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Abstract— In this paper we present a new
reduced complexity maximum likelihood se-
quence detector for intensity modulation / di-
rect detection (IM/DD) fiber optic systems.
The proposed detector takes into account the
presence of thermal and amplified spontaneous
emission (ASE) noise. The results presented
here show a negligible performance degradation
from the optimum receiver, while implementa-
tion complexity is significantly reduced. The
mathematical models derived in this paper are
attractive for the design and analysis of very
high speed optical receivers.

Keywords— Fiber optics, maximum likeli-
hood estimation, optical amplifiers, ASE noise,
statistical model.

I INTRODUCTION

Long haul high-speed optical fiber transmission sys-
tems suffer from impairments such as chromatic dis-
persion (CD), polarization mode dispersion (PMD),
and the amplified spontaneous emission (ASE) noise
introduced by optical amplifiers. In intensity mod-
ulation/direct detection (IM/DD) schemes, fiber dis-
persion combined with the square-law response of the
photodetector gives rise to nonlinear intersymbol in-
terference (ISI). Additionally, after the photodetector,
ASE noise becomes nongaussian and signal-dependent.

Recently, there has been a great deal of interest in
using digital equalization to compensate the dispersion
of optical channels (Sauer-Greff et al., 2003; Agazzi et
al., 2004; Agazzi and Gopinathan, 2004). It has been
shown in (Agazzi and Gopinathan, 2004) that feed for-
ward equalization (FFE) and decision feedback equal-
ization (DFE) are severely degraded in the presence of
nonlinearity, whereas equalization based on maximum
likelihood sequence estimation (MLSE) is not. MLSE-
based receivers for optical channels have already been
reported in (Haunstein et al., 2001; Sauer-Greff et al.,
2003; Agazzi et al., 2004). Unlike in traditional dis-
persive linear channels with additive white Gaussian

noise (AWGN), in IM/DD optical channels ISI is non-
linear and noise is nongaussian and signal-dependent
(Agazzi et al., 2004).

MLSE can be efficiently implemented by using the
Viterbi algorithm (VA). To detect the transmitted
data sequence, VA evaluates metrics based on the
probability density function (pdf) of the received sig-
nal. In (Marcuse,1990; Marcuse, 1991) a detailed anal-
ysis of the signal on a fiber optic system affected by
ASE noise (owing to the transmitter laser and the op-
tical amplifiers) and by thermal noise (caused by the
electronics of the receiver) was presented. However,
the proposed mathematical models are not attractive
for implementation of MLSE based receivers due to
the high number of numerical calculations needed for
metric calculation. This seriously limits the implemen-
tation of MLSE receivers for optical communications
on integrated circuits.

In this paper we introduce a new reduced complex-
ity MLSE based receiver for IM/DD optical channels.
This receiver is based on a simplified statistical model
of the received signal. The obtained results show a
minimal performance degradation with respect to the
optimal receiver, while the numerical complexity is re-
duced by nearly 50%. Furthermore, the models devel-
oped in this work can be used not only for the practi-
cal implementation, but also for performance analysis
of MLSE based detectors in IM/DD optical channels
(Crivelli et al., 2003). The paper is organized as fol-
lows. In Section II we present the system model.
In Section III we introduce the simplified statistical
model for ASE noise. Based on this model, in Section
IV we propose the new receiver for transmissions af-

fected by thermal and optical noise. In Section V
we show numerical results. Finally, in Section VI we
draw the conclusions of this work.

II SYSTEM MODEL

The system model to be used throughout the rest of
the paper is described below. It is a single mode fiber
link with optical amplifiers deployed periodically to
compensate for fiber attenuation. In Fig. 1 a block



diagram of the system is shown. There is an opti-
cal filter at the receiver input (the filter bandwidth is
Bopt = M

T , where 1
T is the symbol rate and M is an

integer), followed by a p-i-n photodiode. The output
signal of the photodetector is then integrated over a
bit period T and thermal noise (modeled as additive
white Gaussian noise) generated by the receiver elec-
tronic is added. For simplicity, in the following analy-
sis dispersion and nonlinear effects will not be consid-
ered. The only noise sources considered in this paper
are the receiver electronic, the optical amplifiers, and
the transmitter laser. These last two devices usually
emit photons in a spontaneous manner, these photons
are transmitted and amplified along the link together
with the information signal. This noise is known as
Amplified Spontaneous Emission (ASE) noise, and is
modeled as Gaussian noise at the photodetector input
(Marcuse, 1990).

