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Abstract: Cellular DNA is packaged into chromatin, which is composed of regularly-spaced
nucleosomes with occasional gaps corresponding to active regulatory elements, such as promoters
and enhancers, called nucleosome-depleted regions (NDRs). This chromatin organisation is primarily
determined by the activities of a set of ATP-dependent remodeling enzymes that are capable of moving
nucleosomes along DNA, or of evicting nucleosomes altogether. In yeast, the nucleosome-spacing
enzymes are ISW1 (Imitation SWitch protein 1), Chromodomain-Helicase-DNA-binding (CHD)1,
ISW2 (Imitation SWitch protein 2) and INOsitol-requiring 80 (INO80); the nucleosome eviction
enzymes are the SWItching/Sucrose Non-Fermenting (SWI/SNF) family, the Remodeling the Structure
of Chromatin (RSC) complexes and INO80. We discuss the contributions of each set of enzymes
to chromatin organisation. ISW1 and CHD1 are the major spacing enzymes; loss of both enzymes
results in major chromatin disruption, partly due to the appearance of close-packed di-nucleosomes.
ISW1 and CHD1 compete to set nucleosome spacing on most genes. ISW1 is dominant, setting wild
type spacing, whereas CHD1 sets short spacing and may dominate on highly-transcribed genes.
We propose that the competing remodelers regulate spacing, which in turn controls the binding of
linker histone (H1) and therefore the degree of chromatin folding. Thus, genes with long spacing bind
more H1, resulting in increased chromatin compaction. RSC, SWI/SNF and INO80 are involved in
NDR formation, either directly by nucleosome eviction or repositioning, or indirectly by affecting the
size of the complex that resides in the NDR. The nature of this complex is controversial: some suggest
that it is a RSC-bound “fragile nucleosome”, whereas we propose that it is a non-histone transcription
complex. In either case, this complex appears to serve as a barrier to nucleosome formation, resulting in
the formation of phased nucleosomal arrays on both sides.

Keywords: Chromatin; Chromatin remodelers; ISW1; ISW2; INO80; CHD1; SWI/SNF; RSC;
nucleosome spacing; nucleosome phasing

1. Introduction

The nucleosome core contains about 147 bp of DNA coiled about 1.7 times around a central octamer
of core histones comprised of two molecules of each core histone (H3, H4, H2A and H2B), organised as
a central (H3–H4)2 tetramer flanked by H2A–H2B dimers [1]. This structure is very compact, limiting
access to the DNA. Consequently, nucleosomes generally inhibit DNA-dependent processes such
as transcription and replication in vitro. It is thought that cells exploit the intrinsically-inhibitory
properties of the nucleosome to regulate gene expression and cellular differentiation. For example,
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the nucleosome may block access to promoter or enhancer DNA, thereby preventing inappropriate
gene activation. It follows that the cell needs to regulate chromatin structure in order to activate or
repress specific genes in specific cell types. Accordingly, cells possess many enzymes and proteins
that coordinate this regulation, which can be divided into three broad classes: (i) ATP-dependent
chromatin remodeling enzymes which manipulate nucleosome occupancy, structure and position; (ii)
histone-modification enzymes which catalyse, recognise or remove post-translational modifications
of the histones (the histone code hypothesis [2]) and (iii) histone chaperones, which are required
for histone transfer to and from DNA. Here, we discuss the ATP-dependent chromatin remodeling
enzymes with a focus on the budding yeast enzymes, which are probably the best-studied both in vitro
and in vivo. We note that most of them are conserved in higher organisms [3,4], and that mutations in
many remodelers have been strongly linked to various cancers [5].

Some of the earliest electron microscopy and nuclease digestion studies in the chromatin field
revealed that nucleosomes are regularly spaced in chromatin, like beads on a string [6]. Each bead
represents a nucleosome core; the intervening string is the linker DNA, connecting one nucleosome core
to the next (Figure 1). The linker histone, H1, binds to the DNA entry–exit point in the nucleosome core
and to the linker DNA, directing the condensation of the beads-on-a-string structure to form a somewhat
irregular fibre about 30 nm wide [6,7]. It is worth noting that the beads-on-a-string organisation is
only clearly visible at salt concentrations far below physiological, when the chromatin fibre expands
due to electrostatic repulsions between linkers [7,8]. At salt and magnesium concentrations in the
physiological range, the beads-on-a-string fibre spontaneously condenses to form the 30 nm fibre,
most likely involving helical coiling [6,9]. The precise conformation of the folded chromatin fibre has
been hotly debated for decades with no real consensus, mostly because the structure is not uniform
and each technique employed to discern its structure has its own advantages and drawbacks.
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Figure 1. Chromatin is composed of regularly-spaced nucleosomes. This beads-on-a-string structure is
visible in the electron microscope at very low salt concentrations. At physiological salt concentration,
chromatin folds to form a condensed fibre about 30 nm wide, facilitated by the linker histone (H1).

The underlying beads-on-a-string structure is also apparent in nuclease digestion studies of nuclei,
which reveal a “ladder” of DNA bands corresponding to multiples of a fixed distance between
nucleosome cores, termed the nucleosome “repeat length” (equal to the nucleosome core plus the
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linker length) (reviewed in [10]) This pattern results from relatively-rapid digestion of the linker DNA,
because DNA in the nucleosome core is protected from digestion by the core histones. The pattern
indicates that most of the genome is organised into regularly-spaced nucleosomes. Regular spacing is
observed in all eukaryotic cells from yeast to human, with some interesting variation. For example,
budding yeast, fission yeast and some neurons have relatively short repeat lengths (~165 bp) and low
H1 levels [11,12], whereas most cells in higher organisms have a longer repeat length (180–195 bp),
and a few transcriptionally-inactive genomes have very long repeat lengths and special H1 variants
(>200 bp). The repeat length is a global average; there is significant variation in linker length within
cell populations, which is governed by the ‘10n + 5 bp’ rule (where n ≥ 0, such that linker lengths are 5,
15, 25 bp etc.) [13,14]. The biological significance of cell type-specific variation in nucleosome spacing
is still unclear.

