
A P P R O X I M AT I O N S C H E M E S F O R M A C H I N E S C H E D U L I N G

marten maack

Dissertation
zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
(Dr. rer. nat.)

der Technischen Fakultät
der Christian-Albrechts-Universität zu Kiel

eingereicht im Jahr 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MACAU: Open Access Repository of Kiel University

https://core.ac.uk/display/343640617?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 . gutachter Prof. Dr. Klaus Jansen

2 . gutachter Prof. Dr. Friedhelm Meyer auf der Heide

3 . gutachter Prof. Dr. Asaf Levin

datum der disputation 7. Mai 2020

Marten Maack: Approximation Schemes for Machine Scheduling, c©Novem-
ber 2019

A B S T R A C T

In the classical problem of makespan minimization on identical par-
allel machines, or machine scheduling for short, a set of jobs has to
be assigned to a set of machines. The jobs have a processing time
and the goal is to minimize the latest finishing time of the jobs. Ma-
chine scheduling is well known to be NP-hard and thus there is no
polynomial time algorithm for this problem that is guaranteed to find
an optimal solution unless P=NP. There is, however, a polynomial
time approximation scheme (PTAS) for machine scheduling, that is, a
family of (1+ ε)-approximations for each ε > 0. Whether a problem
admits an approximation scheme or not is a fundamental question in
approximation theory. In the present work, we consider this question
for several variants of machine scheduling.

For instance, we study the problem where the machines are par-
titioned into a constant number of types and the processing time of
the jobs is also dependent on the machine type it is assigned to. We
present an efficient PTAS (EPTAS)—a PTAS whose running time is
a product of some function in 1/ε and a polynomial in the input
length—for this problem and variants thereof.

In the restricted assignment problem, each job may only be assigned
to a given subset of machines. We show that certain cases of restricted
assignment do not admit a PTAS unless P=NP, e.g., the case in which
the machines are linearly ordered and each job is eligible on a set of
consecutive machines. Moreover, we introduce a graph framework
based on the restrictions of the jobs and use it in the design of ap-
proximation schemes for several variants of restricted assignment
generalizing and unifying many of the known PTAS results.

Furthermore, we introduce an enhanced integer programming for-
mulation for assignment problems, show that it can be efficiently
solved, and use it in the EPTAS design for variants of machine schedul-
ing with setup times. For one of the problems, we show that there is
also a PTAS in the case with uniform machines, where machines have
speeds influencing the processing times of the jobs.

Lastly, we consider cases in which each job requires a certain amount
of a shared renewable resource and the processing time is depended on
the amount of resource it receives or not. We present asymptotic fully
polynomial time approximation schemes (AFPTAS) for the problems:
For any ε > 0 a schedule is provided whose length lies within a factor
of (1+ ε) of the optimum value except for an additional additive error
depending on the maximal processing time and 1/ε.

iii

Z U S A M M E N FA S S U N G

Im klassischen Problem des Machine Scheduling muss eine Menge von
Jobs einer Menge von Maschinen zugewiesen werden. Die Jobs haben
eine Bearbeitungszeit und das Ziel ist es, den Zeitpunkt zu minimieren
an dem der letzte Job vollständig bearbeitet ist. Machine Scheduling
ist NP-vollständig und daher gibt es keinen Algorithmus, der in
polynomieller Zeit garantiert eine optimale Lösung für das Problem
findet, es sei denn P=NP. Es gibt jedoch ein Approximationsschema
mit polynomieller Laufzeit (PTAS) für Machine Scheduling, d.h. eine
Familie von (1+ ε)-Approximationen für jedes ε > 0. Ob ein Problem
ein Approximationsschema zulässt oder nicht, ist eine grundlegende
Frage der Approximationstheorie. In dieser Arbeit betrachten wir
diese Frage für mehrere Varianten des Machine Scheduling.

So betrachten wir beispielsweise Varianten, bei denen die Maschi-
nen in eine konstante Anzahl von Typen partitioniert sind und die
Bearbeitungszeit der Jobs vom Maschinentyp abhängt. Wir präsentie-
ren ein effizientes PTAS (EPTAS) für dieses Problem, d.h. ein PTAS
dessen Laufzeit durch das Produkt einer Funktion in 1/ε und eines
Polynoms in der Eingabelänge abgeschätzt werden kann.

Bei dem Restricted Assignment Problem darf jeder Job nur einer
gegebenen Teilmenge von Maschinen zugeordnet werden. Wir zeigen,
dass bestimmte Spezialfälle von Restricted Assignment kein PTAS
zulassen (sofern P6=NP), z.B. der Fall, in dem die Maschinen line-
ar geordnet sind und jeder Job auf einer Menge von konsekutiven
Maschinen zulässig ist. Weiterhin führen wir ein auf den Zulässig-
keiten basierendes Graphen-Framework ein und verwenden es beim
PTAS-Design für diverse Varianten des Restricted Assignment.

Darüber hinaus entwickeln wir eine erweiterte ganzzahlige Op-
timierungsformulierung für Zuweisungsprobleme, zeigen, dass sie
effizient gelöst werden kann, und verwenden sie im EPTAS-Design
für Varianten von Machine Scheduling mit Setup Zeiten. Für eine
dieser Varianten zeigen wir zusätzlich, dass es auch für den Fall mit
uniformen Maschinen ein PTAS gibt. Uniforme Maschinen haben
Geschwindigkeiten, die die Bearbeitungszeiten der Jobs beeinflussen.

Schließlich betrachten wir Fälle, in denen jeder Job eine bestimm-
te Menge einer geteilten erneuerbaren Ressource benötigt und die
Bearbeitungszeit von der Menge der erhaltenen Ressource abhängt
oder nicht. Wir präsentieren asymptotische, vollständig polynomielle
Approximationsschemata (AFPTAS) für die Probleme: Für jedes ε > 0
wird ein Schedule gefunden dessen Länge, bis auf einen zusätzlichen
additiven Fehler abhängig von der maximalen Ausführungszeit und
1/ε, höchstens um einen Faktor von (1+ ε) vom Optimum abweicht.

v

P U B L I C AT I O N S

The present work is based on the following publications:

[78] Klaus Jansen and Marten Maack. “An EPTAS for Scheduling on
Unrelated Machines of Few Different Types.” In: Algorithmica
81.10 (2019), pp. 4134–4164. doi: 10.1007/s00453-019-00581-
w.

[79] Klaus Jansen, Marten Maack, and Alexander Mäcker. “Schedul-
ing on (Un-)Related Machines with Setup Times.” In: 2019
IEEE International Parallel and Distributed Processing Symposium,
IPDPS 2019, Rio de Janeiro, Brazil, May 20-24, 2019. 2019, pp. 145–
154. doi: 10.1109/IPDPS.2019.00025.

[81] Klaus Jansen, Marten Maack, and Malin Rau. “Approximation
Schemes for Machine Scheduling with Resource (In-)dependent
Processing Times.” In: ACM Trans. Algorithms 15.3 (2019), 31:1–
31:28. doi: 10.1145/3302250.

[82] Klaus Jansen, Marten Maack, and Roberto Solis-Oba. “Struc-
tural Parameters for Scheduling with Assignment Restrictions.”
In: Algorithms and Complexity - 10th International Conference,
CIAC 2017, Athens, Greece, May 24-26, 2017, Proceedings. 2017,
pp. 357–368. doi: 10.1007/978-3-319-57586-5_30.

[86] Klaus Jansen, Kim-Manuel Klein, Marten Maack, and Malin
Rau. “Empowering the Configuration-IP - New PTAS Results
for Scheduling with Setups Times.” In: 10th Innovations in The-
oretical Computer Science Conference, ITCS 2019, January 10-12,
2019, San Diego, California, USA. 2019, 44:1–44:19. doi: 10.4230/
LIPIcs.ITCS.2019.44.

[111] Marten Maack and Klaus Jansen. “Inapproximability Results
for Scheduling with Interval and Resource Restrictions.” In:
37th International Symposium on Theoretical Aspects of Computer
Science, STACS 2020, March 10-13, 2020, Montpellier, France.
Vol. 154. 2020, 5:1–5:18. doi: 10.4230/LIPIcs.STACS.2020.5.

All of the above publications have been peer-reviewed. Conference
versions of [78] and [81] have previously been published in the pro-
ceedings of WADS 2017 [77] and SODA 2016 [80], respectively.

vii

https://doi.org/10.1007/s00453-019-00581-w
https://doi.org/10.1007/s00453-019-00581-w
https://doi.org/10.1109/IPDPS.2019.00025
https://doi.org/10.1145/3302250
https://doi.org/10.1007/978-3-319-57586-5_30
https://doi.org/10.4230/LIPIcs.ITCS.2019.44
https://doi.org/10.4230/LIPIcs.ITCS.2019.44
https://doi.org/10.4230/LIPIcs.STACS.2020.5

A C K N O W L E D G M E N T S

I sincerely thank my advisor Klaus Jansen for supporting this work.
Many thanks to my other colleagues in the algorithms and complexity
group in Kiel, namely, Sebastian Berndt, Max Deppert, Kilian Grage,
Ute Iaquinto, Maren Kaluza, Kim-Manuel Klein, Stefan Kraft, Felix and
Kati Land, Alexandra Lassota, Parvaneh Massouleh, Niklas Paulsen,
Malin Rau, and Lars Rohwedder. I had a marvelous time collaborating,
traveling, debating, and working along side with you day to day.

As part of my studies, I visited the Western University in London,
Ontario for six months. I wish to thank Roberto Solis-Oba for super-
vising my work during that time and for generally being a great host.
Thanks also to Daniel Page with whom I collaborated while visiting
and shared an office as well as many exciting conversations.

I would like to thank all my co-authors with whom I have worked
on the papers contributing to this work, namely, Klaus Jansen, Kim-
Manuel Klein, Alexander Mäcker, Malin Rau, and Roberto Solis-Oba.

A special thanks goes to Kim-Manuel Klein, Alexandra Lassota, and
Daniel Page for proofreading parts of this work.

Finally, I thank my family and friends, and especially my wife Beate,
my mother Gabi, and my father Rainer for their unconditional support
and advice, and for generally putting up with me.

ix

C O N T E N T S

1 introduction 1

2 preliminaries 9

2.1 Basic Concepts and Notation 9

2.2 Example Approximation Scheme 11

3 unrelated scheduling with few types 15

3.1 Introduction 15

3.2 Basic EPTAS 19

3.3 Better running time 23

3.4 The Santa Claus Problem 30

3.5 Uniform Machine Types 33

3.6 Vector Scheduling 40

3.7 Open Problems 43

4 interval and resource restrictions 45

4.1 Introduction 45

4.2 Interval Restrictions 49

4.3 Resource Restrictions 63

4.4 Open Problems 73

5 structural parameter restrictions 75

5.1 Introduction 75

5.2 Preliminaries 78

5.3 Treewidth Results 80

5.4 Clique- and Rankwidth Results 88

5.5 Other Objective Functions 97

5.6 Open Problems 99

6 machine scheduling with setup times 101

6.1 Introduction 101

6.2 Preliminaries 105

6.3 Module Configuration IP 107

6.4 EPTAS results 110

6.5 Improvements of the running time 133

6.6 Open Problems 136

7 uniform scheduling with setup times 137

7.1 Introduction 137

7.2 PTAS 137

7.3 Open Problems 150

8 machine scheduling with a shared resource 151

8.1 Introduction 151

8.2 Single resource constrained scheduling 155

8.3 Resource Dependent Processing Times 175

8.4 Open Problems 185

bibliography 187

xi

1
I N T R O D U C T I O N

Consider the problem of makespan minimization on identical parallel
machines, called machine scheduling for short: Given a set M of m
machines and a set J of n jobs each with a processing time or size pj,
the goal is to find an assignment σ : J→M of the jobs to the machines
such that the maximal load any machine receives is minimized (see
Figure 1.1). The maximal load Cmax(σ) = maxi∈M

∑
j∈σ−1(i) pj is also

called the makespan and σ a schedule. Machine scheduling is a classical
combinatorial optimization problem—problems with a discrete and
usually finite space of feasible solutions in which the goal is to find
an optimal solution with respect to a given objective function. Like
for many combinatorial optimization problems, the study of machine
scheduling can be motivated from practical applications, e.g., from
scheduling in production facilities or the assignment of computational
tasks to identical processors. On the other hand, their simple combina-
torial structure arguably already motivates their study from a purely
theoretical perspective. In this work, we study algorithms for problems
closely related to machine scheduling. We focus on the theoretical
perspective, but consider many variants that capture additional diffi-
culties that typically arise in practice, like, e.g., assignment restrictions,
setup times or the influence of additional resources.

algorithms for machine scheduling . Finding a sensible
assignment for a given machine scheduling instance is not very hard.
For example, one could simply consider one job after another and
assign it to a machine that so far received minimal load. We call
this heuristic algorithm heu in the following. However, the solutions
generated by this procedure will usually not be optimal (see Figure
1.2). One could improve the procedure by first sorting the jobs by

Makespan

Machines

Figure 1.1: A schedule for a machine scheduling instance with 11 jobs and 3

machines. The jobs are represented by the hatched rectangles.

1

2 introduction

2

1

1

1

2

1
3

3

2

2

2

3

2

2

3

2

Figure 1.2: Two simple examples visualizing that heu and heu
∗ are not

guaranteed to find optimal solutions. In the example on the left,
an optimal solution is depicted left and the solution produced by
heu when the big job is considered last on the right. On the right,
again an optimal solution is depicted left and a solution produced
by heu

∗ on the right. The depicted numbers correspond to the
processing times.

decreasing processing times, but still the generated solutions are
not guaranteed to be optimal (see Figure 1.2). We call the improved
heuristic heu

∗.
On the other hand, it is also not particularly difficult to find an

optimal solution—we could try each of the m machine as the place
of assignment for each of the n jobs yielding mn possibilities. We
can improve upon this brute force approach, e.g., by using a dynamic
program in which the machines are considered one after another and
a best partial solution for each subset of jobs is remembered. This
approach yields a running time of 2O(n)m (see Section 5.2). While
there are more elaborate known approaches to solve this problem,
they all share the property that their running time is exponential in
the input length. Therefore, they scale very badly: Say we had an
algorithm with running time 2n and an instance that is solved by it in
1 second. Then adding 10 jobs increases the running time to a quarter
hour, another 10 to a dozen days, another 10 to a few decades, and
adding 60 jobs in total would give a running time that is much longer
than the estimated age of the earth. The heuristic procedures heu and
heu

∗, on the other hand, have a running time that is at most quadratic
in the input length, that is, increasing the number of jobs by a factor of
60 would give a running time of at most an hour in a corresponding
sample calculation.

p vs . np. Algorithms whose running times are bounded by linear
or quadratic functions in the input length are deemed desirable in
most contexts. However, considering the asymptotic scaling behaviour,
any polynomial is preferable to any exponential function. Indeed, the
question of whether a problem admits a polynomial time algorithm
is considered fundamental in theoretical computer science. An early
discussion of this idea can be found in a work by Edmonds [41] from
1965, who studied a polynomial time algorithm for the maximum
matching problem and wrote:

introduction 3

There is an obvious finite algorithm, but that algorithm
increases in difficulty exponentially with the size of the
graph. It is by no means obvious whether or not there exists
an algorithm whose difficulty increases only algebraically
[i.e., polynomially] with the size of the graph.

The mathematical significance of this paper rests largely
on the assumption that the two preceding sentences have
mathematical meaning.[...]

For practical purposes the difference between algebraic
and exponential order is often more crucial than the differ-
ence between finite and non-finite.

In the early 1970s, Cook [33] and Karp [91] introduced the class
of NP-complete decision problems1, which are widely believed not
to admit (deterministic) polynomial time algorithms. The class of
decision problems that can be solved in polynomial time is denoted as
P, while NP denotes the class of decision problems for which, roughly
speaking, there exist solutions for positive instances that can be verified
in polynomial time. The former class is a subclass of the latter, and
P 6=NP is a widely accepted and famous conjecture. Resolving it is one
of the so called Millennium Prize Problems—a collection of problems
in mathematics that are considered to be particularly important and
hard. Now, a problem is called NP-complete if it is both in NP and
NP-hard. The latter property essentially means that a polynomial
time algorithm for any of them would imply such an algorithm for
all problems in NP2. Many fundamental problems are well-known
to be NP-complete including the decision versions3 of numerous
combinatorial optimization problems (see [51]). This is also the case
for machine scheduling. Since solving the optimization version implies
solving the decision version of a problem, there is no polynomial time
algorithm for machine scheduling that is guaranteed to find an optimal
solution unless P=NP. However, there are intriguing approaches to
deal with this problem.

approximation algorithms . Consider the heuristic algorithms
heu and heu

∗. Both algorithms assign each job to a least loaded
machine, and therefore no machine may receive more load than the
average load and one additional job which may have maximal size.
Hence, the load of each machine is upper bounded by maxj∈J pj +
(
∑
j∈J pj)/m. Both maxj∈J pj and (

∑
j∈J pj)/m are lower bounds for

the optimal objective value, and therefore the objective value of a
solution produced by the heuristics is at most twice as big as the
optimal one.

1 Problems for which a yes-or-no question has to be answered.
2 For proper definitions and background information on complexity theory, we refer to

the textbook by Arora and Barak [8].
3 For optimization problems, one can state the question of whether a solution with at

most/at least a certain objective value exists.

4 introduction

Let alg(I) denote the objective value an algorithm alg computes
for an input instance I and opt(I) be the corresponding optimal value.
An algorithm alg is called approximation algorithm with ratio α or α-
approximation if alg(I) 6 αopt(I) in case of a minimization problem
or αalg(I) > opt(I) in case of a maximization problem. The ratio α
is also called the approximation guarantee or rate of the algorithm. Fur-
thermore, if not stated otherwise, we use the term approximation
algorithm as a short hand for polynomial time approximation algo-
rithm. Using the above notation, the heuristics heu and heu

∗ are
2-approximations.

The concept of approximation algorithms was formally introduced
by Johnson [87] in 1974, however, there were earlier results proving
approximation guarantees of algorithms. For instance, in 1966 and 1969

Graham [57, 58] considered the heuristics heu and heu
∗ and proved

them to be 2- and 4/3-approximations, respectively. The algorithm heu

is usually called list scheduling and the prioritization of large jobs used
in heu

∗ is known as the LPT (largest processing time first) rule . These
are considered among the first results in the field of approximation
algorithms.

When studying approximation algorithms, it is rather natural to ask
which is the best possible approximation ratio one could obtain for a
given problem or even whether there exists a best ratio. For machine
scheduling, the answer to the latter question turns out to be negative.

approximation schemes . For a given problem, a polynomial time
approximation scheme (PTAS) is a family of algorithms that includes a
(1+ ε)-approximation for each ε > 0. We also study approximation
schemes with higher requirements on the running time. In particular,
a PTAS is called efficient (EPTAS) if it has a running time of the form
f(1/ε)|I|O(1), where f is some computable function and |I| the input
length. Furthermore, an EPTAS is called fully polynomial (FPTAS) if the
function f is a polynomial.

Whether a problem admits a PTAS or not is a fundamental question
in approximation. In 1987, Hochbaum and Shmoys [65] designed a
PTAS for machine scheduling and hence showed that any approxima-
tion guarantee strictly above 1 can be achieved for this problem4. Since
then, there have been many more results concerning approximation
schemes for machine scheduling and variants thereof (like, e.g., [5, 46,
47, 66, 72, 73, 119, 122, 133]).

The present work aims at deepening the understanding in this
line of research. To this end, we design approximation schemes for
many important variants of machine scheduling. We introduce new
techniques in this context and show that our results work for a wide
variety of problems. Furthermore, we present inapproximability re-

4 We present an example PTAS for machine scheduling in Section 2.2 which is closely
related to this result.

introduction 5

sults that rule out the existence of approximation schemes for certain
cases under the assumption that P6=NP.

classical scheduling problems . In order to discuss the re-
sults of this work in more detail, we first have to introduce some
classical variants of machine scheduling studied in the literature. The
most common two are called makespan minimization on uniformly
related and unrelated parallel machines, and are abbreviated as uniform
and unrelated scheduling in the following. In the problem of unrelated
scheduling, the processing time of a job depends on the machine it is
processed on, that is, the input includes a processing time pij for each
machine i and job j. Uniform scheduling can be seen as a special case
of unrelated scheduling where each job j has a size pj, each machine i
a speed si, and the processing time of job j on machine i is given by
pij = pj/si.

For uniform scheduling, there is a PTAS due to Hochbaum and
Shmoys [66], and both machine [5] and uniform scheduling [72] are
known to admit an EPTAS. On the other hand, the problems are well
known to be strongly NP-hard5, which implies that there is no FPTAS
for them unless P=NP. If the number of machines is considered con-
stant, already unrelated scheduling admits an FPTAS [67]. However,
there is no approximation algorithm with a ratio smaller than 1.5
for unrelated scheduling unless P=NP. This was shown by Lenstra,
Shmoys and Tardos [108] and already holds for the so called restricted
assignment problem, where each job has a size pj and pij ∈ {pj,∞}. For
each job j, the machines i with pij = pj are called eligible and we say
that the assignment of j to other machines is restricted. Lestra et al. also
provided a 2-approximation for unrelated scheduling. Closing (or nar-
rowing) the gap between 1.5-inapproximability and 2-approximation
for either unrelated scheduling or restricted assignment is considered
one of the most important open problems in approximation [145] and
scheduling theory [132]. This also motivates the study of special cases,
and whether these cases admit approximation schemes in particular,
in order to better understand the approximability of these problems.

For a broader overview of scheduling theory, we refer to the follow-
ing textbook [127] and survey [28].

contributions and organization

In Chapter 2, we discuss further basic concepts and notation and
present an example PTAS for machine scheduling. Each of the remain-
ing chapters is based on a prior publication and can, for the most part,
be read independently. Exceptions to this rule are Chapter 5 and 7

which are closely related to the respective direct predecessor chap-
ters and therefore cover the related literature and motivation of the

5 They remain NP-hard, even if the numbers in the input have unary encoding.

6 introduction

work only to a limited extent. In the following, we briefly discuss the
problems considered in each chapter as well as the obtained results.

chapter 3 . In this chapter, we consider the variant of unrelated
scheduling with a constant number K of machine types. Two machines
have the same type if all jobs have the same processing time for them.
Note that for K = 1, we have the problem of machine scheduling. We
present an EPTAS for the problem with a running time of

2O(K log(K)1/ε log4 1/ε) + poly(|I|),

where |I| denotes the input length. Furthermore, we study three other
problem variants and present an EPTAS for each of them: The Santa
Claus problem, where the minimum machine load has to be maxi-
mized; the case of unrelated scheduling with a constant number of
uniform types, where machines of the same type behave like uniform
machines; and the multidimensional vector scheduling variant of the
problem, where both the dimension and the number of machine types
are constant. For the Santa Claus problem we achieve the same asymp-
totic running time. The results are obtained, using mixed integer linear
programming and rounding techniques. This chapter is based on [77].

chapter 4 . We consider two variants of the restricted assignment
problem. In the case of interval restrictions the machines can be totally
ordered such that jobs are eligible on consecutive machines. We show
that there is no PTAS unless P=NP for this variant. The question of
whether a PTAS for this problem exists was stated as an open problem
before, and PTAS results for special cases of this variant are known.
Interestingly, there is a paper claiming to have found a PTAS for this
problem but it is flawed.

Furthermore, we consider a variant with resource restrictions where
the sets of eligible machines are of the following form: There is a fixed
number of (renewable) resources, each machine has a capacity, and
each job a demand for each resource. A job is eligible on a machine if
its demand is at most as big as the capacity of the machine for each
resource. For one resource, this problem has been intensively studied
under several different names and is known to admit a PTAS, and
for two resources the variant with interval restrictions is contained
as a special case. Moreover, the version with multiple resources is
closely related to unrelated scheduling with a low rank processing
time matrix. We show that there is no polynomial time approximation
algorithm with a rate smaller than 48/47 ≈ 1.02 or 1.5 for scheduling
with resource restrictions with 2 or 4 resources, respectively, unless
P=NP. All our results can be extended to the Santa Claus variants of
the problems where the goal is to maximize the minimal processing
time any machine receives. This chapter is based on [111].

introduction 7

chapter 5 . Similar to the previous chapter, we consider special
types of assignment restrictions. We introduce a graph framework
based on the restrictions:

In the primal graph, the jobs are the nodes and are adjacent if they
share an eligible machine. In the dual graph, on the other hand, the
machines are the nodes and two machines are adjacent if there is a
job that is eligible on both of them. Lastly, the incidence graph is a
bipartite graph that includes both jobs and machines as nodes, and
a job node is adjacent to a machine node if the job is eligible on the
machine. We study cases in which these graphs have certain structural
properties.

We show that the variant of restricted assignment where the inci-
dence graph has a constant rank- or cliquewidth admits a PTAS. This
generalizes and unifies several known PTAS results.

Furthermore, we consider the treewidth for each of the three graphs.
We show that a constant treewidth for the dual or incidence graph
implies the existence of an FPTAS. Furthermore, we design so called
fixed parameter tractable (FPT) algorithms, that is, exact algorithms
with a running time of the form f(c)poly(|I|) where c is a parameter
of the instance I, f some computable function, and |I| the input length.
We present FPT results for each of the three graph. For instance, we
show that restricted assignment is FPT with respect to the treewidth
of the primal graph. All results concerning the treewidth also work
for the more general case of unrelated scheduling with restrictions.
This chapter is based on [82].

chapter 6 . Integer linear programs of configurations, or configura-
tion IPs, are a classical tool in the design of algorithms for scheduling
and packing problems where a set of items has to be placed in mul-
tiple target locations. Herein, a configuration describes a possible
placement on one of the target locations, and the IP is used to choose
suitable configurations covering the items. We present an augmented
IP formulation, which we call the module configuration IP. It can be
described within the framework of n-fold integer programming and,
therefore, be solved efficiently. As an application, we consider variants
of machine scheduling with setup times. For instance, we investigate
the case that jobs can be split and scheduled on multiple machines.
However, before a part of a job can be processed, an uninterrupted
setup depending on the job has to be paid. For both of the variants
that jobs can be executed in parallel or not, we obtain an efficient
polynomial time approximation scheme (EPTAS) of running time
f(1/ε)poly(|I|) with a single exponential term in f for the first and a
double exponential one for the second case. Previously, only constant
factor approximations of 5/3 and 4/3+ ε, respectively, were known.
Furthermore, we present an EPTAS for a problem where classes of
(non-splittable) jobs are given, and a setup has to be paid for each

8 introduction

class of jobs being executed on one machine. This chapter is based
on [86].

chapter 7 . In this chapter, we consider the variant of uniform
scheduling in which the jobs are partitioned into classes and class
depended setup has to be paid for each class present on a machine.
This is the uniform version of the non-splittable problem considered
in the last chapter. We design a PTAS for this problem. This chapter is
based on parts of [79].

chapter 8 . We consider two related variants of machine schedul-
ing: single resource constrained scheduling on identical parallel ma-
chines and a generalization with resource dependent processing times.
In both problems, jobs require a certain amount of an additional
resource and have to be scheduled on machines minimizing the
makespan, while at every point in time a given resource capacity
is not exceeded. In the first variant of the problem, the processing
times and resource amounts are fixed, while, in the second, the former
depends on the latter.

Both problems contain the problem of bin packing with cardinality
constraints as a special case, and, therefore, these problems are strongly
NP-complete even for a constant number of machines larger than three,
which can be proven by a reduction from 3-Partition. Furthermore, if
the number of machines is part of the input, we cannot hope for an
approximation algorithm with absolute ratio smaller than 3/2.

We present asymptotic fully polynomial time approximation schemes
(AFPTAS) for the problems: For any ε > 0 a schedule of length at most
(1+ ε) times the optimum plus an additive term of O(pmax log(1/ε)/ε)
is provided, and the running time is polynomially bounded in 1/ε
and the input length. Up to now, only approximation algorithms with
absolute approximation ratios were known. This chapter is based
on [81].

2
P R E L I M I N A R I E S

In this chapter, we present some basic concepts and notation and
provide an example approximation scheme for machine scheduling in-
troducing some of the standard techniques used throughout this work.
However, there are many concepts and techniques widely used in the
field, like e.g., integer and dynamic programming, that we apply with
little or no further explanation. For introductions to these concepts
and general background information, we refer to the textbooks by
Williamson and Shmoys [145] concerning approximation algorithms,
by Papadimitriou and Steiglitz [126] concerning combinatorial opti-
mization, and the one by Arora and Barak [8] concerning complexity
theory. As a general introduction to the theory of computation, we
would also like to highlight the beautiful textbook by Moore and
Mertens [118].

2.1 basic concepts and notation

problems and instances . All the problems considered in this
work are variants of machine scheduling, and definitions of some of
the most important ones have already been provided in the last chapter.
Furthermore, for the sake of readability, each chapter includes the
definitions of the problems studied therein. In each context, J denotes
the set of jobs, n = |J| the number of jobs, M the set of machines, and
m = |M| the number of machines. Sometimes we assume M = [m] and
adjust the notation accordingly. Moreover, we usually assume in each
context that some instance denoted as I is given and we denote the
encoding length of the instance as |I|.

approximation schemes . As stated in the last chapter, a poly-
nomial time approximation scheme (PTAS) is a family of algorithms
that includes a (1+ ε)-approximation for each ε > 0; an efficient PTAS
(EPTAS) is a PTAS with a running time of the form f(1/ε)poly(|I|),
where f is some computable function, and poly(·) some polynomial
function; and an EPTAS is called fully polynomial (FPTAS) if the
function f is a polynomial as well.

Throughout this work ε > 0 denotes the accuracy parameter of
some approximation scheme. However, we usually provide an (1+ cε)-
approximation for some constant c instead of an (1+ ε)-approximation.
We do so for the sake of simple presentation. Note that we may simply
apply the described procedures with a modified parameter ε ′ = ε/c.
This does not effect any of the running times claimed in this work due

9

10 preliminaries

to the O-notation. Moreover, we sometimes require ε 6 c for some
constant c. Again, this is not a problem, since we may simply use the
(1+ c)-approximation for the case that ε > c. Lastly, in some instances,
we assume that 1/ε is an integer. Taking the two considerations above
into account, this can easily be realized: On the one hand, we may
assume ε 6 1, and, on the other, each number lies between two
succeeding powers of 2.

fixed-parameter tractability. Some of the topics studied
in this work have close connections to the field of parameterized com-
plexity and fixed-parameter tractable (FPT) algorithms. Formally, fixed-
parameter tractability is introduced for variants of decision problems
in which an additional parameter k ∈N is given as part of the input.
The problem is included in the complexity class FPT if there is an
algorithm that solves the problem and has a running time of the form
f(k)poly(|I|), where f is some computable function. This definition can
easily be extended to multiple parameters, e.g., by summing them up.
For more background information on this subject, we refer to the book
by Cygan et al. [37].

We also talk about FPT algorithms in the context of optimization
problems and usually mean that the problem can be optimally solved
by an algorithm with FPT running time f(k)poly(|I|), where k is some
parameter that is part of the input. Furthermore, note that an EPTAS
may be considered as an algorithm with FPT running time for the
parameter 1/ε. For a discussion of connections between parameterized
complexity and approximation algorithms, we refer to the work by
Marx [113].

miscellaneous . For any integer n, we denote the set {1, . . . ,n}
by [n], we write log(·) for the logarithm with basis 2, and we use
poly(n) and polylog(n) as synonyms for O(n)O(1) and O(log(n))O(1),
respectively. Furthermore, for any two sets X, Y, we write YX for the
set of functions f : X → Y. If X is finite, we say that Y is indexed by
X and sometimes denote the function value of f for the argument
x ∈ X by fx. We may also say that f is a vector indexed by X. If Y is an
additive group that is clear from the context, f+ f ′ for two functions
f, f ′ ∈ YX denotes the component-wise addition of the two functions,
that is, f+ f ′ : X → Y with x 7→ f(x) + f ′(x). When considering the
union of two disjoint sets A and Bwe sometimes use the disjoint union
notation A ∪̇ B which emphasizes the fact that the sets are disjoint.
Lastly, for two functions f : A → C and g : B → C (with A and B
disjoint) f ∪ g denotes the function that maps elements of a ∈ A to
f(a) and elements b ∈ B to g(b). This is consistent with the definition
of functions as sets of pairs.

2.2 example approximation scheme 11

2.2 example approximation scheme

We present an approximation scheme for machine scheduling as a
first example. The scheme can be seen as a variation of the works by
Hochbaum and Shmoys [65] and Alon et al. [5] and does not contain
any new ideas.

dual approximation. Consider the dual approximation frame-
work introduced by Hochbaum and Shmoys [65]: Instead of solving
the minimization version of a problem directly, it is often sufficient to
find a procedure that for a given bound T on the objective value either
correctly reports that there is no solution with value T , or returns
a solution with value at most (1+ cε)T for some constant c. If we
have some initial upper bound B for the optimal makespan opt with
B 6 βopt for some factor β, we can define a PTAS by trying different
values T from the interval [B/β,B] in a binary search fashion, and
find a value T∗ 6 (1+ O(ε))opt after O(logβ/ε) iterations. This it
sufficient as long as logβ is bounded by a polynomial in the input
length.

For nearly all of the problems considered in this work a constant
factor approximation algorithm is known providing us with a suitable
B and constant β. Moreover, it is usually easy for the types of prob-
lems considered in this work to find trivial m-approximation, e.g., by
scheduling all the jobs in sequence on one machine.

For machine scheduling, we may do the latter or use one of the
simple heuristics heu and heu

∗ presented in the last chapter. Hence,
we assume from now on that a target makespan T is given, and,
furthermore, that all the processing times are upper bounded by
T , because otherwise we can reject T immediately. Furthermore, we
assume that 1/ε ∈ Z>0.

rounding and scaling . Next, we simplify the processing times
of the jobs. We call a job j big if it has a size of at least εT , i.e., pj > εT .
Otherwise, j is called small.

We perform an arithmetic rounding step: The sizes of the big jobs
are rounded up to the next integer multiple of ε2T , that is, p ′j =

dpj/ε2Teε2T for each big job j. For the resulting instance I ′, we have:

• There is only a constant number of big job sizes. More precisely,
we have |{p ′j | j ∈ J,pj > εT }| = O(1/ε2).

• If there is a schedule with makespan at most T for I, then there
is also schedule with makespan at most T ′ := (1+ ε)T for I ′.

For the second property, note that each job size was increased at most
by a factor of (1+ ε).

Another classic rounding strategy called geometric rounding leads to
similar results. In this approach, the sizes are rounded up to the next

12 preliminaries

integer power of (1+ ε), that is, p ′j = (1+ ε)dpj/(1+ε)e for each big job
j. This yields O(log1+ε(1/ε)) distinct processing times for the big jobs.
However, an advantage of arithmetic rounding is that the instance
can easily be scaled by (ε2T)−1 to get an instance in which all the
big processing times are integers. Hence, we assume ε2T = 1 in the
following. This implies that T = 1/ε2 and T ′ = (1+ ε)T = 1/ε2 + 1/ε

are integers as well since we assumed 1/ε to be an integer.

dealing with small jobs . In the case of machine scheduling,
it is very easy to deal with the small jobs. One strategy is to simply
remove the small jobs and search for a schedule with makespan at
most T ′ for the resulting instance. If there is no such schedule, there
neither is one for I ′; and if we have such a schedule, we can insert the
small jobs via heu, that is, assign them one after another in arbitrary
order to a least loaded machine. Then either the resulting schedule
has a makespan of at most T ′ + εT = (1+ 2ε)T , or each machine has
load of more than T ′ and there cannot be a schedule with makespan
at most T ′ for I ′. Hence, we assume in the following that there are no
small jobs present in I ′.

solving the simplified instance . We present two approaches
to find a schedule with makespan at most T ′ for I ′. The first is based
on dynamic programming and yields a PTAS, and the second is based
on integer programming and yields an EPTAS.

Let P = {p ′j | j ∈ J} be the set of (big) job sizes, and np be the
number of jobs with size p for each p ∈ P. Note that in a given
schedule we could permute jobs with equal size and hence we can
focus on the job sizes placed on each machine rather than the actual
jobs. Let Ξ = {0, 1, . . . ,n}P be a set of multiplicity vectors for job
sizes and Λ(ξ) =

∑
p∈P ξpp be the size of a vector ξ ∈ Ξ. Each such

vector corresponds to a selection of job or job sizes and Λ(ξ) to their
summed up size. Let C = {κ ∈ Ξ |Λ(κ) 6 T ′} be the set of vectors with
size at most T ′ called the set of configurations. A configuration κ ∈ C

corresponds to a suitable placement of jobs on a single machine. Let
ξ∗ ∈ Ξ be the vector that corresponds to the jobs in the instance, that is,
ξ∗p = np for each p ∈ P. It is easy to see that any schedule for I ′ with
makespan T ′ can be translated into a selection of m configurations
that cover all jobs, that is, sum up to ξ∗, and vice-versa.

For the dynamic program, we first define a layered graph with
m+ 1 layers. In the first layer (layer 0), there is only one node α, and,
for each i ∈ [m], layer i contains one node v(i, ξ) for each ξ ∈ Ξ. Edges
exclusively go from one layer to the next. The node α is connected
to the nodes v(1, κ) with κ ∈ C, and for each i ∈ [m− 1] and ξ ∈ Ξ,
the node v(i, ξ) is connected to each node v(i+ 1, ξ ′) with ξ ′ − ξ ∈ C

and ξ ′ ∈ Ξ. Any path with length ` corresponds to a selection of
` configurations and a path from α to v(m, ξ∗), in particular, to a

2.2 example approximation scheme 13

selection of m configurations that sum up to ξ∗. Moreover, if such a
selection exists there also exists such a path. Hence, we essentially
have to solve a reachability problem in a graph with (n+ 1)O(1/ε2)m

nodes. This can be done in polynomial time in the input length, but
1/ε occurs in the exponent and hence we get a PTAS but no EPTAS.

The second approach is to solve the so called configuration ILP
(integer linear program). In this ILP we introduce a variable xκ ∈ Z>0

for each configuration κ ∈ C and search for a solution that satisfies the
following constraints:∑

κ∈C
xκ = m (2.1)∑

κ∈C
κpxκ = np ∀p ∈ P (2.2)

This ILP selects m configurations due to the Constraint (2.1), and these
configurations cover all the jobs due to Constraint (2.2). We can solve
it using the following classical result by Lenstra [88] and Kannan [89]:

theorem 2 .1 : An integer linear program with d integral variables
and encoding size s can be solved in time dO(d)poly(s).

The above ILP has |C| many variables, and we have:

|C| = O(1/ε2)O(1/ε) = 2O(1/ε log(1/ε))

Note that we have O(1/ε2) many constraints and all the occurring num-
bers are polynomially bounded in the input length and 1/ε. Hence,
using this approach yields an EPTAS.

3
U N R E L AT E D S C H E D U L I N G W I T H F E W T Y P E S

3.1 introduction

We consider the problem of unrelated scheduling in which a set J of n
jobs has to be assigned to a set M of m machines. Each job j has a pro-
cessing time pij for each machine i, and the goal is to find a schedule
σ : J→M minimizing the makespan Cmax(σ) = maxi∈M

∑
j∈σ−1(i) pij.

In particular, we study the special case where there is only a constant
number K of machine types. Two machines i and i ′ have the same type
if pij = pi ′j holds for each job j. In many application scenarios this
setting is plausible, e.g., when considering computers which typically
only have a very limited number of different types of processing units.
We denote the processing time of a job j on a machine of type t ∈ [K]

by ptj and assume that the input consists of the corresponding K×n
processing time matrix together with machine multiplicities mt for
each type t yielding m =

∑
t∈[K]mt. Note that the case K = 1 is

equivalent to the classical machine scheduling.
For unrelated scheduling, there is a 2-approximation due to Lenstra,

Shmoys and Tardos [108] who also showed that there is no better
than 1.5-approximation for this problem unless P=NP. For machine
scheduling, on the other hand, an EPTAS is known [5, 73]. The case
with a constant number of types was first considered by Bonifaci and
Wiese [20] and in a closely related setting by Bonifaci, Wiese and
Baruah [144]. They presented a PTAS for both cases. Furthermore,
Gehrke et al. [52] presented a PTAS with an improved running time of
O(Kn) +mO(K/ε2)(log(m)/ε)O(K2). We also study three other variants
of the problem:

santa claus problem . We also consider the reverse objective of
maximizing the minimum machine load, that is:

Cmin(σ) = min
i∈M

∑
j∈σ−1(i)

pij

This problem is known as max-min fair allocation or the Santa Claus
problem. The intuition behind these names is that the jobs are inter-
preted as goods (e.g. presents), the machines as players (e.g. children),
and the processing times as the values of the goods from the perspec-
tive of the different players. Finding an assignment that maximizes the
minimum machine load means, therefore, finding an allocation of the
goods that is in some sense fair (making the least happy kid as happy
as possible). We will refer to the problem as Santa Claus problem, in
the following, but otherwise stick to the scheduling terminology.

15

16 unrelated scheduling with few types

For the Santa Claus problem, no constant approximation algorithm
is known. The best rate so far is O(nε) and due to Bateni et al. [13]
and Chakrabarty et al. [23] with a running time of O(n1/ε) for any
ε > 0.

uniform types . Two machines i and i ′ have the same uniform
machine type if there is a scaling factor s such that pij = spi ′j for each
job j. While jobs behave on machines of the same type as they do on
identical machines, they behave of machines of the same uniform type
like they do on uniformly related machines. Hence, we may assume
that the input consists of job sizes ptj depending on the job j and the
uniform type t, together with uniform machine types ti, and machine
speeds si such that pij = ptij/si. Note that K = 1 is equivalent to
uniform scheduling in this case.

To the best of our knowledge,this case has not been studied before,
but we argue that it is a natural extension of the case with a constant
number of regular machine types and also a sensible special case
of the general unrelated scheduling. For the special case of uniform
scheduling, an EPTAS due to Jansen [72] is known.

vector scheduling . In the D-dimensional vector scheduling
variant of unrelated scheduling, for each job j and machine i a pro-
cessing time vector pij = (p

(1)
ij , . . . ,p(D)

ij) is given, and the makespan
of a schedule σ is defined as the maximum load any machine receives
in any dimension:

Cmax(σ) = max
i∈M

∥∥∥ ∑
j∈σ−1(i)

pij

∥∥∥∞ = max
i∈M,d∈[D]

∑
j∈σ−1(i)

p
(d)
ij

Machine types are defined correspondingly. We consider the case that
both K andD are constant and, as in the one-dimensional case, we may
assume that the input consist of processing time vectors depending
on types and jobs and machine multiplicities.

A PTAS for this problem has been presented in the work by Bonifaci
and Wiese [20]. Before, the vector scheduling problem has been studied
for the special case of identical machines by Chekuri and Khanna [26].
They achieved a PTAS for the case that D is constant and an O(log2D)-
approximation for the case that D is arbitrary.

results and methodology. The main result of this chapter is
the following:

theorem 3 .1 : There is an EPTAS for both scheduling on unrelated
parallel machines and the Santa Claus problem with a constant number
K of different machine types with running time 2O(K log(K)1/ε log4 1/ε) +

poly(|I|).

First, we present a basic version of the EPTAS for unrelated schedul-
ing with a running time doubly exponential in 1/ε. For this EPTAS

3.1 introduction 17

we use the dual approximation approach by Hochbaum and Shmoys
[65] to get a guess T of the optimal makespan opt. Then, we further
simplify the problem via geometric rounding of the processing times.
Next, we formulate a mixed integer linear program (MILP) based on
the classical configuration ILP with a constant number of integral
variables that encodes a relaxed version of the problem. We solve it
with the algorithm by Lenstra and Kannan [88, 89]. The fractional
variables of the MILP have to be rounded and we achieve this with a
properly designed flow network utilizing flow integrality and causing
only a small error. With an additional error, the obtained solution
can be used to construct a schedule with makespan (1+O(ε))T . This
procedure is described in detail in Section 3.2. Building upon the basic
EPTAS we achieve the improved running time using techniques by
Jansen [72] and by Jansen et al. [73]. The basic idea of these techniques
is to make use of results concerning the existence of simple structured
solutions of integer linear programs (ILPs). In particular, these results
can be used to guess the non-zero variables of the MILP because they
sufficiently limit the search space. We show how these techniques can
be applied in our case in Section 3.3. Furthermore, we present efficient
approximation schemes for several other problem variants thereby
demonstrating the flexibility of our approach. In particular, we can
adapt all our techniques to the Santa Claus problem yielding the result
stated above. This is covered in Section 3.4 and in Section 3.5 we show:

theorem 3 .2 : There is an EPTAS for scheduling on unrelated
parallel machines with a constant number K of different uniform
machine types with running time 2O(K log(K)1/ε3 log5 1/ε) + poly(|I|).

We achieve this with a non-trivial combination of the ideas of Section
3.2 with techniques for scheduling on uniformly related machines by
Jansen [72]. Finally, in Section 3.6, we revisit the unrelated vector
scheduling problem that was studied by Bonifaci and Wiese [20]. We
show that an additional rounding step—similar to the one in [26]—
together with a slight modification of the MILP and the rounding
procedure yield an EPTAS for this problem as well.

theorem 3 .3 : There is an EPTAS for vector scheduling on unre-
lated parallel machines with constant dimension D and a constant
number K of different machine types.

Note that our results may also be seen as fixed parameter tractable
algorithms (see Section 2.1) for the parameters 1/ε and K (and D). In
the last section, we elaborate on possible directions for future research.

further related work . It is well known that the unrelated
scheduling problem admits an FPTAS in the case that the number
of machines is considered constant [67], and we already mentioned
the seminal work by Lenstra et al. [108]. Furthermore, the problem
of unrelated scheduling with a constant number of machine types is

18 unrelated scheduling with few types

strongly NP-hard because it is a generalization of the strongly NP-hard
problem of machine scheduling, where the execution times of the jobs
do not depend on the machines. Therefore, an FPTAS cannot be hoped
for, but there is a classical PTAS result due to Hochbaum and Shmoys
[65] for this case. The same authors also provided the first PTAS for
scheduling on uniform parallel machines [66], where each job i has
a size pj, each machine i has a speed si, and we have pij = pj/si.
For both of these problems, there are EPTAS results due to Alon et
al. [5] for the identical and due to Jansen [72] for the uniform case.
The EPTAS for scheduling on identical parallel machines with the best
asymptotic running time so far was presented by Jansen, Klein and
Verschae [73]. They achieve a running time of 2O(1/ε log4 1/ε) + poly(n).
On the other hand, Chen, Ye and Zhang [30] showed that we cannot
hope for an EPTAS with a sub-linear dependency in 1/ε in the expo-
nent, unless the exponential time hypothesis (see [69]) fails. All the
above EPTAS results employ some version of the classical configura-
tion ILP (integer linear program), which was originally introduced by
Gilmore and Gomory [55] in the context of the closely related bin
packing problem.

For unrelated scheduling with a constant number of machine types,
the case K = 2 has been studied: Imreh [70] designed heuristic algo-
rithms with rates 2+(m1− 1)/m2 and 4− 2/m1, and Bleuse et al. [17]
presented an algorithm with rate 4/3+ 3/m2 and moreover a (faster)
3/2-approximation for the case that for each job the processing time
on the second machine type is at most the one on the first. Moreover,
Raravi and Nélis [128] designed a PTAS for the case with two machine
types. In 2018, Kones and Levin [103] presented an EPTAS for a prob-
lem that generalizes many of the problems considered in this chapter
and the setting with uniform types in particular.

Interestingly, unrelated scheduling is in P if both the number of
machine types and the number of job types is bounded by a constant.
This is implied by a result due to Chen et al. [31] building upon a re-
sult by Goemans and Rothvoss [56]. Job types are defined analogously
to machine types, i.e., two jobs j, j ′ have the same type, if pij = pij ′

for each machine i. In this case the matrix (pij) has only a constant
number of distinct rows and columns. Note that both the number of
machine types and uniform machine types bounds the rank of this
matrix. However, the case of unrelated scheduling where the matrix
(pij) has constant rank turns out to be much harder: Already for the
case with rank 3, the problem is APX-hard [31], and for rank 4 an
approximation algorithm with rate smaller than 3/2 can be ruled out
unless P=NP [30]. In a rather recent work, Knop and Koutecký [100]
considered the number of machine types as a parameter from the
perspective of fixed parameter tractability. They showed that unre-
lated scheduling is fixed parameter tractable for the parameters K
and maxpi,j. Chen et al. [31] extended this, showing that unrelated

3.2 basic eptas 19

scheduling is fixed parameter tractable for the parameters maxpi,j
and the rank of the processing time matrix.

For the case that the number of machines is constant, the Santa
Claus problem behaves similar to the unrelated scheduling prob-
lem: there is an FPTAS that is implied by a result due to Woeginger
[147]. In the general case however, so far no approximation algo-
rithm with a constant approximation guarantee has been found. The
results by Lenstra et al. [108] can be adapted to show that there
is no approximation algorithm with a rate smaller than 2, unless
P=NP, and to get an algorithm that finds a solution with value at
least opt(I) − maxpi,j, as was done by Bezáková and Dani [15]. Since
maxpi,j could be bigger than opt(I), this does not provide a (multi-
plicative) approximation guarantee. Bezáková and Dani also presented
a simple (n−m+ 1)-approximation, and an improved approximation
guarantee of O(

√
n log3 n) was achieved by Asadpour and Saberi [9].

3.2 basic eptas

In this section, we describe a basic EPTAS for unrelated scheduling
with a constant number of machine types with a running time doubly
exponential in 1/ε. W.l.o.g. we assume ε < 1. Furthermore, log(·)
denotes the logarithm to the base 2 and for k ∈ Z>0 we write [k] for
{1, . . . ,k}.

First, we simplify the problem via the classical dual approximation
concept by Hochbaum and Shmoys [65] (see Section 2.2), and therefore
assume that a target makespan T is given. Note that a constant approx-
imation for unrelated scheduling is known and hence the additional
effort due to the binary search is only a constant factor. Next, we
present a brief overview of the algorithm for the simplified problem
followed by a detailed description and analysis.

algorithm 3 .4.

1. Simplify the input via geometric rounding with an error of εT .

2. Build the mixed integer linear program MILP(T̄), and solve it
with the algorithm by Lenstra and Kannan (T̄ = (1+ ε)T).

3. If there is no solution, report that there is no solution with
makespan T .

4. Generate an integral solution for MILP(T̄ + εT + ε2T) via a flow
network utilizing flow integrality.

5. The integral solution is turned into a schedule with an additional
error of ε2T due to the small jobs.

simplification of the input. We construct a simplified in-
stance Ī with modified processing times p̄tj. If a job j has a processing

20 unrelated scheduling with few types

time bigger than T for a machine type t ∈ [K], we set p̄tj =∞. We call
a job big (for machine type t) if ptj > ε2T and small otherwise. We
perform a geometric rounding step for each job j with ptj <∞, that
is, we set p̄tj = (1+ ε)xε2T with x = dlog1+ε(ptj/(ε

2T))e.
lemma 3 .5. If there is a schedule with makespan at most T for I, then
the same schedule has makespan at most (1+ ε)T for instance Ī; and any
schedule for instance Ī can be turned into a schedule for I without increase in
the makespan.

We will search for a schedule with makespan T̄ = (1+ ε)T for the
rounded instance Ī.

We establish some notation for the rounded instance. For any
rounded processing time p, we denote the set of jobs j with p̄tj = p
by Jt(p). Moreover, for each machine type t, let St and Bt be the
sets of small and big rounded processing times. Obviously, we have
|St| + |Bt| 6 n. Furthermore, |Bt| is bounded by a constant: Let N
be such that (1+ ε)Nε2T is the biggest rounded processing time for
all machine types. Then we have (1+ ε)N−1ε2T 6 T and therefore
|Bt| 6 N 6 log(1/ε2)/ log(1+ ε) + 1 6 1/ε log(1/ε2) + 1 (using ε 6 1).

milp. For any set of processing times P, we call the P-indexed
vectors of non-negative integers ZP>0 configurations (for P). The size
Λ(C) of configuration C is given by

∑
p∈P Cpp. For each t ∈ [K],

we consider the set Ct(T̄) of configurations C for the big processing
times Bt and with Λ(C) 6 T̄ . Given a schedule σ, we say that a
machine i of type t obeys a configuration C if the number of big
jobs with processing time p that σ assigns to i is exactly Cp for each
p ∈ Bt. Since the processing times in Bt are bigger than ε2T , we
have

∑
p∈Bt Cp 6 1/ε2 for each C ∈ Ct(T̄). Therefore, the number of

distinct configurations in Ct(T̄) can be bounded by:

(1/ε2 + 1)N < (1/ε2 + 1)
1/ε log(1/ε2)+1

= 2log(1/ε2+1)1/ε log(1/ε2)+1 ∈ 2O(1/ε log2 1/ε)

We define a mixed integer linear program MILP(T̄) in which con-
figurations are chosen integrally and jobs are assigned fractionally to
machine types. Note that we will call a solution of a MILP integral
if both the integral and fractional variables have integral values. We
introduce variables zC,t ∈ Z>0 for each machine type t ∈ [K] and
configuration C ∈ Ct(T̄), and xj,t > 0 for each machine type t ∈ [K]

and job j ∈ J. For p̄tj =∞, we set xj,t = 0. Besides this, the MILP has
the following constraints:∑

C∈Ct(T̄)

zC,t = mt ∀t ∈ [K] (3.1)

∑
t∈[K]

xj,t = 1 ∀j ∈ J (3.2)

3.2 basic eptas 21

∑
j∈Jt(p)

xj,t 6
∑

C∈Ct(T̄)

CpzC,t ∀t ∈ [K],p ∈ Bt (3.3)

∑
C∈Ct(T̄)

Λ(C)zC,t +
∑
p∈St

p
∑

j∈Jt(p)

xj,t 6 mtT̄ ∀t ∈ [K] (3.4)

Because of Constraint (3.1), the number of chosen configurations for
each machine type equals the number of machines of this type. Due to
Constraint (3.2), the variables xj,t encode the fractional assignment of
jobs to machine types. Moreover, for each machine type, it is ensured
with Constraint (3.3) that the summed up number of big jobs of each
size is at most the number of big jobs that are used in the chosen
configurations for the respective machine type. Lastly, (3.4) guarantees
that the overall processing time of the configurations and small jobs
assigned to a machine type does not exceed the area mtT̄ . It is easy to
see that the MILP models a relaxed version of the problem:

lemma 3 .6. If there is schedule with makespan T̄ , then there is a feasible
(integral) solution of MILP(T̄); and if there is a feasible integral solution for
MILP(T̄), then there is a schedule with makespan at most T̄ + ε2T .

Proof. Let σ be a schedule with makespan T̄ . Each machine of type
t obeys exactly one configuration from Ct(T̄), and we set zC,t to be
the number of machines of type t that obey C with respect to σ.
Furthermore, for a job j∗ let t∗ be the type of machine σ(j∗). We set
xj∗,t∗ = 1 and xj∗,t = 0 for t 6= t∗. It is easy to check that all conditions
are fulfilled.

Now, let (zC,t, xj,t) be an integral solution of MILP(T̄). Using (3.2),
we can assign the jobs to distinct machine types based on the x vari-
ables. The z variables can be used to assign configurations to machines
such that each machine receives exactly one configuration (utilizing
(3.1)). Based on these configurations, we can create slots for the big
jobs, and, for each type t, we can successively assign all of the big jobs
assigned to this type to slots of the size of their processing time be-
cause of (3.3). Now, for each type, we can iterate through the machines
and greedily assign small jobs. When the makespan T̄ is exceeded due
to some job, we stop assigning to the current machine and continue
with the next. Because of (3.4), all small jobs can be assigned in this
fashion. Since the small jobs have size at most ε2T , we get a schedule
with makespan at most T̄ + ε2T .

We have K2O(1/ε log2 1/ε) integral variables, i.e., a constant number.
Therefore, MILP(T̄) can be solved in polynomial time with the follow-
ing classical result due to Lenstra [88] and Kannan [89]:

theorem 3 .7 : A mixed integer linear program with d integral
variables and encoding size s can be solved in time dO(d)poly(s).

rounding . In this paragraph, we describe how a feasible solution
(zC,t, xj,t) for MILP(T̄) can be transformed into an integral feasible

22 unrelated scheduling with few types

α
...

1

1

...

...

...

...

...

1

1

1

1

ω

η1,p

ηK,p

u1,p

uK,p

Figure 3.1: The flow network used for the rounding of the fractional variables.

solution (z̄C,t, x̄j,t) for MILP(T̄ + εT + ε2T), where the second MILP
is defined using the same configurations but properly changed right
hand side. This is achieved via a flow network utilizing flow integrality.

For any (small or big) processing time p, let ηt,p = d
∑
j∈Jt(p) xj,te

be the rounded up (fractional) number of jobs with processing time p
that are assigned to machine type t. Note that for big job sizes p ∈ Bt,
we have ηt,p 6

∑
C∈Ct(T̄)CpzC,t because of (3.3) and because the

right hand side is an integer.
Now, we describe the flow network G = (V ,E) with source α and

sink ω. For each job j ∈ J, there is a job node vj and an edge (α, vj)
with capacity 1 connecting the source and the job node. Moreover,
for each machine type t and processing time p ∈ Bt ∪ St, we have a
processing time node ut,p. The processing time nodes are connected
to the sink via edges (ut,p,ω) with capacity ηt,p. Lastly, for each job j
and machine type t with p̄t,j <∞, we have an edge (vj,ut,p̄t,j) with
capacity 1 connecting the job node with the corresponding processing
time nodes. We outline the construction in Figure 3.1. Obviously we
have |V | 6 (K+ 1)n+ 2 and |E| 6 (2K+ 1)n.

lemma 3 .8. G has a maximum flow f with value |f| = n.

Proof. Since the outgoing edges from α have summed up capacity n, n
is a trivial upper bound for the maximum flow. The solution (zC,t, xj,t)
for MILP(T̄) can be used to design a flow f with value n by setting
f((α, vj)) = 1, f((vj,ut,p̄t,j)) = xj,t and f((ut,y,ω)) =

∑
j∈Jt(y) xj,t. It

is easy to check that f is indeed a feasible flow with value n.

Using the Ford-Fulkerson algorithm, an integral maximum flow
f∗ can be found in time O(|E||f∗|) = O(Kn2). Due to flow conserva-
tion, for each job j, there is exactly one machine type t∗ such that
f((vj,ut∗,p̄t∗ ,j)) = 1, and we set x̄j,t∗ = 1 and x̄j,t = 0 for t 6= t∗. More-
over, we set z̄C,t = zC,t. Obviously, (z̄C,t, x̄j,t) satisfies (3.1) and (3.2).
Furthermore, (3.3) is fulfilled because of the capacities and because

3.3 better running time 23

ηt,p 6
∑
C∈Ct(T̄)CpzC,t for big job sizes p. Due to the geometric

rounding and the convergence of the geometric series, we have:

∑
p∈St

p 6 ε2T
∞∑
i=0

(1+ ε)−i = ε2T
1+ ε

ε

This together with
∑
j∈Jt(p) x̄j,t 6 ηt,p <

∑
j∈Jt(p) xj,t + 1 yields:∑

p∈St

p
∑

j∈Jt(p)

x̄j,t <
∑
p∈St

p
∑

j∈Jt(p)

xj,t +
∑
p∈St

p

<
∑
p∈St

p
∑

j∈Jt(p)

xj,t + ε
2T
1+ ε

ε

Hence: ∑
C∈Ct(T̄)

Λ(C)z̄C,t +
∑
p∈St

p
∑

j∈Jt(p)

x̄j,t < mt(T̄ + εT + ε
2T)

Therefore (3.4) is fulfilled as well.

analysis . The solution found for MILP(T̄) can be turned into an
integral solution for MILP(T̄ + εT + ε2T). Like described in the proof
of Lemma 3.6 this can easily be turned into a schedule with makespan
T̄ + εT + ε2T + ε2T 6 (1+ 4ε)T . It is easy to see that the running time
of the algorithm by Lenstra and Kannan (see Theorem 3.7) dominates
the overall running time. Since MILP(T̄) has O(K/ε log 1/ε+n) many
constraints, Kn fractional and K2O(1/ε log2 1/ε) integral variables, the
running time of the algorithm can be bounded by:

(K2O(1/ε log2 1/ε))O(K2O(1/ε log2 1/ε))poly((K/ε log 1/ε)|I|)

= 2K2
O(1/ε log2 1/ε)

poly(|I|)

3.3 better running time

We improve the running time of the algorithm using techniques that
utilize results concerning the existence of solutions for integer linear
programs (ILPs) with a certain simple structure. In a first step, we can
reduce the running time to be only singly exponential in 1/ε with a
technique by Jansen [72]. Then we further improve the running time
to the one claimed in Theorem 3.1 with a result by Jansen et al.[73].
Both techniques rely upon the following result about integer cones by
Eisenbrandt and Shmonin [43]:

theorem 3 .9 : Let X ⊂ Zd be a finite set of integer vectors and
let b ∈ int-cone(X) = {

∑
x∈X λxx | λx ∈ Z>0}. Then there is a subset

X̃ ⊆ X such that b ∈ int-cone(X̃) and |X̃| 6 2d log(4dM), with M =

maxx∈X ‖x‖∞.

24 unrelated scheduling with few types

first improvement. For the first improvement of the running
time, this theorem is used to show:

corollary 3 .10. MILP(T̄) has a feasible solution where for each machine
type as few as O(1/ε log2 1/ε) of the corresponding integer variables are
non-zero.

We get the better running time by guessing the non-zero variables
and removing all the others from the MILP. The number of possibilities
of choosing O(1/ε log2 1/ε) elements out of a set of 2O(1/ε log2 1/ε) ele-
ments can be bounded by 2O(1/ε2 log4 1/ε). Considering all the machine
types, we can bound the number of guesses by 2O(K/ε2 log4 1/ε). The
running time of the algorithm by Lenstra and Kannan (see Theorem
3.7) with O(K/ε log2 1/ε) integer variables can be bounded by:

O(K/ε log2 1/ε)O(K/ε log2 1/ε)poly(|I|) = 2O(K log(K)1/ε log3 1/ε)poly(|I|)

This yields a running time of:

2O(K log(K)1/ε2 log4 1/ε)poly(|I|)

Proof of Corollary 3.10. We consider the configuration ILP for schedul-
ing on identical machines. Let m ′ be a given number of machines,
P be a set of processing times with multiplicities kp ∈ Z>0 for each
p ∈ P, and let C ⊆ ZP>0 be some finite set of configurations for P. The
configuration ILP for m ′, P, k = (kp)p∈P, and C is given by:∑

C∈C
CpyC = kp ∀p ∈ P (3.5)∑
C∈C

yC = m ′ (3.6)

yC ∈ Z>0 ∀C ∈ C (3.7)

The default case that we will consider most of the time is that C

is given by a target makespan T that upper bounds the size of the
configurations.

Let us assume we had a feasible solution (z̃C,t, x̃j,t) for MILP(T̄).
For each t ∈ [K] and p ∈ Bt, we set k̃t,p =

∑
C∈Ct(T̄)Cpz̃C,t. We fix

a machine type t. By setting yC = z̃C,t, we get a feasible solution
for the configuration ILP given by mt, Bt, k̃t and Ct(T̄). Theorem
3.9 can be used to show the existence of a solution for the ILP with
only a few non-zero variables: Let X be the set of column vectors
corresponding to the left hand side of the ILP and b be the vector
corresponding to the right hand side. Then b ∈ int-cone(X) holds and
Theorem 3.9 yields that there is a subset X̃ of Xwith cardinality at most
2(|Bt|+ 1) log(4(|Bt|+ 1)1/ε2) ∈ O(1/ε log2 1/ε) and b ∈ int-cone(X̃).
Therefore, there is a solution (y̆C) for the ILP with O(1/ε log2 1/ε)
many non-zero variables. If we set z̆C,t = y̆C and x̆j,t = x̃j,t and
perform corresponding steps for each machine type, we get a solution

3.3 better running time 25

(z̆C,t, x̆j,t) that obviously satisfies Constraints (3.1),(3.2) and (3.3) of
MILP(T̄). The last constraint is also satisfied because the number of
covered big jobs of each size does not change and therefore the overall
size of the configurations does not change either for each machine
type.

further improvement. We show how the running time can be
further improved using the techniques by Jansen et al. presented in
[73]. In the following, we first state a slightly generalized version of
the result. Although the proof is essentially the same as in the original
work [73], we do state it—mainly for the sake of self-containment, but
also because it contains minor changes. Next, we show how the results
can be used to get the improved running time.

thin solutions . Again, let m ′ be a given number of machines
and P be a set of processing times with multiplicities kp ∈ Z>0 for
each p ∈ P. Furthermore, let Ť and T̂ be some load bounds and
C(Ť , T̂) the set of configurations (for P) with size at least Ť and at most
T̂ . Additionally, we set C(T̂) = C(0, T̂). The support of any vector of
numbers v is the set of indices with non-zero entries, i.e., supp(v) =
{i | vi 6= 0}. A configuration C ∈ C(Ť , T̂) is called simple if the size
of its support is at most log(T̂ + 1) and complex otherwise. The set
of simple and complex configurations is denoted as Cs(Ť , T̂) and
Cc(Ť , T̂), respectively. It is easy to see that there are only few simple
configurations:

Remark 3.11. |Cs(Ť , T̂)| 6 |Cs(T̂)| = 2O(log2(T̂)+log2(|P|))

The result by Jansen et al. [73] with the slight generalization that
we consider C(Ť , T̂) instead of C(T̂) is the following. Note that the
generalization is not needed in this section but in the next one when
we consider the Santa Claus problem.

theorem 3 .12 : Let the configuration ILP for m ′, P, k, and C(Ť , T̂)
have a feasible solution, and let both the makespan bounds Ť and T̂ ,
as well as the processing times from P be integral. Then there is a
solution (yC) for the ILP that satisfies the following conditions:

1.
∑

Cc(Ť ,T̂) yC 6 2(|P| + 1) log(4(|P| + 1)T̂) and yC 6 1 for C ∈
Cc(Ť , T̂).

