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Abstract

Huntington disease is an adult onset neurodegenerative disease characterized by motor, cognitive, and psychiatric
dysfunction, caused by a CAG expansion in the HTT gene. Huntingtin Interacting Protein 14 (HIP14) and Huntingtin
Interacting Protein 14-like (HIP14L) are palmitoyl acyltransferases (PATs), enzymes that mediate the post-translational
addition of long chain fatty acids to proteins in a process called palmitoylation. HIP14 and HIP14L interact with and
palmitoylate HTT and are unique among PATs as they are the only two that have an ankyrin repeat domain, which mediates
the interaction between HIP14 and HTT. These enzymes show reduced interaction with and palmitoylation of mutant HTT,
leading to increased mutant HTT inclusion formation and toxicity. The interaction between HIP14 and HTT goes beyond that
of only an enzyme–substrate interaction as HTT is essential for the full enzymatic activity of HIP14. It is important to further
understand and characterize the interactions of HTT with HIP14 and HIP14L to guide future efforts to target and enhance
this interaction and increase enzyme activity to remediate palmitoylation of HTT and their substrates, as well as to
understand the relationship between the three proteins. HIP14 and HIP14L have been previously shown to interact with
HTT amino acids 1–548. Here the interaction of HIP14 and HIP14L with N- and C-terminal HTT 1–548 deletion mutations was
assessed. We show that HTT amino acids 1–548 were sufficient for full interaction of HTT with HIP14 and HIP14L, but partial
interaction was also possible with HTT 1–427 and HTT 224–548. To further characterize the binding domain we assessed the
interaction of HIP14-GFP and HIP14L-GFP with 15Q HTT 1-548D257-315. Both enzymes showed reduced but not abolished
interaction with 15Q HTT 1-548D257-315. This suggests that two potential binding domains exist, one around residues 224
and the other around 427, for the PAT enzymes HIP14 and HIP14L.
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Introduction

Huntington disease (HD) is an autosomal dominant neurode-

generative disease characterized by motor, cognitive, and psychi-

atric dysfunction with onset in mid-life and death following, on

average, 20 years later [1,2]. The striatum is the brain region to

first undergo neurodegeneration with more widespread pathology

occurring at later stages of the disease [1,2]. HD is caused by a

CAG expansion in exon 1 of the HTT gene that results in a poly-Q

expansion in the HTT protein (NP_002102) [3].

One approach that has been taken to determine the functions of

the HTT protein and to understand the pathogenesis of HD is to

identify and characterize HTT interacting proteins and to

determine how these interactions are altered in the presence of

the HD mutation. Huntingtin Interacting Protein 14 (HIP14;

ZDHHC17; NP_056151) was first identified as a HTT interactor

in a yeast 2-hybrid screen. HIP14 was further shown to interact

with HTT in mammalian systems and to interact less with mutant

HTT (mHTT) [4,5]. The HIP14 homolog Huntingtin Interacting

Protein 14-like (HIP14L; ZDHHC13; NP_061901) was first

identified based on its high amino acid sequence similarity to

HIP14 and was later shown to also be a bona fide HTT interactor

that also interacts less with mHTT [5,6].

HIP14 and HIP14L both belong to the 23 member family of

DHHC (Asp-His-His-Cys) cysteine-rich (DHHC-CR) domain-

containing palmitoyl acyltransferases (PATs) [7,8]. DHHC-CR

PATs are a family of enzymes that mediate post-translational S-

acylation of proteins, involving the addition of long chain fatty

acids to proteins at cysteine residues via a thioester bond. S-

acylation is commonly referred to as palmitoylation because

palmitate is the most common long chain fatty acid in the cell

[9,10]. Many proteins, including HTT, are dynamically palmi-

toylated and palmitoylation modulates membrane localization,

function, protein-protein interactions, and other post-translational

modifications of palmitoyl-proteins [11]. HIP14 and HIP14L are

unique among the DHHC-CR PATs as they are the only two that

have six transmembrane domains (TMDs) and seven ankyrin
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repeats (Figure 1B and C). The ankyrin repeat domain is believed

to mediate the interaction between HIP14 and HTT [11,12].