Nucleosomes can be reconstituted in vitro using only purified core histones and DNA, under
special conditions to prevent aggregation and precipitation. Although such nucleosomes appear
indistinguishable from those formed in cells, they do not form regularly-spaced arrays, i.e., the regular
beads-on-a-string structure is absent. Instead, nucleosome formation is directed by DNA sequence
preference (strongly influenced by sequence-dependent DNA bendability because nucleosomal DNA
is highly bent), resulting in variable spacing. Nucleosomes are generally very stable structures at
physiological ionic strength. Consequently, in vitro, regular spacing of reconstituted nucleosomes
requires the addition of an ATP-dependent nucleosome-spacing enzyme, which harnesses the free
energy of ATP hydrolysis to slide the nucleosomes into a regular array [15,16].

2. The ATP-Dependent Chromatin Remodelers

Most ATP-dependent remodelers are multi-subunit complexes containing an ATPase subunit
which catalyses remodeling (Figure 2A). The catalytic subunit generally has a well-conserved ATPase
domain together with various flanking domains which divide the remodelers into four major families,
defined by the SWI/SNF, ISWI, CHD and INO80 complexes [17]. The ATPase domain contains
RecA-like lobes (DExx and HELICc) which are conserved in all four families (Figure 2B). The SWI/SNF
(switching/sucrose non-fermenting) and RSC (remodeling the structure of chromatin) complexes are
the key members of the SWI/SNF family in budding yeast. Their ATPase subunits (Snf2 in SWI/SNF
and Sth1 in RSC) have an N-terminal helicase-SANT (HSA) domain and a C-terminal bromodomain.
The HSA domain binds the actin or actin-related protein (ARP) subunits, whereas bromodomains
commonly bind acetylated histone residues and may be involved in targeting. Yeast SWI/SNF and RSC
are very large complexes, containing 11 and 17 subunits, respectively. Remodelers in the ISWI (imitation
switch) family tend to have fewer subunits. The ISWI family ATPase has a conserved C-terminal
HAND-SANT-SLIDE (HSS) domain, which binds nucleosomes and DNA [17]. In yeast, there are
three ISWI-family complexes with just two or three subunits—ISW1a, ISW1b and ISW2 (Figure 2A).
The only CHD (chromodomain-helicase-DNA-binding) family remodeler in yeast, CHD1, consists of
just an ATPase subunit. CHD1 has two tandem chromodomains at the N-terminus and a SANT-SLIDE
domain at the C-terminus [18]. Many chromodomains recognise methylated histone residues [19,20],
but this has not been demonstrated for CHD1. Finally, the INO80 (inositol-requiring 80) family ATPase
subunit has a unique long insertion between the DExx and HELICc lobes (a “split” ATPase domain)
and an N-terminal HSA domain that is similar to that of the SWI/SNF family [17,21,22]. The yeast
representatives of the INO80 family are INO80 (14 subunits) and SWR1 (17 subunits).

The ATP-dependent chromatin remodeling enzymes can also be subdivided into three classes
based on their activities: (1) Nucleosome-spacing enzymes which slide nucleosomes along
DNA to fix their spacing (i.e., the linker length). In yeast, these are CHD1, ISW1a, ISW1b,
ISW2 and INO80. (2) Nucleosome-remodeling enzymes capable of sliding nucleosomes along DNA,
inducing conformational changes in nucleosomes, removing nucleosomes from DNA or transferring
nucleosomes from one DNA molecule to another [22]. In yeast, these enzymes are represented by
the SWI/SNF and RSC complexes. (3) Histone-variant-exchange enzymes, such as the SWR complex,
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which uses ATP to replace an H2A–H2B dimer in a nucleosome with an H2A.Z-H2B dimer [23,24].
INO80 is exceptional in that it may display all three activities, although its role in exchange of
H2A.Z-H2B dimers is controversial [25–28].
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Figure 2. ATP-dependent chromatin remodelers in yeast. (A) Subunit organisation of remodeler families.
All of the remodelers have a core ATPase subunit. A few subunits are found in more than one complex
within a family (indicated by the same colour). (B) Remodelers are divided into four major families
based on the combination of domains present in their catalytic subunits. The conserved ATPase domain
has two lobes, DExx and HELICc, flanked by other domains, such as the AutoN and NegC domains in
ISWI(Imitation SWItch)-enzymes, which are required for negative regulation of ATPase function, and the
SnAc domain in the switching/sucrose non-fermenting (SWI/SNF) family (Snf2 ATPase coupling).
Bromodomains and chromodomains recognise modified histones (see text). Adapted from [17].

Relatively little is known about the roles of the ancillary subunits, given that the ATPase subunit
contains the remodeling activity. These subunits may have regulatory functions, such as targeting a
remodeler to specific DNA sequences (e.g., the Rsc3 and Rsc30 subunits of RSC [29]), or to nucleosomes
carrying specific histone modifications (e.g., RSC has many bromodomains [30–32]).

3. Nucleosome Mapping: MNase-Seq and Chemical Mapping

The major approach employed to determine the contributions of the various ATP-dependent
chromatin remodelers to chromatin organisation in cells is to map nucleosomes in a remodeler
mutant and compare with wild type. Nearly all such studies have employed MNase-seq.
This technique involves digestion of nuclei with micrococcal nuclease (MNase) to yield predominantly
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mono-nucleosomes (i.e., isolated beads from the beads-on-a-string), followed by purification of
nucleosomal DNA, preparation of sequencing libraries and paired-end sequencing [33]. Paired-end
sequencing yields short sequence reads from both ends of the same nucleosomal DNA molecule, which
are then aligned to the genome. The length of the nucleosomal DNA fragment can be deduced from
the distance between the 5′-ends of the two reads. The central base pair in the nucleosomal DNA
molecule is assumed to represent the centre of the nucleosome, termed the dyad (in reference to the
crystal structure) and is used to indicate the position of the nucleosome with respect to the genome.
Nucleosome occupancy is represented by the coverage plot, which involves counting the number of
times each chromosomal coordinate base pair occurs within a nucleosome sequence and normalising
to the genomic average count (usually set at 1).