2. |supp(y)| 6 4(|P|+ 1) log(4(|P|+ 1)T̂).

We will call solutions with the above properties thin. The theorem
can be proved using two lemmata:

lemma 3 .13. Let X ⊂ Zd be a finite set of integer vectors with |X| >

d log(2|X|M+ 1) where M = maxx∈X ‖x‖∞. Then there exist two disjoint
subsets A,B ⊆ X with

∑
x∈A x =

∑
x∈B x.

26 unrelated scheduling with few types

Proof. For each X ′ ⊆ X, we have ‖
∑
x∈X ′ x‖∞ 6 |X|M and therefore

at most (2|X|M+ 1)d distinct vectors that can be constructed in this
fashion. On the other hand, there are 2|X| > (2|X|M+ 1)d sets X ′ ⊆ X.
Hence, there are two subsets A,B ⊆ X with

∑
x∈A x =

∑
x∈B x. By

excluding their intersection from both sets, we get disjoint sets with
the same property concluding the proof.

This lemma is due to Eisenbrand and Shmonin [43] and one of the
main tools in the proof of Theorem 3.9. The second lemma is due to
Jansen et al. [73]:

lemma 3 .14. Let C ∈ Cc(Ť , T̂) be a complex configuration. There exist
two configurations C ′,C ′′ ∈ C(Ť , T̂) such that C ′ + C ′′ = 2C, Λ(C ′) =

Λ(C ′′) = Λ(C), supp(C ′) ⊂ supp(C), and supp(C ′′) ⊂ supp(C).

Proof. For each S ⊆ supp(C), let CS be the configuration given by
CSp = Cp if p ∈ S and CSp = 0 otherwise. Note that CS ∈ C(0, T̂).
There are exactly 2|supp(C)| such configurations, 2|supp(C)| > T̂ + 1

since C is complex, and we have Λ(CS) 6 Λ(C) 6 T̂ , as well as
Λ(CS) ∈ {0, . . . , T̂ }. Hence, there are two distinct sets S1,S2 ⊆ supp(C)
such that Λ(CS1) = Λ(CS2) > 0, and we may assume that these sets
are disjoint because otherwise we can simply remove the intersection.
Let C ′ = C−CS1 +CS2 and C ′′ = C+CS1 −CS2 . Then we have:

• C ′,C ′′ ∈ C(Ť , T̂)

• Λ(C ′) = Λ(C) −Λ(CS1) +Λ(CS2) = Λ(C) = Λ(C ′′)

• 2C = 2C+CS1 −CS1 +CS2 −CS2 = C ′ +C ′′

• supp(C ′) = supp(C) \ supp(CS1) ⊂ supp(C)

• supp(C ′′) = supp(C) \ supp(CS2) ⊂ supp(C)

This completes the proof.

Proof of Theorem 3.12. For each feasible solution y of the configuration
ILP for m ′, P, k, and C(Ť , T̂), let Φ(y) =

∑
C∈Cc(Ť ,T̂) yC|supp(C)| be

a potential function and let y be a feasible solution such that Φ(y) is
minimal.

Assume that yC > 1 for some C ∈ Cc(Ť , T̂). Let C ′,C ′′ ∈ C(Ť , T̂)
be the configurations implied by Lemma 3.14 and y ′ be a solution
for the configuration ILP with y ′C = yC − 2, y ′C ′ = yC ′ + 1, y ′C ′′ =
yC ′′ + 1 and y ′C∗ = yC∗ for any other configuration C∗ ∈ C(Ť , T̂). The
properties guaranteed by Lemma 3.14 yield that y ′ is feasible and
Φ(y ′) < Φ(y) contradicting the choice of y. Hence, we have yC 6 1

for each C ∈ Cc(Ť , T̂).
Now assume that

∑
Cc(Ť ,T̂) yC > 2(|P|+ 1) log(4(|P|+ 1)T̂). Let X

be the set of column vectors given by the configuration ILP and
corresponding to configurations C ∈ Cc(Ť , T̂) such that yC > 0 (and
hence yC = 1). The assumption translates to |X| > 2(|P|+ 1) log(4(|P|+

3.3 better running time 27

1)T̂) and |P|+ 1 is the dimension of the vectors contained in X. We
now want to employ Lemma 3.13 and therefore have to show that
|X| > (|P|+ 1) log(2|X|M+ 1). First note that M 6 T̂ and 2|X| > (4(|P|+

1)T̂)2(|P|+1) due to the assumption. Furthermore, we have:

(|P|+ 1) log(2|X|M+ 1) < (|P|+ 1) log
(
2|X|2

|X|/2(|P|+1)/(4(|P|+ 1)) + 1
)

6 |X|/2+ (|P|+ 1) log
(
|X|/(2(|P|+ 1)) + 1

)
6 |X|

Hence, due to Lemma 3.13, there exist two disjoint subsets A,B ⊆ X
with

∑
x∈A x =

∑
x∈B x. Furthermore, both subsets have to be non-

empty because the vectors are strictly positive. Let yA be the vector
indexed by C(Ť , T̂) such that yAC = 1 if the column corresponding to C
is contained inA and yAC = 0 otherwise. The vector yB is defined analo-
gously. Then y ′ = y−yA+yB and y ′′ = y+yA−yB are feasible solu-
tions for the ILP as well, and we have Φ(y ′) = Φ(y) −Φ(yA) +Φ(yB)

and Φ(y ′′) = Φ(y) +Φ(yA) −Φ(yB). Hence, if Φ(yA) 6= Φ(yB), we
constructed a feasible solution with smaller potential yielding a con-
tradiction to the choice of y. If, on the other hand, Φ(yA) = Φ(yB),
the solution y ′ has the same potential, but yC > 1 for each com-
plex configuration corresponding to a vector included in B. This is
a contradiction to the considerations above. Hence,

∑
Cc(Ť ,T̂) yC 6

2(|P|+ 1) log(4(|P|+ 1)T̂).
Lastly, we can apply Theorem 3.9 to the configuration ILP given

by the simple solution as we did in the proof of Corollary 3.10. This
yields |{C|C ∈ Cs(Ť , T̂),yC > 0}| 6 2(|P|+1) log(4(|P|+1)T ′) and hence
|supp(y)| 6 4(|P|+ 1) log(4(|P|+ 1)T ′).

better running time . The improved running time can be ob-
tained by determining configurations that are equivalent to the com-
plex configurations (via guessing and dynamic programming), guess-
ing the support of the simple configurations, and solving the MILP
with few integral variables. The approach is a direct adaptation of the
one in [73] for our case. In the following, we explain the additional
steps of the modified algorithm in more detail, analyze the running
time and present an outline of the complete algorithm.

To utilize Theorem 3.12, we have to ensure that the makespan and
the processing times are integral and that the makespan is small.
After the geometric rounding step, we scale the makespan and the
processing times such that T = 1/ε3 and T̄ = (1+ ε)/ε3 holds and
the processing times have the form (1+ ε)xε2T = (1+ ε)x/ε. Next,
we apply a second rounding step for the big processing times setting
p̆t,j = dp̄t,je for p̄t,j ∈ Bt and denote the set of these processing times
by B̆t. Obviously we have |B̆t| 6 |Bt| 6 1/ε log(1/ε2) + 1. We denote
the corresponding instance by Ĭ. Since for a schedule with makespan
T for instance I there are at most 1/ε2 big jobs on any machine, we
get:

28 unrelated scheduling with few types

lemma 3 .15. If there is a schedule with makespan at most T for I, then
the same schedule has makespan at most (1+ 2ε)T for instance Ĭ; and any
schedule for instance Ĭ can be turned into a schedule for I without increase in
the makespan.

We set T̆ = (1+ 2ε)T , and, for each machine type t, we consider the
set of configurations Ct(bT̆c) for B̆t with size at most bT̆c (we do not
need an additional lower bound for the sizes of configurations in this
section). Rounding down T̆ ensures integrality and causes no problems
because all big processing times are integral. Furthermore, let Cct(bT̆c)
and Cst(bT̆c) be the subsets of complex and simple configurations. Due
to Remark 3.11, we have:

|Cst(bT̆c)| ∈ 2O(log2bT̆c+log2 |B̆t|) = 2O(log2 1/ε)) (3.8)

Due to Theorem 3.12 (using the same considerations concerning con-
figuration ILPs like in the last paragraph), there is a solution (z̆C, x̆j,t)
for MILP(T̆) (adjusted to this case) that uses for each machine type t at
most 4(|B̆t|+ 1) log(4(|B̆t|+ 1)bT̆c) ∈ O(1/ε log2 1/ε) many configura-
tions from Ct(bT̆c). Moreover, at most 2(|B̆t|+ 1) log(4(|B̆t|+ 1)bT̆c) ∈
O(1/ε log2 1/ε) complex configurations are used and each of them is
used only once. Since each configuration corresponds to at most 1/ε2

many jobs, there are at most O(1/ε3 log2 1/ε) many jobs for each type
corresponding to complex configurations. Hence, we can determine
the number of complex configurations mct for machine type t along
with the number of jobs kct,p with processing time p ∈ B̆t that are
covered by a complex configuration in (1/ε3 log2 1/ε)O(K/ε log 1/ε) =

2O(K/ε log2 1/ε) many steps via guessing. Now, we can use a dynamic
program to determine configurations (with multiplicities) that are
equivalent to the complex configurations in the sense that their size
is bounded by bT̆c, their summed up number is mct , and they cover
exactly kct,p jobs with processing time p.

The dynamic program can be defined as follows. For each i ∈
{0, 1, . . . ,mct }, there is a layer, and, in each layer, we compute nodes
labeled with B̆t-indexed vectors y of non-negative integers with yp 6
kct,p. A node with label y in layer i is supposed to encode that yp
jobs of size p can be covered by i configurations from Cct(bT̆c). In
layer 0, there is only one node with label (0, . . . , 0), and for each
possible y, there is a node v with this label present in layer i > 0

if there is a predecessor node u with label y ′ in layer i − 1 and a
configuration C ∈ Ct(bT̆c) such that y = y ′ + C. In this case, the
nodes v and u are connected with an edge labeled with C. Now, a
path from the node with label (0, . . . , 0) in layer 0 to the node with
label (kct,p)p∈B̆ corresponds to a proper selection of configurations. We
denote the set of configurations the program computes with C̃t and
the multiplicities with z̃C for C ∈ C̃t. It is easy to see that the running
time of such a program can be bounded by O(mct(

∏
p∈B̆t(k

c
t,p + 1))

2).
Using mct ∈ O(1/ε log2 1/ε) and kct,p ∈ O(1/ε3 log2 1/ε), this yields

3.3 better running time 29

a running time of K2O(1/ε log2 1/ε) when considering all the machine
types.

Having determined configurations equivalent to the complex ones,
we may just guess the simple configurations. For each machine type,
there are at most 2O(log2 1/ε) simple configurations and the number of
configurations we need is bounded by O(1/ε log2 1/ε). Therefore, the
number of needed guesses is bounded by 2O(K/ε log4 1/ε). Now we can
solve a modified version of MILP(T̆) in which zC is fixed to z̃C for C ∈
C̃t and only variables zC ′ corresponding to the guessed simple config-
urations are used. The running time for the algorithm by Lenstra and
Kannan can again be bounded by 2O(K logK1/ε log3 1/ε)poly(|I|). Thus we
get an overall running time of 2O(K logK1/ε log4 1/ε)poly(|I|). Considering
the two cases 2O(K logK1/ε log4 1/ε) < poly(|I|) and 2O(K logK1/ε log4 1/ε) >
poly(|I|) yields the claimed running time of:

2O(K log(K)1/ε log4 1/ε) + poly(|I|)

Hence, the proof of the part of Theorem 3.1 concerning unrelated
scheduling is complete. We conclude this section with a summary of
the complete algorithm.

algorithm 3 .16.

1. Simplify the input via scaling, geometric rounding and a second
rounding step for the big jobs with an error of 2εT . We now have
T = 1/ε3.

2. Guess the number of machines mct with a complex configuration
for each machine type t along with the number kct,p of jobs with
processing time p covered by complex configurations for each
big processing time p ∈ B̆t.

3. For each machine type t, determine via dynamic programming
configurations that are equivalent to the complex configurations.

4. Guess the simple configurations used in a thin solution.

5. Build the simplified mixed integer linear program MILP(T̆) in
which the variables for configurations from step 3 are fixed and
only integral variables for configurations guessed in step 4 are
used. Solve it with the algorithm by Lenstra and Kannan.

6. If there is no solution for each of the guesses, report that there is
no solution with makespan T .

7. Generate an integral solution for MILP(T̆ + εT + ε2T) via a flow
network utilizing flow integrality.

8. With an additional error of ε2T due to the small jobs, the integral
solution is turned into a schedule.

30 unrelated scheduling with few types

3.4 the santa claus problem

Adapting the result for unrelated scheduling, we achieve an EPTAS
for the Santa Claus problem. It is based on the basic EPTAS together
with the second running time improvement. In the following, we show
the needed adjustments.

preliminaries . W.l.o.g. we present a (1 − ε)−1-approximation
instead of a (1+ ε)-approximation. Moreover, we assume ε < 1 and
that m 6 n because otherwise the problem is trivial.

The dual approximation method can be applied in this case as
well. However, since we have no approximation algorithm with a
constant rate, the binary search is slightly more expensive. Still, we
can use for example the algorithm by Bezáková and Dani [15] to find
a bound B for the optimal makespan with B 6 opt 6 (n−m+ 1)B.
In O(log((n−m)/ε)) many steps we can find a guess for the optimal
minimum machine load T∗ such that T∗ 6 opt < T∗+εB and therefore
T∗ > (1− ε)opt. It suffices to find a procedure that given an instance
and a guess T outputs a solution with objective value at least (1−αε)T
for some constant α.

Concerning the simplification of the input, we first scale the running
times and the makespan such that T = 1/ε3. Then we set the process-
ing times that are bigger than T equal to T . Next, we round the pro-
cessing times down via geometric rounding: We set p̄t,j = (1− ε)xε2T

with x = dlog1−ε ptj/(ε
2T)e. The number of big jobs for any machine

type is again bounded by 1/ε log(1/ε2) ∈ O(1/ε log 1/ε). For the big
jobs, we apply the second rounding step setting p̆t,j = bp̄t,jc and
denote the resulting big processing times with B̆t, the corresponding
instance by Ĭ, and the occurring small processing times by St. The
analogue of Lemma 3.15 holds, i.e. at the cost of 2εT we may search
for a solution for the rounded instance Ĭ. We set T̆ = (1− 2ε)T .

milp. In the Santa Claus problem, it makes sense to use configu-
rations of size bigger than T̆ . On the other hand, it also makes sense
to consider smaller configurations, due to the small jobs. Let Ť = bT̆c
and T̂ = Ť + max{p̆t,j | t ∈ [K], j ∈ B̆t}. We will show that it suffices to
consider configurations with size at most T̂ , and, for each machine
type t, we denote the corresponding set of configurations by Ct(T̂).
Again we can bound Ct(T̂) by 2O(1/ε log2 1/ε). The MILP has integral
variables zC,t for each such configuration and fractional ones like
before. Constraints (3.1), (3.2), and (3.3) can be adapted directly, but
Constraint (3.4) has to be changed more. For this we partition Ct(T̂)

into the set Ct(Ť , T̂) of big configurations with size at least Ť and
the set Ct(Ť − 1) of small configurations with size at most Ť − 1. The
big configurations correspond to machines that are already properly
covered, while the machines corresponding to small configurations

3.4 the santa claus problem 31

need additional load due to small jobs. The MILP has the following
constraints:∑

C∈Ct(T̂)

zC,t = mt ∀t ∈ [K] (3.9)

∑
t∈[K]

xj,t = 1 ∀j ∈ J (3.10)

∑
j∈Jt(p)

xj,t >
∑

C∈Ct(T̂)

CpzC,t ∀t ∈ [K],p ∈ B̆t (3.11)

∑
C∈Ct(Ť−1)

Λ(C)zC,t +
∑
p∈St

p
∑

j∈Jt(p)

xj,t > (mt −
∑

C∈Ct(Ť ,T̂)

zC,t)T̆ ∀t ∈ [K] (3.12)

We denote the resulting MILP by MILP(T̆ , T̂) and get the analogue of
Lemma 3.6:

lemma 3 .17. If there is schedule with minimum machine load T̆ , then
there is a feasible (integral) solution of MILP(T̆ , T̂); and if there is a feasible
integral solution for MILP(T̆ , T̂), then there is a schedule with minimum
machine load at least T̆ − ε2T .

Proof. Let σ be a schedule with minimum machine load T̆ . We first
consider only the machines for which the received load due to big
jobs is at most T̂ . These machines obey exactly one configuration from
Ct(T̂), and we set the corresponding integral variables like before.
The rest of the integral variables we initially set to 0. Now, consider
a machine of type t that receives more than T̂ load due to big jobs.
We can successively remove a biggest job from the set of big jobs
assigned to the machine until we reach a subset with summed up
processing time at most T̂ and bigger than Ť . This set corresponds
to a big configuration C ′ and we increment the variable zC ′,t. The
fractional variables are set like in the unrelated scheduling case and it
is easy to verify that all constraints are satisfied.

Now, let (zC,t, xj,t) be an integral solution of MILP(T̆ , T̂). Again we
can assign the jobs to distinct machine types based on the xj,t variables
and the configurations to machines based on the zC,t variables such
that each machine receives at most one configuration. Based on these
configurations, we can create slots for the big jobs, and, for each type
t, we can successively assign big jobs until all slots are filled (utilizing
Constraint (3.11)). Now we can, for each type, iterate through the
machines that received small configurations and greedily assign small
jobs. When the load T̆ would be exceeded due to some job, we stop
assigning to the current machine (not adding the current job) and
continue with the next machine. Because of (3.12), we can cover all of
the machines by this. Since the small jobs have size at most ε2T , we
get a schedule with makespan at least T̆ − ε2T . There may be some
remaining jobs that can be assigned arbitrarily.

32 unrelated scheduling with few types

solving the milp. To solve the MILP, we again adapt the tech-
niques by Jansen et al. [73] which is slightly more complicated for the
modified MILP. Unlike in the previous section, in order to get a thin
solution that still fulfills Constraint (3.12), we have to consider big and
small configurations separately for each machine type. Note that if the
solution of the MILP is changed, Constraint (3.12) remains satisfied if
the summed up size of the small and the summed up number of the
big configurations is not changed. Given a solution (z̃C,t, x̃j,t) for the
MILP and a machine type t, we set:

m̌t =
∑

C∈Ct(Ť−1)

z̃C,t m̂t =
∑

C∈Ct(Ť ,T̂)

z̃C,t

ǩt,p =
∑

C∈Ct(Ť−1)

Cpz̃C,t k̂t,p =
∑

C∈Ct(Ť ,T̂)

Cpz̃C,t ∀p ∈ B̆t

We get two configuration ILPs: The first is given by m̌t, B̆t, ǩt and
Ct(Ť − 1); and the second is given by m̂t, B̆t, k̂t and Ct(Ť , T̂). We
can apply Theorem 3.12 to these ILPs as we have done before chang-
ing neither the summed up size of the small configurations nor the
summed up number of the big configurations. Note that, at this point,
the slight generalization of Theorem 3.12 is utilized in order to deal
with the second ILP. We denote the subsets of simple and complex
configurations contained in Ct(Ť − 1) as Cst(Ť − 1) and Cct(Ť − 1); and
use the analogue notation for Ct(Ť , T̂). We have:

corollary 3 .18. If MILP(T̆ , T̂) has a solution, then there is also a solu-
tion (zC,t, xj,t) such that for each machine type t:

1.
∑
C∈Cct(Ť−1)

zC,t 6 2(|B̆t|+ 1) log(4(|B̆t|+ 1)(Ť − 1))

2.
∑
C∈Cct(Ť ,T̂) zC,t 6 2(|B̆t|+ 1) log(4(|B̆t|+ 1)T̂)

3. zC,t 6 1 for each C ∈ Cct(Ť − 1)∪ Cct(Ť , T̂)

4. |supp(zt)| 6 4(|B̆t|+ 1)(log(4(|B̆t|+ 1)(Ť − 1)) + log(4(|B̆t|+ 1)T̂)).

Like before, the terms above can be bounded by O(1/ε log2 1/ε).
Utilizing this corollary, we can again solve the MILP rather efficiently.
For this we have to guess the numbers m̌ct and m̂ct of machines that
are covered by small and big complex configurations, respectively.
In addition, we guess the numbers of big jobs corresponding to the
complex configurations. With this, we can determine suitable con-
figurations via dynamic programming using the same approach as
we did before. In the MILP, we fix the big configurations we have
determined and guess the non-zero variables corresponding to the
simple configurations. Although this procedure is a little bit more
complicated than in the unrelated machine case, the bound for the
running time remains the same.

3.5 uniform machine types 33

rounding . To get an integral solution of the MILP, we build a
similar flow network. However, in this case ηt,p is set to be the rounded
down (fractional) number of jobs with processing time p that are
assigned to machine type t, i.e., ηt,p = b

∑
j∈Jt(p) xj,tc. We get ηt,p >∑

C∈Ct(T̂)C`zC,t for big processing times p. The flow network looks
basically the same with one important difference: The (ut,p,ω) have
a lower bound of ηt,p and an capacity of∞. We may introduce lower
bounds of 0 for all the other edges. The analogue of Lemma 3.8 holds,
that is, the flow network has a (feasible) maximum flow with value n.
Given such a flow, we can build a new solution for the MILP changing
the xj,t variables based on the flow decreasing the load due to small
jobs by at most εT + ε2T .

Flow networks with lower bounds can be solved with a two-phase
approach that first finds a feasible flow and then augments the
flow until a max flow is reached. The first problem can be reduced
to a max flow problem without lower bounds in a flow network
that is rather similar to the original one with at most two addi-
tional nodes and O(|V |) additional edges. Flow integrality still can
be used. For details we refer to [1]. The running time again can be
bounded by O(Kn2). Hence, the overall running time of the algo-
rithm is 2O(K log(K)1/ε log4 1/ε) + poly(|I|) which concludes the proof of
Theorem 3.1.

3.5 uniform machine types

We consider the problem of unrelated scheduling with a constant
number K of uniform machine types. In this version of the problem,
the input is as follows: Each job has a size ptj for each uniform
machine type t, and each machine i has a speed value si and a type
ti. The processing time of job j on machine i is given by pij = ptij/si.

We present an EPTAS and it has the same basic structure as the
ones presented so far. However, both the MILP and its rounding
are considerably more complicated. We employ ideas developed for
the EPTAS for scheduling on uniform machines by Jansen [72] and
carefully combine them with the techniques presented in the previous
sections. Note that, in this section, we have taken less effort to get a
small running time in order to keep the presentation of the result less
technical.

We set Mt = {i ∈M| ti = t} for each t ∈ [K] and s(t)max = max{si | i ∈
Mt}. For the sake of simplicity, we refer to uniform machine types as
machine types or just types.

preliminaries . Again, we may assume that a target makespan
T for instance I is given, and we employ geometric rounding to both
the job sizes and machine speeds. More precisely, if a job j has a
size bigger than Ts(t)max for a machine type t ∈ [K], we set p̄tj = ∞.

34 unrelated scheduling with few types

For each job j with ptj < ∞, we set p̄tj = (1 + ε)xε2Ts
(t)
max with

x = dlog1+ε(ptj/(ε
2Ts

(t)
max))e. Moreover, we set s̄i = s

(t)
max/(1 + ε)

y

with y = dlog1+ε(s
(t)
max/si)e and call the rounded instance Ī.

lemma 3 .19. If there is a schedule with makespan at most T for I, then
the same schedule has makespan at most (1+ ε)2T for instance Ī; and any
schedule for instance Ī can be turned into a schedule for I without increase in
the makespan.

Therefore, it suffices to search for a schedule for instance Ī with
makespan T̄ := (1+ ε)2T . For the sake of simplicity, we do not use
the (·̄)-notation in the following, i.e., we assume that the instance is
already rounded and the makespan properly increased.

We fix some notation: A job size p is called huge for a speed s if
p > Ts, big if p 6 Ts and p > ε2Ts, and small otherwise. We will not
consider assigning a job j on a machine i of type t if ptj is huge for
vi. For each machine type t, we denote the set of occurring speeds
{si | i ∈Mt} by Vt, the set of machines of type t and speed s by Mt,s,
and set mt,s = |Mt,s|. For each machine type t and speed s, let St,s
and Bt,s be the sets of occurring small and big job sizes. Furthermore,
let Pt be the set of all occurring job sizes for type t. Like before, we
have |Bt,s| ∈ O(1/ε log 1/ε). For any processing time p, we denote the
set of jobs j with ptj = p by Jt(p).

separation of machines . We will consider configurations for
each machine type t and speed value s ∈ Vt. However, the number of
distinct speed values could be dependent in m and we cannot afford
to introduce integral variables in the MILP for each of them. Instead,
we will introduce integral variables only for the fastest speeds of each
type and round the fractional variables. For the rounding approach,
we will need a constant number of machines that receive some load
from the slow speeds, and, furthermore, the speeds of these machines
have to be faster than the slow speeds by some constant factor. This
leads to a separation of the machines into three groups Gt,i for i ∈ [3]

for each machine type t. This is done in a way such that for j > i

the machines in group Gt,i are faster than the ones in group Gt,j. For
i ∈ [3] and opt ∈ {min, max}, we set s(t)i,opt := opt{si | i ∈ Gt,i}. The
partition is defined by two parameters. The first parameter

κ := max{|Bt,s|+ 1 |∀t ∈ [K], s ∈ Vt} ∈ O(1/ε log 1/ε)

controls the number of machines in the first group and the second
γ := 1/ε2 the speed-gap between the first and the third group. More
precisely:

• Gt,1 contains the κ fastest machines of type t.

• Gt,2 contains all machines of type t that are not contained in
Gt,1 and whose speed is bigger than γs(t)1,min.

3.5 uniform machine types 35

• Gt,3 contains the rest of the machines of type t.

Note that Gt,2 and Gt,3 might be empty. We denote the occurring
speeds in group Gt,i by Vt,i and call the speeds from Vt,1 ∪ Vt,2 fast
and the rest slow. With these definitions, we have (Vt,1 ∪Vt,2)∩Vt,3 =
∅ and |Vt,1|, |Vt,2| ∈ O(1/ε log(1/ε)), i.e., the fast and slow speed values
are distinct and we have only a constant number of fast speed values.
A similar separation step is also used by Jansen [72]. In that work, the
fastest group is handled differently to get a slightly improved running
time, and we remark that the same approach is applicable for the
present result as well.

milp. For each machine type t and speed s ∈ Vt, we consider
the set Ct(sT) of configurations C for the big processing times Bt,s
and with Λ(C) 6 sT . Note that |Ct(sT)| ∈ 2O(1/ε log2 1/ε) and therefore
|
⋃
s∈Vt,1∪Vt,2 Ct(sT)| ∈ 2

O(1/ε log2 1/ε).
The MILP formulation in this scenario follows the same basic ideas

but is more complicated than before. We assign jobs fractionally to
machines types and count the number of jobs of each job size that
are assigned to each machine type. If the job size is big on some
fast machine of the machine type, we require an integral number of
jobs. The main difference to the prior approaches is that we have to
deal with different speeds for each machine type, and jobs may be
handled either as big or small jobs. To deal with the former, we choose
configurations—integrally for fast machine speeds and fractionally
otherwise. Lastly, we fractionally assign job sizes to machine speeds
for which they are small. More precisely, we introduce the following
variables:

• Configuration variables z(t,s)C for each machine type t ∈ [K],
occurring speed s ∈ Vt, and configuration C ∈ Ct(sT). If s is fast,
we require z(t,s)C ∈ Z>0 and otherwise z(t,s)C > 0.

• Job assignment variables xj,t > 0 for each machine type t ∈ [K]

and job j ∈ J.

• Job size assignment variables y(t)p,s > 0 for each machine type
t ∈ [K], speed s ∈ Vt, and job size p ∈ St,s.

• Counting variables u(t)p for each machine type t ∈ [K] and job
size p ∈ Pt. If there is a fast speed s ∈ Vt,1 ∪ Vt,2 such that
p ∈ Bt,s, we require u(t)p ∈ Z>0 and otherwise u(t)p > 0.

We require xj,t = 0 if ptj = ∞, and y(t)p,s = 0 if p is big or huge for s.
Besides this, the MILP is is given by the following constraints:∑

C∈Ct(sT)

z
(t,s)
C = mt,s ∀t ∈ [K], s ∈ Vt (3.13)

36 unrelated scheduling with few types

∑
t∈[K]

xj,t = 1 ∀j ∈ J (3.14)

∑
j∈Jt(p)

xj,t 6 u
(t)
p ∀t ∈ [K],p ∈ Pt (3.15)

∑
s:p∈Bt,s

∑
C∈Ct(sT)

Cpz
(t,s)
C +

∑
s:p∈St,s

y
(t)
p,s > u

(t)
p ∀t ∈ [K],p ∈ Pt (3.16)

∑
C∈Ct(sT)

Λ(C)z
(t,s)
C +

∑
p∈St,s

py
(t)
p,s 6 mt,ssT ∀t ∈ [K], s ∈ Vt (3.17)

The Constraints (3.13) and (3.14) are very similar to constraints for the
other MILPs that we consider. For each machine type it is ensured
with the Constraints (3.15) and (3.16) that the summed up number of
jobs of each size is covered by the the chosen configurations and the
small job assignments. Furthermore, (3.17) guarantees that the overall
processing time of the configurations and small jobs assigned to a
machine speed for each type does not exceed the available area.

lemma 3 .20. If there is schedule with makespan T , then there is a feasible
(integral) solution of MILP(T); and if there is a feasible integral solution for
MILP(T), then there is a schedule with makespan at most (1+ ε2)T .

Proof. Given a schedule σ with makespan T , each machine of type
t with speed s obeys exactly one configuration from Ct(sT), and we
can set the variables zC,t accordingly. Furthermore, we set xj,tσ(j) = 1,

xj∗,t = 0 for t 6= tσ(j), u
(t)
p := |{j | tσ(j) = t,pt,j = p}|, and y

(t)
p,s :=

|{j | tσ(j) = t, sσ(j) = s,pt,j = p}|. It is easy to check that all conditions
are fulfilled.

Like we did in the proof of Lemma 3.6, given an integral solution
(z, x,y,u), we can assign the jobs to machine types and configurations
to machines. Moreover, based one the y(t)p,s variables we can assign jobs
of size p that are assigned to type t to machines of speed s on which
they are small. Because of (3.15) and (3.16), this can be done such that
the remaining jobs of size p can be scheduled into slots provided by
configurations. At this point, each unscheduled job is assigned to a
type and a speed. Utilizing (3.17), these jobs can be scheduled greedily
with an additive error of ε2T .

lemma 3 .21. The MILP has O(K(n+m)) many constraints, O(Knm) +

m2O(1/ε log2 1/ε) many variables and K2O(1/ε log2 1/ε) integral variables. It can
be solved in time:

2O(K log(K)1/ε3 log5 1/ε)poly(|I|)

Proof. The bounds for the number of constraints and variables are
easy to verify using the above considerations as well as |Vt| 6 m

and |Pt| 6 n. The running time can be achieved with the first ap-
proach presented in Section 3.3: Using Theorem 3.9, we can argue
that O(1/ε log2(1/ε)) many integral variables for each machine type

3.5 uniform machine types 37

t and speed s suffice. Therefore, the number of needed guesses is
2O(K/ε3 log5 1/ε). Running the algorithm of Lenstra and Kannan (see
Theorem 3.7) with O(K/ε2 log3(1/ε)) many integral variables takes
2O(K log(K)1/ε2 log4 1/ε)poly(|I|) time. Together we get the stated running
time.

rounding . We present rounding approaches for all fractional vari-
ables and start with the configuration variables. Again, many of the
rounding steps can be found in a similar form in the EPTAS result by
Jansen [72].

configuration variables . We fix a type t, a slow speed s ∈ Vt
and set kp :=

∑
C∈Ct(sT)Cpz

(t,s)
C for each p ∈ Bt,s. We have:∑

C∈Ct(sT)

z
(t,s)
C = mt,s (3.18)

∑
C∈Ct(sT)

Cpz
(t,s)
C = kp ∀p ∈ Bt,s (3.19)

It is easy to check that, if we replace the solution of this LP with any
other solution and change the MILP solution accordingly, the resulting
MILP solution will still be feasible. We transform the solution into
a basic feasible solution. This can be done in polynomial time with
respect to 1/ε and |I|. The LP has |Bt,s| + 1 many constraints and
therefore the solution has at most |Bt,s|+ 1 many variables greater
than 0. Now, the idea is to round down the fractional values and to
assign the respective job sizes that lost covering by the configurations
to the fastest group Gt,1. More precisely, we choose some injective
mapping ξ between the configurations C with fractional variables
z
(t,s)
C and the machines from Gt,1. This can be done due to the choice

of the parameter κ that regulates the number of machines in Gt,1. Now,
we round down z(t,s)C to the next integral value and increase y(t)p,sξ(C)

by

(dz(t,s)C e− z(t,s)C)Cp 6 Cp for each p ∈ Bt,s. We perform these steps for
all types t and slow speeds s ∈ Vt. Note that any particular variable
y
(t)
p,s might be increased several times for each speed value for which p

is big. Let ỹ(t)p,s denote the resulting increased y(t)p,s variables and z̄(t,s)C

the resulting configuration variables. For (z̄, x, ỹ,u) the Constraints
(3.13)-(3.15) obviously still hold, and it is easy to see that this is also
the case for (3.16), while (3.17) might be violated for speeds associated
with the fastest machine groups. We show that a modified version of
(3.17) still holds.

Consider a machine i ∈ Gt,1. For each slow speed value s ∈ Vt,3,
there may be one configuration C that is mapped to i. The summed
up job sizes that are reassigned to si because of this are bounded
by sT . Summing up over all speed values s ∈ Vt,3 and utilizing the

38 unrelated scheduling with few types

convergence of the geometric series, the rounding of the speed values,
and the fact that s(t)3,max 6 γs(t)1,max = 1/ε2s

(t)
1,max, we get:∑

s∈Vt,3

sT = Ts
(t)
3,max

∑
s∈Vt,3

s

s
(t)
3,max

< Ts
(t)
3,max

∞∑
i=0

1

(1+ ε)i
6 Ts(t)1,min(ε+ ε

2) 6 Tsi(ε+ ε
2)

Hence, (3.17) holds if we increase the makespan on the right hand
side by (ε+ ε2)T .

counting variables . The rounding step for the counting vari-
ables u is the easiest: We round them up and assign the extra job sizes
to the fastest machine speed in the group, that is, for each t ∈ [K]

and p ∈ Pt, we set ū(t)p = du(t)p e and increase ỹ(t)p,s∗ by ū(t)p − u
(t)
p 6 1

where s∗ = s
(t)
max. We denote the changed ỹ(t)p,s∗ by y̆(t)p,s∗ . Again, it is

easy to see that for (z̄, x, y̆, ū) the Constraints (3.13)-(3.16) still hold,
while (3.17) is violated. However, we can bound the increase the fastest
speed receives again utilizing the geometric series:∑

p∈St,s∗
p(y̆

(t)
p,s∗ − ỹ

(t)
p,s∗) 6

∑
p∈St,s∗

p 6 ε2s∗T
1+ ε

ε
= (ε+ ε2)s∗T

Hence, (3.17) holds if we further increase the makespan by (ε+ ε2)T .

job size assignment variables . Consider the Constraint (3.16)
for the solution (z̄, x, y̆, ū). Note that the right hand side and the first
sum on the left hand side are both integral. Therefore, we can scale
the y̆(t)p,s variables down such that

∑
s:p∈St,s y̆

(t)
p,s is integral for each

machine type t and job size p ∈ Pt, and (3.16) is still fulfilled. We
fix a machine type t, set kp :=

∑
s:p∈St,s y̆

(t)
p,s for each p ∈ Pt, and

assume kp ∈ Z because of the argument above. Furthermore, we set
Lt,s :=

∑
p∈St,s py̆

(t)
p,s for each s ∈ Vt. We have:∑

s:p∈St,s

y̆
(t)
p,s = kp ∀p ∈ Pt (3.20)

∑
p∈St,s

py̆
(t)
p,s = Lt,s ∀s ∈ Vt (3.21)

If we replace the values y̆(t)p,s with any other solution for the above
LP, we get an equivalent MILP solution. We can use a variation of the
classical rounding approach by Lenstra et al. [108] to transform the
solution y̆(t)p,s.

For the sake of completeness, we summarize the main ideas of the
rounding. The solution is transformed into a basic feasible one and
the following bipartite graph is considered. There are two types of

3.5 uniform machine types 39

nodes, some associated with sizes p and some with speeds s. For any
p or s, there can be at most one node; there are such nodes if and
only if there are fractional variables y̆(t)p,s ′ or y̆(t)p ′,s left; and they are

connected with an edge, if there is a fractional variable y̆(t)p,s. Using a
counting argument and some further considerations it can be shown
that this graph is a pseudoforest, i.e., all connected components are
either trees or trees with one extra edge. Furthermore, because kp is
integral, the definition of the graph together with the Constraint (3.20)
yield that all the leafs are associated to speeds. Using this structure,
we can define an injective mapping ξ from the job sizes for which
there is a fractional variable y̆(t)p,s to the speeds such that y̆(t)

p,ξ(p) is
one of the fractional variables. This can be done as follows: For each
connected component there may be at most one cycle in the graph with
alternating size and speed nodes, and a suitable injective mapping
for the corresponding sizes and speeds can easily be found by going
around the cycle and appropriately mapping consecutive nodes. After
removing the corresponding nodes and edges, only trees remain in
the graph. For each tree, we can choose an arbitrary leaf. The leaf
corresponds to a speed and its neighbor to a size, and we can map
the size to the speed and remove both corresponding nodes from the
graph. Iterating this yields the mapping ξ. All the above steps can be
performed in polynomial time in 1/ε and |I|.

We use the mapping ξ to round the variables y̆(t)p,s, and, because ξ
is injective, we can guarantee that each speed receives at most one
extra small job. More precisely, for each s ∈ Vt, we set ȳ(t)p,s = dy̆(t)p,se if
ξ(p) = s and ȳ(t)p,s = by̆(t)p,sc otherwise. For the solution (z̄, x, ȳ, ū), the
Constraints (3.13)-(3.16) still hold, while for (3.17) the makespan has
to be increased further by ε2T .

job assignment variables . The rounding of the job assignment
variables is the same as in the regular machine types case. The only
difference is that we can set ηt,p = ū

(t)
p in this case. Since all the values

ū
(t)
p are integral in this case, there is no further rounding error in this

step. Let x̄j,t be the rounded version of xj,t.
Summarizing the previous steps, the Constraints (3.13)-(3.16) hold

for the solution (z̄, x̄, ȳ, ū). Moreover, we have for each t ∈ [K] and
s ∈ Vt:∑

C∈Ct(sT)

Λ(C)z̄
(t,s)
C +

∑
p∈St,s

pȳ
(t)
p,s 6 mt,ss(1+ 2ε+ 3ε

2)T (3.22)

analysis . Summarizing the above steps, we can construct a sched-
ule with makespan at most (1+ ε)2(1+ 2ε+ 4ε2)T 6 (1+ 27ε)T (as-
suming a schedule with makespan T exists) by building and solving
the MILP, then rounding it, and lastly transforming it into a schedule
like in the proof of Lemma 3.20. Solving the MILP is again the most

40 unrelated scheduling with few types

expensive step, and with a simple case analysis we get a running time
of:

2O(K log(K)1/ε3 log5 1/ε) + poly(|I|)

3.6 vector scheduling

We present an EPTAS for D-dimensional unrelated vector schedul-
ing, where both the dimension D and the number K of machine
types are constant. In this problem variant, for each job j, a D-
dimensional processing time vector ptj = (p

(1)
tj , . . . ,p(D)

tj) is given,
and the makespan is defined as the maximum load any machine
receives in any dimension, i.e., Cmax(σ) = maxi∈M ‖

∑
j∈σ−1(i) pij‖∞.

We define P = {p
(d)
tj |d ∈ [D], t ∈ [K], j ∈ J} and P = {ptj | t ∈ [K], j ∈ J}.

The EPTAS is a direct adaptation of the one for the one dimensional
case. In the following, we briefly describe the needed extra steps and
modification. Note that we consider this result to be a proof of concept
and took little effort to optimize the running time.

preliminaries . We again use the dual approximation approach
to get a guess T of the makespan. As an upper bound for this we
can use the schedule that we get by assigning each job j to a machine
i where

∑D
d=1 p

(d)
ij is minimal. It is easy to see that this approach

yields a Dm-approximation and we can use this result for the dual
approximation like described in Section 3.4.

First, we perform rounding steps similar to those for the other
results. For each ptj ∈ P with p(d)tj > T in at least one dimension d,
we set p̄tj = (∞, . . . ,∞), and, for all other processing time vectors ptj,
we apply geometric rounding. Let θ = (ε2/D)D be some threshold
parameter. We set p̄(d)tj = (1+ ε)xθT with x = dlog1+ε(p

(d)
tj /(θT))e

yielding a rounded vector p̄tj and a corresponding rounded instance
Ī.

For a given processing time vector, the numbers that can occur
in the different dimensions may still differ strongly. This compli-
cates the problem, but we can reduce the extra complexity to some
degree via a second rounding step: For each p̄tj, we set p̃(d)tj =

max{p̄(d)tj , ‖p̄tj‖∞ε/D} yielding a rounded vector p̃tj and a correspond-
ing rounded instance Ĩ.

lemma 3 .22. If there is a schedule with makespan at most T for I, then
the same schedule has makespan at most (1+ ε)2T for instance Ĩ; and any
schedule for instance Ĩ can be turned into a schedule for I without increase in
the makespan.

Proof. Consider a schedule σwith makespan T for I. The first rounding
step may increase the makespan by a factor of (1+ ε). We fix a machine
i and a dimension d and bound the increase in load on machine i

3.6 vector scheduling 41

in dimension d for instance Ĩ. Let j be a job with σ(j) = i. If p̄(d)ij =

‖p̄ij‖∞, then job j causes no extra load on i in dimension d, and, if
p̄
(d ′)
ij = ‖p̄ij‖∞ for some dimension d ′ 6= d, there might be an increase

of at most ‖p̄ij‖∞ε/D. In fact, the summed up load machine i receives
in dimension d ′ might increase the load in d by an ε/D-factor in this
fashion. Because the load in dimension d ′ is bounded by (1 + ε)T

and there are D− 1 dimensions d ′ 6= d, the overall load increase in
dimension d on i can be up to (D− 1)(1+ ε)Tε/D 6 ε(1+ ε)T .

Hence, we may search for a schedule for instance Ĩ with makespan
T̃ := (1 + ε)2T . For the sake of simplicity, we do not use the (·̃)-
notation in the following, i.e., we assume that the instance is already
rounded and the makespan properly increased.

In this context, we call a size q ∈ P big if q > θT and small otherwise.
Furthermore, we call a processing time vector p ∈ P big if there
is a dimension d ∈ [D] such that p(d) is big and small otherwise.
Because of the second rounding step, we have p(d) > θTε/D for
each big vector p and dimension d. Let Bt and St be the sets of big
and small processing time vectors occurring on machine type t. Note
that |Bt| 6 (dlog1+ε(D/(θε))e)D 6 (3D/ε log(D/ε))D. Using these
definition, the bound on the number of big jobs is much bigger than
in the other cases. We chose this definition because in the rounding
of the MILP solution each machine may receive a big (but constant)
number of jobs for each small job size, and to bound the overall load
the small jobs have to be appropriately small.

For each processing time vector p ∈ P, we denote the set of jobs j
with ptj = p with Jt(p).

milp. Similar to the one dimensional case, for any set V of pro-
cessing time vectors, we call the V-indexed vectors of non-negative
integers ZV>0 configurations (for V), set the size Λ(C) of a configura-
tion C to be the corresponding vector of sizes, i.e., Λ(C) =

∑
p∈PCpp,

and set Ct(T) to be the set of configurations C for Bt with Λ(C) 6 TD.
Note that:

|Ct(T)| 6 (
D

θε
+ 1)(3D/ε log(D/ε))D

6 (
D

ε
)3D(3D/ε logD/ε)D 6 2(3D/ε logD/ε)D+1

The MILP is a straight-forward adaptation of the one for the one-
dimensional case with one important difference: The jobs are frac-
tionally assigned to configurations belonging to a type instead of just
being assigned to machine types. More precisely, we introduce integral
variables zC,t ∈ Z>0 for each machine type t ∈ [K] and configuration
C ∈ Ct(T) and fractional variables xj,t,C > 0 for each job j ∈ J, ma-

42 unrelated scheduling with few types

chine type t ∈ [K] and configuration C ∈ Ct(T). For ptj =∞D we set
xj,t,C = 0. MILP(T) is given by:∑

C∈Ct(T)

zC,t = mt ∀t ∈ [K] (3.23)

∑
t∈[K]

∑
C∈Ct(T)

xj,t,C = 1 ∀j ∈ J (3.24)

∑
j∈Jt(p)

xj,t,C 6 CpzC,t ∀t ∈ [K],p ∈ Bt,C ∈ Ct(T) (3.25)

∑
p∈St

p
∑

j∈Jt(p)

xj,t,C 6 (TD −Λ(C))zC,t ∀t ∈ [K],C ∈ Ct(T) (3.26)

Note that the last constraint is D-dimensional. Unlike in the other
cases, we cannot transform an integral solution for MILP(T) directly
into a schedule with only a small increase in the makespan. However,
we deal with this in the rounding step and still have:

lemma 3 .23. If there is schedule with makespan T there is a feasible
(integral) solution of MILP(T).

We can solve MILP(T) in time f(1/ε,D,K)poly(|I|) for some com-
putable function f using the algorithm by Lenstra and Kannan (see
Theorem 3.7).

rounding . Using a variation of the rounding approach for the
one dimensional case, we can transform a solution (z, x) for MILP(T)
into a schedule with a makespan of at most (1+ ε+ ε2)T . The main
difference is that we create nodes for pairs of machines and processing
time vectors instead of pairs of machine types and processing times.

For each type t, we assign configurations to machines of type t
such that for each configuration C ∈ Ct(T) exactly zC,t configurations
get assigned. Therefore, we can assume that for each machine i a
configuration C(i) is given. Based on this, we can fractionally assign
jobs to machines by setting xj,i = xj,t,C(i)/zC(i),t yielding:∑

j∈J
pijxj,i 6 T

D (3.27)

For each machine i, let Pi be the set of occurring processing time
vectors for i, that is, for each p ∈ P, we have p ∈ Pi if and only if there
is a job j with pij = p and xj,i > 0. We set ηi,p = d

∑
j∈Jt(p) xj,ie. If p

is big, we have ηi,p 6 C(i)
p because of Constraint (3.25).

Like in the one dimensional case, the flow network G = (V ,E) has
a source α and sink ω, and, for each job j ∈ J, there is a job node vj
and an edge (α, vj) with capacity 1 connecting the source and the job
node. Moreover, for each machine i, we have processing time vector
nodes ui,p for each p ∈ Pi. The processing time nodes are connected
to the sink via edges (ui,p,ω) with capacity ηi,p. Lastly, for each job
j and machine type i with xj,i > 0, we have an edge (vj,ui,pi,j) with

3.7 open problems 43

capacity 1 connecting the job node with the corresponding processing
time vector nodes. The variables xj,i yield a flow with value n that is
guaranteed to be feasible because of the constraints of the MILP.

lemma 3 .24. G has a maximum flow f with value |f| = n.

Using the Ford-Fulkerson algorithm, an integral maximum flow
f∗ can be found in time O(|E||f∗|) = O(n2m). Due to flow conser-
vation, for each job j, there is exactly one machine i∗ such that
f((vj,ui∗,pi∗j)) = 1, and we set σ(j) = i∗. Analogously to the one
dimensional case, for each big processing time vector p, the schedule
σ assigns at most C(i)

p many jobs j with pij = p to machine i, and,
for each small processing time vector p ′, one additional job j with
pij = p

′ may be assigned to i. Because of the choice of the parameter θ
and the second rounding step, we can bound the extra load i receives.

lemma 3 .25. Let q ∈ P be small and d ∈ [D]. The number of vectors
p ∈ P with p(d) = q is upper bounded by (2dlog1+ε(D/ε)e)D−1.

Proof. Let p be such a vector, d ′ 6= d and q ′ = p(d
′). Because of the

second rounding step, we have q ′ > qε/D and q > q ′ε/D p(d
′). Now,

because of the first rounding step, there are only few such processing
times q, more precisely, at most 2dlog1+ε(D/ε)e. Hence, there can
be at most (2dlog1+ε(D/ε)e)D−1 many such processing time vectors
p.

Using this lemma and the same argumentation as in the one di-
mensional case, we can bound the extra load machine i receives in
dimension d by:

(2dlog1+ε(D/ε)e)
D−1 × θT ×

∞∑
i=0

1/(1+ ε)i

6 2(1/ε log((D− 1)/ε) + 1)D−1 × (ε2/D)DT × (1+ ε)/ε

6 2(D/ε2)D−1 × (ε2/D)DT × (1+ ε)/ε

6 ε2T × (1+ ε)/ε 6 (ε+ ε2)T

Summarizing we have:

lemma 3 .26. A solution (z, x) for MILP(T) can be transformed into a
schedule with makespan at most (1+ ε+ ε2)T in time polynomial in |I| and
1/ε.

Therefore, there is an EPTAS for this case as well.

3.7 open problems

In the following, we briefly discuss some possible directions for further
studies.

44 unrelated scheduling with few types

better running times . The presented approximation schemes
have running times of the form f(1/ε,K) + poly(|I|) (or f(1/ε,K,D) +

poly(|I|) in the vector scheduling case). While we took some effort
to optimize f at least for the first two schemes, we did not optimize
the poly(|I|) part in any of the results. Furthermore, for the case
with a constant number of uniform types, one could study whether
a quadratic or linear dependence in 1/ε (ignoring polylogarithmic
dependencies) in the exponent of the f(1/ε,K) part can be achieved,
e.g., by utilizing techniques from [72] and [73]. Lastly, the EPTAS for
the vector scheduling variant is basically just a proof of concept and
we did not optimize the running time at all.

lower bound. Chen et al. [30] showed that we cannot hope for
an EPTAS with a sub-linear dependency in 1/ε in the exponent unless
the exponential time hypothesis fails. It is unclear what can be ruled
out in terms of the parameter K.

job types . In the introduction we mentioned the concept of job
types for scheduling on unrelated parallel machines: Two jobs j, j ′ are
of the same type, if they behave the same on every machine i, i.e.,
pij = pij ′ . It is unknown, whether there is a PTAS for scheduling
on unrelated parallel machines with a constant number of job types.
Furthermore, it is unknown, whether this problem is NP-hard. Indeed,
the problem is in P for important special cases: For scheduling on
identical parallel machines the number of job types is equal to the
number of distinct processing times and for the case of the restricted
assignment problem—where each job j has a size pj and its processing
time pij on machine i is either pj or ∞—the number of distinct
processing times is bounded by the number of job types and a constant
number of job types implies a constant number of machine types. Both
problems can be solved in polynomial time, if the number of distinct
processing times is constant.

4
I N T E RVA L A N D R E S O U R C E R E S T R I C T I O N S

4.1 introduction

Consider the restricted assignment problem: Given a set of machines
M and a set of jobs J each with a processing time or size pj and a
subset of eligible machines M(j) ⊆ M, the goal is to find a schedule
σ : J → M with σ(j) ∈ M(j) for each job j and minimizing the
makespan Cmax(σ) = maxi∈M

∑
j∈σ−1(i) pj.

In a seminal work, Lenstra, Shmoys and Tardos [108] presented a
2-approximation for restricted assignment and also showed that there
is no polynomial time approximation algorithm with rate smaller
than 1.5 for the problem, unless P=NP. If there are no restrictions, i.e.,
M(j) = M for each job j, we have the classical problem of machine
scheduling which is already strongly NP-hard. On the other hand,
machine scheduling is well-known to admit PTAS due to a classical
result by Hochbaum and Shmoys [65]. In recent years, the approxima-
bility of special cases of restricted assignment has been intensively
studied (see, e.g., [25, 40, 68, 85]) with one line of research focusing on
the existence of approximation schemes (see, e.g., [46, 82, 119, 122]).
In this and the following chapter, we present contributions to this
research direction.

interval restrictions . Arguably one of the most natural vari-
ants of the restricted assignment problem is the case of scheduling
with interval restrictions (RAI). In this variant, the machines are to-
tally ordered and each job is eligible on consecutive machines. More
precisely, we have M = {M1, . . . ,Mm}, and for each job j we have
M(j) = {M`, . . . ,Mr} for some indices `, r ∈ [m]. Several special cases
of RAI are known to admit a PTAS: the hierarchical case [122], where
for each job the interval of eligible machines starts with the first ma-
chine; the nested case [46, 119], where M(j) ⊆ M(j ′), M(j ′) ⊆ M(j)

or M(j) ∩M(j ′) = ∅ for each pair of jobs (j, j ′); and the inclusion-
free case [97, 135], where M(j) ⊆ M(j ′) implies that j and j ′ share
either their first or last eligible machine. Furthermore, for general RAI,
a 2− 2/(maxj∈J pj)-approximation due to Schwarz [135] is known
(assuming integral processing times); and the special case with two
distinct processing times is even polynomial time solvable [143]. Note
that the problem has also been studied in the context of online algo-
rithms (see [107, 110]).

45

46 interval and resource restrictions

The question of whether there is a PTAS for RAI has been posed by
several authors [95, 135, 143]. As the main result of this chapter, we
resolve the question in the negative:

theorem 4 .1 : There is no PTAS for scheduling with interval re-
strictions unless P=NP. 1

resource restrictions . The second variant considered in this
chapter, is the problem of scheduling with resource restrictions with
R resources (RAR(R)). Herein, a set R of R (renewable) resources is
given, each machine i has a resource capacity cr(i) and each job j has
a resource demand dr(j) for each r ∈ R. Job j is eligible on machine i if
dr(j) 6 cr(i) for each resource r. For R = 1, the problem is equivalent
to the mentioned hierarchical case and has been studied intensively
[109, 110]. Furthermore, it is not hard to see that RAI is properly
placed between RAR(1) and RAR(2) (see Section 4.3) and hence there
is a close relationship between the two problems. For arbitrary R,
the problem was mentioned in a work by Bhaskara et el. [16] under
the name of geometrically restricted scheduling2 but to the best of
our knowledge it has not been further studied up to now. There is,
however, a close relationship to the low rank version of unrelated
scheduling introduced in [16]. In the problem of unrelated scheduling,
the processing time of each job is dependent on the machine it is
scheduled on, that is, a processing time matrix (pij)j∈J,i∈M is given
in the input. Restricted assignment can be seen as a special case of
unrelated scheduling by setting pij = pj for i ∈ M(j) and pij = ∞
otherwise. In the rank D version of unrelated scheduling (LRS(D)),
the processing time matrix has a rank of at most D, or, equivalently
[31], we may assume that there are D-dimensional size vectors s(j)
for each job j and speed vectors v(i) for each machine i such that
pij =

∑D
k=1 sk(j) · vk(i). Considering the latter definition, scheduling

with resource restrictions may intuitively be seen as the restricted
assignment equivalent of low rank unrelated scheduling. It is not hard
to see that formally already for RAR(1) instances the processing time
matrix can have rank |M|. However, LRS(D) includes approximations
of any RAR(D− 1) instance with arbitrary precision (see Section 4.3
for details). The case with D = 1 of LRS(D) is equivalent to uniform
scheduling and well known to admit a PTAS [66]. Bhaskara et el. [16]
gave a quasi-polynomial time approximation scheme (QPTAS) for
D = 2, and showed that there is no PTAS or approximation algorithm
with rate smaller than 1.5 for D > 4 or D > 7 respectively. The latter
two results have been improved from D = 4 to D = 3 by Chen et
al. [31] and from D = 7 to D = 4 by Chen, Ye and Zhang [30]. We

1 There is a paper [96] claiming to have found a PTAS for RAI. However, according
to [136], the result is not correct and the authors published a revised version of the
paper [97] claiming a less general result, namely, a PTAS for the inclusion-free case.

2 The demands d(j) and capacities c(i) may be interpreted as points in R-dimensional
space.

4.1 introduction 47

present similar inapproximability results for scheduling with resource
restrictions:

theorem 4 .2 : There is no approximation algorithm with rate less
than 48/47 ≈ 1.02 or 1.5 for scheduling with resource restrictions with
2 or 4 resources, respectively, unless P=NP.

santa claus . The problems of restricted assignment and unre-
lated scheduling are also studied with the reverse objective of maximiz-
ing the minimal machine load mini∈M

∑
j∈σ−1(i) pij. Usually these

variants are described in a more game theoretical context with play-
ers instead of machines, goods instead of jobs, and values instead
of processing times, and sometimes unrelated scheduling with the
reverse objective is called the Santa Claus problem. In this work, we
mostly stick to the scheduling notation but denote the variants of the
considered problems with reverse objective as the Santa Claus version
of the respective problem.

For the Santa Claus version of the restricted assignment problem
a 13-approximation due to Annamalai, Kalaitzis and Svensson [6] is
known, which has been improved to a rate of 6+ ε by both Cheng
and Mao [32] and Davies, Rothvoss and Zhang [38]. PTAS results are
known for the case without restrictions [146] and the inclusion-free
interval case [97].

Our results can be directly transferred to the Santa Claus versions
of the respective problems:

theorem 4 .3 : Unless P=NP, there is no PTAS for the Santa Claus
version of scheduling with interval restrictions and no approxima-
tion algorithm with rate less than 47/46 or 2 for the Santa Claus
version of scheduling with resource restrictions with 2 or 4 resources,
respectively.

organization. In the remainder of this section, we discuss fur-
ther related literature and present preliminary considerations needed
throughout the chapter. In Section 4.2, we present our results for RAI;
in Section 4.3, we study the problem of RAR(R); and in Section 4.4, we
present some open problems and possible future research directions.

further related work . First note that if the number of ma-
chines is constant, there is a FPTAS already for unrelated schedul-
ing [67]. Furthermore, for some broad overview concerning parallel
machine scheduling with different kinds of restrictions in the context
of online and approximation algorithms, we refer to the surveys by
Lee et al. [107] and Leung and Li [109, 110].

We already discussed many variants of restricted assignment that
admit a PTAS. In particular, Ou, Leung and Li [122] presented a PTAS
for the hierarchical case; Epstein and Levin [46] and Muratore, Schwarz
and Woeginger [119] for the nested case; and Schwarz [135] and

48 interval and resource restrictions

hierarchical =
RAR(1) = chain

tree-hierarchical nested
bipartite permuta-
tion = inclusion-free

bi-cograph RAI = convex

constant cliquewidth RAR(2)

Figure 4.1: An overview of the inclusion structure of several of the discussed
variants of restricted assignment. If two problems are connected,
the upper includes the lower one. The dashed problems do not
admit a PTAS, the remaining ones do. For the problems below the
dotted line this was known before, and for the problems above
the dotted line this is shown in the present work.

Khodamoradi et al. [97] for the inclusion-free case. Another case that
has been studied in the literature is the tree-hierarchical case, where
the machines can be arranged in a rooted tree such that for each job
the set of eligible machines corresponds to a path starting at the root.
It was shown to admit a PTAS by Epstein and Levin [46] and Schwarz
[134]. It is not hard to see that all of the above cases contain the
hierarchical case as a subcase, and that the tree-hierarchical, nested and
inclusion-free case are distinct. There is, however, a variant admitting
a PTAS that covers both the nested and the tree-hierarchical case: For
each instance of the restricted assignment problem the corresponding
incidence graph is a bipartite graph whose nodes are given by the
jobs and machines and a job j is adjacent to a machine i if j is eligible
on i. In the next chapter (and [82]), it is shown that there is PTAS for
restricted assignment for the case that the clique- or rank-width of
the incidence graph is constant. Furthermore, if the incidence graph
is a bi-cograph the clique-width is well-known to be small and this
case covers the nested and tree-hierarchical case. The inclusion-free
case, on the other hand, is equivalent to the case that the incidence
graph is a bipartite permutation graph [97] which does not have a
bounded clique-width [22]. Note that RAR(1) or RAI are equivalent
to the cases that the incidence graph is a chain [62] or convex graph
[96], respectively. For an overview of the discussed cases, we refer to
Figure 4.1.

Lastly, there has been a series of promising results in recent years
concerning restricted assignment and variants thereof, and we high-
light a few of them. In a breakthrough result, Svensson [137] showed
that a certain integer linear program modeling the problem has an
integrality gap of at most 33/17, which implies an algorithm ap-
proximating the optimal objective value with rate 33/17+ ε for any

4.2 interval restrictions 49

ε > 0 without producing a corresponding schedule. This has been
improved by Jansen and Rohwedder [84] to a rate of 11/6, and in [83]
the same authors provide a quasi-polynomial approximation algo-
rithm with rate 11/6+ ε that also outputs a corresponding schedule.
For the special case of restricted assignment with only two distinct
processing times (not counting∞) an approximation algorithm due
to Chakrabarty, Khanna and Li [24] with a rate slightly below 2 is
known. Furthermore, the case in which the set of eligible machines
for each job has cardinality at most 2 has been studied under the
name of graph balancing. Ebenlendr, Krcál and Sgall [40] presented a
1.75-approximation for this case. Note that even if both of the above
cases apply, there is no approximation algorithm with rate smaller
than 1.5 [40] (unless P=NP). However, for this special case multiple
authors found a fitting 1.5-approximation algorithm [25, 68, 124]. In
a recent result, Jansen and Rohwedder [85] showed that in the graph
balancing case the optimal objective value can be approximated with
a rate slightly below 1.75.

preliminaries . In the following, we deal with satisfiability prob-
lems like the classical 3-SAT problem where a logical formula over
variables x1, . . . , xn is given. The formula is a conjunction of clauses,
each clause is a disjunction of three literals, and a literal is either
a variable or its negation. The goal is to decide whether there is a
satisfying truth assignment, that is, an assignment of the variables to
the truth values “true” and “false”, denoted by > and ⊥, respectively,
such that the formula evaluates to “true”.

Nearly all the reductions in this work follow the same pattern: Given
an instance I of the starting problem, we construct an instance I ′ of
the variant of the restricted assignment problem considered in the
respective case. For I ′, all job sizes are integral and upper bounded
by some constant T such that the overall size of the jobs equals |M|T .
Obviously, if for such an instance a machine receives jobs with overall
size more or less than T , the makespan of the schedule is greater than
T . Then we show that that there exists a schedule with makespan T for
I ′, if and only if I is a yes-instance. This rules out the existence of an
approximation algorithm with rate smaller than (T + 1)/T and a PTAS
in particular. Furthermore, for the Santa Claus version, approximation
algorithms with rate smaller than T/(T − 1) are ruled out.

4.2 interval restrictions

The sole goal of this section is to prove Theorem 4.1, that is, the
non-existence of a PTAS for RAI (given P 6=NP). Our starting point
for the reduction is a satisfiability problem 3-SAT∗ that we tailor to
our needs. We show that 3-SAT∗ is NP-hard via a straight forward
reduction from the 1-in-3-SAT problem, which is well-know to be NP-

50 interval and resource restrictions

complete [130] and discussed in more detail below. Next, we provide a
reduction from 3-SAT∗ to the classical restricted assignment problem
(with arbitrary sets of eligible machines). This reduction introduces
some of the needed gadgets and ideas for the main result. Lastly, we
show how the reduction can be refined for RAI, and this is the most
elaborate step.

starting point. An instance of 1-in-3-SAT is a conjunction of
clauses with 3 literals each. Each clause is a formula depending on 3

literals that is satisfied if and only if exactly one of its literals takes
the value >. We call such formulas 1-in-3-clauses in the following and
define 2-in-3-clauses correspondingly.

An instance of the problem 3-SAT∗ also is a conjunction of clauses
with exactly 3 literals each. However, each of the clauses is either a
1-in-3-clause or a 2-in-3-clause and there are as many clauses of the
first as of the second type. Furthermore, we require that each literal
occurs exactly twice. In the following, we denote a 1-in-3-clause or
2-in-3-clause with literals z1, z2 and z3 by (z1, z2, z3)1 or (z1, z2, z3)2,
respectively.

