Accepted Manuscript

New pycnodontiform fishes (Actinopterygii, Neopterygii) from the Early Cretaceous of the Argentinian Patagonia

Soledad Gouiric-Cavalli, Mariano Remírez, Jürgen Kriwet

PII: S0195-6671(18)30273-8

DOI: 10.1016/j.cretres.2018.10.003

Reference: YCRES 3980

To appear in: Cretaceous Research

Received Date: 6 July 2018

Revised Date: 17 September 2018

Accepted Date: 3 October 2018

Please cite this article as: Gouiric-Cavalli, S., Remírez, M., Kriwet, J., New pycnodontiform fishes (Actinopterygii, Neopterygii) from the Early Cretaceous of the Argentinian Patagonia, *Cretaceous Research* (2018), doi: https://doi.org/10.1016/j.cretres.2018.10.003.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	New pycnodontiform fishes (Actinopterygii, Neopterygii) from the Early
2	Cretaceous of the Argentinian Patagonia
3	
4	
5	Soledad Gouiric-Cavalli ^{a, *} , Mariano Remírez ^b , Jürgen Kriwet ^c
6	
7	^a División Paleontología Vertebrados, Museo de La Plata, Universidad Nacional de
8	La Plata CONICET, Paseo del Bosque s/n B1900FWA, La Plata, Argentina
9	sgouiric@fcnym.unlp.edu.ar
10	^b Centro de Investigaciones Geológicas (CONICET-Universidad Nacional de La
11	Plata), La Plata, Argentina. Diagonal 113 #275, B1904DPK;
12	marianoremirez@gmail.com
13	^c University of Vienna, Department of Palaeontology, Geocenter, Althanstrasse 14,
14	1090 Vienna, Austria; juergen.kriwet@univie.ac.at
15	
16	
17	*Corresponding author
18	
19	
20	
21	
22	
23	
24	

25 ABSTRACT

Here we describe new pycnodontiform fish material recovered from the marine 26 27 Agrio Formation (lower Valanginian-lower Hauterivian) of the Neuquén Province in 28 the south-western of Patagonia, Argentina. The new material include an incomplete skull and an incomplete prearticular dentition. The incomplete skull 29 30 consists of some dermal and endochondral elements as well as dental remains 31 and represents a new large-sized gyrodontid that is referred to a new species, Gyrodus huiliches. Gyrodus huiliches sp. nov. is characterized by a unique 32 33 combination of tooth crown ornamentations and tooth shape separating it easily 34 from all known Gyrodus species. The incomplete prearticular dentition shows a tooth arrangement and sculpture that resembles that of "Macromesodon" 35 agrioensis - the previously only known pychodontiform in the area. This allows 36 37 revising this species, which was based on an isolated vomerine dentition and which we refer to a new genus, Tranawün. The new Patagonian fishes reported 38 here expand the knowledge of South American pychodontiforms. We hypothesize 39 40 that meanwhile the new Patagonian genus – *Tranawün*– diverged from *Gyrodus* after it migrated into the eastern Pacific through the Hispanic Corridor during the 41 Late Jurassic, the new species -Gyrodus huiliches- most likely diverged from a 42 43 Central or South American species of *Gyrodus*. Both represent the youngest 44 gyrodontid records and simultaneously the southernmost Early Cretaceous 45 occurrences of pycnodontiform fishes.

46 Keywords: Gyrodus huiliches nov. sp., Tranawün nov. gen., Agrio Formation,

47 Argentina, palaeogeography, evolution

48

49 **1. Introduction**

50

51 The order Pycnodontiformes is a morphologically and ecologically very 52 distinctive actinopterygian clade, which has been recognized as a taxonomic entity since the descriptions of Agassiz (1843-44). They first appeared in the Late 53 Triassic and became extinct in the Eocene (Kriwet, 2005; Cawley et al., 2018). 54 55 Pycnodontiforms inhabited mostly coastal but also pelagic marine waters as well 56 as brackish, freshwater-influenced and freshwater environments (Nursall, 1996a; Poyato-Ariza et al., 1998; Poyato-Ariza, 2005; Martín-Abad and Poyato-Ariza, 57 58 2013). Although most taxa only are known by their isolated dentitions or even teeth (e.g., Poyato-Ariza and Wenz, 2002; Kriwet, 2008; Stumpf et al., 2017), complete 59 and well-preserved specimens occur in Mesozoic and Early Cenozoic Konservat-60 Lagerstätten deposits of the Tethys area (Lambers, 1991; Forey et al., 2003; 61 62 Kriwet, 2005; Kriwet and Schmitz, 2005; Poyato-Ariza and Wenz, 2005; Ebert, 2013, 2018; Vullo et al., 2017). Moreover, some taxa previously assumed to be 63 invalid such as the large pycnodontiform Cosmodus, which is based on isolated 64 dentitions recently was redescribed and recognized as a valid distinct genus (Vullo 65 66 et al., 2018).

The value of dental characters for phylogenetic purposes has been discussed controversially in the last decades (Poyato-Ariza, 2003; Kriwet, 2005), the common conclusion of those studies is that "dentitional characters and their variation are still inadequately understood, and it is, of course, possible to identified species and genera based on isolated dentitions" (Kriwet, 2005: 160). Subsequently, Poyato-

72 Ariza and Bermúdez-Rochas (2009), for instance, established a new Early 73 Cretaceous pychodontiform genus based on isolated dental remains. The 74 phylogenetic importance of dental characters, however, remains ambiguous. 75 The dentition of pycnodontiform fishes is composed of molariform teeth on the paired prearticular and unpaired vomer bones, while incisiform or grasping teeth 76 77 with variable morphologies are located on the premaxilla and dentosplenial (Cawley and Kriwet, 2018). Most pycnodontiforms having crushing dentitions were 78 79 characterized as being predominantly durophagous (Nursall, 1996a, 1996b; Kriwet, 80 2001). However, herbivorous, grazing and cutting-type forms were also reported (Kriwet, 2001; Vullo et al., 2017). 81 82 Early pychodontiform fishes from the Late Triassic to Early Jurassic are exclusively known from Europe, but latest in the Late Jurassic they attained a 83 global distribution. Southern South American pychodontiforms have been 84 described so far from marine sediments of Late Jurassic (Oxfordian) age of Chile 85 86 (Martill et al., 1998; Kriwet, 2000) and from Early and Late Cretaceous strata of Argentina (Benedetto and Sánchez, 1971, 1972; Bocchino, 1977; Cione and 87 Pereira, 1990; Arratia and Cione, 1996; Cónsole Gonella et al., 2012). In this study, 88 we report new pycnodontiform material, which were recovered from Lower 89 90 Cretaceous fossil-bearing levels of the Pilmatué Member (lower Valanginian -91 lower Hauterivian) of the Agrio Formation in the Neuquén Province, Patagonia 92 (southwestern) Argentina. Based on this new material, a new species of *Gyrodus* is 93 erected representing a large and the most complete pychodontiform recovered in

the Early Cretaceous of southern South America up to now. Also, this new taxon is
the first record of the genus *Gyrodus* from Argentina. Additionally, a single new

96	prearticular with partially preserved dentition allows revising the only Early
97	Cretaceous pycnodontiform fish from Argentina known to date, Macromesodon
98	agrioensis Bocchino, 1977 and referring it to a new genus.
99	
100	
101	2. Materials and Methods
102	
103	The material comprises an incomplete skull with remains of the right lower jaw
104	and an additional incomplete right lower jaw assigned to two different
105	pycnodontiform fishes.
106	
107	2.1. Preparation techniques, preservation, and study methodology
108	Both pycnodontiform prearticular jaw bones (MOZ-Pv 1316 and MOZ-Pv 1327)
109	described herein were mechanically prepared using pneumatic tools by the
110	technician, L. Acosta Burllaile at the División Paleontología Vertebrados of the
111	Museo de La Plata except for the holotype of Macromesodon agrioensis (MLP 75-
112	V-18-1), which did not require additional preparations. The specimens are
113	preserved three dimensionally and were studied under a binocular microscope
114	(Zeiss Stemi 2000-C) with different magnifications. Digital photographs were
115	obtained using a digital compact camera Canon PowerShot G10 attached to a
116	microscope and a Canon Rebel T2i with a compact macro lens Canon EF 50 mm
117	f/2.5. Additionally, we used UV light (short and long wave) to highlight some
118	morphological characters.

120 2.2. Measurements

121 Measurements were obtained with a Digital Caliper and using Fiji on high-122 resolution photograph as Fig. 1 indicates.

123

124 2.3. Morphologically terminology

125 The morphological terminology follows Nursall (1996a, 1999) and Poyato-Ariza 126 and Wenz (2002). Consequently, we use the term 'coronoid process' here, 127 although this structure cannot be considered homologous to the coronoid process 128 in non-pycnodontiform neopterygians, where it is formed by the dentary, the 129 surangular, and/or the angular. The systematic arrangement is adapted from Poyato-Ariza and Wenz (2002). In this study, the nomenclature used for describing 130 131 dermal skull bones follows homology criteria (see Westoll, 1943; Schultze 1993, 132 2008). However, to avoid confusion in the specimen descriptions and figure captions, the traditional terminology -which is not based on homology criteria- is 133 given in square brackets. Additionally, we use 'lateral' for labial tooth rows and 134 135 'medial' for the lingual tooth row, we add the terminology in brackets in the 136 specimen descriptions. 137 2.4. Anatomical abbreviations 138 139 Anatomical abbreviations are giving in figure captions.

