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Abbreviations: T, triangularin; MTT, (3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide); MNCC, Maximum non-cytotoxic concentration; 

MBTH, 3-methyl-2-benzothiazolinone; PMSF, Fluorinated phenylmethanesulfonyl; 

IAA,   Iodoacetamide; L-DOPA, L-3,4-dihydroxyphenylalanine; PDB, Protein data 

bank; 8PP, 4’-dihydroxy-5′-(1′′′,1′′′-dimethylallyl)-8-prenylpinocembrin; Abs, 

absorbance; DMEM, Dulbecco's Modified Eagle's medium; FBS ,fetal bovine 

serum; DMSO, Dimethyl sulfoxide; PBS, Phosphate-buffered saline; KA, kojic acid; 

SD, standard deviation; IC50, half maximal inhibitory concentration; ANOVA, 

Analysis of variance.

ABSTRACT

The lack of secure therapies for hyperpigmentation disorders, without serious 

adverse effects, and the latest reports relating melanogenic disorders with 

development of neurodegenerative diseases, encourage the continuing search for 

new drugs for the treatment of such disorders.  In this sense, the plant kingdom is 

an important source of bioactive natural products with great potential for the 

research and development of new therapeutics. The present study evaluated the 

anti-melanogenic activity of the natural methoxylated chalcone, 2’,6’-dihydroxy-4’-

methoxy-3’-methylchalcone (Triangularin, T), on diphenolase activity from 

mushroom tyrosinase and on murine B16F0 melanoma cell model. In addition, 

molecular modelling studies were carried out in order to understand the inhibitory 

activity observed. T showed a potent anti-melanogenic activity being more active 

than kojic acid (KA) on tyrosinase isolated of both sources and on intracellular 

tyrosinase. Molecular docking studies displayed important interactions between T 

and the active site of tyrosinase. Our results suggest that T may be useful for the 

treatment of hyperpigmentary disorders.
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1. Introduction

Melanin is the major component of skin color and plays an important role in the 

prevention of ultraviolet-induced and oxidative stress-induced skin damage. 

However, excessive accumulation of melanin in the skin surface results in mottled 

skin; being unfavorable to aesthetics and health conditions.1–6 Melanogenesis 

control is the main approach for the treatment of abnormal skin pigmentation 

disorders.3,5,7,8

Tyrosinase is a key enzyme in the melanogenic pathway, responsible for 

catalyzing two reactions in melanin biosynthesis. First, the hydroxylation of L-

tyrosine to L-3,4-dihydroxyphenylalanine (L-DOPA), known as monophenolase 

enzymatic activity, and further the oxidation of L-DOPA to the corresponding DOPA-

dopaquinone, known as diphenolase activity.3,5,9,10 Therefore, tyrosinase inhibitors 

are clinically useful for the treatment of dermatological disorders like senile lentigo, 

ephelides (freckles), solar lentigo (age spots), postinflammatory melanoderma and 

melasma, and also they are important in the cosmetics industry for whitening and 

depigmentation after sunburn.4,5,11 Kojic acid (KA) is one of the most popular 

depigmentation agents, however, several adverse effects have been reported as 

genotoxic, hepatocarcinogenic and produce allergic dermatitis.12 Meanwhile, 

another depigmentation agent clinically used hydroquinone, causes erythema, 

stinging, colloid milium, irritation, and allergic contact dermatitis, nail discoloration, 

paradoxical postinflammatory hypermelanosis. Moreover, its prolonged use led to 

exogenous ochronosis, permanent discoloration, and permanent leukoderma.3 Its 
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clinical use is limited to generating a total depigmentation in patients with diffuse 

vitiligo.13 

According to the exposed, the search for new drugs that could be 

therapeutically useful in the treatment of hyperpigmentary disorders, is necessary 

and urgent. Therefore, natural sources have become of interest for the search of 

safe natural compounds with anti-melanogenic activity.3

Flavonoids, secondary metabolites obtained from plants, have been reported as 

important inhibitors of tyrosinase.14–23

Our group has studied several species from Dalea genus. We had previously 

reported the isolation, structural elucidation and monophenolase mushroom 

tyrosinase inhibitory activity of flavonoids from the Argentinean species Dalea 

boliviana Britton24 and D. elegans Gillies ex Hook & Arn.,25 and from Bolivian 

species, D. pazensis Rusby.26

The  prenylated flavanone, 4’-dihydroxy-5′-(1′′′,1′′′-dimethylallyl)-8-

prenylpinocembrin (8PP) and the methoxylated chalcone 2’,6’-dihydroxy-4’-methoxy-