To see that 3-SAT∗ is NP-hard, consider an instance of 1-in-3-
SAT with n variables x1, . . . , xn and m clauses. We now construct
an equivalent 3-SAT∗ instance. Let di be the number of times the
variable xi occurs in the given 1-in-3-SAT formula. For each vari-
able xi, we introduce new variables xi,1, . . . , xi,di and yi,1, . . . ,yi,di
along with clauses (xi,1,¬xi,2,yi,1)2, . . . , (xi,di−1,¬xi,di ,yi,di−1)2,
(xi,di ,¬xi,1,yi,di)2 and clauses (yi,j,¬yi,j,¬yi,j)1 for each j ∈ [di].
Note that each variable yi,j has to take the value > in a satisfying as-
signment, due to the clause (yi,j,¬yi,j,¬yi,j)1. The remaining clauses
ensure, that for each i the variables xi,1, . . . xi,di have the same value
in a satisfying assignment. Furthermore, for each of the clauses of the
original problem, we introduce one 1-in-3-clause and one 2-in-3-clause.
The 1-in-3-clauses are obtained by exchanging the j-th occurrence of
each variable xi with xi,j. Moreover, the 2-in-3-clauses are obtained by
copying the new 1-in-3-clauses, negating all the literals and turning
them into a 2-in-3-clause. Hence, each 2-in-3-clauses evaluates to >, if
and only if its corresponding 1-in-3-clause does. It is not hard to verify
the correctness of the reduction. Similar constructions are widely used,
see, e.g., [141] or [31]. The remarkable aspect of the present construc-
tion lies in its symmetrical structure which helps to avoid additional
dummy gadgets in the following reductions.

simple reduction. In the following, we assume that an instance
of 3-SAT∗ with n variables x1, . . . , xn, m 1-in-3-clauses C1, . . . ,Cm,
and m 2-in-3-clauses Cm+1, . . . ,C2m is given. Note that we have 2m
clauses with 3 literals each, and 4n occurring literals in total, hence
3m = 2n. In addition to the ordering of the variables and clauses, we

4.2 interval restrictions 51

Job Size Eligible Machines

CMachi,s 111 CMachi,s

CJob>i,s ′ 100 CMachi,1, CMachi,2, CMachi,3
CJob⊥i,s ′ 101 CMachi,1, CMachi,2, CMachi,3
TJob>j 100 TMachj,1, TMachj,2
TJob⊥j 102 TMachj,1, TMachj,2
VJob>j,t 111 TMachj,dt/2e, CMachκ(j,t)
VJob⊥j,t 110 TMachj,dt/2e, CMachκ(j,t)

Table 4.1: The sizes and sets of eligible machines of the jobs in the simple
reduction. The entry for CMachi,s marks the private load of the
machine. The target makespan is given by T = 322.

fix an ordering of the literals belonging to each clause, and an ordering
of the occurrences of each variable by assigning an index t ∈ [4] to
each of them. In particular, for each variable xj, t = 1, 2 correspond
to the first and second positive and t = 3, 4 to the first and second
negative occurrence of xj. Furthermore, let κ : [n]× [4] → [2m]× [3]

be the bijection defined as follows: κ(j, t) = (i, s) implies that the t-th
occurrence of xj is positioned in clause Ci on position s.

We now define the restricted assignment instance. For some of the
machines, we introduce private loads which is a synonym for jobs of
the corresponding size that have to be scheduled on the respective
machine because its the only eligible one. The sizes and sets of eligible
machines of the introduced jobs are presented in Table 4.1 and the
target makespan is given by T = 322.

• For each clause Ci, there are three clause machines CMachi,s with
s ∈ [3] corresponding to its three literals, as well as three clause
jobs CJob◦s ′i,s ′ with s ′ ∈ [3] and ◦s ′ ∈ {>,⊥}. We have ◦1 = > and
◦3 = ⊥, as well as ◦2 = ⊥ if Ci is a 1-in-3 clause, and ◦2 = >
otherwise. Furthermore, each clause machine has a private load
of 111.

• For each variable xj, there are two truth assignment machines
TMachj,q with q ∈ [2] corresponding to the positive (q = 1) and
negative (q = 2) literal of xj, as well as 2 truth assignment jobs
TJob◦j with ◦ ∈ {>,⊥}.

• For each variable xj, there are eight variable jobs VJob◦j,t with
t ∈ [4] and ◦ ∈ {>,⊥} corresponding to the two occurrences of
the positive (t ∈ {1, 2}) and negative (t ∈ {3, 4}) literal of xj.

52 interval and resource restrictions

CM1,1 CM1,2 CM1,3

CJ>1,1 CJ⊥1,3

CM2,1 CM2,2 CM2,3

CJ>2,1 CJ⊥2,3

CM3,1 CM3,2 CM3,3

CJ>3,1 CJ⊥3,3

CM4,1 CM4,2 CM4,3

CJ>4,1 CJ⊥4,3CJ⊥1,2 CJ⊥2,2 CJ>3,2 CJ>4,2

TM1,1 TM1,2

TJ>1 TJ⊥1

VJ>1,1

VJ⊥1,1

VJ>1,2

VJ⊥1,2

VJ>1,3

VJ⊥1,3

VJ>1,4

VJ⊥1,4

TM2,1 TM2,2

TJ>2 TJ⊥2

VJ>2,1

VJ⊥2,1

VJ>2,2

VJ⊥2,2

VJ>2,3

VJ⊥2,3

VJ>2,4

VJ⊥2,4

TM3,1 TM3,2

TJ>3 TJ⊥3

VJ>3,1

VJ⊥3,1

VJ>3,2

VJ⊥3,2

VJ>3,3

VJ⊥3,3

VJ>3,4

VJ⊥3,4

Figure 4.2: The restricted assignment instance constructed for a minimal
example instance. The hatched rectangles represent private loads,
and the connecting lines indicate eligibility. If these lines end at a
dashed rectangle, the eligibility information concerns everything
within the rectangle. We chose a short notation for the jobs and
machines writing, e.g., VJ◦j,t instead of VJob◦j,t.

example simple reduction. The following formula is an in-
stance of 3-SAT∗ with minimal size:

(¬x2,¬x3, x1)1 ∧ (¬x1, x2,¬x3)1 ∧ (x3,¬x2, x1)2 ∧ (¬x1, x3, x2)2

The formula is satisfied if all the variables take the value > and the
corresponding restricted assignment instance is depicted in Figure 4.2.

analysis simple reduction. First note:

Claim 4.4. The overall size of all the jobs is exactly |M|T .

Proof. Since we have as many 1-in-3 as 2-in-3 clauses, the overall job
size equals:

P = 6m · 111+m(3 · 100+ 3 · 101) +n(100+ 102+ 4 · 111+ 4 · 110)

Moreover, since 3m = 2n, we have P = 1932n = 322 · 6n = |M|T .

We will show that there is a satisfying truth assignment for the 3-
SAT∗ instance if and only if there is a schedule in which each machine
receives jobs with load exactly T .

For any job Job◦ with ◦ ∈ {>,⊥}, we refer to ◦ as its truth config-
uration and say that Job◦ has ◦-configuration. The rationale of the
reduction is as follows: Each clause machine CMachi,s should receive

4.2 interval restrictions 53

Machine Possible Schedules

TMachj,1 {TJob>j , VJob>j,1, VJob>j,2}, {TJob
⊥
j , VJob⊥j,1, VJob⊥j,2}

TMachj,2 {TJob>j , VJob>j,3, VJob>j,4}, {TJob
⊥
j , VJob⊥j,3, VJob⊥j,4}

CMachi,s (1-in-3) {VJob>
κ−1(i,s), CJob

>
i,1}, {VJob

⊥
κ−1(i,s), CJob

⊥
i,2/3}

CMachi,s (2-in-3) {VJob>
κ−1(i,s), CJob

>
i,1/2}, {VJob

⊥
κ−1(i,s), CJob

⊥
i,3}

Table 4.2: Each set indicates one of the possible job assignments for each
machine in a schedule with makespan T . Note that for each clause
job there are three possibilities.

exactly one variable job corresponding to the literal placed in position
s in the clause. The truth configuration of this variable job should
correspond to the truth value the variable contributes to the clause.
To ensure that the jobs VJob>j,t belonging to variable xj contribute
consistent truth values, the truth assignment jobs and machines are
introduced. In the following, we sometimes talk about the truth as-
signment gadget and thus refer to these jobs and machines. Similarly,
the clause machines and jobs are sometimes called the clause gadget.

Next, we present a sequence of easy claims concerning the properties
of a schedule for the above instance with makespan T .

Claim 4.5. Each machine receives exactly 3 jobs (including private
loads).

Proof. Since the overall size of the jobs is |M|T , we know that each
machine has to receive jobs with overall size T = 322. Each job or
private load has a size of at least 100 and at most 111.

Since each digit of each occurring size is upper bounded by 2, the
above claim implies that there can be no carryover when adding up
job sizes of jobs scheduled on each machine. Hence the digits of
the numbers involved can be considered independently, e.g., there
can be at most two jobs with a 1 in the third (or second) digit of
its size scheduled on any machine. This together with the given job
restrictions already implies:

Claim 4.6. Each truth assignment machine receives exactly one truth
assignment and two variable jobs; and each clause machine receives
exactly one clause and one variable job.

Claim 4.7. The jobs scheduled on a truth assignment or clause machine
all have the same truth configuration (excluding private loads).

Claim 4.8. Let j ∈ [n]. The truth configurations of jobs scheduled on
TMachj,1 and TMachj,2 are distinct.

The resulting possible schedules for each machine are summed up
in Table 4.2, and Figure 4.3 depicts the resulting two possible schedules
for each pair of truth assignment machines. Lastly, we have:

54 interval and resource restrictions

TMachj,1 TMachj,2

TJob>j

VJob>j,1

VJob>j,2

TJob⊥j

VJob⊥j,3

VJob⊥j,4

VJob⊥j,1
VJob⊥j,2

VJob>j,3
VJob>j,4

TMachj,1 TMachj,2

TJob⊥j

VJob⊥j,1

VJob⊥j,2

TJob>j

VJob>j,3

VJob>j,4

VJob>j,1
VJob>j,2

VJob⊥j,3
VJob⊥j,4

Figure 4.3: The truth assignment gadget: There are two possible schedules of
the truth assignment machines TMachj,1 and TMachj,2 that already
determine the schedule of the variable jobs.

Claim 4.9. For each i ∈ [2m], the three clause machines corresponding
to i receive exactly one variable job with >-configuration if Ci is a
1-in-3-clause and exactly two such jobs if Ci is a 2-in-3-clause.

Proof. The overall load on each triplet of clause machines has to be
3T = 966 and the private loads and clause jobs that have to be sched-
uled on the triplet have summed up load 635, in case of a 1-in-3-clause,
and 634, in case of a 2-in-3-clause. The only other jobs eligible on the
clause machines are variable jobs with size 111 in >-configuration and
110 otherwise. This implies the claim.

proposition 4 .10. There is a satisfying truth assignment for the given
3-SAT∗ instance if and only if there is a schedule with makespan T for the
constructed restricted assignment instance.

Proof. Given a schedule with makespan T , let VJob◦j,tj,1 be the variable
job scheduled on CMachκ(j,t) (see Table 4.2) for each variable xj and
occurrence t ∈ [4]. We choose the truth value of xj to be ◦j,1. The
variable xj occurs exactly four times in the formulas, namely as a
positive literal on the positions κ(j, 1) and κ(j, 2) and as a negative
literal at position κ(j, 3) and κ(j, 4). Because of the above observations
(see Figure 4.3), we know that ◦j,2 = ◦j,1 and ◦j,3 = ◦j,4 6= ◦j,1. Hence,
for each variable xj and occurrence t ∈ [4], the truth configuration
VJob

◦j,t
j,1 corresponds exactly to the truth value xj contributes to the

clause given by κ(j, t). Lastly, for each clause Ci, there are exactly three
variable jobs scheduled on the corresponding clause machines, and
exactly one or two of these has >-configuration, if Ci is a 1-in-3-clause
or 2-in-3-clause respectively (Claim 4.9). Hence, Ci is satisfied.

Next, we consider the case that a satisfying truth assignment is
given. For each variable xj, let /j be the corresponding truth value and
.j its negation. We set ◦j,t = /j for t ∈ {1, 2} and ◦j,t = .j for t ∈ {3, 4}
and assign VJob

◦j,t
j,1 to CMachκ(j,t). All the other jobs are assigned as

indicated by Table 4.2 and Figure 4.3. It is easy to verify, that all jobs
are assigned and each machine has a load of T .

4.2 interval restrictions 55

The basic approach of using some kind of truth assignment and
clause gadget for reductions in the context of restricted assignment
and unrelated scheduling has been used before, see, e.g., [31, 40].

refined reduction. When trying to adapt the above reduction
to the more restricted problem of RAI, we obviously have less lati-
tude when defining the restrictions. To deal with this, we introduce
additional gadgets and encode much more information into the job
sizes. The idea of the reduction can be described as follows. We ar-
range the truth assignment gadgets on the left and the clause gadgets
on the right. Consider the case that a truth assignment decision is
made in the left most truth assignment gadget. Information about
this decision—called signal in the following—has to be passed on to
the proper clause gadgets passing multiple other truth assignment
and clause gadgets on the way. This signal in the simple reduction
simply corresponds to a variable job that is to be scheduled on its cor-
responding clause machine, and in order to prevent interaction with
other gadgets, we could encode information about the corresponding
variable into the size of the variable job. However, this would lead to a
super constant number of job sizes. To avoid this, we introduce a new
gadget called the bridge and highway gadget. Very roughly speaking,
the signal is passed on to the highway via gateways; the highway passes
each following truth assignment gadget using bridges and carries the
signal to the proper clauses. Next, we give a detailed description and
analysis of the refined reduction.

We adopt all the machines and jobs introduced in the simple reduc-
tion, but change the sizes and sets of eligible machines and introduce
additional jobs and machines as well as private loads for every machine.
We introduce the following jobs and machines:

• For each j ∈ [n] and t ∈ [4], we introduce one gateway machine
GMachj,t.

• For each j ∈ [n], t ∈ [4] and j ′ ∈ {j+ 1, . . . n}, we introduce two
bridge machines BMachInj,t,j ′ and BMachOutj,t,j ′ . Furthermore, we
introduce two bridge jobs BJob>j,t,j ′ and BJob⊥j,t,j ′ .

• For each j ∈ [n], t ∈ [4] and j ′ ∈ {j, . . . n}, we introduce two
highway jobs HJob>j,t,j ′ and HJob⊥j,t,j ′ .

In order to define the intervals of eligible machines, we first need a
total order of the machines. We partition the machines into blocks,
define an internal order for each block, and then define an order of
the blocks. Remember that κ : [n] × [4] → [2m] × [3] is a bijection
indicating the positions of the occurrences of variables in the clauses.
In particular, κ(j, 1) = (i, s) indicates that the first positive occurrence
of variable xj is in clause Ci on position s, and κ(j, 2), κ(j, 3), and κ(j, 4)
indicate analogue information for the second positive, first negative,
and second negative occurrence of xj.

56 interval and resource restrictions

Job First machine Last machine

CJob◦si,s CMachi,1 CMachi,3

TJob◦j TMachj,1 TMachj,2

VJob◦j,t TMachj,dt/2e GMachj,t

BJob◦j,t,j ′ BMachInj,t,j ′ BMachOutj,t,j ′

HJob◦j,t,j ′ BMachOutj,t,j ′ , if j ′ > j,
GMachj,t, if j ′ = j

BMachInj,t,j ′+1 if j ′ < n,
CMachκ(j,t), if j ′ = n

Table 4.3: The sets of eligible machines for each job or job type, defined by
the first and last eligible machine in the ordering. Note that in case
of the highway jobs all four combinations of first and last machine
are possible.

• For each j ∈ [n], we have a truth assignment block Tj containing
the truth assignment machines TMachj,1 and TMachj,2 in this
order.

• For each i ∈ [2m], we have a clause block Ci containing the clause
machines CMachi,s for each s ∈ [3] and ordered increasingly by s.

• For each j ∈ [n], we have a successor block Sj containing the
gateway machines GMachj,t for each t ∈ [4] and the bridge
machines BMachOutj ′,t,j for each t ∈ [4] and j ′ < j. For each
machine, we define an index, namely κ(j, t) for GMachj,t and
κ(j ′, t) for BMachOutj ′,t,j, and order the machines by the de-
creasing lexicographical ordering of their indices. For example,
if BMachOutj1,t1,j, BMachOutj2,t2,j, GMachj,t3 ∈ Sj and κ(j1, t1) =

(1, 2), κ(j2, t2) = (1, 1) and κ(j, t3) = (2, 3), then GMachj,t3 pre-
cedes BMachOutj1,t1,j which in turn precedes BMachOutj2,t2,j.

• For each j ∈ [n] with j > 1, we have a predecessor block Pj
containing the bridge machines BMachInj ′,t,j for each t ∈ [4] and
j ′ < j. Machine BMachInj ′,t,j has index κ(j ′, t) and the machines
are ordered by the increasing lexicographical ordering of their
indices.

The blocks are ordered as follows:

(T1, S1,P2,T2, S2, . . . ,Pn,Tn, Sn,C1, . . . ,C2m)

The sets of eligible machines are specified in Table 4.3 and the job
sizes in Table 4.4. Note that we have prioritized comprehensibility
over small sizes. For instance, it is not hard to see that the columns
in Table 4.4 corresponding to the highway and clause jobs could be
deleted and the reduction would still work.

4.2 interval restrictions 57

B H C T V V V V

CJob>i,s 3m = 2n 1 0 0 1 0 0 0 0 0 0

CJob⊥i,s 3m = 2n 1 0 0 1 0 0 0 0 0 1

TJob>j n 1 0 0 0 1 0 0 0 0 2

TJob⊥j n 1 0 0 0 1 0 0 0 0 0

VJob>j,1 n 1 0 0 0 0 1 0 0 0 0

VJob>j,2 n 1 0 0 0 0 0 1 0 0 0

VJob>j,3 n 1 0 0 0 0 0 0 1 0 0

VJob>j,4 n 1 0 0 0 0 0 0 0 1 0

VJob⊥j,1 n 1 0 0 0 0 1 0 0 0 1

VJob⊥j,2 n 1 0 0 0 0 0 1 0 0 1

VJob⊥j,3 n 1 0 0 0 0 0 0 1 0 1

VJob⊥j,4 n 1 0 0 0 0 0 0 0 1 1

BJob>j,t,j ′ 2n(n− 1) 1 1 0 0 0 0 0 0 0 0

BJob⊥j,t,j ′ 2n(n− 1) 1 1 0 0 0 0 0 0 0 1

HJob>j,t,j ′ 2n(n+ 1) 1 0 1 0 0 0 0 0 0 1

HJob⊥j,t,j ′ 2n(n+ 1) 1 0 1 0 0 0 0 0 0 0

CMachi,s 6m = 4n 1 1 0 0 1 1 1 1 1 1

TMachj,1 n 0 1 1 1 0 0 0 1 1 0

TMachj,2 n 0 1 1 1 0 1 1 0 0 0

GMachj,1 n 1 1 0 1 1 0 1 1 1 1

GMachj,2 n 1 1 0 1 1 1 0 1 1 1

GMachj,3 n 1 1 0 1 1 1 1 0 1 1

GMachj,4 n 1 1 0 1 1 1 1 1 0 1

BMachInj,t,j ′ 2n(n− 1) 1 0 0 1 1 1 1 1 1 1

BMachOutj,t,j ′ 2n(n− 1) 1 0 0 1 1 1 1 1 1 1

Makespan T 3 1 1 1 1 1 1 1 1 2

Table 4.4: Table of job and machine types with job sizes and private loads
and the makespan. The second column states the number of jobs
and machines of the respective types. Each horizontal sequence
of numbers following the second column indicates the size of the
respective job or private load. Each of the corresponding columns
serves a function in the reduction: the first bounds the number of
jobs on each machines; the following eight implement restrictions
for the bridge, highway, clause, truth assignment and variable jobs;
and the last encodes truth values.

58 interval and resource restrictions

example refined reduction. We consider the same formula as
we did for the simple reduction, that is:

(¬x2,¬x3, x1)1 ∧ (¬x1, x2,¬x3)1 ∧ (x3,¬x2, x1)2 ∧ (¬x1, x3, x2)2

The values of κ for the occurrences of the first two variables together
with the resulting increasing lexicographical ordering is depicted in
Table 4.5. Furthermore, in Figure 4.4 the truth assignment as well as
the bridge and highway gadget for the first two variables are depicted.

(j, t) (1,1) (1,2) (1,3) (1,4) (2,1) (2,2) (2,3) (2,4)

κ(j, t) (1,3) (3,3) (2,1) (4,1) (2,2) (4,3) (1,1) (3,2)

Ordering (2,3) (1,1) (1,3) (2,1) (2,4) (1,2) (1,4) (2,2)

Table 4.5: The occurrences of the first two values in the clauses and the
resulting increasing lexicographical ordering of the occurrences.

analysis refined reduction. We have:

Claim 4.11. The overall size of the jobs is exactly |M|T .

Proof. This can be verified by basic arithmetic using Table 4.4. For
simplicity, this can also be done digit by digit. We look at the last digit
as an example. Note that we have 4n2+ 6n machines and the last digit
of the makespan is 2. Summing up the last digits of the job sizes, on
the other hand, yields 2n+ 2n+n+n+n+n+ 2n(n− 1) + 2n(n+

1) + 4n+n+n+n+n+ 2n(n− 1) + 2n(n− 1) = 8n2 + 12n.

Like for the simple reduction, we proof a sequence of easy claims
concerning the properties of a schedule for the constructed instance
with makespan T .

Claim 4.12. Each machine receives exactly 4 jobs if it is a truth as-
signment machine and exactly 3 jobs otherwise (including private
loads).

Proof. This follows directly from Claim 4.11 and the job sizes defined
in Table 4.4.

Since each machine receives at most 4 jobs and each digit in the
job sizes is bounded by 2, we may consider each digit of the involved
numbers independently, e.g., if two jobs and the makespan have a 1 at
the `-th digit, we already know that these jobs cannot be scheduled on
the same machine. This already implies a series of claims:

Claim 4.13. The jobs TJob>j and TJob⊥j can exclusively be scheduled on
TMachj,1 and TMachj,2, for each j ∈ [n], and each of the two machines
receives exactly one of the two jobs.

4.2 interval restrictions 59

T
1

S
1

P
2

T
2

S
2

T
M
1

,1
T
M
1

,2
G
M
1

,4
G
M
1

,2
G
M
1

,3
G
M
1

,1
B
M
I
1

,1
,2
B
M
I
1

,3
,2
B
M
I
1

,2
,2
B
M
I
1

,4
,2

T
M
2

,1
T
M
2

,2
G
M
2

,2
B
M
O
1

,4
,2
B
M
O
1

,2
,2

G
M
2

,4
G
M
2

,1
B
M
O
1

,3
,2
B
M
O
1

,1
,2

G
M
2

,3

T
J
o
b
◦ 1

T
J
o
b
◦ 2

V
J
o
b
◦ 1,
1

V
J
o
b
◦ 1,
3

V
J
o
b
◦ 1,
2

V
J
o
b
◦ 1,
4

H
J
o
b
◦ 1,
1

,1

H
J
o
b
◦ 1,
3

,1

H
J
o
b
◦ 1,
2

,1

H
J
o
b
◦ 1,
4

,1

V
J
o
b
◦ 2,
3

B
J
o
b
◦ 1,
1

,2

B
J
o
b
◦ 1,
3

,2

V
J
o
b
◦ 2,
1

V
J
o
b
◦ 2,
4

B
J
o
b
◦ 1,
2

,2

B
J
o
b
◦ 1,
4

,2

V
J
o
b
◦ 2,
2

H
J
o
b
◦ 2,
3

,2

H
J
o
b
◦ 1,
1

,2

H
J
o
b
◦ 1,
3

,2

H
J
o
b
◦ 2,
1

,2

H
J
o
b
◦ 2,
4

,2

H
J
o
b
◦ 1,
2

,2

H
J
o
b
◦ 1,
4

,2

H
J
o
b
◦ 2,
2

,2

Fi
gu

re
4
.4

:T
he

tr
ut

h
as

si
gn

m
en

ta
s

w
el

la
s

th
e

br
id

ge
an

d
hi

gh
w

ay
ga

dg
et

fo
r

th
e

fir
st

tw
o

va
ri

ab
le

s
of

an
ex

am
pl

e
in

st
an

ce
.T

he
co

lo
re

d
lin

es
m

ar
k

th
e

in
te

rv
al

s
of

el
ig

ib
le

m
ac

hi
ne

s
fo

r
th

e
re

sp
ec

tiv
e

jo
bs

.I
n

th
e

pi
ct

ur
e,

w
e

us
e

a
m

or
e

co
m

pa
ct

no
ta

tio
n

fo
r

th
e

m
ac

hi
ne

s,
an

d
w

ri
te

,e
.g

.,
T
M
1

,1
in

st
ea

d
of

T
M
a
c
h
1

,1
.

60 interval and resource restrictions

Sn−1 Pn Tn Sn C1 C2m

VJob◦n,3

VJob◦n,2

Figure 4.5: The bridge and highway gadget. The intervals of eligible machines
of highway, bridge and variable jobs are depicted in blue, red
and orange, respectively. In this example, variable xn occurs for
the second time in its positive form in the last clause at the first
position, and for the first time in its negative form in the first
clause at the first position.

Claim 4.14. The jobs VJob>j,t and VJob⊥j,t can exclusively be scheduled
on TMachj,dt/2e and GMachj,t, for each j ∈ [n] and t ∈ [4], and each of
the two machines receives exactly one of the two jobs.

Claim 4.15. Bridge jobs can exclusively be scheduled on bridge ma-
chines and each bridge machine receives exactly one bridge job.

Claim 4.16. Highway jobs can exclusively be scheduled on bridge,
gateway and clause machines and each such machine receives exactly
one highway job.

Claim 4.17. Each clause machine CMachi,s receives exactly one of the
corresponding clause jobs CJob

◦s ′
i,s ′ with s ′ ∈ [3].

At this point, we already know that variable (and truth assignment)
jobs can exclusively be scheduled on the first or last machine of their
respective interval of eligible machines. The next step is to show that
the same holds for highway and bridge jobs. To do so, the ordering of
the bridge and highway machines is of critical importance.

Claim 4.18. The jobs BJob>j,t,j ′ and BJob⊥j,t,j ′ can exclusively be sched-
uled on BMachInj,t,j ′ and BMachOutj,t,j ′ , for each j ∈ [n], j ′ ∈ {j +

1, . . . ,n} and t ∈ [4], and each of the two machines receives exactly
one of the two jobs.

Proof. The claim can be proved with a simple inductive argument: Let
j ′ ∈ {2, . . . ,n} and, furthermore, (j`, t`) ∈ [j ′ − 1]× [4] denote the `-th
element from [j ′ − 1]× [4] when ordering the pairs (j, t) ∈ [j ′ − 1]× [4]

by the increasing lexicographical ordering of the pairs κ(j, t). Consid-
ering the ordering of the machines and the job restrictions, BJob>j1,t1,j ′

and BJob⊥j1,t1,j ′ are the only bridge jobs that can be scheduled on
BMachInj1,t1,j ′ and BMachOutj1,t1,j ′ (see Figure 4.5). Hence, the claim
has to hold for (j1, t1). But then again BJob>j2,t2,j ′ and BJob⊥j2,t2,j ′ are
the only remaining bridge jobs that can be scheduled on BMachInj2,t2,j ′

and BMachOutj2,t2,j ′ , and so on.

4.2 interval restrictions 61

Machine Possible Schedule

TMachj,1 {TJob>j , VJob>j,1, VJob>j,2}, {TJob
⊥
j , VJob⊥j,1, VJob⊥j,2}

TMachj,2 {TJob>j , VJob>j,3, VJob>j,4}, {TJob
⊥
j , VJob⊥j,3, VJob⊥j,4}

GMachj,t {VJob>j,t, HJob
>
j,t,j}, {VJob

⊥
j,t, HJob

⊥
j,t,j}

BMachInj,t,j ′ {BJob>j,t,j ′ , HJob
>
j,t,j ′−1}, {BJob

⊥
j,t,j ′ , HJob

⊥
j,t,j ′−1}

BMachOutj,t,j ′ {BJob>j,t,j ′ , HJob
>
j,t,j ′}, {BJob

⊥
j,t,j ′ , HJob

⊥
j,t,j ′}

CMachi,s (1-in-3) {CJob>i,1, HJob>
κ−1(i,s),n}, {CJob

⊥
i,2, HJob⊥

κ−1(i,s),n},

{CJob⊥i,3, HJob⊥
κ−1(i,s),n}

CMachi,s (2-in-3) {CJob>i,1, HJob>
κ−1(i,s),n}, {CJob

>
i,2, HJob>

κ−1(i,s),n},

{CJob⊥i,3, HJob⊥
κ−1(i,s),n}

Table 4.6: For each machine there are only few possible jobs that may be
assigned to it in a schedule with makespan T . Each set corresponds
to one of the possible schedules.

Claim 4.19. The jobs HJob>j,t,j ′ and HJob⊥j,t,j ′ can exclusively be sched-
uled on machine X and Y, for each j ∈ [n], j ′ > j, and t ∈ [4];
where X = BMachOutj,t,j ′ if j ′ > j, and X = GMachj,t otherwise, and
Y = BMachInj,t,j ′+1 if j ′ < n, and Y = CMachκ(j,t) otherwise. Further-
more, each of the two machines receives exactly one of the two jobs.

Proof. We can use the same argument (with reversed orderings) as
we did in the last claim. It is only slightly more complicated, because
more machine types are involved.

Summing up, each job except for clause jobs may only be scheduled
on the first or last machine of their interval of eligible machines, and
each of these machines receives either the respective job in >- or ⊥-
configuration. Considering this distribution of the jobs and the last
digit of the size vectors, we get the following two claims:

Claim 4.20. For any machine, the jobs assigned to this machine all have
the same truth configuration (excluding private loads).

Claim 4.21. For each i ∈ [2m], the three clause machines corresponding
to i receive exactly one highway job with >-configuration, if Ci is a
1-in-3-clause, and exactly two such jobs, if Ci is a 2-in-3-clause.

The former property together with the possible job distribution
determined so far implies that there are only few possible schedules
for each machine. We summarize these schedules in Table 4.6. Further-
more, we can infer that the truth assignment gadget works essentially
the same as before (see Figure 4.3):

Claim 4.22. Let j ∈ [n]. The truth configuration of any job scheduled on
TMachj,1 is distinct from the truth configuration of any job scheduled
on TMachj,2.

62 interval and resource restrictions

Lastly, we can show that the bridge and highway gadget works as
well:

Claim 4.23. Let j ∈ [n] and t ∈ [4]. The variable job scheduled on
TMachj,dt/2e and the highway job scheduled on CMachκ(j,t) have the
same truth configuration.

Proof. Note that the truth configuration of the variable job scheduled
on GMachj,t compared with the one of the variable job scheduled on
TMachj,dt/2e is reversed. Hence, the highway job scheduled on GMachj,t
also has the reversed truth-configuration while the highway job that is
passed on again has the original truth-configuration. This argument
can be repeated with the bridge and highway jobs in the following,
yielding the asserted claim.

Using the above claims, we can conclude the proof of Theorem 4.1
via the following Lemma:

lemma 4 .24. There is a satisfying truth assignment for the given 3-SAT∗

instance, if and only if there is a schedule with makespan T for the constructed
RAI instance.

Proof. Given a schedule with makespan T , let HJob◦j,tj,t,n be the highway
job scheduled on CMachκ(j,t) for each variable xj and occurrence t ∈ [4]

(see Table 4.6). We choose the truth value of xj to be ◦j,1. Considering
the distribution of jobs on the truth assignment machines (see Table
4.6), as well as Claim 4.22 and 4.23, we know that for each variable
xj and occurrence t ∈ [4], the truth configuration ◦j,t corresponds
exactly to the truth value xj contributes to the clause given by κ(j, t).
Furthermore, we know that for each clause Ci, there are exactly three
variable jobs scheduled on the corresponding clause machines, and
exactly one or two of these has >-configuration, if Ci is a 1-in-3-clause
or 2-in-3-clause, respectively (Claim 4.21). Hence, Ci is satisfied.

Next, we consider the case that there is a satisfying truth assign-
ment. Let /j be the corresponding truth value of variable xj and
.j its negation. We set 4j,t = /j for t ∈ {1, 2} and 4j,t = .j for
t ∈ {3, 4} and assign HJob

4j,t
j,t,n to CMachκ(j,t). Let 5jt be the nega-

tion of 4jt. All the other jobs are assigned as indicated by the
claims and Table 4.6 in particular: Each machine receives its private
load; CMachκ(j,t) additionally receives one of the eligible remaining
clause jobs with 4j,t-configuration (this can be done because the
truth assignment is satisfying); BMachOutj,t,j ′ receives HJob

5j,t
j,t,j ′ and

BJob
5j,t
j,t,j ′ ; BMachInj,t,j ′ receives HJob

4j,t
j,t,j ′−1 and BJob

4j,t
j,t,j ′ ; GMachj,t re-

ceives HJob
5j,t
j,t,j and VJob

5j,t
j,t ; TMachj,1 receives VJob

4j,1
j,1 , VJob4j,2j,2 and

TJob
4j,1
j ; and TMachj,2 receives VJob

4j,3
j,3 , VJob4j,4j,4 as well as TJob

4j,3
j .

It is easy to verify, that all jobs are assigned and each machine has a
load of T .

4.3 resource restrictions 63

4.3 resource restrictions

In this section, we first present some preliminary observations con-
cerning RAR(R) and discuss the relationship of the problem with RAI
and LRS(D). Next, we revisit established reductions for the restricted
assignment problem and show that they can be modeled with only
few resources. This already gives the result for 4 resources in Theorem
4.2. Lastly, we study the cases with 2 and 3 resources. We first give
a reduction for R = 3 and then refine the result to work for R = 2 as
well thereby concluding the proof of Theorem 4.2 and Theorem 4.3.

preliminaries . Recall that in the problem of scheduling with re-
source restrictions with R resources (RAR(R)), a set R of R (renewable)
resources is given, each machine i has a resource capacity cr(i) and
each job j has a resource demand dr(j) for each r ∈ R. Job j is eligible
on machine i, if dr(j) 6 cr(i) for each resource r. We allow arbitrary
real values for the capacities and demands but it is not hard to see
that relatively small integer values suffice. Indeed, given an instance
of RAR(R), we may perform the following two steps: First, we increase
for each job j and each resource r the demand dr(j) to the smallest
value included in {cr(i) | i ∈M, cr(i) > dr(j)} (if this set is empty the
job cannot be processed anywhere). Afterwards, there are at most
m = |M| distinct demand or capacity values for each resource, and
we can change the smallest value to 1 the second to 2 and so on. This
yields an instance with the same restrictions and the property that all
the capacities and demands are included in [m].

Technically, there are two versions of the problem RAR(R) depend-
ing on whether the resources, demands and capacities are explicitly
given or not. In the second variant recognition is an issue that we do
not address in this work since our results work for both versions of
the problem. However, note that the proof of the following lemma
gives some intuition concerning this:

lemma 4 .25. Each restricted assignment instance with m machines is also
a RAR(m) instance; and for each m ∈N there is a RAR(m) instance with
m machines (and m jobs) that is not a RAR(R) instance for any R < m.

Proof. Given a restricted assignment instance with m machines, we
define resources, demands and capacities that model the given re-
strictions. First, we identify each machine with a resource, that is,
we set R = M. Furthermore, we set the capacities of machine i ∈ M

concerning resource r ∈ R to be cr(i) = 1 if r 6= i and ci(i) = 0; and
the demand of job j ∈ J concerning r to be dr(i) = 0 if r ∈M(j), and
dr(i) = 1 otherwise. It is easy to check that for each job j and machine
i, we have dr(j) 6 cr(i) for each resource r, if and only if i ∈M(j).

The next goal is to construct a simple RAR(m) instance for each
m ∈N. We first collect some simple observations. Given some instance
of RAR(R) with j ∈ J and i ′ ∈ M \M(j), we know that there is

64 interval and resource restrictions

a resource r(j, i ′) ∈ R such that cr(j,i ′)(i ′) < dr(j,i ′)(j) (otherwise
i ′ ∈M(j)). One could say that r(j, i ′) separates i ′ from j or M(j). On
the other hand, we know that dr(j) 6 cr(i) for each i ∈ M(j) and
r ∈ R. Let i ∈M(j). Now, consider the case that we have another job
j ′ with i ′ ∈ M(j ′) and i ∈ M\M(j ′). Then we have r(j, i ′) 6= r(j ′, i),
because otherwise:

dr(j ′,i)(j) 6 cr(j ′,i)(i) < dr(j ′,i)(j
′) 6 cr(j ′,i)(i

′)

= cr(j,i ′)(i
′) < dr(j,i ′)(j) = dr(j ′,i)(j)

Using this insight, we construct the instance as follows: We set M = [m]

and J =
{
j ⊆ M

∣∣ |j| = m− 1
}

with M(j) = j. We may assume unit
processing times. This instance has exactly m jobs and machines and
we know that it is a RAR(m) instance because of the first part of
the proof. Now, given any resources R along with capacities and
demands that model the restrictions for the above instance, we show
that |R| > m. For each j ∈ J let ij ∈ M be the single machine that is
restricted to process j, i.e., ij ∈M\M(j). This implies M = {ij | j ∈ J}

and due to the above observation, we have r(j, ij) 6= r(j ′, ij ′) for each
pair of distinct jobs j, j ′ ∈ J. Hence, {r(j, ij) | j ∈ J} = R ′ ⊆ R and
|R ′| = m concluding the proof.

The relationship between scheduling with resource and interval
restrictions is discussed in the following lemma:

lemma 4 .26. Each RAR(1) instance is also a RAI instance and there is a
RAI instance that is not a RAR(1) instance. Moreover, each RAI instance
is also a RAR(2) instance and there is a RAR(2) instance that is not a RAI
instance. With a slight abuse of notation, we may write: RAR(1) ⊂ RAI ⊂
RAR(2).

Proof. Given an instance of RAR(1), we may sort the machines based
on their capacity values decreasingly. Than each job j that can be
processed on any machine, can also be processed on any predecessor
of this machine. Hence, M(j) corresponds to an interval of machines
starting with the first machine. On the other hand, consider an instance
with two machines and two jobs. The first job is (exclusively) eligible
on the first machine and the second one on the second. This instance
is a RAI but not a RAR(2) instance.

Given an instance of RAI, we may assume w.l.o.g. M = [m] and that
the ordering of the machines is the natural ordering. We set R = [2].
Furthermore, for each machine i, we set c(i) = (i, (m+ 1) − i); and
for each job j with M(j) = {`, . . . , r}, we set d(j) = (`, (m + 1) − r)

(see Figure 4.6). If i ∈ M(j), we have c1(i) = i > ` = d1(j) and
c2(i) = (m+ 1) − i > (m+ 1) − r = d2(j); and if i ∈ M\M(j), we
have either i < ` or i > r which implies c1(i) < d1(j) or c2(i) < d2(j)
respectively.

Lastly, we construct an instance of RAR(2) that is not a RAI instance.
Let M = [4], R = [2] and J =

{
{1, 2, 3, 4}, {1, 2}, {1, 3}, {1, 4}

}
. We may

4.3 resource restrictions 65

1

1

2

2

3

3

4

4

Figure 4.6: The left picture visualizes that each RAI instance can be seen as
a RAR(2) instance and the right one depicts an RAR(2) instance
that is not a RAI instance. In both pictures, each dimension corre-
sponds to a resource, the squares mark the capacities of machines
and the circles the demands of jobs. If the capacity of a machine
is at least as big as the demand of a job in both dimension, the
job is eligible on the machine.

Machine Capacity Job Demand

1 (3, 3) {1, 2, 3, 4} (0.5, 0.5)

2 (4, 1) {1, 2} (2.5, 0.75)

3 (2, 2) {1, 3} (1.5, 1.5)

4 (1, 4) {1, 4} (0.75, 2.5)

Table 4.7: A simple example of a RAR(2) instance that is not a RAI instance.
Note that all demands could be rounded up to the next integer
value without changing the construction.

assume unit job sizes. The resource capacities and demands are given
in Table 4.7 and the construction is illustrated in Figure 4.6. It is easy to
see that M(j) = j for each j ∈ J. In any total ordering of the machines
in which each job is eligible on consecutive machine, the machine 1
has to be a direct neighbor of 2, 3 and 4. This is not possible.

We already mentioned in the introduction that there is a close
relationship between scheduling with resource restrictions and low
rank unrelated scheduling. Remember that in the rank D unrelated
scheduling problem (LRS(D)) the processing time matrix (pij)i∈M,j∈J
has a rank of at most D, or, equivalently, there is a D dimensional size
or speed vector s(j) or v(i) for each job j or machine i respectively,
and the processing time pij is given by

∑
d∈[D] sd(j)vd(i). It is easy to

construct for any m ∈N a RAR(1) instance that is a LRS(m) instance
as well: The instance with J = M = [m], R = {1}, d1(k) = c1(k) = k

for each k ∈ [m] and unit processing times suffices (assuming that the
number ∞ is interpreted as some sufficiently big number). On the

66 interval and resource restrictions

other hand, any RAR(R) instance can be approximated with arbitrary
precision by LRS(R+ 1) instances in the following sense:

lemma 4 .27. Let I be a RAR(R) instance. For any ε,K > 0, there is a
LRS(R+ 1) instance I ′ with the same jobs and machines and the following
property: Let p ′ij be the processing time of job j on machine i in instance I ′.
We have pj 6 p ′ij 6 pj + ε if i ∈M(j) and p ′ij > pj +K otherwise.

Proof. W.l.o.g. we assume R = [R]. Let δ = ε/R and N = max{K/δ, 1}.
We define the size and speed vectors of I ′ as follows: For each job
j we set s ′r(j) = δNdr(j) for each r ∈ [R], as well as s ′R+1(j) = pj.
Moreover, for each machine i we set v ′r(j) = N−cr(j) for each r ∈
[R], as well as v ′R+1(j) = 1. Then p ′ij =

∑
r∈[R+1] sr(j)vr(i) = pj +∑

r∈[R] δN
dr(j)−cr(j) and therefore p ′ij > pj in any case. Furthermore,

if i ∈ M(j), we have dr(j) 6 cr(j) for each r ∈ [R], and hence p ′ij 6
pj + Rδ = pj + ε. If, on the other hand, i 6∈ M(j), then there is an
r ∈ [R] such that dr(j) > cr(j) yielding p ′ij > pj + δN > pj +K.

The above lemma implies that from the perspective of approxi-
mation algorithms RAR(R) is essentially included in LRS(R+ 1). We
could use this lemma and Theorem 4.1 or Theorem 4.2 to show that
there is no PTAS for LRS(3) unless P=NP. While this is already known
[31], the resulting construction may be more accessible.

established reductions revisited. In the following, we first
present the classical reduction by Lenstra et al. [108] showing 1.5-
inapproximability for the restricted assignment problem. We show that
the restricted assignment instances in this reduction can be modeled
using 6 resources yielding the same hardness for RAR(6). Nearly
the same argument was used by Bhaskara et al. [16] to show 1.5-
inapproximability for LRS(7). Next, we take the same approach for
the more recent reduction by Ebenlendr et al. [40] and show 1.5-
inapproximability already for 4 resources.

In the 3-DM problem, the input consists of three disjoint sets A,
B and C with |A| = |B| = |C| = n ∈ N, as well as a set of triplets
E ⊆

{
{a,b, c}

∣∣a ∈ A,b ∈ B, c ∈ C
}

. The goal is to decide whether
there is a subset F ⊆ E that perfectly covers A, B and C, that is, for
each x ∈ A ∪ B ∪C there is exactly one triplet e ∈ F with x ∈ e. The
set F is called a 3D-matching. We assume that the elements of A, B
and C are indexed, that is, A = {a1,a2, . . . ,an}, B = {b1,b2, . . . ,bn}
and C = {c1, c2, . . . , cn}. Furthermore, we assume that for each x ∈
A∪B∪C there is at least one e ∈ E with x ∈ E (otherwise the problem
is trivial). Via a reduction from 3-DM to the restricted assignment
problem, Lenstra et al. [108] showed:

theorem 4 .28 ([108]) : There is no polynomial time approxima-
tion algorithm for restricted assignment with rate smaller than 1.5
unless P=NP.

4.3 resource restrictions 67

Proof. Given an instance of 3-DM, we set M = E and E(x) = {e ∈ E | x ∈
e} for each x ∈ A∪B∪C. For each a ∈ A, we introduce |E(a)|− 1 > 0
many dummy jobs with size 2 and eligible on machines e ∈ E(a).
Moreover, for each x ∈ B∪C we introduce an element job with size 1
eligible on machines e ∈ E(x). Note that the overall size of the jobs is
given by 2n+ 2

∑
a∈A(|E(a)|− 1) = 2n+ 2(|E|−n) = 2|M|.

If there is a schedule with makespan 2 for this instance, then each
machine either processes two element or one dummy job. For each x ∈
B∪C, we have x ∈ e for the machine e processing the corresponding
element job, and, furthermore, for each a ∈ A, there is exactly one
machine e with a ∈ e that does not process a dummy job (and
therefore processes element jobs). Hence, we get a 3D-matching by
selecting the machines that process element jobs.

If, on the other hand, there is a 3D-matching F for the 3-DM instance,
then we can schedule the element job corresponding to x ∈ B∪C on
the machine e ∈ F with x ∈ E and the dummy jobs corresponding to
a ∈ A on the |E(a)|− 1 machines e ∈ E(a) \ F. This yields a schedule
with makespan 2.

We reproduce the restrictions in the above reduction using six
resources and get:

corollary 4 .29. There is no polynomial time approximation algorithm
for RAR(6) with rate smaller than 1.5 unless P=NP.

Proof. We set R =
{
(X,k)

∣∣X ∈ {A,B,C},k ∈ [2]
}

. Let e ∈ E and X ∈
{A,B,C}. We set the resource capacities c(X,1)(e) = i and c(X,2)(e) =

(n+ 1) − i. Let xj be the element with index j in X. We set the resource
demand of a (element or dummy) job J corresponding to xj as follows:
d(X,1)(J) = j, d(X,2)(J) = (n+ 1) − j, as well as d(Y,k)(J) = 0 for each
Y ∈ {A,B,C} \ {X} and k ∈ [2]. It is easy to see that J can exclusively be
scheduled on machines e with xj ∈ e.

In the classical 3-SAT problem, a conjunction of m clauses is given
and each clause is a disjunction of at most three literals of variables
x1, . . . , xn. In the result due to Ebenlendr et al. [40], the modified 3-
SAT problem, where each variable occurs exactly three and each literal
at most two times in the formula, is reduced to the graph balancing
problem, that is, restricted assignment with the additional property
that each job is eligible on at most two machines. To show that the
modified 3-SAT problem is NP-hard, we can use techniques already
applied in Section 4.2: We may replace the dj occurrences of variable
xj with new variables zj1, . . . , zjdj and add new clauses (zj1 ∧¬zj2),
. . . (zjdj−1 ∧¬zjdj), (zjdj ∧¬zj1).

theorem 4 .30 ([40]) : There is no polynomial time approximation
algorithm with rate smaller than 1.5 for the graph balancing problem
unless P=NP.

68 interval and resource restrictions

Proof. Given an instance of modified 3-SAT, we introduce clause ma-
chines vi corresponding to the clauses Ci, and literal machines uj,1
and uj,0 corresponding to the literals xj and ¬xj. Furthermore, we
introduce truth assignment jobs ej for each variable xj with size 2
and eligible on uj,1 and uj,0; and clause jobs fi,j,α for each clause
Ci and literal yj occurring in Ci with α = 1 if yj = xj and α = 0 if
yj = ¬xj. The job fi,j,α has size 1 and is eligible on vi and uj,α. Lastly,
we introduce a dummy job di for each clause Ci with less than three
literals. Its size is 1 if Ci contains two literals, and 2 if Ci contains only
one literal.

In a schedule with makespan 2, there is at least one clause job fi,j,α
for each vi that is scheduled on uj,α and not on vi. Hence, the job
ej has to be scheduled on uj,|α−1|. Now, it is easy to see that there
is a schedule with makespan 2, if and only if there is a satisfying
assignment. The construction works as follows: Given a schedule with
makespan 2, we set variable xj to > if ej is scheduled on uj,0, and to
⊥ otherwise. Moreover, given a satisfying truth assignment we assign
the truth assignment jobs correspondingly, and the machines uj,α that
did not receive a truth assignment job receive all eligible clause jobs
(at most two).

We reproduce the restrictions in the above reduction using four
resources and get:

corollary 4 .31. There is no polynomial time approximation algorithm
for RAR(4) with rate smaller than 1.5 unless P=NP.

Proof. We set R = [4]. The clause machine vi has a resource capacity
vector of (2n+ 1, 2n+ 1, i, (m+ 1)− i), and the literal machine uj,α has
capacity vectors (2j−α, (2n+ 1)− (2j−α),m+ 1,m+ 1). Furthermore,
the truth assignment job ej has a resource demand vector of (2j−

1, (2n+ 1) − 2j,m+ 1,m+ 1); the clause job fi,j,α has a demand vector
of (2j−α, (2n+ 1)− (2j−α), i, (m+ 1)− i); and the dummy job di has
a demand vector of (2n+ 1, 2n+ 1, i, (m+ 1) − i). It is easy to verify
that the resulting sets of eligible machines are the same as described
in Theorem 4.30.

three resources . We present a reduction from 3-DM to RAR(3).
The reduction is based on the classical result by Lenstra et al. [108] and
very similar to a reduction by Bhaskara et al. [16] for LRS(4). However,
there is a problem with the choice of processing times in the latter
reduction, and the present result can be used to fix it. We discuss this
problem at the end of this section.

Given an instance (A,B,C,E) of 3-DM, let n = |A| and E(x) =

{e ∈ E | x ∈ e} for each x ∈ A ∪ B ∪C. Furthermore, we set αA = 12,
αB = 13, αC = 22, βA = 14, βB = 15 and βC = 18. Let R = {A,B,C}
and M = E. For each machine e, we define the resource capacities
as follows. Let X ∈ {A,B,C} and xi ∈ X ∩ e be the element of x with

4.3 resource restrictions 69

index i. We set cX(e) = i. Furthermore, for each element xi ∈ X with
index i in X ∈ {A,B,C}, we introduce one element job with size αX
and |E(x)|− 1 dummy jobs with size βX. The resource demand for
each of these jobs is given by d(i) with dX(i) = i and dY(i) = 0 for
Y ∈ {A,B,C} \ {X}.

Claim 4.32. We have αA + αB + αC = 47 = βA + βB + βC; any four
numbers from Γ = {αA,αB,αC,βA,βB,βC} = {12, 13, 22, 14, 15, 18}
sum up to a value bigger than 47; any selection of less than 3 num-
bers sums up to a value smaller than 47; and for any three numbers
γ1,γ2,γ3 ∈ Γ with γ1 6 γ2 6 γ3 and γ1 + γ2 + γ3 = 47, we have
either (γ1,γ2,γ3) = (αA,αB,αC) or (γ1,γ2,γ3) = (βA,βB,βC).

Proof. The first three assertions are obvious, and the fourth holds due
to a simple case analysis:

• If γ1 > 15, we have γ1 > 18, and hence 47 = γ1 + γ2 + γ3 >
3 · γ1 = 54: a contradiction.

• Note that γ3 > (γ2 + γ3)/2 = (47 − γ1)/2. Hence, γ1 6 15

implies γ3 > 16 and therefore γ3 ∈ {18, 22}.

• If we have γ3 = 22 = αC, then γ1 6 (γ1+γ2)/2 = (47−γ3)/2 =

12.5. Hence, γ1 = 12 = αA and γ2 = 13 = αB.

• If we have γ3 = 18 = βC, then γ2 > (γ1+γ2)/2 = (47−γ3)/2 =

14.5. Hence, γ2 ∈ {15, 18}. If γ2 = 15 = βB, then γ1 = 14 = βA,
and if γ2 = 18, then γ1 = 11 /∈ Γ .

This concludes the proof of the claim.

By brute force, it can be verified that 47 is the smallest value such
that suitable numbers αA, αB, αC, βA, βB and βC exist and the above
claim holds.

Claim 4.33. The summed up size of all the element and dummy jobs is
47|M|.

Proof. We have exactly n element jobs with size αA, αB and αC, re-
spectively, yielding an overall load of 47n. The dummy jobs have an
overall load of:

βA
∑
a∈A

(|E(a)|− 1) +βB
∑
b∈B

(|E(b)|− 1) +βC
∑
c∈C

(|E(b)|− 1)

=(βA +βB +βC)(|E|−n) = 47(|M|−n)

In this equation, we used the simple fact that {E(x) | x ∈ X} is a partition
of E for each X ∈ {A,B,C}, and hence |E| =

∑
x∈X |E(x)|.

These two claims imply:

70 interval and resource restrictions

Claim 4.34. In any schedule with makespan 47 for the constructed
instance, each machine receives exactly three jobs with sizes γ1,γ2,γ3
such that (γ1,γ2,γ3) = (αA,αB,αC) or (γ1,γ2,γ3) = (βA,βB,βC).

Using these claims, we can show:

proposition 4 .35. There is a perfect matching for the given 3-DM in-
stance, if and only if there is a schedule with makespan 47 for the constructed
RAR(3) instance.

Proof. Let F be a perfect matching for the 3-DM instance. For each
x ∈ A∪B∪C we assign the corresponding element job to the machine
e with x ∈ e and e ∈ F. Furthermore, the dummy jobs corresponding
to x ∈ X with X ∈ {A,B,C}, are distributed to the machines e with
x ∈ e and e /∈ F such that each machine receives exactly one job. Hence,
each machine e ∈ E receives exactly three eligible jobs either with
sizes αA, αB and αC (if e ∈ F) or βA, βB and βC (otherwise).

Next, we assume that there is a schedule with makespan 47 for the
scheduling instance. For each X ∈ {A,B,C}, there are exactly |M| many
jobs with size αX or βX, and due to the above claims, we know that
each machine receives exactly one of these jobs. For each j ∈ [n], let
xj ∈ X be the element with index j in X ∈ {A,B,C}. The machines⋃n
j=i E(xj) are the only machines that may process jobs corresponding

to xi, . . . , xn for each i ∈ [n] and we have exactly
∑n
j=i |E(xj)| many

such jobs. Hence, the machines from E(xi) receive exactly the jobs
corresponding to xi. Now, considering this and Claim 4.34, we get a
perfect matching by selecting the machines that process three element
jobs.

two resources . We are able to refine the result for three resources
to work for two resources as well by using another variant of 3-
DM as the starting point of the reduction. The problem 3-DM∗ was
introduced by Chen et al. [30] to get an improved lower bound for
the approximation ratio of rank four unrelated scheduling. In this
problem, a set of six disjoint sets E = {A,A ′,B,B ′,C,C ′} is given.
For each X ∈ E, we have |X| = 3n for some n ∈ N and the sets are
indexed by [3n], e.g., A = {a1,a2, . . . ,a3n}. Furthermore, there are
two sets of triplets E1 ⊆

{
{ai,bj, cj}, {a ′i,bj, cj}

∣∣ i ∈ [3n], j ∈ [3n]
}

and E2 =
{
{ai,b ′i, c

′
i}, {a

′
i,b
′
i, c
′
ζ(i)}

∣∣ i ∈ [3n]
}

with ζ(3k+ 1) = 3k+ 2,
ζ(3k+ 2) = 3k+ 3 and ζ(3k+ 3) = 3k+ 1 for each k ∈ {0, . . . ,n− 1}.
Note that the second set of triplets is already determined by the
element sets in the input. Similar to the classical 3-DM problem, the
goal is to decide whether there is a subset F ⊆ E1 ∪ E2 that perfectly
covers the element set, that is, for each x ∈

⋃
X∈E X there is exactly

one triplet e ∈ F with x ∈ e. Furthermore, we assume that for each
x ∈

⋃
X∈E X there is at least one e ∈ E with x ∈ E (otherwise the

problem is trivial).

4.3 resource restrictions 71

Jobs Resources Machines Resources

ai (2i, 0) {ai,bj, cj} (2i, 3n+ j)

a ′i (2i− 1, 0) {a ′i,bj, cj} (2i− 1, 3n+ j)

bj (0, 3n+ j) {ai,b ′i, c
′
i} (2i, i)

cj (0, 3n+ j) {a ′i,b
′
i, c
′
ζ(i)} (2i− 1, ζ(i))

b ′i (2i− 1, 0)

c ′i (0, i)

Table 4.8: The resource demands and capacities for the different job (types)
and machines.

Let αA = αA ′ = 12, αB = αB ′ = 13, αC = αC ′ = 22, βA = βA ′ = 14,
βB = βB ′ = 15 and βC = βC ′ = 18. We set M = E1 ∪ E2 and R = [2].
The corresponding resource capacity vectors are presented in Table
4.8. Furthermore, for each element x ∈ X in X ∈ E, we introduce one
element job with size αX and |E(x)|− 1 dummy jobs with size βX. The
vector of resource demands for each such job is given in Table 4.8.
Note that Claim 4.32, 4.33 and 4.34 hold for this reduction as well and
with the same reasoning. Furthermore, a simple case analysis yields:

Claim 4.36. For each x ∈
⋃
X∈E X, a (dummy or element) job corre-

sponding to x is eligible on each machine e with x ∈ e.

Using these claims, we can conclude the proof of Theorem 4.2:

lemma 4 .37. There is a perfect matching for the given 3-DM∗ instance, if
and only if there is a schedule with makespan 47 for the constructed RAR(2)
instance.

Proof. Let F be a perfect matching for the 3-DM∗ instance. For each
x ∈

⋃
X∈E X, we assign the corresponding element job to the machine

e with x ∈ e and e ∈ F. Furthermore, the dummy jobs corresponding
to x ∈ X with X ∈ E, are distributed to the machines e with x ∈ e and
e /∈ F such that each such machine receives exactly one job. Hence,
each machine e ∈ E receives exactly three eligible jobs either with
sizes αA, αB and αC or βA, βB and βC.

Next, we assume that there is a schedule with makespan 47 for
the scheduling instance. There are exactly |M| many jobs with size
αA = αA ′ or βA = βA ′ corresponding to elements of A ∪A ′, and
due to Claim 4.34 we know that each machine receives exactly one of
these jobs. The machines corresponding to triplets from E(a3n) are
the only ones that can process the |E(a3n)| jobs corresponding to a3n,
and hence each of these machines receives exactly one of these jobs.
Now, the machines corresponding to triplets from E(a ′3n) are the only
remaining ones that can process the |E(a ′3n)| jobs corresponding to a ′3n.
Iterating this argument, we get that each machine e receives exactly
one job corresponding to some x ∈ A∪A ′ with x ∈ e. Note that the

72 interval and resource restrictions

above argument was based on the first resource value. Considering the
second resource value yields the same result for each x ∈ C∪C ′. For
the elements x ∈ B ∪ B ′ both resource values have to be considered,
namely the second for b ∈ B and the first for b ′ ∈ B ′, but the argument
stays the same. Summing up, each machine e = {x,y, z} receives exactly
three jobs corresponding to x, y and z. Now, considering this and
Claim 4.34, we get a perfect matching by selecting the triplets e that
processes three element jobs.

problem with known reduction. We state the reduction by
Bhaskara et al. [16] from 3-DM to LRS(4) and show that it is not
sound. We remark that the construction can be repaired with not too
much effort using processing times similar to the ones presented in
the reduction for RAR(3) in Section 4.3.

Given an instance (A,B,C,E) of 3-DM and some ε > 0, let n = |A|,
N = n/ε and E(x) = {e ∈ E | x ∈ e} for each x ∈ A ∪ B ∪ C. We
identify the set of machines M with the set of triplets E, i.e., M = E.
The speed vector of e = {ai,bj, ck} ∈ M is given by (Ni,Nj,Nk, 1).
Furthermore, for each x ∈ A∪ B∪C, we introduce one element and
|E(x)|− 1 dummy jobs. The size vectors of the jobs are presented in
the following table:

Element Dummy

ai ∈ A (εN−i, 0, 0, 1) (εN−i, 0, 0, 0.8)

bj ∈ B (0, εN−j, 0, 1) (0, εN−j, 0, 0.9)

ck ∈ C (0, 0, εN−k, 1) (0, 0, εN−k, 1.3)

In [16] the authors show that there is a schedule with makespan at
most 3+ 3ε if there is a 3D-matching. Furthermore, two Lemmata
(Lemma 2.1 and 2.2 in [16]) are used to show that the existence of a
schedule with makespan at most 3.09+ 3ε implies the existence of a
3D-matching. We present a counter example. Let n = 3 and:

E =
{
{a1,b1, c2}, {a2,b2, c2}, {a3,b3, c3}, {a3,b2, c3}, {a3,b3, c1}

}
Hence, we have:

x a1 a2 a3 b1 b2 b3 c1 c2 c3

|E(x)| 1 1 3 1 2 2 1 2 2

In order to match a1 and a2, a 3D-matching would have to contain
the first two triplets matching c2 twice. Hence, there is no 3D-matching
for this instance.

On the other hand, we define a schedule with makespan 3+ 3ε 6
3.09+ 3ε in the following table.

4.4 open problems 73

Mach. {a1,b1, c2} {a2,b2, c2} {a3,b3, c3} {a3,b2, c3} {a3,b3, c1}

Jobs a1,a2,b1 a3,b2, c2 a3,b3, c3 a3,b2, c3 b3, c1, c2
(element) (dummy) (dummy) (element) (element)

Load 3+ 2ε+ ε
N 3+ 2ε+ ε

N 3+ 3ε 3+ 3ε 3+ 2ε+ ε
N

4.4 open problems

We list some possible future research directions: From the perspective
of complexity, tighter hardness results seem plausible. In particular,
we have the same inapproximability results for RAR(2) and RAR(3)
and it would be interesting to find a better result for RAR(3).

From the algorithmic perspective, it remains open whether any of
the studied problems and RAI in particular admits an approximation
algorithm with a rate smaller than 2. There have been some results
[135, 143] for RAI using promising linear programming relaxations
that may be useful in this context. Another possibility is the application
of the local search techniques originally used by Svensson [137] for
the restricted assignment problem. This approach recently yielded a
breakthrough for the graph balancing problem [85].

Finally, while a PTAS for RAR(1) is known [122], it is unclear
whether the problem admits a an EPTAS.

5
S T R U C T U R A L PA R A M E T E R R E S T R I C T I O N S

5.1 introduction

Like in the last chapter, we study the relationship between the struc-
ture of restrictions and the existence of approximation schemes for
the restricted assignment problem. To this end, we introduce a graph
framework based on the restrictions and consider structural parame-
ters of the resulting graphs in this context. This leads to PTAS results
generalizing the hierarchical, tree-hierarchical and nested cases dis-
cussed in Section 4.1. We also use the framework to develop FPT
results (see Section 2.1) which also work for the unrelated scheduling
setting. These results can in turn be used to obtain FPTAS results.

Recall that in the unrelated scheduling problem we are given a
set J of n jobs that has to be assigned to a set M of m machines
via a schedule σ : J → M. A job j has a processing time pij for
every machine i and the goal is to minimize the makespan Cmax(σ) =

maxi
∑
j∈σ−1(i) pij. On some machines a job might have a very high

or even infinite processing time, hence it should never be processed
on these machines. This amounts to assignment restrictions in which
for every job j there is a subset M(j) of eligible machines on which it
may be processed. In the restricted assignment problem, the machines
are identical in the sense that each job j has the same processing time
pj on all its eligible machines, i.e., pij ∈ {pj,∞}.

graph framework . We briefly describe the graph framework.
In the primal graph, the vertices are the jobs and two vertices are
connected by an edge if there is a machine on which both of the jobs
can be processed. In the dual graph, on the other hand, the machines
are vertices and two of them are adjacent if there is a job that can be
processed by both machines. Lastly, we consider the incidence graph.
This is a bipartite graph and both the jobs and machines are vertices. A
job j is adjacent to a machine i if i ∈M(j). In Figure 5.1, an example of
each graph is given. These graphs have also been studied in the context
of constraint satisfaction (see e.g. [139] or [129]) and we adopted the
naming scheme.

We study so called width parameters for these graphs, namely,
the tree- and cliquewidth which are probably the most famous width
parameters. Concerning the cliquewidth, we will actually utilize the
closely related rankwidth, but the results will translate directly back to
the cliquewidth. Each of these parameters is associated with a graph

75

76 structural parameter restrictions

1

2 3

4

56

I II

IIIIV

1

2

3

4

5

6

I

II

III

IV

Figure 5.1: Primal, dual and incidence graph for an instance with 6 jobs and
4 machines.

decomposition which is used in the presented algorithms. For the
definitions of these concepts, we refer to Section 5.2.

results and organization. In the following, we denote the
treewidth of the primal, dual and incidence graph with twp, twd and
twi, respectively. Let J(i) be the set of jobs the machine i can process.
In the context of parameterized algorithms, we show the following:

theorem 5 .1 : Unrelated scheduling is FPT for the parameter twp.

theorem 5 .2 : Unrelated Scheduling is FPT for the pair of parame-
ters k1,k2 with k1 ∈ {twd, twi} and k2 ∈ {opt, maxi |J(i)|}.

Note that unrelated scheduling with constant k2 remains NP-hard
[40], and it is easy to see that k1 is upper bounded by the number
of machines m. Unrelated scheduling remains weakly NP-hard even
if m = 2. The above results are achieved via dynamic programs that
utilize tree decompositions of the respective graphs.