140

2.5. Institutional abbreviations MLP, Museo de La Plata, Buenos Aires,
Argentina; MOZ, Museo Prof. Dr. Juan Olsacher, Zapala, Neuquén, Argentina.

143

144 2.6. Geological methods

145 Fieldwork included systematic sampling of the sections with the purpose of 146 making textural and mineralogical distinctions between the lithological types 147 recognized in the field (by MR). To characterize and define sedimentary textures 148 and lithological types, standard thin sections (30 µm) were studied. Samples rich in 149 organic matter were polished at 25 µm. Also, some samples were studied by X-ray diffraction. For this study, the rocks were grounded in a mortar and subsequently, 150 151 analyses were carried out with a diffractometer PANalytical X'Pert PRO (Centro de 152 Investigaciones Geológicas, La Plata, Argentina) using Cu radiation (K α = 1.5405 Å) and Ni filter configured at 40 kV and 40 mA. The proportion of minerals in the 153 total rock was obtained from the intensity of the main peak of each mineral in the 154 155 diffractogram (Schultz, 1964; modified with second author -MR- patterns; Moore 156 and Reynolds, 1997). Determination of minerals components is of semiguantitative character, because this method has a methodological error of 10% according to 157 158 Richiano et al. (2015).

159

160 **3. Geological and stratigraphic setting**

161

The fossils described herein where recovered from marine offshore deposits of the Early Cretaceous Agrio Formation (Weaver, 1931). This unit, with as thickness up to 1600 m, is composed of three members: Pilmatué, Avilé and Agua de la Mula (Leanza et al., 2001). The Pilmatué and Agua de la Mula members are composed of basinal shales, offshore mudstones and subordinated shallow-marine siliciclastic and mixed sandstones, and sandy limestones (Spalletti et al., 2011). Non-marine

168	sandstones interpreted as a low-stand wedge produced by a suddenly relative sea-
169	level drop, conversely, characterize the middle Avilé Member (Legarreta and
170	Gulisano, 1989). The levels from where the pycnodontiform remains were
171	discovered correspond mainly to marine deposits of mixed composition deposited
172	below the level of storm waves (Sagasti, 2002; Spalletti et al., 2001; Schwarz et al.,
173	2017), allowing to accumulate fine-grained deposits and thus a quite good fossil
174	preservation.
175	The deposits of the Pilmatué Member accumulated in a mixed clastic-

carbonate low-gradient marine ramp, partially connected to the Proto-Pacific
(=Panthalassic) Ocean, and dominated by the action of fair weather and storm
waves (Spalletti et al., 2011). According to detailed ammonoid and nannofossil
associations and absolute age dating, the Pilmatué Member ranges from the early
Valanginian to the early Hauterivian (Aguirre-Urreta et al., 2017 and cites therein,
Schwarz et al., 2016).

The studied sections of the Pilmatué Member are located in a South-North transect in the North-Central sector of the Neuquén Basin (Fig. 2). The fossils were collected from offshore deposits at Puerta Curaco and Pampa de Tril localities (Fig. 2). At Puerta Curaco locality the section is *ca*. 600 m thick and shows a complete record of the Pilmatué Member dominated by marls and mudstones in the lower interval, and claystones and siltstones towards its upper part. At Pampa de Tril locality, only a 217 m thick section of the lower interval is exposed.

Specimen MOZ-Pv 1327 (an incomplete skull) was recovered from the lower
interval of the Pampa de Tril section, where mudstones and marlstones are
predominant. Specimen MOZ-Pv 1316 (an incomplete right prearticular bone) was

192 collected from the upper, fine-grained siliciclastic rich interval of the Puerta Curaco

193 section (Fig. 3).

194

195

- 196**4. Systematic Palaeontology**
- 197
- 198 Superclass Actinopterygii Cope, 1887
- 199 Subclass Neopterygii Regan, 1923
- 200 Order Pycnodontiformes Berg, 1937
- 201 Family Gyrodontidae Berg, 1940

202

203 Genus *Gyrodus* Agassiz, 1833

204

- 205 **Type species**. *Stromateus hexagonus* (Blainville, 1818) from the lower Tithonian
- 206 of the "Solnhofener Plattenkalke", Bavaria, Germany.

207

208

- 209 Gyrodus huiliches, sp. nov.
- 210 Fig. 4–5 A,B

211

- 212 Holotype. MOZ-Pv 1327, incomplete skull with articulated right lower jaw with
- 213 dentition.

Locality and Horizon. Puerta de Curaco section, Pampa de Tril locality, Pilmatué
Member of the Agrio Formation, Neuquén Province (Fig. 3). lower Valanginian–
lower Hauterivian, Lower Cretaceous.

218

Etymology. Huiliches, meaning 'south people' for the Mapuche population that
inhabit the Patagonian region of Southwestern South America, which is a
Mapudungun dialect of the aboriginal Mapuche, in allusion to the fossil site from
where the new species was recovered.

223

Diagnosis. Large-sized gyrodontid fish with the following character combination: 224 225 prearticular bone elongated and pointed showing a long and narrow mandibular 226 symphysis, with a stout and high 'coronoid process', teeth subcircular, oval, and 227 kidney-shaped in occlusal view. Teeth on prearticular dentition arranged in four well-defined rows, two rows composed of large and low oval teeth plus two rows 228 229 with small subcircular to subrectangular teeth. Alternating rows with large and 230 small teeth. No intercalating teeth are present. Main tooth row with more than 10 231 teeth (11 preserved teeth in the holotype including one missing). Main tooth row 232 flanked by two lateral (=labial) rows and a single medial (=lingual) one. Long axes 233 of medial (=lingual) teeth very obliquely oriented in relation to teeth of main row, 234 teeth of second -outermost- lateral (=labial) row only slightly obliquely oriented. 235 Tooth crowns with two wrinkled walls surrounding an apical furrow with a small 236 lump, posterior teeth of the two lateral rows ornamented with coarse wrinkles and 237 tubercles with a deep furrow which delimit an internal lump. Lateral crown faces of 238 main and outer lateral (=labial) teeth also ornamented with wrinkles. First lateral

239	(=labial) row with large teeth increasing in size posteriorly. Second lateral (=labial)
240	row with teeth markedly increasing posteriorly. Medial (=lingual) teeth row occupies
241	more than two-third of the dentition, the teeth of the middle medial (=lingual) row
242	are subcircular and slightly decrease in size anteriorly.
243	
244	Description
245	
246	General features. The new species of Gyrodus is represented by a complete,
247	well-preserved right prearticular bone with teeth, angular and articular bones,
248	several cranial endochondral and dermal elements, and some scales. Identification
249	of individual bones, however, is rendered difficult due to the mode of preservation.
250	
251	Dermal bones. The dermal cover consists mainly of unidentifiable bones but all
252	elements covering the cheek region and those below the orbit are seemingly
253	present. Traces of sensory canals are present in some elements directly above the
254	prearticular dentition indicating the presence of infraorbital bones (Fig. 4B).
255	Additional dermal tesserae are present (Fig. 4A), which represents a typical feature
256	of gyrodontids according Nursall (1996a). Their exact outline and arrangement,
257	nevertheless, can't be established (Fig. 4A). A large, almost sub-triangular bone is
258	present posterior to the prearticular that might represent the preopercle bone (Fig.
259	4A). Posterior to it, a large bone directed ventrally extending below the base of the
260	prearticular bone most likely represents remains of the cleithrum. All dermal
261	elements seemingly lack any superficial ganoin layer, which represents a
262	synapomorphy of Gyrodontidae according to Nursall (1996a).

263	On the medial surface, a bony fragment is present at the dorsal margin of the
264	specimen, which represents a portion of the parietal [= frontal] bone (Fig. 4A). This
265	bone is ornamented with small tubercles and faint ridges that radiate from the
266	ossification centre.
267	The entopterygoid is large and rectangular with its long axis oriented vertically
268	(Fig. 4A). Ventrally, an elongated but short and smooth bony structure is preserved
269	that might represent remains of the ectopterygoid (Fig. 4A).
270	
271	Endochondral bones. Endochondral bones are also difficult to identify. The
272	suspensorium is more or less completely preserved and almost vertically oriented
273	similar to the condition in other pycnodontiforms (Fig. 4A). The hyomandibular
274	bone is disarticulated, incomplete, and located at the posterior margin of the
275	preserved skull (Fig. 4A). It is elongated with an extended, but very incomplete and
276	crushed head. No distinct anterior condylar process can be identified, because the
277	anterior portion is overlain by the entopterygoid, but a reduced (vestigial) posterior
278	opercular process on the hyomandibular bone is present (Fig. 4A). A reduced (or
279	vestigial) opercular process represents a synapomorphy for Gyrodus according to
280	Poyato-Ariza & Wenz (2002) (compare also Nursall, 1996a). The most dorsal
281	portion of the hyomandibula seems to be cartilaginous, nerve foramina are not
282	observed.
283	Dorsal to the hyomandibular bone, some bony fragments are preserved that
284	are characterized by a very smooth, slightly concave surface. These bones most
285	likely represent remains of the bones that form the articular facet for the head of

286	the hyomandibular bone (Fig. 4A). Consequently, the anterior element would
287	correspond to the sphenotic, the posterior element to the prootic bone.
288	Anterior and ventrally to the hyomandibula, the elements of the palatoquadrate
289	arch are preserved, which displays the typical arrangement and orientation for
290	Gyrodus (compare Lambers, 1991: fig. 12; Kriwet, 2005: fig. 16). The preserved
291	metapterygoid is large and covers the dorsal portion of the ventrally placed
292	entopterygoid (Fig. 4A).
293	Both quadrate and symplectic forming part of the characteristic pycnodontiform
294	double lower jaw articulation are preserved and are arranged in close contact
295	dorso-ventrally (Fig. 4A). The quadrate is large, its out-line, however is difficult to
296	ascertain because of its incompleteness and fractured nature. Anteriorly, it
297	articulates with the angular bone of the lower jaw. The symplectic bone is rather
298	large and positioned at the antero-ventral border of a large bony element that
299	seems to be the preopercle in medial view. It articulates with the massive articular
300	bone of the lower jaw.
301	Anterior portions of the endocranium include remains that we interpret as the
302	endochondral median mesethmoid, which is enlarged and forms the snout (Fig.
303	4A). The posterior extend of this element remains ambiguous.
304	

305 *Hyoid arch.* Ventrally to the symplectic, two bony elements are recognizable 306 that most likely represent the ceratohyal (anterior?) and basihyal (Fig. 4A). These 307 elements belong to the hyoid arch. The posterior ceratohyal and interhyal are 308 either not preserved or not identifiable.