HIP14 and HIP14L are not only HTT interactors but they are

also the primary PATs for HTT [12]. These PATs show reduced

interaction and palmitoylation of mHTT leading to increased

mHTT inclusion formation and toxicity [13]. Interestingly, both

the Hip14- and Hip14l-deficient mouse models recapitulate many

HD-like phenotypes suggesting that both proteins may play a role

in the pathogenesis of HD [6,14]. Indeed, HIP14 has been shown

to be dysfunctional in the presence of the HD mutation or upon

loss of wild type HTT, making it unable to effectively palmitoylate

its substrates SNAP25 and GluR1 [12,14]. These data suggest that

the interaction between HIP14 and HTT goes beyond that of only

a enzyme-substrate interaction and that HTT is essential for the

full enzymatic activity of HIP14 [12,14]. HIP14L is structurally

very similar to HIP14, containing all the same domains in the

same orientation; thus it is possible that HTT also modulates the

function of HIP14L.

It is important to further understand and characterize the

interactions of HTT with HIP14 and HIP14L to guide future

efforts to target and enhance this interaction to increase enzyme

activity and remediate palmitoylation of HTT and their substrates.

It is important to know if HIP14 and HIP14L interact with the

same domain of HTT and, if so, if they compete for binding. A

shared binding site would provide further support for the

hypothesis that these two PATs are able to compensate for each

other in palmitoylating HTT and that HTT may also modulate

the activity of HIP14L. If they were to compete for binding, this

would need to be taken into consideration when taking efforts to

increase the interaction between HTT and one PAT or the other

at the risk of decreasing the interaction with the other PAT. HIP14

has been previously shown to interact with HTT amino acids 1–

548 (HTT 1–548) [12]. Here, amino (N)- and carboxy (C)-

terminal deletions of HTT 1–548 were generated and their

interaction with HIP14 and HIP14L was assessed to determine the

location of the binding site.

Materials and Methods

Plasmids and Cloning
The generation of HIP14-GFP (NM_015336) and HIP14L-

GFP (NM_001001483), 15Q and 128Q HTT 1–548 (15Q and

128Q 1955; NM_002111), and HTT 1–427 (1597) and HTT 1–

224 (989) was described previously [6,7,15,16]. The C-terminal

deletion mutants were generated by PCR cloning using the

indicated primers in Table 1. The primers (Integrated DNA

technologies) had EcoRI and NotI restriction enzyme sites added

on the 59 and 39 sides of the PCR product respectively and the

forward primers also had a start codon added. This allowed the

PCR products to be digested and ligated into the EcoRI and NotI

sites of pCI-neo (enzymes from New England Biolabs; pCI-neo

from Promega). 15Q HTT 1-548D257-315 was generated by

insertion of a HTT gBlock gene fragment into the BlpI and Bsu36I

restriction enzyme sites following digestion with the same enzymes

such that amino acids 257–315 were deleted. All clones were

confirmed by sequencing.

Figure 1. Overview schematics of the domain organization of HTT (A), HIP14 (B), and HIP14L (C). The domain organization of HTT is
shown in (A) with the poly-glutamine domains of WT (15Q) and mutant (128Q) HTT (NP_002102) are shown in grey and black rectangles, respectively,
the proline rich repeat is shown in a hatched rectangle, and the H1 alpha-rod domain is shown in a dotted rectangle with the amino acids indicated
above. (B) The domain organization of HIP14 (NP_056151) is shown in (B) and of HIP14L (NP_061901) in (C) with the 7 ankyrin repeats making up the
ankyrin repeat domain shown in numbered solid grey rectangles, the transmembrane domains shown in hatched rectangles labeled TM1-6, and the
DHHC cysteine-rich domain shown in solid black rectangles labeled DHHC. The amino acids corresponding to the appropriate domains are indicated
below.
doi:10.1371/journal.pone.0090669.g001

Table 1. Cloning primers used to generate the HTT 1–548 N-
terminal deletion mutants.