In the context of approximation we get:

theorem 5 .3 : There is an FPTAS for instances of unrelated schedul-
ing with constant twd or twi.

This is achieved by combining the dynamic programs used for
Theorem 5.2 with a suitable rounding. The result for the dual graph
generalizes one by Lee, Leung and Pinedo [106]—who studied the
case that the dual graph is a tree—and resolves cases that were marked
as open in that paper. All results mentioned so far are discussed in
Section 5.3.

In Section 5.4, we consider the clique- and rankwidth:

theorem 5 .4 : There is a PTAS for instances of the restricted assign-
ment problem where the clique- or rankwidth of the incidence graph
is bounded by a constant.

This results is achieved via dynamic programming utilizing a branch
decomposition combined with a suitable rounding approach. It can
be shown that instances of restricted assignment with hierarchical,
tree-hierarchical or nested restrictions are special cases of the case
when the incidence graph is a bi-cograph. Bicographs are known
to have a cliquewidth of at most 4 (see [54]) and a suitable branch

5.1 introduction 77

decomposition can be found very easily. Therefore, we generalize
and unify most known PTAS results for restricted assignment with
structured job assignment restrictions.

Lastly, in Section 5.5, we discuss to what extent our results can
be generalized to other objective functions. More precisely, we con-
sider minimizing the `p-norm of machines loads, that is, ‖λσ‖p =

(
∑
i∈M(λσi)

p)1/p with λσi =
∑
j∈σ−1(i) pij; and maximizing the mini-

mum machine load Cmin(σ) = mini
∑
j∈σ−1(i) pij. We argue that the

results concerning the treewidth hold for these objective functions
as well. Concerning the rank- and cliquewidth, we get a PTAS for
the minimum machine load but only a QPTAS, that is, an approxi-
mation scheme with quasi-polynomial running time, for the `p-norm
of machines loads. Quasi-polynomial running times are of the form
2polylog(|I|).

further related work . In the last chapter, namely in Section
4.1, we provided a detailed literature review that for the most part
also applies to this setting. We highlight a few further results in the
context of approximation and otherwise focus on the FPT perspective
and other objective functions in the following.

We already mentioned that Lee, Leung and Pinedo [106] showed that
there is an FPTAS for instances restricted assignment where the dual
graph is a tree. Moreover, the special case of graph balancing where
the graph is simple has been considered. For this problem, Asahiro
et al. [10] presented, among other things, a pseudo-polynomial time
algorithm for the case of graphs with bounded treewidth.

The first result for unrelated scheduling from the FPT perspective
was given by Mnich and Wiese [116]. They showed that unrelated
scheduling is FPT for the pair of parameters m and the number of
distinct processing times. Knop and Koutecký [100] showed that the
problem is also FPT for the parameter pair maxpij and the number of
machine types. Two machines have the same type, if each job has the
same processing time on them. This was further generalized by Chen
et al. [31] who showed that the problem is also FPT when considering
maxpij and the rank of the processing time matrix (pij). Furthermore,
Szeider [140] showed that graph balancing on simple graphs with
unary encoding of the processing times is not FPT for the parameter
treewidth under usual complexity assumptions. For an overview of
FPT results for scheduling, we refer to the survey by Mnich and van
Bevern [115].

We briefly consider the other objective functions studied in this
chapter. Concerning the maximization of the minimum machine load
on unrelated machines, there is an FPTAS implied by a work by
Woeginger [147] for the case that there is only a constant number of
machines. In the general case, however, no approximation algorithm
with a constant rate is known. Adapting the result by Lenstra et al.

78 structural parameter restrictions

[108], Bezáková and Dani [15] showed that there is no approximation
ratio with a rate smaller than 2 (unless P=NP), and presented an
algorithm that finds a solution with value at least opt(I) − maxpi,j
as well as a simple (n−m+ 1)-approximation. The best known ap-
proximation ratio of O(nε) is due to Bateni et al. [13] and Chakrabarty
et al. [23] with a running time of O(n1/ε) for any ε > 0. Moreover,
for maximization of the minimum machine load in the restricted as-
signment setting, Annamalai, Kalaitzis and Svensson [6] developed a
13-approximation. This was improved to a rate of 6+ ε by both Cheng
and Mao [32] and Davies, Rothvoss and Zhang [38]. There are also
PTAS results in this setting, namely, for the identical machine case
[146] and the inclusion-free case [97].

Concerning the minimization of the `p-norm of machines loads,
Azar et al. [12] showed for the restricted assignment case that there is
no PTAS (for any p > 1) unless P=NP, and furthermore presented a
2-approximation that works for all norms simultaneously. Moreover,
for unrelated scheduling, they presented an FPTAS for the case that
the number of machines is constant. Lastly, there is a 2-approximation
for the unrelated scheduling case due to Azar and Epstein [11].

5.2 preliminaries

In the following, I will always denote an instance of unrelated schedul-
ing or restricted assignment and most of the time we will assume that
it is feasible. We call an instance feasible if M(j) 6= ∅ for every job j ∈ J.
A schedule is feasible if σ(j) ∈M(j). For a subset J ⊆ J of jobs and a
subset M ⊆M of machines we denote the subinstance of I induced by
J and M with I[J,M]. Furthermore, for a set S of schedules for I we
define opt(S) = minσ∈SCmax(σ) and opt(I) = opt(S) if S is the set
of all schedules for I. We will sometimes use opt(∅) =∞. Note that
there are no schedules for instances without machines. On the other
hand, if I is an instance without jobs, we consider the empty function
a feasible schedule (with makespan 0), and have therefore opt(I) = 0

in that case.

simple dynamic programs . We sketch two basic dynamic pro-
grams for unrelated scheduling that will be needed as subproce-
dures in the following. The first one is based on iterating through
the machines. Let opt(i, J) = opt(I[J \ J, [i]]) for J ⊆ J and i ∈
[m] := {1, . . . ,m} assuming M = [m]. Then it is easy to see that
opt(i, J) = minJ⊆J ′⊆J max{opt(i − 1, J ′),

∑
j∈J ′\J pij}. Using this re-

currence relation, a simple dynamic program can be formulated that
computes the values opt(i, J). It holds that opt(I) = opt(m, ∅), and,
as usual for dynamic programs, an optimal schedule can be recovered
via backtracking. The running time of such a program can be bounded
by 2O(n) ×O(m) yielding the following trivial result:

5.2 preliminaries 79

Remark 5.5. Unrelated scheduling is FPT for the parameter n.

The second dynamic program is based on iterating through the jobs.
Let λ ∈ ZM

>0. We call λ a load vector and say that a schedule σ fulfills λ
if λi =

∑
j∈σ−1(i) pij. For j ∈ [n], let Λ(j) be the set of load vectors that

are fulfilled by some schedule for the subinstance I[[j],M] assuming
J = [n]. Then Λ(j) can also be defined recursively as the set of vectors
λ with λi∗ = λ ′i∗ + pi∗j and λi = λ ′i for i 6= i∗, where i∗ ∈ M(j) and
λ ′ ∈ Λ(j−1). Using this, a simple dynamic program can be formulated
that computes Λ(j) for all j ∈ [n]. opt(I) can be recovered from Λ(n),
and a corresponding schedule can be found via backtracking. Let there
be a bound L for the number of distinct loads that can occur on each
machine, i.e., |{

∑
j∈σ−1(i) pij |σ schedule for I}| 6 L for each i ∈ M.

Then the running time can be bounded by LO(m) ×O(n) yielding:

Remark 5.6. Unrelated scheduling is FPT for the pair of parameters m
and k with k ∈ {opt, maxi |J(i)|}.

For this, note that 2maxi |J(i)| is a bound for the number of distinct
loads that can occur on any machine. Furthermore, if a target objective
value is given, we can easily modify the dynamic program to only
consider loads that are upper bounded by this value.

This dynamic program can also be used to get a simple FPTAS
for unrelated scheduling with a constant number of machines m. We
briefly discuss such an FPTAS. Let B be an upper bound of opt(I) with
B 6 2opt. Such a bound can be found with the 2-approximation by
Lenstra et al. [108]. Moreover, let ε > 0 and δ = ε/2. By rounding the
processing time of every job up to the next integer multiple of δB/n,
we get an instance I ′ whose optimum makespan is at most εopt(I)

bigger than opt(I). The dynamic program can easily be modified to
only consider load vectors for I ′, where all loads are upper bounded
by (1+ δ/n)B. Therefore, there can be at most n/δ+ 2 distinct load
values for any machine and an optimal schedule for I ′ can be found
in time (n/ε)O(m). The schedule can trivially be transformed into a
schedule for the original instance without an increase in the makespan.

tree decompostion and treewidth . A tree decomposition of a
graph G is a pair (T , {Xt | t ∈ V(T)}) where T is a tree, Xt ⊆ V(G) for
each t ∈ V(t) is a set of vertices of G called a bag, and the following
three conditions hold:

(T1)
⋃
t∈V(T) Xt = V(G)

(T2) ∀{u, v} ∈ E(G)∃t ∈ V(T) : u, v ∈ Xt

(T3) For every u ∈ V(G) the set Tu := {t ∈ V(T) |u ∈ Xt} induces a
connected subtree of T .

The width of the decomposition is defined as maxt∈V(T)(|Xt|− 1), and
the treewidth tw(G) of G is the minimum width of all tree decom-
positions of G. It is well known that forests are exactly the graphs

80 structural parameter restrictions

with treewidth one, and that the treewidth of G is at least as big
as the biggest clique in G minus 1. More precisely, for each set of
vertices V ′ ⊆ V(G) inducing a clique in G, there is a node t ∈ V(T)
with V ′ ⊆ Xt (see e.g. [19]). For a given graph and a value k it can
be decided in FPT time (and linear in |V(G)|) whether the treewidth
of G is at most k and in the affirmative case a corresponding tree
decomposition can be computed [18]. However, deciding whether a
graph has a treewidth of at most k, is NP-hard [7].

branch decomposition and rankwidth . It is easy to see
that graphs with a small treewidth are sparse. Probably the most
studied parameter for dense graphs is the cliquewidth cw(G). In this
work, however, we are going to utilize a closely related parameter
called the rankwidth rw(G). These two parameters are equivalent
in the sense that rw(G) 6 cw(G) 6 2rw(G)+1 − 1 [123]. Due to this,
our result utilizing the rankwidth translate back to the cliquewidth.
Furthermore, it is known that cw(G) 6 3× 2tw(G)−1 [34]. On the other
hand, tw(G) cannot be bounded by any function in cw(G) or rw(G)

which can easily be seen by considering complete graphs.
A cut of G is a partition of V(G) into two subsets. For X, Y ⊆ V(G)

let AG[X, Y] = (axy) be the |X|× |Y| adjacency submatrix induced by
X and Y, i.e., axy = 1 if {x,y} ∈ E(G) and axy = 0 otherwise for
x ∈ X and y ∈ Y. The cut rank of (X, Y) is the rank of AG[X, Y] over the
field with two elements GF(2) and denoted by cutrkG(X, Y). A branch
decomposition of V(G) is a pair (T ,η) where T is a tree with |V(G)|

leaves whose internal nodes all have degree 3 and η is a bijection
from V(G) to the leafs of T . For each e = {s, t} ∈ E(T), there is an
induced cut {Xs,Xt} of G: For x ∈ {s, t}, the set Xx contains exactly the
nodes η−1(`) where ` ∈ V(T) is a leaf that is in the same connected
component of T as x if e is removed. Now, the width of e (with respect
to cutrkG) is cutrkG(Xs,Xt), and the rankwidth of the decomposition
(T ,η) is the maximum width over all edges of T . The rankwidth of G is
the minimum rankwidth of all branch decompositions of G. It is well
known that the cliquewidth of a complete graph is equal to 1, and
this is also true for the rankwidth. For a given graph and fixed k there
is an algorithm that finds a branch decomposition of width k in FPT
time (cubic in |V(G)|), or reports correctly that none exists [64].

5.3 treewidth results

We start with some basic relationships between different restriction
parameters for unrelated scheduling, especially the treewidths of the
different graphs for a given instance. Similar relationships have been
determined for the three graphs in the context of constraint satisfaction
[129].

Remark 5.7. twp > maxi |J(i)|− 1 and twd > maxj |M(j)|− 1.

5.3 treewidth results 81

To see this, note that the sets J(i) and M(j) are cliques in the primal
and dual graphs, respectively.

Remark 5.8. twi 6 twp + 1 and twi 6 twd + 1. On the other hand,
twp 6 (twi + 1)maxi |J(i)|− 1 and twd 6 (twi + 1)maxj |M(j)|− 1.

These properties were pointed out by Kalaitis and Vardi [102] in
a different context. Note that this remark together with Theorem 5.1
implies the results of Theorem 5.2 concerning the parameter maxi |J(i)|.
Furthermore, in the case of machine scheduling with only 1 job and
m machines or n jobs and only 1 machine, the primal graph has
treewidth 0 or n− 1 and the dual m− 1 or 0, respectively, while the
incidence graph in both cases has treewidth 1.

dynamic programs . We show how a given tree decomposition
(T , {Xt | t ∈ V(T)}) of width k for any one of the three graphs can be
used to design a dynamic program for the corresponding instance I
of unrelated scheduling. Selecting a node as the root of the decompo-
sition, the dynamic program works in a bottom-up manner from the
leaves to the root. We assume that the decomposition has the following
simple form: For each leaf node t ∈ V(T) the bag Xt is empty and we
fix one of these nodes as the root a of T . Furthermore, each internal
node t has exactly two children `(t) and r(t) (left and right), and each
node t 6= a has one parent p(t). We denote the descendants of t with
desc(t). A decomposition of this form can be generated from any other
one without increasing the width and growing only linearly in size
through the introduction of dummy nodes. The bag of a dummy node
is either empty or identical to the one of its parent. In the literature, the
so called nice tree decomposition due to Kloks [99] is often used which
has an even simpler structure and could be utilized in the following
as well.

For each of the graphs and each node t ∈ V(T), we define sets J̌t ⊆ J

and M̌t ⊆M of inactive jobs and machines along with sets Jt and Mt

of active jobs and machines. The active jobs and machines in each case
are defined based on the respective bag Xt, and the inactive ones have
the property that they were active for a descendant t ∈ desc(t) of t but
are not at t. In addition, there are nearly inactive jobs J̃t and machines
M̃t, which are the jobs and machines that are deactivated when going
from t to its parent p(t) (for the root a we set J̃t = M̃t = ∅). The
sets are defined so that certain conditions hold. The first two are that
the (nearly) inactive jobs may only be processed on active or inactive
machines, and the (nearly) inactive machines can only process active
or inactive jobs:

M(J̌t ∪ J̃t) ⊆Mt ∪ M̌t (5.1)

J(M̌t ∪ M̃t) ⊆ Jt ∪ J̌t (5.2)

Above, we use the notation M(J∗) =
⋃
j∈J∗M(j) for any J∗ ⊆ J and

J(M∗) =
⋃
i∈M∗ J(i) for any M∗ ⊆ M. Furthermore, the (nearly)

82 structural parameter restrictions

inactive jobs and machines of the children of an internal node t form
a disjoint union of the inactive jobs and machines of t, respectively:

J̌t = J̌`(t) ∪̇ J̃`(t) ∪̇ J̌r(t) ∪̇ J̃r(t) (5.3)

M̌t = M̌`(t) ∪̇ M̃`(t) ∪̇ M̌r(t) ∪̇ M̃r(t) (5.4)

For any two sets A and B, we emphasize by writing A ∪̇ B that the
union A ∪ B is disjoint, i.e., A ∩ B = ∅. Now, at each node of the
decomposition the basic idea is to perform three steps:

1. Combine the information from the children (for internal nodes).

2. Consider the nearly inactive jobs and machines:

• Primal and incidence graph: Try all possible ways of schedul-
ing active jobs on nearly inactive machines.

• Dual and incidence graph: Try all possible ways of scheduling
nearly inactive jobs on active machines.

3. Combine the information from the last two steps.

For the second step, the dynamic programs described in Section 5.2
are used as subprocedures. We now consider each of the three graphs.

the primal graph . In the primal graph, all the vertices are jobs,
and we define the active jobs of a tree node t to be exactly the jobs that
are included in the respective bag, i.e., Jt = Xt. The inactive jobs are
those that are not included in Xt but are in a bag of some descendant
of t, and the nearly inactive ones are those that are active at t but
inactive at p(t), i.e., J̌t = {j ∈ J | j 6∈ Xt ∧ ∃t ′ ∈ desc(t) : j ∈ Xt ′}
and J̃t = Jt \ Jp(t). Moreover, the inactive machines are the ones on
which some inactive job may be processed, and the (nearly in-)active
machines are those that can process (nearly in-)active jobs and are not
inactive, i.e., M̌t = M(J̌t), Mt = M(Jt) \ M̌t and M̃t = M(J̃t) \ M̌t.
For these definitions we get:

lemma 5 .9. The conditions (5.1)-(5.4) hold, as well as:

J(M̃t) ⊆ Jt (5.5)

M(J̌t ∪ J̃t) = M̃t ∪ M̌t (5.6)

Proof. (5.1) and (5.6):

M(J̌t ∪ J̃t) = M(J̌t)∪M(J̃t) = M̌t ∪ (M(J̃t) \ M̌t) = M̌t ∪ M̃t

This yields (5.6) and (5.6) implies (5.1).
(5.2) and (5.5): Let i ∈ M̌t ∪ M̃t and j ∈ J(i). We first consider the

case that i ∈ M̌t. Then there is a job j ′ ∈ J̌t with i ∈M(j ′). If j = j ′, we
have j ∈ J̌t and otherwise {j, j ′} ∈ E(G). Because of (T2), there is a node
t ′ ∈ V(T) with j, j ′ ∈ Jt ′ . Since j ′ ∈ J̌t, we have j ′ 6∈ Jt. This together

5.3 treewidth results 83

with (T3) gives t ′ ∈ desc(t). Now, j 6∈ Jt implies j ∈ J̌t. Therefore, we
have j ∈ Jt ∪ J̌t. Next, we consider the case that i ∈ M̃t. In this case,
there is a job j ′ ∈ J̃t with i ∈ M(j ′), and, for each job j ′′ ∈ J̌t, we
have i 6∈ M(j ′′). If j = j ′, we have j ∈ Jt and otherwise {j, j ′} ∈ E(G).
Because of (T2), there is again a node t ′ ∈ V(T) with j, j ′ ∈ Jt ′ . Since
j, j ′ 6∈ J̌t, j ′ 6∈ Jp(t) and j ′ ∈ Jt we get j ∈ Jt using (T3). This also
implies (5.5).

(5.3): All but (J̌`(t) ∪ J̃`(t))∩ (J̌r(t) ∪ J̃r(t)) = ∅ follows directly from
the definitions. Assuming there is a job j ∈ (J̌`(t) ∪ J̃`(t)) ∩ (J̌r(t) ∪
J̃r(t)), we get j ∈ Jt because of (T3), yielding a contradiction.

(5.4): Because of (5.3) and the definitions, we get M̌t = M̌`(t) ∪
M̃`(t) ∪M̌r(t) ∪M̃r(t), and M̌s(t) ∩M̃s(t) for s ∈ {`, r} is clear from the
definitions. Therefore, it remains to show (M̌`(t) ∪ M̃`(t))∩ (M̌r(t) ∪
M̃r(t)) = ∅. We assume that there is a machine i in this cut. Then
there are jobs js ∈ J̌s(t) ∪ J̃s(t) for s ∈ {`, r} with i ∈ M(js). We have
{j`, jr} ∈ E, and, because of (T2), there is a node t ′ with j`, jr ∈ Jt ′ .
Because of j`, jr 6∈ Jt and (T3), we have a contradiction.

For J ⊆ J and M ⊆M, let Γ(J,M) = {J ′ ⊆ J |∀j ∈ J ′ : M(j)∩M 6= ∅}.
Let t ∈ V(T), J ∈ Γ(Jt, M̌t), and J ′ ∈ Γ(Jt \ J̃t, M̌t ∪ M̃t). We set
S(t, J) and S̃(t, J ′) to be the sets of feasible schedules for the instances
I[J̌t ∪ J, M̌t] and I[J̌t ∪ J̃t ∪ J ′, M̌t ∪ M̃t], respectively. We will consider
opt(S(t, J)) and opt(S̃(t, J ′)).

First note that opt(I) = opt(S(a, ∅)) (remember that a is the root of
T). Moreover, for a leaf node t, there are neither jobs nor machines
and opt(S(t, ∅)) = opt(S̃(t, ∅)) = opt({∅}) = 0 holds. Hence, let t be
a non-leaf node. We first consider how opt(S(t, J)) can be computed
from the children of t (Step 1). Due to (T3), the jobs from J are already
active on at least one of the direct descendants of t. Because of this
and (5.4), J may be split in two parts J`∪̇Jr = J where Js ∈ Γ(Js(t) \
J̃s(t), M̌s(t) ∪ M̃s(t)) for s ∈ {`, r}. Let Φ(J) be the set of such pairs
(J`, Jr).

lemma 5 .10. We have:

opt(S(t, J)) = min
(J`,Jr)∈Φ(J)

max
s∈{`,r}

opt(S̃(s(t), Js))

Proof. Let σ∗ ∈ S(t, J) be optimal. Since J ⊆ Jt, we have J ∩ J̃s(t) = ∅
for s ∈ {`, r}. Let J∗s = σ∗−1(M̌s(t) ∪ M̃s(t)) ∩ J. Because of (5.4), we
have J = J∗` ∪̇J∗r and J∗s ∈ Γ(Js(t) \ J̃s(t), M̌s(t) ∪ M̃s(t)) obviously holds.
Let σ∗s = σ∗|Js∪J̌s(t)∪J̃s(t) . Because of (5.6), we have σ∗s ∈ S̃(s(t), J∗s) and
(5.3) implies σ∗ = σ∗` ∪ σ∗r (here we consider functions as sets of pairs).
This yields:

opt(S(t, J)) = Cmax(σ
∗)

= max
s∈{`,r}

Cmax(σ
∗
s)

> max
s∈{`,r}

opt(S̃(s(t), J∗s))

84 structural parameter restrictions

> min
(J`,Jr)∈Φ(J)

max
s∈{`,r}

opt(S̃(s(t), Js))

Now, let (J`, Jr) ∈ Φ(J) be minimizing the right-most term in the above
expression and σs ∈ S̃(s(t), Js) be optimal. Then (5.3) and (5.4) imply
that σ := σ` ∪ σr is in S(t, J). Therefore, we have Cmax(σ) > Cmax(σ

∗).
By definition we also have Cmax(σ) = min(J`,Jr) maxs opt(S̃(s(t), Js))
and the claim follows.

Consider the computation of opt(S̃(t, J ′)), that is, step 3. We may
split J ′ and J̃t into a set going to the nearly inactive and a set going to
the inactive machines. We set Ψ(J ′) to be the set of pairs (A,X) with
J ′ ∪ J̃t = A∪̇X, A ∈ Γ(J̃t ∪ J ′, M̃t) and X ∈ Γ(J̃t ∪ J ′, M̌t).

lemma 5 .11. We have:

opt(S̃(t, J ′)) = min
(A,X)∈Ψ(J ′)

max
{

opt(S(t,X)), opt(I[A, M̃t])
}

Proof. Let σ∗ ∈ S̃(t, J ′) be an optimal schedule. Because of (5.5), we
have σ∗−1(M̃t) ⊆ J ′∪ J̃t. We set A∗ = σ∗−1(M̃t) and X∗ = (J ′∪ J̃t) \A.
Then (A∗,X∗) ∈ Ψ(J ′). Let σ̌∗ = σ∗|J̌t∪X∗ and σ̃∗ = σ∗|A. Then σ̌∗ ∈
S(t,X∗) and σ̃∗ is a feasible schedule for I[A∗, M̃t]. Because of (5.3)
and (5.4), we have σ = σ̌∗ ∪̇ σ̃∗ and:

opt(S̃(t, J ′)) = Cmax(σ
∗)

= max
{
Cmax(σ̌

∗),Cmax(σ̃
∗)
}

> max
{

opt(S(t,X∗)), opt(I[A∗, M̃t])
}

> min
(A,X)∈Ψ(J ′)

max
{

opt(S(t,X)), opt(I[A, M̃t])
}

Now, let (A,X) ∈ Ψ(J ′) be minimizing the right-most term in the
above expression, σ̌ ∈ S(t,X) be optimal, and σ̃ be an optimal sched-
ule for I[A, M̃t]. Then (5.3) and (5.4) yield σ := σ̌ ∪̇ σ̃ ∈ S̃(t, J ′),
and therefore Cmax(σ

∗) 6 Cmax(σ). By definition Cmax(σ) also equals
min(A,X) max{opt(S(t,X)), opt(I[A, M̃t])} and the claim follows.

Determining the values opt(I[A, M̃t]) corresponds to Step 2. Note
that these values can be computed using the first dynamic program
from Section 5.2 in time 2O(k) ×O(m).

the dual graph . For the dual graph, the (in-)active jobs and
machines are defined analogously: The active machines for a tree node
t are the ones in the respective bag, the inactive machines are those that
were active for some descendant but are not active for t, and the nearly
inactive machines are those that are active at t but inactive at its parent,
i.e., Mt = Xt, M̌t = {i ∈ M| i 6∈ Mt ∧ ∃t ′ ∈ desc(t) : i ∈ Xt ′} and
M̃t =Mt \ M̌p(t). Furthermore, the inactive jobs are those that may
be processed on some inactive machine and the (nearly in-)active ones
are those that can be processed on some (nearly in-)active machine and
are not inactive, i.e., J̌t = J(M̌t), Jt = J(Mt) \ J̌t and J̃t = J(M̃t) \ J̌t.

5.3 treewidth results 85

With these definitions, we get the following lemma which can be
proved analogously to Lemma 5.9:

lemma 5 .12. The conditions (5.1)-(5.4) hold, as well as:

M(J̃t) ⊆Mt (5.7)

J(M̌t ∪ M̃t) = J̃t ∪ J̌t (5.8)

We need some extra notation. Like we did in Section 5.2, we consider
load vectors λ ∈ ZM>0 where M ⊆M is a set of machines. We say that
a schedule σ fulfills λ if λi =

∑
j∈σ−1(i) pij for each i ∈M. For any set

S of schedules for I, we denote the set of load vectors for M that are
fulfilled by at least one schedule from SwithΛ(S,M). Furthermore, we
denote the set of all schedules for I with S(I), and, for a subset of jobs
J ⊆ J, we write Λ(J,M) as a shortcut for Λ(S(I[J,M]),M). Let t ∈ V(T).
We set S(t) = S(I[J̌t, M̌t ∪Mt]) and S̃(t) = S(I[J̌t ∪ J̃t, M̌t ∪Mt]).
Moreover, for λ ∈ Λ(S(t),Mt) and λ ′ ∈ Λ(S̃(t),Mt), we set S(t, λ) ⊆
S(t) and S̃(t, λ ′) ⊆ S̃(t) to be those schedules that fulfill λ and λ ′,
respectively. We now consider opt(S(t, λ)) and opt(S̃(t, λ ′)).

First note opt(I) = opt(S(a, ∅)). Moreover, for a leaf node t, we
have neither jobs nor machines and Λ(S(t),Mt) = Λ(S̃(t),Mt) = {∅}.
Therefore, opt(S(t, ∅)) = opt(S̃(t, ∅)) = opt({∅}) = 0. Hence, let t be
a non-leaf node. Again, we first consider how opt(S(t, λ)) can be
computed from the children of t. Because of (5.3), λ may be split
into a left and a right part. For two machine sets M,M ′, let τM,M ′ :

ZM>0 → ZM
′

>0 be a transformation function for load vectors where
the entry of τM,M ′(λ) indexed by i equals λi for i ∈ M ∩M ′ and
0 otherwise. We set Ξ(λ) to be the set of pairs (λ`, λr) with λ =

τM`(t),Mt
(λ`) + τMr(t),Mt

(λr), and λs ∈ Λ(S̃(s(t)),Ms(t)) for s ∈ {`, r}.

lemma 5 .13. We have:

opt(S(t, λ)) = min
(λ`,λr)∈Ξ(λ)

max
s∈{`,r}

opt(S̃(s(t), λs))

Proof. Let σ∗ ∈ S(t, λ) be optimal. Because of (5.1), we have σ∗(J̌s(t) ∪
J̃s(t)) ⊆ Ms(t) ∪ M̌s(t) for s ∈ {`, r}. Let σ∗s = σ∗|J̌s(t)∪J̃s(t) and λ∗s the

load vector that σ∗s fulfills on Ms(t). Then we have σ∗s ∈ S̃(s(t), λ∗s)
and (λ∗` , λ

∗
r) ∈ Ξ(λ). Because of (5.3) and (5.4), we have σ∗ = σ∗` ∪̇ σ∗r.

Moreover, we have:

opt(S(t, λ)) = Cmax(σ
∗)

= max
s∈{`,r}

Cmax(σ
∗
s)

> max
s∈{`,r}

opt(S̃(s(t), λ∗s))

> min
(λ`,λr)∈Ξ(λ)

max
s∈{`,r}

opt(S̃(s(t), λs))

86 structural parameter restrictions

Now, let (λ`, λr) ∈ Ξ(λ) be minimizing the right-most term in the
above expression and σs ∈ S̃(s(t), λs) be optimal. Then σ := σ` ∪
σr is in S(t, λ) and Cmax(σ) = min(λ`,λr) maxs opt(S̃(s(t), λs)). Since
furthermore Cmax(σ) > Cmax(σ

∗), the claim follows.

Note that determining opt(S(t, λ)) corresponds to Step 1. Next, we
consider opt(S̃(t, λ ′)) (see Step 3). We may split λ ′ into the load due
to inactive and that due to nearly inactive jobs. Note that the nearly
inactive jobs can only be processed by active machines (5.7). We set
Υ(λ ′) to be the set of pairs (α, ξ) with λ ′ = α+ ξ, α ∈ Λ(J̃t,Mt) and
ξ ∈ Λ(S(t),Mt).

lemma 5 .14. We have:

opt(S̃(t, λ ′)) = min
(α,ξ)∈Υ(λ ′)

max
(
{opt(S(t, ξ))}∪ {λ ′i | i ∈Mt}

)
Proof. Let σ∗ ∈ S̃(t, λ ′) be optimal. Then (5.7) implies σ∗(J̃t) ⊆ Mt.
We set σ̃∗ = σ∗|J̃t and σ̌∗ = σ∗|J̌t . Furthermore, let α∗ be the load
vector fulfilled by σ̃∗ and ξ∗ the one fulfilled by σ̌∗ on Mt. Then
σ̃∗ is a feasible schedule for I[J̃t,Mt] fulfilling α∗, σ̌∗ ∈ S(t, ξ∗) and
(α∗, ξ∗) ∈ Υ(λ ′). Furthermore, (5.3) yields σ∗ = σ̃∗ ∪̇ σ̌∗. We get:

opt(S̃(t, λ ′)) = Cmax(σ
∗)

= max
(
{Cmax(σ̌

∗)}∪ {λ ′i | i ∈Mt}
)

> max
(
{opt(S(t, ξ∗))}∪ {λ ′i | i ∈Mt}

)
> min

(α,ξ)∈Υ(λ ′)
max

(
{opt(S(t, ξ))}∪ {λ ′i | i ∈Mt}

)
Now, let (α, ξ) ∈ Υ(λ ′) be minimizing the right-most term in the
above expression, σ̌ ∈ S(t, ξ) be optimal, and σ̃ be a feasible schedule
for I[J̃t,Mt] fulfilling α. Then σ := σ̌ ∪ σ̃ ∈ S̃(t, λ ′) and therefore
Cmax(σ) > Cmax(σ

∗). Since we additionally have

Cmax(σ) = min
(α,ξ)

max
(
{opt(S(t, ξ))}∪ {λ ′i | i ∈Mt}

)
,

the claim follows.

The set Λ(J̃t,Mt) can be computed using the second dynamic pro-
gram described in Section 5.2 in time LO(k) × O(n) if L is again a
bound on the number of distinct loads that can occur on each machine.
This corresponds to Step 2.

the incidence graph . For the incidence graph, we combine the
ideas that we used for the two other graphs. The situation is slightly
more complicated because we have to handle the jobs and machines
simultaneously. All the job sets are defined like in the primal, and all
the machine sets like in the dual graph case, i.e., Jt = Xt ∩ J, Mt =

Xt ∩M, J̌t = {j ∈ J | j 6∈ Xt ∧ ∃t ′ ∈ desc(t) : j ∈ Xt ′}, M̌t = {i ∈M| i 6∈
Mt ∧ ∃t ′ ∈ desc(t) : i ∈ Xt ′}, J̃t = Jt \ Jp(t), and M̃t = Mt \ M̌p(t).

5.3 treewidth results 87

With these definitions the conditions (5.1)-(5.4) follow almost directly
from the definitions together with (T2) and (T3). The proofs for the
recurrence relations in this paragraph have the same structure as the
proofs for the other recurrence relations and no new ideas are needed.
Therefore, they are omitted.

Let t ∈ V(t), J ∈ Γ(Jt, M̌t) and J ′ ∈ Γ(Jt \ J̃t, M̌t∪M̃t). We set S(t, J)
to be the set of feasible schedules σ for I[J̌t ∪ J, M̌t ∪Mt] that schedule
the jobs from J on inactive machines, i.e., σ(j) ∈ M̌t for each j ∈ J.
Moreover, S̃(t, J ′) is the set of schedules for I[J̌t ∪ J̃t ∪ J ′, M̌t ∪Mt] that
schedule the jobs from J ′ on (nearly) inactive machines M̃t ∪ M̌t. The
sets of schedules that in addition fulfill a load vector λ ∈ Λ(S(t, J),Mt)

or λ ′ ∈ Λ(S̃(t, J ′) are denoted by S(t, J, λ) and S̃(t, J ′, λ ′). We consider
opt(S(t, J, λ)) and opt(S̃(t, J ′, λ ′)).

First note opt(I) = opt(S(a, ∅, ∅)). For a leaf note t there are neither
jobs nor machines and therefore opt(S(t, ∅, ∅)) = opt(∅)) = 0. Hence,
let t be a non-leaf node. Like before, we first consider opt(S(t, J, λ)).
Both J and λ may be split into a left and a right part and we set Φ(J)

like before. Moreover, for (J`, Jr) ∈ Φ(J) we define Ξ(λ, (J`, Jr)) to be
the set of pairs (λ`, λr) with λs ∈ Λ(S̃(s(t), Js),Ms(t)) for s ∈ {`, r}.

lemma 5 .15. We have:

opt(S(t, J, λ)) = min
(J`,Jr),(λ`,λr)

max
s∈{`,r}

opt

(
S̃(s(t), Js, λs)

)
Next we consider opt(S̃(t, J ′, λ ′)). The set J ′ again may be split into

a part going to the inactive and a part going to the nearly inactive
machines, while the nearly inactive jobs J̃t have to be split into a part
going to the inactive and a part going to the active machines (note that
in this case (5.7) does not hold). Therefore, we set Ψ(J ′) to be the set
of pairs (A,X) with J ′ = A∪̇X, A ∩ J ′ ∈ Γ(J ′, M̃t), A ∩ J̃t ∈ Γ(J̃t,Mt)

and X ∈ Γ(J̃t ∪ J ′, M̌t). The splitting of λ ′ is more complicated as
well because in this case all of the active machines may receive load
from the nearly inactive jobs, and the nearly inactive machines may
additionally receive load from the active but not nearly inactive jobs
((5.5) does not hold). Therefore, we set Υ(λ ′, (A,X)) to be the set
of triplets (α,β, ξ) with α ∈ Λ(A ∩ J ′, M̃t), β ∈ Λ(A ∩ J̃t,Mt), ξ ∈
Λ(S(t,X),Mt) and λ ′ = τM̃t,Mt

(α) +β+ ξ.

lemma 5 .16. We have:

opt(S̃(t, J ′, λ ′)) = min
(A,X),(α,β,ξ)

max
(
{opt(S(t,X, ξ))}∪ {λ ′(i) | i ∈Mt}

)

Note that the sets Λ(A∩ J ′, M̃t) and Λ(A∩ J̃t,Mt) can be computed
in time LO(k) using the second dynamic program described in Section
5.2, if L is again a bound on the number of distinct loads that can
occur on each machine.

88 structural parameter restrictions

analysis . Using above arguments, we can design dynamic pro-
grams that use the simple dynamic programs from Section 5.2 as
subroutines.

In case of the primal graph, all the considered sets, that is, Γ(Jt, M̌t),
Γ(Jt \ J̃t, M̌t ∪ M̃t), Φ(J), and Ψ(J ′), are upper bounded in cardinality
by 2k+1. This yields a running time of 2O(k) ×O(m|V(T)|). Note that
a tree decomposition exist whose number of nodes is linear in the
number of vertices of the original graph (see, e.g., [18, 99]).

For the dual graph, note we have an upper bound of Lk+1 for
the cardinality of each of the considered sets, that is, Λ(S(t),Mt),
Λ(S̃(t),Mt), Λ(J̃t,Mt), Ξ(λ), and Υ(λ ′). Furthermore, the above con-
siderations also imply how the sets can be computed for each node.
We get a running time of LO(k) ×O(n|V(G)|) in this case.

Lastly, the cardinality of each of the occurring sets for the case of the
incidence graph can be upper bounded by 2k+1 or Lk+1 in the same
manner. Assuming L > 2, we get a running time of LO(k) ×O(|V(G)|).

Optimal schedules can be found via backtracking proving the The-
orems 5.1 and 5.2. Theorem 5.3 follows by the combination of the
dynamic programs and a rounding scheme similar to that in Section
5.2. Note that in some sense the above results lift the basic dynamic
programs to a more general setting.

5.4 clique- and rankwidth results

In this section, we will utilize the rankwidth and a corresponding
branch decomposition. The result for the cliquewidth is due to the fact
that rw(G) 6 cw(G) 6 2rw(G)+1 − 1 [123].

First, we want to argue that there is not much to be gained when
considering primal or dual graphs with bounded rankwidth (or
cliquewidth). For this, consider any instance I of the restricted as-
signment problem. By adding a job with processing time opt(I) that
can be processed on every machine, and a machine that can only
process this new job, we get a modified instance I ′. Any schedule for
one of the instances can trivially be transformed into a schedule for
the other without an increase in the makespan. However, while the
rankwidth of the primal or dual graph of I could have been arbitrarily
high, the rankwidth of the primal and dual graph of I ′ are both equal
to one, because these graphs are complete.

We study the case when the rankwidth of the incidence graph is
bounded by a constant k. Moreover, we assume that also the number d
of distinct job sizes is bounded by a constant which we can do because
of the following result. Let I be some class of instances of restricted
assignment which is invariant with respect to changing the processing
times of jobs and the introduction of copies of jobs.

5.4 clique- and rankwidth results 89

lemma 5 .17 (rounding lemma). If there is a PTAS for instances
from I for which the number of distinct processing times is bounded by a
constant, then there is also a PTAS for any instance from I.

Proof. Let I ∈ I, ε > 0 and B an upper bound of opt(I) with B 6
2opt. Such a bound B can be found in polynomial time for exam-
ple with the 2-approximation by Lenstra et al. [108]. Moreover, let
δ := min{1/3, ε/7}. We call jobs j big, if pj > δB and otherwise small.
Next, we construct a modified instance I ′. This instance has the same
machine set and for each big job j a job j ′ with the same restrictions
and processing time pj ′ := δ2Bd pj

δ2B
e is included in the job set. This

yields p ′j 6 pj + δ
2B 6 (1 + δ)pj. For each small job j in I, we in-

troduce dnpjδB e ∈ O(n) many jobs with the same restrictions as j and
with processing time δBn . Note that I ′ has a has at most 1/δ+ 1 many
distinct processing times and that I ′ ∈ I. Moreover, the size of I ′ is
polynomial in the size of I.

Given an optimal solution of I, consider the solution of I ′ we get by
scheduling both the big and the small jobs in I ′ the same way as their
analogues in I. The big jobs on a machine can cause an increase of the
processing time of at most factor (1+ δ), while for each small job of I
there may be an increase of at most δBn . Therefore, we get:

opt(I ′) 6 opt(I) + δopt(I) + δB 6 (1+ 3δ)opt(I)

Now given a PTAS for instances of I for which the number of distinct
processing times is bounded by a constant, we can compute a schedule
σ ′ for I ′ with Cmax(σ) 6 (1+ δ)opt(I ′) in polynomial time. We use σ ′

to construct a schedule for σ for I. In this schedule the big jobs are
assigned in the same way as there analogous in I ′. For the small jobs
we need some additional consideration. Let S and S ′ be the set of small
jobs in I and I ′ respectively. Moreover, for j ∈ S let S ′(j) be the set of
small jobs that were inserted in I ′ due to j. The assignment of S(j)
in σ ′ can be seen as a fractional assignment of j. We find a rounding
for this fractional assignment of the small jobs. For each machine i
and small job j ∈ S let x ′ij = |{j ′ ∈ S(j) |σ ′(j) = i}|/|S(j)|. Furthermore,
let ti be the summed up processing time that machine i receives in
the schedule σ ′ from small jobs, i.e., ti = |{j ′ ∈ S ′ |σ ′(j) = i}|δBn . Then
(x ′ij) is a solution of the following linear program:∑

iM(j)

xij = 1 ∀j ∈ S (5.9)

∑
j∈S

pjxij 6 ti ∀i ∈M (5.10)

xij > 1 ∀j ∈ S, i ∈M

90 structural parameter restrictions

Using the rounding approach by Lenstra et al. [108], we can transform
this solution in polynomial time into an integral solution (x∗ij) fulfilling
(5.9) and instead of (5.10) the modified constraint:∑

j∈S
pjxij 6 ti + max

j∈S
pj ∀i ∈M

We set σ to assign the small jobs according to (x∗ij). Since maxj∈S pj 6
δB, we get Cmax(σ) 6 Cmax(σ

′) + δB. Now, δ := min{1/3, ε/7} and the
above inequalities yield:

Cmax(σ) 6 ((1+ δ)(1+ 3δ) + 2δ)opt(I) 6 (1+ ε)opt(I)

For each PTAS result in this context (see [46, 97, 119, 122, 134]) some
rounding and simplification approach is introduced and all of these
approaches are rather similar. We remark that the above approach
can be used for all of the above cases (and for other cases as well).
Hence, we simplify and unify this aspect of PTAS results for variants
of restricted assignment. Note, however, that the included rounding
procedure is not optimized for running time. Finally note that we can
indeed use the above lemma:

lemma 5 .18. Let I be some instance of restricted assignment and I ′ be
another instance that was constructed from I by changing processing times
of jobs and by the introducing copies of jobs. Then the incidence graphs of I
and I ′ have the same rankwidth.

Proof. First note that changing processing times does not change the
incidence graph. We now assume that I ′ was created from I by adding
exactly one copy j ′ of some job j. Let (T ,η) be any branch decomposi-
tion for I. It suffices to construct a branch decomposition (T ′,η ′) for
I ′ that has the same rankwidth as (T ,η). For this, let v be the leaf of T
corresponding to j, i.e., η−1(v) = j. We define T ′ to be the tree we get if
we add two additional nodes u and u ′ that are exclusively connected
to v. Moreover, we define η ′(j) = u, η ′(j ′) = u ′ and η ′(x) = η(x) for
any other job or machine x. Now, let e ′ ∈ E(T ′)∩ E(T) be some edge
that was not newly added and (X, Y) and (X ′, Y ′) be the corresponding
cuts in the incidence graphs of I and I ′, respectively. Furthermore,
let A[X, Y] and A[X ′, Y ′] denote the corresponding adjacency matrices.
Then A[X ′, Y ′] can be derived from A[X, Y] by copying the column
or row corresponding to j in order to fill the column or row corre-
sponding to j ′. Hence, the two matrices have the same rank. Moreover,
the rank corresponding to matrices associated with the newly added
edges is 1 since they are connected to leafs.

dynamic program . We present a dynamic program to solve the
restricted assignment problem using a branch decomposition (T ,η)

5.4 clique- and rankwidth results 91

with rankwidth k for the incidence graph. First, we give some intuition
on why a bounded rankwidth is useful.

For any Graph (V ,E) and X ⊆ V , we say that u, v ∈ V have the same
connection type with respect to X if N(u)∩X = N(v)∩X (N(w) denotes
the neighborhood of a vertex w). If X is clear from the context, we
say that u and v have the same connection type. Now, let e = {a,b} ∈
E(T) be some edge of the branch decomposition and {Xe,a,Xe,b} the
respective cut of T , i.e., Xe,x for x ∈ {a,b} is the set of vertices of T that
are in the same connected component as x when the edge e is removed.
Then {Xe,a,Xe,b} induces a partition of both the jobs and machines
by Je,x := {j ∈ J |η(j) ∈ Xe,x} and Me,x := {i ∈ M|η(j) ∈ Xe,x} for
x ∈ {a,b}. We will utilize the following observation:

Remark 5.19. Let x,y ∈ {a,b} with x 6= y. The number of distinct
connection types of Je,x with respect to Me,y is bounded by 2k.

Proof. This due to the definition of the rankwidth and the simple fact
that there are only 2k distinct linear combinations of k vectors over
the field with two elements GF(2).

In the rest of this section, we first show how the branch decom-
position can be used in a straightforward way to solve restricted
assignment (with exponential running time). The basic idea for this is
that each edge of the decomposition corresponds to a partition of the
job and machine sets and an optimal solution may be found by trying
all possible ways of moving jobs between partitions. At the machine-
leafs, all arriving jobs have to be processed with no jobs going out,
and at the job-leafs, all jobs have to be send away with no jobs coming
in. From this, the procedure can work up to some root edge. Next,
we argue that it is sufficient to consider only certain locally defined
classes of job sets. The crucial part here is that the number of these
classes can be polynomially bounded because the number of distinct
sizes and connection types of jobs are constant.

job sets . Let e = {a,b} ∈ E(T) again be some edge of the tree T
and {Xe,a,Xe,b} the corresponding cut of T . We fix a schedule σ and
make some basic observations. There is a set of jobs ~Ja,b ⊆ Je,a that
σ assigns to machines from Me,b. We will use the intuition that ~Ja,b

is sent through e from a to b (see also Figure 5.2). The node b may
be an inner node or a leaf. Moreover, if b is a leaf, η−1(t) may be a
job j∗ or a machine i∗. In the first case, σ sends no jobs to t and j∗

to a. In the second case, no jobs are sent to a and the jobs send to b
should be feasible on i∗. Now, any set that is sent through an edge and
arrives at an internal node will be split into two parts: one going forth
through the second and one through the third edge. And looking at it
the other way around: Any set that is sent by a schedule through an
edge coming from an inner node, is put together from two parts, one
coming from the second and one coming from the third edge.

92 structural parameter restrictions

a b
Je,a

Me,a

Je,b

Me,b
e

~Ja,b

~Jb,a

Figure 5.2: Edge e slits the instance into two parts. In a given schedule, some
jobs from one part may be processed in the other. We use the
intuition that these jobs are send through the edge.

t
u

v

w

~Jt,u

~Jv,t,u

~Jw,t,u

~Ju,t

~Ju,t,v

~Ju,t,w

Figure 5.3: In a given schedule, the jobs that are send through an edge coming
from or going to an inner node may be partitioned into the jobs
that came from or will continue through the two incident edges,
respectively.

We formalize this notion. Let t be an internal node of T with neigh-
bors u, v,w ∈ V(T). Then, for each pair of neighbors x,y of t, there
are job sets ~Jx,t,y ⊆ ~Jx,t ∩~Jt,y such that:

~Ju,t = ~Ju,t,v∪̇~Ju,t,w ~Jt,u = ~Jv,t,u∪̇~Jw,t,u (5.11)

See also Figure 5.3. It is rather easy to see that sets~Js,t that are feasible
at the leafs and fulfill the conditions (5.11) uniquely define a feasible
schedule.

Using these observations, we now discuss how (the value of) an
optimal schedule can be found by considering different job sets that
may be sent through the edges. For this, we use an intuition of up and
down with a above and b below. Let J̌ = ~Ja,b ⊆ Je,a and Ĵ = ~Jb,a ⊆ Je,b

be some candidate sets to be sent up and down, respectively, through
e. We set Ie,x(Ĵ, J̌) = I[(Je,x \~Jx,y) ∪~Jy,x,Me,x] for x,y ∈ {a,b} with
x 6= y, i.e., the subinstances of I induced by e if Ĵ and J̌ are send up
or down, respectively. Note that the instance I is split into the two
subinstances. Moreover, let Γe be the set of pairs (Ĵ, J̌). Then:

opt(I) = min
(Ĵ,J̌)∈Γe

max
{

opt(Ie,a(Ĵ, J̌)), opt(Ie,b(Ĵ, J̌))
}

(5.12)

We now consider the computation of opt(Ie,b(Ĵ, J̌)) for the two cases
when b is an internal node or a leaf. If b is a leaf, it may correspond
to a job or a machine, i.e., η−1(b) = j∗ ∈ J or η−1(b) = i∗ ∈ M. In
the first case, we have {j∗} = Je,b and get opt(Ie,b(Ĵ, J̌)) =∞ if Ĵ 6= {j∗}

or J̌ 6= ∅ and opt(Ie,b(Ĵ, J̌)) = 0 otherwise. In the second case, Ĵ is

5.4 clique- and rankwidth results 93

empty since there are no jobs at b. We get opt(Ie,b(Ĵ, J̌)) =
∑
j∈J̌ pj if

J̌ ⊆ J(i∗) and opt(Ie,b(Ĵ, J̌)) =∞ otherwise.
Now, let b be an internal node that is connected to two lower nodes

` and r via edges e` and er (see Figure 5.4). We say that ` and e` are

b

a

` r

e

e` er

Ĵ

L̂a R̂a

J̌r

L̂r Ř

J̌`

Ľ R̂`

Figure 5.4: An inner node b and certain job sets that are send through the
incident edges.

on the left, while r and er are on the right. Recursively, we assume
that for any (L̂, Ľ) ∈ Γe` and (R̂, Ř) ∈ Γer we know opt(Ie`,`(L̂, Ľ)) and
opt(Ier,r(R̂, Ř)), respectively. We want to identify the set Λe(Ĵ, J̌) of
tuples (L̂, Ľ, R̂, Ř) that for fixed (Ĵ, J̌) may occur in a schedule, i.e., fulfill
condition (5.11) for all edges from {e, e`, er}. For Ĵ, it is clear which part
is coming from the left and which from the right and we set L̂a ⊆ Je`,`
and R̂a ⊆ Jer,r accordingly such that Ĵ = L̂a∪̇R̂a. The other four sets
in which the job sets going up and down could be split can all be tried.
More precisely, for each J̌`, J̌r ⊆ J̌ with J̌ = J̌`∪̇J̌r, L̂r ⊆ Je`,` \ Ĵ` and
R̂` ⊆ Jer,r \ Ĵr the tuple (L̂r∪̇L̂a, J̌`∪̇R̂`, R̂`∪̇R̂a, J̌r∪̇L̂r) is in Λe(Ĵ, J̌) and
the set is defined by such tuples (see Figure 5.4). We get:

opt(Ie,b(Ĵ, J̌)) = min
(L̂,Ľ,R̂,Ř)

max
{

opt(Ie`,`(L̂, Ľ)), opt(Ier,r(R̂, Ř))
}

(5.13)

Using these considerations, restricted assignment can be solved by
choosing a root edge e∗ = {a∗,b∗} that is incident to a leaf a∗ cor-
responding to a job and designing a dynamic program working
from leaf edges to the root edge using (5.13). Now, (5.12) for e =

e∗ together with the considerations for leaf nodes yield opt(I) =

opt(Ie∗,b∗(∅,η−1(a∗))). The running time of such an algorithm is ex-
ponential in the input length.

classes of jobs . Let J̌, J̌ ′ ⊆ Je,a. There are some cases in which
J̌ and J̌ ′ are in some sense similar and it holds that opt(Ie,b(Ĵ, J̌)) =
opt(Ie,b(Ĵ, J̌ ′)). This is the case if there is a bijection α : J̌ → J̌ ′ such
that j and α(j) have the same connection type with respect to Me,b

and pj = pα(j) for each j ∈ Ĵ. By this, an equivalence relation ∼e,a can
be defined, and analogue considerations can be made for sets that are
send up yielding an equivalence relation ∼e,b. Now the observation
(5.12) can be reformulated in terms of equivalence classes:

opt(I)

= min
([Ĵ],[J̌])

max
{

min
Ĵ ′∈[Ĵ]

opt(Ie,a(Ĵ
′, J̌)), min

J̌ ′∈[J̌]
opt(Ie,b(Ĵ, J̌ ′))

} (5.14)

94 structural parameter restrictions

In this equation we consider equivalence classes [J̌] and [Ĵ] belonging
to the relations ∼e,a and ∼e,b, respectively. Moreover, Ĵ and J̌ are
arbitrary representatives of these classes. We will now develop a
sensible representation for the equivalence classes.

We drop the notion of up and down for the following considerations,
i.e., b ∈ e is just one of two nodes of some edge e. We fix some ordering
of the different processing times with p(i) denoting the i-th processing
time for i ∈ [d]. Any set of jobs J ′ induces a vector λ ∈ Zd>0 where
λi is the number of jobs in J ′ that have the i-th processing time, i.e.,
λi = |{j ∈ J ′ |pj = p(i)}|. We set p(λ) =

∑
i∈[d] p(i)λi. Let κ(e,b) be

the number of connection types of jobs from Je,b with respect to Me,a.
Note that due to Remark 5.19 we get κ(e,b) 6 2k. Again, we fix some
ordering of the connection types. For i ∈ [κ(e,b)] let ϕe,b(i) be the size
vector induced by the i-th connection type of Je,b with respect to Me,a

and Me,a(i) ⊆Me,a the machines from Me,a the respective jobs may
be processed on. Furthermore, the concatenation of these size vectors
is denoted by ϕe,b, that is, with a slight abuse of notation we may
write ϕe,b = (ϕe,b(1), . . . ,ϕe,b(κ(e,b))). Now, the equivalence classes
of ∼e,b can naturally be represented and characterized by vectors
ι 6 ϕe,b. We have:

Remark 5.20. For each e ∈ E(T) and b ∈ e there are at most nκ(e,b)d

different vectors ι 6 ϕe,b.

We now study the splitting behaviour of job classes at inner nodes.
Consider a set J ′ that is sent through an edge f = {u, v} and then forth
through an incident edge g = {v,w}. Then, there are vectors ιf and ιg
representing J ′ in the context of f and g respectively. Now, let J ′′ be
some other set represented by ιf in the context of f. Then J ′′ will also be
represented by ιg in the context of g, that is, ιf translates uniquely into
ιg. We formalize this notion by the definition of a translation function
τf,g : {ι | ι 6 ϕf,u} → {ι ′ | ι ′ 6 ϕg,v}. For each i ∈ [κ(f,u)], there is
a unique i ′ ∈ [κ(g, v)] with Mf,v(i) ∩Mg,w = Mg,w(i

′), i.e., the i-th
connection type of Jf,u translates into the i ′-th connection type of Jg,v.
Let ξf,g : [κ(f,u)]→ [κ(g, v)] be given by i 7→ i ′. For each ι 6 ϕf,u and
i ′ ∈ [κ(g, v)], let ι ′(i ′) ∈ Zd>0 be given by ι ′(i ′) =

∑
i∈ξ−1f,g(i ′)

ι(i). We

set τf,g(ι) = (ι ′(1), . . . , ι ′(κ(g, v)))
With this, we can formulate an analogue of (5.11) for job classes.

Hence, we again fix some schedule σ. Let ιa,b be the representative
of the set of jobs that σ sends from a to b. Moreover, let t be an
inner node with neighbors u, v,w. For neighbors x,y of t, the set~Jx,t,y

considered in the last paragraph now has a representative both in the
context of {x, t} and {t,y}. Fixing the first one ιx,t,y 6 ιx,t, the second
one can be obtained via the transformation function, yielding:

ιu,t = ιu,t,v + ιu,t,w

ιt,u = τ({v,t},{u,t})(ιv,t,u) + τ({w,t},{u,t})(ιw,t,u)
(5.15)

5.4 clique- and rankwidth results 95

We now return to our notion of up and down (e = {a,b} ∈ E(T)
with a above and b below). Let ι̂ 6 ϕe,b and ι̌ 6 ϕe,a be candidate
job classes to be send up and down e. Considering (5.14), we set
opt(e, ι̂, ι̌) = minĴ ′∈[Ĵ] opt(Ie,a(Ĵ

′, J̌)) where ι̂ and ι̌ represent [Ĵ] and
[J̌], respectively.

For the case when b is a leaf not much changes. If η−1(b) is a
job j∗, the class of {j∗} has only one element and is represented by
ϕe,b. Therefore, we get that opt(e, ι̂, ι̌) = 0 for ι̂ = ϕe,b and ι̌ = 0,
and opt(e, ι̂, ι̌) = ∞ otherwise. If η−1(b) is a machine i∗, we have
ϕe,b = 0 and there are only two possible connection types for jobs
from Je,a because jobs can be processed on i∗ or not, i.e., κ(e,a) 6 2.
In any case, we get opt(e, ι̂, ι̌) =

∑
i∈[κ(e,a)] p(ι̌(i)) (remember that

p(λ) =
∑
i∈[d] p(i)λi for any vector λ of job size multiplicities).

Now, let b be an inner node again with lower neighbors ` and r
to which it is connected via edges e` and er. We may assume that
we know the values opt(e`, λ̂, λ̌) and opt(er, ρ̂, ρ̌) for candidate job
classes (λ̂, λ̌, ρ̂, ρ̌) to go up or down the left or right edge, respectively.
We want to identify the set Ξe(ι̂, ι̌) of quadruples (λ̂, λ̌, ρ̂, ρ̌) that are
compatible with ι̂ and ι̌, i.e., that fulfill (5.15). For this, let ι̌`, ι̌r 6 ι̌with
ι̌` + ι̌r = ι̌, λ̂`, λ̂r 6 ϕe`,` with λ̂` + λ̂r 6 ϕe`,`, and ρ̂`, ρ̂r 6 ϕer,r with
ρ̂` + ρ̂r 6 ϕer,r such that τe`,e(λ̂`) + τer,e(ρ̂r) = ι̂. By setting λ̂ = λ̂` +

λ̂r, λ̌ = τe,e`(ι̌`) + τer,e`(ρ̂`), ρ̂ = ρ̂`+ ρ̂r and ρ̌ = τe,er(ι̌r) + τe`,er(λ̂r))

we get such a tuple and the set Ξe(ι̂, ι̌) is defined by such tuples.

lemma 5 .21. We have:

opt(e, ι̂, ι̌) = min
(λ̂,λ̌,ρ̂,ρ̌)

max
{

opt(e`, λ̂, λ̌), opt(er, ρ̂, ρ̌)
}

Proof. If the left-hand side equals∞, it is not hard to see that the equa-
tion holds, and we therefore assume opt(e, ι̂, ι̌) < ∞. For given ι̂ 6
ϕe,a and ι̌ 6 ϕe,b, let J̌ ⊆ Je,a be any set represented by ι̌ and Ĵ ′ ⊆ Je,b

be an optimal one represented by ι̂, i.e., opt(e, ι̂, ι̌) = opt(Ie,b(Ĵ
′, J̌)).

Let σ∗ be an optimal schedule for Ie,b(Ĵ
′, J̌). Furthermore, let L̂∗, Ľ∗, R̂∗

and Ř∗ be the sets that σ∗ sends up or down through e` or er, respec-
tively, and let λ̂∗, λ̌∗, ρ̂∗ and ρ̌∗ be the representatives of their classes.
Than σ∗ induces schedules σ∗` and σ∗r for Ie,`(L̂

∗, Ľ∗) and Ie,r(R̂
∗, Ř∗).

We get:

Cmax(σ
∗) = max{Cmax(σ

∗
`),Cmax(σ

∗
r)}

> max{opt(e`, λ̂∗, λ̌∗), opt(er, ρ̂∗, ρ̌∗)}

> min
(λ̂,λ̌,ρ̂,ρ̌)∈
Ξe(ι̂,ι̌)

max{opt(e`, λ̂, λ̌), opt(er, ρ̂, ρ̌)}

Now, we choose (λ̂, λ̌, ρ̂, ρ̌) ∈ Ξe(ι̂, ι̌) minimizing the last term in
the above expression with the corresponding splitting vectors ι̌`, ι̌r,
λ̂`, λ̂r, ρ̂`, ρ̂r. Moreover, let L̂ ′ and R̂ ′ be optimal sets represented
by λ̂ and ρ̂, respectively. Splitting L̂ ′, R̂ ′ and J̌ corresponding to the

96 structural parameter restrictions

splitting of their job classes we can obtain sets Ľ, Ř and Ĵ that are
represented by λ̌, ρ̌ and ι̂ respectively and fulfill (5.11). We now have
opt(e`, λ̂, λ̌) = opt(Ie`,`(L̂

′, Ľ)) and opt(er, ρ̂, ρ̌) = opt(Ier,r(R̂
′, Ř)).

Let σ` and σr be respective optimal schedules. Than σ := σ` ∪ σr is a
schedule for Ie,b(Ĵ, J̌) and we have:

Cmax(σ) = min
(λ̂,λ̌,ρ̂,ρ̌)

max{opt(e`, λ̂, λ̌), opt(er, ρ̂, ρ̌)}

Hence, we have Cmax(σ
∗) > Cmax(σ). Since σ∗ was chosen optimal

with an optimal class representative, we have furthermore Cmax(σ) >
Cmax(σ

∗). This yields the claimed equation. Moreover, we get that Ĵ is
optimal as well.

results . With these considerations a dynamic program for re-
stricted assignment can be defined. This can be done in a way such
that its running time is in m2nO(d2k) proving Theorem 5.4 together
with Lemma 5.17 (the rounding lemma) and the considerations of
Section 5.2.

bi-cographs We show that the hierarchical, tree-hierarchical and
nested cases are all special cases of the case that the incidence graph
is a bi-cograph. Bi-cographs were introduced as a bipartite analogue
of cographs [53].

definition 5 .22. Let G = (A∪̇B,E) be a bipartite graph. The bi-
complement of G is the graph (A∪̇B, {{a,b} |a ∈ A,b ∈ B, {a,b} 6∈ E}).
A graph is called bi-cograph if and only if it is bipartite and can
be reduced to isolated vertices by recursively bi-complementing its
connected bipartite subgraphs.

It is known [54] that their cliquewidth and therefore also their
rankwidth is bounded by 4. Furthermore, a certain decomposition of
a given bi-cograph similar to cotrees of cographs can be found very
efficiently by recursively bi-complementing the connected bipartite
subgraphs [53]. This decomposition can easily be turned into a branch
decomposition for which in the application studied here the number of
connection types of jobs κ(e,u) for every edge e of the decomposition
and v ∈ e is bounded by 2.

lemma 5 .23. Let I be an instance of restricted assignment with hierarchical,
tree-hierarchical or nested restrictions. Then the incidence graph of I is a
bi-cograph.

Proof. We first consider the case that I has tree-hierarchical restric-
tions. Let T be a corresponding rooted tree with V(T) = M. Then
there is at least one machine (the root of T) that can process all jobs.
After bi-complementing the connected bipartite subgraphs of the in-
cidence graph this machine is isolated. This can be repeated: After
bi-complementing two more times the nearest descendants of the root

5.5 other objective functions 97

in T that cannot process all jobs will be isolated. Iterating this, at some
point all machines and therefore also all jobs will be isolated.

Now, let I be an instance with nested restrictions. Note that the
jobs j ∈ J with maximal M(j) (with respect to ⊆) are all in differ-
ent connected components of the incidence graph and connected to
all machines in their component. Hence, they are isolated after bi-
complementing the first time. If we bi-complement a second time and
remove these jobs, we get a new instance with nested restrictions and
less jobs. By iterating this argument the claim follows.

5.5 other objective functions

We briefly discuss the applicability of our results for other objective
functions that have prominently been studied for scheduling on unre-
lated parallel machines and restricted assignment. Namely, we con-
sider the `p-norm of machines loads, i.e., ‖λσ‖p = (

∑
i∈M(λσi)

p)1/p

and λσi =
∑
j∈σ−1(i) pij; and the minimum machine load Cmin(σ) =

mini
∑
j∈σ−1(i) pij.

treewidth results . The basic dynamic programs discussed in
Section 5.2 are used as subroutines in the dynamic programs utilizing
tree decomposition. Hence, our first step is to argue that they can be
adapted for the changed objective functions.

The first dynamic program iterates through the machines. Like
before, we denote the objective value of an optimal scheduling of
the instance given by the first i machines and all jobs except J with
opt(i, J) = opt(I[J \ J, [i]]). However, now we consider the maximiza-
tion of Cmin and the minimization of

∑
i λ
p
i , respectively. Note that

minimizing
∑
i λ
p
i is equivalent to minimizing ‖λ‖p. We have

opt(i, J) = max
J⊆J ′⊆J

min
{

opt(i− 1, J ′),
∑
j∈J ′\J

pij

}
in the context of Cmin, and

opt(i, J) = min
J⊆J ′⊆J

(
opt(i− 1, J ′) +

(∑
j∈J ′\J

pij
)p)

in the context of
∑
i λ
p
i .

The second dynamic program is based on computing possible load
vectors for the first j jobs. It is obvious that the respective objective
values can be computed directly from the load vectors and the dynamic
program works for both objective functions as well.