309

310 Lower jaw and dentition. The lower jaw comprises prearticular, angular, and 311 articular bones. The prearticular is a massive, large making up most of the lower 312 jaw, and well-ossified bone. It measures 90 mm in total length and 58 mm in 313 height, measured from the tip of the 'coronoid process' perpendicular to the ventral 314 margin of the dentition. The angle between the 'coronoid process' and the long axis 315 of the prearticular is ca. 130°. The symphysis is narrow and elongated showing a 316 rugose pattern indicating the presence of limited kind of connective tissue which is 317 allow some lateral movements (see also Kriwet, 2005). The medioventral lamina is 318 reduced in size and concave in cross-sectional view.

The 'coronoid process' is high and club-shaped with an anterior slope and a straight the dorsal margin (Fig. 4). It extends postero-laterally to form the 'coronoid ridge' of Nursall (1996a). Faint ridges are present over the surface of the 'coronoid process'.

The angular bone is roughly triangular in outline and restricted to the posterolateral region of the lower jaw (Fig. 4). The posterior margin is thickened forming the articulation facet for the quadrate. Ventrally, the massive articular bone forms the postero-ventral margin of the lower jaw and the articulation facet with the symplectic. Other bones (e.g., retroarticular) are not identifiable.

The dentition of the prearticular (Fig. 4) consists in total of 54 preserved molariform teeth that are closely arranged in four well-defined rows (two laterals – inner and outer–, a main and an internal or medial row). The main row is composed of 11 teeth, which are sub-circular anteriorly but oval posteriorly with a faintly concave anterior margin in occlusal view. The first lateral (inner) row comprises 19 sub-circular teeth, which are significantly smaller and arranged in

334 trough-like groove that runs antero-posteriorly. The long-axes of the teeth are 335 oriented antero-posteriorly. The outer lateral has 15 rhomboidal teeth with the long-336 axes being oriented perpendicular to the axis of the prearticular bone. Laterally, the 337 teeth display a low and blunt apex. The inner-most (medial) tooth row comprises 338 nine teeth that are restricted to the anterior half of the prearticular bone, whereas 339 all other rows extend posteriorly to the level of the anterior margin of the "coronoid 340 process". The long-axes of the inner-most teeth are oriented obliquely to the long-341 axis of the prearticular. Nor intercalary teeth neither an additional tooth row at the 342 base of the 'coronoid process' are present. In occlusal view the most posterior 343 teeth still preserve their original ornamentation, whereas the anterior show signs of 344 wear that occurred in life (see below).

345 The teeth increase in size posteriorly. The lateral inner and internal rows bear 346 the smallest teeth of the dentition, while the main row displays the largest teeth. 347 Larger teeth measure 8,2 mm in height and 6,7 mm in mesio-lateral width. The 348 posterior teeth have an almost perpendicular main axis in relation with the long 349 axis of the bone but the anterior teeth, which are the most abraded ones, have an 350 oblique main axis in relation to the prearticular bone (Fig. 4). In occlusal view the 351 anterior teeth are oval and the posterior ones are kidney-shaped. The posterior-352 most depression observed on the main prearticular tooth row housed a very large more oval tooth that is, however, not preserved. Similarly, two posterior-most 353 354 depressions are observed in the medial (=lingual) tooth row that housed two 355 medium-sized teeth.

356

357 Tooth ornamentation, Wear, and Ontogeny. Most teeth are heavily worn (see below) so that the tooth ornamentation is best preserved only on the posterior-most 358 359 teeth (Fig. 5A, B). These teeth display a short coronal indent that either is directed 360 mesio-distally (outer lateral and main rows) or more or less antero-posteriorly (inner lateral and medial rows). The indent is surrounded by a ring of coarse 361 362 granules that vanishes quickly during wear forming a broad and smooth margin 363 (Fig. 5A, B). A second, marginal ring of coarse granules delimiting a shallow, outer 364 groove that follows the tooth outline is present. Anteriorly, the groove seems to be 365 broader than posteriorly. The lateral edge of the outer lateral teeth is tapering forming a low and blunt, displaced apex (Fig. 5A, B). Centrally, a small irregular 366 367 central papilla with a granular surface is developed in smaller teeth of the inner 368 lateral and medial tooth rows, which sometimes are broader than deep and 369 irregular. Conversely, the surface of the apical indent is very granular in larger teeth of the main and outer lateral rows. 370

371 Tooth replacement in pychodonts still is not well established and contradicting 372 hypotheses occur. For instance, Woodward (1893), Thurmond (1974), and 373 Longbottom (1984) assume that teeth are added successively from anterior to 374 posterior. Nevertheless, potential of replacing lost or damaged teeth might be 375 possible (Longbottom, 1984; Poyato-Ariza, 2005). The presence of very strong 376 abrasion on anterior teeth diminishing posteriorly supports the hypothesis that 377 oldest teeth are found anteriorly and new teeth are added successively posteriorly. 378 Thus, wear is gualitatively indicative of age. Still, abrasion and polishing of tooth 379 surfaces can be caused by the pH of the surrounding water, sand, and rocks that are consumed with food (see Kemp, 2013). Thus, the ornamentation of teeth has a 380

minor taxonomic value because the teeth within a jaw show different degrees of wear of the occlusal surface of teeth resulting in smooth tooth surfaces in heavily used teeth and increasing age of the individual (Kriwet, 2005). However, wear patterns are helpful to reconstruct dental functions and to help to understand the mode of life of these fishes.

The single specimen of the new species studied here shows a high degree of wear in almost all teeth. Wear is particularly strong on the anterior and middle portion of the dentition (Fig. 5A). The highest degree of wear occurs in the lateral outer row where the oral surface is vertical (Fig. 5A).

390 According to the wear pattern and the degree of abrasion of teeth we assume 391 that wear appeared first in the anterior teeth where abrasion is strongest and 392 subsequently continued posteriorly, most likely with age, to the larger posterior 393 teeth. Additionally, wear patterns occur laterally first on those teeth where the occlusal surface is oblique or vertical (compare Kriwet, 2005; Fig. 5A, B). Most 394 395 pycnodontiforms are considered durophagous fishes eating either soft or hard-396 shelled invertebrates (e.g., Nursall, 1996a, b; Poyato-Ariza and Wenz, 2002; 397 Kriwet, 2005). The teeth of the upper dentated jaw (vomer, not preserved in the present specimen) and the prearticulars form a mortar and pestle-like structure for 398 399 crushing prey (see Maisey 1991: 129). This crushing action alters and changes the 400 form of the occlusal surface of the teeth and commonly this eventually results in a 401 smooth tooth surface. If wear is severe the tooth surface might even get a cupped morphology (Fig. 5). 402

403 According to the lack of ornamentation in anterior teeth and the abrasion
404 pattern of almost all other teeth but the posterior-most ones, we suggest an adult

405	ontogenetic stage for specimen MOZ-Pv 1327. Also, we assume a large overall
406	size for this specimen based on the large size of the prearticular bone (for
407	comparison see sizes of dentitions depicted in Kriwet, 2005; Poyato-Ariza and
408	Wenz, 2005). A comparison with complete specimens of Gyrodus hexagonus and
409	G. circularis from the Late Jurassic Solnhofen limestones housed in various
410	institutional collections (JK unpublished data) enables us to provide a tentative
411	relation equation between standard length (SL) and prearticular length (prl), which
412	is ca. 65 mm (SL) / 10 mm (prl). The prearticular length of the new species
413	described here measures 90 mm and the corresponding SL thus would be ca. 580
414	mm. This size falls well within the range seen in large adult Late Jurassic Gyrodus
415	species.

416

417 Comparison

418

The number of tooth rows and arrangement of teeth is considered to be of taxonomic value for identifying different genera, if not species (e.g., Kriwet, 2005; Kriwet and Schmitz, 2005). Also, almost all teeth have a smooth occlusal surface most likely resulting from abrasion. Some teeth, especially in the posterior portion of the dentition, nevertheless still display the characteristic sculpture for teeth of *Gyrodus* consisting of two crimped and continuous rims surrounding an inner indent with a central papilla and an outer groove (Fig. 5 A–C).

