D =

∫ ∞

0

λsdf(s) =
1

p
ap +

1

q
bq.

Then ap commutes with bq or equivalently, a commutes with b. Note that since f = pa,

then
1

p
ap +

1

q
bq = D = Df =

1

p
ap +

1

q
bqf,

therefore bqf = bq. Since ap commutes with all ft and
1
q
bq = D − 1

p
ap, then bq commutes

with all ft.

Claim: ft = et for all t. Recall that for all t, bft = etbft, therefore ftbet = ftb. Since ft
commutes with b, bftet = bft; since b is injective, ftet = ft. Therefore ft = ftet = etftet ≤

et, and since τ(ft) = τ(et) = t, it must be ft = et for all t.

Finally,

|ab| = ab =

∫ ∞

0

λsdf(s) =
1

p
ap +

1

q
bq.

Let at = aft, bt = bft, then
1
p
µs(at)

p ≤ µs(Dt) = λs ∈ L 1
loc(A) for 0 < s < t and likewise

with b. This means that apt , b
q
t ∈ L 1

loc(A) and

|atbt| = atbt = abft =

∫ t

0

λsdf(s) =
1

p
apt +

1

q
bqt ,

and all the operators involved have finite trace. Farenick and Manjegani proved that in

that case (see [9, Theorem 3.1] or [14, Theorem 2.1]), it must be apft = apt = bqt = bqft.

We give here an alternative argument: taking traces

1

p
‖at‖

p
p+

1

q
‖bt‖

q
q = τ

(
1

p
apt +

1

q
bqt

)
= τ(|atbt|) = ‖atbt‖1 ≤ ‖at‖p‖bt‖q ≤

1

p
+‖at‖

p
p+

1

q
‖bt‖

q
q

by the operator Hölder inequality (applied to ‖atbt‖1) and Young’s numeric inequality

(applied to ‖at‖p, ‖bt‖p). This implies ‖atbt‖1 = ‖at‖p‖bt‖q, and this is only possible if

apt = bqt [4, 13]. Since this holds for all t > 0, ap = apf = bqf = bq as we claimed.

Case 1 < p < 4/3. This implies that q > 4, but since the ranges of a and b still match by

Proposition 4.1, we can assume that b is injective with dense range, and the computation

goes through the same lines, modifying the step regarding the commutative operator

Young inequality (11) according to [1, Theorem 2] or [7, Proposition 2.3].

Case p = q = 2. First note that

1

2
µs(a)

2 ≤ µs

(
1

2
a2 +

1

2
b2
)

= µs(ab) ∈ L
2
loc(A) ⊂ L

1
loc(A),

14



therefore µs(a) ∈ L 2
loc(A) and likewise with b. Proposition 4.1 is of no use here, therefore

it suffices to assume µs(ab) ∈ L 1
loc(A).

Let ã = (pba
2pb)

1/2. Then Ran (ã) ⊂ Ran (b) and bã2b = ba2b, therefore |ãb| = |ab|. Hence

µs

(
1

2
ã2 +

1

2
b2
)

= µs

(
pb(

1

2
a2 +

1

2
b2)pb

)
≤ µs

(
1

2
a2 +

1

2
b2
)

= µs(ab) = µs(ãb)

≤ µs

(
1

2
ã2 +

1

2
b2
)

by (5) applied to the pair ã, b. Therefore, for all s ≥ 0,

µs(ãb) = µs

(
1

2
ã2 +

1

2
b2
)
.

Since Ran (ã) ⊂ Ran (b), we can assume that b is injective, and argumenting as in the

previous cases, arrive to ã2 = b2, that is pba
2pb = b2. In particular µs(b)

2 ≤ µs(a)
2 for all

s > 0. Reversing the argument, we also get pab
2pa = a2, therefore µs(a) = µs(b) for all

s > 0.

Let {bs}s≥0 be a complete flag for b =
∫∞

0
µs(b)db(s) with τ(bt) = t. Then for all t ≥ 0, bt

commutes with b, we have btb =
∫ t

0
µs(b)db(s) and since bt ≤ pb, btpb = bt. Therefore from

pba
2pb = b2 we obtain bta

2bt = btb
2, which implies that

τ(bta
2) = τ(btb

2) =

∫ t

0

µs(b)
2ds =

∫ t

0

µs(a)
2ds <∞.

By Lemma 4.2, this is only possible if a commutes with bt. Therefore, a commutes with

b, then from pab
2pa = a2 we have bpa = pab = a. But

µs(a) = µs(b) = µs(bpa + (1− pa)b) = µs(a+ (1− pa)b)

implies (Lemma 2.2.6) b = pab = a.

Remark 4.5. As the proof goes, it suffices to consider ab ∈ L
1
loc(A) if either

Ran (a) ⊂ Ran (b) or Ran (b) ⊂ Ran (a).

Corollary 4.6. Let 0 ≤ a, b ∈ A ∩ K (Ã) and assume

µs(ab) = µs

(
1

p
ap +

1

q
bq
)

for all s > 0.

Then ap = bq.
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4.1 Symmetric norms

We close the paper putting this result in context with the theory of symmetric norms on

Ã, see for instance [5] and the references therein.

We say that a symmetric norm ‖ · ‖E is strictly increasing if x, y ∈ E ⊂ Ã, µs(x) ≤ µs(y)

for all s > 0 and ‖x‖E = ‖y‖E implies µs(x) = µs(y) for all s > 0. All L
p-norms

are strictly increasing for 1 ≤ p < ∞, while the uniform norm or the Ky-Fan norms

‖x‖(t) =
∫ t

0
µs(x)ds are not.

Theorem 4.7. Let a, b ∈ K (Ã)∩L 2
loc(A). If p > 1 and 1/p+1/q = 1, then the following

are equivalent:

1. |a|p = |b|q.

2. z|ab∗|z∗ = 1
p
|a|p + 1

q
|b|q for some contraction z ∈ A

3. ‖z|ab∗|w‖E = ‖1
p
|a|p + 1

q
|b|q‖E for a pair of contractions z, w ∈ A and ‖ · ‖E a

strictly increasing symmetric norm.

4. µs(ab
∗) = µs

(
1
p
|a|p + 1

q
|b|q

)
for all s > 0.

Proof. The proof is much like as in [12, Theorem 2.13], therefore it is omitted.

As in Theorem 4.4, Remark 4.5 or Corollary 4.6, the hypothesis ab ∈ L 2
loc(A) is unnec-

essary when ab is bounded, and can be relaxed to ab ∈ L 1
loc(A) if p = q = 2 or if there is

an inclusion of ranges.
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