Using the second dynamic programs to get an FPTAS, however, is
a little bit more complicated than in the unrelated scheduling case
for both objective functions. For Cmin we can compute a bound B

with B 6 opt 6 (n −m − 1)B using the approximation algorithm
by Bezáková and Dani [15]. Note that the load on some machines

98 structural parameter restrictions

might be arbitrarily high even for an optimal solution, but we can
bound the load values nevertheless: If a processing time is bigger than
(n−m− 1)B, we can reduce it to this value. Then, if assigning a job to
a machine would raise its load to a value bigger than 2(n−m− 1)B,
its load was already bigger than (n−m− 1)B and we do not have
to consider this possibility. Now, the situation could occur that a job
cannot be assigned to any machine because the load would exceed
2(n−m− 1)B for each of them. If this is the case, a corresponding
partial schedule is already optimal, and all remaining jobs can be
assigned arbitrarily. Hence, we can round the processing times down
to the next multiple of ε

n(1+ε)B, and get O(n(n −m − 1)/ε) many
possible distinct load values and therefore an FPTAS with running
time (n2/ε)O(m) ×O(n).

For the case of ‖λ‖p minimization, Azar et al. [12] pointed out how
the triangle inequality and the convexity of the norm function can
be utilized to get an FPTAS as well. We briefly discuss the needed
ideas. Let P =

∑
j∈J min{pij | i ∈M}, λ a load vector that is fulfilled by

some schedule that assigns all jobs on a machine where its processing
time is minimal, and λ∗ a load vector that is fulfilled by some optimal
schedule. We have ‖λ∗‖p 6 ‖λ‖p 6 ‖λ‖1 = P and this implies λ∗i 6
P for each machine i ∈ M. On the other hand, we have ‖λ∗‖p >
P and therefore ‖λ∗‖p > (

∑
i∈M(P/m)p)1/p = m1/pP/m. Hence,

rounding the processing times up to the next integer multiple of
εP/nm and bounding the load values by (1+ ε/nm)P yields an FPTAS
with running time (nm/ε)O(m) ×O(n).

The dynamic programs that utilize the treewidth in some sense lift
the basic dynamic programs to a more general setting. It is easy to
verify that this works for the other objectives as well. Essentially, in the
recurrence relations the role of maximization and minimization has
to be switched for Cmin, and the maximizations have to be replaced
by summations for ‖λ‖p. For example the recurrence relations for
the primal graph described in Lemma 5.10 and 5.11 with analogue
notation translate to

opt(S(t, J)) = max
(J`,Jr)∈Φ(J)

min
s∈{`,r}

opt(S̃(s(t), Js))

opt(S̃(t, J ′)) = max
(A,X)∈Ψ(J ′)

min
{

opt(S(t,X)), opt(I[A, M̃t])
}

for the case of Cmin maximization and

opt(S(t, J)) = min
(J`,Jr)∈Φ(J)

∑
s∈{`,r}

opt(S̃(s(t), Js))

opt(S̃(t, J ′)) = max
(A,X)∈Ψ(J ′)

opt(S(t,X)) + opt(I[A, M̃t])

for
∑
i λ
p
i minimization.

Summarizing, all the results concerning the treewidth can be trans-
ferred to the other objectives as well.

5.6 open problems 99

clique- and rankwidth results . Like for the treewidth re-
sults, the dynamic program utilizing the rankwidth and the branch
decomposition has to be changed only slightly to adapt them for the
changed objective functions and we do not elaborate on that. There-
fore, it remains to argue that Lemma 5.17 (the rounding lemma) can
be adapted.

For the case of Cmin minimization, this can be done in a straight-
forward fashion: There is a constant approximation algorithm [6] that
can be used to get a lower bound B of the optimum and the big jobs
can be defined and rounded analogously. The small jobs can be split
up as well, yielding one extra job size. A schedule for the rounded
instance can be transformed into a schedule for the original one with
a loss of at most δB on each machine, using an adaptation of the result
by Lenstra et al. [108] due to Bezáková and Dani [15].

For the case of ‖λ‖p minimization, on the other hand, the situation is
more complicated. First note that there is an approximation algorithm
with a constant rate [12] that can be used to get an upper bound B
of the optimal schedule, and the algorithm by Lenstra et al. [108] can
be used to find an integral assignment with only slightly increased
load on each machine. However, an increase in the load of at most
X on each machine, translates into an overall increase of m1/pX in
the objective function, when using the triangle inequality. Hence,
defining X in terms of ε and some upper bound B on the optimum
will not work without additional information. Using the ideas that
we introduced for the FPTAS in the treewidth case, we still get a
QPTAS (an approximation scheme with quasi-polynomial running
time): Let P =

∑
j∈J pj and λ∗ a load vector that is fulfilled by some

optimal schedule. Like before, we have λ∗i 6 P for each machine i ∈M

and ‖λ∗‖p > m1/pP/m. We consider a job as big if pj > δP/m and
as small otherwise. The small jobs are handled like before and the
big jobs are rounded via a geometric rounding step, that is, p̄j =

(1+ δ)xδP/m with x = dlog1+δ(pjm)/(δP)e yielding an instance with
O(log1+δm/δ) many processing times. Note that an increase in the
load by a factor of (1+ δ) on each machine increases the objective
function by at most (1+ δ). Hence, an optimal solution for the rounded
instance gives a (1+ ε)-approximation of the original one for δ = ε/2.
Solving an instance with O(log1+δm/δ) many processing times takes
m2nO(2k log1+δ(m/δ)) time, and therefore we get a QPTAS and not a
PTAS in this case.

5.6 open problems

Generally speaking, it is not fully understood which kind of restric-
tions do (not) allow for the design of an approximation scheme. The
graph framework discussed in this chapter might be a viable tool to
deepen the knowledge in this regard and, more generally, to better

100 structural parameter restrictions

understand the hardness imposed by assignment restrictions. For the
primal graph, some work in this direction was already done by Page,
Solis-Oba and Maack [125], who showed, e.g., that instances with a
triangle-free primal graph are polynomial time solvable, while the full
1.5 inapproximability holds for diamond-free graphs.

Furthermore, the work presented in this chapter provided some
insights into restricted assignment from the FPT perspective, and it
seems a viable research goal to deepen this understanding.

6
M A C H I N E S C H E D U L I N G W I T H S E T U P T I M E S

6.1 introduction

In this chapter, we present an augmented formulation of the classical
integer linear program of configurations (configuration IP) and demon-
strate its use in the EPTAS design for scheduling problems with setup
times. Configuration IPs are widely used in the context of scheduling
or packing problems in which items have to be distributed to multiple
target locations. The configurations describe possible placements on a
single location, and the integer linear program (IP) is used to choose a
proper selection covering all items. Two fundamental problems, for
which configuration IPs have prominently been used, are bin packing
and machine scheduling (see Section 2.2). For bin packing, the configu-
ration IP was introduced as early as 1961 by Gilmore and Gomory [55],
and the recent results for both problems typically use configuration
IPs as a core technique, see, e.g., [56, 73]. In the present work, we
consider scheduling problems and therefore discuss the configuration
IP in more detail using the example of machine scheduling.

configuration ip for machine scheduling . In the prob-
lem of machine scheduling, a set J of n jobs is given together with
processing times pj for each job j and a number m of identical ma-
chines. The objective is to find a schedule σ : J → [m] such that
the makespan is minimized, that is, the latest finishing time of any
job Cmax(σ) = maxi∈[m]

∑
j∈σ−1(i) pj. For a given makespan bound,

the configurations may be defined as multiplicity vectors indexed
by the occurring processing times such that the overall length of
the chosen processing times does not violate the bound. The con-
figuration IP is then given by variables xC for each configuration C;
constraints ensuring that there is a machine for each configuration,
i.e.,
∑
C xC = m; and further constraints due to which the jobs are

covered, i.e.,
∑
CCpxC = |{j ∈ J |pj = p}| for each processing time p.

In combination with certain simplification techniques, this type of IP
is often used in the design of approximation schemes. For machine
scheduling, we demonstrated this in Section 2.2 and showed that only
a constant number of configurations is needed, which leads to an inte-
ger program with a constant number of variables. Integer programs
of that kind can be efficiently solved using the classical algorithm by
Lenstra and Kannan [88, 89], yielding an EPTAS for machine schedul-
ing. It is well-known that machine scheduling is strongly NP-hard,

101

102 machine scheduling with setup times

and therefore it admits no optimal polynomial time algorithm, unless
P=NP, and there neither is hope for an FPTAS.

machine scheduling with classes . The configuration IP is
used in a wide variety of approximation schemes for machine schedul-
ing problems [5, 73]. However, for scheduling problems where the
jobs have to meet some additional requirements, such as class de-
pendencies, the approach often ceases to work. A problem emerg-
ing, in this case, is that the additional requirements have to be rep-
resented in the configurations, resulting in a super-constant num-
ber of variables in the IP. We elaborate on this using a concrete ex-
ample: Consider the variant of machine scheduling in which the
jobs are partitioned into K setup classes. For each job j, a class
kj is given; and for each class k, a setup time sk has to be paid
on a machine if a job belonging to that class is scheduled on it,
i.e., Cmax(σ) = maxi∈[m]

(∑
j∈σ−1(i) pj +

∑
k∈{kj | j∈σ−1(i)} sk

)
. With

some effort, simplification steps similar to the ones for machine
scheduling can be applied. In the course of this, the setup times
as well can be bounded in number and guaranteed to be sufficiently
big [74]. However, it is not hard to see that the configuration IP still
cannot be trivially extended while preserving its solvability. For in-
stance, extending the configurations with multiplicities of setup times
will not work because then we have to make sure that a configuration
is used for a fitting subset of classes. This would create the need to
encode class information into the configurations or introduce other
class dependent variables.

module configuration ip. Our approach to deal with the class
dependencies of the jobs is to cover the job classes with so-called
modules and cover the modules in turn with configurations in an
augmented IP, called the module configuration IP (MCIP). In the setup
class model, for instance, the modules may be defined as combinations
of setup times and multiplicity vectors of processing times, and the
configurations, in turn, as multiplicity vectors of module sizes. The
number of both the modules and the configurations will typically be
bounded by a constant. To cover the classes by modules, each class
is provided with its own set of modules, that is, there are variables
for each pair of class and module. Since the number of classes is part
of the input, the number of variables in the resulting MCIP is super-
constant, and therefore the algorithm by Lenstra and Kannan [88, 89]
is not the proper tool for the solving of the MCIP. However, the MCIP
has a certain simple structure: The mentioned variables are partitioned
into uniform classes each corresponding to the set of modules, and
for each class, the modules have to do essentially the same, that is,
cover the jobs of the class. Utilizing these properties, we can formulate
the MCIP in the framework of n-fold integer programs—a class of IPs

6.1 introduction 103

whose variables and constraints fulfill certain uniformity requirements.
In 2013 Hemmecke, Onn, and Romanchuk [63] presented the first
FPT algorithm (see Section 2.1) for n-fold IPs, that is, an algorithm
with a running time f(k)× poly(|I|) where k is some parameter (or a
sequence of parameters) depending in the instance. In the MCIP the
corresponding parameters can be properly bounded which enables
the present result. For a more detailed description of n-fold IPs and
the MCIP, the reader is referred to Section 6.2 and 6.3, respectively.

Using the MCIP, we are able to formulate an EPTAS for machine
scheduling in the setup class model described above. Before, only a
regular PTAS with running time nmO(1/ε5) was known [74]. To the
best of our knowledge, this is the first use of n-fold integer programing
in the context of approximation algorithms.

results and methodology. To show the conceptual power of
the MCIP, we utilize it for two more problems: The splittable and the
preemptive setup model of machine scheduling. In both variants, for
each job j, a setup time sj is given. Each job may be partitioned into
multiple parts that can be assigned to different machines, but before
any part of the job can be processed the setup time has to be paid.
In the splittable model, job parts belonging to the same job can be
processed in parallel, and therefore it suffices to find a partition of
the jobs and an assignment of the job parts to machines. This is not
the case for the preemptive model, in which additionally a starting
time for each job part has to be found, and two parts of the same job
may not be processed in parallel. In 1999, Schuurman and Woeginger
[133] presented a polynomial time algorithm for the preemptive model
with approximation guarantee 4/3+ ε, and for the splittable case, a
guarantee of 5/3 was achieved by Chen, Ye, and Zhang [29]. These are
the best known approximation guarantees for the problems at hand.
We show that solutions arbitrarily close to the optimum can be found
in polynomial time:

theorem 6 .1 : There is an EPTAS for minimum makespan schedul-
ing on identical parallel machines in the setup-class model, as well as
in the preemptive and splittable setup models.

Note that all three problems are strongly NP-hard, due to trivial
reductions from machine scheduling, and our results are therefore in
some sense best-possible. We have the following running times:

• 2O(1/ε3 log4 1/ε)Knm log(n) log5(K) in the setup class model.

• 2O(1/ε2 log3 1/ε)n2 log2(m) log5(n) in the splittable model.

• 22O(1/ε log1/ε)
nm log(m) log5(n) in the preemptive model.

Summing up, the main achievement of this chapter is the develop-
ment of the module configuration IP and its application in the design

104 machine scheduling with setup times

of approximation schemes. Up to now, EPTAS or even PTAS results
seemed out of reach for the considered problems, and for the preemp-
tive model, we provide the first improvement in 20 years. The simplifi-
cation techniques developed for the splittable and preemptive model
in order to employ the MCIP are original and in the latter case quite
sophisticated and therefore interesting by themselves. Furthermore,
we expect the MCIP to be applicable to other packing and scheduling
problems as well, in particular for variants of machine scheduling and
bin packing with additional class dependent constraints. On a more
conceptual level, we have presented a first demonstration of the po-
tential of n-fold integer programming in the theory of approximation
algorithms and hope to inspire further studies in this direction.

We conclude this paragraph with a more detailed overview of
our results and their presentation. For all three EPTAS results, we
employ the classical dual approximation framework by Hochbaum
and Shmoys [65] to get a guess of the makespan T (see Section 2.2).
In the following section, we develop the module configuration IP and
argue that it is indeed an n-fold IP. The EPTAS results follow the
same basic approach described above for machine scheduling: We find
a schedule for a simplified instance via the MCIP and transform it
into a schedule for the original one. The simplification steps typically
include rounding of the processing and setup times using standard
techniques, as well as the removal of certain jobs which later can be
reinserted via carefully selected greedy procedures. For the splittable
and preemptive model, we additionally have to prove that schedules
with a certain simple structure exist, and in the preemptive model,
the MCIP has to be extended. In Section 6.4 the basic versions of the
EPTAS are presented, and in Section 6.5 some improvements of the
running time for the splittable and the setup class model are discussed.

related work . For an overview on n-fold IPs and their applica-
tions, we refer to the book by Onn [121]. The first FPT algorithm for
n-fold IPs was presented by Hemmecke, Onn, and Romanchuk [63]
in 2013, and it has a running time with a cubic dependence in n. In
2018, Eisenbrand, Hunkenschröder and Klein [42] and independently
Koutecký, Levin and Onn [104] developed algorithms with running
times with near quadratic dependence in n and improved depen-
dencies in the parameters. Very recently, a near linear dependence
in n was achieved by Jansen, Lassota and Rohwedder [76] as well
as Eisenbrand et al. [44]. The former result also provides improved
dependencies in the parameters. For an overview on recent results on
n-fold IPs and related topics we refer to [44].

There have been recent applications of n-fold integer programming
to scheduling problems in the context of parameterized algorithms:
Knop and Kouteckỳ [100] showed, among other things, that the prob-
lem of makespan minimization on unrelated parallel machines where

6.2 preliminaries 105

the processing times are dependent on both jobs and machines is fixed-
parameter tractable with respect to the maximum processing time and
the number of distinct machine types. This was generalized to the
parameters maximum processing time and rank of the processing time
matrix by Chen et al. [31]. Furthermore, Knop, Kouteckỳ, and Mnich
[101] provided an improved algorithm for a special type of n-fold IPs,
yielding improved running times for several applications of n-fold IPs
including results for scheduling problems.

There is extensive literature concerning scheduling problems with
setup times. We highlight a few closely related results and otherwise
refer to the surveys [2–4]. The setup class model was first considered
by Mäcker et al. [112] in the special case that all classes have the
same setup time. They designed a 2-approximation and additionally a
(3/2+ ε)-approximation for the case that the overall length of the jobs
from each class is bounded. Jansen and Land [74] presented a simple
3-approximation with linear running time, a (2+ ε)-approximation,
and the aforementioned PTAS for the general setup class model. As
indicated before, Chen et al. [29] developed a 5/3-approximation for
the splittable model. A generalization of this, in which both setup and
processing times are job and machine dependent, has been considered
by Correa et al. [36]. They achieve a (1+φ)-approximation where φ
denotes the golden ratio, using a newly designed linear programming
formulation. Moreover, there are recent results concerning machine
scheduling in the splittable model considering the sum of (weighted)
completion times as the objective function, e.g. [35, 131]. For the
preemptive model, a PTAS for the special case that all jobs have the
same setup time has been developed by Schuurman and Woeginger
[133]. The mentioned (4/3+ ε)-approximation for the general case
[133] follows the same approach. Furthermore, a combination of the
setup class and the preemptive model has been considered in which
the jobs are scheduled preemptively, but the setup times are class
dependent. Monma and Potts [117] presented, among other things, a
(2− 1/(bm/2c+ 1))-approximation for this model, and later Chen [27]
achieved improvements for some special cases. Recently, Deppert and
Jansen [39] presented 1.5-approximations with near-linear running
times for this problem, the splittable, and the non-preemptive setup
class model.

6.2 preliminaries

In the following, we establish some concepts and notations, formally
define the considered problems, and discuss n-fold integer programs.

problems . For all three of the considered problems, a set J of n
jobs with processing times pj ∈ Q>0 for each job j ∈ J and a number
of machines m is given. In the preemptive and the splittable model,

106 machine scheduling with setup times

the input additionally includes a setup time sj ∈ Q>0 for each job
j ∈ J; while in the setup class model, it includes a number K of setup
classes, a setup class kj ∈ [K] for each job j ∈ J, as well as setup times
sk ∈ Q>0 for each k ∈ [K].

We take a closer look at the definition of a schedule in the pre-
emptive model. The jobs may be split. Therefore, partition sizes
κ : J→ Z>0, together with processing time fractions λj : [κ(j)]→ (0, 1]
such that

∑
k∈[κ(j)] λj(k) = 1 have to be found, meaning that job j is

split into κ(j) many parts and the k-th part for k ∈ [κ(j)] has process-
ing time λj(k)pj. This given, we define J ′ = {(j,k) | j ∈ J,k ∈ [κ(j)]}

to be the set of job parts. Now, an assignment σ : J ′ → [m] along
with starting times ξ : J ′ → Q>0 has to be determined such that
any two job parts assigned to the same machine or belonging to
the same job do not overlap. More precisely, we have to assure that
for each two job parts (j,k), (j ′,k ′) ∈ J ′ with σ(j,k) = σ(j ′,k ′) or
j = j ′, we have ξ(j,k) + sj + λj(k)pj 6 ξ(j ′,k ′) or vice versa. A
schedule is given by (κ, λ,σ, ξ), and the makespan can be defined
as Cmax = max(j,k)∈J ′(ξ(j,k) + sj + λj(k)pj). Note that the variant of
the problem in which overlap between a job part and setup of the
same job is allowed is equivalent to the one presented above. This was
pointed out by Schuurmann and Woeginger [133] and can be seen
with a simple swapping argument.

In the splittable model, it is not necessary to determine starting times
for the job parts because, given the assignment σ, the job parts assigned
to each machine can be scheduled as soon as possible in arbitrary order
without gaps. Hence, in this case, the output is of the form (κ, λ,σ), and
the makespan can be defined as Cmax = maxi∈[m]

∑
(j,k)∈σ−1(i)(sj +

λj(k)pj).
Lastly, in the setup class model, the jobs are not split, and the jobs

assigned to each machine can be scheduled in batches comprised
of the jobs of the same class assigned to the machine without over-
laps and gaps. The output is therefore just an assignment σ : J →
[m], and the makespan is given by Cmax = maxi∈[m]

∑
j∈σ−1(i) pj +∑

k∈{kj | j∈σ−1(i)} sk.
Note that in the preemptive and the setup class model, we can

assume that the number of machines is bounded by the number of
jobs: If there are more machines than jobs, placing each job on a
private machine yields an optimal schedule in both models, and the
remaining machines can be ignored. This, however, is not the case in
the splittable model, which causes a minor problem in the following.

n-fold integer programs . We briefly define n-fold integer
programs (IPs) following the notation of [63] and [100], and state the
main algorithmic result needed in the following. Let n, r, s, t ∈ Z>0

6.3 module configuration ip 107

be integers and A be an integer ((r+ns)×nt)-matrix of the following
form:

A =

A1 A1 · · · A1
A2 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 · · · A2

The matrix A is the so-called n-fold product of the bimatrix

(
A1
A2

)
, with

A1 an r× t and A2 an s× t matrix. Furthermore, let w, `,u ∈ Znt and
b ∈ Zr+ns. Then the n-fold integer programming problem is given
by:

min{wx |Ax = b, ` 6 x 6 u, x ∈ Znt}

We set ∆ to be the maximum absolute value occurring in A. There are
several algorithms for solving n-fold IPs. We use the recent result by
Jansen, Lassota and Rohwedder [76]:

theorem 6 .2 : Let ϕ be the encoding length of the largest number
occurring in the input. The n-fold integer programming problem can
be solved in time (rs∆)O(r2s+s2)ϕ2nt log5(nt).

The variables x can naturally be partitioned into bricks x(q) of di-
mension t for each q ∈ [n] such that x = (x(1), . . . x(n)). Furthermore,
we denote the constraints corresponding to A1 as globally uniform and
the ones corresponding to A2 as locally uniform. Hence, r is the number
of globally and s the number of locally uniform constraints (ignoring
their n-fold duplication), t the brick size and n the brick number.

6.3 module configuration ip

In this section, we state the configuration IP for machine scheduling;
introduce a basic version of the module configuration IP (MCIP) that
is already sufficiently general to work for both the splittable and setup
class model; and lastly show that the configuration IP can be expressed
by the MCIP in multiple ways. We will use the dual approximation
framework by Hochbaum and Shmoys [65] and hence always assume
that a guess T of the makespan is given (see Section 2.2). Before that,
however, we formally introduce the concept of configurations.

Given a set of objects A, such as jobs, a configuration C of these
objects is a vector of multiplicities indexed by the objects, i.e., C ∈
ZA>0. For given sizes Λ(a) of the objects a ∈ A, the size Λ(C) of a
configuration C is defined as

∑
a∈ACaΛ(a). Moreover, for a given

upper bound B, we define CA(B) to be the set of configurations of A
that are bounded in size by B, that is, CA(B) = {C ∈ ZA>0 |Λ(C) 6 B}.

108 machine scheduling with setup times

configuration ip. We provide a recollection of the configuration
IP for machine scheduling. Let P be the set of distinct processing times
for some instance I with multiplicities np for each p ∈ P, meaning, I
includes exactly np jobs with processing time p. The size Λ(p) of a
processing time p is given by itself. Furthermore, let T be a guess of
the optimal makespan. The configuration IP for I and T is given by
variables xC > 0 for each C ∈ CP(T) and the following constraints:∑

C∈CP(T)

xC = m (6.1)

∑
C∈CP(T)

CpxC = np ∀p ∈ P (6.2)

Due to constraint (6.1), exactly one configuration is chosen for each
machine; while (6.2) ensures that the correct number of jobs or job
sizes is covered.

module configuration ip. Let B be a set of basic objects (e.g.
jobs or setup classes) and let there be D integer values B1, . . . ,BD for
each basic object B ∈ B (e.g. processing time or numbers of different
kinds of jobs). Our approach is to cover the basic objects with so-
called modules and, in turn, cover the modules with configurations.
Depending on the context, modules correspond to batches of jobs or
job piece sizes together with a setup time and can also encompass
additional information like a starting time. Let M be a set of such
modules. In order to cover the basic objects, each module M ∈ M

also has D integer values M1, . . . ,MD. Furthermore, each module
M has a size Λ(M) and a set of eligible basic objects B(M). The
latter is needed because not all modules are compatible with all basic
objects, e.g., because they do not have the right setup times. The
configurations are used to cover the modules, however, it typically
does not matter which module exactly is covered, but rather which
size the module has. Let H be the set of distinct module sizes, i.e.,
H = {Λ(M) |M ∈M}, and for each module size h ∈ H let M(h) be the
set of modules with size h. We consider the set C of configurations of
module sizes which are bounded in size by a guess of the makespan
T , i.e., C = CH(T). In the preemptive case, configurations need to
additionally encompass information about starting times of modules,
and therefore the definition of configurations will be slightly more
complicated in that case.

Since we want to choose configurations for each machine, we have
variables xC for each C ∈ C and constraints corresponding to (6.1).
Furthermore, we choose modules with variables yM for each M ∈M,
and because we want to cover the chosen modules with configurations,
we have some analogue of constraint (6.2), say

∑
C∈C(T)ChxC =∑

M∈M(h) yM for each module size h ∈ H. It turns out, however, that
to properly cover the basic objects with modules, we need the variables

6.3 module configuration ip 109

yM for each basic object, and this is where n-fold IPs come into play.
The variables stated so far form a brick of the variables of the n-fold IP,
and there is one brick for each basic object, that is, we have, for each
B ∈ B, variables x(B)C for each C ∈ C, and y(B)M for each M ∈M. Using
the upper bounds of the n-fold model, variables y(B)M are set to zero,
if B is not eligible for M; and we set the lower bounds of all variables
to zero. Sensible upper bounds for the remaining variables will be
typically clear from context. Besides that, the module configuration
integer program MCIP (for B, M and C) is given by:∑

B∈B

∑
C∈C

x
(B)
C = m (6.3)∑

B∈B

∑
C∈C(T)

Chx
(B)
C =

∑
B∈B

∑
M∈M(h)

y
(B)
M ∀h ∈ H (6.4)

∑
M∈M

Mdy
(B)
M = Bd ∀B ∈ B,d ∈ [D] (6.5)

It is easy to see that the constraints (6.3) and (6.4) are globally uniform.
They are the mentioned adaptations of (6.1) and (6.2). The constraint
(6.5), on the other hand, is locally uniform and ensures that the basic
objects are covered.

Note that, while the duplication of the configuration variables does
not carry meaning, it also does not upset the model: Consider the
modified MCIP that is given by not duplicating the configuration
variables. A solution (x̃, ỹ) for this IP gives a solution (x,y) for the
MCIP by fixing some basic object B∗, setting x(B

∗)
C = x̃C for each

configuration C, setting the remaining configuration variables to 0, and
copying the remaining variables. Given a solution (x,y) for the MCIP,
on the other hand, gives a solution for the modified version (x̃, ỹ) by
setting x̃C =

∑
B∈B x

B
C for each configuration C. Summarizing we get:

Observation 6.3. The MCIP is an n-fold IP with brick-size t = |M|+ |C|,
brick number n = |B|, r = |H|+ 1 globally uniform and s = D locally
uniform constraints.

Moreover, in all of the considered applications, we will minimize the
overall size of the configurations, i.e.,

∑
B∈B

∑
C∈CΛ(C)x

(B)
C . This will

be required because in the simplification steps of our algorithms some
jobs are removed and have to be reinserted later, and we therefore
have to make sure that no space is wasted.

first example . We conclude the section by pointing out several
different ways to replace the classical configuration IP for machine
scheduling with the MCIP, thereby giving some intuition for the
model. The first possibility is to consider the jobs as the basic objects
and their processing times as their single value (B = J, D = 1); the
modules are the processing times (M = P), and a job is eligible for a
module, if its processing time matches; and the configurations are all

110 machine scheduling with setup times

the configurations bounded in size by T . Another option is to choose
the processing times as basic objects keeping all the other definitions
essentially like before. Lastly, we could consider the whole set of jobs
or the whole set of processing times as a single basic object with
D = |P| different values. In this case, we can define the set of modules
as the set of configurations of processing times bounded by T .

6.4 eptas results

In this section, we present approximation schemes for each of the three
considered problems. Like before, we use the dual approximation
framework by Hochbaum and Shmoys [65] and hence assume for each
problem that a guess of the makespan T is given (see Section 2.2). Note
that for each of the problems a simple 1.5-approximation with near
linear running time is known [39] and hence this has no influence on
the claimed asymptotic running times. Each of the results follows the
same approach: The instance is carefully simplified, a schedule for
the simplified instance is found using the MCIP, and this schedule is
transformed into a schedule for the original instance. The presentation
of the result is also similar for each problem: We first discuss how
the instance can be sensibly simplified and how a schedule for the
simplified instance can be transformed into a schedule for the original
one. Next, we discuss how a schedule for the simplified instance can
be found using the MCIP, and, lastly, we summarize and analyze the
taken steps.

For the sake of clarity, we have given rather formal definitions for
the problems at hand in Section 6.2. In the following, however, we
will use the terms in a more intuitive fashion for the most part, and
we will, for instance, often take a geometric rather than a temporal
view on schedules and talk about the length or the space taken up by
jobs and setups on machines rather than time. In particular, given a
schedule for an instance of any one of the three problems together
with an upper bound for the makespan T , the free space with respect to
T on a machine is defined as the summed up lengths of time intervals
between 0 and T in which the machine is idle. The free space (with
respect to T) is the summed up free space of all the machines. For
bounds T and L for the makespan and the free space, respectively, we
say that a schedule is a (T ,L)-schedule if its makespan is at most T
and the free space with respect to T is at least L.

When transforming the instance, we will increase or decrease pro-
cessing and setup times and fill in or remove extra jobs. Consider a
(T ′,L ′)-schedule where T ′ and L ′ denote some arbitrary makespan
or free space bounds. If we fill in extra jobs or increase processing or
setup times, but can bound the increase on each machine by some
bound b, we end up with a (T ′ + b,L ′)-schedule for the transformed
instance. In particular, we have the same bound for the free space

6.4 eptas results 111

because we properly increased the makespan bound. If, on the other
hand, jobs are removed or setup times decreased, we obviously still
have a (T ′,L ′)-schedule for the transformed instance. This will be used
frequently in the following.

Setup Class Model

We start with the setup class model. In this case, we can essentially
reuse the simplification steps that were developed by Jansen and Land
[74] for their PTAS. The main difference between the two procedures
is that we solve the simplified instance via the MCIP, while they used
a dynamic program. For the sake of self-containment, we include our
own simplification steps, but remark that they are strongly inspired by
those from [74]. In Section 6.5, we present a more elaborate rounding
procedure resulting in an improved running time.

simplification of the instance . In the following, we distin-
guish big setup jobs j belonging to classes k with setup times sk > ε3T
and small setup jobs with sk < ε3T . We denote the corresponding sub-
sets of jobs by Jbst and Jsst, respectively. Furthermore, we call a job tiny
or small, if its processing time is smaller than ε4T or εT , respectively,
and big or large otherwise. For any given set of jobs J, we denote the
subset of tiny jobs from J with Jtiny and the small, big, and large jobs
analogously (see Table 6.1 for an overview). We simplify the instance
in four steps, aiming for an instance that exclusively includes big
jobs with big setup times and additionally only a constant number of
distinct processing and setup times. For technical reasons, we assume
ε 6 1/2.

We proceed with the first simplification step. Let I1 be the instance
given by the job set J \ Jsst

small and Q the set of setup classes completely
contained in Jsst

small, i.e., Q = {k |∀j ∈ J : kj = k ⇒ j ∈ Jsst
small}. An

obvious lower bound on the space taken up by the jobs from Jsst
small

in any schedule is given by L =
∑
j∈Jsst

small
pj +

∑
k∈Q sk. Note that the

instance I1 may include a reduced number K ′ of setup classes.

lemma 6 .4. A schedule for I with makespan T induces a (T ,L)-schedule
for I1, that is, a schedule with makespan T and free space at least L; and

skj

pj
< ε4T < εT > εT

< ε3T Jsst
tiny Jsst

small Jsst
large

> ε3T Jbst
tiny Jbst

small Jbst
large

Table 6.1: Overview on the job classifications

112 machine scheduling with setup times

any (T ′,L)-schedule for I1 can be transformed into a schedule for I with
makespan at most (1+ ε)T ′ + εT + 2ε3T .

Proof. The first claim is obvious and we therefore assume that we have
a (T ′,L)-schedule for I1. We group the jobs from Jsst

small by setup classes
and first consider the groups with summed up processing time at
most ε2T . For each of these groups, we check whether the respective
setup class contains a large job. If this is the case, we schedule the
complete group on a machine on which such a large job is already
scheduled if possible using up free space. Since the large jobs have a
length of at least εT , there are at most T ′/(εT) many large jobs on each
machine, and therefore the schedule on the respective machine has
length at most (1+ ε)T ′, or there is free space with respect to T ′ left. If,
on the other hand, the respective class does not contain a large job and
is therefore fully contained in Jsst

small, we create a container including
the whole class and its setup time. Note that the overall length of the
container is at most (ε2 + ε3)T 6 εT (using ε 6 1/2). Next, we create
a sequence containing the containers and the remaining jobs ordered
by setup class. We insert the items from this sequence greedily into
the remaining free space in a next-fit fashion exceeding T ′ on each
machine by at most one item from the sequence, thereby creating an
error of at most εT . This can be done because we had a free space of
at least L, and the inserted objects had an overall length of at most L.
To make the resulting schedule feasible, we have to insert some setup
times. However, because the overall length of the jobs from each class
in need of a setup is at least ε2T , and the sequence was ordered by
classes, there are at most T ′/(ε2T) + 2 distinct classes without a setup
time on each machine. Inserting the missing setup times will therefore
increase the makespan by at most (T ′/(ε2T) + 2)ε3T = εT ′+ 2ε3T .

Next, we deal with the remaining (large) jobs with small setup times
j ∈ Jsst

large. Let I2 be the instance we get by increasing the setup times
of the classes with small setup times to ε3T . We denote the setup time
of class k ∈ [K ′] for I2 by s ′k. Note that there are no small setup jobs
in I2.

lemma 6 .5. A (T ′,L ′)-schedule I1 induces a ((1+ ε2)T ′,L ′)-schedule for
I2, and a (T ′,L ′)-schedule for I2 is also a (T ′,L ′)-schedule for I1.

Proof. The first claim is true because in a schedule with makespan at
most T ′ there can be at most T ′/(εT) many large jobs on any machine,
and the second claim is obvious.

Let I3 be the instance we get by replacing the jobs from Jbst
tiny with

placeholders of size ε4T . More precisely, we remove Jbst
tiny, and, for each

class k ∈ [K], we introduce d(
∑
j∈Jbst

tiny,kj=k pj)/(ε
4T)e many jobs with

processing time ε4T and class k. We denote the job set of I3 by J ′

6.4 eptas results 113

and the processing time of a job j ∈ J ′ by p ′j. Note that I3 exclusively
contains big jobs with big setup times.

lemma 6 .6. If there is a (T ′,L ′)-schedule for I2, there is also a ((1 +

ε)T ′,L ′)-schedule; and if there is a (T ′,L ′)-schedule for I3, there is also a
((1+ ε)T ′,L ′)-schedule for I2.

Proof. Note that for any (T ′,L ′)-schedule for I2 or I3, there are at most
T ′/(ε3T) many distinct big setup classes scheduled on any machine.
Hence, when considering such a schedule for I2, we can remove the
tiny jobs belonging to Jbst

tiny from the machines and instead fill in the
placeholders, such that each machine for each class receives at most
as much length from that class, as was removed, rounded up to the
next multiple of ε4T . All placeholders can be placed like this and
the makespan is increased by at most (T ′/(ε3T))ε4T = εT ′. If, on
the other hand, we consider such a schedule for I3, we can remove
the placeholders and instead fill in the respective tiny jobs, again
overfilling by at most one job. This yields a ((1+ ε)T ′,L ′)-schedule for
I2 with the same argument.

Lastly, we perform both a geometric and an arithmetic rounding
step for the processing and setup times. The geometric rounding
is needed to suitably bound the number of distinct processing and
setup times, and due to the arithmetic rounding, we will be able
to guarantee integral coefficients in the IP. More precisely, we set
p̃j = (1+ ε)dlog1+ε p

′
j/(ε

4T)eε4T and p̄j = dp̃j/ε5Teε5T for each j ∈ J ′,
as well as s̃j = (1 + ε)dlog1+ε s

′
j/(ε

3T)eε3T and s̄k = ds̃j/ε5Teε5T for
each setup class k ∈ [K ′]. The resulting instance is called I4.

lemma 6 .7. A (T ′,L ′)-schedule for I3 induces a ((1+ 3ε)T ′,L ′)-schedule
for I4, and any (T ′,L ′)-schedule for I4 can be turned into a (T ′,L ′)-schedule
for I3.

Proof. For the first claim, we first stretch a given schedule by (1+ ε).
This enables us to use the processing and setup times due to the
geometric rounding step. Now, using the ones due to the second step
increases the schedule by at most 2εT ′, because there where at most
T ′/(ε4T) many big jobs on any machine to begin with. The second
claim is obvious.

Based on the rounding steps, we define two makespan bounds T̄
and T̆ : Let T̄ be the makespan bound that is obtained from T by the
application of the Lemmata 6.4-6.7 in sequence, i.e., T̄ = (1+ ε2)(1+

ε)(1+3ε)T = (1+O(ε))T . We will find a (T̄ ,L)-schedule for I4 utilizing
the MCIP and afterward apply the Lemmata 6.4-6.7 backwards to get
a schedule with makespan T̆ = (1+ ε)2T̄ + εT + 2ε3T = (1+O(ε))T .

Let P and S be the sets of distinct occurring processing and setup
times for instance I4. Because of the rounding, the minimum and

114 machine scheduling with setup times

maximum lengths of the setup and processing times, and ε < 1, we
can bound |P| and |S| by O(log1+ε 1/ε) = O(1/ε log 1/ε).

utilization of the mcip. At this point, we can employ the
module configuration IP. The basic objects in this context are the setup
classes, i.e., B = [K ′], and the different values are the numbers of jobs
with a certain processing time, i.e., D = |P|. We set nk,p to be the
number of jobs from setup class k ∈ [K ′] with processing time p ∈ P.
The modules correspond to batches of jobs together with a setup time.
Batches of jobs can be modeled as configurations of processing times,
that is, multiplicity vectors indexed by the processing times. Hence,
we define the set of modules M to be the set of pairs of configurations
of processing times and setup times with a summed up size bounded
by T̄ , i.e., M = {(C, s) |C ∈ CP(T̄), s ∈ S, s +Λ(C) 6 T̄ }, and write
Mp = Cp and sM = s for each module M = (C, s) ∈ M. The values
of a module M are given by the numbers Mp and its size Λ(M)

by sM +
∑
p∈PMpp. Remember that the configurations C are the

configurations of module sizes H that are bounded in size by T̄ , i.e.,
C = CH(T̄). A setup class is eligible for a module if the setup times fit,
i.e., BM = {k ∈ [K ′] | sk = sM}. Lastly, we establish ε5T = 1 by scaling.

For the sake of readability, we state the resulting constraints of the
MCIP with adapted notation and without duplication of the configu-
ration variables:∑

C∈C
xC = m (6.6)∑

C∈C
ChxC =

∑
k∈[K ′]

∑
M∈M(h)

y
(k)
M ∀h ∈ H (6.7)

∑
M∈M

Mpy
(k)
M = nk,p ∀k ∈ [K ′],p ∈ P (6.8)

Note that the coefficients are all integral and this includes those of the
objective function, i.e.,

∑
CΛ(C)xC, because of the scaling step.

lemma 6 .8. With the above definitions, there is a (T̄ ,L)-schedule for I4 if
and only if the MCIP has a solution with objective value at most mT̄ − L.

Proof. Let there be a (T̄ ,L)-schedule for I4. Then the schedule on a
given machine corresponds to a distinct configuration C that can be
determined by counting for each possible module size h the batches
of jobs from the same class whose length together with the setup
time adds up to an overall length of h. Note that the length of this
configuration is equal to the used up space on that machine. We fix
an arbitrary setup class k and set the variables x(k)C accordingly (and
x
(k ′)
C = 0 for k ′ 6= k and C ∈ C). By this setting, we get an objective

value of at most mT̄ − L because there was at least L free space in the
schedule. For each class k and module M, we count the number of
machines on which there are exactly Mp jobs with processing time p

6.4 eptas results 115

from class k for each p ∈ P and set y(k)M accordingly. It is easy to see
that the constraints are satisfied by these definitions.

Given a solution (x,y) of the MCIP, we define a corresponding
schedule: Because of (6.6), we can match the machines to configura-
tions such that each machine is matched to exactly one configuration.
If machine i is matched to C, for each module size h, we create Ch
slots of length h on i. Next, we divide the setup classes into batches.
For each class k and module M, we create y(k)M batches of jobs from
class k with Mp jobs with processing time p for each p ∈ P and place
the batch together with the corresponding setup time into a fitting
slot on some machine. Because of (6.8) and (6.7), all jobs can be placed
by this process. Note that the used space equals the overall size of the
configurations, and we therefore have free space of at least L.

result. Using the above results, we can formulate and analyze the
following procedure:

algorithm 6 .9.

1. Generate the modified instance I4:

• Remove the small jobs with small setup times.

• Increase the setup times of the remaining classes with small
setup times.

• Replace the tiny jobs with big setup times.

• Round up the resulting processing and setup times.

2. Build and solve the MCIP for I4.

3. If the MCIP is infeasible, or the objective value greater than
mT̄ − L, report that I has no solution with makespan T .

4. Otherwise build the schedule with makespan T̄ and free space
at least L for I4.

5. Transform the schedule into a schedule for I with makespan at
most T̆ :

• Use the prerounding processing and setup times.

• Replace the placeholders by the tiny jobs with big setup
times.

• Use the orignal setup times of the classes with small setup
times.

• Insert the small jobs with small setup times into the free
space.

The procedure is correct due to the above results. To analyze its
running time, we first bound the parameters of the MCIP. We have
|B| = K ′ 6 K and D = |P| by definition and |M| = O(|S|(1/ε3)|P|) =

116 machine scheduling with setup times

2O(1/ε log2 1/ε) because |S|, |P| ∈ O(1/ε log 1/ε). This is true due to the
last rounding step which also implies |H| = O(1/ε5) yielding |C| =

|H|O(1/ε3) = 2O(1/ε3 log 1/ε). According to Observation 6.3, this yields
a brick size of t = 2O(1/ε3 log 1/ε), a brick number of K, r = O(1/ε5)

globally, and s = O(1/ε log 1/ε) locally uniform constraints for the
MCIP. We have ∆ = O(1/ε5) because all occurring values in the
processing time matrix are bounded in T̄ , and we have T̄ = O(1/ε5)

due to the scaling. Furthermore, the values of the objective function,
the right hand side, and the upper and lower bounds on the variables
are bounded by O(n/ε5) yielding a bound of O(log(n/ε5)) for the
encoding length of the biggest number in the input ϕ.

By Theorem 6.2 and some arithmetic, the MCIP can be solved in
time:

(rs∆)O(r2s+s2)ϕ2Kt log5(Kt) = 2O(1/ε11 log2 1/ε)K log2(n) log5(K)

When building the actual schedule, we iterate through the jobs and ma-
chines like indicated in the proof of Lemma 6.8 yielding the following:

theorem 6 .10 : The algorithm for the setup class model finds a
schedule with makespan (1+O(ε))T or correctly determines that there
is no schedule with makespan T in time:

2O(1/ε11 log2 1/ε)Knm log(n) log5(K)

Splittable Model

The approximation scheme for the splittable model presented in this
section is probably the easiest one discussed in this chapter. There is,
however, one problem concerning this procedure: Its running time is
polynomial in the number of machines which might be exponential
in the input size. In Section 6.5, we show how this problem can be
overcome and further improve the running time.

simplification of the instance . In this context, the set of big
setup jobs Jbst is given by the jobs with setup times at least εT and
the small setup jobs Jsst are all the others. Let L =

∑
j∈Jsst(sj + pj).

Because every job has to be scheduled and every setup has to be paid
at least once, L is a lower bound on the summed up space due to small
jobs in any schedule. Let I1 be the instance that we get by removing
all the small setup jobs from the given instance I.

lemma 6 .11. A schedule with makespan T for I induces a (T ,L)-schedule
for I1; and any (T ′,L)-schedule for I1 can be transformed into a schedule for
I with makespan at most T ′ + εT .

Proof. The first claim is obvious. Hence, consider a sequence consisting
of the jobs from Jsst together with their setup times where the setup

6.4 eptas results 117

time of a job is the direct predecessor of the job. We insert the setup
times and jobs from this sequence greedily into the schedule in a
next-fit fashion: Given a machine, we keep inserting the items from
the sequence on to the machine at the end of the schedule until the
taken up space reaches T ′. If the current item does not fit exactly, we
cut it, such that the used space on the machine is exactly T ′. Then we
continue with the next machine. We can place the whole sequence
like this without exceeding the makespan T ′, because we have free
space of at least L which is the summed up length of the items in
the sequence. Next, we remove each setup time that was placed only
partly on a machine together with those that were placed at the end
of the schedule Furthermore, we insert a fitting setup time for the
jobs that were scheduled without one, which can happen only once
for each machine. This yields a feasible schedule whose makespan is
increased by at most εT .

Next, we round up the processing and setup times of I1 to the next
multiple of ε2T , that is, for each job j ∈ J, we set p̄j = dpj/(ε2T)eε2T
and s̄j = dsj/(ε2T)eε2T . We call the resulting instance I2 and denote
its job set by J ′.

lemma 6 .12. If there is a (T ,L ′)-schedule for I1, then there is also a
((1 + 2ε)T ,L ′)-schedule for I2 in which the length of each job part is a
multiple of ε2T ; and any (T ′,L ′)-schedule for I2 yields a (T ′,L ′)-schedule
for I1.

Proof. Consider a (T ,L)-schedule for I1. There are at most 1/ε jobs
scheduled on each machine since each setup time has a length of at
least εT . On each machine, we extend each occurring setup time and
the processing time of each occurring job part by at most ε2T to round
it to a multiple of ε2T . This step extends the makespan by at most 2εT .
Since now each job part is a multiple of ε2T , the total processing time
of the job is a multiple of ε2T too. However, its overall length might
be greater than its rounded processing time, and we simply discard
some processing time in this case. The second claim is obvious.

Based on the two Lemmata, we define two makespan bounds T̄ =

(1+ 2ε)T and T̆ = T̄ + εT = (1+ 3ε)T . We will use the MCIP to find
a (T̄ ,L)-schedule for I2 in which the length of each job part is a
multiple of ε2T . Using the two Lemmata, this will yield a schedule
with makespan at most T̆ for the original instance I.

utilization of the mcip. The basic objects, in this context, are
the (big setup) jobs, i.e., B = Jbst = J ′, and they have only one value
(D = 1), namely, their processing time. Moreover, the modules are
defined as the set of pairs of job piece sizes and setup times, i.e.,
M =

{
(q, s)

∣∣ s,q ∈ {xε2T | x ∈ Z, 0 < x 6 1/ε2}, s > εT
}

, and we write
sM = s and qM = q for each module M = (q, s) ∈M. Corresponding

118 machine scheduling with setup times

to the value of the basic objects, the value of a module M is qM, and
its size Λ(M) is given by qM+ sM. A job is eligible for a module if the
setup times fit, i.e., BM = {j ∈ J ′ | sj = sM}. In order to ensure integral
values, we establish ε2T = 1 via a simple scaling step. The set of
configurations C is comprised of all configurations of module sizes H
that are bounded in size by T̄ , i.e., C = CH(T̄). We state the constraints
of the MCIP for the above definitions with adapted notation and
without duplication of the configuration variables:∑

C∈C
xC = m (6.9)∑

C∈C
ChxC =

∑
j∈J ′

∑
M∈M(h)

y
(j)
M ∀h ∈ H (6.10)

∑
M∈M

qMy
(j)
M = pj ∀j ∈ J ′ (6.11)

Note that we additionally minimize the summed up size of the config-
urations via the objective function

∑
CΛ(C)xC.

lemma 6 .13. With the above definitions, there is a (T̄ ,L)-schedule for I2
in which the length of each job piece is a multiple of ε2T if and only if the
MCIP has a solution with objective value at most mT̄ − L.

Proof. Given such a schedule for I2, the schedule on each machine
corresponds to exactly one configuration C that can be derived by
counting the job pieces and setup times with the same summed up
length h and setting Ch accordingly. This yields the values for the x
variables. The size of the configuration C is equal to the used space
on the respective machine. Hence, the objective value is bounded by
mT̄ − L. Furthermore, for each job j and job part length q, we count
the number of times a piece of j with length q is scheduled and set
y
(j)
(q,sj)

accordingly. It is easy to see that the constraints are satisfied.
Now, let (x,y) be a solution to the MCIP with objective value at

most mT̄ − L. We use the solution to construct a schedule: For each
configuration C we reserve xC machines. On each of these machines
we create Ch slots of length h for each module size h ∈ H. Note that
because of (6.9), there is the exact right number of machines for this.
Next, consider each job j and possible job part length q and create
y
(j)
(q,sj)

split pieces of length q and place them together with a setup of
sj into a slot of length sj + q on any machine. Because of (6.11), the
entire job is split up by this, and because of (6.10), there are enough
slots for all the job pieces. Note that the used space in the created
schedule is equal to the objective value of (x,y) and therefore there is
at least L free space.

result. Summing up, we can find a schedule of length at most
(1+ 3ε)T or correctly determine that there is no schedule of length T
with the following procedure:

6.4 eptas results 119

algorithm 6 .14.

1. Generate the modified instance I2:

• Remove the small setup jobs.

• Round the setup and processing times of the remaining
jobs.

2. Build and solve the MCIP for this case.

3. If the IP is infeasible, or the objective value greater than mT̄ − L,
report that I has no solution with makespan T .

4. Otherwise build the schedule with makespan T̄ and free space
at least L for Ī.

5. Transform the schedule into a schedule for I with makespan at
most T̆ :

• Use the original processing and setup times.

• Greedily insert the small setup jobs.

To assess the running time of the procedure, we mainly need to
bound the parameters of the MCIP, namely |B|, |H|, |M|, |C| and D. By
definition, we have |B| = |J ′| 6 n and D = 1. Since all setup times
and job piece lengths are multiples of ε2T and bounded by T , we
have |M| = O(1/ε4) and |H| = O(1/ε2). This yields |C| 6 |H|O(1/ε) =

2O(1/ε log 1/ε) because the size of each module is at least εT and the size
of the configurations bounded by (1+ 2ε)T .

According to Observation 6.3, we now have a brick number of
|B| = n, brick-size t = 2O(1/ε log 1/ε), r = |H|+ 1 = O(1/ε2) globally
uniform, and s = D = 1 locally uniform constraints. Because of the
scaling step, all occurring numbers in the constraint matrix of the
MCIP are bounded by O(1/ε2), and therefore we have ∆ = O(1/ε2).
Furthermore, each occurring number can be bounded by O(m/ε2)

and this is an upper bound for each variable as well yielding ϕ =

O(log(m/ε2)). Hence, the MCIP can be solved in time:

(rs∆)O(r2s+s2)ϕ2nt log5(nt) = 2O(1/ε4 log 1/ε)n log2(m) log5(n)

While the first step of the procedure is obviously dominated by the
above, this is not the case for the remaining ones. In particular, building
the schedule from the IP solution has linear costs in both n and m
if the procedure described in the proof of Lemma 6.13 is realized
in a straight-forward fashion. Note that the number of machines m
could be exponential in the number of jobs, and therefore the described
procedure is a PTAS only for the special case ofm = poly(n). However,
this limitation can be overcome with a little extra effort, as we discuss
in Section 6.5.

120 machine scheduling with setup times

theorem 6 .15 : The algorithm for the splittable model finds a
schedule with makespan at most (1+ 3ε)T or correctly determines
that there is no schedule with makespan T in time:

2O(1/ε4 log 1/ε)nm log(m) log5(n)

Preemptive Model

In the preemptive model, we have to actually consider the timeline
of the schedule on each machine, instead of just the assignment of
the jobs or job pieces, and this causes some difficulties. For instance,
we will have to argue that it suffices to look for a schedule with few
possible starting points, and we will have to introduce additional
constraints in the IP in order to ensure that pieces of the same job do
not overlap. Our first step in dealing with this extra difficulty is to
introduce some concepts and notation: For a given schedule with a
makespan bound T , we call a job piece together with its setup a block,
and we call the schedule X-layered, for some value X, if each block
starts at a multiple of X. Corresponding to this, we call the time in
the schedule between two directly succeeding multiples of X a layer
and the corresponding time on a single machine a slot. We number
the layers bottom to top and identify them with their number, that is,
the set of layers Ξ is given by {` ∈ Z>0 | (`− 1)X 6 T }. Note that in an
X-layered schedule there is at most one block in each slot, and for each
layer there can be at most one block of each job present. Furthermore,
we slightly alter the definition of free space for X-layered schedules:
We solely count the space from slots that are completely free. If in such
a schedule for each job there is at most one slot occupied by this job
but not fully filled, we additionally call the schedule layer-compliant.

Simplification of the Instance

In the preemptive model, we distinguish big, medium and small setup
jobs using two parameters δ and µ: The big setup jobs Jbst are those
with setup time at least δT , the small Jsst have a setup time smaller
than µT , and the medium Jmst are the ones in between. We set µ = ε2δ

and choose δ ∈ {ε1, . . . , ε2/ε2} such that the summed up processing
time together with the summed up setup time of the medium setup
jobs is upper bounded by mεT , i.e.,

∑
j∈Jmst(sj+ pj) 6 mεT . If there is

a schedule with makespan T , such a choice is possible because of the
pidgeon hole principle and because the setup time of each job has to
occur at least once in any schedule. Similar arguments are widely used,
e.g., in the context of geometrical packing algorithms. Furthermore, we
distinguish the jobs by processing times calling those with processing
time at least εT big and the others small. For a given set of jobs J, we
call the subsets of big or small jobs Jbig or Jsmall, respectively. In Table
6.2, we present an overview of the job classification described above.

6.4 eptas results 121

pj

sj
< µT > µT , < δT > δT

< εT Jsst
small Jmst

small Jbst
small

> εT Jsst
big Jmst

big Jbst
big

Table 6.2: Overview on the job classifications

We perform three simplification steps, aiming for an instance in which
the small and medium setup jobs are big; small setup jobs have setup
time 0; and for which an εδT -layered, layer-compliant schedule exists.

Let I1 be the instance we get by removing the small jobs with
medium setup times Jmst

small from the given instance I.

lemma 6 .16. If there is a schedule with makespan at most T for I, then
there is also such a schedule for I1; and if there is a schedule with makespan at
most T ′ for I1, then there is a schedule with makespan at most T ′ + (ε+ δ)T

for I.

Proof. The first claim is obvious. For the second, we create a sequence
containing the jobs from Jmst

small each directly preceded by its setup
time. Recall that the overall length of the objects in this sequence is at
most mεT , and the length of each job is bounded by εT . We greedily
insert the objects from the sequence considering each machine in turn.
On the current machine, we start at time T ′ + δT and keep inserting
until T ′ + δT + εT is reached. If the current object is a setup time, we
discard it and continue with the next machine and object. If, on the
other hand, it is a job, we split it such that the remaining space on the
current machine can be perfectly filled. We can place all objects like
this, however the first job part placed on a machine might be missing
a setup. We can insert the missing setups because they have length at
most δT and between time T ′ and T ′ + δT there is free space.

Next, we consider the jobs with small setup times: Let I2 be the
instance we get by removing the small jobs with small setup times
Jsst

small and setting the setup time of the big jobs with small setup
times to zero, i.e., s̄j = 0 for each j ∈ Jsst

big. Note that in the resulting
instance each small job has a big setup time. Furthermore, let L :=∑
j∈Jsst

small
pj+ sj. Then L is an obvious lower bound for the space taken

up by the jobs from Jsst
small in any schedule.

lemma 6 .17. If there is a schedule with makespan at most T for I1, then
there is also a (T ,L)-schedule for I2; and if there is a γT -layered (T ′,L)-
schedule for I2 with T ′ a multiple of γT , then there is also a schedule with
makespan at most (1+ γ−1µ)T ′ + (µ+ ε)T for I1.

Proof. The first claim is obvious, and for the second consider a γT -
layered (T ′,L)-schedule for I2. We create a sequence that contains the
jobs of Jsst

small and their setups such that each job is directly preceded

122 machine scheduling with setup times

by its setup. Remember that the remaining space in partly filled slots
is not counted as free space. Hence, since the overall length of the
objects in the sequence is L, there is is enough space in the free slots of
the schedule to place them. We do so in a greedy fashion guaranteeing
that each job is placed on exactly one machine: We insert the objects
from the sequence into the free slots considering each machine in turn,
starting on the current machine from the beginning of the schedule,
and moving on towards its end. If an object cannot be fully placed
into the current slot there are two cases: It could be a job or a setup. In
the former case, we cut it and continue placing it in the next slot, or, if
the current slot was the last one, we place the rest at the end of the
schedule. In the latter case, we discard the setup and continue with
the next slot and object. The resulting schedule is increased by at most
εT , which is caused by the last job placed on a machine.

To get a proper schedule for I1 we have to insert some setup times:
For the large jobs with small setup times and for the jobs that were
cut in the greedy procedure. We do so by inserting a time window
of length µT at each multiple of γT and at the end of the original
schedule on each machine. By this, the schedule is increased by at
most γ−1µT ′ + µT . Since all the job parts in need of a setup are small
and did start at multiples of µT or at the end, we can insert the
missing setups. Note that blocks that span over multiple layers are cut
by the inserted time windows. This, however, can easily be repaired
by moving the cut pieces properly down.

We continue by rounding the medium and big setup and all the
processing times. In particular, we round the processing times and
the big setup times up to the next multiple of εδT and the medium
setup times to the next multiple of εµT , i.e., p̄j = dpj/(εδT)eεδT for
each job j, s̄j = dsj/(εδT)eεδT for each big setup job j ∈ Jbst, and
s̄j = dsj/(εµT)eεµT for each medium setup job j ∈ Jmst

big .

lemma 6 .18. If there is a (T ,L)-schedule for I2, then there is also an
εδT -layered, layer-compliant ((1+ 3ε)T ,L)-schedule for I3; and if there is a
γT -layered (T ′,L)-schedule for I3, then there is also such a schedule for I2.

While the second claim is easy to see, the proof of the first is rather
elaborate and unfortunately a bit tedious. Hence, since we believe
Lemma 6.18 to be fairly plausible by itself, we postpone its proof to
the end of the section and proceed discussing its use.

For the big and small setup jobs, both processing and setup times
are multiples of εδT . Therefore, the length of each of their blocks in
an εδT -layered, layer-compliant schedule is a multiple of εδT . For a
medium setup job, on the other hand, we know that the overall length
of its blocks has the form xεδT + yεµT , with non-negative integers x
and y. In particular, it is a multiple of εµT because εδT = (1/ε2)εµT .
In a εδT -layered, layer-compliant schedule, for each medium setup
job the length of all but at most one block is a multiple of εδT and

6.4 eptas results 123

therefore a multiple of εµT . If both the overall length and the lengths
of all but one block are multiples of εµT , this is also true for the
one remaining block. Hence, we will use the MCIP not to find an
εδT -layered, layer-compliant schedule in particular, but an εδT -layered
one with block sizes as described above and maximum free space.

Based on the simplification steps, we define two makespan bounds
T̄ and T̆ : Let T̄ be the makespan bound we get by the application
of the Lemmata 6.16-6.18, i.e., T̄ = (1+ 3ε)T . We will use the MCIP
to find an εδT -layered (T̄ ,L)-schedule for I3 and apply the Lemmata
6.16-6.18 backwards to get a schedule for I with makespan at most
T̆ = (1+ (εδ)−1µ)T̄ + (µ+ ε)T + (ε+ δ)T 6 (1+ 9ε)T (using ε 6 1/2).

Utilization of the MCIP

Similar to the splittable case, the basic objects are the (big) jobs, i.e.,
B = Jbig, and their single value is their processing time (D = 1).
The modules, on the other hand, are more complicated, because they
additionally need to encode which layers are exactly used and, in
case of the medium jobs, to which degree the last layer is filled. For
the latter, we introduce buffers, representing the unused space in the
last layer and define modules as tuples (`,q, s,b) of starting layer, job
piece size, setup time and buffer size. For a module M = (`,q, s,b),
we write `M = `, qM = q, sM = s and bM = b, and we define the size
Λ(M) of M as s+ q+ b. The overall set of modules M is the union
of the modules for big, medium and small setup jobs Mbst, Mmst and
Msst that are defined in the following. For this, let Qbst = {q |q =

xεδT , x ∈ Z>0,q 6 T̄ } and Qmst = {q |q = xεµT , x ∈ Z>0,q 6 T̄ }

be the sets of possible job piece sizes of big and medium setup jobs;
Sbst = {s | s = xεδT , x ∈ Z>1/ε, s 6 T̄ } and Smst = {s | s = xεµT , x ∈
Z>1/ε, s 6 δT } be the sets of possible big and medium setup times;
B = {b |b = xεµT , x ∈ Z>0,b < εδT } the set of possible buffer sizes;
and Ξ = {1, . . . , 1/(εδ) + 3/δ} the set of layers. We set:

Mbst =
{
(`,q, s, 0)

∣∣ ` ∈ Ξ,q ∈ Qbst, s ∈ Sbst, (`− 1)εδT + s+ q 6 T̄
}

Mmst =
{
(`,q, s,b) ∈ Ξ×Qmst× Smst×B

∣∣
x = s+ q+ b ∈ εδTZ>0, (`− 1)εδT + x 6 T̄

}
Msst =

{
(`, εδT , 0, 0)

∣∣ ` ∈ Ξ}
Concerning the small setup modules, note that the small setup jobs
have a setup time of 0 and therefore may be covered slot by slot. We
establish εµT = 1 via scaling, to ensure integral values. A big, medium
or small job is eligible for a module if it is also big, medium or small,
respectively, and the setup times fit.

We have to avoid that two modules M1,M2 whose corresponding
time intervals overlap are used to cover the same job or in the same
configuration. Such an overlap is given if there is some layer ` used by
both of them, that is, (`M− 1)εδT 6 (`− 1)εδT < (`M− 1)εδT +Λ(M)

124 machine scheduling with setup times

for both M ∈ {M1,M2}. Hence, for each layer ` ∈ Ξ, we set M` ⊆ M

to be the set of modules that use layer `. Furthermore, we partition
the modules into groups Γ by size and starting layer, i.e., Γ = {G ⊆
M|M,M ′ ∈ G ⇐⇒ Λ(M) = Λ(M ′)∧ `M = `M ′}. The size of a group
G ∈ Γ is the size of a module from G, i.e. Λ(G) = Λ(M) for M ∈ G.
Unlike before we consider configurations of module groups rather than
module sizes. More precisely, the set of configurations C is given by the
configurations of groups, such that for each layer at most one group
using this layer is chosen, i.e., C = {C ∈ ZΓ>0 |∀` ∈ Ξ :

∑
G⊆M`

CG 6 1}.
With this definition we prevent overlap conflicts on the machines. Note
that unlike in the cases considered so far, the size of a configuration
does not correspond to a makespan in the schedule, but to used space,
and the makespan bound is realized in the definition of the modules
instead of in the definition of the configurations. To also avoid conflicts
for the jobs, we extend the basic MCIP with additional locally uniform
constraints. In particular, the constraints of the extended MCIP for the
above definitions with adapted notation and without duplication of
the configuration variables are given by:∑

C∈C
xC = m (6.12)∑

C∈C(T)

CGxC =
∑
j∈J

∑
M∈G

y
(j)
M ∀G ∈ Γ (6.13)

∑
M∈M

qMy
(j)
M = pj ∀j ∈ J (6.14)∑

M∈M`

y
(j)
M 6 1 ∀j ∈ J, ` ∈ Ξ (6.15)

Like in the first two cases, we minimize the summed-up size of the
configurations via the objective function

∑
CΛ(C)xC. Note that in

this case the size of a configuration does not have to equal its height.
It is easy to see that the last constraint is indeed locally uniform.
However, since we have an inequality instead of an equality, we have
to introduce |Ξ| slack variables in each brick, yielding:

Observation 6.19. The MCIP extended like above is an n-fold IP with
brick-size t = |M|+ |C|+ |Ξ|, brick number n = |J|, r = |Γ |+ 1 globally
uniform and s = D+ |Ξ| locally uniform constraints.

lemma 6 .20. With the above definitions, there is an εδT -layered (T̄ ,L)-
schedule for I3 in which the length of a block is a multiple of εδT if it belongs
to a small or big setup job or a multiple of εµT otherwise, if and only if the
extended MCIP has a solution with objective value at most mT̄ − L.