The character combination displayed by the prearticular dentition comprising
four distinct longitudinal tooth rows without intercalating teeth, teeth with two apical
crenulated rims or walls that surround an inner and an outer indent, presence of a

429	tubercle in the apical indent (at least in smaller teeth) and a blunt lateral apex in at
430	least some teeth of the outer lateral tooth row are very characteristic for dentitions
431	of Gyrodus and support the assignment of the prearticular to this genus. The
432	central papilla in the apical indent is considered an autapomorphic character of
433	Gyrodus (Poyato-Ariza and Wenz, 2002; Kriwet and Schmitz, 2005, and Vullo et
434	al., 2017). The lack of ganoine on the dermal skull bones in addition with tesserae
435	covering the dermal check region and the distinct hyomandibular bone with a
436	vestigial opercular process represent additional characters reinforcing its
437	assignment to Gyrodus (Nursall, 1996a; Kriwet, 2005, 2010).
438	Gyrodus is a very common pycnodontiform fish in the Jurassic with more than
439	30 species described from the Late Jurassic based on skeletal remains or isolated
440	dentitions and teeth up to now (e.g., Wagner, 1851; Woodward, 1895; Lambers,
441	1991). Lambers (1991), however, synonymized most of these species with
442	Gyrodus hexagonus and only two species, which are based on articulated
443	specimens are currently considered valid, G. hexagonus and G. circularis (Kriwet
444	and Schmitz, 2005). The status of other Jurassic species from Europe remains
445	ambiguous momentarily pending further detailed studies. Here, we restrict our
446	observations mainly on these two species since the Argentinian species is
447	represented by more than isolated dentitions but also compare it to other relevant
448	pycnodontiforms from Central and South America.
449	Gyrodus circularis is easily distinguishable from the Argentinian specimen in
450	the presence of more strongly sculptured prearticular teeth with a less developed
451	central indent. Additionally, the posterior-most main prearticular teeth in G.
452	circularis lack any central indent but display instead a broad and blunt, irregularly

453 wrinkled and folded occlusal surface (compare Kriwet and Schmitz, 2005: fig. 2F). 454 The prearticular dentition of the Argentinian species differs from G. hexagonus in 455 having more main prearticular teeth (8–9 in G. hexagonus and G. circularis; 456 Poyato-Ariza & Wenz, 2002; Kriwet & Schmitz, 2005) and additionally sculptured 457 crown faces of at least the main and outer lateral teeth. In the Early Cretaceous, Gyrodus is known from isolated prearticular dentitions 458 459 from, for instance, northern Germany and France (e.g., Kriwet and Schmitz, 2005; 460 Vullo et al. 2018). These specimens differ from the new Patagonian gyrodontid in 461 the distinct occlusal sculpture (well pronounced inner crimped wall and low, 462 partially incomplete or very reduced outer wall) and the smooth lateral crown faces. 463 Only few fossil remains assigned to species of Gyrodus have been reported from Central and South America up to now. Gregory (1923) described some 464 remains including vomerine, prearticular, and skeletal remains from the Oxfordian 465 Jagua Formation of Cuba that he identified as a variation of *Gyrodus* 466 467 macrophthalmus and subsequently named G. macrophthalmus cubensis, mainly because of its spatial separation from the European species. The teeth, when well 468 469 preserved, display the typical ornamentation *Gyrodus* and resemble closely those of Gyrodus hexagonus (G. macrophthalmus is considered a junior synonym of G. 470 471 hexagonus by Lambers, 1991) and differ thus from the new species described here 472 (compare Gregory, 1923: fig. 1B, C). 473 A right prearticular with preserved dentition identified as Gyrodus sp. cf. G. 474 macrophthalmus was also reported from the Kimmeridgian (Tamán Formation) of 475 Mexico by Dunkle and Maldano-Koerdell (1953). This specimen differs significantly 476 from G. huiliches in the presence of circular rather than oval main teeth and mesio-

477	laterally shorter outer lateral teeth. Additionally, the ornamentation of prearticular
478	teeth in the Mexican specimen differs significantly from those of the Patagonian
479	species (compare Dunkle and Maldano-Koerdell 1953: fig 1B).
480	The only South American record of Gyrodus that has been described so far
481	comes from the Oxfordian of Chile and was identified as a new species of
482	Mesturus, M. cordillera, by Martill et al. (1998). Kriwet (2000) subsequently revised
483	this specimen and assigned it to Gyrodus because of the very characteristic tooth
484	morphology. This species also differs from the new species presented here in the
485	ornamentation and general morphology of teeth although no complete, well-
486	preserved dentition has been recovered up to now.
487	The Early Cretaceous pycnodontiform Cosmodus from the Cenomanian of
488	western Europe, which resembles Gyrodus superficially in prearticular and
489	vomerine tooth ornamentation differs nevertheless in the absence of defined
490	crimped ridges surrounding a central indent with papilla and an outer groove, and
491	the presence of only three prearticular and vomerine tooth rows (compare Vullo et
492	al., 2018: fig. 3F, 4).
493	Although the cranial skeleton is not well preserved and bony margins are

difficult to identify, some bones nevertheless also support that *Gyrodus huiliches*sp. nov. represents a different species from *G. hexagonus* and *G. circularis*. The
'coronoid process' of *G. huiliches* sp. nov., for instance, is very club-shaped with an
elongated, slightly concave dorsal, a rather low and vertical anterior and an almost
sigmoidal posterior margin. In this, the 'coronoid process' of the Patagonian
species resembles that of various pycnodontiforms such as, e.g., *Macromesodon*, *Turbomesodon, Micropycnodon, Neoproscinetes*, and *Tepeixichthys* (Poyato-Ariza

501	and Wenz, 2002; Poyato-Ariza and Wenz, 2004; Ebert, 2013) but differs from that
502	of both Gyrodus hexagonus and G. circularis (compare Kriwet 2005: figs 16B,
503	30A). In Gyrodus hexagonus, the 'coronoid process' is low and antero-posteriorly
504	broad with an almost straight dorsal margin and a vertical, anteriorly inclined
505	posterior margin, where as it is higher, antero-posteriorly narrower and has an
506	almost horizontal dorsal margin in G. circularis.
507	Additionally, the form of the hyomandibular head and the position of the
508	vestigial opercular process differ in the Patagonian species from that of both
509	Gyrodus hexagonus and G. circularis as far as can be ascertained (compare
510	Lambers, 1991: fig. 12; Kriwet, 2005: fig. 16).
511	
512	
513	Order Pycnodontiformes Berg, 1937
514	Family Gyrodontidae Berg, 1940
515	Genus <i>Tranawün</i> gen. nov.
516	Fig. 6
517	
518	Type species. Macromesodon agrioensis Bocchino, 1977
519	

520 Etymology. The generic name is derived from the native Mapudungun dialect of the

- 521 Mapuche aboriginal population for which *trana*, means 'mortar' and *wün* means
- 522 "mouth" in allusion to the function of tooth rows.
- 523

524	Diagnosis. A pycnodontiform fish characterized by the following combination of
525	characters: vomer rather stout with five irregular longitudinal rows of closely
526	arranged teeth; uneven number and unequal size of teeth in corresponding lateral
527	tooth rows; intercalated teeth between tooth rows occasionally present; oral
528	surface of dentigerous part almost horizontal; teeth of central -main- row are the
529	largest, they are circular anteriorly but oval posteriorly; teeth with two, broad and
530	granular occlusal rims surrounding an inner indent with slightly displaced, central
531	stout papilla with irregular apex, and an outer narrow, circular groove. Prearticular
532	seemingly massive and stout; with four longitudinal tooth rows comprising a main,
533	two lateral, and a medial tooth row; intercalated teeth between main and first lateral
534	tooth rows; additional irregular teeth may occur medially to the medial tooth row;
535	teeth of main row are the largest; teeth of outermost lateral row smaller than those
536	of first (inner) lateral row; tooth size in occlusal view increases in first lateral row
537	posteriorly up to the middle of the row and then decreases again in size.
538	
539	Stratigraphic and geographic distribution. Lower Cretaceous, Neuquén Province,
540	Argentina.
541	
542	Tranawün agrioensis (Bocchino, 1977)
543	1977 Macromesodon agrioensis – Bocchino, p. 176, pl. 1
544	
545	Holotype. MLP-75-V-18-1, vomerine dentition, Fig. 6A.
546	

547	Additional material. MOZ-Pv 1316, incomplete right lower prearticular with remains
548	of dentition, Fig. 6B, C.
549	
550	Diagnosis. Same as for genus by monotypy.
551	
552	Occurrences. Vomer. Bajada del Agrio, Agrio Formation, Neuquén Province; Iower
553	Valanginian – Iower Hauterivian, Lower Cretaceous. Prearticular: Puerta de Curaco
554	section, Puerta de Curaco locality, (15 km to the South from where Gyrodus
555	huiliches sp. nov. was found) upper section of the Pilmatué Member of the Agrio
556	Formation, Neuquén Province (Fig. 3); lower Hauterivian, Lower Cretaceous.
557	
558	
559	Description
560	
561	Vomer. The unpaired vomer that represents the holotype –MLP-75-V-18-1– of
562	the single species of the new genus and which was originally described by
563	Bocchino (1977), is characterized by five, somewhat irregular tooth rows of closely
564	spaced teeth with additional erratically intercalated teeth between main and first
565	lateral row and also medially to medial (inner) tooth row. The teeth are more
566	irregularly arranged in the anterior portion of the dentition becoming more regular
567	posteriorly. Almost all teeth exhibit a smooth occlusal surface that most likely is the
568	result of wear (Fig. 6A). However, some small lateral teeth on the posterior right
568 569	result of wear (Fig. 6A). However, some small lateral teeth on the posterior right side of the main row (in occlusal view) are not worn and still display the original