The expected length of the nucleosomal DNA is, of course, ~147 bp. In practice, a range of
nucleosomal DNA fragment lengths is observed. DNA fragments that are too long may reflect slower
digestion of linker DNA with higher GC content (MNase prefers AT-rich DNA), such that some linker
DNA is still projecting out of the nucleosome, or possibly protection of linker DNA by other proteins.
DNA fragments which are too short may result from over-digestion (digestion within the nucleosome at
AT-rich sites) or perhaps to sub-nucleosomes (hexasomes and perhaps (H3–H4)2 tetrasomes), although
these are difficult to distinguish from over-digestion because the same fragment sizes are produced
in both cases. The marked preference of MNase for AT-rich DNA results in different digestion rates
for linkers and nucleosomes, depending on their base composition, which can be an issue if delving
deep into the data [34]. In our experience, the most critical parameter for obtaining a high quality
nucleosome map is the extent of digestion. We always do an MNase titration and choose samples
that are almost all mono-nucleosomes with minimal sub-nucleosomal DNA (later checked using the
length histograms obtained after sequencing). We take care to compare samples with similar extents
of digestion.

An alternative method for mapping nucleosomes is the chemical method [14,35]. It depends on
the fact that the ser-47 residue of H4 is located near the nucleosomal dyad and can be mutated to
cysteine. Nuclei are treated with a chemical modification agent which reacts with the Cys residue to
generate hydroxyl radicals which in turn cleave proximal DNA. The result is a double-stranded DNA
break very close to the dyad. Extensive digestion results in a ladder of DNA bands corresponding to
dyad-to-dyad distances (not linker-to-linker as in MNase-seq). These DNA fragments are subjected to
paired-end sequencing. The chemical method has several important advantages over MNase-seq—it
gives the precise length of the linker DNA between neighbouring nucleosomes and more accurate
nucleosome positions because length variability is limited, and it avoids the AT bias inherent in
MNase-seq. It has two important disadvantages—the modification conditions are harsh and the
H4-S47C mutation is required. The mutant is easy to make in yeast, but the large number of H4 genes
in higher organisms precludes mutant construction and an siRNA approach must be used instead [36].
More recently, an alternative mutant for chemical mapping, H3-Q85C, has been used to deduce both
dyad positions and linker lengths [37]. Currently, MNase-seq is much more commonly used than
chemical mapping because it is easier and faster, but that may change in the future.

Recent advances in single-cell technology have made it possible to map nucleosomes from a single
cell (scMNase-seq) and to gain further insight into chromatin heterogeneity at the cellular level [38].
However, there are two important caveats: (i) Many nucleosomes in each cell will be missing from
the map because it is not possible to sequence the entire library. This means that an NDR cannot be
reliably distinguished from a missing nucleosome. (ii) For diploid cells it is not usually possible to
tell which chromosome copy each nucleosome came from. Another exciting technology making an
entrance is long-read sequencing, which can be used to map nucleosome footprints on the same long
DNA molecule, obtained using DNA methylases which can only methylate linker DNA [39].

Finally, it should be noted that yeast is an excellent model organism for chromatin studies because
of its small genome and because mutants are simple to construct. The small genome (~12 Mb) makes a
huge difference to the cost of sequencing. The mouse and human genomes are ~3000 Mb, therefore
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~250 times more nucleosome sequences are required to achieve the same coverage as the yeast genome.
About 10 million nucleosome sequences are sufficient for a high quality nucleosome map in yeast;
~2.5 billion nucleosome sequences are needed for the same coverage of the mouse or human genome.
Most MNase-seq studies using human and mouse cells have far fewer nucleosome sequences and so
the map is unreliable at the unique sequence level (but may suffice for global analyses). Biological
replicate experiments are crucial for determining whether trends identified by bioinformatic analysis
are reproducible; therefore replicate data should never be combined.

4. Nucleosome-Depleted Regions, Nucleosome Spacing and Nucleosome Phasing

Before we discuss the contributions of the various ATP-dependent remodelers to chromatin
organisation, it is necessary to introduce the concept of nucleosome phasing. Nucleosome spacing
refers to the average distance between nucleosomes, commonly measured by the repeat length in
MNase studies (see above) (Figure 3A). Nucleosome phasing refers to the tendency of regularly-spaced
nucleosomal arrays flanking active promoters, enhancers and other active regulatory elements to be
phased relative to the underlying DNA sequence. That is, the nucleosomes tend to adopt similar
positions at a given gene locus in all cells (Figure 3B).
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Figure 3. Nucleosome spacing and nucleosome phasing. (A) Nucleosomes can be regularly spaced but
not phased on the same stretch of DNA. They are the same distance apart but in different positions in
different cells. (B) Nucleosomes are regularly spaced and perfectly phased on the same stretch of DNA.
They are the same distance apart and in the same positions in every cell. (C) Model for the origin
of phasing. A putative “barrier complex” is formed at a specific sequence such as a promoter (blue box),
preventing nucleosome formation on the DNA that it occupies and forcing nucleosomes to form on
either side. If they are regularly spaced, phasing will result. (D) Model for phasing which takes into
account observed variation in nucleosome positions and linker length (spacing).

Active regulatory elements are generally located in “nucleosome-depleted regions” (NDRs)
or “nucleosome-free regions” (NFRs); we prefer to use “NDR” because these regions are usually
not completely depleted of nucleosomes. In yeast, NDRs are present at most RNA polymerase II
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(Pol II) promoters [40,41], at genes transcribed by RNA polymerase III [42], and at replication origins.
Phasing at promoters is revealed by aligning all ~5700 genes on their transcription start site (TSS) or on
the average position of the first (“+1”) nucleosome position (dyad) on the gene and then mapping
all of the nucleosome dyads to their gene coordinates. The result is a series of sharp peaks along
the gene, corresponding to genomic average nucleosome positions relative to the TSS or +1 nucleosome
(labelled +1, +2, +3 nucleosomes, etc.) [43,44]. In yeast, the TSS maps just inside the +1 nucleosome on
average. Although the phased nucleosome peaks are strong, they are not infinite, and the troughs do
not reach zero, indicating that phasing is very good but far from perfect. That is, nucleosomes are not
precisely aligned and can be formed over linkers with lower probability. Single-gene studies have
shown that nucleosomes adopt different overlapping positions on the same gene in different cells,
both in yeast [45,46] and in higher organisms [47]. These alternative nucleosome positions account
for imperfect phasing on the genomic scale, as shown by both MNase-seq and restriction enzyme
accessibility data [48–50].