Primer name Sequence

HTT N-term reverse tcccatctgaccctgccatgtgagcggccgctactgctatg

HTT 427–548 forward tcgtacttatgaattcatgggagggggttcctcatgcag

HTT 224–548 forward tcgtacttatgaattcatgtcagtccaggagaccttggc

HTT 151–548 forward tcgtacttatgaattcatgtgcctcaacaaagttatcaa

HTT 88–548 forward tcgtacttatgaattcatgcgaccaaagaaagaactttc

*Restriction enzyme sites are in italics (EcoRI in forward primers and NotI in the
reverse), the start and stop codons are in bold, and the primer binding
sequence is underlined.
doi:10.1371/journal.pone.0090669.t001

PAT Binding Sites in Huntingtin
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Figure 2. HIP14 and HIP14L interaction with C-terminal deletion mutants of HTT 1-548. (A) A schematic diagram of the HTT 1–548 C-
terminal deletion mutants used in co-immunoprecipitation experiments with HIP14-GFP and HIP14L-GFP showing the 15Q or 128Q poly-Q domains,
the proline rich region (PRR), and the H1 alpha-rod domain. (B) A representative image (top two panels) of the co-immunoprecipitation between

PAT Binding Sites in Huntingtin
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Antibodies
The primary antibodies used were GFP goat polyclonal

antibody (sc-5385, Santa Cruz Biotechnology, 1:50 for immuno-

precipitation), HTT mouse monoclonal antibody (MAB2166,

Millipore, 1:1000 for immunoblotting), HTT mouse monoclonal

antibody (in-house BKP1, 1:100 for immunoblotting), and GFP

rabbit polyclonal antibody (EU2, Eusera, 1:10000 for immuno-

blotting). Fluorescently conjugated secondary antibodies for

immunoblotting used were Alexa Fluor 680 goat anti-Rabbit

(A21076, Molecular Probes, 1:10000) and IRDye 800CW goat

anti-Mouse (610-131-121, Rockland, 1:2500).

Cell Culture and Transfection
Cells were cultured in DMEM with 10% fetal bovine serum,

penicillin/streptomycin (1000 Units/mL Penicillin and 1000 ug/

mL streptomycin), and 2 mM L-glutamine at 37uC in 5% CO2

(Gibco). Constructs were transiently transfected in COS-7 cells

(ATCC) with X-tremeGENE 9 DNA transfection reagent (Roche)

according to the manufacturer’s instructions. Cells were harvested

after 24 h for co-immunoprecipitation experiments described

below.

Cell Lysis and Co-immunoprecipitations
Cells were homogenized on ice for 5 min in one volume 1%

SDS TEEN [TEEN: 1 M Tris pH 7.5, 0.5 M EDTA, 0.5 M

EGTA, 3 M NaCl, 1 mM Complete protease inhibitor cocktail

(Roche), 1 mM sodium vanadate, 1 mM phenylmethylsulfonyl

fluoride and 5 mM zVAD-FMK] and subsequently diluted in four

volumes 1% TritonX-100 TEEN for 5 min for further homoge-

nization. Samples were sonicated at one time at 20% power for 5

seconds to shear DNA and the insoluble material was removed by

centrifugation at 14000 revolutions per minute for 15 min.

Samples were immunoprecipitated overnight with Dynabeads

Protein G (Invitrogen) and antibody.