571	which a small central papilla is located, and an outer furrow (Fig. 6A, 5D). The
572	apex of the central papilla is somewhat irregular and not acute (Fig. 6A, 5D).
573	The main row consists of six preserved teeth and two additional bases of
574	broken-off teeth. The teeth are significantly larger than the lateral ones and
575	increase rostrad to caudad. Additionally, the teeth are circular anteriorly becoming
576	oval in shape posteriorly in occlusal view (Fig. 6A).
577	The first lateral row on the left side (in occlusal view) consists of seven,
578	completely smooth teeth that are alternating with the main teeth (Fig. 6A). They are
579	larger than those on the right side and less in numbers (six versus eleven-twelve).
580	They also increase in size posteriorly and change their shape in occlusal view from
581	circular to sub-oval posteriorly (Fig. 6A).
582	The second left lateral row is very incompletely preserved. It preserves only
583	two, sub-circular teeth that are arranged in an alternating pattern with the teeth of
584	the first left lateral row (Fig. 6A). These teeth are oval and have a faint
585	ornamentation consisting of an irregular rim surrounding a central depression (Fig.
586	6A).
587	The first lateral tooth row on the right side of the main row comprises
588	comparably small teeth that are arranged somewhat irregular and not alternating
589	with the main teeth as in the lateral row on the other side (Fig. 6A). The teeth are
590	sub-circular to sub-triangular anteriorly becoming more oval posteriorly. At least
591	four additional, small teeth are intercalated between the main and first right lateral
592	row (in occlusal view).

In total, 13 teeth display remains of the original ornamentation, of which theposterior-most three teeth in the first right lateral row and the posterior-most of the

595	intercalated teeth display almost no wear patterns. This is probably the result of
596	these teeth are quite small having occlusal surfaces that are positioned below the
597	grinding surface of the jaws and thus escaped abrasion (Fig. 6A). The
598	ornamentation in these teeth consists of two rather broad and crimped ridges
599	surrounding a central indent in which a slightly displaced papilla is located, and an
600	outer furrow surrounding the tooth crown. Additional nine teeth display an apical
601	indent, which is surrounded by more or less wrinkled, broad ridge. Reduction from
602	two to a single, broad occlusal ridge resulted from wear.
603	
604	Prearticular. MOZ-Pv 1316 is a partially preserved and massive right
605	prearticular bone that is almost as long as wide. The total width of the prearticular
606	bone is about 40 mm, the angle between the 'coronoid process' and the
607	prearticular is <i>ca</i> . 163°. However, it is not clear how much anteriorly is missing.
608	There are at least 19 preserved teeth and 12 additional tooth bases on the
609	dentigerous surface of the prearticular bone (Fig. 6B). The teeth are arranged in
610	four closely arranged tooth rows with at least two additional intercalated teeth
611	between the main and first lateral tooth rows and one medially to the innermost
612	(medial) tooth row. The 'coronoid process' is seemingly low also it seems to be
613	slightly abraded (Fig. 6B).
614	Almost all teeth have a more or less horizontal and completely smooth occlusal
615	surface indicating strong wear, which is conspicuous and comparable over all

preserved teeth (Fig. 6B). However, the second anterior tooth of the outermost

616

617 lateral tooth row displays remnants of an apical, very narrow and mesio-distally

618 short irregular indent indicating the originally presence of a crimped rim

619 surrounding the rim (Fig. 6B).

All teeth are of sub-circular to rectangular shape in occlusal view. Four teeth of the main row, which are more or less of similar size and shape, are preserved with several teeth obviously lacking as indicated by a gap in the row and a tooth base at its posterior end (Fig. 6B). The anterior-most tooth of the main row either displays heavy wear or is pathological altered (Fig. 6B).

The first lateral row comprises seven complete and one incomplete teeth as well as two tooth bases anteriorly and posteriorly, respectively. They are arranged slightly irregular giving is an undulating appearance (Fig. 6B). In occlusal view, the teeth increase posteriorly up to the middle of the tooth row and then decrease again in size posteriorly. The occlusal surface of these teeth is saddle-like abraded due to continuous wear.

The outer-most lateral tooth row is short and placed at the base of the low
'coronoid process'. It comprises five teeth and an additional posterior tooth base.
They are conspicuously smaller than those in the middle portion of the first (inner)
lateral row but almost equal in size to those in the anterior and posterior portion of
this row (Fig. 6B).

Teeth of the medial row are not preserved but are represented by their respective tooth bases (Fig. 6B). The tooth bases imply that this row is the only in which teeth have a more horizontally oriented oral surface, which is due to the trough-like cross-section of the prearticular bone. The occlusal surface of teeth in the main and lateral tooth rows, conversely, is very vertically oriented.

The medio-ventral lamina of the prearticular bone is well-developed being flat and wider than in, for instance, the new species of *Gyrodus* described here (Fig. 5 and 6). According to the wear pattern observed in the teeth of MOZ-Pv 1316, the specimen is considered an adult; its size, however, cannot be established due to the incomplete nature of the single specimen.

646

647 **Comparisons**

648

649 The two specimens assigned to the new taxon were recovered from lower 650 Valanginian to lower Hauterivian and lower Hauterivian sediments of two closely 651 situated localities in the Neuquén Basin. We consider both the vomerine MLP-75-V-18-1 and prearticular MOZ-Pv 1316 dentitions to belong to the same species 652 even though they do not come from the same locality based on the following 653 characters: The arrangement of teeth in slightly irregular tooth rows with randomly 654 655 intercalated teeth in both dental elements, the general morphology (irregularly 656 rounded shape) of teeth, the ornamentation pattern (where preserved), and the 657 correspondence of the dentated portions when occluded forming an effective crushing device. We therefore also exclude the possibility that the rather irregular 658 659 tooth arrangement represents pathological patterns. However, more material might provide more information about the dentition of this pychodontiform fish in the 660 661 future.

The character combination consisting of five longitudinal tooth rows with
 uneven number and unequal size of teeth, the lateral vomerine tooth row with
 intercalated teeth, four prearticular tooth rows with also intercalated teeth between

665	and outside tooth rows and small lateral-most teeth associated with an
666	ornamentation pattern that remind that of the teeth of, e.g., Gyrodus, easily
667	distinguishes the new taxon from all other known pycnodontiform fishes.
668	Bocchino (1977) originally assigned the vomer to Macromesodon based on the
669	presence of five, irregular tooth rows and presented a list of characters supporting
670	her interpretation (see Bocchino, 1977: 183), even so her also recognized
671	similarities to Micropycnodon. Numerous isolated vomers having five longitudinal
672	tooth rows were assigned to Macromesoson (= Mesodon Wagner, 1851) by Blake
673	(1905). Woodward (1895), for instance, listed 14 species of Mesodon.
674	Unfortunately, the vomerine dentition is not accessible in the holotype of the type-
675	species of Macromesodon, M. macropterus (BSPM AS VII 345). Another species,
676	M. surgens (Poyato-Ariza and Wenz, 2002) displays five longitudinal tooth rows
677	and teeth with occasional crenulations. Additionally, several specimens identified
678	as M. macropterus by Woodward (1895: 199-200) were assigned to a different
679	genus Turbomesodon by Poyato-Ariza and Wenz (2004). Turbomesodon is
680	characterised by three longitudinal vomerine tooth rows. Most pycnodontiform
681	fishes, however, have five longitudinal tooth rows in their vomerine dentition (e.g.,
682	Brembodus, Coelodus sensu stricto, Gyrodus, Iemanja, Micropycnodon, Mesturus,
683	Oeloedus, Pycnodus, Tepexichthys). The new taxon, nevertheless, differs
684	significantly from all other pycnodontiform fishes with five longitudinal vomerine
685	tooth rows in the very irregular number and size of teeth in corresponding lateral
686	tooth rows combined with the presence of intercalated teeth and the Gyrodus-like
687	crown ornamentation. Additionally, all vomerine teeth in Macromesodon, as far as

688 they are known, are sub-circular in outline and completely devoid of any 689 ornamentation (Poyato-Ariza and Wenz, 2004). 690 The arrangement of prearticular teeth into four rows in the dentigerous part of 691 the prearticular is also very peculiar. Most pychodontiform fishes have three tooth 692 rows, but some only have two prearticular tooth rows (e.g., Coccodus), while 693 others have more than four tooth rows (e.g., Anomoeodus, Brembodus, Coelodus 694 sensu stricto, *Mesturus*). *Hensodon* from the Cenomanian of Lebanon might have 695 even only a single prearticular tooth row (Capasso et al., 2010). Therefore, the new 696 taxon described here is easily distinguishable from these pychodonts. 697 Four longitudinal prearticular tooth rows are present in *Gyrodus* (Middle Jurassic – early Early Cretaceous), Proscinetes (Middle Jurassic – late Early 698 699 Cretaceous?), Texasensis (= Callodus) (late Early Cretaceous), and 700 Micropycnodon (Late Cretaceous). We follow Poyato-Ariza and Wenz (2002) and 701 consider *Hadrodus* (which also have four longitudinal tooth rows in the lower jaw) 702 most likely not be a pycnodontiform fish at all. 703 *Tranawün agrioensis* is easily to separate from the other pychodontiform fish also occurring in the Neuquén Basin, Gyrodus huiliches, nov. sp. but also from 704 other Gyrodus species in the presence of intercalated teeth and outermost lateral 705 706 teeth that are smaller than those in the middle portion of the first (inner) lateral row 707 (in Gyrodus, lateral-most teeth are significantly larger than those of the first lateral 708 row; see also above).