5. The NDR May Contain a “Barrier” Complex

The nature of the NDR is somewhat controversial. Weak NDRs can be formed in vitro using
reconstituted nucleosomes and a combination of remodeling enzymes [51,52], indicating that DNA
sequence plays an important role. Other studies have suggested the involvement of the runs of
A-residues often present in yeast promoters, since they have a mild tendency to exclude nucleosomes.
In vivo, promoter NDRs are deeper and wider. Interestingly, a peak is detected in NDRs at relatively
early stages in MNase digestion, which disappears as digestion proceeds. This observation suggests
that the NDR is not protein-free DNA, but occupied by a large stable complex [34,53–57]. It has
been proposed that this complex is a “fragile nucleosome”, because it is more sensitive to digestion
than a canonical nucleosome [55–57]. However, this is controversial. We were unable to detect
any histones in these complexes, indicating that the MNase-sensitive complex is not a nucleosome,
but a large non-histone complex [34]. We confirmed that this is true for the tRNA genes, which
are marked by a deep NDR that is occupied by a stable, specifically bound transcription factor
TFIIIB–TFIIIC(Transcription Factors IIIB and IIIC) complex with a footprint of ~150 bp, and flanked by
phased nucleosomes [34,42].

At Pol II promoters, the sequence-specific general regulatory factors (GRFs: Abf1, Reb1 and
Rap1) may be involved in NDR formation [58–62], either directly by acting as a barrier, or indirectly
by recruiting a large stable transcription complex similar to the TFIIIB–TFIIIC complex. However,
although depletion of these essential transcription factors reduces average NDR size, it does not
eliminate the NDR, suggesting that either factor depletion is incomplete, or that more than one factor
and/or other factors are involved in NDR formation [59,61]. We advocate for a model in which a
specifically-bound, stable complex acts as a barrier, preventing nucleosome formation in the NDR,
forcing nucleosomes to form on either side of the barrier, thus fixing their positions indirectly with
respect to the DNA sequence (Figure 3C,D) [34,43,52,63,64]. A nucleosome-spacing enzyme would
then build the phased array starting with the first (“+1”) nucleosome (see below).

6. The Yeast Nucleosome-Spacing Enzymes: ISW1a, ISW1b, ISW2, CHD1 and INO80

6.1. Nucleosome-Spacing Enzymes in Yeast Are Not Functionally Redundant

Yeast possesses five major chromatin remodelers with proven nucleosome-spacing activity:
CHD1, ISW1a, ISW1b, ISW2 and INO80. In vitro, they form nucleosomal arrays with different
average spacing. CHD1 establishes the shortest spacing (~160 bp), the ISW1 and INO80 complexes
direct intermediate spacing (~175 bp), whereas ISW2 forms nucleosomal arrays with the longest
spacing (~200 bp) [15,65–72] (Figure 4A). In yeast cells, the average spacing is ~165 bp, but there is
significant variation, depending on the gene and its transcriptional activity (discussed below).
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4B). The absence of ISW1 is the most detrimental for average nucleosome-spacing conservation. Early 
studies observed that, in isw1Δ cells, nucleosomes near the middle of a gene exhibit larger shifts 
towards the promoter than those closest to the promoter [74,75]. With the advent of paired-end 
technology, which allows greater certainty in the determination of the dyad location, it became clear 
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Figure 4. Yeast nucleosome-spacing enzymes in vitro and in vivo. (A) CHD1, ISW1 and ISW2 space
nucleosomes differently in vitro. The nucleosomes are not phased. (B) The effects of null mutations in
CHD1, ISW1 and ISW2 on chromatin organisation. Dyad phasing in wild type (WT) cells (black line
with grey fill). All ~5700 yeast genes are aligned on the first (+1) nucleosome (set at 0). The genomic
average dyad density is set at 1. The promoters are nucleosome-depleted regions (NDRs). Loss of ISW2
has no effect. Spacing is reduced in isw1∆ cells, while phasing is weaker in both isw1∆ and chd1∆ cells.
Chromatin organisation in the isw1∆ chd1∆ double mutant is severely disrupted. A mathematical
method to quantify the degree of phasing based on the relative height and width of each nucleosome
peak is available [73]. Adapted from [73]. (C) Proposed contribution of close-packed di-nucleosomes
involving the +1/+2 or +2/+3 nucleosomes (grey ovals) to phasing disruption in the isw1∆ chd1∆
double mutant. A di-nucleosome will alter the positions of downstream nucleosomes. In addition,
the nucleosomes included in di-nucleosomes will be missing from this mono-nucleosome analysis,
resulting in an apparent decrease in signal around the +2 nucleosome.

In vivo, normal nucleosome spacing and phasing relative to the +1 nucleosome requires primarily
ISW1 and CHD1, while ISW2 makes only a marginal contribution at the global level (Figure 4B).
The absence of ISW1 is the most detrimental for average nucleosome-spacing conservation. Early studies
observed that, in isw1∆ cells, nucleosomes near the middle of a gene exhibit larger shifts towards
the promoter than those closest to the promoter [74,75]. With the advent of paired-end technology,
which allows greater certainty in the determination of the dyad location, it became clear that the
differential nucleosome shifts that occur in the absence of ISW1 actually represent a decrease in the
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average nucleosome spacing, from ~166 bp in wild type cells to ~159 bp [73]. This observation
implies that ISW1 creates nucleosomal arrays with wild type spacing. The phasing in isw1∆ cells is
weaker than in wild type, as indicated by broader peaks with reduced amplitude. In the absence
of CHD1 (chd1∆), nucleosome spacing is slightly shorter than wild type and the phasing is weaker.
Most importantly, the loss of both enzymes (the isw1∆ chd1∆ double mutant) has a much more drastic
impact than either single mutant (Figure 4B), indicating that ISW1 and CHD1 cooperate to organise
yeast chromatin [73,76].

The disruption of chromatin organisation in the isw1∆ chd1∆ double mutant involves an almost
complete loss of downstream nucleosome phasing, beginning with the +2 nucleosome (Figure 4B).
Remarkably, the +1 nucleosome remains well-positioned, due to the action of other remodelers
(see below). More recently, we have identified a major contributory factor to the loss of phasing in
the isw1∆ chd1∆ double mutant—the tendency to form close-packed di-nucleosomes [77]. These are
neighbouring nucleosomes with no intervening linker DNA, which are therefore relatively resistant to
MNase. Close-packed di-nucleosomes can be formed in vitro in the absence of remodelers by partial
uncoiling of the DNA between two nucleosomes allowing close approach and apparent invasion
and/or by elimination of an H2A–H2B dimer [78–80]. Di-nucleosomes can also be generated in vitro
from mono-nucleosomes reconstituted on a plasmid by human SWI/SNF [81].