III ANALYSIS OF THE RECEIVED
SIGNAL IN THE PRESENCE OF ASE

NOISE

The current at the output of the photodetector is pro-
portional to the square of the absolute value of the
electrical field at its input. For the case of ASE noise
only this current can be expressed as:

I(t) = K|E(t) + esp(t)|2, (1)

where, E(t) is the electrical field due to the trans-
mitted binary symbol, esp(t) is the ASE noise at the
output of the optical filter, and K is a proportionality
constant dependent on the photodetector. The signal
at the output of the integrator is given by

y =
1

T

∫ T

0

I(t)dt =
K

T

∫ T

0

|E(t) + esp(t)|2dt. (2)

In (Marcuse, 1990) the exact statistic of the signal
given by (2) was obtained. A simplified expression of
the pdf of (2) conditioned to the transmitted symbol
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Figure 1: Block diagram of the optical link.

is proposed, this is,

fy|s(y) ≈ 1

2

√

M

πIsp

(

Is

(y − Isp)3

)1/4

exp

[

− M

Isp

(

√

y − Isp −
√

Is

)2
]

, (3)

where, Isp is the mean value of optical noise gen-
erated current. Is is the mean current generated
by each transmitted symbol of a binary constellation
(s ∈ {1, 0}).

In this paper we propose a new expression (from now
on ASE model) for the pdf of (2) conditioned to the
transmitted symbol. In the Appendix we show that

fy|s(y) ≈ 1

2

1
√

π(Is + Isp − 3
2Ispm)Ispm

exp






−

(√
y −

√

Is + Isp − 3
2Ispm

)2

Ispm






, y > 0,

(4)

where Ispm , Isp/M . It is important to note that this
new expression (4) is simpler to evaluate than Mar-
cuse’s approximate expression given by (3). This ad-
vantage can be easily observed by comparing the met-
ric calculation for a Viterbi algorithm based equalizer
by the two models (3) and (4). Note also that the
accuracy of (3) is seriously degraded for values of the
received signal close to Isp.

In Fig. 2 we compare bit error rate (BER) plots
obtained form the exact model (Marcuse,1990), and
the ASE model. The procedure followed to obtain the
BER with the ASE model is described below. Given
a specific value of signal to optical noise ratio,

SNRoptical =
(I0 + I1)

2Isp
, (5)

the decision threshold yd is obtained as the signal level
where both pdfs fy|0(y) and fy|1(y) cross each other.
Assuming that the binary symbols have the same prob-
ability of being transmitted, the BER can be obtained
as

BER =
1

2
[P0(yd) + P1(yd)], (6)

where

P0(y) =

∫ ∞

y

Mx|0(x)dx, P1(y) =

∫ y

0

Mx|1(x)dx,

with Mx|s(x) equal to the exact pdf conditioned to
the transmitted symbol, given by (13) and (A3) in
(Marcuse, 1990). The results above show the excellent
precision of the ASE model. Taking into account the
lower numerical complexity of this model, its advan-
tage over previous proposals is clear.
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Figure 2: Exact Bit Error Rate and the Bit Error Rate
obtained from ASE model.

IV REDUCED COMPLEXITY MLSE

In this section we take into account the presence of
thermal noise introduced by the receiver electronics
(see Fig. 1). The pdf of this noise is Gaussian with
zero mean. Then the signal z at the output of the
adder is given by,

z = y + nt, (7)

nt =
1

T

∫ T

0

It(t)dt, (8)

where, It is the thermal noise generated current (note
that nt is also Gaussian). Expression (7) can be rewrit-
ten in the following manner:

z = Is + nsp + nt, (9)

where, nsp is the optical noise term with mean value
Isp. In Marcuse, (1991) an iterative method to ob-
tain the pdf of (9) from its characteristic function was
presented. In this section we present an alternative
method with lower numerical complexity.