Western Blotting Analysis
Proteins in both the cell lysates and immunoprecipitates were

heated at 70uC in 16NuPAGE LDS sample buffer (Invitrogen)

with 10 mM DTT before separation by SDS-PAGE. After transfer

of the proteins onto nitrocellulose membrane, immunoblots were

blocked in 5% milk TBS (TBS: 50 mM Tris pH 7.5, 150 mM

NaCl). Primary antibody dilutions of HTT mouse monoclonal

antibody and GFP rabbit polyclonal antibody in 5%BSA PBST

(Bovine Serum Albumin, Phosphate Buffered Saline with 5%

Tween-20) were applied to the immunoblots at 4uC overnight.

Corresponding secondary antibodies were applied in 5% BSA

PBST for an hour. Fluorescence was scanned and quantified with

Odyssey Infrared Imaging system (Li-COR Bioscience) and

quantified using the Li-COR software. All error bars are standard

error of mean.

Results

Deletion of HTT Amino Acids 224–548 Abolishes the
Interaction of HTT with HIP14 and HIP14L

HIP14 was previously shown to interact with HTT 1–548 [5].

The domain organization of HTT 1–548 15Q and 128Q is shown

in Figure 1A with the poly-Q, the proline rich region, and the H1

alpha-rod domain indicated [17]. HIP14 was previously shown in

a yeast 2-hybrid experiment to have reduced interaction with

HTT 1–427 compared to its interaction with HTT 1–548 and no

interaction with HTT 1–224, HTT 1–151, HTT 1–88, and HTT

1–40 [12]. However, as this interaction analysis was performed in

yeast it was repeated here in a mammalian system using the

mammalian expression versions of the constructs used in the yeast

2-hybrid experiments [12,16]. Conveniently, these truncation

spots remove the C-terminal region upstream of the H1 alpha-rod

domain (HTT 1–427) or this C-terminal region and half of the H1

alpha-rod domain (HTT 1–224) (Figure 2A). HTT 1–548 and two

C-terminal deletion mutants, 15Q or 128Q HTT 1–427 and 15Q

or 128Q HTT 1–224 (Figure 2A), were transiently co-expressed

with HIP14-GFP or HIP14L-GFP expressing constructs in COS-7

cells. GFP was immunoprecipitated and resulting blots were

probed with antibodies to detect GFP and HTT. As previously

shown, 57% less mutant HTT 1–548 (128Q HTT 1–548) co-

immunoprecipitated with HIP14-GFP than WT HTT 1–548

(15Q HTT 1–548), indicating reduced interaction in the presence

of the HD mutation (Figure 2B and C; n = 3). Both 15Q and 128Q

HTT 1–427 exhibited decreased, but not abolished, interaction

with HIP14-GFP while both 15Q and 128Q HTT 1–224

interacted very little or not at all with HIP14-GFP (Figure 2B

and C; n = 3). The same interaction pattern was observed with a

HIP14-FLAG tagged construct and HTT 1–548 did not interact

with GFP alone (data not shown). All further experiments were

performed using the GFP tagged constructs as they express better

in COS cells. These data indicate that HTT 1-427 is required for

full interaction with HIP14 and the interaction is abolished with

deletion of amino acids 224–548 in the HTT 1–224 truncation

protein. No interaction between HIP14-GFP and HTT 1–151,

HTT 1–88, or HTT 1–40 was observed (data not shown).

As the domain of HTT that interacts with HIP14L has never

been determined, the same co-immunoprecipitation experiment

between HIP14L-GFP and the above-mentioned HTT C-terminal

deletion mutants, 15Q or 128Q HTT 1–427 and 15Q or 128Q

HTT 1–224 was performed. Similar to the results obtained with

HIP14, 128Q HTT 1–548 interacted much less with HIP14L-

GFP than did 15Q HTT 1–548, indicating reduced interaction

with mutant HTT (54% decrease; Figure 2D and E; n = 3).