Surprisingly, the di-nucleosomes formed in the isw1∆ chd1∆ double mutant are not randomly
located, but predominantly include the +2 nucleosome (i.e., the +1/+2 and +2/+3 di-nucleosomes
are much more common than other possible di-nucleosomes) [77]. If we assume that downstream
nucleosomes are regularly spaced relative to the di-nucleosome, then a major effect of di-nucleosome
formation on phasing is predicted, because downstream nucleosomes are out of phase by one
linker length (Figure 4C). Furthermore, since only mono-nucleosomes are included in the dyad plot,
the formation of di-nucleosomes will result in a loss of dyad signal around the +2 nucleosome
(Figure 4C). These effects can account for much of the chromatin disruption in the isw1∆ chd1∆ double
mutant. Overall, the implication is that, in wild type cells, ISW1 and/or CHD1 resolve di-nucleosomes,
or prevent their formation. Which of the two enzymes is involved, or whether both are required, is an
outstanding question.

Loss of ISW2 (isw2∆) does not impact global chromatin organisation [73,76]. In wild type cells,
the role of ISW2 is masked by the dominant roles of ISW1 and CHD1; its contribution only becomes
apparent in the isw1∆ chd1∆ isw2∆ triple mutant. In the isw1∆ chd1∆ double mutant, the global average
spacing is difficult to measure accurately because the peaks are weak and flattened out. However,
it can be estimated for the least transcriptionally-active genes. These genes show better phasing than
the global average, with longer spacing than in wild type cells. The fact that this effect is abolished
in the isw1∆ chd1∆ isw2∆ triple mutant suggests that ISW2 is responsible for most of the residual
phasing and spacing in the isw1∆ chd1∆ double mutant [73]. Hence, ISW2 sets longer spacing and
improves phasing on inactive genes, suggesting a role in repression. More direct evidence for ISW2
in a repressive role comes from studies showing that ISW2 can slide nucleosomes over promoters,
coincident with repression [82] and that ISW2 represses cryptic transcript initiation (i.e., transcription
from intragenic sites) [83].

In vitro, the INO80 complex displays nucleosome spacing and sliding activity [69] and can create
NDRs with good positioning of the +1 and −1 nucleosomes in reconstituted chromatin [51]. In vivo,
in the absence of INO80, the +1 nucleosome is shifted downstream, away from the TSS, whereas the
downstream nucleosomes (+2, +3 etc.) are shifted upstream, towards the TSS [75,84], resulting in
shorter average nucleosome spacing. Thus, INO80 is important for formation of the NDR and for
spacing nucleosomes.

In summary, yeast nucleosome-spacing enzymes are not functionally redundant but instead direct
the formation of nucleosome arrays with different spacing. Thus, the spacing on a particular gene
depends on which of the three enzymes act on it. In general, CHD1 and ISW1 determine the spacing
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on most genes, whereas ISW2 affects only the least-active genes. The relative importance of INO80 has
not yet been established.

6.2. ISW1 and CHD1 Compete to Set Nucleosome Spacing on Most Genes

As discussed above, ISW1 and CHD1 are the major spacing enzymes working at most genes.
We have proposed that ISW1 and CHD1 compete to set the proper spacing [73]. Examination of the
isw1∆ mutant illuminates the roles of both ISW1 and CHD1; the short nucleosome spacing in this
mutant leads to two main conclusions: (1) the short spacing is set by CHD1, since it is the only other
major spacing enzyme and (2) ISW1 is responsible for the longer spacing observed in wild type cells.
If instead we focus on the chd1∆ mutant, the spacing is only slightly reduced, and we might be tempted
to think that CHD1 has only a minor role. However, the importance of CHD1 is clear from the dramatic
disruption of chromatin in the isw1∆ chd1∆ double mutant. An important issue is that the competition
model predicts that the spacing in chd1∆ cells should be longer than in wild type, not slightly shorter,
because the short-spacing enzyme is absent. A tentative explanation is that ISW1 function is partly
dependent on CHD1, resulting in weakened phasing and spacing set by ISW1 in chd1∆ cells. That is,
ISW1 may create more regular (better phased) arrays if the nucleosomes are first spaced by CHD1
and/or if di-nucleosomes are resolved by CHD1 (see above). We also note that the relative importance
of the ISW1a and ISW1b complexes [65] to ISW1-dependent spacing is unknown.

In summary, we propose that ISW1 dominates the spacing on most genes, setting a longer
spacing of ~165 bp, while CHD1 dominates genes with shorter spacing [73], which tend to be more
active and may reflect association of CHD1 with Pol II elongation factors [85]. In addition, ISW2
makes a significant contribution to the longer spacing observed on the most inactive genes, where
the competition may be between ISW1 and ISW2. Although in vitro studies indicated that CHD1,
ISW1 and ISW2 should give spacings of ~160, ~175 and ~200 bp, only CHD1 gave the expected spacing
in vivo (~159 bp). Nevertheless, the spacings deduced from the null mutant data in vivo are in the
expected order (CHD1 < ISW1 < ISW2). In conclusion, the spacing enzymes compete to set the spacing
on individual genes, and the global average spacing reflects the outcome of this competition [73].

6.3. Competing Remodelers May Control H1 Binding and Chromatin Folding by Regulating Spacing

Both the H3 N-terminal tail domain and yeast H1 (yH1) bind to the linker DNA, as shown
by ChIP (chromatin immunoprecipitation) -exo experiments (such experiments markedly increase
the resolution of standard ChIP experiments by using an exonuclease to digest the DNA up to the
formaldehyde-crosslinked base) [86]. Using the same data, we showed that yH1 peaks are phased
relative to the TSS but located over the linkers between nucleosomes, i.e., they are out of phase with the
nucleosome peaks [73]. Moreover, yH1 binding is detected on the linkers of all genes except for those
with extremely short or extremely long spacing, both of which are indicative of heavy transcription
(see below). Hence, genes with short spacing, determined primarily by CHD1, bind less H1 than genes
with longer spacing, determined primarily by ISW1 [73].

yH1 differs from mammalian H1 in that it has two globular domains instead of one; they are
separated by a stretch of ~40 residues that is homologous to the highly-positively-charged C-terminal
tail domain of mammalian H1 [87]. The globular domain of mammalian H1 interacts with the
nucleosome core, while the C-terminal tail follows the linker (reviewed in [88]). The unusual structure
of yH1 suggests that it has the potential to interact with two nucleosome cores and with the intervening
linker DNA [89–91]. Deletion of the gene encoding yH1 (HHO1) does not affect nucleosome spacing
in vivo [89,92,93]. This may reflect the much lower stoichiometry of H1 per nucleosome in yeast
(1 per ~37 nucleosomes [94]) than in higher organisms (~1 per nucleosome [95]). If yH1 levels are
low in wild type cells, loss of yH1 would affect the spacing of just a small fraction of nucleosomes,
which may not be apparent at the global level.