3’-methylchalcone [Triangularin (T), Fig. 1], obtained from D. elegans,25 showed 

significant monophenolase inhibitory activities on mushroom tyrosinase.25 In 

addition, 8PP presented inhibitory effects on diphenolase mushroom tyrosinase and 

on melanogenesis of murine melanoma B16F0 line cells.26

The aim of this work was to evaluate the anti-melanogenic activity of T on in 

vitro and ex vivo models. Furthermore, molecular docking studies were performed in 
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order to explain the inhibitory effect observed and to propose the interaction mode 

with the enzyme.

2. Results and discussion

2.1. Effect of T on diphenolase activity of mushroom tyrosinase

The inhibitory activity of the natural compound T (Fig. 1) on diphenolase 

inhibitory activity at different concentrations (1.5-200 µM) was evaluated by an in 

vitro spectrophotometric assay. The IC50 value was estimated using the nonlinear 

fitting of concentration-response data. 

Fig. 1. Structure of 2’,6’-dihydroxy-4’-methoxy-3’-methylchalcone (T).

T, with an IC50 value of (63.1±0.2) µM, was approximately two fold more active than 

the positive reference, KA [IC50, (129.6±0.3) µM] (Fig. 2). With respect to the study 

of structure-activity relationship on the tyrosinase inhibitory activity by different 

chalcones, the presence of the 4-substituted resorcinol moiety in B ring has been 

demonstrated as a structural requirement necessary to observe inhibitory activity on 
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tyrosinase. Also, the hydroxylation in 2’,4’ and 6’ positions of A-ring collaborates with 

this inhibitory activity.25,27,28 In addition, other studies led to reinforce the relevant 

presence of the trihydroxyl groups in 2', 4' and 6' positions of A ring for mushroom 

anti-tyrosinase activity in chalcones. Furthermore, Lall et al., (2016) reported 

antityrosinase activity of two chalcones: 2’,4’,6’ -trihydroxy-dihydrochalcone and 

2’,6’-dihydroxy-4’-methoxydihydrochalcone, being the first one active with an IC50 of 

17.7 µg/ml, and the second completely inactive at 200 µg/ml.29 Although compound 

T presents a 4’-methoxylated substitution, this compound has an important activity 

even more than KA. In this sense, the presence of a methyl group in 3’ position 

could be relevant.  That observation was then studied by molecular modeling.
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Fig. 2. Dose-dependent inhibition of diphenolase mushroom tyrosinase activity by 

compound T and positive control KA (N = 3). 
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2.2. Effect of T on tyrosinase isolated from melanoma B16F0 mouse cells activity. 

With the aim of using a model closer to human melanogenesis, the inhibitory 

activity of T at different concentrations (0.001-1000 µM) was compared with that of 

the reference inhibitor KA (10-5000 µM), being both evaluated against tyrosinase 

present in crude lysates of B16F0 melanoma cells. A concentration-dependent 

inhibition was observed. When compound T and the reference inhibitor KA effects 

were compared at 10 µM and 100 µM, T proved to be six fold more active than KA at 

the minimal concentration (Table 1). Then, a concentration-dependent inhibition of 

melanoma B16F0 murine tyrosinase activity by compound T and positive control KA 

was performed for estimate and compare the IC50 values. The Fig. 3 shows the 

concentration-dependent inhibition curves obtained. T proved to be three-fold more 

active than the reference inhibitor (Table 1).

Table 1. Murine isolated tyrosinase inhibitory activity of compound T, and the reference 

inhibitor, KA.

Mean ± SD of at least 3 determinations. ap< 0.0001, the IC50 value was significantly different from that of 

KA.