these C-terminal deletion mutants and HIP14-GFP where GFP was immunoprecipitated and the resulting blots were probed for HTT (top panel) and
GFP (bottom panel) showing less 15Q and 128Q HTT 1–427 co-immunoprecipitated with HIP14-GFP. On the right is a beads alone (no antibody)
control showing no non-specific binding of the proteins to the beads. The bottom two images show the expression of the HTT deletion mutants (top
panel) and of HIP14-GFP (bottom panel). (C) Quantification of three independent co-immunoprecipitation experiments where the % HTT interaction
with HIP14 is the indicated HTT band intensity as a percentage of the HIP14-GFP band intensity from the same sample, normalized to 15Q HTT 1–548.
(D) A representative image (top two panels) of the co-immunoprecipitation between the HTT 1–548 C-terminal deletion mutants and HIP14L-GFP
where GFP was immunoprecipitated and the resulting blots were probed for HTT (top panel) and GFP (bottom panel). Less 15Q and 128Q HTT 1–427
co-immunoprecipitated with HIP14L-GFP. On the right is a beads alone (no antibody) control showing no non-specific binding of the proteins to the
beads. The bottom two panels show the expression of the HTT deletion mutants (top panel) and of HIP14L-GFP (bottom panel). (E) Quantification of
three independent co-immunoprecipitation experiments where the % HTT interaction with HIP14L-GFP is the indicated HTT band intensity as a
percentage of the HIP14L-GFP band intensity from the same sample, normalized to 15Q HTT 1–548.
doi:10.1371/journal.pone.0090669.g002
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Figure 3. HIP14 and HIP14L interaction with N-terminal deletion mutants of HTT 1–548. (A) A diagram of the HTT 1–548 N-terminal
deletion mutants used in co-immunoprecipitation experiments with HIP14-GFP and HIP14L-GFP showing the 15Q poly-Q domains, the proline rich
region (PRR), and the H1 alpha-rod domain. (B) A representative image (top two panels) of the co-immunoprecipitation between these N-terminal
deletion mutants and HIP14-GFP where GFP was immunoprecipitated and the resulting blots were probed for HTT (top panel) and GFP (bottom

PAT Binding Sites in Huntingtin
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However, no change in interaction of HIP14L with the 15Q and

128Q HTT 1–427 deletion mutants was observed in co-

immunoprecipitation experiments (Figure 2D and E; n = 4). The

HTT 1–224 deletion mutant did not interact with HIP14L

(Figure 2D and E; n = 3). No interaction between HIP14L-GFP

and HTT 1–151, HTT 1–88, or HTT 1–40 was observed (data

not shown). These data indicate that HTT 1–427 is sufficient for

interaction with HIP14L and the interaction is abolished with

deletion of amino acids 224–548 in the HTT 1–224 truncation

protein.

Deletion of HTT Amino Acids 1–427 Abolishes the
Interaction of HTT with HIP14 and HIP14L

To further characterize the domain of interaction of HTT with

HIP14 or HIP14L, N-terminal deletion mutants complementary

to the C-terminal deletion mutants were generated; HTT 88–548,

HTT 151–548, HTT 224–548, and HTT 427–548 (Figure 3A).

These deletion mutants were transiently co-expressed with HIP14-

GFP or HIP14L-GFP in COS-7 cells. Reduced interaction of

HTT with HIP14-GFP was observed with HTT 88–548, HTT

151–548, and HTT 224–548 and the interaction was abolished

upon the deletion of amino acids 1–427 in the HTT 427–548

deletion mutant (Figure 3B and C; n = 3). These data indicate that

HTT amino acids 224 to 548 are sufficient for partial interaction

with HIP14.

A similar effect was observed between the interaction of

HIP14L and the HTT C-terminal deletion mutants as with

HIP14. Reduced interaction of HTT 88–548, HTT 151–548, and

HTT 224–548 with HIP14L-GFP was observed in similar co-

immunoprecipitation experiments and again complete loss of

interaction was observed with the HTT 427–548 deletion mutant

(Figure 3D and E; n = 3). These data also indicate that HTT

amino acids 224 to 548 are sufficient for partial interaction with

HIP14L and, along with the data discussed above, suggests that

there may be a HIP14/HIP14L binding domain between amino

acids 224–427 of HTT.