We proposed that CHD1 directs short spacing, evicting H1 because the linker is too short for
high-affinity binding, which in turn results in partial unfolding of the chromatin fibre. In contrast,
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ISW1 directs longer spacing, facilitating the binding of yH1 by creating a longer linker, which results in
re-folding of the chromatin (Figure 5). Thus, a dynamic competition between ISW1 and CHD1 may
control chromatin folding by regulating yH1 binding [73]. Since loss of yH1 has no clear phenotype
and only minor effects on gene expression [89,94], we propose that the primary function of yH1 is to
condense genic chromatin during periods of inactivity.Biology 2020, 9, x FOR PEER REVIEW 11 of 24 
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and condense the chromatin. CHD1 reduces the spacing, resulting in eviction of yH1 and unfolding.
Adapted from [73].

6.4. Nucleosome-Spacing Enzymes and Transcription

Given that ISW1 and CHD1 have such a profound effect on global chromatin organisation, it is
surprising that neither the ISW1 gene nor the CHD1 gene is essential and that both genes can be deleted
without resulting in a strong phenotype. This is also true of ISW2 and the triple mutant. This observation
indicates that highly-organised chromatin is not critical for essential functions. Consistently, the loss
of these remodelers is accompanied by relatively minor changes in gene expression, as measured
by ChIP-seq for the Rpb3 subunit of Pol II [73] or by RNA microarray [76]. Isw1 is involved in the
repression of certain stress response genes during normal growth [96].

Interestingly, the distribution of Pol II on the average gene body is affected in isw1∆ chd1∆ cells.
In wild type cells, Pol II levels are low at the promoter and high on the gene (elongating Pol II),
with a dip at the transcript termination site (TTS), and a peak just downstream from the TTS that
sometimes trails into the next gene, corresponding to terminating Pol II [97,98]. The TTS corresponds
to the nucleotide at which the mRNA is cleaved and tailed with poly(A); transcription continues for
a short distance downstream of the TTS. In the isw1∆ chd1∆ double mutant, the peak representing
terminating Pol II is significantly decreased [77]. This effect is more pronounced in chd1∆ cells than in
isw1∆ cells. Thus, ISWI and CHD1 may delay termination and/or dissociation of Pol II. Alternatively,
ISW1 and CHD1 may facilitate Pol II elongation, such that elongation is inhibited in isw1∆ chd1∆ cells,
possibly by close-packed di-nucleosomes, resulting in higher levels of Pol II on the gene relative to
the termination region [77]. Another factor is cryptic initiation, which is increased in the isw1∆ chd1∆
double mutant [99], such that elongation may also be inhibited by collisions between promoter-initiated
Pol II and cryptically-initiated Pol II elongating in the anti-sense direction (Figure 6).

Transcription generally has quite minor effects on chromatin structure, unless the gene is heavily
transcribed [97,100,101]. This observation may indicate that the chromatin organisation of genes that are
transcribed less often is restored by remodelers once transcription is complete, whereas the chromatin
structures of genes with high levels of Pol II are not restored quickly enough. In yeast, only the ~50
most-heavily-transcribed genes (as measured by ChIP-seq for the Rpb3 subunit of Pol II) show obvious
chromatin disruption [48,97]. Heavily-transcribed genes are associated with a wider NDR, decreased
nucleosome occupancy, disrupted phasing on gene bodies and short spacing [48,53,97,102–105]. Loss
of occupancy reflects some transcription-associated loss of nucleosomes and, more commonly, loss of
H2A–H2B dimers from existing nucleosomes, resulting in sub-nucleosomes [63,86,97].
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Figure 6. ATP-dependent remodelers and transcription. In wild type cells, Pol II levels are low
at the promoter (promoter–proximal pausing is not generally observed in yeast), high on the gene
body (elongating Pol II), and there is a peak of terminating Pol II downstream of the transcript
termination site (TTS). In the isw1∆ chd1∆ double mutant, elongating Pol II levels are high relative to
terminating Pol II levels, suggesting that elongation is inhibited and/or termination is facilitated. In the
former case, close-packed di-nucleosomes may inhibit elongation; in addition, increased anti-sense
cryptic transcription may result in inhibition due to Pol II collisions. In Rsc8-depleted cells, terminating
Pol II levels are high relative to elongating Pol II, suggesting that termination is inhibited. Transcription
levels are very low in these cells, suggesting an initiation defect also. Adapted from [77].

The short spacing on heavily-transcribed genes is puzzling, because it implies that highly-active
genes have more nucleosomes, which is apparently inconsistent with nucleosome loss. That there
is a link between spacing and transcription is supported by the global long spacing observed in the
complete absence of transcription using the temperature-sensitive Pol II rpb1–1 mutant [53]. These data
may be reconciled by arguing that the short spacing on heavily-transcribed genes reflects a general
disruption due to transcription, such that small clusters of closely-spaced nucleosomes are formed,
perhaps as Pol II transcribed through them, separated by occasional gaps (long linkers) resulting
from nucleosome loss or hexasome formation (i.e., loss of an H2A–H2B dimer). The short spacing
may be directed by CHD1, since there is evidence that CHD1 is associated with Pol II elongation
factors [85], implying that genes with more Pol II have more CHD1. Intriguingly, it may be relevant
that Chd1 can slide hexasomes unidirectionally in vitro [106]. We have also observed that some
heavily-transcribed genes have extremely long spacing [73], although this was not observed in chemical
mapping experiments for reasons that are not clear [37]. Extremely long spacing could be explained by
relatively high nucleosome or H2A–H2B dimer loss and/or by reduced levels of CHD1.
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Single-gene studies suggest a more central involvement of nucleosome-spacing enzymes in
coordinating transcriptional events. Two nucleosomes reminiscent of a di-nucleosome are formed
at the 5′-end of the MET16 gene in an isw1∆ mutant [107]. It was proposed that the ISW1a complex
positions nucleosomes at the promoter to regulate initiation, whereas ISW1b acts in the coding region
to facilitate Pol II elongation and termination [107,108]. In support, ChIP-exo studies show that ISW1a
is enriched at gene-terminal nucleosomes, whereas ISW1b is enriched on gene bodies [75]. CHD1 has
also been implicated as a transcription termination factor in a single-gene study [108]. However,
critical global roles in transcription for the ISW1 and CHD1 complexes seem unlikely in view of the
weak phenotypes of the null mutants.