It should be noted that the prearticular teeth of *Tranawün* nov. gen. display
more variable tooth outlines ranging from circular to oval and even sub-rectangular

conversely to the condition seen in *Macromesodon* in which prearticular teeth are
 predominantly oval as far as can be ascertained.

713 Poyato-Ariza and Wenz (2002) coded the number of prearticular tooth rows in 714 Proscinetes as being three obviously interpreting one of the rows comprising small 715 teeth adjacent to the main row to represent intercalated teeth, an interpretation we 716 do not follow here. The new taxon, however, is easily distinguishable from 717 *Proscinetes* in lacking the very regular tooth arrangement into rows, distinctly 718 mesio-distally elongated main teeth, and lateral-most teeth that are significantly 719 broader than those of the first lateral row. Additionally, the teeth of the medial tooth row extend far more anteriorly in the new pychodontiform than in Proscinetes. 720 721 Another pychodontiform fish that has four prearticular tooth rows but which was 722 not yet reported from South America is Texasensis coronatus from the Albian of 723 Texas (Thurmond, 1974). This taxon differs, however, significantly from the

Patagonian genus in having three well-defined lateral tooth rows and no medialone. Additionally, the main teeth are broader.

Mircopycnodon differs in that teeth on the prearticulars are more irregularly arranged without any clear arrangement into four rows. Posteriorly, even five rows may be developed while anteriorly the tooth rows merge to four. Additionally, the main teeth are much broader while the teeth of the first lateral row are distinctly smaller than those of the outermost row.

An incomplete left prearticular dentition from the Early Cretaceous of Colombia assigned to *Macromesodon couloni* by Porta (1970) differs clearly from *Tranawün* nov. gen. in having three tooth rows (with additional intercalated teeth) and much

Another Early Cretaceous pycnodont fish, Paramicrodon that also occurs in

broader and almost rectangular main teeth. The assignment of the Colombian

South America (Chile) differs in having only three longitudinal vomerine and

specimen to Macromesodon remains ambiguous.

734

735

736

737

738	prearticular tooth rows, respectively (Schultze, 1981). The prearticular also
739	comprises an additional reduced row of teeth medial to the main row.
740	
741	
742	5. Discussion and conclusions
743	
744	Pycnodontiform fishes are a highly diverse group with major diversity peaks in
745	the Late Jurassic and Late Cretaceous with most records coming from Europe and
746	the middle East (e.g., Kriwet 2001, Martín-Abad and Poyato-Ariza, 2013). Long
747	ghost-lineages imply that the fossil record of Early Cretaceous pycnodonts is very
748	incomplete (compare Martín-Abad & Poyato-Ariza, 2013). In the Early Cretaceous
749	of Central and South America, the highly incomplete fossil record of
750	pycnodontiform may certainly represents a collecting bias. Thus, additional
751	fieldwork -with focus on fishes- will provide more material which may fill gaps in
752	the stratigraphic distribution of pycnodontiform fishes and help shorten ghost-
753	lineages. Yet, in South America, Early Cretaceous pycnodontiforms have been
754	reported from the Santana Formation (Aptian – Albian) of Brazil i.e., lemanja
755	palma, Neoproscinetes penalvai, Mercediella riachuelensis; all known from skeletal
756	remains (Wenz, 1989; Figueiredo and Silva Santos, 1991; Maisey, 1991), the
757	Rosablanca Formation (Barremian – Aptian) of Colombia i.e., Macromesodon

758	couloni (Porta, 1970), the Lo Valdés Formation (Aptian) of Chile i.e., Paramicrodon
759	volcanensis (Bocchino, 1977; Schultze, 1981; Arratia and Cione, 1996), and the
760	Agrio Formation (upper Valanginian – upper Hauterivian) of Argentina i.e.,
761	Tranawün agrioensis (Bocchino, 1977).
762	The new Patagonian records increase the diversity of Early Cretaceous
763	pycnodontiform fishes of the Neuquén Basin in Argentina. Additionally, both taxa
764	are the southernmost occurrences of pycnodontiforms representing to date,
765	endemic taxa.
766	Both new Patagonian taxa described here display discrete dental characters
767	that separate these pycnodontiforms readily from all other known pycnodontiforms
768	but also support their close relationships with Gyrodus, either being a new species
769	of this genus or a closely related genus. Gyrodus is considered a Bajocian –
770	Tithonian genus that inhabited the Western Tethys and Peritethyan regions with its
771	greatest taxonomic diversity and palaeobiogeographical distribution during the Late
772	Jurassic (Kriwet, 2000; Kriwet and Schmitz, 2005; Martín-Abad and Poyato-Ariza,
773	2013). Early Cretaceous records of Gyrodus are very rare and according with
774	Kriwet and Schmitz (2005), questionable. Martín-Abad and Poyato-Ariza (2013)
775	presented a dispersal scenario of pycnodontiform fishes explaining the dispersal of
776	pycnodontiforms from the Tethys Sea, which is assumed to represent their centre
777	of radiation and their final refuge. These authors assume that seven genera
778	dispersed to the Americas including North and Central America. During the Late
779	Jurassic, basal pycnodontiforms might have been dispersed through the Hispanic
780	Corridor to South America (Kriwet, 2000; Kriwet and Schmitz, 2005; Martín-Abad
781	and Poyato-Ariza, 2013). Thus, Gyrodus, a basal pycnodontiform fish, might have

782	lived and proliferate in the warm ocean waters of southern South America at least
783	during the Early Cretaceous being a relict taxon. The new species $-Gyrodus$
784	huiliches- most likely diverged from a Central or South American species of
785	Gyrodus while the new Patagonian gyrodontid genus - Tranawün- described here
786	seemingly diverged from Gyrodus (we assume both taxa described here to be
787	closely related), which invaded the eastern Pacific coast line through the Hispanic
788	Corridor latest in the Oxfordian (Kriwet, 2000).
789	
790	6. Acknowledgments
791	
792	We are deeply indebted to L. Cavin (Geneva, Switzerland) and an anonymous
793	reviewer for their very helpful comments that improved the manuscript
794	considerably. G. Álvarez Trentino and the Beccaria family were crucial in
795	conducting fieldwork, specimen collection, Leonel Acosta Burllaile (MLP) prepared
796	the material. We also thank M. Reguero (MLP), A. Scarano (MLP), B. Boilini
797	(MOZ), and A. Garrido (MOZ) for loaning and providing access to fossil specimens
798	studied herein. We acknowledge the Universidad Nacional de La Plata, División
799	Paleontología Vertebrados and Consejo Nacional de Investigaciones Científicas y
800	Técnicas for support this research. This study was also supported by the project
801	grant of the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT)
802	[PICT 2015-0253] to SGC and by a grant of the Austrian Science Fund (FWF)
803	[P29796-B29] to JK. We thank to YPF S.A. for financial support to MR. Specimens
804	for this study were collected under the framework of the National law for the
805	protection of Archaeological and Paleontological Heritage Nº 25.743.

7. References

808	1. Agassiz, L. 1833–44. Recherches Sur Les Poissons Fossiles. Neuchâtel et
809	Soleure, Petitpierre, 1420 pp.
810	2. Aguirre-Urreta, M.B., Schmitz, M., Lescano, M., Tunik, M., Rawson, P.,
811	Concheyro, A., Buhler M., Ramos. V.A., 2017. A high-precision U-Pb
812	radioisotopic age for the Agrio Formation, Neuquén Basin, Argentina:
813	Implications for the chronology of the Hauterivian Stage. Cretaceous
814	Research 75, 193-204.
815	3. Arratia, G., Cione, A.L., 1996. The record of fossil fishes of Southern South
816	America. Müncher Geowissenschaftliche Abhandlugen 30 A, 9–72.
817	4. Benedetto, J.L., Sánchez, T., 1971. El hallazgo de peces Pycnodontiformes
818	(Holostei) en la Formación Yacoraite (Cretácico Superior) de la Provincia
819	de Salta, Argentina, y su importancia paleobiológica. Acta Geológica
820	Lilloana 11, 151–176.
821	5. Benedetto, J.L., Sanchez, T., 1972. Coelodus toncoensis nov. sp. (pisces,
822	Holostei, Pycnodontiformes) de la Formación Yacoraite (Cretácico
823	Superior) de la Provincia de Salta. Ameghiniana 14, 59–71.
824	6. Bengston, P., 1988. Open Nomenclature. Palaeontology 31, 223–227.
825	7. Berg, L.S., 1937. A classification of fish-like vertebrates. Bulletin de
826	l'Académie Des Sciences de l'URSS 4.
827	8. Berg, L.S., 1940. Classification of fishes both recent and fossil [in Russian].
828	Travaux de l'Institut Zoologique de l'Académie Des Sciences de l'URSS 5
829	1277–1280.