Proof. We first consider such a schedule for I3. For each machine, we
can derive a configuration that is given by the starting layers of the
blocks together with the summed-up length of the slots the respective
block is scheduled in. The size of the configuration C is equal to the
used space on the respective machine. Hence, we can fix some arbitrary

6.4 eptas results 125

job j and set x(j)C to the number of machines corresponding to j (and
x
(j ′)
C = 0 for j ′ 6= j). Keeping in mind that in an εδT -layered schedule

the free space is given by the free slots, the above definition yields an
objective value bounded by mT̄ − L because there was free space of at
least L. Next, we consider the module variables for each job j in turn:
If j is a small setup job, we set y(j)(`,εδT ,0,0) to 1 if j occurs in ` and to 0
otherwise. Now, let j be a big setup job. For each of its blocks, we set
y
(j)
(`,z−sj,sj,0)

= 1, where ` is the starting layer and z the length of the
block. The remaining variables are set to 0. Lastly, let j be a medium
setup job. For each of its blocks, we set y(j)(`,z−sj,sj,b)

= 1, where ` is
the starting layer of the block, z its length and b = dz/(εδT)eεδT − z.
Again, the remaining variables are set to 0. It is easy to verify that all
constraints are satisfied by this solution.

If, on the other hand, we have a solution (x,y) to the MCIP with
objective value at most mT̄ − L, we reserve

∑
j x

(j)
C machines for each

configuration C. There are enough machines to do this, because of
(6.12). On each of these machines we reserve space: For each G ∈ Γ ,
we create an allocated space of length Λ(G) starting from the starting
layer of G if CG = 1. Let j be a job and ` be a layer. If j has a small
setup time, the variable y(j)(`,εδT ,0,0) may have the value 0 or 1. In
the latter case, we create a piece of length εδT and place it into an
allocated space of length εδT in layer `. If, on the other hand, j is a
big or medium setup job, we consider each possible job part length
q ∈ Qbst or q ∈ Qmst, respectively, create y(j)(`,q,sj,0)

or y(j)(`,q,sj,b)
(with

b = dq/(εδT)eεδT − εδT) pieces of length q, and place them together
with their setup time into allocated spaces of length q in layer `.
Because of (6.14), the entire job is split up by this, and because of
(6.13), there are enough allocated spaces for all the job pieces. The
makespan bound is ensured by the definition of the modules, and
overlaps are avoided due to the definition of the configurations and
(6.15). Furthermore, the used slots have an overall length equal to the
objective value of (x,y) and therefore there is at least L free space.

Result

Summing up the above considerations, we get:

algorithm 6 .21.

1. Determine a suitable class of medium setup jobs. If there is no
such class, report that there is no schedule with makespan T and
terminate the procedure.

2. Generate the modified instance I3:

• Remove the small jobs with medium setup times.

• Remove the small jobs with small setup times, and decrease
the setup time of big jobs with small setup time to 0.

126 machine scheduling with setup times

• Round the big processing times, as well as the medium,
and the big setup times.

3. Build and solve the MCIP for I3.

4. If the MCIP is infeasible, or the objective value greater than
mT̄ − L, report that I has no solution with makespan T .

5. Otherwise build the εδT -layered schedule with a makespan of
at most T̄ and a free space of at least L for I3.

6. Transform the schedule into a schedule for I with makespan at
most T̆ :

• Use the prerounding processing and setup times.

• Insert the small jobs with small setup times into the free
slots and insert the setup times of the big jobs with small
setup times.

• Insert the small jobs with medium setup times.

We analyze the running time of the procedure and start by bounding
the parameters of the extended MCIP. We have |B| = n and D = 1

by definition, and the number of layers |Ξ| is obviously O(1/(εδ)) =

O(1/ε2/ε+1) = 2O(1/ε log 1/ε). Furthermore, it is easy to see that |Qbst| =

O(1/(εδ)), |Qmst| = O(1/(ε3δ)), |Sbst| = O(1/(εδ)), |Smst| = O(1/(ε3)),
and |B| = O(1/ε2). This gives us

• |Mbst| 6 |Ξ||Qbst||Sbst|,

• |Mmst| 6 |Ξ||Qmst||Smst||B|, and

• |Msst| = |Ξ|, and therefore

• |M| = |Mbst|+ |Mmst|+ |Msst| = 2O(1/ε log 1/ε).

Since there are O(1/(δε)) distinct module sizes, the number of groups
|Γ | can be bounded by O(|Ξ|/(εδ)) = 2O(1/ε log 1/ε). Hence, for the num-
ber of configurations we get |C| = O((1/(εδ))|Γ |) = 22

O(1/ε log1/ε)
. By Ob-

servation 6.19, the modified MCIP has r = 2O(1/ε log 1/ε) many globally
and s = 2O(1/ε log 1/ε) many locally uniform constraints; its brick num-
ber is n, and its brick size is t = 22

O(1/ε log1/ε)
. All occurring values in the

matrix are bounded by T̄ yielding ∆ 6 T̄ = 1/(εµ)+1/µ = 2O(1/ε log 1/ε)

due to the scaling step. Furthermore, the numbers in the input can
be bounded by m2O(1/ε log 1/ε) and all variables can be upper bounded
by O(m). Hence, we have ϕ = O(logm + 1/ε log 1/ε), and due to
Theorem 6.2, we can solve the MCIP in time:

(rs∆)O(r2s+s2)ϕ2nt log5(nt) = 22
O(1/ε log1/ε)

n log2(m) log5(n)

A straight-forward realization of the procedure for the creation of the
εδT -layered (T̄ ,L)-schedule for I3 (the fifth step), which is described
in the proof of Lemma 6.20, is linear with respect to m, yielding:

6.4 eptas results 127

theorem 6 .22 : The algorithm for the preemptive model finds a
schedule with makespan at most (1+ 9ε)T or correctly determines
that there is no schedule with makespan T in time:

22
O(1/ε log1/ε)

nm log(m) log5(n)

Proof of Lemma 6.18

We divide the proof into three steps, which can be summarized as
follows:

1. We transform a given (T ,L)-schedule for I2 into a ((1+ 3ε)T ,L)-
schedule for I3 in which the big setup jobs are already properly
placed inside the layers.

2. We construct a flow network with integer capacities and a maxi-
mum flow based on the placement of the remaining jobs in the
layers.

3. Using flow integrality and careful repacking, we transform the
schedule into a εδT -layered, layer-compliant schedule.

More precisely, the above transformation steps will produce a εδT -
layered, layer-compliant ((1+ 3ε)T ,L)-schedule with the additional
properties that too much processing time may be inserted for some jobs
or setup times are produced that are not followed by the corresponding
job pieces. Note that this does not cause any problems: We can simply
remove the extra setups and processing time pieces. For the medium
jobs, this results in a placement with at most one used slot that is not
fully filled, as required in a layer-compliant schedule.

step 1 . Remember that a block is a job piece together with its setup
time placed in a given schedule. Consider a (T ,L)-schedule for I2
and suppose that for each block in the schedule there is a container
perfectly encompassing it. Now, we stretch the entire schedule by a
factor of (1+3ε) and in this process we stretch and move the containers
correspondingly. The blocks are not stretched but moved in order to
stay in their container, and we assume that they are positioned at
the bottom, that is, at the beginning of the container. Note that we
could move each block inside its respective container without creating
conflicts with other blocks belonging to the same job. In the following,
we use the extra space to modify the schedule. Similar techniques are
widely used in the context of geometric packing algorithms.

Let j be a big setup job. In each container containing a block belong-
ing to j, there is a free space of at least 3εδT because the setup time
of j is at least δT and therefore the container had at least that length
before the stretching. Hence, we have enough space to perform the
following two steps. We move the block up by at most εδT such that it
starts at a multiple of εδT . Next, we enlarge the setup time and the

128 machine scheduling with setup times

Figure 6.1: The stretching and rounding steps, for a small job part with big
setup time starting in the first layer of the schedule, depicted
from left to right: The schedule and the containers are stretched;
the block is moved up; and the processing and the setup time
are increased. The hatched part represents the setup time, the
thick rectangle the container, and the dashed lines the layers, with
ε = δ = 1/8.

processing time by at most εδT such that both are multiples of εδT .
Now the setup time is equal to the rounded setup time, while the
processing time might be bigger because we performed this step for
each piece of the job. We outline the procedure in Figure 6.1.

We continue with the small setup jobs. These jobs are big and
therefore for each of them there is a summed up free space of at least
3ε2T in the containers belonging to the respective job—more than
enough to enlarge some of the pieces such that their overall length
matches the rounded processing time.

Lastly, we consider the medium setup jobs. These jobs are big as
well and we could apply the same argument as above, but we need to
be a little bit more careful in order to additionally realize the rounding
of the setup times and an additional technical step we need in the
following. Fix a medium setup job j and a container filled with a block
belonging to j. Since the setup time has a length of at least µT , the part
of the container filled with it was increased by at least 3εµT . Hence, we
can enlarge the setup time to the rounded setup time without using up
space in the container that was created due to the processing time part.
We do this for all blocks belonging to medium setup jobs. The extra
space in the containers of a medium setup job due to the processing
time parts is still at least 3ε2T > 3εδT . For each medium setup job j,
we spend at most εδT of this space to enlarge its processing time to
its rounded size and again at most εδT to create a little bit of extra
processing time in the containers belonging to j. The size of this extra
processing time is bounded by εδT and chosen in such a way that
the overall length of all blocks belonging to j in the schedule is also
a multiple of εδT . Because of the rounding, the length of the added
extra processing time for each j is a multiple of εµT . The purpose of
the extra processing time is to ensure integrality in the flow network,
which is constructed in the next step.

6.4 eptas results 129

...

vj

...

α
nj

...

u`

...

1/0

ω
k`

Jobs Layer

Figure 6.2: Flow network for layers and partially scheduled jobs.

Note that the free space that was available in the original schedule
was not used in the above steps, in fact, it was even increased by
the stretching. Hence, we have created a ((1+ 3ε)T ,L)-schedule for
I3—or a slightly modified version thereof—and the big setup jobs are
already well-behaved with respect to the εδT -layers, that is, they start
at multiples of εδT and fully fill the slots they are scheduled in.

step 2 . Note that for each job j and layer ` ∈ Ξ, the overall length
qj,` of job and setup pieces belonging to j and placed in ` is bounded
by εδT . We say that j is fully, or partially, or not scheduled in layer `
if qj,` = 1, or qj,` ∈ (0, 1), or qj,` = 0, respectively. Let Xj be the set
of layers in which j is scheduled partially and Y` the set of (medium
or small setup) jobs partially scheduled in `. Then aj =

∑
`∈Xj qj,`

is a multiple of εδT , and we set nj = aj/(εδT). Furthermore, let
b` =

∑
j∈Y` qj,` and k` = db`/(εδT)e.

Our flow network has the following structure: There is a node vj
for each medium or small setup job, a node u` for each layer `, as
well as a source α and a sink ω. The source node is connected to the
job nodes via edges (α, vj) with capacity nj, and the layer nodes are
connected to the sink via edges (u`,ω) with capacity k`. Lastly, there
are edges (vj,u`) between job and layer nodes with capacity 1 if j is
partially scheduled in layer ` or 0 otherwise. In Figure 6.2, a sketch of
the network is given.

The schedule can be used to define a flow f with value
∑
j nj

in the network by setting f(α, vj) = nj, f(u`,ω) = b`/(εδT), and
f(vj,u`) = qj,`/(εδT). It is easy to verify that f is a maximum flow,
and because all capacities in the flow network are integral, we can
find another maximum flow f ′ with integral values.

step 3 . We start by introducing some notation and a basic operation
for the transformation of the schedule: Given two machines i and i ′

and a time t, a machine swap between i and i ′ at moment t produces

130 machine scheduling with setup times

a schedule in which everything that was scheduled on i from t on
is now scheduled on i ′ and vice versa. If on both machines there is
either nothing scheduled at t, or blocks are starting or ending at t, the
resulting schedule is still feasible. Moreover, if there is a block starting
at t on one of the machines and another one belonging to the same
job ending on the other, we can merge the two blocks and transform
the setup time of the first into processing time. We assume in the
following that we always merge if this is possible when performing a
machine swap. Remember that by definition blocks belonging to the
same job cannot overlap. However, if there was overlap, it could be
eliminated using machine swaps [133].

If a given slot only contains pieces of jobs that are partially sched-
uled in the layer, we call the slot usable. Furthermore, we say that a
job j is flow assigned to layer ` if f ′(vj,u`) = 1. In the following, we
will iterate through the layers, create as many usable slots as possible,
reserve them for flow assigned jobs, and fill them with processing and
setup time of the corresponding jobs later on. To do so, we have to
distinguish different types of blocks belonging to jobs that are partially
placed in a given layer: Inner blocks which lie completely inside the
layer and touch at most one of its borders, upper cross-over blocks
which start inside the layer and end above it, and lower cross-over
blocks which start below the layer and end inside it. When manipulat-
ing the schedule layer by layer, the cross-over jobs obviously can cause
problems. To deal with this, we will need additional concepts: A repair
piece for a given block is a piece of setup time of length less than εδT ,
with the property that the block and the repair piece together make
up exactly one setup of the respective job. Hence, if a repair-piece is
given for a block, the block is comprised completely of setup time.
Moreover, we say that a slot reserved for a job j has a dedicated setup if
there is a block of j including a full setup starting or ending inside the
slot.

In the following, we give a detailed description of the transformation
procedure followed by a high-level summarization. The procedure
runs through two phases. In the first phase the layers are transformed
one after another from bottom to top. After a layer is transformed the
following invariants will always hold:

1. A scheduled block either includes a full setup or has a repair
piece. In the latter case it was an upper cross-over block in a
previous iteration.

2. Reserved slots that are not full have a dedicated setup.

Note that the invariants are trivially fulfilled in the beginning. During
the first phase, we remove some job and setup parts from the schedule
that are reinserted into the reserved slots in the second phase. Let
` ∈ Ξ denote the current layer.

6.4 eptas results 131

Repair piece Removed pieces

Figure 6.3: The rectangles represent blocks, the hatched parts the setup times,
and the dashed lines layer borders. The push and cut step is
performed on two blocks. For one of the two a repair piece is
created.

In the first step, our goal is to ensure that jobs that are fully sched-
uled in ` occupy exactly one slot thereby creating as many usable
slots as possible. Let j be a job that is fully scheduled in layer `. If
there is a block belonging to j and ending inside the layer at time
t, there is another block belonging to j and starting at t because j is
fully scheduled in ` and there are no overlaps. Hence, we can perform
a machine swap at time t between the two machines the blocks are
scheduled on. We do so for each job fully scheduled in the layer and
each corresponding pair of blocks. After this step, there are at least k`
usable slots and at most k` flow assigned jobs in layer `.

Next, we consider upper cross-over blocks of jobs that are partially
scheduled in the layer ` but are not flow assigned to it. These are the
blocks that cause the most problems, and we perform a so-called push
and cut step (see Figure 6.3) for each of them: If q is the length of the
part of the block lying in `, we cut away the upper part of the block of
length q and move the remainder up by q. If the piece we cut away
does contain some setup time, we create a repair piece for the block
out of this setup time. The processing time part of the piece, on the
other hand, is removed. Note that this step preserves the first invariant.
The repair piece is needed in the case that the job corresponding to
the respective block is flow assigned to the layer in which the block
ends.

We now remove all inner blocks from the layer as well as the parts
of the upper and lower cross-over blocks that lie in the layer. After this
all usable slots are completely free. Furthermore, note that the first
invariant might be breached by this.

Next, we arbitrarily reserve usable slots for jobs flow assigned to
the layer. For this, note that due to the definition of the flow network,
there are at most k` jobs flow assigned to the layer and there are at
least as many usable slots, as noted above. This step might breach
the second invariant as well. Using machine swaps at the upper and
lower border of the layer, we then ensure that the upper and lower
cross-over blocks of the jobs flow assigned to the layer lie on the same

132 machine scheduling with setup times

machine as the reserved slot. Note that for each job there can be at
most one upper or lower cross-over block, respectively, in the layer.

To restore the invariants, we perform the following repair steps for
each job j flow assigned to the layer:

case 1 . If there is an upper cross-over block for j or a lower cross-
over block without a repair peace, we reinsert the removed part
(or parts) at the end or beginning of the slot, respectively. This
provides a dedicated setup for the job and furthermore the first
invariant once again holds for the respective cross-over blocks.

case 2 . If there is neither an upper nor a lower block for j, there is
an inner block belonging to j. This has to be the case because
otherwise the capacity in the flow network between j and ` is
0, and j could not have been flow assigned to `. Moreover, this
inner block contains a full setup, and we can place it in the
beginning of the slot thus providing the dedicated setup. The
invariants are both restored.

case 3 . The last possibility is that there is no upper cross-over block
but a lower cross-over block with a repair piece. In this case, the
removed part of the block is fully comprised of setup and we
reinsert it in the beginning of the reserved slot. Furthermore, we
insert as much setup of the repair piece as possible. If the repair
piece is not used up, we now consider the remainder as the new
repair piece of the block. Hence, the first invariant holds, and
since the slot is full in this case, the second one holds as well. If,
on the other hand, the full repair piece is inserted, we thereby
provide a dedicated setup for the slot and the block once again
contains a full setup. In this case, the jobs does not have a repair
piece anymore.

After the first phase is finished, we have to deal with the removed
pieces in the second one. The overall length of the reserved slots for
a job j equals the overall length aj of its setup and job pieces from
layers in which j was partially scheduled. Since we did not create or
destroy any job piece, we can place the removed pieces corresponding
to job j into the remaining free space of the slots reserved for j, and
we do so after transforming them completely into processing time.
Because of the second invariant, there is a dedicated setup in each
slot, however, it may be positioned directly above the newly inserted
processing time. This can be fixed by switching the processing time
with the top part of the respective setup time. Furthermore, there may
be some blocks that still have a repair piece. We may remove these
blocks together with their repair pieces.

Lastly, all remaining usable slots are completely free at the end of
this procedure, and since the others are full, they have an overall size

6.5 improvements of the running time 133

of at least L. We conclude the proof of Lemma 6.18 with an overview
of the transformation procedure.

algorithm 6 .23.
Phase 1: For each layer ` ∈ Ξ, considered bottom to top, perform the
following steps:

1. Use machine swaps to ensure that jobs fully scheduled in `

occupy exactly one slot.

2. For each upper cross-over block of a job partially scheduled but
not flow assigned to ` perform a push and cut step.

3. Remove inner blocks and parts of cross-over blocks that lie in `.

4. Reserve usable slots for jobs flow assigned to the layer.

5. Use machine swaps to ensure, that cross-over blocks of flow
assigned jobs lie on the same machine as the reserved slot.

6. For each job j flow assigned to the layer, perform one of the
repair steps.

Phase 2:

1. Transform all removed pieces into processing time and insert
the removed pieces into the reserved slots.

2. If processing time has been inserted ahead of the dedicated setup
of the slot, reschedule properly.

3. Remove blocks that still have a repair piece.

6.5 improvements of the running time

In this section, we revisit the splittable and the setup time model. For
the former, we address the problem of the running time dependence
in the number of machines m, and for both, we present an improved
rounding procedure yielding a better running time.

Splittable Model – Machine Dependence

In the splittable model, the number of machines m may be super-
polynomial in the input size because it is not bounded by the number
of jobs n. Hence, we need to be careful already when defining the
schedule in order to get a polynomially bounded output. We say a
machine is composite if it contains more than one job, and we say it
is plain if it contains at most one job. For a schedule with makespan
T , we call each machine trivial if it is plain and has load T or if it is
empty and nontrivial otherwise. We say a schedule with makespan T
is simple if the number of nontrivial machines is bounded by

(
n
2

)
.

134 machine scheduling with setup times

lemma 6 .24. If there is a schedule with makespan T for I there is also a
simple schedule with makespan at most T .

Proof. Let there be a schedule with makespan T for I. For the first
step, let us assume there are more than

(
n
2

)
composite machines. In

this case, there exist two distinct machines i1 and i2 and two distinct
jobs j1 and j2 such that both machines contain parts of both jobs since
there are at most

(
n
2

)
different pairs of jobs. For x,y ∈ {1, 2}, let t(x,y)

be the processing time combined with the setup time of job x ∈ {j1, j2}
on machine y ∈ {i1, i2}. W.l.o.g., let t(j1, i1) be the smallest value of
the four. We swap this job part and its setup time with some of the
processing time of the job j2 on machine i2. If the processing time of
j2 on i2 is smaller than t(j1, i1), there is no processing time of j2 on i2
left and we can discard the corresponding setup time. Afterwards, the
makespan has not increased and at least one machine processes one
job less. We can repeat this step iteratively until there are at most

(
n
2

)
machines containing more than one job.

In the second step, we shift processing time from the composite
machines to the plain ones. We do this for each job until it is either not
contained on a composite machine or each plain machine containing
this job has load T . If the job is no longer contained on a composite
machine, we shift the processing time of the job such that all except
one machine containing this job has load T . Since this job does not
appear on any composite machine, the number of such machines can
in this case be bounded by

(
n−1
2

)
by repeating the first step. Therefore,

the number of nontrivial machines is bounded by
(
n−i
2

)
+ i 6

(
n
2

)
for

some i ∈ {0, . . . ,n}.

For a simple schedule, a polynomial representation of the solution
is possible: For each job, we state the number of trivial machines
containing this jobs or fix a first and last trivial machine belonging
to this job. This enables a polynomial encoding length of the output,
given that the remaining parts of the jobs are not fragmented into too
many parts which can be guaranteed using the results of Section 6.4.

To guarantee that the MCIP finds a simple solution, we need to
modify it a little. We have to ensure that nontrivial configurations are
not used to often. Let C ′ ⊆ C be the set of nontrivial configurations,
i.e., the set of configurations containing more than one module or
one module with size smaller than T . We add the following globally
uniform constraint to the MCIP:∑

C∈C ′
xC 6

(
|Jbst|

2

)
(6.16)

Since this is an inequality, we have to introduce a slack variable
increasing the brick size by one. Furthermore, the bound on the biggest
number occurring in the input as well as the range of the variables

6.5 improvements of the running time 135

has to be increased by a factor of O(n2), yielding a slightly altered
running time for the MCIP of:

2O(1/ε4 log 1/ε)n log2(m) log6(n)

The number of modules with maximum size denotes for each job
in Jbst how many trivial machines it uses. The other modules can be
mapped to the nontrivial configurations and the jobs can be mapped
to the modules.

We still have to schedule the jobs in Jsst. We do this as described
in the proof of Lemma 6.11. We fill the nontrivial machines greedily
step by step starting with the jobs having the smallest processing
time. When these machines are filled, there are some completely
empty machines left. Now, we estimate how many machines can be
completely filled with the current job j. This can be done, by dividing
the remaining processing time by T − si in O(1). The remaining part
is scheduled on the next free machine. This machine is filled up with
the next job and again the number of machines which can be filled
completely with the rest of this new job is determined. These steps
are iterated until all jobs in Jsst are scheduled. This greedy procedure
needs at most O(|Jbst|(|Jbst|− 1) + |Jsst|) = O(n2) operations. Therefore,
we can avoid the dependence in the number of machines at the cost of
a quadratic dependency in n in the running time.

Improved Rounding Procedures

To improve the running time in the splittable and setup class model, we
reduce the number of module sizes via a geometric and an arithmetic
rounding step. In both cases, the additional steps are performed
following all the other simplification steps. The basic idea is to include
setup times together with their corresponding job pieces or batches
of jobs respectively into containers with suitably rounded sizes and
to model these containers using the modules. The containers have to
at least as big as the objects they contain and the load on a machine
is given by the summed up sizes of the containers on the machine.
Let H∗ be a set of container sizes. Then a H∗-structured schedule is a
schedule in which each setup time together with its corresponding job
piece or batch of jobs is packed in a container with the smallest size
h ∈ H∗ such that the summed up size of the setup and the job piece
or batch of jobs is upper bounded by h.

splittable model . Consider the instance I2 for the splittable
model described in Section 6.4. In this instance, each setup and pro-
cessing time is a multiple of ε2T and we are interested in a sched-
ule of length (1 + 2ε)T . For each multiple h of ε2T , let h̃ = (1 +

ε)dlog1+ε h/(ε
2T)eε2T , h̄ = dh̃/ε2Teε2T , and H̄ = {h̄ |h ∈ ε2TZ>1,h 6

(1+ 2ε)2T }. Note that |H̄| ∈ O(1/ε log 1/ε)

136 machine scheduling with setup times

lemma 6 .25. If there is a ((1 + 2ε)T ,L ′)-schedule for I2 in which the
length of each job part is a multiple of ε2T , there is also a H̄-structured
((1+ 2ε)2T ,L ′)-schedule for I2 with the same property.

Proof. Consider such a schedule for I2 and a pair of setup time s and
job piece q scheduled on some machine. Let h = s+ q. Stretching
the schedule by (1+ 2ε) creates enough space to place the pair into
a container of size h̄, because (1 + ε)h 6 h̃, and εh 6 ε2T , since
s > εT .

To implement this lemma into the procedure, the processing time
bounds T̄ and T̆ both have to be properly increased. Modeling a H̄-
structured schedule can be done quite naturally: We simply redefine
the size Λ(M) of a module M = (s,q) ∈ M to be (s+ q). With this
definition, we have |H| = |H̄| = O(1/ε log 1/ε) yielding an improved
running time for solving the MCIP of:

2O(1/ε2 log3 1/ε)n log2(m) log6(n)

Combining this with the results above and the considerations in Sec-
tion 6.4 yields the running time claimed below Theorem 6.1.

setup class model . In the setup class model, an analogue ap-
proach also yields a reduced set of module sizes, that is, |H| =

O(1/ε log 1/ε). Therefore, the MCIP can be solved in time:

2O(1/ε3 log4 1/ε)K log2(n) log5(K)

Hence, we get the running time claimed beneath Theorem 6.1.

6.6 open problems

For further research, one of the immediate questions is whether im-
proved running times for the considered problems, in particular for
the preemptive model, can be achieved. Concerning the preemptive
model, it is also unclear whether the generalization in which the jobs
are partitioned into classes and the setup time has to be paid per class
admits a PTAS.

Furthermore, the MCIP could be adapted to other problems. A first
step in this direction was recently taken [75] for variants of machine
scheduling with class constraints in which the jobs are partitioned into
classes and only a certain number of distinct classes is allowed to be
present on each machine.

From a broader perspective, it would be interesting to further study
the potential of new algorithmic approaches in integer programming
for approximation, and, on the other hand, further study the respective
techniques themselves.

7
U N I F O R M S C H E D U L I N G W I T H S E T U P T I M E S

7.1 introduction

In this chapter, we consider the setup class model studied in the last
chapter in the context of uniform machines. More precisely, we are
given a set J of n jobs and a set M of m machines. The set of jobs
is partitioned into K classes. Each job j has a size pj and belongs to
exactly one of the classes kj ∈ [K]; each class k ∈ [K] has a setup size
sk; and each machine i has a speed vi. The processing time of a job j
or the setup time of a class k on a machine i are given by pj/vi or
sk/vi, respectively. The goal is to find a schedule σ : J→M such that
the makespan

Cmax = max
i∈M

∑
j∈σ−1(i)

pj/vi +
∑

k∈{kj|j∈σ−1(i)}

sk/vi

is minimized. Note that for a job j or a setup class k, we call the values
pj and sk the job or setup size, respectively, in distinction from their
processing time pij = pj/vi or setup time sk/vi on a given machine i.

We present a PTAS for the above problem in Section 7.2 as well as a
short discussion of open problems in Section 7.3.

related work . The first PTAS for uniform scheduling is due to
Hochbaum and Shmoys [66] and the first EPTAS was presented by
Jansen [72]. For a detailed literature review concerning scheduling
with setup times we refer to the last chapter and Section 6.1 in partic-
ular. To the best of our knowledge, the problem variant studied in this
chapter has not been considered before.

7.2 ptas

As usual, we utilize the dual approximation framework (see Section
2.2) and therefore assume that a guess T of the optimal makespan is
given. Note that there is a simple constant-factor approximation for
this problem [79] based on the LPT rule (see Chapter 1) which can
be used for the dual approximation. The roadmap for the PTAS is as
follows:

1. Simplify the instance.

2. Find a so-called relaxed schedule for the simplified instance via
dynamic programming, or conclude correctly that no schedule
with makespan T for the original instance exists.

137

138 uniform scheduling with setup times

3. Construct a regular schedule for the simplified instance using
the relaxed schedule and a greedy procedure.

4. Construct a schedule for the original instance using the one for
the simplified instance.

Concerning the second and third step, first note that the makespan
guess T given by the dual approximation framework enables a packing
perspective on the problem: On machine i there is an amount of Tvi
free space and the jobs and setup times have to be placed into this free
space. Now, a job or setup size may be big or small relative to this free
space, say bigger or smaller than εTvi. In the latter case, i can receive
one additional job or setup in a PTAS, or several for another notion of
big and small. Hence, we have to be cautious when placing big objects
but can treat small objects with less care. We utilize this and are able
to show that it is sufficient to search for a so-called relaxed schedule.
Roughly speaking, in a relaxed schedule some jobs and setups are
fractionally placed on machines for which they are small, and for
jobs that are big relative to the setup time of their class, the setup is
ignored.

We search for a relaxed schedule via a dynamic program. For the dy-
namic program, we define intervals of machine speeds, called groups,
and the groups are considered one after another ordered by speeds
and starting with the slowest. In each group, the speeds differ at most
by a constant factor. This enables us to employ ideas for the identical
machine case developed in [74] for each group. However, there has to
be some information passed up from one group to the next, and this
has to be properly bounded in order to bound the running time of the
dynamic program. While we can use some standard ideas for classi-
cal makespan minimization on uniformly related machines (without
setup times), e.g., from [66], there are problems arising from the setup
classes. Mainly, we have to avoid passing on class information between
the groups. As a crucial step to overcome this problem, we show that
for each group there is only a bounded interval of machine speeds
for which we have to properly place the setup times. In the algorithm,
we define the groups wide enough and with overlap such that for
each class there is a group containing the whole interval relevant
for this class. When going from one group to the next, we therefore
do not have to pass on class information of jobs that have not been
scheduled yet. This, together with proper simplification steps enables
us to properly bound the running time of the dynamic program.

In the following, we describe the PTAS in detail, starting with the
simplification steps, followed by some definitions and observations
that lead to the definition of a relaxed schedule. Next, we present the
dynamic program, and, lastly, argue that it can indeed be used to find
a relaxed schedule.

Throughout this section ε > 0 denotes the accuracy parameter of
the PTAS and we require 1/ε ∈ Z>2.

7.2 ptas 139

simplification steps . We perform a series of simplification
steps: First, we establish minimum sizes of the occurring speeds, job
and setup sizes; next, we ensure that the job sizes of a class are not
much smaller than its setup size; and lastly, we round the speeds, job
and setup sizes. Most of the used techniques, like geometric rounding
or the replacement of small objects with placeholders with a mini-
mum size, can be considered folklore in the design of approximation
algorithms for scheduling problems. Similar arguments can be found,
e.g., in [47, 66, 72, 74] or the previous chapters.

Let I be the original instance and vmax = max{vi | i ∈ M}. We re-
move all machines with speeds smaller than εvmax/m and denote the
smallest remaining speed after this step by vmin. Furthermore, we
increase all job and setup sizes that are smaller than εvminT/(n+K)

to this value, and call the resulting instance I1. By scaling, we assume
vminT = 1 in the following.

lemma 7 .1. If there is a schedule with makespan T for I, then there is also
a schedule with makespan (1+ ε)2T for I1; and if there is a schedule with
makespan T ′ for I1, then there is also a schedule with makespan T ′ for I.

Proof. Given a schedule for I, the summed up load on machines
missing in I1 is upper bounded by εvmaxT and we can place it on
a machine with speed vmax. Furthermore, increasing the setup and
processing sizes can increase the load on any machine by at most
εvminT .

The next step is to make sure that jobs are not much smaller than
the setup size of their class. Let I2 be the instance we get by replacing
for each class k the jobs with a size of at most εsk with placeholders,
that is, we remove the jobs from J ′k = {j ∈ Jk |pj 6 εsk} and introduce
d(
∑
j∈J ′k

pj)/(εsk)e many jobs of size εsk belonging to class k.

lemma 7 .2. If there is a schedule with makespan T ′ for I1, then there
is also one with makespan (1+ ε)T ′ for I2; and if there is a schedule with
makespan T ′ for I2, then there is also one with makespan (1+ ε)T ′ for I2.

Proof. Given a schedule for one of the instances, we can greedily
replace jobs with the respective placeholders and vice-versa, over-
packing with at most one object per class and machine. Thereby the
overall load on each machine due to a class scheduled on the machine
is increased at most by a factor of (1+ ε).

Next, we perform rounding steps for the job and setup sizes as well
as the machine speeds: For each job or setup size x, let e(x) = blog xc.
We round x to 2e(x) + yε2e(x) with y = d(x− 2e(x))/(ε2e(x))e. This
rounding approach is due to Gálvez et al. [48]. Furthermore, we
perform geometric rounding for machine speeds, that is, each machine
speed v is rounded down to (1+ ε)zvmin with z = blog1+ε(vi/vmin)c.
We call the rounded instance I3.

140 uniform scheduling with setup times

lemma 7 .3. If there is a schedule with makespan T ′ for I2, then there is
also a schedule with makespan (1+ ε)2T ′ for I3; and if there is a schedule
with makespan T ′ for I3, then there is also one for I2.

Proof. Each job and setup size is increased at most by a factor of (1+ ε)
by the rounding and each machine speed is decreased at most by a
factor of (1+ ε).

Hence, if there is a schedule with makespan at most T for I, then
there is also a schedule with makespan at most T1 for I3 with T1 =

(1+ ε)5T = (1+ O(ε))T . Furthermore, if we should find a schedule
with makespan T2 for I3 with T1 6 T2 = (1+O(ε))T , we can transform
it back into a schedule for the original instance with makespan at most
T3 = (1+ ε)T2 = (1+O(ε))T .

For the sake of simplicity, we assume in the following that the in-
stance I is already simplified and the makespan bound T was properly
increased. Summing up, we have the following properties:

(P1) vmin > εvmax/m.

(P2) vminT = 1.

(P3) For each job or setup size x, we have x > ε/(n+K).

(P4) For a job j of class k, we have pj > εsk.

(P5) Each job or setup size is of the form 2e + zε2e, with e ∈ Z and
z ∈ {0, . . . , 1/ε− 1}.

(P6) Each machine speed is of the form (1+ ε)zvmin, with z ∈ Z>0.

preliminaries . We define two threshold parameters δ = ε2 and
γ = ε3. For each class k, the core jobs belonging to that class are the
ones with a job size p such that εsk 6 p < sk/δ. Bigger jobs are called
fringe jobs. The set of core or fringe jobs of class k is denoted by J̄k
and J̃k, respectively. The core machines i of class k, are the ones with
sk 6 Tvi < sk/γ and faster machines are called fringe machines. We
have:

Remark 7.4. For each class k and each job j that belongs to k, j is either
a core or a fringe job and has to be scheduled either on a core or a
fringe machine of k.

To see this, note that due to (P4), there are no jobs smaller than the
core jobs for each class, and machines slower than the core machines
of a class k would be overpacked by the setup time sk.

A job size p is called small for a speed v if p < εvT , big if εvT 6
p 6 vT , and huge if p > vT . We use these terms for jobs and machines
as well, e.g., we call a job j small for machine i, if pj < εviT . Since
γ/δ = ε holds, we have:

Remark 7.5. The core jobs of class k are small on fringe machines of k.

7.2 ptas 141

γ2vmin
vmin 1

γ2
vmin

vmax

−1 1 G

0 2

speeds

Figure 7.1: Machine speeds with logarithmic scale. The braces mark groups,
the dashed interval possible speeds of core machines of some
class with core group 2, and the dotted interval possible speeds
of machines where some job with native group G is big.

Next, we define speed groups (see Figure 7.1). For each g ∈ Z, we
set v̌g = vmin/γ

g−1 and v̂g = vmin/γ
g+1. Group g is given by the

interval [v̌g, v̂g). Note that the groups are overlapping with each speed
occurring in exactly two groups. A machine i belongs to group g if
vi ∈ [v̌g, v̂g), and we denote the set of machines belonging to g by Mg

and the set of corresponding speeds by Vg, i.e., Vg = {vi | i ∈Mg}. By
definition, the smallest group g with Mg 6= ∅ is group 0. Furthermore,
let G be the biggest number with this property. Because of (P1), we
have G 6 m/(3ε log(1/ε)) = O(m/ε).

For each job j, there are up to three (succeeding) groups containing
speeds for which its size is big, and at least one of them contains
all such speeds. Let g be the smallest group with this property, i.e.,
pj > εv̌gT and pj < v̂gT . We call g the native group of j. For a group g,
the fringe jobs with native group g will be of interest in the following,
and we denote the set of these jobs by J̃g.

Moreover, for each class k there are at most three (succeeding)
groups containing possible speeds of core machines of k, and there
is at least one that contains all of them. Let g be the smallest group
with this property, i.e., sk > v̌gT and sk/γ < v̂gT . We say that g is
the core group of k. Note that k has a core group even if it has no core
machines. In Figure 7.1, the groups together with native groups of
jobs and core groups of classes are visualized.

Remark 7.6. Let j be a core job of class k and g be the core group of k.
There is a speed v in group g such that pj is big for v.

We have pj < sk/ε2 because j is a core job, and we have sk/ε2 <
εv̂gT because g is the core group of k. Hence, pj is small for v̂g. Fur-
thermore, we have pj > εsk > εv̌gT for the same reasons. Therefore,
pj is big or huge for v̌g and there lies at least one speed in between
for which it is big.

relaxed schedule . In a relaxed schedule, the set of jobs is parti-
tioned into integral jobs I and fractional jobs F, and an assignment
σ ′ : I → M of the integral jobs is given. For each j ∈ I, the machine
σ ′(j) belongs to the native group of j if j is a fringe job, and to the

142 uniform scheduling with setup times

core group of k if j is a core job of class k. Setups for fringe jobs are
ignored, and hence we define the relaxed load Li of machine i to be:

Li =
∑

j∈σ ′−1(i)

pj +
∑

k:σ ′−1(i)∩J̄k 6=∅

sk

Intuitively, the fractional jobs are placed fractionally together with
some minimum amount of setup in the left-over space on the machines
that are faster than the ones in their respective native or core group.
More formally, we say that the relaxed schedule has makespan T if
Li 6 Tvi for each i ∈ M and the following space condition for the
fractional jobs holds:

Let Fg be the set of fractional fringe jobs with native group g

and fractional core jobs of class k with core group g. Moreover, let
Ai = Tvi − Li the remaining free space on machine i with respect to
T . Lastly, let Wg be the overall load of jobs from Fg together with one
setup for each class that has core group g, has no fringe job, and has a
fractional core job, that is:

Wg =
∑
j∈Fg

pj +
∑

k:Fg∩J̄k 6=∅,J̃k=∅

sk (7.1)

A job j ∈ Fg should be placed on a machine that belongs to group
g+ 2 or a faster group (note that the machines belonging to group
g+ 1 are covered by group g and g+ 2). Hence, we set the reduced
accumulated fractional load Rg for group g to be:

Rg = max
{
0,Rg−1 +Wg−2 −

∑
i∈Mg\Mg+1

Ai

}
Note that since Mg = ∅ for g < 0, we have Rg =

∑
g ′6g−2Wg ′ . The

required space condition is RG =WG =WG−1 = 0.

lemma 7 .7. If there is a schedule with makespan T for a given instance,
then there is also a relaxed schedule with makespan T ; and if there is a
relaxed schedule with makespan T , then there is a schedule with makespan
(1+O(ε))T .

Proof. The first claim is easy to see: For a given schedule σ with
makespan T , the fringe jobs assigned to a machine of their native
group and the core jobs assigned to the core group of their class
form the set I and we can set σ ′ = σ|I. The remaining jobs form the
fractional jobs and they obviously fit fractionally into the left-over
space, because we have a fitting integral assignment of them. This also
holds for the setups for groups with fractional jobs and no fringe jobs:
There has to be at least one setup for each such class on a machine
that does not belong to their core group. Dropping the setups of the
fringe jobs only increases the free space further.

We consider the second claim. Let (I,F,σ ′) be a relaxed schedule
with makespan T . We construct a regular schedule and start by placing

7.2 ptas 143

all the integral jobs like in the relaxed schedule. To place the fractional
jobs, we consider one speed group after another starting with group
0. For the current group g, we consider the jobs from F ′ ⊂ F, with
F ′ = Fg−2, if g > 0, and F ′ =

⋃
g ′6−2 Fg ′ , if g = 0. We partition

F ′ into three sets F1, F2, F3 that are treated differently. The sets are
defined as follows:

• F1 includes core jobs of classes k whose fractional core jobs have
an overall size of at most sk/ε, i.e.,

∑
j∈F ′∩J̄k pj 6 sk/ε, and that

do have a fringe job.

• F2 includes core jobs of classes k with
∑
j∈F ′∩J̄k pj 6 sk/ε, and

that do not have a fringe job.

• F3 includes the fringe jobs in F ′ as well as the core jobs of classes
k with

∑
j∈F ′∩J̄k pj > sk/ε.

Let k be a class whose fractional core jobs are included in F1 or
F2, that is,

∑
j∈F ′∩J̄k pj 6 sk/ε. We will place the fractional core jobs

of k all on the same machine. If the jobs are included in F1, there
exists a fringe job with class k and we can place the fractional core
jobs together with such a job. A fringe job of class k has a size of
at least sk/δ = sk/ε

2, and hence the load due to the fringe job is
increased at most by a factor of (1+ ε) by this step. This can happen
at most once for each class and hence at most once for each fringe
job. Since all fringe jobs of the class could be fractional, we postpone
this step until all the remaining fractional jobs are placed. If, on the
other hand, the fractional core jobs of class k are included in F2, we
construct a container that is filled with all the corresponding jobs
together with one setup of the class. Note that the setup is already
accounted for in the relaxed schedule and that the overall size of the
container is upper bounded by (1+ 1/ε)sk. We call a container small
on a machine i if its size is upper bounded by εviT . Each machine i
belonging to group g or faster groups is a fringe machine of class k,
and therefore we have sk 6 γviT . Hence, the size of the container is at
most (ε2 + ε3)viT 6 εviT (because ε 6 1/2), i.e., the container is small
on i. We place the container in the next step.

Next, we construct a sequence of jobs and containers and apply a
greedy procedure to place them. We start with an empty sequence and
add all containers from the last step and all fringe jobs from F3 in any
order. The core jobs from F3 are added sorted by classes in the end
of the sequence. If there is a residual sequence that was not placed
in the last iteration, we concatenate the two with the old sequence
in the front. We now consider each of the machines i ∈ Mg \Mg+1

with Li < viT in turn and repeatedly remove the first job from the
sequence and insert it on the current machine until the load of the
machine exceeds viT . Since all jobs and containers in the sequence
are small on the machines of group g, they are overloaded at most

144 uniform scheduling with setup times

by factor of (1+ ε) afterwards. For each step, the overall size of jobs
and containers that are left in the sequence is at most the reduced
accumulated fractional load Rg, because the remaining free space on
the machines has either been filled completely, or the sequence is
empty. Since RG = WG = WG−1 = 0, all jobs and containers can be
placed eventually.

Now, all jobs are properly placed, but some setups are still missing.
First, we consider core jobs that have been inserted in the greedy
procedure and were not included in a container. If the overall size of
such core jobs of a class k placed on a machine is at least sk/ε, adding
the missing setups increases this size at most by a factor of (1+ ε).
However, for each machine i, there can be up to two classes k without
this property, namely the class that has been added first and the class
that has been added last on the machine. For each class in between, all
core jobs of this class in the sequence have been added to the machine,
and these have sufficient overall size by construction. Furthermore, if
a job of class k was placed on a machine i in the greedy procedure, i
is a fringe machine of k. Hence, the load of each machine i after this
step can be bounded by (1+ ε)2viT + 2ε

3viT 6 (1+ ε)3viT . Lastly, we
add the missing setups for the fringe jobs, resulting in an additional
increase of at most (1+ ε2), because a fringe job of class k has a size
of at least sk/ε2.

dynamic program . We use a dynamic programming approach to
compute a relaxed schedule with makespan T or correctly decide that
there is none. Therein, the groups of machine speeds are considered
one after another starting with the slowest and going up. For a fixed
group, the dynamic program can be seen as an adaptation of the one
from [74] for the identical case, and the overall structure of the program
is similar to approaches used for the classical problem without setup
times, e.g., in [66] and [47]. However, there is some work to be done
to combine these approaches and to deal with the fact that the speed
groups are overlapping. In order to define the dynamic program and
bound its running time, we first need some additional considerations
and definitions.

Let Bg be the number of job sizes in I that are big for at least
one speed of group g. This implies εv̌gT 6 p 6 v̂gT . We set e(g) =
blog εv̌gTc. Because of the rounding of the job sizes (see (P5)), we have
2e+ zε2e for each size p ∈ Bg with e = blogpc and z ∈ {0, . . . , 1/ε− 1}.
Remember that we have 1/ε ∈N. Therefore, p is an integer multiple
of ε2e(g). Furthermore, we have:

2e(g) 6 εv̌gT 6 p 6 v̂gT = γ−2v̌gT 6 ε−1γ−22e(g)+1

Hence, |Bg| 6 2/(ε2γ2) = O(1/ε8).
We define a superset Lg of possible load values that can occur on a

machine belonging to group g in a relaxed schedule due to integral

7.2 ptas 145

jobs. Such a machine may receive fringe jobs with native group g− 1,
g or g+ 1, and core jobs whose core group is one of these, as well
as setups belonging to the latter jobs. The setup sizes have been
rounded like the job sizes (see (P5)) and for each of the mentioned
setup sizes s we have s > v̌g−1T and hence s is an integer multiple
of ε2e(g−1). The occurring loads are smaller than v̂gT and we have
v̂gT = ε−1γ−3v̌g−1T2

e(g)+1. Hence, we set

Lg =
{
zε2e(g−1)

∣∣∣ z ∈ {0, 1, . . . , 2/(ε2γ3)}}
and have |Lg| = 2/(ε

2γ3) + 1 = O(1/ε11).
Next, we define a supersetΛ of possible load values of fractional jobs

and corresponding setup sizes in a relaxed schedule. Because of (P3),
(P2), and (P1), each job and setup size is lower bounded by ε/(n+K)

and vmin > εvmax/m. We set e∗ = blog ε/(n + K)c. Because of the
rounding (see (P5)), each job and setup size is an integer multiple of
ε2e

∗
. Furthermore, the overall load of all jobs together with one setup

of each class without a fringe job can be bounded by mvmaxT 6 m2/ε,
or, more precisely, if this is not the case we can reject the current guess
of the makespan. Hence, we can set Λ = {kε2e

∗
|k ∈ {0, 1, . . . , 2m2(n+

K)/ε3}}, and get |Λ| = O(m2(n+K)/ε3).
Lastly, we bound the number of speeds |Vg| that occur in group g.

We have v̂g = v̌g/γ
2 and applied geometric rounding on the speeds

(see (P6)). Hence, |Vg| = O(log1+ε(1/γ
2)) = O(1/ε log 1/ε) (because

ε < 1).
A state of the dynamic program is of the form

(g,k, ι, ξ,µ, λ)

with:

• g ∈ {0, . . . ,G} is a group index.

• k ∈ {0, . . . ,K} is a setup class index including a dummy class 0.
The dummy class is included to deal with the fringe jobs with
native group g.

• ι : Bg → {0, . . . ,n} is a function mapping job sizes to multiplici-
ties. Intuitively, ι(p) jobs of size p corresponding to the current
class still have to be dealt with in the current group.

• ξ ∈ {0, 1} is a flag that encodes whether a core job of the current
class has been scheduled as a fractional job. Since this does not
apply to fringe jobs, we essentially ignore the states with k = 0

and ξ = 1 in the following.

• µ : Vg × Lg × {0, 1}→ {0, . . . ,m} is a function mapping triples of
machine speeds, load values, and flags to machine multiplicities.
Intuitively, we have µ(v, `, ζ) machines of speed v and with load

146 uniform scheduling with setup times

` in the current machine group that already received the setup of
the current class (ζ = 1) or not (ζ = 0). For fringe jobs, the setup
is ignored in a relaxed schedule. We model this by essentially
ignoring the states with k = 0 and µ with µ(v, `, 0) > 0 for some
v ∈ Vg and ` ∈ Lg in the following. The intuition behind this is
that we treat the machines as if they already received a setup for
the fringe jobs.

• λ ∈ Λ3 is a load vector. Its values λi corresponds to the load of
fractional jobs together with the corresponding setups that have
been pushed up to faster groups for the current (i = 1) or last
group (i = 2), or the corresponding load for all previous groups
offset against the remaining space on machines present only in
slower groups (i = 3).

Let S be the set of states of the dynamic program. Because of the
above considerations, we have:

|S| = O(GKnmaxg |Bg|mmaxg 2|Vg||Lg||Λ3|) = (nmK)poly(1/ε)

Now, the idea is that the states form the vertices of a graph, and the
relaxed schedules correspond to paths from a start to an end state.
Some of the states do not make sense in this context, like e.g., the ones
with k = 0 and ξ = 1, but we will make sure that these states cannot
be reached. There are three types of edges:

(1.) The edges corresponding to scheduling decisions of the single
jobs: For each (g,k, ι, ξ,µ, λ) with ι 6= 0 there are up to 2|Vg||Lg|+
1 edges corresponding to the choices of scheduling some job on
a machine with a certain speed and load that already received
a setup or not, or treating the job as fractional. Let p ∈ Bg be
the biggest size with ι(p) > 0. We define ι ′ as the function we
get by decrementing ι(p). For each speed v ∈ Vg and each load
` ∈ Lg, we add up to two edges: If µ(v, `, 0) > 0, k > 0, and
`+ p+ sk 6 vT ; we add an edge to the state (g,k, ι ′, ξ,µ ′, λ),
where µ ′ is the function we get by decrementing µ(v, `, 0) and
incrementing µ(v, `+ p+ sk, 1). If µ(v, `, 1) > 0 and `+ p 6 vT ,
we add an edge to the state (g,k, ι ′, ξ,µ ′′, λ), where µ ′′ is the
function we get by decrementing µ(v, `, 1) and incrementing
µ(v, `+ p, 1). These two edges correspond to the decisions of
scheduling a job with size p on a machine with speed v and
load ` that previously already had a setup for the current group
or not (the latter case also covers fringe jobs, i.e., k = 0). Lastly,
we add one edge to the state (g,k, ι ′, ξ ′,µ, λ ′) with λ ′2 = λ2 and
λ ′3 = λ3. If k > 0, k has no fringe job, and ξ = 0; we have ξ ′ = 1
and λ ′1 = λ1 + p+ sk. Otherwise, ξ ′ = ξ and λ ′1 = λ1 + p. This
edge corresponds to the decision of treating a job of size p and
class k as a fractional job.

7.2 ptas 147

(2.) The edges marking the transition from one class to another: For
each state (g,k, ι, ξ,µ, λ) ∈ S with k < K and ι = 0, there is
an edge connecting the state with (g,k+ 1, ι ′, 0,µ ′, λ), where ι ′

and µ ′ are defined as follows. If g is the core group of k, for
each p ∈ Bg, the value ι ′(p) is the number of core jobs of class
k and size p, i.e., ι ′(p) = |{j ∈ J̄k |pj = p}|. Otherwise, we set
ι ′(p) = 0 for each p ∈ Bg. Furthermore, we have µ ′(v, `, 0) =

µ(v, `, 0) +µ(v, `, 1) and µ ′(v, `, 1) = 0 for each v ∈ Vg and ` ∈ Lg.
If g is not the core group of k+ 1, the class is essentially skipped
(ι ′ = 0). Otherwise, these edges model that so far no core job
of this class has been treated as fractional, no job of this class
has been scheduled, and no machine has received a setup of this
class yet.

(3.) The edges marking the transition from a group g to the next:
For each state (g,k, ι, ξ,µ, λ) ∈ S with g < G, k = K, ι = 0,
and µ(v, `, ζ) = 0 for each ` ∈ Lg \ Lg+1, there is an edge con-
necting the state with (g + 1, 0, ι ′, 0,µ ′, λ ′), where ι ′, µ ′ and
λ ′ are defined as follows. For each p ∈ Bg+1 the value ι ′(p)
is the number of fringe jobs with native group g and size p,
i.e., ι ′(p) = |{j ∈ J̃g |pj = p}|. We have λ ′1 = 0, λ ′2 = λ1, and
λ ′3 = λ2 + x with:

x = max
{
0, λ3−

∑
v∈Vg∩Vg−1

∑
`∈Lg

(Tv− `) · (µ(v, `, 0)+µ(v, `, 1))
}

At this point, we offset the remaining free space on the ma-
chines belonging to group g but not to group g+ 1 with the
accumulated fractional load. Furthermore, µ ′(v, `, ζ) is given
by µ(v, `, 0) + µ(v, `, 1) if v ∈ Vg ∩ Vg+1, ` ∈ Lg, and ζ = 1; by
|{i ∈ Mg | vi = v}| if v ∈ Vg+1 \ Vg, ` = 0 and ζ = 1; and by
0 otherwise. Hence, we carry over the loads of the machines
present in both sets and consider the machines belonging to the
new group but not to the old to be empty. Note that only triples
with ζ = 1 have values bigger than zero. This corresponds to the
convention that we treat machines as if they already received a
setup for the fringe jobs.

The start state of the dynamic program has the form (0, 0, ι, 0,µ, λ),
with ι, µ, and λ defined as follows. For each p ∈ B0, the value ι(p)
is the number of fringe jobs with native group 0 and size p; and for
each speed v ∈ V0, the value µ(v, 0, 1) is the number of machines with
speed v. Otherwise, we have µ(v, `, ζ) = 0. This can be understood
as follows. In the beginning, no machine has received any load, and
we start scheduling the fringe jobs with native group 0. Furthermore,
we define λ1 = 0, λ2 = W−1 and λ3 =

∑
g6−2Wg = R−1 +Wg−2

(see Equation (7.1) for the definition of Wg). Jobs with core groups
g < 0 do not have core machines and hence should all be treated as
fractional. This motivates the latter definitions.

148 uniform scheduling with setup times

The end states have the form (G,K, 0, 0,µ ′, λ ′), where µ ′ and λ ′

have the following form. For each v ∈ VG, we have µ ′(v, `, ζ) =

0 if ` > vT and
∑
`∈LG

∑
ζ∈{0,1} µ

′(v, `, ζ) = |{i ∈ MG | vi = v}|,
that is, we have the correct number of machines of speed v and
no machine is overloaded. Furthermore, λ ′1 = λ ′2 = 0, and λ ′3 6∑
v∈VG\VG−1

∑
`∈LG(Tv− `) · (µ(v, `, 0) + µ(v, `, 1)). This corresponds

to the property RG = WG = WG−1 = 0 of a relaxed schedule with
makespan T .

In the dynamic program, we search for a path from the start to
an end state or correctly decide that there is no such path. This
boils down to a reachability problem in a simple directed graph with
(nmK)poly(1/ε) vertices and hence can be done in polynomial time in
the input length.

correctness . Next, we argue that there is a one to one correspon-
dence between such paths and relaxed schedules with makespan T
except for permutations of jobs and machines that are equivalent with
respect to such a schedule, that is, machines with the same speed,
fringe jobs with the same size, and core jobs of the same class and
with the same size.

First note that a path from the start to an end state has to be
of a certain form. Let g ∈ {0, . . . ,G} and k ∈ {0, . . . ,K}. We define
S(g,k) ⊆ S as the set of states s with s1 = g and s2 = k. Let

ι
(g,k)
1 : Bg → {0, . . . ,n}

be the function with

• ι(g,k)
1 (p) = |{j ∈ J̃g |pj = p}| for each p ∈ Bg if k = 0,

• ι(g,k)
1 (p) = |{j ∈ J̄k |pj = p}| for each p ∈ Bg if k > 0 and g is the

core group of class k, and

• ι(g,k)
1 (p) = 0 for each p ∈ Bg otherwise.

Moreover, let r(g,k) = 1+
∑
p∈Bg ι

(1)
g,k(p). For each 1 < ` 6 r(g,k),

let ι(g,k)
` be equal to ι(g,k)

`−1 except that the value corresponding to the

largest job size pwith ι(g,k)
`−1 (p) > 0 has been decremented. This implies

that ι(g,k)
r(g,k) is the function mapping everything to 0. Let s ∈ S(g,k).

Due to the definitions of the edges, we have:

• If s has an incoming edge from a state s ′ ∈ S(g ′,k ′) 6= S(g,k),
then we have s3 = ι

(g,k)
1 ; s ′3 = ι

(g ′,k ′)
r(g ′,k ′); g

′ = g, k ′ = k− 1, and
the edge is of type (2.) if k > 0; as well as g ′ = g− 1, k ′ = K,
and the edge is of type (3.) if k = 0.

• If s has an incoming edge from a state s ′ ∈ S(g,k) and s3 = ι
(g,k)
` ,

then we have ` > 1, s ′3 = ι
(g,k)
`−1 , and the edge is of type (1.).

7.2 ptas 149

(0, 0, ?, ?, ?, ?) (0,K, ?, ?, ?, ?)
(2.) . . . (2.) (3.) . . . (3.)

(G, 0, ?, ?, ?, ?) (G,K, ?, ?, ?, ?)
(2.) . . . (2.)

(g,k, ι(g,k)
1 , ?, ?, ?) (g,k, ι(g,k)

r(g,k), ?, ?, ?)
(1.) . . . (1.)

Figure 7.2: The structure of a path from the start to an end state. The outer
rectangles above represent sets of states that have the same first
value, and the dashed and dotted rectangles sets of states that
share the first two or three values, respectively. The picture be-
low illustrates the inner structure of each dashed set. The path
includes exactly one state from each dotted set.

• If s has an outgoing edge to a state s ′ ∈ S(g ′,k ′) 6= S(g,k), then
we have s3 = ι

(g,k)
r(g,k); s

′
3 = ι

(g ′,k ′)
1 ; g ′ = g, k ′ = k+ 1, and the

edge is of type (2.) if k < K; as well as g = g+ 1, k = 1, and the
edge is of type (3.) if k = K.

• If s has an outgoing edge to a state s ′ ∈ S(g,k) and s3 = ι
(g,k)
` ,

then we have ` < r(g,k), s ′3 = ι
(g,k)
`+1 , and the edge is of type (1.).

Let α be the start, and ω be an end state. Note that α ∈ S(0, 0),
α3 = ι

(0,0)
1 , ω ∈ S(G,K), and ω3 = ι

(G,K)
r(G,K). This already determines

the first three values on any path from the start to an end state and
this is visualized in Figure 7.2.

Based on this structure, it is not very hard to verify the corre-
spondence between paths from the start to an end state and relaxed
schedules with makespan T for the given instance and how a relaxed
schedule can be recovered from such a path. We list a few further
observations on this subject but leave the details to the reader.

Let g ∈ {0, . . . ,G} and k ∈ {0, . . . ,K}. Fix any permutation of the
machines with speeds from Vg and the jobs corresponding to g and
K, that is, the fringe jobs with native group g if k = 0, or the core
jobs of class k if k > 0 and g is the core group of k. Then there is a
unique edge of type (1.) in the path for each such job j corresponding
to the scheduling decision for j. Either this edge corresponds to the
placement on a machine with a speed from Vg and a load from Lg
and the job is integral, or it is treated as fractional and the last value
of the state is changed correspondingly. Note that in this decision, we
maintain the correct number of machines for each speed, no machine is
overloaded, and setups are assigned correctly. Lastly, we take a closer
look at the last value of the states. Let (g,k, ι(g,k)

` , ξ,µ, λ) be a state on
a path from the start to an end state. In the values λ1 and λ2, we keep
track of the fractional load due to fringe jobs with native group g and
core jobs of classes with core group g. This means that λ2 =Wg−1 (see
(7.1)) and λ1 =Wg if ` = r(g,k). Moreover, the value λ3 corresponds
to the overall remaining fractional load that occurred before offset

150 uniform scheduling with setup times

against the remaining free space on the machines belonging to former
groups, that is, λ3 = Rg−1 +Wg−2. Note that the definition of edges
of type (3.) makes sure that the latter holds.

7.3 open problems

We provided a PTAS for the studied problem, but it is unclear whether
an EPTAS is possible. Note that EPTAS results for uniform machines
like, e.g., the one by Jansen [72] for uniform scheduling, are usually
obtained using mixed integer linear programs. The EPTAS result for
machine scheduling with setup times discussed in the last chapter
make use of n-fold integer programming. Hence, as a first step, the
underlying techniques could to be considered like, for example, algo-
rithms for mixed integer programs with n-fold structure.

Furthermore, one could study the other two models considered in
Chapter 6, that is, the splittable and the preemptive cases, with respect
to uniform machines as well.

8
M A C H I N E S C H E D U L I N G W I T H A S H A R E D
R E S O U R C E

8.1 introduction

In the present chapter, we consider two closely related scheduling
problems in which a set J of n jobs has to be scheduled on m ∈ N

identical parallel machines that share a renewable resource. For both
problems, a fixed amount R ∈ N of the renewable resource is given
and each job occupies a share of the resource while being executed.
In the first problem, each job has a processing time and a resource
requirement that has to be met in order to execute the job, and in the
second problem the processing time of a job depends on the resource
amount allocated to the job. For both problems the goal is to minimize
the makespan, i.e., the length of the schedule. We formalize these
notions.

In the first problem, called single resource constrained scheduling, each
job j ∈ J has a processing time pj ∈N. To be processed, it requires an
amount of rj ∈N of the given resource and one machine. A schedule
of these jobs is given by a mapping τ : J→N>0 from jobs to starting
times. It is feasible if at each point in time t ∈ N there are enough
machines to schedule the jobs and the total resource amount of jobs
scheduled at t does not exceed the resource limit R, i.e.:

∀t ∈N :
∑

j:t∈[τ(j),τ(j)+pj)

rj 6 R (8.1)

∀t ∈N : |{j ∈ J|t ∈ [τ(j), τ(j) + pj)}| 6 m (8.2)

The objective is to find a feasible schedule τ : J → N>0 minimizing
the makespan maxj∈J(τ(j) + pj).

In the problem of scheduling with resource dependent processing times,
on the other hand, each job j ∈ J has a set Dj ⊆ [R] of valid resource
values and a processing time function πj : Dj →N>0. The objective
is to find a resource assignment ρj ∈ Dj and a starting time τ(j) ∈N

for each job j ∈ J such that the resulting schedule is feasible, i.e.,∑
j:t∈[τ(j),τ(j)+πj(ρj)) ρj 6 R and |{j ∈ J|t ∈ [τ(j), τ(j) + ρj)}| 6 m for

each t ∈ N, and such that the makespan maxj∈J(τ(j) + πj(ρj)) is as
small as possible. It is easy to see that the first problem is a special
case of the second.

These problems arise naturally in different contexts, e.g., in highly
parallelized computing where simultaneously active jobs share com-
mon memory, or in production logistics where additional personnel
may speed up certain tasks. From a theoretical perspective, on the

151

152 machine scheduling with a shared resource

other hand, the problems are sensible generalizations of problems like
scheduling on identical parallel machines or bin packing and have
already been studied in 1975 [49].

Both single resource constrained scheduling and scheduling with
resource dependent processing times are NP-hard and therefore there
is little hope to find optimal solutions efficiently. Hence, approximation
algorithms were studied for these problems. However, by a simple
reduction from the Partition Problem1, one can see that there is no
algorithm with an approximation guarantee better than 3/2 for the
problems unless P = NP. Therefore, a PTAS is not possible, while an
approximation scheme with respect to the asymptotic approximation
ratio still can be achieved for both problems.

An algorithm for a minimization problem has an asymptotic approx-
imation ratio of α if there is a constant c such that the objective value
alg(I) computed by the algorithm is upper bounded by αopt(I) + c.
Approximation schemes with respect to the asymptotic ratio are de-
noted as APTAS, AEPTAS, or AFPTAS. The regular approximation
ratio is, in distinction from the asymptotic ratio, also called the abso-
lute ratio.

Both problems have been studied in the context of the absolute ap-
proximation ratio. For instance, Niemeier and Wiese [120] presented a
(2+ ε)-approximation for single resource constraint scheduling, and
Kellerer [93] achieved a ratio of 3.5+ ε for scheduling with resource
dependent processing times. These are the best known ratios so far.
Concerning the asymptotic ratio, Epstein and Levin presented an
AFPTAS for bin packing with cardinality constraints. This problem is
equivalent to single resource constrained scheduling with unit process-
ing times. Furthermore, there are AFPTAS results known for several
related problems like, e.g., strip packing [94] or scheduling of parallel
[94] or moldable parallel tasks2 [71].

results and methodology. In this chapter, we present AFPTAS
results for both problems at hand:

theorem 8 .1 : Let I be an instance of single resource constraint
scheduling and pmax the biggest occurring processing time in I. For
each ε ∈ (0, 1) there is an algorithm which computes a schedule

1 In the bin packing problem, a set of numbers with sizes between 0 and 1 has to
be packed into as few unit sized bins as possible, that is, the set of items has to be
partitioned into sets with summed up item size at most 1 minimizing the size of the
partition. If there was an approximation algorithm with ratio smaller than 3/2 for
bin packing, it could be used to distinguish between instances with optimum 3 or
2, which is equivalent to solving the partition problem. Furthermore, bin packing is
equivalent to single resource constrained scheduling with unit processing times and
m = n.

2 In the literature moldable jobs are sometimes called malleable, but the term moldable
is the one which established itself. Today the term malleable specifies jobs which can
be scheduled preemptively.

8.1 introduction 153

with makespan at most (1+ ε)opt(I) +O(pmax log(1/ε)/ε), and has a
running time that is polynomial in the input length and 1/ε.