7. Nucleosome Remodeling Enzymes: RSC and SWI/SNF

7.1. Remodeling Activities of the Yeast SWI/SNF-Family Complexes, RSC and SWI/SNF

The SWI/SNF and RSC complexes have similar remodeling activities in vitro. They are both
capable of translocating nucleosomes (i.e., sliding the histone octamer along the DNA or transferring
it to another DNA molecule) by expending ATP [17,109–111]. Although they can slide nucleosomes,
they are not able to organise nucleosomes into regularly-spaced arrays. They can both convert
canonical nucleosomes into alternative conformational states—SWI/SNF can generate “altosomes” by
forcing the coalescence of mono-nucleosomes into di-nucleosomes [81] and then disassemble one of
the nucleosomes [79] and RSC can unravel nucleosomes [112] and form “remosomes” by converting
nucleosomes to a much more open conformation incorporating more DNA (~180 bp) [113,114].
Such remodeled nucleosomes could be important for regulating transcription, but it is unclear whether
altosomes or remosomes occur in vivo. In vitro studies designed to reconstitute native yeast chromatin
organisation using purified histones, DNA and remodelers (i.e., to create an NDR and phased
nucleosomes with appropriate spacing) reveal that RSC and INO80 can separately create NDRs at
promoters [51].

7.2. Roles of RSC and SWI/SNF in Determining NDRs In Vivo

Although the RSC and SWI/SNF complexes have similar remodeling activities in vitro,
their functions appear to be largely non-redundant in vivo. Indeed, RSC is essential [115],
whereas SWI/SNF is not (although snf2∆ cells grow very slowly, indicating that it fulfills
important functions). RSC plays an important role in NDR formation, as shown by the narrowing and
moderate filling in of the NDR when essential RSC subunits are depleted from cells [59,77,116,117]
(Figure 7A). However, deep NDRs are still present even in the absence of RSC. Therefore NDR formation
is only partly dependent on RSC unless depletion of one subunit is not sufficient to fully inactivate
RSC. In contrast, SWI/SNF has little effect on the NDR at the global level, since cells lacking the crucial
ATPase subunit (snf2∆) do not display a global defect in chromatin organisation [116].

In essence, NDR formation involves the positioning of the +1 and −1 nucleosomes with a gap in
between. Several remodelers appear to play a role in positioning the +1 and −1 nucleosomes in vivo.
RSC has the most obvious effect on the +1 and −1 nucleosomes since RSC depletion results in an inward
shift of both nucleosomes at most promoters. This effect is partly reversed by ISW1 [77,118]. Similarly,
at inactive genes, ISW2 shifts the +1 nucleosome towards the promoter, in the opposite direction to
RSC [73,83]. Loss of INO80 results in +1 nucleosome shifts in the opposite direction to RSC, effectively
widening the NDR [75,84]. Although loss of SWI/SNF does not affect global +1 and −1 nucleosome
positioning, it does reduce the depth and width of the NDRs at the promoters of highly-expressed genes,
where it cooperates with other factors including RSC and INO80, the Gcn5 histone acetyltransferase
and the histone chaperone Ydj1 [28,117,119]. Overall, though, remodeler-dependent changes in +1
and −1 nucleosome positions and hence NDR width are generally small, averaging no more than
~20 bp. A small shift in position could expose or bury specific binding sites or the TSS in a nucleosome,
suggesting a mechanism for gene regulation. However, the heterogeneity in +1 nucleosome positions
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in the cell population renders this type of model unsatisfying, because a particular specific site will be
exposed in some cells, but not in others, predicting that only some cells can respond [49].
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Figure 7. Contribution of the essential remodeling the structure of chromatin (RSC) complex to yeast
chromatin organisation. (A) Loss of RSC results in nucleosome shifts into the promoter, narrowing and
partially filling the NDR. Nucleosome spacing is unchanged, indicating that all of the nucleosomes
shift towards the promoter. Cells were depleted of the Rsc8 subunit by repressing its expression
from a GAL promoter. (B) The effect of RSC depletion can be explained by a smaller putative barrier
complex footprint, perhaps involving a loss of barrier subunits. Adapted from [77].

If RSC acts directly on the +1 and −1 nucleosomes, RSC would be expected to be concentrated
at its target promoters. Surprisingly, this is not at all clear. MNase-ChIP-seq experiments (in which
chromatin from formaldehyde crosslinked cells is digested with MNase to release mono-nucleosomes
for immunoprecipitation) show that RSC is bound to the −1 and +1 nucleosomes, which is as expected,
but also to the +2 and +3 nucleosomes, suggesting that RSC may also act on nucleosomes on gene
bodies [75]. Native ChIP experiments (similar to MNase-ChIP-seq but without crosslinking) are quite
consistent, indicating that RSC preferentially binds to the +1 and −1 nucleosomes [120]. “Cut-and-run”
experiments, in which a Protein A-MNase fusion protein is bound to the RSC ATPase subunit
(Sth1) in nuclei via an antibody bridge, also suggest that RSC binds preferentially to the +1 and
−1 nucleosomes [57]. This study also proposes that RSC binds to a remodeled sub-nucleosome in
promoters with wide NDRs [57], although the possibility that free Protein A-MNase (not bound to Sth1)
might digest chromatin independently of Sth1 binding was not addressed. In contrast, standard ChIP
experiments (which do not involve MNase and rely on formaldehyde to crosslink the target protein



Biology 2020, 9, 190 15 of 23

to DNA before the cells are disrupted) indicate that RSC is not enriched at promoters, but modestly
enriched on active genes [116,117,121–123], suggesting that RSC remodels genic chromatin rather than
promoter chromatin.