The analysis begins with the proposed model for
the optical noise only case and with the thermal noise
statistic:

fy|s(y) ≈ 1

2
√

πKsIspm

exp

(

−
(√

y −
√

Ks

)2

Ispm

)

, y > 0 (10)

fnt
(nt) =

1√
2πσ2

exp

(

− n2
t

2σ2

)

, (11)

where

fy|s(y) = pdf of the optical signal (signal+optical
noise) conditioned to the transmitted symbol;

fnt
(nt) = pdf of the thermal noise;
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Figure 3: Comparison between the pdfs conditioned
to Is = I1 for the different models. SNRthermal = 20
dB. SNRoptical = 20 dB. The inset shows a zoom of
the mean area.

Ks = Is + Isp − 3
2Ispm;

σ2 = thermal noise variance.

Given that the random variables nt (thermal noise)
and y (signal + optical noise) are independent, it can
be shown that the probability density function of their
sum (conditioned to the transmitted symbol) is given
by the convolution of their respective pdfs (Papoulis,
1991), this is:

fz|s(z) = fy|s(z) ⊗ fnt
(z) ≈ 1

2
√

2π2KsIspmσ2

∫ ∞

0

exp

[

−
(

(√
x −

√
Ks

)2

Ispm
+

(z − x)2

2σ2

)]

dx,

(12)

where ⊗ denotes convolution.
In order to obtain the pdf of z it is necessary to solve

the integral in (12), which can be written as

∫ ∞

0

e−g(x)dx, (13)

where

g(x) =

(√
x −

√
Ks

)

2

Ispm
+

(z − x)2

2σ2
. (14)

The integral (13) can be approximated by

∫ ∞

0

e−g(x)dx ≈ e−g(xr)∆x, (15)

where xr is such that

−g(xr) = max
k

{−g(k∆x)}. (16)

In order to obtain xr it is necessary to find the max-
imum of −g(x), or equivalently the minimum of g(x).
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Figure 4: g(x) terms and their derivatives.

This can be done by finding its first derivative, given
by

g′(x) = h(x) =
1 − x−1/2

√
Ks

Ispm
+

x − z

σ2
. (17)

Note that the first derivative of (17) is always posi-
tive, therefore g′(x) has only one real root. This way
the maximum likelihood criterion (which tries to max-
imize (12)) is equivalent to maximize the following
function:

f̂z|s(z) =
1√
Ks

e−g(xr(z)), (18)

where (15) was replaced in (12) and the constant terms
were removed. The metric used by the Viterbi al-
gorithm (MLSE receiver) is therefore minus the log-
arithm of (18):

M(z) =
1

2
log Ks + g(xr(z)). (19)

In order to show the accuracy of expression (18), in
Fig. 3 we show plots of the exact pdf and of the pdf
obtained form our model for SNRoptical=20 dB and

SNRthermal=20 dB (with SNRthermal = 10 log I0
2+I1

2

2σ2 ).
It must be noted that in order to make a correct com-
parison between the exact pdf and the pdf obtained
from our model Ec.(18) must be multiplied by a factor
C in order to normalize its area to one. Clearly, the
results obtained with our model fit perfectly to the ex-
act values. It is interesting to note that in a practical
implementation the parameters Ispm, Ks, σ, etc. can
be easily obtained from the received signal using the
method of moments (Agazzi et al., 2004).

A Numerical Root Calculation

The method applied to calculate the roots of (17),
takes into account the fact that this function is the
sum of a linear term an a nonlinear one. Each of these
terms is shown in Fig. 4 (lines a’ and b’ ), also included
are both components of (14) (a and b) (note that a’
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Figure 5: Approximation of the derivative of g(x) in
the vicinity of the root.

(b’ ) is the derivative of a (b)). In Fig. 4 we also show
the sum of both derivatives (a’+b’ ) whose root we are
looking for. The proposed method approximates g′(x)
(a’+b’ in Fig. 4) by means of a linear function in the
vicinity of the root. This is achieved replacing the non-
linear term of (17) a’ by a tangent line in the vicinity
of the root of g′(x) as can be seen in Fig. 5 (a’tan).
To obtain the approximation of g′(x) a’tan is added to
b’. This way the proposed iterative algorithm for the
search of the root corresponding to zk results in:

xi+1
r (zk) =

zk − σ2Bi

Aiσ2 + 1
, (20)

where,

Ai = g′′a(xi
r(zk)), (21)