830	9. Blainville, H.D. de., 1818. Poissons fossiles. Nouvelle Dictionaire d'Histoire
831	Naturelle. Nouvelle Édition 27, 334–361.
832	10. Blake J.F., 1905. A monograph of the fauna of the Cornbrash.
833	Palaeontographical Society.
834	11. Bocchino, A., 1977. Un nuevo Gyrodontidae (Pisces, Holostei,
835	Pycnodontiformes) de la Formacio n Agrio (Cretácico Inferior) de la
836	Provincia de Neuquén, Argentina. Ameghiniana 14:175–185.
837	12. Capasso L.L., Taverne L., Nohra A.R. 2010. A re-description of , a
838	remarkable coccodontid fish (Actinopterygii, †Pycnodontiformes) from the
839	Cenomanian (Late Cretaceous) of Haqel, Lebanon. Bulletin de l'Institut
840	Royal des Sciences Naturelles de Belgique, Sciences de la Terre 80, 145-
841	162.
842	13. Cawley, J., Kriwet J., 2018. A new pycnodont fish, Scalacurvichthys naishi
843	gen. et sp. nov., from the Late Cretaceous of Israel. Journal of Systematic
844	Palaeontology 16:659–673.
845	14. Cione, A.L., Pereira S.M., 1990. Los peces del Jurásico posterior a los
846	movimientos intermálmicos y del Cretácico inferior de Argentina In W.
847	Volkheimer and E.A. Musacchio (Eds.), Bioestratigrafía de los Sistemas
848	Regionales del Jurásico y Cretácico en América del Sur. Vol. 1: Jurásico
849	anterior a los movimientos intermálmicos. Comité Sudamericano del
850	Jurásico y Cretácico. Editorial Inca., Mendoza, 385–395.
851	15. Cónsole Gonella, C.A., Griffin, M., Cione, A.L., Gouiric-Cavalli, S.,
852	Aceñolaza F., 2012. Paleontología de la Formación Yacoraite
853	(Maastrichtiano-Daniano) en el ámbito de la Subcuenca de Tres Cruces,

854	Cordillera Oriental de la provincia de Jujuy, Argentina. XIII Reunión
855	Argentina de Sedimentología, Relatorio, 45–56.
856	16. Cope, E.D., 1887. Zittel's Manual of Paleontology. American Naturalist 17,
857	1014–1019.
858	17. Dunkle, D. H., Maldonado-Koerdell, M., 1953, Notes on some Mesozoic
859	fossil fish remains from Mexico: Journal of Washington Academic Science
860	43, 311–317.
861	18. Ebert, M., 2013. The Pycnodontidae (Actinopterygii) in the late Jurassic:
862	The genus Proscinetes Gistel, 1848 in the Solnhofen Archipelago
863	(Germany) and Cerin (France). Archaeopteryx 31, 22-43.
864	19. Ebert, M., 2018. Cerinichthys koelblae, gen. et sp. nov., from the Upper
865	Jurassic of Cerin, France, and its phylogenetic setting, leading to a
866	reassessment of the phylogenetic relationships of Halecomorphi
867	(Actinopterygii). Journal of Vertebrate Paleontology
868	doi.org/10.1080/02724634.2017.1420071.
869	20. Figueiredo, F.J., Silva Santos, R., 1991. Picnodontes da Formação
870	Riachuelo, Membro Taquari, Estado de Sergipe, Nordeste do Brasil. Anais
871	Da Academia Brasileira de Ciencias 64, 369–379.
872	21. Forey, P.L., Lu, Y., Patterson, C., Davies, C.E. 2003. Fossil fishes from the
873	Cenomanian (Upper Cretaceous) of Namoura, Lebanon. Journal of
874	Systematic Palaeontology 1, 227–330.
875	22. Gale, A.S., 2000. The Cretaceous world. In: S. J. Culver, P. F. Rawson,
876	(Eds.), Biotic Response to Global Change. The Last 145 Million Years.
877	Cambridge University Press, Cambridge, 1–19.

878	23. Gregory, W. 1923. A Jurassic fish fauna from western Cuba: with an
879	arrangement of the families of holostean ganoid fishes. Bulletin of the
880	American Museum of Natural History 48, 223–242.
881	24. Hennig, E. 1906. Gyrodus und die organisation der Pyknodonten.
882	Palaeontographica 53, 137–208.
883	25. Howell, J.A., Schwarz, E., Spalletti, L.A., Veiga, G.D., 2005. The Neuquen
884	Basin: an overview In: Veiga, G.D., Spalletti, L.A., Howell, J.A., Schwarz, E.
885	(Eds.), The Neuque n Basin, Argentina: a Case Study in Sequence
886	Stratigraphy and Basin Dynamics. Geological Society, London, Special
887	Publications, vol. 252, 1–14.
888	26. Kemp, A. Berrel, R.W., 2013. Lungfish as environmental indicators. In: G.
889	Arratia, HP. Schultze, M. V. H. Wilson (Eds.), Mesozoic Fishes-Golbal
890	Diversity and Evolution. Verlag Dr. Friedrich Pfeil, München, 499–508.
891	27. Kriwet, J., 2000. Revision of Mesturus cordillera Martill et al., 1998
892	(Actinopterygii, Pycnodontiformes) from the Oxfordian (Upper Jurassic) of
893	Northern Chile. Journal of Vertebrate Paleontology 20, 450–455.
894	28. Kriwet, J., 2001a. Feeding mechanisms and ecology of pycnodont fishes
895	(Neopterygii, Pycnodontiformes). Mitt. Mus. Nat.kd. Berl., Geowiss. Reihe
896	4:139–165.
897	29. Kriwet, J. 2001b. Palaeobiogeography of pycnodontiform fishes
898	(Actinopterygii, Neopterygii). Seminario de Paleontología de Zaragoza 5.1:
899	121-130.
900	30. Kriwet, J., 2005. A comprehensive study of the skull and dentition of
901	pycnodont fishes. Zitteliana Reihe A: Mitteilungen Der Bayerischen

902	Staatssammlung Fur Palaontologie Und Geologie 45, 135–188.
903	31. Kriwet, J., 2008. The dentition of the enigmatic pycnodont fish, Athrodon
904	wittei (Fricke, 1876) (Neopterygii, Pycnodontiformes; Late Jurassic; NW
905	Germany). Fossil Record 11, 61–66.
906	32. Kriwet, J., Schmitz, L., 2005. New insight into the distribution and
907	palaeobiology of the pycnodont fish Gyrodus. Acta Palaeontologica
908	Polonica 50, 49–56.
909	33. Lambers, P.H., 1991. The Upper Jurassic actinopterygian fish Gyrodus
910	dichactinius Winkler 1862 (Gyrodus hexagonus [Blainville 1818]) from
911	Solnhofen, Bavaria and anatomy of the genus Gyrodus Agassiz.
912	Proceedings Koninklijke Akademie van Wetenschapen 94, 489–544.
913	34. Leanza, H.A., Hugo, C.A., Repol, D., 2001. Hoja geológica 3969-I, Zapala,
914	provincia de Neuquén. Servicio Geológico Minero Argentino, Boletín 275,
915	128 рр.
916	35. Legarreta, L., Gulisano C.A., 1989. Análisis estratigráfico secuencial de la
917	Cuenca Neuquina (Triásico superior-Terciario inferior). In: G. Chebli and L.
918	A. Spalletti (Eds.), Cuencas Sedimentarias Argentinas. Serie Correlación
919	Geológica 6, INSUGEO, San Miguel de Tucumán, Argentina, 221–243.
920	36. Longbottom, A.E. 1984. New Tertiary pycnodonts from the Tilemsi valley,
921	Republic of Mali. Bulletin of the British Museum (Natural History), Geology
922	38, 1–26.
923	37. Maisey, J.G., 1991. Santana Fossils Illustrated Atlas.pdf. T.F.H.
924	Publications, Inc., United States, 459 pp.
925	38. Martill, D. M., Chong, G., Pardo G., 1998. A new pycnodont (Pisces,

926	Actinopterygii) from the Jurassic of Chile. Neues Jahrbuch Für Geologie
927	Und Paläontologie – Monatshefte, 485–493.
928	39. Martín-Abad, H., Poyato-Ariza, F. J., 2013. Historical patterns of distribution
929	in Pycnodontiform and Amiiform fishes in the context of moving plates.
930	Geologica Belgica 16, 217–226.
931	40. Marramá, G., Villier, B., Dalla Vecchia, F.M., Carnevale, G., 2016. A new
932	species of Gladiopycnodus (Coccodontoidea, Pycnodontomorpha) from the
933	Cretaceous of Lebanon provides new insights about the morphological
934	diversification of pycnodont fishes through time. Cretaceous Research 61,
935	34–43.
936	41. Moore, D.M., Reynolds Jr., R.C., 1997. X-Ray Diffraction and the
937	Identification and Analysis of Clay Minerals, 2nd ed. Oxford, New York:
938	Oxford University Press, 378 pp.
939	42. Nursall, J.R., 1996a. The phylogeny of pycnodont fishes. In G. Arratia and
940	G. Viohl (Eds.), Mesozoic Fishes-Systematics and Paleoecology. Verlag Dr.
941	Friedrich Pfeil, München, 125–152.
942	43. Nursall, J.R., 1996b. Distribution and ecology of pycnodont fishes. In: G.
943	Arratia and G. Viohl (Eds.), Mesozoic Fishes-Systematics and
944	Paleoecology. Verlag Dr. Friedrich Pfeil, München, 115–124.
945	44. Nursall, J.R., 1999. The pycnodontiform bauplan: the morphology of a
946	successful taxon. In: G. Arratia and HP. Schultze (Eds.), Mesozoic Fishes
947	2—Systematics and Fossil Record. Verlag Dr. Friedrich Pfeil, Munich, 189–
948	214.
949	45. Porta, J., 1970. Presencia de Pycnodontiformes en el Cretáceo inferior de