Deletion of Amino Acids 257–315 of HTT does not
Abolish the Interaction with HIP14 and HIP14L

One potential mechanism of binding of HIP14 and HIP14L to

HTT within amino acids 224–427 is a putatively methylated lysine

at K262 within a LKS motif (in human HTT NP_002102). Gao

et al determined the crystal structure of the HIP14 ankyrin repeat

domain and found that it forms a surface aromatic cage that may

bind methylated lysines, much like the ankyrin repeat domains of

the G9a and G9a-like protein histone lysine methyltransferases

[18]. The K262 of the LKS motif within residues 224–427 of

HTT is the only lysine in this region that contains an adjacent

serine or threonine like that of the methylated lysine of the histone

H3 tail sequence, making it a potential site of methylation [18]. To

determine if this is a potential binding domain, a HTT deletion

protein with amino acids 257–315 deleted, including the LKS

motif, was generated (Figure 4A). This deletion mutant was

transiently co-expressed with HIP14-GFP or HIP14L-GFP in

COS-7 cells. Reduced but not abolished interaction of 15Q HTT

1-548D257-315 with HIP14-GFP and HIP14L-GFP was observed

(Figure 4B and C for HIP14 and D and E for HIP14L; n = 3).

These data indicate that the HIP14/HIP14L binding domain in

HTT is not within these amino acids.

Discussion

HIP14 and HIP14L are HTT interacting and palmitoylating

proteins and their interaction and palmitoylation of HTT are

decreased in the presence of mHTT [5,6,13]. Interestingly, it

appears that the interaction between HIP14 and HTT goes

beyond that of only an enzyme-substrate interaction and that

HTT actually modulates the enzymatic activity of HIP14 [12,14].

To further understand and characterize the interactions of HTT

with HIP14 and HIP14L it is important to identify the domains of

interaction to guide future efforts to target and enhance this

interaction to increase enzyme activity and remediate palmitoyla-

tion of HTT and their substrates. It is necessary to know if HIP14

and HIP14L interact with the same domain of HTT and, if so, if

they compete for binding.

HIP14 was previously shown to interact with HTT 1–548 [12].

Here the interaction between HIP14 and HIP14L with N- and C-

terminal HTT 1–548 deletion mutants was characterized. HTT

amino acids 1–548 are sufficient for the full interaction of HTT

with HIP14 and partial interaction is achieved with amino acids

1–427 and 224–548. Full interaction between HTT and HIP14L

was achieved with HTT amino acids 1–548 and 1–427 and

partial interaction with 224–427. Amino acids 1–224 or 427–548

of HTT were not sufficient for interaction with HIP14 and

HIP14L, indicating that a binding domain is likely to exist

between amino acids 224–427. To further characterize this

binding region a HTT deletion protein with amino acids 257–

315 deleted was generated. Reduced but not abolished interac-

tion of 15Q HTT 1-548D257-315 with HIP14-GFP and

HIP14L-GFP was observed. These data indicate that the

HIP14/HIP14L binding domain in HTT is not within these

amino acids but that these amino acids are required for the

structural integrity of the actual binding domain.

A larger region of HTT, amino acids 1–548, is required to

achieve full interaction, possibly to achieve correct folding and

structural stability of the binding domain or because other

sequences outside of this region also contribute to the interaction.