Compound Inhibition at 10 µM (%) Inhibition at 100 µM (%) IC50 (µM)

T 43.74±0.01 61.43±0.01 30.9±0.3a

KA 7.30±0.02 56.60±0.01 89.7±0.4



  

9

Log  concentration (M)

%
m

ur
in

e 
ty

ro
si

na
se

 in
hi

bi
tio

n

-4 -2 0 2 4

0

20

40

60

80

100

120 T
KA

Fig. 3. Concentration-dependent inhibition of melanoma B16F0 murine tyrosinase activity by 

compound T and positive control KA (N=3).

In this way, it was observed that T showed inhibition on the diphenolase activity 

of mushroom tyrosinase and on tyrosinase isolated from murine B16F0 melanoma 

cells, a validated model for melanogenesis study.

2.3. Cell viability assay.

In order to obtain the maximum non-cytotoxic concentration (MNCC, the 

concentration at which the cells remained at 90% viability) for T and KA, the cell 

viability was determined at different concentrations of the compounds by using MTT 

spectrophotometric assay as previously described by Santi et al. (2017) 26. After 24 

h of incubation, it was observed that T inhibited melanoma B16F0 cells proliferation 

in a concentration-dependent manner. For KA, the value of MNCC was previously 
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informed by Santi et al. (2017) being (5000±10) µM 26, while for compound T, the 

MNCC estimated showed to be (100.0±2.0) µM. These concentrations were 

selected to ensure the cell viability, for further experiments developed on melanoma 

B16F0 cells.

2.4. Effect of Triangularin on extracellular melanin of murine melanoma B16F0 cell 

line.

With the aim of evaluate the effect of T on the production of extracellular 

melanin on B16F0 cells, without affecting the cell viability, the effect of several 

concentrations of that compound, below of its MNCC was assayed. The 

concentration needed to decrease the extracellular melanin content at approximately 

at 50% was (25.0±0.5) μM for T, whereas for the reference inhibitor the required 

concentration was (2000±5.0) μM.26 Hence, compound T showed to be 

approximately eighty fold more active than KA (Fig. 4).
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Fig. 4. Melanin content at increasing concentrations of T and KA. All experimental assays 

treated with T or KA were significantly different to the control (without treatment, considered 

100% of melanin). 

Structure-activity relationship of chalcones on melanogenesis in B16F0 cells 

have been reported. Chalcones presenting in their structure 4-substitued resorcinol 

in B ring and three hydroxyl groups in position 2’, 4’ and 6’ of A ring have been 

reported as inhibitors of the melanogenesis.30 Additionally, it was reported that the 

substitution at 3’ position of A ring, plays an important role in enhancing the 

inhibitory activity. Compound T presents, in part, these structural characteristics 

marked as important for the inhibition of melanogenic activity in B16F0 melanoma 

cells, which could explain the important activity observed for this compound.  
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According to the obtained results, the influence of T on intracellular tyrosinase was 

evaluated. 

2.5. Effect of triangularin on intracellular tyrosinase of murine B16F0 melanoma 

cells activity.

The B16 cells were incubated for 24 h with different concentrations below of MNCC 

of T or KA and the intracellular tyrosinase activities were evaluated and compared 

with the control cells. Table 2 shows the intracellular tyrosinase inhibition of T and 

the reference inhibitor, at their MNCC concentration (a,b p<0.001, the values are 

significantly different). The chalcone exerted a concentration-dependent inhibition on 

intracellular tyrosinase activity (Table 2). At the MNCC, the tyrosinase inhibition 

achieved for T was (20.1 ± 0.3)a % at 100 μM, and for the reference inhibitor KA was 

(45.4 ± 0.1)b %, at 5000 μM.26 

Table 2. Intracellular tyrosinase inhibition for compound T and KA at their MNCC.

T 
concentration 

(μM)

% Intracellular 
tyrosinase inhibition

KA 
concentration 

(μM)

% Intracellular 
tyrosinase inhibition

1 (3.9±0.4) 500 (21.63±0.21)b

5 (6.1±0.3) 1000 (28.63±0.12)
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10 (7.8±0.2) 2000 (37.62±0.2)

25 (12.99±0.3) 3000 (44.62±0.16)

50 (16.23±0.17) 4000 (44.93±0.8)

100 (20.1±0.3)a 5000 (45.4±0.1)

Mean ± SD of at least 3 determinations. a,bp > 0.05, the values are not significantly different statistically

The concentrations of T and KA that produced similar inhibitions values were 

compared. It was observed that T inhibits 20.1% at 100 µM, while KA inhibits 

21.63% at 500 µM (Table 2). Therefore, compound T was more active than KA, 

showing that are required five fold lower concentrations of T compared with the 

reference inhibitor to generate a similar inhibition.