Note that this result directly improves the additive term of the
AFPTAS for bin packing with cardinality constraints by Epstein and
Levin [45] which has an additive terms that is exponential in 1/ε.

theorem 8 .2 : Let I be an instance of scheduling with resource
dependent processing times and πmax the biggest occurring processing
time in I. For each ε ∈ (0, 1) there is an algorithm which computes a
schedule with makespan at most (1+ ε)opt(I) +O(πmax log(1/ε)/ε)
and has a running time that is polynomial in the input length and 1/ε.

In the following, we give a brief overview on how we achieve these
result, followed by a more detailed literature review. All our algorithms
utilize a variety of linear programming and rounding techniques
which are altered and recombined to serve our needs. To solve certain
configuration LPs, we apply algorithms [59] for the Max-Min Resource
Sharing problem as was done in [71]. This approach yields a better
running time than the standard approach via the ellipsoid algorithm.

For the first problem, we partition the set of jobs into wide and
narrow jobs based on their resource requirements and apply linear
grouping for the wide jobs. To handle the narrow jobs, we adapt the
notion of windows that was introduced by Epstein and Levin [45].
However, and this is crucial for both our algorithms, we manage to
bound the number of windows to be in O(1/ε2), via a second elaborate
rounding step. This makes the small additive factor possible and is
essential for the generalization to the resource dependent variant. By
this approach we get an additive term of O(pmax/ε

2). Using geometric
instead of linear grouping for the wide jobs and a new argument for
the reduction of the windows, we are able to further improve the
additive term to O(pmax log(1/ε)/ε). The results concerning the first
problem are presented in Section 8.2.

For scheduling with resource dependent processing times, we use
a preemptive solution to define an instance for the fixed-resource
problem in which the original jobs may be split into parts with dif-
ferent resource requirements. We then apply the same techniques we
used for the fixed-resource case. Using a basic feasible solution of a
specific LP, we change the fixed-resource instance such that all but a
few jobs are no longer split. For these jobs, the schedule is provided
by the fixed-resource AFPTAS, and the rest of the jobs are scheduled
in the end causing only a small error. Furthermore, we discuss how
the results can be generalized to variants of the second problem with
a more succinct encoding of the processing time functions. The results
concerning the second problems are presented in Section 8.3.

As a side note, we would like to point out that our techniques also
work for the scenario where the resource needs to be allocated con-
tiguously, that is, the resource is represented by an interval of length
R and each job is assigned a subinterval whose length corresponds to

154 machine scheduling with a shared resource

the resource amount assigned to the job. For the first problem, this
scenario amounts to the problem of strip packing with cardinality
constraints, where the cardinality constraint is given by the require-
ment that at most m jobs may executed at each time step. Hence, we
provide an AFPTAS for this problem as well.

related work . The first result for scheduling jobs on identical
machines with additional resources was presented in 1975 by Garey
and Graham [49]. Given m identical machines and s distinct resource
limits such that each job requires an amount of each of the s distinct
resources, they have shown that the greedy list algorithm delivers
a schedule of length at most (s+ 2− (2s+ 1)/m)opt. This gives an
absolute approximation ratio of (3− 3/m) for the case of s = 1 which
equates to the problem of single resource constraint scheduling. In the
same year Garey and Johnson [50] showed that this general scheduling
problem is NP-complete even if just one resource is given, i.e., s = 1.
Lately, Niemeier and Wiese [120] presented a (2+ ε)-approximation
for single resource constraint scheduling, and this is the best ratio
known so far. By a simple reduction from the Partition Problem, one
can see that there is no algorithm with an approximation guarantee
better than 3/2 for this problem unless P = NP.

The variant of single resource constraint scheduling where the
resource has to be allocated contiguously is equivalent to the problem
of strip packing with cardinality constraints. For strip packing there
exists an AFPTAS with additive term O(hmax/ε

2) by Kenyon and
Rémila [94], where hmax is the largest occurring height of an item
and corresponds to the largest processing time in our scenario. The
additive term was later improved to O(hmax log(1/ε)/ε) by Sviredenko
[138] and Bougeret et al. [21].

Moreover, in the case that we have less jobs than machines, i.e.,
n 6 m, the here considered problems are reducible to the problem
of scheduling parallel or moldable parallel tasks, respectively. In the
problem scheduling parallel tasks, we are given a set of m machines
and a set of jobs such that each job needs a given number of machines
to be processed on. If the number of machines m in single resource
constrained scheduling is larger than n, we can never schedule more
than m jobs at the same time, and this constraint is trivially fulfilled
in each schedule. We then consider the resource requirement in single
resource constrained scheduling as the needed number of machines
in scheduling parallel tasks. Scheduling moldable parallel tasks is
defined analogously to scheduling parallel tasks. However, in this
variant jobs do not have a fixed number of machines they can be
processed on. Instead each job has a set of allowed machine numbers
and a processing time function similar to the case of scheduling with
resource dependent processing times. Concerning scheduling parallel
tasks, the AFPTAS results for strip packing work as well, and therefore

8.2 single resource constrained scheduling 155

the smallest additive term of an AFPTAS has size O(pmax log(1/ε)/ε)
[21, 138]. On the other hand, for scheduling moldable parallel tasks
the AFPTAS with the smallest additive term was presented by Jansen
[71] and has size O(πmax/ε

2).
For scheduling with resource dependent processing times, the first

result was achieved by Grigoriev et al. [60], who studied the unrelated
scheduling variant in which the processing times depend on the
machine as well as on the resource assignment. They achieved a 3.75-
approximation algorithm. This was improved to 3.5+ ε by Kellerer
[93] for the identical machine version. Grigoriev et al. [61] presented a
(3+ ε)-approximation for a version of the problem where the jobs are
preassigned to machines that also works when the processing time
functions are encoded more succinctly. Rather recently, Kling et al. [98]
considered a related problem, where for each job j a resource value ρj,t
has to be chosen for each timestep t it is processed in. Furthermore,
each job j has a resource requirement rj and a processing volume
pj, and if j receives a resource value of ρj,t at timestep t, exactly
min1,ρj,t/rj units of its processing volume are finished during t. They
provide a (2+ 1/(m− 2))-approximation for this case and show that
the problem is NP-hard.

8.2 single resource constrained scheduling

In this section, we will prove Theorem 8.1. First, we introduce an al-
gorithm with additive term O(pmax/ε

2) and discuss the modifications
we make to achieve the improved additive term afterwards. In the
following, we will call the resource requirement of a job its width and
its processing time its height. We use similar notions of height and
width for all introduced structures as (generalized) configurations and
windows.

First, we will give a slightly more detailed high-level view of the
algorithm and present a short overview. The steps of the algorithms
are described in detail in the following sub sections. We differentiate
two cases: first 1/ε < m and second 1/ε > m, where the case 1/ε < m
is more involved.

In the first case, the set of jobs J is partitioned into wide and
narrow jobs where wide jobs have a larger resource amount than
narrow jobs. The resource amount of the wide jobs is rounded by
linear grouping such that we have to deal with just O(1/ε2) different
sizes. For this rounded instance, the algorithm computes a preemptive
schedule using a configuration LP. Broadly speaking, a configuration
is a selection of jobs that can be processed at the same time. After that,
each configuration is partitioned in the wide job part and the narrow
job part. The spare area (resource amount and used machines) not
used by the wide jobs will be called window following the notation in
[45]. In simplified terms, a window can be seen as the residual space

156 machine scheduling with a shared resource

(resource and machine number) that is left by a configuration of wide
jobs. By constructing a preemptive schedule first, instead of solving the
LP by Levin and Epstein [45] directly, we manage to choose the width
of each window more adjusted to the given instance. This adjustment
improves the number of operations and the makespan of the solution
slightly. However, the crucial step is to reduce the number of different
window sizes such that it just depends on ε by simultaneously adding
(not too much) processing time to the schedule. This is achieved by
a further grouping step. After a solution with reduced number of
windows is found, an integral schedule can be computed by adding
some processing time to the schedule.

In the second case, partitioning the jobs by resource amount is not
required and all job resource amounts can be rounded to few sizes.
This simplifies the problem such that we can generate a schedule
directly after generating the preemptive solution.

8.2.1 First Case: 1/ε < m

Let an instance I = (J,m,R) and ε > 0 with 1/ε < m be given. In the
following, we sometimes write J(I) to refer to the set of jobs in the
instance. We assume w.l.o.g. that 1/ε ∈N and m < n since otherwise
we have the problem of scheduling parallel tasks for which an AFPTAS
is already known [21, 138]. The algorithm can be summarized as
follows:
(i) Define ε ′ such that it is the largest value with 1/ε ′ ∈ N and

ε ′ 6 ε/6. Compute pmax = max{pj|j ∈ J(I)}.
(ii) Construct a rounded instance Isup,ε ′ with at most 1/ε ′2 wide

jobs using linear grouping.
(iii) Solve a configuration linear program LPpre to find a preemp-

tive schedule xpre for Isup,ε ′ which uses at most |J(Isup,ε ′)|+ 1

configurations and has a makespan of at most (1+ ε ′)2Opt(I).
(iv) Transform the obtained configurations into generalized config-

urations which are composed of a configuration part for wide
and a window part for narrow jobs. This reduces the number of
used configurations to min{|J(Isup,ε ′)|+ 1, (1ε ′2)

1/ε ′}.
(v) Reduce the number of different windows further using a group-

ing step which lengthens the solution by a factor of at most
(1+ ε ′). Generate a solution for Isup,ε ′ and a generalized con-
figuration linear program LPW which uses at most 5 + 3/ε ′2

configurations and has a makespan of at most (1+ ε ′)3Opt(I).
(vi) Given this solution for Isup,ε ′ and LPW , generate an integral

schedule for I obtaining an overall makespan of at most (1+

ε ′)4Optpre(I) + (3/ε ′2 + 1/ε ′ + 6)pmax.

8.2 single resource constrained scheduling 157

εR

Figure 8.1: Rounding the Instance. Blue items represent narrow jobs, while
gray rectangles represent wide jobs. On the right, one can see the
steps of the linear grouping.

Rounded Instance – Step (ii)

In this step, we describe how to generate a rounded instance Isup,ε

for a given instance I and an ε ∈ R with 1/ε ∈ N using standard
techniques. The algorithm will use the rounded instance Isup,ε ′ .

We partition the given set of jobs J into a set of wide jobs JW,ε :=

{j ∈ J|rj > εR} with resource amount at least εR and a set of narrow
jobs JN,ε := J \ JW,ε. We round the resource amount of the wide
jobs by linear grouping—a method introduced by Fernandez de la
Vega and Lueker [142] for bin packing and extended by Kenyon and
Rémila [94] to strip packing. To this end, we interpret each job j as
a rectangle with width rj and height pj and place these rectangles
on top of each other such that they form a vertical stack ordered by
increasing resource amount from bottom to top (see Figure 8.1). Let
PW := P(JW,ε) be the height of the stack. Consider the horizontal
lines at the heights iε2PW . Each job intersecting with one of these
lines is divided at the intersection and split into two new jobs. We
denote by JW,ε,i the set of possibly split jobs which lie between the
lines (i− 1)ε2PW and iε2PW . We have G := 1/ε2 many sets JW,ε,i,
called groups, where JW,ε,G is the group containing the jobs with the
largest resource amount. Define by Ri := max{rj|j ∈ JW,ε,i} the largest
resource amount in group i. Note that Ri 6 Ri+1 for all i < G.

The rounded instance Isup,ε is generated as follows: Let Jsup,ε be
the set containing all jobs from JN,ε and one additional job for each
i ∈ {1, . . . G} with processing time P(JW,ε,i) and resource amount Ri
and let be Isup,ε := (Jsup,ε,m,R). We denote by Jsup,W,ε the set of wide
jobs in Isup,ε.

Preemptive Schedule – Step (iii)

The next step of the algorithm is to find a preemptive schedule for
our rounded instance. Our definition of a preemptive schedule differs
slightly from other definitions of preemptive schedules. In this section,
we define the kind of preemptive schedule we speak of and prove that
such a preemptive schedule for any given instance I = (J,m,R) and
given ε can be found in time polynomial in n and 1/ε (see Lemma 8.3).
Furthermore, in the end of this section, we prove that the makespan
of an optimal preemptive solution of the rounded instance Isup,ε can

158 machine scheduling with a shared resource

be bounded by the makespan of an optimal preemptive solution for I
loosing a factor of (1+ ε) (see Lemma 8.5).

In a preemptive schedule, each job can be interrupted and restarted
at no cost. Usually, in a preemptive schedule, parts of the same job are
not allowed to be processed at the same time. However, since we have
rounded the wide jobs, we allow the same wide job to be processed
more than once at the same point in time. This is necessary, since
in the rounded instance one wide job represents many different jobs
of the original instance, and in an optimal solution of the original
instance these jobs can be processed at the same time. If we do not
allow this parallel processing of the same job, the optimal solutions
of rounded and original instance are not comparable. We denote the
optimum objective value of preemptive schedules in which jobs wider
than εR are considered wide as optpre(I, ε).

A configuration C ∈NJ is a multiset of jobs which can be processed
at the same point in time without violating the conditions of a feasible
schedule. For a given configuration C the value C(j) says how often
the job j is contained in C. We allow C(j) ∈ {0, 1} if j ∈ JN,ε, and
C(j) ∈ {0, . . . , 1/ε} if j ∈ JW,ε, since each job in JW,ε has width at least
εR and, therefore, it is not possible to schedule more than 1/ε of them
at the same time. A configuration is feasible for a given instance I if
m(C) :=

∑
j∈JC(j) 6 m and R(C) :=

∑
j∈JC(j)rj 6 R. Denote by CI,ε

the set of all feasible configurations of I. An optimal solution of the
following linear program LPpre(I, ε) delivers an optimal preemptive
schedule for any instance I.

min
∑
C∈CI,ε

xC (8.3)

∑
C∈CI,ε

C(j)xC > pj ∀j ∈ J (8.4)

xC > 0 ∀C ∈ CI,ε (8.5)

The variable xC denotes the processing time of configuration C ∈ CI,ε.
Inequality (8.4) ensures that each job is scheduled.

lemma 8 .3. For any Instance I and any ε, δ > 0, we can find a solution
xpre,ε to LPpre(I, ε) with∑

C∈CI,ε

(xpre,ε)C 6 (1+ δ)optpre(I, ε)

in O(|J|(ln(|J|) + 1/δ2)(|JW |z+ |JN|+mz
′2/δ2)) operations, where z =

min{1/ε,m} and z ′ = min{1/δ,m}. Furthermore, a solution with the same
objective value and at most |J|+ 1 non-zero components can be found in
O(|J|2.5356(ln(|J|) + ε−2)) further operations.

Proof. Our approach to find this preemptive solution is to transform I

into an instance of a Max-Min-Resource-Sharing problem. Then we

8.2 single resource constrained scheduling 159

use the algorithm by Grigoriadis et al. [59] to find a solution x for
this transformed instance. This solution is transformed back to be a
solution x ′ for I. Since this solution might not be a basic solution, we
use an algorithm from [92] to transform x ′ to a basic solution xpre,ε.

An instance of the Max-Min-Resource-Sharing problem consists of
a nonempty convex compact set B and a function f : B→ RM which
consists of M nonnegative continuous concave functions fj : B → R

with j ∈ {1, . . . ,M}. The objective is to find the value λ∗ := max{λ|∃x ∈
B, f(x) > λ1M} and a vector x ∈ B, for which f(x) > λ∗1M holds.
Above, 1M ∈ RM denotes the vector which is 1 at each position.

We transform LPpre to a Max-Min-Resource-Sharing problem, by
defining

B :=
{
x ∈ R

|CI,ε|

>0

∣∣∣ ∑
C∈CI,ε

xC = 1
}

as the set of selections of processing times for feasible configurations
with overall makespan 1. Furthermore, for each j ∈ J, we define

fj : B→ R>0, x 7→
∑
C∈CI,ε

C(j)
xC
pj

as the fraction of job j that is scheduled in a preemptive schedule
derived from x. Note that if fj(x) > 1 for each job, then each job is
fully scheduled in the preemptive solution.

The algorithm by Grigoriadis et al. [59] computes an x ∈ B satisfying
fj(x) > (1− ρ)λ∗ for each j ∈ J and a given ρ. We will choose ρ ∈ O(δ).
The algorithm iterates the following steps: Given an initial solution x̌,
the algorithm computes a profit vector q = q(x̌) ∈ R|J| for the current
value x̌. After that an (1− δ ′)-approximative solution x̂ of the problem
max{qT f(x)|x ∈ B} has to be computed where δ ′ depends linearly on ρ.
This problem is called block-problem and a solver has to be provided.
In the last step of an iteration, the new value of the vector x̌ is set to
(1− τ)x̌+ τx̂ ∈ B, where τ ∈ (0, 1) is an appropriate step length. One
of these iterations where we update x̌ is called a coordination step and
the algorithm needs at most O(|J|(ln(|J|) + ρ−2)) of them.

Next, we describe how to solve the problem max{qT f(x)|x ∈ B}.
Note that

qT f(x) =
∑
C∈CI,ε

xC
∑
j∈J

qj

pj
C(j).

Hence, to solve the problem, it suffices to compute a configuration C∗

that maximizes
∑
j∈J

qj
pj
C(j) and set xC∗ := 1 and xC := 0 for all C 6=

C∗. Therefore, in each coordination step at most one new configuration
is added to the solution. To find such a configuration C∗, we have to
solve the following integer linear program ILPkKP(q, JN,ε, JW,ε,m,R):

max
∑
j∈J

qj

pj
aj

160 machine scheduling with a shared resource

∑
j∈J

aj 6 m∑
j∈J

rjaj 6 R

aj ∈ {0, 1} ∀j ∈ JN,ε

aj ∈ {0, . . . , 1/ε} ∀j ∈ JW,ε

This ILP is equivalent to the ILP formulation of the knapsack prob-
lem with cardinality constraint (kKP). This problem is similar to the
knapsack problem and has the additional constraint that at most k
items are allowed to be put into the knapsack. In our case, we have
that k = m since we can schedule at most m machines at the same
time. A difference in the formulation is that the wide jobs can be
picked several times. There is an FPTAS by Mastrolilli and Hutter
[114] to solve this problem. To use it, we have to duplicate each wide
job z = min{1/ε,m} times since it can be scheduled up to z times
at the same time without violating any constraint. The computation
of a (1+ δ ′)-approximate solution for a kKP instance (I,k, ε) takes
O(|I| + kz ′2/δ ′2) operations with z ′ := min{k, 1/ε}. In our case, we
have |I| = |JW,ε|z+ |JN,ε|, k = m and z ′ = minm, 1δ ′, and hence we
need at most O(|JW,ε|z+ |JN,ε|+mz

′2δ ′−2) operations to find a solu-
tion a∗ to the ILP. To get a configuration C∗ we define C∗(j) := a∗j for
each j ∈ J.

Let x be a solution to the described Max-Min-Resource-Sharing
problem calculated by the algorithm in [59]. Note that the overall
makspan of all used configurations in x is 1 at the moment and we
do not necessarily have that fj(x) > 1 for each job j. However, we are
interested in a solution with makespan at most (1+ δ)optpre(I, ε) and
where fj(x) > 1 for each job j (which is required to schedule every job
entirely). Normally, we would expect to have to do a binary search to
find the value of (1+ δ)optpre(I, ε) and to solve the according Max-
Min-Resource-Sharing instance. However, since the functions f are
linear, we can avoid the binary search for the optimal makespan (see
Claim 8.4). Instead of applying a binary search framework, we scale x
such that f(x) > 1M. As a result, we have

∑
C∈CI,ε C(j)xC > pj for each

j ∈ J, which ensures that each job is entirely scheduled. Furthermore,
we show how to choose ρ such that

∑
C∈CI,ε xC 6 (1+ δ)optpre(I, ε)

holds.

Claim 8.4. Let x ∈ B with f(x) > (1− ρ)λ∗1M and λ̂ := min{fj(x)|j ∈ J}.
It holds that f(x/λ̂) > 1M and∑

C∈CI,ε

1

λ̂
xC 6

1

(1− ρ)
optpre(I, ε).

The first part of the claim f(x/λ̂) > 1M is obvious since

f(x/λ̂) = fj(x)/λ̂ = fj(x)/min{fj(x)|j ∈ J} > 1

8.2 single resource constrained scheduling 161

for all j ∈ J. To prove the second part, we consider a more general
definition of λ∗ and B. Let t ∈ R>0 be a target makespan and let

Bt :=
{
x ∈ R

|CI,ε|

>0

∣∣∣ ∑
C∈CI,ε

xC = t
}

,

λ∗t := max{λ|∃x ∈ Bt∀j 6M : fj(x) > λ}.

Let t ′ ∈ R>0. By making use of the linearity of f and g : B→ R, x 7→∑
C∈CI,ε xC it is easy to see that Bt = t

t ′Bt ′ and λ∗t = t
t ′λ
∗
t ′ . Using

t = 1, λ∗1 = λ
∗, t ′ = optpre(I, ε), and λ∗

optpre(I,ε)
= 1, this yields

∑
C∈CI,ε

1

λ̂
xC =

1

λ̂
6

1

(1− ρ)

1

λ∗
6

1

1− ρ
optpre(I, ε)

and concludes the proof of the claim.
Therefore, to find a solution x ′ to LPpre(I, ε), we scale x by 1/λ̂

and set ρ := δ
1+δ ∈ O(δ). Since f(x ′) > 1M holds, x ′ fulfills Equation

(8.4) for each j ∈ J. Hence, x ′ is a feasible solution to LPpre. Since
ρ, δ ′ ∈ O(δ), we need O(|J|(ln(|J|) + δ−2)(|JW,ε|z+ |JN,ε|+mz

′2δ−2))

operations to find x ′. However, x ′ might have to many non-zero
entries.

The algorithm performed O(|J|(ln(|J|) + δ−2)) coordination steps
adding at most one configuration in every step. Therefore, x ′ has
at most this amount of non-zero components since we add at most
one configuration in each step. We reduce this number by computing
a basic solution xpre,ε to LPpre by using x ′ as a start vector. Beling
and Megiddo [14] described how to compute a basic solution for
the problem Ax = b, x > 0, given a start solution x̄, where A ∈
Qm×n. Later Ke et al. [92] presented a faster way of rectangular
matrix multiplication. Combined it is possible to find a basic solution
in O(m1.5356n) time. Since our linear program is not in standard
form, we have to add |J| variables and the equation

∑
C∈CI,ε xC =∑

C∈CI,ε(xpre)C. Furthermore, we use just the configurations which
have a non-zero component in x ′. Therefore, we can compute a basic
solution xpre,ε in O(|J|1.5356(|J|(ln(|J|) + δ−2))) 6 O(|J|2.5356(ln(|J|) +
δ−2)). In total, we need at most

O(|J|(ln(|J|) + δ−2)(|JW,ε|z+ |J|1.5356 +mz ′2/δ2))

operations to find a basic solution xpre,ε to the linear program.

We now look at the relation between optimal solutions to I and Isup,ε:

lemma 8 .5. It holds that optpre(Isup,ε, ε) 6 (1+ ε)optpre(I, ε)

Proof. Let a solution to LPpre(I, ε) and LPpre(Isup,ε, ε) each be given.
Since each group JW,ε,i has the same summed up processing time,
we can split that large job in Isup,ε with processing time P(JW,ε,i) and

162 machine scheduling with a shared resource

resource amount Ri and schedule it instead of the jobs in JW,ε,i+1

in the solution to LPpre(I, ε). The widest group cannot be scheduled
inside other jobs, but we can shift this group on top of the sched-
ule. This group has a makespan of at most ε2PW 6 εoptpre(I, ε).
So, for each solution to LPpre(I, ε), we can generate a solution to
LPpre(Isup,ε, ε) which is lengthened by at most εoptpre(I, ε), hence it
holds that optpre(Isup,ε, ε) 6 (1+ ε)optpre(I, ε).

Let us recapitulate the steps taken by the algorithm so far. In the first
step, it computed Isup,ε ′ . Next in (iii)—as described in this subsection—
the algorithm computes xpre,ε ′ defined as the (1+ ε ′)-approximate
solution to LPpre(Isup,ε ′ , ε ′) with at most |Jsup,ε ′ |+ 1 non-zero com-
ponents. Since |Jsup,W,ε ′ | 6 ε ′−2 and 1/ε < m, we can generate this
solution in O(|Jsup,ε ′ |(ln(|Jsup,ε ′ |) + ε

−2)(|Jsup,ε ′ |
1.5356 +m/ε4)) opera-

tions. By Lemma 8.5, we know that the solution xpre,ε ′ has a makespan
of at most:∑

C∈CIsup,ε ′ ,ε
′

(xpre,ε ′)C
L. 8.3
6 (1+ ε ′)optpre(Isup,ε ′ , ε ′)

L. 8.5
6 (1+ ε ′)2 optpre(I, ε ′) 6 (1+ ε ′)2 opt(I)

Generalized Configurations – Step (iv)

Next, we will consider the solution xpre,ε ′ of LPpre(Isup,ε ′ , ε ′) gener-
ated in Step (iii) of the algorithm. Now the splitting point ε ′R between
wide and narrow jobs is clear from the context and we will discard
the index ε ′ in all occurring sets and definitions.

The number of configurations used in xpre still depends on the input
length, that is, n, because we did not round the sizes of the narrow jobs.
For each used configuration, we have to pay one additional pmax when
generating an integral schedule. Therefore, we achieve an additive
term depending on n when computing an integral solution at this
point. Since we aim for an additive term depending solely on 1/ε, we
give an additional structure to this solution. For this purpose, we use
a set of containers for the narrow jobs, called windows, which were
first introduced by Epstein and Levin [45].

A window w = (wr,wm) is a pair consisting of a resource amount
R(w) = wr and a number of machines m(w) = wm. As for a con-
figuration, the total time a window is processed is denoted as p(w)
and is called its height. At each point in time for a given window
w, there m(w) jobs with summed up resource amount R(w) may be
processed. For two windows w1 and w2, we write w1 6 w2 if and
only if R(w1) 6 R(w2) and m(w1) 6 m(w2).

For a given configuration C ∈ CI, we denote by C|JW the con-
figuration consisting of all wide jobs in C; and for a given set of
configurations C ⊆ CI, we define CW := {C|JW |C ∈ C}. Note that

8.2 single resource constrained scheduling 163

each configuration in CW contains at most 1/ε ′ items since each of
the wide jobs needs at least ε ′R resource. A generalized configuration
(C,w) is a pair consisting of a configuration C ∈ CW and a win-
dow w. (C,w) is valid for an instance I, if m(w) 6 m−m(C) and
R(w) 6 R − R(C). For a configuration C ∈ CW with R(C) < R we
define by w(C) := (R− R(C),m−m(C)) the main window for C.

Let W be a set of windows and CW a set of configurations consisting
exclusively of wide jobs. The following linear program LPW describes
the relation between generalized configurations and jobs assigned to
them. This linear program was introduced by Epstein and Levin [45]
but with a different set of generalized configurations.

LPW(I,CW ,W) :∑
C∈CW

∑
w∈W
w6w(C)

C(j)x(C,w) > pj, ∀j ∈ JW (8.6)

∑
w∈W

yj,w > pj, ∀j ∈ JN (8.7)

m(w)
∑
C∈CW
w(C)>w

x(C,w) >
∑
j∈JN

yj,w, ∀w ∈W (8.8)

R(w)
∑
C∈CW
w(C)>w

x(C,w) >
∑
j∈JN

rjyj,w, ∀w ∈W (8.9)

x(C,w) > 0, ∀C ∈ CW ,∀w ∈W (8.10)

yj,w > 0, ∀w ∈W, ∀j ∈ JN (8.11)

The variable x(C,w) denotes the processing time of the generalized
configuration (C,w), and the value yj,w indicates which amount of
job j is processed in window w. Inequalities (8.6) and (8.7) ensure that
for each job there is enough processing time reserved, while Equalities
(8.8) and (8.9) ensure that in each window there is enough space to
schedule the contained jobs. Given a solution (x,y) to LPW , we define

P(x) :=
∑
C∈CW

∑
w∈W
w6w(C)

x(C,w),

which is the makespan of (x,y), and

P(w, x) :=
∑
C∈CW
C(w)>w

x(C,w)

which is the summed up processing time of a window w ∈W in x.
We denote by Cpre := {C ∈ CI|(xpre)C > 0} the set of configurations

with a non-zero component in xpre, where (xpre)C denotes the pro-
cessing time of configuration C in xpre. Moreover, Cpre,W is the set of
configurations from Cpre containing wide jobs exclusively. We define
Wpre := {w(C)|C ∈ Cpre,W} as the set of main windows for Cpre,W and
Ppre :=

∑
C∈Cpre

(xpre)C as the makespan of the preemptive schedule.

164 machine scheduling with a shared resource

lemma 8 .6. Given a solution xpre, we can generate a solution (x̃, ỹ) to
LPW(I,Cpre,W ,Wpre) such that

P(x̃) = Ppre (8.12)

Proof. To generate this solution, we simply look at each configuration
C ∈ Cpre,W and sum up the processing time of each configuration
C ′ ∈ Cpre, which is reduced to C, meaning C ′|JW = C. Building
a generalized configuration, we combine C with its main window
w(C) ∈Wpre. Hence we define

x̃(C,w(C)) :=
∑
C ′∈Cpre
C ′|JW

=C

(xpre)C ′ .

Equality (8.12) holds for this choice for x̃ since the procesing time of
each configuration is added to exactly one generalized configuration.
With a similar argument one can see that Inequality (8.6) holds because
xpre fulfills Inequality (8.4). Now, we have to ensure that Inequalities
(8.7) to (8.9) hold. For this purpose, we look at each configuration
C ∈ Cpre and consider the reduced configuration C|JW and its main
window w := w(C|JW). For each job j ∈ JN, we add its processing
time in C, that is, C(j)(xpre)C, to the window w. In total, we get for
each window w ∈W and each job j ∈ JN

ỹj,w :=
∑
C∈Cpre

w(C|JW
)=w

C(j)(xpre)C.

Since the configuration C was valid and Equality (8.4) holds for xpre,
the Equalities (8.7) to (8.9) hold for (x̃, ỹ).

Reducing the Number of Configurations – Step (v)

At this point, we already have reduced the number of used (general-
ized) configurations: Each wide job has a width of at least ε ′R and they
have at most 1/ε ′2 different sizes. Therefore, the configuration part of
each introduced generalized configuration has one of at most (1

ε ′2
)1/ε

′

different widths. Since in each introduced generalized configuration
the configuration part is paired with the corresponding main win-
dow (which is the same for configuration parts with the same width
and number of used machines), we used at most (1

ε ′2
)1/ε

′
different

generalized configurations. This number is independent of the input
size. However, this value is still to large since it is exponential in 1/ε ′,
and if |Jsup| < (1

ε ′2
)1/ε

′
, not even a better bound on the number of

generated configurations (the number of generalized configurations in
(x̃, ỹ) is bounded by min{|Jsup|+ 1, (1ε ′2)

1/ε ′}). To reduce the number
of generalized configurations, we round the resource amounts of the
windows, i.e., the widths of the windows, in the next step. We define
Ppre(C) := x̃C,w(C) for each C ∈ CW and Ppre(K) :=

∑
C∈K Ppre(C) for

each K ⊆ CW .

8.2 single resource constrained scheduling 165

kε ′2Ppre

(Ci,k,wi,k)

Ki,k

x̃(C,w(C))

s(C(i,3))

kiε
′2Ppre

(a) A stack of the generalized
configurations in Ki. The
grey rectangles represent
configurations and the blue
rectangles windows. The
dashed lines are multiples
of ε ′2Ppre.

x̄(Ci,k ′ ,wi,k ′)

x̄(Ci,k ′ ,wi,k ′+1)

w̌i,k ′

ŵi,k ′

(b) The same stack of the generalized
configurations as in Figure 8.2a. But
this time the windows are shifted
ε ′2Ppre downwards. One can see that
their area fits into the new windows
(hatched rectangles).

Figure 8.2: Shifting the windows

lemma 8 .7. Given a solution (x̃, ỹ) to LPW(I,CW ,Wpre), we can find a
set W ′ ⊆Wpre with |W ′| 6 ε ′−2 + 2 and a corresponding solution (x̄, ȳ) to
LPW(I,CW ,W ′) which fulfills

P(x̄) 6 (1+ ε ′)Ppre (8.13)

and contains at most |JN|+ |JW |+ 2|W ′|+ 1 non-zero components with
O((|J|+ |W ′|)1.5356|J||W ′|) operations.

Proof. The steps to find W ′ and (x̄, ȳ) are described in the following.
The sets, configurations, and sizes defined for these steps can also be
found in the Figures 8.2a and 8.2b.

To find the set W ′, we reduce the number of window resource
amounts by a further grouping step. We partition the set of generalized
configurations by the number of machines in the window. For each
i ∈ {1, . . . ,m}, we define Ki := {C ∈ CW |m(C) = i} to denote the
set containing all configurations using exactly i machines. Since at
most 1/ε ′ wide jobs can be part of one configuration, only the sets
K1 to K1/ε ′ are not empty. For each of these sets we apply linear
grouping: We number the configurations in Ki such that R(Ci,1) 6
R(Ci,2) 6 R(Ci,3) . . . holds. Next, we stack the configurations defining
start positions s(Ci,1) := 0 and s(Ci,j) := s(Ci,j−1) + Ppre(Ci,j−1) for
each j > 1. Furthermore, we define a configurations end position
e(Ci,j) := s(Ci,j+1). The summed up height of all stacks is Ppre. We
want to get about ε ′−2 windows. Hence, we split our stacks in ε ′−2

pieces total and consider in each stack the multiples of ε ′2Ppre to group
the windows.

For each 0 < i 6 1/ε ′, we define ki := dPpre(Ki)/(ε
′2Ppre)e which

is the first multiple of ε ′2Ppre that does not intersect a generalized

166 machine scheduling with a shared resource

configuration in the i-th stack since it has a height of at most Ppre(Ki).
Note that ki might touch the last configuration if

dPpre(Ki)/(ε
′2Ppre)e = Ppre(Ki)/(ε

′2Ppre),

but we allow this. For each k ∈ {1, . . . ,ki−1}, there is a configuration C
which intersects with kε ′2Ppre, i.e., s(C) < kε ′2Ppre 6 s(C) + Ppre(C).
We denote this configuration by Ci,k and define wi,k := w(Ci,k)

and wi,ki := (0, 0). Furthermore, we define the set Ki,k as the set of
configurations lying between the configurations Ci,k−1 and Ci,k. The
set W ′ is defined such that it contains all the windows intersected by
a multiple of ε ′2Ppre and two default windows. More precisely, we
define

WKi := {wi,k|k ∈ {1, . . . ,ki − 1}}

as the set of chosen windows from Ki and furthermore:

W ′ :=

1/ε ′⋃
i=1

WKi ∪ {(0, 0), (R,m)}

It holds that |WKi | 6 bPpre(Ki)/(ε
′2Ppre)c and therefore:

|W ′| 6 2+
1/ε ′∑
i=1

⌊
Ppre(Ki)

ε ′2Ppre

⌋
6 2+

1

ε ′2

After choosing the set of windows W ′, the next step is to generate
a solution to the LPW which exclusively uses windows in W ′ and
needs not much further processing time. The crucial step is to shift
the windows in each stack exactly ε ′2Ppre downwards.

Let us consider the configurations Ci,k and Ci,k−1. The resource
amount of Ci,k−1 is less or equal to the resource amount of Ci,k. So,
for each configuration C ∈ Ki,k, we have w(C) > wi,k. If we shift
the windows ε ′2Ppre downwards, the window wi,k is now processed
alongside Ci,k−1. The windows above wi,k have a lesser resource
amount. We now round up the resource amount of the windows
alongside the configurations in C ∈ Ki,k such that they have the same
resource amount as wi,k. We therefore define for each 1 6 1/ε ′, for all
k 6 ki, and for each C ∈ Ki,k: x̄(C,wi,k) := x̃(C,w(C))

With configuration Ci,k we have to be more careful. The lower
part of this configuration should be alongside window wi,k and the
other alongside wi,k+1. We have to find the biggest multiple of ε ′2Ppre

the configuration Ci,k was intersected by. In case P(Ci,k) > ε ′2Ppre,
the configuration Ci,k will be intersected by more than one multiple
of ε ′2Ppre. The biggest multiple is defined by ε ′2Pprebe(C

i,k)
ε ′2Ppre

c. This
multiple defines the height at which the configuration is split. We
define for each i 6 1/ε ′ and for each k 6 ki:

x̄(Ci,k,wi,k) := ε
′2Ppre

⌊
e(Ci,k)

ε ′2Ppre

⌋
− s(Ci,k)

8.2 single resource constrained scheduling 167

x̄(Ci,k,wi,k+1) := x̃(Ci,k,wi,k) − x̄(Ci,k,wi,k)

Finally, we need some extra space for the windows which were
shifted below the lowest configuration. In each stack, it concerns
window parts of total height ε ′2Ppre. Since we have 1/ε ′ stacks, we
need ε ′Ppre extra space. We round these windows up to the window
(R,m). Hence, the configuration (∅, (R,m)) is the configuration which
is extended in height. We define x̄(∅,(R,m)) := x̃(∅,(R.m)) + ε

′Ppre.
In the following, we describe how to assign the narrow jobs to

the round up windows. Let us consider a configuration C ∈ Ki,k+1.
The window w(C) was shifted down such that it can be rounded up
to wi,k. To round this window up, we have to know which amount
of it was processed alongside C. This amount is given by ϕC :=

Ppre(C)/Ppre(w(C)). So, for each configuration C ∈ Ki,k+1 and each
job j ∈ JN, we add ϕCỹj,w(C) processing time to ȳj,wi,k .

Next, we consider a window wi,k. In general, this has to be split:
as one can see in Figure 8.2b the upper part of window wi,k stays in
this window while the lower part is put into window wi,k−1. This
time we have to split the window at the smallest multiple of ε ′2Ppre.
This multiple is defined by ε ′2Ppreds(Ci,k)/ε ′2Ppree. Again, we have
to know which amount of window wi,k has to be processed where.
Let w̌i,k = ε ′2Ppreds(Ci,k)/ε ′2Ppree− s(Ci,k) be the processing time
of window wi,k which hast to be scheduled in the window wi,k−1,
and let ŵi,k = x̃(Ci,k,wi,k) − w̌i,k be the processing time of window
wi,k which can stay in wi,k. Furthermore, we have to know which
fraction of the total processing time of wi,k is represented by these two
values. We define ϕ̂i,k := ŵi,k/Ppre(wi,k) and ϕ̌i,k := w̌i,k/Ppre(wi,k).
We now know that we have to add ϕ̂i,kỹj,wi,k to ȳj,wi,k and ϕ̌i,kỹj,wi,k
to ȳj,wi,k−1 . In total we have

ȳj,wi,k :=
∑

C∈Ki,(k+1)

ϕCỹj,w(C) + ϕ̂i,kỹj,wi,k + ϕ̌i,k+1ỹj,wi,k+1

for each i 6 1/ε ′, k 6 ki and j ∈ JN.
We consider the window (R,m) separately. First, we have to round

the main windows from all configurations in Ki,1 up to (R,m). More
precisely, for each i 6 1/ε ′, C ∈ Ki,1 and j ∈ JN, we add ϕCỹj,w(C) to
ȳj,(R,m). Furthermore, we have to round up the lower part of window
wi,1 to (R,m). Additional jobs which were processed in window (R,m)

before stay there. So, in total we have

ȳj,(R,m) := ỹj,(R,m) +

1/ε ′∑
i=1

(
ϕ̌i,1ỹj,wi,1 +

∑
C∈Ki,1

ϕCỹj,w(C)

)
for each j ∈ JN. Therefore, (x̄, ȳ) is a solution to LPW(W ′). Using
suitable data structures, (x̃, ỹ) as well as (x̄, ȳ) can be computed
in O((m + log(n)/ε)n) operations. This linear program has |JN| +

168 machine scheduling with a shared resource

|JsupW | + 2|W ′| ∈ O(|J| + |W ′|) constraints and at most |CW ||W ′| +

|JN||W
′| ∈ O(|J||W ′|) variables. So we can compute a solution with

at most |JN| + |JsupW | + 2|W ′| + 1 non-zero components in O((|J| +

|W ′|)1.5356|J||W ′|) operations.

In Step (v), the algorithm uses the results from Lemma 8.7 to find a
solution (x̄, ȳ) to LPW which uses at most

|JN|+ |JW |+ 2|W ′|+ 1 6 |JN|+ 3/ε
′2 + 5

non-zero components in O((|Jsup|+ |W ′|)1.5356|Jsup||W
′|) operations.

Since |W ′| ∈ O(1/ε2), the total running time of the algorithms from
Step (i) to (v) can be bounded by O(|Jsup|(ln(|Jsup|)+ε

−2)(|Jsup|
1.5356+

m/ε4)).

Integral Solution – Step (vi)

We now generate an integral schedule of the jobs in J. The used
technique to schedule the wide jobs is similar to the technique used
by Kenyon and Rémila [94] to place the wide rectangles into their
fractional packing of rectangles. To place the narrow jobs, we use a
similar argument as Epstein and Levin in [45].

We say a narrow job in JN is scheduled fractionally if it is assigned
to more than one window Hence, each fractionally scheduled job
corresponds to at least two non-zero components. Note that (x̄, ȳ) has
at most |JN|+ 3/ε ′2 + 5 non-zero components. Since each job in JN
needs one none zero component to be scheduled, there are at most
3/ε ′2 + 5 non-zero components left for configurations or narrow jobs.
Hence, (x̄, ȳ) contains at most 3/ε ′2 + 5 fractionally scheduled jobs
and configurations in total.

lemma 8 .8. Let (x̄, ȳ) be a basic solution to LPW(Isup,CW ,W ′) such that
the total number of fractionally scheduled narrow jobs and used configurations
is bounded by K. There is a solution which places the jobs in J integrally and
has a makespan of at most

(1+ ε ′)P(x̄) + (1+ ε ′−1 +K)pmax.

Proof. First, we modify the solution (x̄, ȳ) to have enough space to
schedule the jobs integrally: We define x̂(C,w) := x̄(C,w) + pmax if
x̄(C,w) > 0, and x̂(C,w) = 0 otherwise. We denote by Jfrac ⊆ JN the set
of fractionally scheduled narrow jobs in (x̄, ȳ). For each j ∈ Jfrac and
each window w ∈W, we set ŷj,w := 0 and ŷj,(R,m) := pj. Furthermore,
we add P(Jfrac) 6 pmax|Jfrac| to x̂(∅,(R,m)). For each remaining j ∈
JN \ Jfrac, we set ŷj,w = ȳj,w. Moreover, for each fractional job and
for each configuration, we add at most pmax processing time. Hence,
we have P(x̂) 6 P(x̄) +Kpmax.

Next, we place the wide jobs. We sort the generalized configurations
such that configurations with the same window are scheduled con-
secutively and number them in ascending order. We iterate over each

8.2 single resource constrained scheduling 169

pmax

x̄(C1,w1)
x̂(C1,w1)

pmax

x̄(C2,w1)
x̂(C2,w1)

pmax

x̄(C3,w2)
x̂(C3,w2)

x̂(∅,(R,m))

(a) Three generalized configurations and the
configuration x̂(∅,(R,m)). Wide jobs are
filled in the generalized configurations.
The windows still need to be filled.

p(wi)

pmax

6 R(wi)

(b) Stacks of small jobs as-
signed to a window wi.
The first stack is discarded
and positioned at the end
of the schedule.

Figure 8.3: Integral placement of the jobs into the generalized configurations

i < G, i.e., over all groups, as well as all generalized configurations
and fill the spaces for the job i ∈ JW,sup which has a resource amount
of Ri with jobs from JW,i ∩ JW until the height of the configuration
x̄(C,w) is reached. Each last job in a configuration is allowed to overlap
the border x̄(C,w) since we have added pmax extra space. All jobs from
JW,i ∩ JW can be placed in the configurations. Furthermore, there is
one generalized configuration (C,w) where the border x̄(C,w) is not
overlapped by a job from JW,i since

∑
(C,w)∈C̃C(i)x̄(C,w) > P(JW,i).

In this particular configuration, we place the job which was intersected
by the multiple of ε ′2PW in the first linear grouping and which frac-
tions were put in JW,i as well as in JW,i+1. Since one of its fractions
was in JW,i, it fits into the reserved space.

To place the small jobs, we consider each window w ∈ W. Let
J(w) be the set of jobs contained in w. We order the jobs in J(w)

by decreasing resource amount. Since the generalized configurations
containing window w are scheduled consecutively, we can build stacks
of jobs form J(w) with total processing time between P(w, x̄) and
P(w, x̄) + pmax and schedule them in window w. Since m(w)P(w, x̄) >∑
j∈JN ŷj,w, we have to build at most m(w) of these stacks. Because

we have m(w) free machines in each window, there is a free machine
for each stack.

Consider the jobs Jtop intersecting the bound P(w, x̄). These are the
jobs with the lowest resource amount of their stack. Hence, at each
point in time, the small jobs in the stacks have a total resource amount
of at least R(Jtop) and therefore P(w, x̄)R(Jtop) 6

∑
j∈J(w) rjpj 6

P(w, x̄)R(w). Thus, the jobs in Jtop fit into the window w.
We remove the stack with the largest resource amount. Then the

summed up resource amount of the jobs at the bottom of the stacks is
less than R(Jtop) since each of these jobs was added right after a job
from Jtop. Therefore, at each point in time, in window w it holds that
the resource amount of small jobs is at most R(Jtop).

170 machine scheduling with a shared resource

The removed stack has a total processing time of at most P(w, x̄) +
pmax. Since this stack is removed in each window, jobs with summed
up processing time at most

∑
w∈W\{(0,0),(R,m)}(P(w, x̄) + pmax) 6

P(x̄) + ε ′−2pmax have to be placed at the end of the schedule. Since
each of these jobs has a resource amount of at most ε ′R, we can sched-
ule 1/ε ′ of them at the same time. Hence, we need an additional
processing time of ε ′P(x̄) + (1+ ε ′−1)pmax. In total, we get a schedule
of makespan:

ε ′P(x̄) + (1+ ε ′−1)pmax + P(x̄) +Kpmax

= (1+ ε ′)P(x̄) + (1+ ε ′−1 +K)pmax

The solution we get from Lemma 8.7 has at most |JN|+ |JsupW |+

2|W ′| + 1 6 |JN| + 3/ε
′2 + 5 non-zero components. Since each job

j ∈ JN needs a non-zero component to be scheduled, we have at most
3/ε ′2 + 5 configurations and fractional jobs. Therefore, the generated
integral schedule has a makespan of:

(1+ ε ′)P(x̄) + (1+ ε ′−1 + 3/ε ′2 + 5)pmax

6 (1+ ε ′)3 optpre(Isup) +O(1/ε2)pmax

6 (1+ ε ′)4 optpre(I) +O(1/ε2)pmax

6 (1+ ε)opt(I) +O(1/ε2)pmax

The number of operations to build the integral schedule is dom-
inated by the number of operations to build the first preemptive
schedule, that is, O(n(ln(n) + ε−2)(n1.5356 +mε−4)). Since each step
we used to manipulate xpre was dominated by this number, this is our
total processing time. Note that in the above process resources can be
allocated contiguously. Hence, this schedule is feasible for instances
where contiguous resource is required as well.

8.2.2 Second Case: m 6 1/ε

Let ε > 0 and an instance I = (J,m,R) with 1/ε > m be given. In
this case, we do not partition the set of jobs into wide and narrow
jobs. Instead we apply the linear grouping to all jobs. Again, we get
G 6 1/ε ′2 groups Ji. We denote by Jsup the set of jobs which contains
for each i < G one job with processing time P(Ji) and resource amount
max{rj|j ∈ Ji}. We denote by Csup the set of valid configurations of jobs
in Jsup. We denote by Isup := (Jsup,m,R) the round up instance. To
get a preemptive schedule for Isup we have to solve LPpre(Isup) while
interpreting each job in Jsup as a wide job. By Lemma 8.3, we get a
solution xpre with O(|Jsup|(ln(|Jsup|) + ε

′−2)) = O(ε ′−4) non-zero com-
ponents and

∑
C∈Csup

(xpre)C 6 (1+ ε ′)optpre in O(|Jsup|(ln(|Jsup|) +

1/ε ′2)(|JW |z+ |JN|+mz
′2/ε ′2)) = O(m3/ε ′6) = O(1/ε ′9) operations.

8.2 single resource constrained scheduling 171

Since we now have a polynomial number of variables, we can con-
struct a solution x̃ which has at most 1/ε ′2 non-zero components
and for which it holds that

∑
C∈Csup

(xpre)C =
∑
C∈Csup

x̃C. This takes
O(|Jsup|

2.5356(ln(|Jsup|) + ε
′−2)) = O(1/ε ′4.5356) operations.

To each of these components we add pmax processing time. Next,
we place the jobs from Ji for each i < G in the configurations as we
placed the wide jobs in the first case. We get a schedule of length at
most (1+ ε ′)optpre +ε

′−2pmax. The jobs in JG are added in the end of
the schedule. These jobs have a total makespan of at most ε ′ optpre(I)

since P(JG) 6 ε ′2P(J) and optpre(I) > P(J)/m > ε ′P(J). So, in the
end we have a schedule with a total makespan of at most

(1+ ε ′)optpre(I) + ε
′
optpre(I) + 1/ε

′2pmax

6 (1+ ε)opt(I) +O(1/ε2)pmax.

8.2.3 Improving the additive term

It is possible to reduce the additive term using different rounding
strategies. To do this, we have to consider other cases than before:
m > 1/ε ′2 and m 6 1/ε ′2.

Let m > 1/ε ′2. In the described algorithm, we have two rounding
steps. One for the wide jobs and one for the windows for narrow
jobs. To achieve a better additive term, we have to modify both of
them. First, we describe how to round the wide jobs. Previously, we
used linear grouping to round the wide jobs. This rounding yielded
ε ′−2 different item sizes. To improve the additive term, we have to
reduce this number. Karmakar and Karp [90] have introduced a second
rounding strategy called geometric grouping, and this technique was
refined for strip packing in [21] and [138]. We describe how to apply
the geometric grouping to the wide jobs:

lemma 8 .9. For every ε > 0 with 1/ε ∈N and every instance I with a set
of wide jobs JW,ε, we can reduce the number of different resource amounts of
the wide jobs to dlog(ε−1)eε−1 by extending the optimal preemptive schedule
optpre(I, ε) by at most 2εoptpre(I, ε). The resulting rounded instance is
called I ′sup,ε ′ .

Proof. The idea is to partition the set JW into sets J ′W,i := {j ∈
JW |R/2i+1 6 rj < R/2i}. Since each item in JW has a resource amount
of at least εR, we have at most dlog(ε−1)e of these sets. Next, we round
the items in each of these sets by linear grouping into at most ε−1

different sizes. This is done in the following way: We stack the items
of the set J ′W,i in ascending order of their width. We then partition
the stack in sets of height εP(J ′W,i) and split the items cut by a hori-
zontal line. Let J ′W,i,j be the set containing the items between the lines
εP(J ′W,i−1) and εP(J ′W,i). We round the resource amount of all jobs in
J ′W,i,j to the widest resource amount which can be found in this set.

172 machine scheduling with a shared resource

Consider a solution of optpre(I, ε). We can replace each job from
group J ′W,i,j by rounded jobs from group J ′W,i,j+1. The widest group
in each stack is scheduled at the end of the solution. Since the resource
amount of each job in this group is smaller than R/2i, we are able
to schedule 2i of them at the same point in time. Since the height
of this group is at most εP(J ′W,i), we need at most (1/2i) · εP(J ′W,i)

processing time to schedule this set of items fractionally.
On the other hand, we know that we can schedule at most 2i+1

items from J ′W,i at the same time since their resource amount is at
least R/2i+1. So it holds that:

dlog(ε ′−1)e−1∑
i=0

P(J ′W,i)/2
i+1 6 optpre(I)

Let us now consider the total processing time we have to add at
the end of the schedule: For each of the dlog(ε ′−1)e sets, we add the
last group at the end of the schedule, i.e., at most (1/2i) · ε ′P(J ′W,i)

processing time per set. Hence, we add at most:

dlog(ε ′−1)e−1∑
i=0

(1/2i) · ε ′P(J ′W,i)

= 2ε ′
dlog(ε ′−1)e−1∑

i=0

1

2i+1
P(J ′W,i) 6 2ε

′
optpre(I)

In each of the sets we have ε ′−1 groups. So in total we now have
dlog(ε ′−1)eε ′−1 different resource amounts for wide jobs and we have
lengthened the preemptive schedule by at most 2ε ′ optpre(I).

In the second step, we modify the rounding of the resource amounts
of the windows. We are able to reduce the number of different win-
dows to 1/ε ′ + 1:

lemma 8 .10. Letm > 1/ε ′2. Given a solution (x̃, ỹ) to the linear program
LPW(I,CW ,Wpre), we can find a set W ′ ⊆Wpre with |W ′| 6 1/ε ′ + 1 and
a solution (x̄, ȳ) to LPW(I,CW ,W ′) with

P(x̄) 6 (1+ 2ε ′)P(x̃), (8.14)

and that contains at most |JN|+ |JW |+ 2|W ′|+ 1 non-zero components.
This can be done with O((|J|+ |W ′|)1.5356|J||W ′|) operations.

Proof. In the first step, we modify all windows except the window
(R,m) such that they use at most m− 1/ε ′ machines. This allows us to
neglect the number of machines when we are rounding the windows
resource amount since each configuration of wide jobs needs at most
1/ε ′ machines. Let us look at a window w. Let Jw be the set of job
parts scheduled in w, more precisely, for each job in JN with yj,w > 0
there is a job in Jw with processing time yj,w and resource amount

8.2 single resource constrained scheduling 173

rj. We sort the jobs in Jw by decreasing resource amount and build
stacks of height P(w) exactly, similar as in the generation of an integral
solution, but this time we allow jobs to be split horizontally. We now
look at the number of stacks we got. If we have less than m− 1/ε ′

stacks, we set wm to m− 1/ε ′ without violating the Equation (8.8). If
we have m− x stacks with x ∈ {0, . . . , 1/ε ′− 1}, we remove the 1/ε ′− x
stacks with the smallest resource amount, set wm to m− 1/ε ′ without
violating the Equation (8.8), and place them into window (R,m). Let
Jshift be the set of (fractional) jobs we moved to window (R,m).

Claim 8.11. If we schedule the jobs Jshift in window (R,m), we have
to add at most ε ′P(x̃) processing time to x̃(∅,(R,m)) to get a feasible
solution of LPW .

The window (R,m) is the only one where we have added jobs. We
have to show mε ′P(x̃) > P(Jshift) and that Rε ′P(x̃) >

∑
j∈Jshift

rjpj to
prove that the Inequalities (8.8) and (8.9) hold which then proves the
claim.

Let us look at the stacks of jobs we removed in window w. We
show that the summed up resource amount of the jobs at the bottom
of these stacks is at most ε ′R. To see this, notice that the summed
up resource amount of the widest jobs in each stack except for the
widest stack has a resource amount of at most R(w). Otherwise, the
resource amount of all the jobs in the window would be larger than
R(w) which would contradict the fact that Equality (8.9) holds for the
considered solution. Furthermore, we know that R(w) 6 R− ε ′R since
the considered window is not the window (R,m), and hence there has
to be a wide job scheduled at the same time as the window.

Since the job at the bottom of the widest stack has a resource
amount of less than ε ′R, the summed resource amount of all stacks
is strictly smaller than R. Assume that the jobs at the bottom of the
1/ε ′ − x smallest stacks have a summed resource amount of more
than ε ′R. In this case, one of these jobs has a resource amount of at
least ε ′R/(ε ′−1 − x) > ε ′2R. All of the at least m− 1/ε ′ other wider
stacks have a job with resource amount of at least ε ′2R at the bottom.
Therefore, the total resource amount of the jobs at the bottom of the
stacks is at least (m− 1/ε ′)ε ′2R+ ε ′R > (1/ε ′2 − 1/ε ′)ε ′2R+ ε ′R = R

which is a contradiction since the total resource amount of these stacks
is strictly less than R.

Let Jshift,w be the set of jobs in the stacks we remove from w.
Since the summed up resource amount of the jobs at the bottom of
these stacks is at most ε ′R, we know that ε ′R · P(w) >

∑
j∈Jshift,w

rjpj.
The total processing time of these stacks is at most

∑
j∈Jshift,w

pj =

P(Jshift,w) 6 x · P(w) 6 1/ε ′ · P(w) 6 mε ′P(w) since m > 1/ε ′2. If we
sum up the changes for all windows, we get:

Rε ′P(x̃) >
∑

w∈W\(R,m)

Rε ′P(w) >
∑

w∈W\(R,m)

∑
j∈Jshift,w

rjpj =
∑
j∈Jshift

rjpj

174 machine scheduling with a shared resource

and

mε ′P(x̃) >
∑

w∈W\(R,m)

mε ′P(w) >
∑

w∈W\(R,m)

P(Jshift,w) = P(Jshift),

which proves the claim.
For each window w ∈ W, we move each job j ∈ Jshift,w to the

window (R,m), by setting x̄(∅,(R,m)) := x̃(∅,(R,m)) + ε
′Ppre and ȳj,w :=

0 and ȳj,(R,m) := ȳj,w. Now, we can set m(w) := m − 1/ε ′ for all
windows in Wpre and adjust the solution accordingly.

We look again at the resource amount of the windows. Since all
windows have the same number of machines they use, we do not need
to partition the set of generalized configurations by the number of
wide jobs they contain because the number of jobs is no longer a re-
striction to the possibility to schedule configuration and window at the
same time. So, we build just one stack of generalized configurations,
in increasing order of resource amounts of the configurations. We
now shift the windows exactly ε ′Ppre downwards like in the original
rounding step and round the windows like before. By this rounding,
we get ε ′−1+ 1 different window sizes and have to extend the window
(R,m) by ε ′Ppre. The solution (x̄, ȳ) and the set W ′ can be constructed
analogously to the previous rounding. The number of operations is
the same as in Lemma 8.7.

The modified algorithm first computes the rounded instance I ′sup,ε ′ .
Then it uses the algorithm described in the proof of Lemma 8.3 to find
an approximate solution to LPpre with value (1+ ε ′)optpre(I

′
sup,ε ′ , ε

′).
By Lemma 8.9 we know that (1+ ε ′)optpre(I

′
sup,ε ′ , ε

′) 6 (1+ ε ′)(1+

2ε ′)opt(I). This solution is then transformed to a solution of LPW
without losing any factor in the approximation utilizing the techniques
from Lemma 8.6. In the next step, the algorithm reduces the number of
widows with the techniques from Lemma 8.10: Since |W ′| 6 ε ′−1 + 1
and |JW | 6 ε ′−1dlog(ε ′−1)e, the linear program has |JsupW |+ |JN|+

2|W ′| ∈ O(n + ε ′−1) constraints and at most |CW ||W ′| + |JN||W
′| ∈

O(nε−1) variables. Hence, we can compute a basic solution with
at most |JsupW | + |JN| + 2|W

′| + 1 non-zero components in O((n +

ε ′−1)1.5356nε−1) 6 O(n2.5356ε−1 + nε−3) operations. Since we have
at most |JsupW |+ |JN|+ 2|W

′|+ 1 non-zero components, the number of
configurations and fractionally scheduled narrow jobs is bounded by
ε ′−1dlog(ε ′−1)e+ 2ε−1 + 3. The makespan of this solution is bounded
by (1 + ε ′)(1 + 2ε ′)2 opt(I). Using Lemma 8.8, we get an integral
schedule for the jobs in Isup with makespan at most (1 + ε ′)2(1 +

2ε ′)2 opt(I) + (1+ 1/ε ′+ 1/ε ′(log(1/ε ′) + 1) + 2/ε ′+ 3)pmax. If we set
ε ′ := ε/8, we get a schedule with makespan of at most:

(1+ ε)opt+O(pmax log(1/ε)/ε)

Let m 6 1/ε ′2. Again, this case is the simpler one. We redefine
the sets of wide and narrow jobs. Let JW := {j ∈ J|rj > R/m} and

8.3 resource dependent processing times 175

JN := {j ∈ J|rj 6 R/m}. Let us first consider the items in JN. Since
we can schedule exactly m of them at the same time, we know that
P(JN) 6 mPpre. We round the items in JN by a linear grouping step
into at most 1/ε ′ different sizes. The total processing time of each
group is given by ε ′P(JN) 6 ε ′mPpre. Hence, the group containing
the widest items can be scheduled at the end of the schedule adding
at most ε ′Ppre processing time to the makespan.

Let us now consider the items in JW . We round this set of items via
geometric grouping. Since the narrowest item has a width of at least
R/m, we partition JW into dlog(m)e sets. In each of these stacks, we
do linear grouping building 1/ε ′ groups per stack. For each stack i,
we add at most (ε ′/2i) · P(JW,i) + pmax extra processing time to the
makespan. So in total we add at most

dlog(m)e−1∑
i=0

((1/2i) · ε ′P(J ′W,i) + pmax) 6 2dlog(1/ε ′)epmax + 2ε
′Ppre

to the makespan if we round the wide jobs this way.
Now, we have at most dlog(m)e/ε ′ 6 2dlog(1/ε ′)e/ε ′ sizes for

wide jobs and 1/ε ′ sizes for narrow jobs. By Lemma 8.3, we can
find a preemptive schedule with at most 2dlog(1/ε ′)e/ε ′ + 1/ε ′ + 1
non-zero components and makespan of at most (1+ ε ′)optpre with
O(n(ln(n) + ε−2)(|JW |/ε ′+n+m/ε4)) 6 O((m/ε ′7) · log(1/ε ′)) oper-
ations. Utilizing Lemma 8.8, we can find an integral schedule with
makespan at most

(1+ 5ε ′ + ε ′2)Ppre + 2(1+ dlog(1/ε ′)e+ 1/ε ′ + dlog(1/ε ′)e/ε ′)pmax

If we set ε ′ := ε/6, we get a schedule with makespan of at most:

(1+ ε)opt+O(ε−1 log(ε−1))pmax

This proves Theorem 8.1.

8.3 resource dependent processing times

An instance Ĩ for scheduling with resource dependent processing times
is given by a set J̃ of n jobs, a number of machines m and a resource
bound R ∈ Z>0. Furthermore, for each job j ∈ J̃ there is a set Dj ⊆ [R]

of valid resource values and a processing time function πj : Dj → Q>0.
The goal is to find for each job j a resource assignment ρj ∈ Dj
and a starting time tj ∈ N such that

∑
j:t∈[tj,tj+πj(ρj)) ρj 6 R and∑

j:t∈[tj,tj+πj(ρj)) 1 6 m for each t ∈ N and such that the makespan
maxj∈J(tj + πj(ρj)) is minimized.

We set πmax := max{πj(ρ)|j ∈ J̃, ρ ∈ Dj} and denote the makespan
of an optimal schedule by opt(Ĩ). For the most part of this section, we
assume that the processing time functions πj are explicitly given as a
list. Later, we discuss cases with a more compact encoding.

176 machine scheduling with a shared resource

Like before, we first present an AFPTAS with additive term O(1/ε2).
The basic idea of the algorithm is to find a resource allotment for
the jobs and to utilize the AFPTAS for the fixed-resource variant.
Finding a resource allotment that allows analysis is the main difficulty
here. W.l.o.g., we assume that 1/ε ∈ Z>0 and set ε ′ := ε/8. Like
in the fixed-resource variant, the AFPTAS works differently in the
two cases 1/ε < m and 1/ε > m and again the second case is much
simpler. We give a brief overview of the algorithm for the first case,
followed by a detailed description and analysis for both cases, and
lastly show that the improved additive term can be extended as well.
After that, we discuss cases in which the processing time functions
have a more compact encoding. We show that for a wide range of
cases our techniques can be used to achieve AFTPAS results as well.

8.3.1 Explicitly Given Processing Time Functions

Algorithm

Given an instance Ĩ and ε > 1/m the algorithm can be summarized as
follows:

(i) Compute via max-min resource sharing a preemptive schedule
with length at most (1+ ε ′)optpre(Ĩ).

(ii) Using the preemptive schedule, define an instance I for the
fixed-resource variant, for which optpre(I) 6 (1+ ε ′)optpre(Ĩ)

holds.
(iii) Apply Steps (ii) to (v) of the fixed-resource AFPTAS yielding a

solution (x̄, ȳ) for the window LP for the rounded instance I ′

that uses at most 1/ε ′2 + 2 windows.
(iv) Compute a unique resource allotment for all but at most 3/ε ′2 +

4 of the original jobs in J̃, which is in some sense compatible
with both the linear grouping for I and the windows.

(v) Use the unique resource allotment to define a new instance
for the fixed-resource variant and a new solution (x̆, y̆) of the
window LP that has the same length as (x̄, ȳ).

(vi) Apply Step (vi) of the fixed-resource AFPTAS, yielding a sched-
ule for almost all of the jobs.

(vii) Put the jobs that did not get a unique resource allotment on top
of the schedule using at most (3/ε ′2 + 4)πmax extra height.