panel) showing less HTT 88–548, HTT 151–548, and HTT 224–548 co-immunoprecipitated with HIP14-GFP and no HTT 427–548 was co-
immunoprecipitated with HIP14. On the right is a beads alone control showing no non-specific binding of the proteins to the beads. The bottom two
images show the expression of the HTT deletion mutants (top panel) and of HIP14-GFP (bottom panel). (C) Quantification of three co-
immunoprecipitation experiments where the % HTT interaction with HIP14 is the indicated HTT band intensity as a percentage of the HIP14-GFP
band intensity from the same sample, normalized to 15Q HTT 1–548. (D) A representative image (top two panels) of the co-immunoprecipitation
between the HTT 1–548 N-terminal deletion mutants and HIP14L-GFP where GFP was immunoprecipitated and the resulting blots were probed for
HTT (top panel) and GFP (bottom panel). Less HTT 88–548, HTT 151–548, and HTT 224–548 and no HTT 427–548 was co-immunoprecipitated with
HIP14L-GFP. On the right is a beads alone control showing no non-specific binding of the proteins to the beads. The bottom two panels show the
expression of the HTT deletion mutants (top panel) and of HIP14L-GFP (bottom panel). (E) Quantification of three co-immunoprecipitation
experiments where the % HTT interaction with HIP14L-GFP is the indicated HTT band intensity as a percentage of the HIP14L-GFP band intensity from
the same sample, normalized to 15Q HTT 1–548.
doi:10.1371/journal.pone.0090669.g003
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Figure 4. HIP14 and HIP14L interaction with 15Q HTT 1-548D257-315. (A) A diagram of the 15Q HTT 1-548D257-315 deletion mutant used
in co-immunoprecipitation experiments with HIP14-GFP and HIP14L-GFP showing the 15Q poly-Q domains, the proline rich region (PRR), and the H1
alpha-rod domain. (B) A representative image (top two panels) of the co-immunoprecipitation between 15Q HTT 1-548D257-315 deletion mutant
and HIP14-GFP where GFP was immunoprecipitated and the resulting blots were probed for HTT (top panel) and GFP (bottom panel) showing less of
the 15Q HTT 1-548D257-315 deletion mutant co-immunoprecipitated with HIP14-GFP and compared to 15Q HTT 1–548. On the right is a beads alone
(no antibody) control showing no non-specific binding of the proteins to the beads. The bottom two images show the expression of the 15Q HTT 1-
548D257-315 deletion mutant (top panel) and of HIP14-GFP (bottom panel). (C) Quantification of three independent co-immunoprecipitation
experiments where the % HTT interaction with HIP14 is the indicated HTT band intensity as a percentage of the HIP14-GFP band intensity from the

PAT Binding Sites in Huntingtin
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The full 1–548 amino acids are required for structural integrity

and the correct interaction conformation of HTT likely requires

interactions between 1–548 N- and C-terminal parts of HTT to

form a compact structure. Based on these data, it is likely that

there are actually multiple binding sites, one around amino acid

224 and another around amino acid 427, and that both are

required for full interaction and all of the amino acids from 1–548

are required for the structural integrity and confirmation of these

binding sites (Figure 5; dashed lines).

Interestingly, in the hypothetical 3D structure of HTT

proposed by Palidwor et al. HTT has 3 alpha-rod domains (H1-

3) that fold back on and interact with each other and interact

with HTT interacting proteins (Figure 1A) [17]. The two

potential binding domains around residues 224 and 427 are

contained within a single structural element of HTT, the H1

alpha-rod domain (resides within amino acids 114–431;

Figure 1A). It would be logical that the PAT binding domain

would be contained within a single structural element such as the

H1 domain thus favoring our model that the PAT binding

domains are fully contained within this structural element

(Figure 5) [17]. This is consistent with the data presented here

where the full 1–548 HTT protein is required for the correct

confirmation of this large structural domain and of the two

binding sites contained within.

This study identified two potential binding domains around

residues 224 and 427 for the PAT enzymes HIP14 and HIP14L.

Further characterization of the interactions of HTT with HIP14

and HIP14L is important, as this interaction is believed to go

beyond that of a simple enzyme-substrate interaction where HTT

actually modulates their function and facilitates palmitoylation of

HIP14 substrates.