Although T and KA did not show inhibition greater than 50% at their MNCC, the 

synergism could be a possible pharmacological strategy to be investigated in order 

to enhance their activities, decreasing the adverse effects of commercial whiteners 

currently used in clinic. 

2.6. Molecular docking studies

With a focus on understand the binding mode of T with mushroom tyrosinase 

trying to explain the origin of its activity, molecular modeling studies were carried 

out. In the first place, molecular docking calculations were used to build nine 

different complexes T with mushroom tyrosinase. Finally, a short molecular 

dynamics simulation of each complex followed by an evaluation of the binding 
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energy were carried out to select the best complex with the enzyme. The obtained 

binding energies of each complex are included in Table S1 in the supplementary 

material as well as, figures comparing their geometries (Fig. S1 and S2-ab). 

It was found that the more stable complexes presented energies of -27.3 and -

26.7 kcal/mol. Even though both complexes could be important, we will only 

consider the most stable one for the discussion. In Fig. 5, it is a 2-D representation 

of the binding mode. In insets B, it is shown the RMSD of the ligand during the MD 

simulation, showing that the geometry of the complex does not vary during the 

simulation. Analyzing its binding mode, complex 1 included the B ring within the 

active site interacting with histidines 63 and 85 (coordinated to ones of the Cu atoms 

of the active site), and with histidines 259 and 263 (Fig. S3). Complex 2 also 

included the B ring at the active site, with the A ring in the same position as complex 

1 (but flipped 180º). Besides these interactions with the B ring, there are other 

important interactions, an H-bond between the NH of histidine 85 with the oxygen of 

the hydroxyl group at 2’ position and Van der Waals interactions with other residues 

(Fig. 5, A-D). It was found that the H-bond with H85 persisted during the simulation, 

and that could be the reason why the interaction with this histidine is the most 

important one. Additionally, it was observed an important interaction between the 3’ 

methyl and the non-charged polar residue Asn81. That methyl group also presented 

an interaction with Thr324 residue. These interactions are shown both in the 2D 

representation of Fig. 5 and in the residue decomposition of the binding energy (Fig. 

5 D). 
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B)A)

Fig. 5. A) A 2D representation of the best complex between T and mushroom tyrosinase 

showing the interactions of the ligand with the enzyme. In blue, polar interactions with the 

histidines of the active site, in green, hydrophobic interactions and in light blue polar 

D)

C)
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interactions. Red arrow indicates an H-Bond. B) In the inset it is represented the RMSD of 

the ligand during the 3ns simulation. C) Evolution of the His85 NH-O 2’ of the ligand during 

the simulation. D) Graph of interaction energies.

3. Conclusion

In our screening program for tyrosinase inhibitors plant compounds by using 

mushroom tyrosinase, 2’, 6’-dihydroxy-4’-methoxy-3’-methylchalcone (T) was 

isolated and identified from aerial parts of Dalea elegans. T was previously reported 

as an inhibitor of monophenolase mushroom tyrosinase activity, and its kinetic 

mechanism of action was informed.25 In this work, T was evaluated with respect to 

its diphenolase mushroom tyrosinase activity and its influence on cell viability and 

melanin synthesis on murine melanoma B16F0 cells, by three in vitro assays to 

screen depigmenting agents. T showed to be, in all experimental performed assays, 

more active than the positive reference KA, thus demonstrating an important anti-

melanogenic activity. 

The molecular modeling studies showed important interactions between the 

methoxylated chalcone and catalytic residues of the active site of tyrosinase. The 

interaction between the 2’-OH and the H85 residue, added to the interaction 

between 3’-methyl with Asn81 and Thr324 residues could explain at the molecular 

level, the powerful inhibitory activity observed. 

In light of the above, we present, for the first time, a natural chalcone obtained 

from D. elegans, a native Argentinean plant, with demonstrated inhibitory activity of 

melanogenesis. The present results encourage us to carry out a greater clinical 
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investigation of Triangularin for hyperpigmentation disorder therapy and in the 

cosmetic industry.