Bi = g′a(xi
r(zk)) − Aix

i
r(zk), (22)

g′a(x) =
1 − x−1/2

√
Ks

Ispm
, (23)

g′′a(x) =
x−3/2

√
Ks

2Ispm
. (24)

If we take into account that g′(x) is a function with
continuous always-positive slope, the convergence of
the algorithm is guaranteed for every point, except
those where the zero crossing of the tangent line to a’
is a negative value (square root of a negative number).
This problem can be solved by forcing the value of
xi+1

r to zero.
The speed of convergence of this method is depen-

dent on the choice of the initial value for x0
r for each

root that needs to be obtained. If we assume an ini-
tial sweep of values of z for which we want to find the
roots (as could happen on a practical implementation),
a good choice for the initial value x0

r is the previously
found root:

x0
r(zk) = xr(zk−1) k > 0. (25)
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Figure 6: Bit error rate as a function of SNRoptical,
with SNRthermal = 20 dB. M = 3.

This way the problem reduces to find x0
r for the first

value of z (x0
r(z0)). In this work we propose x0

r(z0) =
Ks. For this choice we considered that the algorithm
could be in one of three operating modes:

1. Dominant optical noise

2. Dominant thermal noise

3. None of the noise sources is dominant

In mode (1) optical noise is dominant, therefore the
linear term of g′(x) is dominant (see (17)) given that
the nonlinear term is very small and has no influence
on the root calculation. From this we see that the
rate of convergence will be independent of the starting
value of x0

r(z0). In mode (2) thermal noise is domi-
nant, therefore the root of g′(x) is approximately Ks

(see (17)) and choosing this very point as the initial
value gives a quick convergence. In mode (3) the root
will be between z and Ks. It was numerically verified
that choosing Ks as the starting point produces good
results.

A possible termination criterion is based on com-
paring |xi

r − xi−1
r | with the numerical resolution used.

This seems logical if we consider that the commonly
used numerical resolution for fiber optic systems is 6
bits. Furthermore, it was observed in different simula-
tion runs that setting the iteration number to 3 gives
sufficiently accurate results, while using the approx-
imation developed in (Marcuse, 1991) it is necessary
an average of 15 iterations to obtain the same accu-
racy. Also if we consider that the model presented
here requires1 50% less product operations, 65% less
add operations and 40% less division operations for
each value of z, the numerical advantages of the new
detector are clear.

1Taking into account the polynomial expansion of square root

and natural logarithm operations (Analog Devices, DSP Divi-
sion, 1992))
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Figure 7: BER plots as a function of SNRthermal, with
SNRoptical = 15 dB. M = 3.

V NUMERICAL RESULTS

In Fig. 6 we show BER plots as a function of SNRoptical

for SNRthermal = 20 dB and an extinction ratio of
r10 = 10 log I1

I0
= 7 dB. In this figure we present results

obtained with the exact model (Marcuse, 1991) and
with our model. The excellent accuracy of the latter
can be observed.

In Fig. 7 we show plots of BER as a function of
SNRthermal for SNRoptical = 15 dB and r10 = 7
dB. Again we see the accurate performance of our
model. From these results we see that the proposed
receiver achieves a minimal performance degradation
compared to the optimal receiver, and 50% less nu-
merical computation than an MLSE receiver based on
the approximation introduced in (Marcuse, 1991).

VI CONCLUSIONS

In this paper we presented a new simplified expression
for the pdf of the received signal in a direct detec-
tion fiber optic system with dominant optical noise
(Agrawal, 1997; Ramaswami and Sivarajan, 2002).
The proposed model shows an excellent accuracy and
is oriented towards a reduction in the practical imple-
mentation complexity of the receiver for high-speed
transmissions.

As a second contribution of this work, we presented
a reduced-complexity MLSE-based receiver for trans-
missions in presence of optical and thermal noise (the
latter being originated by the receiver electronics).
The results presented in this paper show the excellent
performance achieved by the new detector and also
show a significant numerical complexity reduction.

The importance of the mathematical complexity re-
duction is clear when considering the high transmis-
sion rates proposed for future fiber optic systems (i.e.
40Gbps (OC-768)), where serious performance limiters
such as chromatic dispersion and fiber nonlinearities,
force the implementation of more elaborate detectors
(i.e. detectors based on the Viterbi algorithm).