There is a similar difficulty with data for SWI/SNF—MNase-ChIP-seq experiments indicate that
SWI/SNF is bound to the +1 and −2 nucleosomes [75], whereas ChIP experiments indicate that it is
modestly enriched on active genes [117]. There are also a number of single-gene studies showing
activator-dependent enrichment of SWI/SNF at specific promoters and genes, supporting a transcription
factor recruitment mechanism (e.g., [124–126]. In addition, there is evidence for activator-dependent,
SWI/SNF-dependent chromatin disruption over the entire HIS3 gene [46,127]. Clearly, there are
contradictions in the literature concerning the genomic distributions of SWI/SNF and RSC that need
to be resolved if we are going to understand their functions in detail. The answer may lie in the fact
that the RSC and SWI/SNF enrichments reported by the various methods are all rather small and
perhaps over-emphasised.

We have suggested the possibility of an indirect role for RSC in NDR formation—that the changes
in NDR width actually reflect changes in the footprint of the putative barrier complex that resides in
the NDR [34,77]. In this model, the positions of the +1 and −1 nucleosomes are not dictated directly by
remodelers, but by the size of the barrier complex (Figure 7B). The putative transcription complex
in promoter NDRs may lose subunits, given that transcription is severely curtailed in RSC-depleted
cells [128]. Our model is not completely consistent with the in vitro data indicating that RSC and
INO80 can create an NDR in the absence of a barrier complex [51], although the NDR formed in vitro
is shallow and is partly attributable to DNA sequence effects [52]. The model does account for the
genic distribution of RSC in vivo, suggesting that RSC really functions on genes during transcription.
Clearly, more experiments are needed to resolve this critical issue.

7.3. RSC, SWI/SNF and Transcription

As discussed above, the distribution of Pol II on the average gene includes a peak of terminating
Pol II just downstream of the TTS. In the absence of RSC (cells depleted of the essential Rsc8 subunit by
repressing RSC8 expression from a GAL promoter), the amount of terminating Pol II is increased relative
to elongating Pol II, implying a role for the RSC complex in facilitating transcript termination [77].
The accumulation of terminating Pol II in rsc8 cells suggests that termination is inhibited, which might
explain the generally low levels of mRNA in RSC-depleted cells [128], although this could also be
accounted for by an initiation defect. In wild type cells, it has been proposed that Pol II termination or
dissociation might be slow in order to facilitate recycling of Pol II from just downstream of the TTS
back to the promoter without release into the nucleoplasm [97,129]. If RSC is involved in initiation,
Pol II recycling might be prevented, resulting in Pol II accumulation downstream of the TTS (Figure 6).
An effect of RSC on initiation is also suggested by data indicating that the extent of repression of genes
in the absence of RSC depends on whether all of the alternate TSSs, or only some of them, are occluded
by the +1 nucleosome when it shifts into the promoter [130]. RSC might be directly involved in
initiation through its role in NDR formation, or indirectly through partial disassembly of the barrier
complex, as discussed above [34,116,117].

Nucleosome mapping, Pol II ChIP-seq and gene expression data all indicate that RSC affects many
more genes than SWI/SNF [77,116,117,119,131]. Both SWI/SNF and INO80 stimulate transcription
specifically at highly-expressed genes, where it augments RSC function [28,117,119]. Another role
for SWI/SNF in transcription is suggested by somewhat controversial evidence that SWI/SNF binds
directly to Pol II and so might facilitate Pol II binding to promoters and/or facilitate transcription
through nucleosomes [132].

7.4. Dynamic Nucleosome Remodeling by RSC In Vivo

Both MNase-seq and chemical mapping of nucleosomes require the preparation of nuclei (crude or
otherwise). Consequently, the chromatin structure is probably “frozen” because remodelers are unable
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to function without ATP. Thus, the dynamic aspects of chromatin structure can only be inferred from
the cell population average. Study of the dynamic events involved in transcription in live cells therefore
requires different approaches. Biophysical experiments show that the binding of transcription factors
to their specific sites is rapid and reversible on the time-scale of several seconds [133]. The binding
and dissociation of transcription factors is thought to be regulated by ATP-dependent chromatin
remodelers [134] which may control site access by moving nucleosomes on or off specific binding sites,
since nucleosomes inhibit binding. The single molecule tracking method has provided insight into
transcription factor and remodeler dynamics [135–139]. In yeast, single molecule tracking has been
used to address the role of RSC in the activation of the CUP1 gene by the Ace1 transcription factor,
which binds to specific sites in the CUP1 promoter [140]. This study shows that RSC improves the search
and binding kinetics of Ace1 to the promoter, probably through its fast nucleosome remodeling activity
(in the range of a few seconds), removing promoter nucleosomes or shunting them back and forth,
alternately exposing and burying Ace1 binding sites, and leading to rapid bursts of CUP1 transcription.
New methods to map nucleosomes in living cells may shed more light on chromatin dynamics.

8. Important Issues for Future Study

There are a number of important unresolved issues concerning the roles of the ATP-dependent
remodelers in yeast chromatin organisation. They include reaching a better understanding of the
contribution of INO80 to global nucleosome spacing and dissecting the individual contributions of the
two ISW1 complexes (ISW1a and ISW1b). In addition, the respective contributions of ISW1 and CHD1
to prevention of di-nucleosome formation need to be determined. Furthermore, the significance of
di-nucleosome formation in the context of transcription is unclear. Our model proposing that ISW1 and
CHD1 indirectly determine chromatin compaction by determining spacing and H1 binding requires
further testing. A closer examination of the transcripts produced in the various remodeler mutants
is warranted, particularly in view of evidence indicating that ISW1 interacts with mRNP(mRNA
nucleoproteins) in the nucleus, regulating mRNP export [141]—are the transcripts correctly initiated
and terminated? Finally, as discussed above, it is essential to resolve the issue of the genomic locations
of SWI/SNF and RSC to reach an understanding of their functions.

9. Conclusions

In budding yeast, chromatin organisation is determined by the interplay of several ATP-dependent
chromatin remodeling complexes. We expect the same is true of higher eukaryotes, which have many
more ATP-dependent chromatin remodelers than yeast. Their mechanisms of action have been studied
in depth in vitro and elucidated further by recent high-resolution cryo-electron microscopy studies.
With the advent of next generation sequencing, their roles in vivo are now much better understood.
However, there are still unresolved issues that require further research.
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