4. Experimental

4.1. Plant material

D. elegans Gillies ex Hook. et Arn. (Fabaceae) whole plant was collected in 

February 2012, near Cabalango (Córdoba, Argentina, GPS coordinates: latitude: 

31°24’04.62’’ South; longitude: 64°34’19.21’’ West; height: 763 m). Plant material 

was identified by Prof. Dr. Gloria Barboza of the Botanical Museum, Universidad 

Nacional de Córdoba, Córdoba, Argentina (CORD). A representative voucher 

specimen is on deposit as CORD Peralta 2. 

4.2. Chemicals

T (purity 95%) was obtained from D. elegans aerial parts and identified as 

previously described by Peralta et al., (2014).25 

Tyrosinase (EC 1.14.18.1) from mushroom (3933 U/mg), kojic acid (purity: 

99%), L-DOPA (purity: 99%), 3-methyl-2-benzothiazolinone (MBTH, purity: 99%), 

Fluorinated phenylmethanesulfonyl (PMSF, purity: 99%), Iodoacetamide (IAA, purity: 

99%) were obtained from Sigma Chemical Co. (St. Louis, MO, USA).

4.3. Diphenolase mushroom tyrosinase inhibition
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Tyrosinase-diphenolase inhibitory activity of T was performed by using L-DOPA 

as a substrate according to Peralta et al., (2014) with slight modification.25 T was 

dissolved in DMSO (final concentration of 0.1% v/v) and then diluted to different 

concentrations using DMSO. The reaction media contained 0.25 mL of mushroom 

tyrosinase solution (200 U/mL), and 0.75 mL of the control solution [Na3PO4 buffer 

(0.1 M, pH 6.8)] or the sample solution of T. After incubation at 25 °C for 10 min, 

0.50 mL of L-Dopa solution (2.55 mM, Sigma) was added. The absorbance was 

monitored as dopachrome formation at 475 nm on a Cary Win UV-VIS 

spectrophotometer, Varian, Inc., Agilent Technologies (Santa Clara, USA). KA was 

used as a positive control. Each treatment was replicated three times. The percent 

inhibition of tyrosinase activity was calculated as follows: % inhibition = [(Abscontrol X 

Abssample)/Abscontrol] X100, where Abscontrol is the absorbance of the control solution 

and Abssample is the absorbance of the sample solution.

4.4. Cell culture 

B16F0 murine melanoma cell line was maintained under sterile conditions at 37 

°C in a humidified atmosphere of 5% CO2 in DMEM medium (SIGMA, D6429, St. 

Louis, MO, USA) supplemented with 10% (v/v) fetal bovine serum (FBS) and 1% 

streptomycin/ penicillin. 

4.5. Diphenolase murine tyrosinase inhibition
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B16F0 melanoma cells were lysed with trypsin treatment and centrifuged at 

2000 rpm for 10 minutes at 4 °C. The formed pellet was dissolved with cell 

solubilization buffer (TPisol) [Na2HPO4 buffer (10 mM, pH 6.8), 1% Triton, 1% 

Fluorinated phenylmethanesulfonyl (PMSF), 1% Iodoacetamide (IAA)] and stirred for 

40 minutes at 4 °C, and subsequently centrifuged at 14,000 rpm for 30 minutes. A 

supernatant rich in tyrosinase was obtained, and the protein concentration was 

determined using the Bradford method.31

The reaction mixture containing 40 μL of supernatant, 5 μL of T or KA dissolved in 

DMSO (>0.5%), 40 μL of L-DOPA (2.55 mM) and 100 μL of 3-methyl-2-

benzothiazolinone (MBTH) was prepared. The absorbance of the MBTH-

dopaquinone adduct was followed spectrophotometrically at 490 nm. The % 

inhibition of intracellular tyrosinase was calculated as the mushroom tyrosinase 

assay previously described. 

4.6. MTT assay

Cell viability was determined as previously described by Santi et al. (2017).26 

Briefly, B16F0 melanoma cells (1 x 105) were incubated with 100µl the control 

solution (fresh media with DMSO 0.5% v/v) or 100 µl of the T solution at several 

concentrations (0.5 to 100 µM) for 24 h. The treatment was replicated for triplicate. 