A common binding domain in HTT for HIP14 and HIP14L

along with the fact that HIP14L’s domain structure is virtually

identical to HIP14, with all the same domains in the same

orientation suggests that HTT may also modulate the enzymatic

activity of HIP14L [11]. HTT may modulate the function of

these enzymes in several ways. First, HTT is an a–solenoid

protein made up of HEAT (Huntingtin, Elongation factor 3,

protein phosphatase 2A, TOR1) repeats suitable for its function

as a scaffolding protein with many protein-protein interactions

[12,17,19–21]. It is possible that HTT may act as a scaffolding

protein to bring substrates into close proximity with HIP14 and

HIP14L, acting as an essential linker between PATs and their

other substrates. Second, HTT may act as an allosteric activator

of HIP14 by affecting the conformational structure of HIP14

thereby allowing substrates to access the DHHC active site [12].

Third, as HTT has been shown to be involved in trafficking of

organelles along the cytoskeleton, interacting with multiple motor

and motor-associated proteins, HTT may be important for

trafficking HIP14 and/or HIP14L to particular subcellular

locations allowing it to interact with and palmitoylate its

substrates [12,22].

As the interactions between HTT and HIP14 or HIP14L are

reduced in HD and these PATs are implicated in the pathogenesis

of HD, understanding the nature of their interactions with HTT

may guide future efforts to target and enhance this interaction to

increase enzyme activity and remediate palmitoylation of HTT

and its substrates. These data indicate that HIP14 and HIP14L

share a binding site, providing evidence that these two PATs may

compensate for each other in palmitoylating HTT and may

compete for binding to HTT and other substrates. This needs to

be considered when taking efforts to increase the interaction

between HTT and HIP14 at the risk of decreasing the interaction

with the other, which may have detrimental effects. If HTT acts as

an allosteric activator of HIP14 and HIP14L, binding of a small

HTT peptide, including the two binding sites, may enhance

HIP14 and HIP14L activity in the disease state, which would likely

have a beneficial effect by restoring palmitoylation of HTT and

other proteins. This would not be possible without knowing which

motifs of HTT bind HIP14 and HIP14L and this study brings us

much closer to this goal.

same sample, normalized to 15Q HTT 1–548. (D) A representative image (top two panels) of the co-immunoprecipitation between the 15Q HTT 1-
548D257-315 deletion mutant and HIP14L-GFP where GFP was immunoprecipitated and the resulting blots were probed for HTT (top panel) and GFP
(bottom panel). Less 15Q HTT 1-548D257-315 deletion mutant was co-immunoprecipitated with HIP14L-GFP. On the right is a beads alone (no
antibody) control showing no non-specific binding of the proteins to the beads. The bottom two panels show the expression of the 15Q HTT 1-
548D257-315 deletion mutant (top panel) and of HIP14L-GFP (bottom panel). (E) Quantification of three independent co-immunoprecipitation
experiments where the % HTT interaction with HIP14L-GFP is the indicated HTT band intensity as a percentage of the HIP14L-GFP band intensity from
the same sample, normalized to 15Q HTT 1–548.
doi:10.1371/journal.pone.0090669.g004

Figure 5. A schematic diagram of the two hypothetical binding scenarios of HTT with HIP14 or HIP14L. In both (A) and (B) for HIP14 or
HIP14L the numbered, solid grey boxes are the seven ankyrin repeats that make up the ankyrin repeat domain, the six TMDs are in hatched boxes
labeled TM1–TM6, and the DHHC-CR domain is a black box labeled DHHC. (A) In this first scenario, the HIP14 and HIP14L HTT binding site (solid pink
box) is between amino acids 224–427 and this binding site interacts with the ankyrin repeat domain of HIP14 or HIP14L. (B) In an alternate scenario
there are two binding sites (solid pink boxes), one between amino acids 1–427 and the other between amino acids 224–548, that both interact with
the ankyrin repeat domain.
doi:10.1371/journal.pone.0090669.g005
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