950	Colombia. Geología Colombiana 7, 99–103.
951	46. Poyato-Ariza, F.J., 2003. Dental characters and phylogeny of
952	pycnodontiform fishes. Journal of Vertebrate Paleontology 23, 937–940.
953	47. Poyato-Ariza, F.J., 2005. Pycnodont fishes: morphologic variation,
954	ecomorphologic plasticity, and a new interpretation of their evolutionary
955	history. Bulletin of the Kitakyushu Museum of Natural History and Human
956	History A,169–184.
957	48. Poyato-Ariza, F.J., Martín-Abad, H., 2013. History of two lineages:
958	Comparative analysis of the fossil record in Amilformes and
959	Pycnodontiformes (Osteichthyes, Actinopterygii). Spanish Journal of
960	Palaeontology 28, 79–90.
961	49. Poyato-Ariza, F.J., Bermúdez-Rochas, D.D. 2009. New pycnodont fish
962	(Arcodonichthys pasiegae gen. et sp. nov.) from the Early Cretaceous of
963	the Basque-Cantabrian Basin, Northern Spain. Journal of vertebrate
964	Paleontology 29, 271–275.
965	50. Poyato-Ariza, F.J., Wenz S., 2002. A new insight into pycnodontiform
966	fishes. Geodiversitas 24:139–248.
967	51. Poyato-Ariza, F. J., Wenz, S., 2004. The new pycnodontid fish genus
968	Turbomesodon, and a revision of Macromesodon based on new material
969	from the Lower Cretaceous of Las Hoyas, Cuenca, Spain. In: G. Arratia and
970	A. Tintori (Eds.), Mesozoic Fishes 3—Systematics, Paleoenvironments and
971	Biodiversity. Verlag Dr. Friedrich Pfeil, Munich, 341–378.
972	52. Poyato-Ariza, F.J., Wenz S., 2005. Akromystax tilmachiton gen. et sp. nov
973	., a new pycnodontid fish from the lebanese Late Cretaceous of Haqel and

974	En Nammoura. Journal of Verterbate Paleontology 25, 27–45.
975	53. Poyato-Ariza, F.J., Talbot, M.R., Fregenal-Matínez, M.A., Meléndez, N.,
976	Wenz, S., 1998. First isotopic and multidisciplinary evidence for nonmarine
977	coelacanths and pycnodontiform fishes: palaeoenvironmental implications.
978	Palaeogeography, Palaeoclimatology, Palaeoecology 144, 65–84.
979	54. Regan, C.T., 1923. The skeleton of Lepidosteus, with remarks on the origin
980	and evolution of the lower neopterygian fishes. Proceedings of the
981	Zoological Society of London 1923, 445–461.
982	55. Richiano, S., Varela, A.N., Gómez Peral, L.E., Cereceda, A., Poiré, D.G.,
983	2015. Composition of the Lower Cretaceous source rock from the Austral
984	Basin (Río Mayer Formation, Patagonia, Argentina): Regional implication
985	for unconventional reservoirs in the Southern Andes. Marine and Petroleum
986	Geology 66, 764–790.
987	56. Schultz, L.G., 1964. Quantitative interpretation of mineralogical composition
988	from X-ray and chemical data for Pierra Shale. United States Geological
989	Survey Professional Paper 391, 1–31.
990	57. Schultze, HP., 1981. A pycnodont dentition (Paramicrodon volcanensis n.
991	sp.; Pisces, Actinopterygii) from the Lower Cretaceous of El Volcán Región,
992	South East Santiago, Chile. Revista Geológica de Chile 12, 87–93.
993	58. Schultze, H. P. 1993. The head skeleton of fishes. In: J. Hanken and B.K.
994	Hall (Eds.), The skull. Volume 2. The University of Chicago Press, Chicago,
995	189–254.
996	59. Schultze, HP., 2008. Nomenclature and homologization of cranial bones
997	in actinipterygians. In: G. Arratia, H-P. Schultze and M.V.H Wilson (Eds.),

998	Mesozoic Fishes 4—Homology and Phylogeny. Verlag Dr. Friedrich Pfeil,
999	Munich, 23–48.
1000	60. Schwarz, E., Spalletti, L.A., Veiga, G.D., Fanning M., 2016. First U-Pb
1001	SHRIMP Age for the Pilmatué Member (Agrio Formation) of the Neuquén
1002	Basin, Argentina: Implications for the Hauterivian Lower Boundary.
1003	Cretaceous Research 58, 223–233.
1004	61. Spalletti, L.A., Veiga, G.D., Schwarz E., 2011. La Formación Agrio en la
1005	Cuenca Neuquina. In H. Leanza, C. Arregui, O. Carbone, J. C. Danieli and
1006	J. Vallés (Eds.), Relatorio del XVIII Congreso Geológico Argentino.
1007	Asociación Geológica Argentina, Neuquén, Argentina, 145-160.
1008	62. Stumpf, S., Ansorge, J., Pfaff, C., Kriwet J., 2017. Early Jurassic
1009	diversification of pycnodontiform fishes (Actinopterygii, Neopterygii) after
1010	the end-Triassic extinction event: evidence from a new genus and species,
1011	Grimmenodon aureum. Journal of Vertebrate Paleontology, DOI:
1012	10.1080/02724634.2017.1344679.
1013	63. Thurmond, J.T., 1974. Lower vertebrates faunas of the Trinity Division in
1014	North-Central Texas. Geoscience and man 8, 103–129.
1015	64. Vullo, R., Cavin, L., Khalloufi, B., Amaghzaz, M., Bardet, N., Jalil, N.E.,
1016	Jourani, E., Khaldoune, F., Gheerbrant, E., 2017. A unique Cretaceous-
1017	Paleogene lineage of piranha-jawed pycnodont fishes. Scientific Reports 7,
1018	1–9.
1019	65. Vullo, R., Archambeau, JP., Bailly, G., Bénéfice P., 2018. Reassessment
1020	of Cosmodus Sauvage, 1879, a poorly known genus of large pycnodont fish
1021	(Actinopterygii, Pycnodontiformes) from the Cenomanian (Upper

1022	Cretaceous) of Western Europe. Cretaceous Research 91, 217–228.
1023	66. Wagner, A. 1851. Beiträge zur Kenntnis der in den lithographischen
1024	Schiefern abgelagerten urweltlichen Fische. Abhandlungen der koniglich
1025	bayerischen Akademie der Wissenschaften 6, 80 pp.
1026	67. Weaver, C.E., 1931. Paleontology of the Jurassic and Cretaceous of West
1027	Central Argentina. University of Washington, Memoir 1, 469 pp.
1028	68. Wenz, S. 1989. <i>Iemanja palma</i> n. g., n. sp., Gyrodontidae nouveau (Pisces,
1029	Actinopterygii) du Crétacé inférieur de la Chapada do Araripe (N-E du
1030	Brésil). Comptes Rendus des Séances de l'Académie des Sciences de
1031	Paris sér. 2a, 308, 975–980.
1032	69. Westoll, T.S., 1943. The origin oft he tetrapods. Biological Review 18, 78–
1033	98.
1034	70. Woodward, A.S., 1893. Some Cretaceous pycnodont fishes. Geological
1035	Magazine, Decade 3, 10, 433–436, 487–493.
1036	71. Woodward, A.S. 1985. Catalogue of the fossil fishes in the British Museum
1037	(Natural History). Part III; Containing the Actinopterygian Teleostomi of the
1038	Orders Chondrostei (concluded), Protospondyli, Aetheospondyli, and
1039	Isospondyli) (in part). Trustees of the British Museum (Natural History),
1040	London, 544 p.
1041	

1042 Figure captions

1043

Figure 1. Measurements taken over the studied specimens. Abbreviations: pmh,
prearticular maximum height; ptl, prearticular total length; tw, tooth width; td, tooth
depth. Scale bar: 10 mm.

Figure 2. A, Location map showing the pycnodontiform localities. Pampa de Tril
locality (37° 15′ 05′′S, 69° 48′ 21′′W) and Puerta de Curaco locality (37° 22′
47′′S, 69° 55′ 45′′ W); B, general view of lower section of the Pampa de Tril
locality; C, General view of the upper section of Puerta de Curaco locality.

Figura 3. Stratigraphic log of the Agrio Formation at Puerta de Curaco and Pampa
de Tril localities.

Figura 4. *Gyrodus huiliches* sp. nov., MOZ-Pv 1327, **A**, holotype in medial view and **B**, labial view. Anatomical abbreviations: ang, angular; art, articular; bhy, basihyal; chy, ceratohyal; cl, cleithrum; cor, 'coronoid process'; dt, dermal tesserae ect, ectopterygoid; ent, entopterygoid; io; infraorbital; p, parietal [= frontal]; hyo, hyomandibula; mc, Meckel's canal; met, mesethmoid; mpt, metapterygoid; opp, opercular process; pop, preopercle; preart, prearticular; pro, prootic; q, quadrate; sc, scale; sph, sphenotic; sy, symplectic. Scale bar: 10 mm.

Figure 5. Dentitions A–C, holotype of *Gyrodus huiliches* sp. nov. MOZ-Pv 1327,
prearticular dentition under Uv light; C, detail of tooth ornamentation; D, holotype of *Tranawün agrioensis* gen. nov. MLP- 75-V-18-1, detail of the ornamented teeth of
the vomerine dentition. Scale bar: A–B, 10 mm; C–D, 3 mm.

1064 Figure 6. Tranawün agrioensis gen. nov. (Bocchino, 1977), A, holotype MLP 75-V-

1065 18-1 vomerine dentition; **B**, MOZ-Pv 1316 prearticular dentition in lingual view; **C**,

- 1066 MOZ-Pv 1316 prearticular dentition in labial view. The arrow indicates rostrally
- 1067 direction. Scale bar: 10 mm.
- 1068

Puerta de Curaco section

Pampa de Tril section