After incubation, 100 µl of MTT reagent [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-

2H-tetrazolium bromide in PBS (5 mg/mL)] were added to each well. The plates 

were incubated in a humidified atmosphere of 5% of CO2 at 37°C for 30 min. The 
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residual MTT solutions were removed and then, 100 µl of isopropyl alcohol was 

added. The absorbance was measured at 595 nm in a microplate reader (BioTek 

ELx800). Then, the MNCC for T was determined.

4.7. Measurement of melanin content

The assay was performed as previously described by Santi et al. (2017).26 Briefly, 

B16F0 cells were incubated in 24-well plate at a density of 1 105 cells per well 

overnight. The cells were treated with different concentrations of T (0.5-100 µM) for 

24 h. After that, the extracellular melanin content was calculated relative to the 

control (without treatment, considered as 100% of the production of melanin) 

measured at 510 nm using a microplate reader (BioTek ELx800). 

4.8. Intracellular tyrosinase inhibition assay

 Tyrosinase enzyme activity was assayed spectrophotometrically according to a 

published method by measuring the formation of the adduct between 3-methyl-2-

benzothiazolinone (MBTH) and dopaquinone.26 Briefly, the reaction mixture 

composed of cell lysates of pretreated B16F0 cells with different concentrations of T 

or KA, added of 40 µl of L-DOPA (10 mM) and 100 µL of MBTH (5 mM) was kept for 

20 min at 37°C. The absorbance of the MBTH-dopaquinone adduct was followed 

spectrophotometrically at 490 nm. The % inhibition of intracellular tyrosinase was 

calculated as the mushroom tyrosinase assay. 
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4.9. Statistical analyses

All assays were independently performed in triplicate, and results were 

expressed as media ± SD of six separate experiments. The IC50 values were 

estimated using the GraphPad Prism 6 software on a compatible computer.

The results were analyzed by unidirectional analysis of variance (ANOVA) 

followed by the Tukey test for multiple comparisons using GraphPad InstStat 

software.

5.0. Molecular modeling

The complexes between the ligands and mushroom tyrosinase were obtained 

by molecular docking with the software Autodock VINA.32 The GPU version of 

Amber14 was used for carrying out molecular dynamics simulations 33,34 and VMD 35 

and Maestro 36 were used for the analysis of results and preparation of figures. 

The starting coordinates of the protein were taken from reference, PDB code: 

2Y9W.37  The metal center was parameterized using the tool MCPB.py. 38 Care 

should be taken when treating copper, since the recommended non-bonded 

parameters 39 for this metal center did not work properly, and we replaced them by 

the ones employed by other authors.40–42 The amberff14SB 43 was employed for the 

protein residues and the properties of the ligands were obtained by using 

antechamber 44 with RESP charges.45 A list with geometries of the ligand is included 

in the Supplementary Information.
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For the docking, two boxes were used (Fig. S4). In a first approximation, a big 

box of (28.0  22.5  24.0) Å with a grid spacing of 0.325 Å was used. After these 

first docking calculations, it was found that the most stable complexes located the 

inhibitor around the active site, hence a smaller box of (10.0  17.0  10.0) Å was 

used to refine the docking search. 

After each docking calculation, 9 geometries were obtained and a refinement 

and recalculation of the binding energy were carried out for each complex to select 

the best of each ligand. The refinement consisted of two 5,000 steps of 

minimization, one with restrictions in the movement of protein atoms, and the other 

with restrictions in only the residues of the active site (histidines 61, 85, 94, 259, 263 

and 296, cysteine 83 and the cooper center) and the ligand. After the minimization, 

the system was solvated with TIP3P water forming an octahedral box, and then 4 ns 

of molecular simulations were carried out at 300 K, with only one restriction, the 

position of the atoms of the Cu center. The simulations were carried out within the 

PME approximation, implemented in the GPU version of Amber14.33,34 An average 

of the binding energy was calculated by selecting 50 snapshots of the last ns of 

each simulation by using MMPBSA.py tool within a Generalized Born solvation 

model.46
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Highlights

 Melanogenic inhibitory activity of a natural methoxylated chalcone was determinate.

 Triangularin was more active than kojic acid in the two models evaluated.

 Docking studies were determined for triangularin for the first time 