Finally it is important to realize that the models
presented in this paper can be used in more advanced
receivers such as turbo equalizers.

APPENDIX

In this Appendix we derive approximation (4). Toward
this end, we use the approximation for the pdf of the
received signal in the presence of ASE noise reported
in (Marcuse, 1990):

fy|s(y) ≈ 1

2

1
√

πIspm

[

Is

(y − Isp)
3

]1/4

exp [G(y)], y > Isp,

(26)
where G(y) = −I−1

spm(
√

y − Isp −
√

Is)
2. Assuming

that r01 > 0 and the power of the optical noise is
sufficiently small (i.e., Ispm ¿

√
Is), we can verify

that Pr{|y − Is − Isp| < ξ} → 1 with ξ > 0 and ξ → 0,
therefore
[

Is

(y − Isp)
3

]1/4

exp [G(y)] ≈

(

Is

I3
s

)1/4

exp [G(y)] =
1√
Is

exp [G(y)]. (27)

Using (27) in (26), and considering that exp [G(y)] ≈
exp

[

−I−1
spm(

√
y −

√
Is)

2
]

, we obtain

fy|s(y) ≈1

2

1
√

πIsIspm

exp

[

− (
√

y −
√

Is)
2

Ispm

]

, y > 0. (28)

The mean value obtained from this last expression
(∼ Is + 3

2Ispm) is different from the exact value (Is +
Isp) (Marcuse, 1990). Based on this observation, from
(28) it is simple to derive

fy|s(y) ≈ 1

2

1
√

π(Is + Isp − 3
2Ispm)Ispm

exp






−

(√
y −

√

Is + Isp − 3
2Ispm

)2

Ispm






, (29)

which is approximation (4). When the SNR optical is
high enough, it can be shown that the variance derived
from (4) (∼ 2Ispm(Is+Isp)− 3

2I2
spm) tends to the exact

value given by 2Ispm(Is + Isp) (Marcuse, 1990). Nu-
merical results (not included in this paper) show the
excellent accuracy of (4) for all the cases of practical
interest (e.g., r01 & 0.1 (van Etten and van der Platts,
1991), SNRoptical >3dB).
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emisión espontánea,” Xo RPIC (Reunión de Proce-
samiento de la Información y Control), (2003).

van Etten W. and J. van der Plaats, Fundamentals
of Optical Fiber Communications. Prentice Hall,
(1991).

Haunstein, H. F., K. Sticht, A. Dittrich, W. Sauer-
Greff, and R. Urbansky, “Design of near optimum
electrical equalizers for optical transmission in the
presence of PMD,” in Proc. of the Optical Fiber
Communication Conference and Exhibit (OFC), 3,
558–560, (2001).

Marcuse, D.,“Derivation of analytical expressions for
the bit-error probability in lightwave systems with
optical amplifiers,” J. Lightwave Technol., 8, 1816–
1823, (1990).

Marcuse, D., “Calculation of bit-error probability for a
lightwave system with optical amplifiers and post-
detection Gaussian noise,” J. Lightwave Technol.,
9, 505–513, (1991).

Papoulis, A., Probability, Random Variables, and
Stochastic Processes. McGraw-Hill, third ed.,
(1991).

Ramaswami R. and K. Sivarajan, Optical Networks: a
Practical Perspective. Morgan Kaufmann, (2002).

Sauer-Greff, W., A. Dittrich, R. Urbansky, and
H. Haunstein, “Maximum-likelihood sequence esti-
mation in nonlinear optical transmission systems,”
Lasers and Electro-Optics Society (LEOS 2003).
The 16th Annual Meeting of the IEEE, 1, 167–168,
(2003).

The Applications Engineering Staff Analog Devices
DSP Division, Digital Signal Processing Applica-
tions. Prentice Hall, (1992).


	 I  INTRODUCTION
	 II  SYSTEM MODEL
	 III  ANALYSIS OF THE RECEIVED SIGNAL IN THE PRESENCE OF ASE NOISE
	 IV  REDUCED COMPLEXITY MLSE
	A  Numerical Root Calculation

	 V  NUMERICAL RESULTS
	 VI  CONCLUSIONS