Preemptive Schedule

Unlike before, in this section, we mean by preemptive a schedule where
the jobs can be interrupted at any time at no cost and restarted later
possibly on another processor with a different resource-allotment.
Note that in Section 8.2 it was possible for pieces of the same job
to be executed in parallel which now is forbidden. We denote the
length of an optimal preemptive schedule for Ĩ by optpre(Ĩ). Like

8.3 resource dependent processing times 177

before, a configuration C is formally defined as a multiset of jobs
from J̃, and we denote the multiplicity of job j in configuration C
by ρC,j. In this context, the multiplicity of a job encodes the number
of resource-units that are assigned to it. A configuration C is called
feasible if

∑
j:ρC,j>0

1 6 m,
∑
j∈J̃ ρC,j 6 R, and ρC,j ∈ Dj ∪ {0} for each

j ∈ J̃. Note that ρC,j = 0 corresponds to the case that the job j is not a
part of the configuration. The set of feasible configurations is denoted
by C̃.

The computation of the schedule is done via the following LP:

min
∑
C∈C̃

xC

∑
ρ∈Dj

1

πj(ρ)

∑
C:ρC,j=ρ

xC > 1 ∀j ∈ J̃

xC > 0 ∀C ∈ C̃

In the following, this LP is denoted by LPpre(Ĩ). It is easy to see that a
solution of LPpre(Ĩ) corresponds to a preemptive schedule and vice-
versa. Note that LPpre(Ĩ) is closely related to the LP used to find a
preemptive solution for the fixed-resource variant, and indeed we
will follow the same approach to find an approximate solution as in
Lemma 8.3.

lemma 8 .12. A solution x to LPpre(Ĩ) that satisfies∑
C∈C̃

xC 6 (1+ ε ′)optpre(Ĩ)

can be found in time O(n2 ln(ln(n))m3maxj |Dj|ε−1(ε−2 + lnn)). Fur-
thermore, a solution with the same objective value and at most n+ 1 non-zero
components can be found using O(n2.5356(ε−2 + lnn)) operations.

Proof. We present the adaptations that have to be made in the proof
of Lemma 8.3. First, we define a (non-empty convex compact) set
B = {x ∈ RC̃

>0|
∑
C∈C̃ xC = 1} along with non-negative linear func-

tions fj : R|C̃| → R>0, x 7→
∑
ρ∈Dj

1
πj(ρ)

∑
C:ρC,j=ρ

xC for each j ∈ J̃.

Moreover, we set λ∗ = max{λ | fj(x) > λ, j ∈ J̃, x ∈ B}. The algo-
rithm by Grigoriades et al. [59] can be applied to find an x ∈ B that
satisfies fj(x) > (1− γ)λ∗ for each j ∈ J̃. In each iteration of the al-
gorithm, a price vector q ∈ Rn is obtained and the block problem
max{

∑
j∈J̃ qjfj(x)|x ∈ B} has to be solved approximately with an ac-

curacy γ ′ that depends linearly on γ. It can be easily seen that an
optimum to this problem is obtained at a point x ∈ B with xC∗ = 1 for
a single configuration C∗ and xC = 0 for C 6= C∗. The problem to find
such a configuration can be described by the following ILP:

max
∑
j∈J̃

∑
ρ∈Dj

qj

πj(ρ)
xj,ρ (8.15)

178 machine scheduling with a shared resource

∑
j∈J̃

∑
ρ∈Dj

ρxj,ρ 6 R (8.16)

∑
j∈J̃

∑
ρ∈Dj

xj,ρ 6 m (8.17)

∑
ρ∈Dj

xj,ρ 6 1 ∀j ∈ J̃ (8.18)

xj,ρ ∈ {0, 1} ∀j ∈ J̃, ρ ∈ Dj (8.19)

The variables xj,ρ express whether ρ units of the resource are assigned
to a job j in the configuration. The Constraint (8.17) and (8.16) guaran-
tee that there are at most m jobs in the configuration with summed up
resource allocation at most R; and due to (8.18) every job is scheduled
at most once. This problem can be seen as a multiple-choice knapsack
problem with an additional capacity constraint (kMCKP): A variant
of the knapsack problem where the items are partitioned into equiv-
alence classes and only one item from every class may be packed.
Moreover, the capacity constraint bounds the number of items that can
be packed. A naive application of basic techniques by Lawler [105]
provides an FPTAS for this problem with running time O(tk3δ−1),
where t is the number of items to be packed, k the maximum number
of items that may be packed, and δ the accuracy. Applied to this case
we get a running time of O(nmaxj |Dj|m3γ ′−1).

Scaling x and setting γ = ε ′/(1+ ε ′), we get a solution with the
required makespan after O(n(ε−2 + lnn)) iterations. In each iteration,
there is a numerical overhead of O(n ln ln(nγ−1)) and the knapsack
problem has to be solved. The running time of the FPTAS can be
bounded by O(n ln(ln(n))m2maxj |Dj|γ ′−1). Since ε ′/2 6 γ 6 ε ′ and
ε ′ = ε/8, we get the asserted running time. We turn this solution into
a basic feasible one in time O(n2.5356(ε−2 + lnn)).

Fixed-Resource Instance

Based on the preemptive schedule, we now define an instance I of
the problem with fixed resources. Let x(j,ρ) := 1/πj(ρ)

∑
C:ρC,j=ρ

xC

be the fraction of job j ∈ J̃ that is scheduled with a resource amount of
ρ ∈ Dj according to the preemptive solution. W.l.o.g., we may assume
that:

∀j ∈ J̃ :
∑
ρ∈Dj

x(j,ρ) = 1 (8.20)

Note that if the left side should be larger than one, we can just scale
down the x(j,ρ) values. The new set of jobs is defined as J = {(j, ρ) | j ∈
J̃, ρ ∈ Dj, xj,ρ > 0} with processing time p(j,ρ) := x(j,ρ)πj(ρ) and
resource requirement r(j,ρ) = ρ. The machine set and the resource
bound stay the same.

8.3 resource dependent processing times 179

This instance I has at most (n+ 1)m jobs because in the preemptive
solution at most n+ 1 configurations are used each containing at most
m jobs. Furthermore note that:

optpre(I) 6 (1+ ε ′)optpre(Ĩ) 6 (1+ ε ′)opt(Ĩ) (8.21)

The first inequality holds because (xC) yields a solution for the pre-
emptive version of the fixed-resource problem and the second is
obvious.

From here on we have to distinguish the two cases 1/ε < m and
1/ε > m. In both cases, we will make use of results for the fixed-
resource problem. However, the second case is much simpler since a
unique resource allotment can be found prior to the application of the
AFPTAS for the fixed-resource variant. Therefore, the whole algorithm
can be applied, while in the first case some steps are conducted
before finding a unique resource allotment for all the jobs and some
afterwards.

first case : 1/ε < m. For instance I and ε ′, we now use Steps (ii)
to (v) of the AFPTAS for the fixed-resource problem. By application of
linear grouping, the set of jobs is divided into wide JW and narrow
jobs JN. The wide jobs are split up into G = 1/ε ′2 groups JW,i. It
may happen that jobs that are part of multiple groups are split up
correspondingly. We formally handle this by introducing a factor
δ(j,ρ),i that denotes the fraction of a wide job (j, ρ) ∈ JW that lies in
the i-th group in the linear grouping stack. In the next step, a modified
instance Isup = (Jsup,W ∪ JN,m,R) with replaced wide jobs is formed
for which Lemma 8.3 and subsequently Lemma 8.7 can be applied.
Summarizing, we get:

lemma 8 .13. We can obtain a set of windows W ′, a set of configurations
CW , and a basic feasible solution (x̄, ȳ) to LPW(Isup,CW ,W ′) with the
following properties:

|W ′| 6 1/ε ′2 + 2 (8.22)

P(x̄) 6 (1+ ε ′)2 optpre(Isup) (8.23)

The running time can be bounded by O(nm(ln(nm) + ε−2)((nm)1.5356 +

mε−4)).

Proof. The running time is due to Lemma 8.3 and |J| 6 (n+ 1)m. All
the remaining claims follow from Lemma 8.7.

Unique Resource Allotment

The goal in this section is to find a unique resource allocation rj for
almost all the jobs j ∈ J̃ of the original instance.

180 machine scheduling with a shared resource

first case : 1/ε < m. Using a linear program, we will find a new
instance for the fixed-resource variant in which the wide jobs still fit
into the linear grouping stack given by I, and the narrow jobs fit into
the windows given by (x̄, ȳ). We set u(j,ρ),i := δ(j,ρ),ix(j,ρ) for each
i ∈ [G] and (j, ρ) ∈ JW,i, and v(j,ρ),w := (πj(ρ))

−1ȳ(j,ρ),w for each
(j, ρ) ∈ JN and w ∈W ′. This yields a solution to the following LP:∑

(j,ρ)∈JW,i

πj(ρ)u(j,ρ),i 6 P(JW,i) ∀i ∈ [G] (8.24)

∑
(j,ρ)∈JN

πj(ρ)v(j,ρ),w 6 m(w)
∑

C∈C(w)

x̄C,w ∀w ∈W ′ (8.25)

∑
(j,ρ)∈JN

r(j,ρ)πj(ρ)v(j,ρ),w 6 R(w)
∑

C∈C(w)

x̄C,w ∀w ∈W ′ (8.26)

∑
i∈[G]

∑
(j,ρ)

u(j,ρ),i +
∑
w∈W ′

∑
(j,ρ)

v(j,ρ),w = 1 ∀j ∈ J̃ (8.27)

u(j,ρ),i > 0 ∀i ∈ [G], (j, ρ) ∈ JW,i (8.28)

v(j,ρ),w > 0 ∀w ∈W ′,∀(j, ρ) ∈ JN (8.29)

The Inequality (8.24) holds due to the definition of the linear grouping
and because πj(ρ)u(j,ρ),i = δ(j,ρ)p(j,ρ) is exactly the height that job
(j, ρ) contributes to the height P(JW,i) of group i. The next two Con-
straints (8.25) and (8.26) are satisfied because πj(ρ)v(j,ρ),w = ȳ(j,ρ),w
and (x̄, ȳ) satisfies the Constraints (8.8) as well as (8.9) of LPW . Fur-
thermore, it holds that:∑

i∈[G]

∑
(j,ρ)∈JW,i

u(j,ρ),i +
∑
w∈W ′

∑
(j,ρ)∈JN

v(j,ρ),w

=
∑

(j,ρ)∈JW

xj,ρ
∑
i∈[G]

δ(j,ρ),i +
∑

(j,ρ)∈JN

(πj(ρ))
−1
∑
w∈W ′

ȳ(j,ρ),w

=
∑

(j,ρ)∈JW

xj,ρ +
∑

(j,ρ)∈JN

(πj(ρ))
−1p(j,ρ)

=
∑

(j,ρ)∈JW

xj,ρ +
∑

(j,ρ)∈JN

xj,ρ =
∑

(j,ρ)∈J

xj,ρ =
(8.20)

1

This yields (8.27), and this constraint guarantees that every job in Ĩ is
used exactly once.

Next, we convert (u, v) into a basic feasible solution of the LP.
Afterwards, (u, v) has at most G+ 2|W ′|+ |J̃| non-zero variables. Fur-
thermore, due to (8.27) and a simple counting argument, there are
at most G+ 2|W ′| 6 3/ε ′2 + 4 jobs j ∈ J̃ with more than one non-
zero variable from the set {u(j,ρ),i, v(j,ρ),w | ρ ∈ Dj, i ∈ [G],w ∈ W ′}

of variables related to j. We will schedule the jobs with more than
one non-zero variable separately in the end. The rest of the jobs J̄

yield a new instance Ī for the fixed-resource variant. For each j ∈ J̄,
exactly one of the following holds: There are ρ ∈ Dj and i ∈ [G] with
u(j,ρ),i = 1, or there are ρ ∈ Dj and w ∈ W ′ with v(j,ρ),w = 1. In the

8.3 resource dependent processing times 181

first case, j is a wide job, i.e., j ∈ J̄W , and in the second it is narrow,
i.e., j ∈ J̄N, while in both cases, the processing time and resource
requirement are given by pj := πj(ρ) and rj := ρ. Moreover, the wide
jobs are uniquely assigned to groups J̄W,i.

We define a modified rounded instance Īsup := (Jsup,W ∪ J̄N,m,R)
for Ī using the old rounded wide jobs and the new narrow jobs.
Furthermore, let x̆C,w := x̄C,w for each C ∈ CW , and for each j ∈ J̄N
we set:

y̆j,w :=

{
pj , if v(j,ρ),w = 1

0 , otherwise

lemma 8 .14. It holds that (x̆, y̆) is a solution to LPW(Īsup,CW ,W ′) that
has the the same makespan as (x̄, ȳ) and to which Lemma 8.8 can be applied.
It can be computed using O(nmε−2(nm+ ε−2)1.5356) operations.

Proof. The generalized configurations keep the same height. Hence,
the makespan stays the same, and, since also the same rounded wide
jobs are used, the Constraint (8.6) of LPW holds. The Constraints
(8.8) and (8.9) are satisfied because v satisfies (8.25) and (8.26), while
Constraint (8.7) holds by the definition of y̆.

Because of (8.24), it holds that P(J̄W,i) 6 P(JW,i) for each i ∈ [G],
i.e., the new wide jobs still fit into the linear grouping stack and can
therefore be scheduled by the fixed-resource AFPTAS. Also the narrow
jobs can be handled because (8.8) and (8.9) hold.

The running time is dominated by the computation of the basic
feasible solution. Since the LP has at most O((nm+ ε−2)) constraints
and O(nmε−2) variables, this can be done in time O(nmε−2(nm+

ε−2)1.5356).

second case : 1/ε > m. In this case, it is possible to treat all the
jobs as wide jobs. We apply linear grouping and define u as above.
This yields a solution for the LP that is given by (8.24), (8.28), and:∑

i∈[G]

∑
(j,ρ)∈JW,i

u(j,ρ),i = 1 ∀j ∈ J̃ (8.30)

We transform u into a basic feasible solution, and, due to the same
counting argument, there are at most G = 1/ε ′2 fractional variables.
Next, the fractional jobs are removed and the wide jobs defined as
above. Due to (8.24), they fit into the linear grouping stack.

The Integral Schedule

We apply the last steps of the fixed-resource AFPTAS.

182 machine scheduling with a shared resource

first case : 1/ε < m. We can apply (the proof of) Lemma 8.8
to (x̆, y̆) yielding an integral schedule for almost all the jobs with
makespan at most:

((1+ ε ′)4)optpre(I) + (5+
1

ε ′
+
3

ε ′2
)pmax

Note that pmax 6 πmax holds. We schedule the remaining jobs J̃ \ J̄

successively at the end of the schedule each with an optimal resource
assignment. In doing so, we add at most

|J̃ \ J̄|max
j∈J̃

min
ρ∈Dj

πj(ρ) 6 (4+
3

ε ′2
)πmax

length to the schedule. Summing up and applying (8.21), we get a
makespan of at most:

(1+ε ′)5 optpre(Ĩ)+(9+
1

ε ′
+
6

ε ′2
)πmax 6 (1+ε)opt(Ĩ)+O(1/ε2)πmax

The overall running time is polynomial in n, maxj |Dj|, and ε−1. Due
to the previous observations, it can be bounded by:

O
(
n
m2

ε
max
j

|Dj|(ln(nm) +
1

ε2
)((nm)1.5356 +

m

ε4
)
)

second case : 1/ε > m. In this case, we can apply all the steps of
the fixed-resource AFPTAS that follow the linear grouping yielding a
schedule for all but at most G = 1/ε ′2 jobs. The remaining jobs again
are scheduled in the end. The corresponding schedule has a makespan
of at most:

(1+ 2ε ′)optpre(I) + 2/ε
′2πmax

6(1+ 2ε ′)(1+ ε ′)opt(Ĩ) +O(1/ε2)πmax

6(1+ ε)opt(Ĩ) +O(1/ε2)πmax

The overall running time is obviously smaller than in the first case.

Better Additive Term

We can extend the improved additive term to the case of resource
dependent processing times as well. To achieve this, the corresponding
algorithm for the fixed-resource variant has to be used as a sub-
procedure, and, furthermore, the computation of the unique resource
allotment has to be adjusted. The reduced number of groups and
windows reduces the number of constraints needed in the LP which
is used to find the unique resource allotment, and therefore a basic
feasible solution has less non-zero variables. Hence, the number of
jobs that do not get a unique resource allotment is reduced as well.
The additive term of the algorithm is due to the additive term of

8.3 resource dependent processing times 183

the algorithm for the fixed-resource variant and the jobs without a
unique resource allotment. Since both are reduced, the overall additive
term is reduced as well. We give some more details for the two cases
m > 1/ε ′2 and m 6 1/ε ′2.

The computation of the preemptive solution and the construction
of the fixed-resource instance stays the same in both cases. Note that
in the modified AFPTAS for the fixed-resource problem a distinction
between wide and narrow jobs is made for both cases, and therefore we
consider them simultaneously. Like before, we perform the first steps
of the (modified) AFPTAS for the fixed-resource problem. With the new
rounding procedure the wide jobs are partitioned into G groups with
G 6 1/ε ′ log(1/ε ′) + 1/ε ′ in the first and G 6 2/ε ′ log(1/ε ′) + 1/ε ′ in
the second case, and again there may be jobs that belong to multiple
groups and are split accordingly. Next, a modified instance with
replaced wide jobs is formed. In the first, case Lemma 8.3 and 8.10

can be applied yielding a solution (x̄, ȳ) to LPW with at most |W ′| 6
1/ε ′ + 1 windows. In the second case, Lemma 8.3 directly yields a
solution with at most 2/ε ′ log(1/ε ′)+ 2/ε ′+ 1 non-zero variables. This
can be transformed directly into a solution (x̄, ȳ) to LPW with at most
|W ′| 6 2/ε ′ log(1/ε ′) + 2/ε ′ + 1 windows. We can build the LP for
the unique resource allotment the same way as before. However, now
we have at most G+ 2|W ′| ∈ O(1/ε ′ log(1/ε ′)) jobs without a unique
resource allotment. Like before, we define a modified set of narrow
jobs and a modified solution for LPW to which we apply Lemma 8.8.
In the first case, Lemma 8.9 together with (8.21) yields a solution for
almost all the jobs with makespan at most:

(1+ ε ′)3(1+ 2ε ′)2 opt(Ĩ) + (4+ 4ε−1 + ε ′−1 log(ε ′−1))πmax

In the second case, we get a solution with makespan at most:

(1+ ε ′)2(1+ 5ε ′ + ε ′2)opt(Ĩ) + 2(2+ 2ε−1 + ε ′−1 log(ε ′−1))πmax

We add the jobs without a unique resource allotment at the end of
the schedule with an extra additive error of O(ε−1 log(ε−1)πmax) in
both cases. For ε ′ = ε/10, this yields a makespan of at most (1 +

ε)opt+O(ε−1 log(ε−1))πmax. Since the bound for the running time of
the AFPTAS for the fixed-resource problem stays the same, we achieve
the same running time in this case as well.

8.3.2 Processing Time Functions with Compact Encoding

The running time of our algorithm is linear in maxj |Dj| which might
be as big as the resource bound R. As long as the processing time
functions are explicitly given as a list, we have |Dj| ∈ O(|I|) and this is
not a problem. In this section, we consider the case that the processing
time functions have a more compact encoding, and therefore the
dependence on maxj |Dj| in the running time should be avoided.

184 machine scheduling with a shared resource

Note that the dependence on maxj |Dj| is due to the computation
of the preemptive schedule. Hence, we have for any encoding of the
processing times:

corollary 8 .15. There is an AFPTAS for scheduling with resource
dependent processing times if there is an FPTAS for the preemptive version
of the problem.

In the following, we argue that in many sensible cases the techniques
presented so far together with an additional geometric rounding step
are sufficient to get an AFPTAS.

Since we do not want to restrict ourselves to any particular encoding
of πj, we assume in the following that the values πj(r) can be accessed
in constant time via an oracle. Furthermore, we assume that the func-
tions πj are non-increasing. Note that for any instance of the problem,
there is an equivalent instance with non-increasing processing time
functions, and therefore this is a very natural restriction. Lastly, we
assume for the sake of simple presentation that the sets of feasible
values Dj are discrete intervals {λj, . . . , ρj}. However, all the considera-
tions in the following can be generalized to the case that the sets Dj
are given as a collection of disjoint discrete intervals.

We consider a geometric rounding step for the processing times. For
each job j ∈ J̃ and resource value r ∈ Dj, let π̂j(r) = πj(ρj)(1+ ε

′)x

with x = dlog1+ε ′(πj(r)/πj(ρj))e. Moreover, let P̂j = {π̂j(r)|r ∈ Dj}.
We get |P̂j| ∈ O(1/ε log(πj(λj)/πj(ρj))) if we assume ε ′ 6 1 . For
each p ∈ P̂j, let rp be the minimum value r with π̂j(r) = p. We set
D̂j = {rp|p ∈ P̂j} and Î to be the modified instance with new sets of
valid resource values D̂j and processing time functions πj|D̂j . Note

that |D̂j| = |P̂j| and D̂j can be efficiently computed for example using
binary search in time O(|P̂j| log |Dj|).

lemma 8 .16. opt(Î) 6 (1+ ε ′)opt(Ĩ) and a schedule for Î is a schedule
for Ĩ.

Proof. Consider a schedule for Ĩ and the corresponding solution to
LPpre. We can increase the height of each configuration by a factor of
1+ ε. Then, for each job j, we can reduce the resource amount ρ that
is assigned to j to rπ̂j(ρ). In doing so, the processing time of the job
is increased at most by a factor of (1+ ε) and we can still fit it into
its corresponding configurations. Actually the configuration structure
changes a little bit, but all emerging configurations are feasible because
we only reduced the used resources. Hence, we get a new schedule
with a makespan increased by (at most) a factor of 1+ ε that is also
a schedule for Î because for each job j a resource amount from D̂j is
used.

Therefore, we can apply the AFPTAS to Î and get, with a slight
adjustment in the definition of ε ′, a solution with the same qual-
ity as before. Concerning the running time, note that |D̂j| = |P̂j| ∈

8.4 open problems 185

O(1/ε log(πj(λj)/πj(ρj))). Hence, if the encoding size of the values
πj(r) is polynomially bounded in the input size, we get an AFPTAS.

Monotone jobs

We now consider the case that the processing time functions are non-
increasing and additionally řπj(ř) 6 r̂πj(r̂) for each job j and ř, r̂ ∈ Dj
with ř 6 r̂. In the context of the variant of parallel job scheduling
in which the processing time of a job depends on the number of
used processors, jobs of this kind are called monotone (see e.g. [71]).
The intuition behind the notion is that investing more resource will
decrease the running time but also the efficiency for example due to
an increased overhead. In this case, we can apply geometric rounding
directly to the resource values: For r ∈ Dj, let ř = dλj(1+ ε ′)xe with
x = blog1+ε ′(r/λj). We get ř 6 r 6 (1+ ε)ř yielding řπj(ř) 6 rπj(r) 6
(1+ ε ′)řπj(r), and therefore πj(ř) 6 (1+ ε ′)πj(r). Let Ďj = {ř|r ∈ Dj}
and Ǐ be the modified instance given by the sets Ďj and the processing
time functions πj|Ďj . Analogously to Lemma 8.16, we get:

lemma 8 .17. opt(Ǐ) 6 (1+ ε ′)opt(Ĩ) and a schedule for Ǐ is a schedule
for Ĩ.

Note that |Ďj| ∈ O(1/ε log(ρj/λj)) (again assuming ε ′ 6 1), i.e.,
in this case we get an AFPTAS in which the factor maxj |Dj| in the
running time can be replaced by 1/ε logR. In particular, the encoding
length of the values of the processing time functions has no influence
on the number of needed operations in this case.

8.4 open problems

Concerning the single resource constrained scheduling it is an open
question whether we can find an approximation algorithm with abso-
lute approximation ratio close to 3/2 or an APTAS with an additive
term pmax. The case when the number of given resources s is larger
than one and m ∈ θ(n) is challenging. In this case, we cannot hope for
an APTAS even if s = 2 since the underlying vector bin packing prob-
lem does not allow it. An interesting question is whether techniques
used for vector bin packing can be used to find good approximations
for the general resource constrained scheduling as well.

For the resource dependent case, one might note that there are many
instances for which πmax is very big. Therefore, we want to point out
that the above algorithm can be modified such that the πmax-factor
can at least be bounded by optpre(I). This can be done by changing
the computation of the preemptive solution: We guess optpre(I) via
binary search and only use configurations in which every job has a
processing time of at most optpre(I). This increases the overall running
time only slightly. However, providing an AFPTAS in which πmax

is replaced by something smaller, like, e.g., maxj∈J̃ minρ∈Dj πj(ρ) or

186 machine scheduling with a shared resource

the maximum of the average processing times, is an interesting open
problem. Furthermore, the design of approximation algorithms with
improved absolute ratios remains an open problem.

B I B L I O G R A P H Y

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin.
Network flows - theory, algorithms and applications. Prentice Hall,
1993. isbn: 978-0-13-617549-0.

[2] Ali Allahverdi. “The third comprehensive survey on schedul-
ing problems with setup times/costs.” In: European Journal of
Operational Research 246.2 (2015), pp. 345–378. doi: 10.1016/j.
ejor.2015.04.004.

[3] Ali Allahverdi, Jatinder ND Gupta, and Tariq Aldowaisan. “A
review of scheduling research involving setup considerations.”
In: Omega 27.2 (1999), pp. 219–239. doi: 10.1016/S0305-0483
(98)00042-5.

[4] Ali Allahverdi, C. T. Ng, T. C. Edwin Cheng, and Mikhail
Y. Kovalyov. “A survey of scheduling problems with setup
times or costs.” In: European Journal of Operational Research 187.3
(2008), pp. 985–1032. doi: 10.1016/j.ejor.2006.06.060.

[5] Noga Alon, Yossi Azar, Gerhard J Woeginger, and Tal Yadid.
“Approximation schemes for scheduling on parallel machines.”
In: J. Scheduling 1.1 (1998), pp. 55–66. doi: 10.1002/(SICI)1099-
1425(199806)1:1<55::AID-JOS2>3.0.CO;2-J.

[6] Chidambaram Annamalai, Christos Kalaitzis, and Ola Svens-
son. “Combinatorial Algorithm for Restricted Max-Min Fair
Allocation.” In: ACM Trans. Algorithms 13.3 (2017), 37:1–37:28.
doi: 10.1145/3070694.

[7] Stefan Arnborg, Derek G Corneil, and Andrzej Proskurowski.
“Complexity of finding embeddings in ak-tree.” In: SIAM J.
Algebraic Discrete Methods 8.2 (1987), pp. 277–284. doi: 10.1137/
0608024.

[8] Sanjeev Arora and Boaz Barak. Computational Complexity - A
Modern Approach. Cambridge University Press, 2009. isbn: 978-
0-521-42426-4. url: http://www.cambridge.org/catalogue/
catalogue.asp?isbn=9780521424264.

[9] Arash Asadpour and Amin Saberi. “An Approximation Al-
gorithm for Max-Min Fair Allocation of Indivisible Goods.”
In: SIAM J. Comput. 39.7 (2010), pp. 2970–2989. doi: 10.1137/
080723491.

[10] Yuichi Asahiro, Eiji Miyano, and Hirotaka Ono. “Graph classes
and the complexity of the graph orientation minimizing the
maximum weighted outdegree.” In: Discrete Applied Mathemat-
ics 159.7 (2011), pp. 498–508. doi: 10.1016/j.dam.2010.11.003.

187

https://doi.org/10.1016/j.ejor.2015.04.004
https://doi.org/10.1016/j.ejor.2015.04.004
https://doi.org/10.1016/S0305-0483(98)00042-5
https://doi.org/10.1016/S0305-0483(98)00042-5
https://doi.org/10.1016/j.ejor.2006.06.060
https://doi.org/10.1002/(SICI)1099-1425(199806)1:1<55::AID-JOS2>3.0.CO;2-J
https://doi.org/10.1002/(SICI)1099-1425(199806)1:1<55::AID-JOS2>3.0.CO;2-J
https://doi.org/10.1145/3070694
https://doi.org/10.1137/0608024
https://doi.org/10.1137/0608024
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
https://doi.org/10.1137/080723491
https://doi.org/10.1137/080723491
https://doi.org/10.1016/j.dam.2010.11.003

188 bibliography

[11] Yossi Azar and Amir Epstein. “Convex programming for
scheduling unrelated parallel machines.” In: Proceedings of
the 37th Annual ACM Symposium on Theory of Computing, Bal-
timore, MD, USA, May 22-24, 2005. 2005, pp. 331–337. doi:
10.1145/1060590.1060639.

[12] Yossi Azar, Leah Epstein, Yossi Richter, and Gerhard J. Woeg-
inger. “All-norm approximation algorithms.” In: J. Algorithms
52.2 (2004), pp. 120–133. doi: 10.1016/j.jalgor.2004.02.003.

[13] MohammadHossein Bateni, Moses Charikar, and Venkatesan
Guruswami. “MaxMin allocation via degree lower-bounded ar-
borescences.” In: Proceedings of the 41st Annual ACM Symposium
on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 -
June 2, 2009. 2009, pp. 543–552. doi: 10.1145/1536414.1536488.

[14] Peter A. Beling and Nimrod Megiddo. “Using Fast Matrix
Multiplication to Find Basic Solutions.” In: Theor. Comput. Sci.
205.1-2 (1998), pp. 307–316. doi: 10.1016/S0304- 3975(98)
00003-6.

[15] Ivona Bezáková and Varsha Dani. “Allocating indivisible
goods.” In: SIGecom Exchanges 5.3 (2005), pp. 11–18. doi:
10.1145/1120680.1120683.

[16] Aditya Bhaskara, Ravishankar Krishnaswamy, Kunal Talwar,
and Udi Wieder. “Minimum Makespan Scheduling with Low
Rank Processing Times.” In: Proceedings of the Twenty-Fourth An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013,
New Orleans, Louisiana, USA, January 6-8, 2013. 2013, pp. 937–
947. doi: 10.1137/1.9781611973105.67.

[17] Raphaël Bleuse, Safia Kedad-Sidhoum, Florence Monna, Gré-
gory Mounié, and Denis Trystram. “Scheduling independent
tasks on multi-cores with GPU accelerators.” In: Concurrency
and Computation: Practice and Experience 27.6 (2015), pp. 1625–
1638. doi: 10.1002/cpe.3359.

[18] Hans L. Bodlaender. “A Linear-Time Algorithm for Finding
Tree-Decompositions of Small Treewidth.” In: SIAM J. Comput.
25.6 (1996), pp. 1305–1317. doi: 10.1137/S0097539793251219.

[19] Hans L. Bodlaender. “A Partial k-Arboretum of Graphs with
Bounded Treewidth.” In: Theor. Comput. Sci. 209.1-2 (1998),
pp. 1–45. doi: 10.1016/S0304-3975(97)00228-4.

[20] Vincenzo Bonifaci and Andreas Wiese. “Scheduling Unrelated
Machines of Few Different Types.” In: CoRR abs/1205.0974

(2012). arXiv: 1205.0974.

https://doi.org/10.1145/1060590.1060639
https://doi.org/10.1016/j.jalgor.2004.02.003
https://doi.org/10.1145/1536414.1536488
https://doi.org/10.1016/S0304-3975(98)00003-6
https://doi.org/10.1016/S0304-3975(98)00003-6
https://doi.org/10.1145/1120680.1120683
https://doi.org/10.1137/1.9781611973105.67
https://doi.org/10.1002/cpe.3359
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1016/S0304-3975(97)00228-4
http://arxiv.org/abs/1205.0974

bibliography 189

[21] Marin Bougeret, Pierre-François Dutot, Klaus Jansen, Christina
Robenek, and Denis Trystram. “Approximation Algorithms
for Multiple Strip Packing and Scheduling Parallel Jobs in
Platforms.” In: Discrete Math., Alg. and Appl. 3.4 (2011), pp. 553–
586. doi: 10.1142/S1793830911001413.

[22] Andreas Brandstädt and Vadim V. Lozin. “On the linear struc-
ture and clique-width of bipartite permutation graphs.” In: Ars
Comb. 67 (2003).

[23] Deeparnab Chakrabarty, Julia Chuzhoy, and Sanjeev Khanna.
“On Allocating Goods to Maximize Fairness.” In: 50th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2009,
October 25-27, 2009, Atlanta, Georgia, USA. 2009, pp. 107–116.
doi: 10.1109/FOCS.2009.51.

[24] Deeparnab Chakrabarty, Sanjeev Khanna, and Shi Li. “On (1,
ε)-Restricted Assignment Makespan Minimization.” In: Pro-
ceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6,
2015. 2015, pp. 1087–1101. doi: 10.1137/1.9781611973730.73.

[25] Deeparnab Chakrabarty and Kirankumar Shiragur. “Graph
Balancing with Two Edge Types.” In: CoRR abs/1604.06918

(2016). arXiv: 1604.06918.

[26] Chandra Chekuri and Sanjeev Khanna. “On Multidimensional
Packing Problems.” In: SIAM J. Comput. 33.4 (2004), pp. 837–
851. doi: 10.1137/S0097539799356265.

[27] Bo Chen. “A Better Heuristic for Preemptive Parallel Machine
Scheduling with Batch Setup Times.” In: SIAM J. Comput. 22.6
(1993), pp. 1303–1318. doi: 10.1137/0222078.

[28] Bo Chen, Chris N. Potts, and Gerhard J. Woeginger. “A Re-
view of Machine Scheduling: Complexity, Algorithms and Ap-
proximability.” In: Handbook of Combinatorial Pptimization. 1998,
pp. 1493–1641. doi: 10.1007/978-1-4613-0303-9_25.

[29] Bo Chen, Yinyu Ye, and Jiawei Zhang. “Lot-sizing scheduling
with batch setup times.” In: J. Scheduling 9.3 (2006), pp. 299–310.
doi: 10.1007/s10951-006-8265-7. url: https://doi.org/10.
1007/s10951-006-8265-7.

[30] Lin Chen, Deshi Ye, and Guochuan Zhang. “An improved
lower bound for rank four scheduling.” In: Oper. Res. Lett. 42.5
(2014), pp. 348–350. doi: 10.1016/j.orl.2014.06.003.

[31] Lin Chen, Dániel Marx, Deshi Ye, and Guochuan Zhang. “Pa-
rameterized and Approximation Results for Scheduling with
a Low Rank Processing Time Matrix.” In: 34th Symposium on
Theoretical Aspects of Computer Science, STACS 2017, March 8-
11, 2017, Hannover, Germany. 2017, 22:1–22:14. doi: 10.4230/
LIPIcs.STACS.2017.22.

https://doi.org/10.1142/S1793830911001413
https://doi.org/10.1109/FOCS.2009.51
https://doi.org/10.1137/1.9781611973730.73
http://arxiv.org/abs/1604.06918
https://doi.org/10.1137/S0097539799356265
https://doi.org/10.1137/0222078
https://doi.org/10.1007/978-1-4613-0303-9_25
https://doi.org/10.1007/s10951-006-8265-7
https://doi.org/10.1007/s10951-006-8265-7
https://doi.org/10.1007/s10951-006-8265-7
https://doi.org/10.1016/j.orl.2014.06.003
https://doi.org/10.4230/LIPIcs.STACS.2017.22
https://doi.org/10.4230/LIPIcs.STACS.2017.22

190 bibliography

[32] Siu-Wing Cheng and Yuchen Mao. “Restricted Max-Min Fair
Allocation.” In: 45th International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2018, July 9-13, 2018, Prague,
Czech Republic. 2018, 37:1–37:13. doi: 10.4230/LIPIcs.ICALP.
2018.37.

[33] Stephen A. Cook. “The Complexity of Theorem-Proving Pro-
cedures.” In: Proceedings of the 3rd Annual ACM Symposium on
Theory of Computing, May 3-5, 1971, Shaker Heights, Ohio, USA.
1971, pp. 151–158. doi: 10.1145/800157.805047.

[34] Derek G. Corneil and Udi Rotics. “On the Relationship Between
Clique-Width and Treewidth.” In: SIAM J. Comput. 34.4 (2005),
pp. 825–847. doi: 10.1137/S0097539701385351.

[35] José R. Correa, Victor Verdugo, and José Verschae. “Splitting
versus setup trade-offs for scheduling to minimize weighted
completion time.” In: Oper. Res. Lett. 44.4 (2016), pp. 469–473.
doi: 10.1016/j.orl.2016.04.011.

[36] José R. Correa, Alberto Marchetti-Spaccamela, Jannik Ma-
tuschke, Leen Stougie, Ola Svensson, Víctor Verdugo, and José
Verschae. “Strong LP formulations for scheduling splittable
jobs on unrelated machines.” In: Math. Program. 154.1-2 (2015),
pp. 305–328. doi: 10.1007/s10107-014-0831-8.

[37] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Loksh-
tanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and
Saket Saurabh. Parameterized Algorithms. Springer, 2015. isbn:
978-3-319-21274-6. doi: 10.1007/978-3-319-21275-3.

[38] Sami Davies, Thomas Rothvoss, and Yihao Zhang. “A Tale of
Santa Claus, Hypergraphs and Matroids.” In: CoRR abs/1807.
07189 (2018). arXiv: 1807.07189.

[39] Max A. Deppert and Klaus Jansen. “Near-Linear Approxima-
tion Algorithms for Scheduling Problems with Batch Setup
Times.” In: The 31st ACM on Symposium on Parallelism in Al-
gorithms and Architectures, SPAA 2019, Phoenix, AZ, USA, June
22-24, 2019. 2019, pp. 155–164. doi: 10.1145/3323165.3323200.

[40] Tomás Ebenlendr, Marek Krcál, and Jirí Sgall. “Graph Bal-
ancing: A Special Case of Scheduling Unrelated Parallel Ma-
chines.” In: Algorithmica 68.1 (2014), pp. 62–80. doi: 10.1007/
s00453-012-9668-9.

[41] Jack Edmonds. “Paths, trees, and flowers.” In: Canadian Journal
of mathematics 17 (1965), pp. 449–467. doi: 10.4153/CJM-1965-
045-4.

https://doi.org/10.4230/LIPIcs.ICALP.2018.37
https://doi.org/10.4230/LIPIcs.ICALP.2018.37
https://doi.org/10.1145/800157.805047
https://doi.org/10.1137/S0097539701385351
https://doi.org/10.1016/j.orl.2016.04.011
https://doi.org/10.1007/s10107-014-0831-8
https://doi.org/10.1007/978-3-319-21275-3
http://arxiv.org/abs/1807.07189
https://doi.org/10.1145/3323165.3323200
https://doi.org/10.1007/s00453-012-9668-9
https://doi.org/10.1007/s00453-012-9668-9
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.4153/CJM-1965-045-4

bibliography 191

[42] Friedrich Eisenbrand, Christoph Hunkenschröder, and Kim-
Manuel Klein. “Faster Algorithms for Integer Programs with
Block Structure.” In: 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague,
Czech Republic. 2018, 49:1–49:13. doi: 10.4230/LIPIcs.ICALP.
2018.49.

[43] Friedrich Eisenbrand and Gennady Shmonin. “Carathéodory
bounds for integer cones.” In: Oper. Res. Lett. 34.5 (2006),
pp. 564–568. doi: 10.1016/j.orl.2005.09.008.

[44] Friedrich Eisenbrand, Christoph Hunkenschröder, Kim-Manuel
Klein, Martin Koutecký, Asaf Levin, and Shmuel Onn. “An Al-
gorithmic Theory of Integer Programming.” In: CoRR abs/1904.
01361 (2019). arXiv: 1904.01361.

[45] Leah Epstein and Asaf Levin. “AFPTAS Results for Common
Variants of Bin Packing: A New Method for Handling the Small
Items.” In: SIAM Journal on Optimization 20.6 (2010), pp. 3121–
3145. doi: 10.1137/090767613.

[46] Leah Epstein and Asaf Levin. “Scheduling with processing set
restrictions: PTAS results for several variants.” In: International
Journal of Production Economics 133.2 (2011), pp. 586–595. doi:
10.1016/j.ijpe.2011.04.024.

[47] Leah Epstein and Jirí Sgall. “Approximation Schemes for
Scheduling on Uniformly Related and Identical Parallel Ma-
chines.” In: Algorithmica 39.1 (2004), pp. 43–57. doi: 10.1007/
s00453-003-1077-7.

[48] Waldo Gálvez, José A. Soto, and José Verschae. “Symmetry
Exploitation for Online Machine Covering with Bounded Mi-
gration.” In: 26th Annual European Symposium on Algorithms,
ESA 2018, August 20-22, 2018, Helsinki, Finland. 2018, 32:1–32:14.
doi: 10.4230/LIPIcs.ESA.2018.32.

[49] M. R. Garey and Ronald L. Graham. “Bounds for Multiproces-
sor Scheduling with Resource Constraints.” In: SIAM J. Comput.
4.2 (1975), pp. 187–200. doi: 10.1137/0204015.

[50] M. R. Garey and David S. Johnson. “Complexity Results for
Multiprocessor Scheduling under Resource Constraints.” In:
SIAM J. Comput. 4.4 (1975), pp. 397–411. doi: 10.1137/0204035.

[51] M. R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.
isbn: 0-7167-1044-7.

[52] Jan Clemens Gehrke, Klaus Jansen, Stefan E. J. Kraft, and Jakob
Schikowski. “A PTAS for Scheduling Unrelated Machines of
Few Different Types.” In: Int. J. Found. Comput. Sci. 29.4 (2018),
pp. 591–621. doi: 10.1142/S0129054118410071.

https://doi.org/10.4230/LIPIcs.ICALP.2018.49
https://doi.org/10.4230/LIPIcs.ICALP.2018.49
https://doi.org/10.1016/j.orl.2005.09.008
http://arxiv.org/abs/1904.01361
https://doi.org/10.1137/090767613
https://doi.org/10.1016/j.ijpe.2011.04.024
https://doi.org/10.1007/s00453-003-1077-7
https://doi.org/10.1007/s00453-003-1077-7
https://doi.org/10.4230/LIPIcs.ESA.2018.32
https://doi.org/10.1137/0204015
https://doi.org/10.1137/0204035
https://doi.org/10.1142/S0129054118410071

192 bibliography

[53] Vassilis Giakoumakis and Jean-Marie Vanherpe. “Bi-comple-
ment reducible graphs.” In: Adv. Appl. Math. 18.4 (1997),
pp. 389–402. doi: 10.1006/aama.1996.0519.

[54] Vassilis Giakoumakis and Jean-Marie Vanherpe. “Linear Time
Recognition and Optimizations for Weak-Bisplit Graphs, Bi-
Cographs and Bipartite P

6
-Free Graphs.” In: Int. J. Found. Com-

put. Sci. 14.1 (2003), pp. 107–136. doi: 10.1142/S012905410300
1625.

[55] Paul C Gilmore and Ralph E Gomory. “A linear programming
approach to the cutting-stock problem.” In: Operations research
9.6 (1961), pp. 849–859. doi: 10.1287/opre.9.6.849.

[56] Michel X. Goemans and Thomas Rothvoß. “Polynomiality for
Bin Packing with a Constant Number of Item Types.” In: Pro-
ceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January
5-7, 2014. 2014, pp. 830–839. doi: 10.1137/1.9781611973402.
61.

[57] Ronald L. Graham. “Bounds for Certain Multiprocessing Ano-
malies.” In: Bell System Technical Journal 45.9 (1966), pp. 1563–
1581. doi: 10.1002/j.1538-7305.1966.tb01709.x.

[58] Ronald L. Graham. “Bounds on Multiprocessing Timing Ano-
malies.” In: SIAM Journal of Applied Mathematics 17.2 (1969),
pp. 416–429. doi: 10.1137/0117039.

[59] Michael D. Grigoriadis, Leonid G. Khachiyan, Lorant Porkolab,
and J. Villavicencio. “Approximate Max-Min Resource Sharing
for Structured Concave Optimization.” In: SIAM Journal on
Optimization 11.4 (2001), pp. 1081–1091. doi: 10.1137/S105262
3499358689.

[60] Alexander Grigoriev, Maxim Sviridenko, and Marc Uetz. “Ma-
chine scheduling with resource dependent processing times.”
In: Math. Program. 110.1 (2007), pp. 209–228. doi: 10.1007/
s10107-006-0059-3.

[61] Alexander Grigoriev and Marc Uetz. “Scheduling jobs with
time-resource tradeoff via nonlinear programming.” In: Discrete
Optimization 6.4 (2009), pp. 414–419. doi: 10.1016/j.disopt.
2009.05.002.

[62] Pinar Heggernes and Dieter Kratsch. “Linear-time certifying
recognition algorithms and forbidden induced subgraphs.” In:
Nord. J. Comput. 14.1-2 (2007), pp. 87–108.

[63] Raymond Hemmecke, Shmuel Onn, and Lyubov Romanchuk.
“n-Fold integer programming in cubic time.” In: Math. Program.
137.1-2 (2013), pp. 325–341. doi: 10.1007/s10107-011-0490-y.

https://doi.org/10.1006/aama.1996.0519
https://doi.org/10.1142/S0129054103001625
https://doi.org/10.1142/S0129054103001625
https://doi.org/10.1287/opre.9.6.849
https://doi.org/10.1137/1.9781611973402.61
https://doi.org/10.1137/1.9781611973402.61
https://doi.org/10.1002/j.1538-7305.1966.tb01709.x
https://doi.org/10.1137/0117039
https://doi.org/10.1137/S1052623499358689
https://doi.org/10.1137/S1052623499358689
https://doi.org/10.1007/s10107-006-0059-3
https://doi.org/10.1007/s10107-006-0059-3
https://doi.org/10.1016/j.disopt.2009.05.002
https://doi.org/10.1016/j.disopt.2009.05.002
https://doi.org/10.1007/s10107-011-0490-y

bibliography 193

[64] Petr Hlinený and Sang-il Oum. “Finding Branch-Decompo-
sitions and Rank-Decompositions.” In: SIAM J. Comput. 38.3
(2008), pp. 1012–1032. doi: 10.1137/070685920.

[65] Dorit S. Hochbaum and David B. Shmoys. “Using dual ap-
proximation algorithms for scheduling problems theoretical
and practical results.” In: J. ACM 34.1 (1987), pp. 144–162. doi:
10.1145/7531.7535.

[66] Dorit S. Hochbaum and David B. Shmoys. “A Polynomial
Approximation Scheme for Scheduling on Uniform Processors:
Using the Dual Approximation Approach.” In: SIAM J. Comput.
17.3 (1988), pp. 539–551. doi: 10.1137/0217033.

[67] Ellis Horowitz and Sartaj Sahni. “Exact and Approximate Al-
gorithms for Scheduling Nonidentical Processors.” In: J. ACM
23.2 (1976), pp. 317–327. doi: 10.1145/321941.321951.

[68] Chien-Chung Huang and Sebastian Ott. “A Combinatorial Ap-
proximation Algorithm for Graph Balancing with Light Hyper
Edges.” In: 24th Annual European Symposium on Algorithms, ESA
2016, August 22-24, 2016, Aarhus, Denmark. 2016, 49:1–49:15. doi:
10.4230/LIPIcs.ESA.2016.49.

[69] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane.
“Which Problems Have Strongly Exponential Complexity?” In:
J. Comput. Syst. Sci. 63.4 (2001), pp. 512–530. doi: 10.1006/jcss.
2001.1774.

[70] Csanád Imreh. “Scheduling Problems on Two Sets of Identical
Machines.” In: Computing 70.4 (2003), pp. 277–294. doi: 10.
1007/s00607-003-0011-9.

[71] Klaus Jansen. “Scheduling Malleable Parallel Tasks: An Asymp-
totic Fully Polynomial Time Approximation Scheme.” In: Al-
gorithmica 39.1 (2004), pp. 59–81. doi: 10.1007/s00453-003-
1078-6.

[72] Klaus Jansen. “An EPTAS for Scheduling Jobs on Uniform
Processors: Using an MILP Relaxation with a Constant Number
of Integral Variables.” In: SIAM J. Discrete Math. 24.2 (2010),
pp. 457–485. doi: 10.1137/090749451.

[73] Klaus Jansen, Kim-Manuel Klein, and José Verschae. “Clos-
ing the Gap for Makespan Scheduling via Sparsification Tech-
niques.” In: 43rd International Colloquium on Automata, Lan-
guages, and Programming, ICALP 2016, July 11-15, 2016, Rome,
Italy. 2016, 72:1–72:13. doi: 10.4230/LIPIcs.ICALP.2016.72.

[74] Klaus Jansen and Felix Land. “Non-preemptive Scheduling
with Setup Times: A PTAS.” In: Euro-Par 2016: Parallel Pro-
cessing - 22nd International Conference on Parallel and Distributed
Computing, Grenoble, France, August 24-26, 2016, Proceedings.
2016, pp. 159–170. doi: 10.1007/978-3-319-43659-3_12.

https://doi.org/10.1137/070685920
https://doi.org/10.1145/7531.7535
https://doi.org/10.1137/0217033
https://doi.org/10.1145/321941.321951
https://doi.org/10.4230/LIPIcs.ESA.2016.49
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1007/s00607-003-0011-9
https://doi.org/10.1007/s00607-003-0011-9
https://doi.org/10.1007/s00453-003-1078-6
https://doi.org/10.1007/s00453-003-1078-6
https://doi.org/10.1137/090749451
https://doi.org/10.4230/LIPIcs.ICALP.2016.72
https://doi.org/10.1007/978-3-319-43659-3_12

194 bibliography

[75] Klaus Jansen, Alexandra Lassota, and Marten Maack. “Approx-
imation Algorithms for Scheduling with Class Constraints.” In:
CoRR abs/1909.11970 (2019). arXiv: 1909.11970.

[76] Klaus Jansen, Alexandra Lassota, and Lars Rohwedder. “Near-
Linear Time Algorithm for n-fold ILPs via Color Coding.”
In: 46th International Colloquium on Automata, Languages, and
Programming, ICALP 2019, July 9-12, 2019, Patras, Greece. 2019,
75:1–75:13. doi: 10.4230/LIPIcs.ICALP.2019.75.

[77] Klaus Jansen and Marten Maack. “An EPTAS for Scheduling
on Unrelated Machines of Few Different Types.” In: Algorithms
and Data Structures - 15th International Symposium, WADS 2017,
St. John’s, NL, Canada, July 31 - August 2, 2017, Proceedings. 2017,
pp. 497–508. doi: 10.1007/978-3-319-62127-2_42.

[78] Klaus Jansen and Marten Maack. “An EPTAS for Scheduling on
Unrelated Machines of Few Different Types.” In: Algorithmica
81.10 (2019), pp. 4134–4164. doi: 10.1007/s00453-019-00581-
w.

[79] Klaus Jansen, Marten Maack, and Alexander Mäcker. “Schedul-
ing on (Un-)Related Machines with Setup Times.” In: 2019
IEEE International Parallel and Distributed Processing Symposium,
IPDPS 2019, Rio de Janeiro, Brazil, May 20-24, 2019. 2019, pp. 145–
154. doi: 10.1109/IPDPS.2019.00025.

[80] Klaus Jansen, Marten Maack, and Malin Rau. “Approximation
schemes for machine scheduling with resource (in-)dependent
processing times.” In: Proceedings of the Twenty-Seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Ar-
lington, VA, USA, January 10-12, 2016. 2016, pp. 1526–1542. doi:
10.1137/1.9781611974331.ch104.

[81] Klaus Jansen, Marten Maack, and Malin Rau. “Approximation
Schemes for Machine Scheduling with Resource (In-)dependent
Processing Times.” In: ACM Trans. Algorithms 15.3 (2019), 31:1–
31:28. doi: 10.1145/3302250.

[82] Klaus Jansen, Marten Maack, and Roberto Solis-Oba. “Struc-
tural Parameters for Scheduling with Assignment Restrictions.”
In: Algorithms and Complexity - 10th International Conference,
CIAC 2017, Athens, Greece, May 24-26, 2017, Proceedings. 2017,
pp. 357–368. doi: 10.1007/978-3-319-57586-5_30.

[83] Klaus Jansen and Lars Rohwedder. “A Quasi-Polynomial Ap-
proximation for the Restricted Assignment Problem.” In: Integer
Programming and Combinatorial Optimization - 19th International
Conference, IPCO 2017, Waterloo, ON, Canada, June 26-28, 2017,
Proceedings. 2017, pp. 305–316. doi: 10.1007/978-3-319-59250-
3_25.

http://arxiv.org/abs/1909.11970
https://doi.org/10.4230/LIPIcs.ICALP.2019.75
https://doi.org/10.1007/978-3-319-62127-2_42
https://doi.org/10.1007/s00453-019-00581-w
https://doi.org/10.1007/s00453-019-00581-w
https://doi.org/10.1109/IPDPS.2019.00025
https://doi.org/10.1137/1.9781611974331.ch104
https://doi.org/10.1145/3302250
https://doi.org/10.1007/978-3-319-57586-5_30
https://doi.org/10.1007/978-3-319-59250-3_25
https://doi.org/10.1007/978-3-319-59250-3_25

bibliography 195

[84] Klaus Jansen and Lars Rohwedder. “On the Configuration-
LP of the Restricted Assignment Problem.” In: Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January
16-19. 2017, pp. 2670–2678. doi: 10.1137/1.9781611974782.
176.

[85] Klaus Jansen and Lars Rohwedder. “Local Search Breaks 1.75

for Graph Balancing.” In: 46th International Colloquium on Au-
tomata, Languages, and Programming, ICALP 2019, July 9-12, 2019,
Patras, Greece. 2019, 74:1–74:14. doi: 10.4230/LIPIcs.ICALP.
2019.74.

[86] Klaus Jansen, Kim-Manuel Klein, Marten Maack, and Malin
Rau. “Empowering the Configuration-IP - New PTAS Results
for Scheduling with Setups Times.” In: 10th Innovations in The-
oretical Computer Science Conference, ITCS 2019, January 10-12,
2019, San Diego, California, USA. 2019, 44:1–44:19. doi: 10.4230/
LIPIcs.ITCS.2019.44.

[87] David S. Johnson. “Approximation Algorithms for Combinato-
rial Problems.” In: J. Comput. Syst. Sci. 9.3 (1974), pp. 256–278.
doi: 10.1016/S0022-0000(74)80044-9.

[88] Hendrik W. Lenstra Jr. “Integer Programming with a Fixed
Number of Variables.” In: Math. Oper. Res. 8.4 (1983), pp. 538–
548. doi: 10.1287/moor.8.4.538.

[89] Ravi Kannan. “Minkowski’s Convex Body Theorem and Integer
Programming.” In: Math. Oper. Res. 12.3 (1987), pp. 415–440.
doi: 10.1287/moor.12.3.415.

[90] Narendra Karmarkar and Richard M. Karp. “An Efficient Ap-
proximation Scheme for the One-Dimensional Bin-Packing
Problem.” In: 23rd Annual Symposium on Foundations of Com-
puter Science, Chicago, Illinois, USA, 3-5 November 1982. 1982,
pp. 312–320. doi: 10.1109/SFCS.1982.61.

[91] Richard M. Karp. “Reducibility Among Combinatorial Prob-
lems.” In: Proceedings of a symposium on the Complexity of Com-
puter Computations, held March 20-22, 1972, at the IBM Thomas J.
Watson Research Center, Yorktown Heights, New York, USA. 1972,
pp. 85–103. doi: 10.1007/978-1-4684-2001-2_9.

[92] ShanXue Ke, BenSheng Zeng, WenBao Han, and Victor Y Pan.
“Fast rectangular matrix multiplication and some applications.”
In: Science in China Series A: Mathematics 51.3 (2008), pp. 389–
406. doi: 10.1007/s11425-007-0169-2.

[93] Hans Kellerer. “An approximation algorithm for identical par-
allel machine scheduling with resource dependent process-
ing times.” In: Oper. Res. Lett. 36.2 (2008), pp. 157–159. doi:
10.1016/j.orl.2007.08.001.

https://doi.org/10.1137/1.9781611974782.176
https://doi.org/10.1137/1.9781611974782.176
https://doi.org/10.4230/LIPIcs.ICALP.2019.74
https://doi.org/10.4230/LIPIcs.ICALP.2019.74
https://doi.org/10.4230/LIPIcs.ITCS.2019.44
https://doi.org/10.4230/LIPIcs.ITCS.2019.44
https://doi.org/10.1016/S0022-0000(74)80044-9
https://doi.org/10.1287/moor.8.4.538
https://doi.org/10.1287/moor.12.3.415
https://doi.org/10.1109/SFCS.1982.61
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/s11425-007-0169-2
https://doi.org/10.1016/j.orl.2007.08.001

196 bibliography

[94] Claire Kenyon and Eric Rémila. “A Near-Optimal Solution to a
Two-Dimensional Cutting Stock Problem.” In: Math. Oper. Res.
25.4 (2000), pp. 645–656. doi: 10.1287/moor.25.4.645.12118.

[95] Kamyar Khodamoradi. “Algorithms for Scheduling and Rout-
ing Problems.” PhD thesis. Simon Fraser University, 2016.

[96] Kamyar Khodamoradi, Ramesh Krishnamurti, Arash Rafiey,
and Georgios Stamoulis. “PTAS for Ordered Instances of Re-
source Allocation Problems.” In: IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Sci-
ence, FSTTCS 2013, December 12-14, 2013, Guwahati, India. 2013,
pp. 461–473. doi: 10.4230/LIPIcs.FSTTCS.2013.461.

[97] Kamyar Khodamoradi, Ramesh Krishnamurti, Arash Rafiey,
and Georgios Stamoulis. “PTAS for Ordered Instances of Re-
source Allocation Problems with Restrictions on Inclusions.”
In: CoRR abs/1610.00082 (2016). arXiv: 1610.00082.

[98] Peter Kling, Alexander Mäcker, Sören Riechers, and Alexander
Skopalik. “Sharing is Caring: Multiprocessor Scheduling with
a Sharable Resource.” In: Proceedings of the 29th ACM Sympo-
sium on Parallelism in Algorithms and Architectures, SPAA 2017,
Washington DC, USA, July 24-26, 2017. 2017, pp. 123–132. doi:
10.1145/3087556.3087578.

[99] Ton Kloks. Treewidth, Computations and Approximations. Vol. 842.
Lecture Notes in Computer Science. Springer, 1994. isbn: 3-540-
58356-4. doi: 10.1007/BFb0045375.

[100] Dusan Knop and Martin Koutecký. “Scheduling meets n-fold
integer programming.” In: J. Scheduling 21.5 (2018), pp. 493–503.
doi: 10.1007/s10951-017-0550-0.

[101] Dusan Knop, Martin Koutecký, and Matthias Mnich. “Com-
binatorial n-fold Integer Programming and Applications.” In:
25th Annual European Symposium on Algorithms, ESA 2017,
September 4-6, 2017, Vienna, Austria. 2017, 54:1–54:14. doi:
10.4230/LIPIcs.ESA.2017.54.

[102] Phokion G. Kolaitis and Moshe Y. Vardi. “Conjunctive-Query
Containment and Constraint Satisfaction.” In: J. Comput. Syst.
Sci. 61.2 (2000), pp. 302–332. doi: 10.1006/jcss.2000.1713.

[103] Ishai Kones and Asaf Levin. “A Unified Framework for De-
signing EPTAS for Load Balancing on Parallel Machines.” In:
Algorithmica 81.7 (2019), pp. 3025–3046. doi: 10.1007/s00453-
019-00566-9.

[104] Martin Koutecký, Asaf Levin, and Shmuel Onn. “A Parame-
terized Strongly Polynomial Algorithm for Block Structured
Integer Programs.” In: 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague,

https://doi.org/10.1287/moor.25.4.645.12118
https://doi.org/10.4230/LIPIcs.FSTTCS.2013.461
http://arxiv.org/abs/1610.00082
https://doi.org/10.1145/3087556.3087578
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/s10951-017-0550-0
https://doi.org/10.4230/LIPIcs.ESA.2017.54
https://doi.org/10.1006/jcss.2000.1713
https://doi.org/10.1007/s00453-019-00566-9
https://doi.org/10.1007/s00453-019-00566-9

bibliography 197

Czech Republic. 2018, 85:1–85:14. doi: 10.4230/LIPIcs.ICALP.
2018.85.

[105] Eugene L. Lawler. “Fast Approximation Algorithms for Knap-
sack Problems.” In: Math. Oper. Res. 4.4 (1979), pp. 339–356. doi:
10.1287/moor.4.4.339.

[106] Kangbok Lee, Joseph Y.-T. Leung, and Michael L. Pinedo. “A
note on graph balancing problems with restrictions.” In: Inf.
Process. Lett. 110.1 (2009), pp. 24–29. doi: 10.1016/j.ipl.2009.
09.015.

[107] Kangbok Lee, Joseph Y.-T. Leung, and Michael L. Pinedo.
“Makespan minimization in online scheduling with machine
eligibility.” In: Annals OR 204.1 (2013), pp. 189–222. doi: 10.
1007/s10479-012-1271-6.

[108] Jan Karel Lenstra, David B. Shmoys, and Éva Tardos. “Ap-
proximation Algorithms for Scheduling Unrelated Parallel
Machines.” In: Math. Program. 46 (1990), pp. 259–271. doi:
10.1007/BF01585745.

[109] Joseph Y-T Leung and Chung-Lun Li. “Scheduling with pro-
cessing set restrictions: A survey.” In: International Journal of
Production Economics 116.2 (2008), pp. 251–262. doi: 10.1016/j.
ijpe.2008.09.003.

[110] Joseph Y-T Leung and Chung-Lun Li. “Scheduling with pro-
cessing set restrictions: A literature update.” In: International
Journal of Production Economics 175 (2016), pp. 1–11. doi: 10.
1016/j.ijpe.2014.09.038.

[111] Marten Maack and Klaus Jansen. “Inapproximability Results
for Scheduling with Interval and Resource Restrictions.” In:
37th International Symposium on Theoretical Aspects of Computer
Science, STACS 2020, March 10-13, 2020, Montpellier, France.
Vol. 154. 2020, 5:1–5:18. doi: 10.4230/LIPIcs.STACS.2020.5.

[112] Alexander Mäcker, Manuel Malatyali, Friedhelm Meyer auf der
Heide, and Sören Riechers. “Non-preemptive Scheduling on
Machines with Setup Times.” In: Algorithms and Data Structures
- 14th International Symposium, WADS 2015, Victoria, BC, Canada,
August 5-7, 2015. Proceedings. 2015, pp. 542–553. doi: 10.1007/
978-3-319-21840-3_45.

[113] Dániel Marx. “Parameterized Complexity and Approximation
Algorithms.” In: Comput. J. 51.1 (2008), pp. 60–78. doi: 10.1093/
comjnl/bxm048.

[114] Monaldo Mastrolilli and Marcus Hutter. “Hybrid rounding
techniques for knapsack problems.” In: Discrete Applied Mathe-
matics 154.4 (2006), pp. 640–649. doi: 10.1016/j.dam.2005.08.
004.

https://doi.org/10.4230/LIPIcs.ICALP.2018.85
https://doi.org/10.4230/LIPIcs.ICALP.2018.85
https://doi.org/10.1287/moor.4.4.339
https://doi.org/10.1016/j.ipl.2009.09.015
https://doi.org/10.1016/j.ipl.2009.09.015
https://doi.org/10.1007/s10479-012-1271-6
https://doi.org/10.1007/s10479-012-1271-6
https://doi.org/10.1007/BF01585745
https://doi.org/10.1016/j.ijpe.2008.09.003
https://doi.org/10.1016/j.ijpe.2008.09.003
https://doi.org/10.1016/j.ijpe.2014.09.038
https://doi.org/10.1016/j.ijpe.2014.09.038
https://doi.org/10.4230/LIPIcs.STACS.2020.5
https://doi.org/10.1007/978-3-319-21840-3_45
https://doi.org/10.1007/978-3-319-21840-3_45
https://doi.org/10.1093/comjnl/bxm048
https://doi.org/10.1093/comjnl/bxm048
https://doi.org/10.1016/j.dam.2005.08.004
https://doi.org/10.1016/j.dam.2005.08.004

198 bibliography

[115] Matthias Mnich and René van Bevern. “Parameterized complex-
ity of machine scheduling: 15 open problems.” In: Computers &
OR 100 (2018), pp. 254–261. doi: 10.1016/j.cor.2018.07.020.

[116] Matthias Mnich and Andreas Wiese. “Scheduling and fixed-
parameter tractability.” In: Math. Program. 154.1-2 (2015),
pp. 533–562. doi: 10.1007/s10107-014-0830-9.

[117] Clyde L. Monma and Chris N. Potts. “Analysis of Heuristics
for Preemptive Parallel Machine Scheduling with Batch Setup
Times.” In: Operations Research 41.5 (1993), pp. 981–993. doi:
10.1287/opre.41.5.981.

[118] Cristopher Moore and Stephan Mertens. The Nature of Compu-
tation. Oxford University Press, 2011. isbn: 978-0-19-923321-2.
url: http://ukcatalogue.oup.com/product/9780199233212.
do.

[119] Gabriella Muratore, Ulrich M. Schwarz, and Gerhard J. Woegin-
ger. “Parallel machine scheduling with nested job assignment
restrictions.” In: Oper. Res. Lett. 38.1 (2010), pp. 47–50. doi:
10.1016/j.orl.2009.09.010.

[120] Martin Niemeier and Andreas Wiese. “Scheduling with an
Orthogonal Resource Constraint.” In: Algorithmica 71.4 (2015),
pp. 837–858. doi: 10.1007/s00453-013-9829-5.

[121] Shmuel Onn. Nonlinear discrete optimization. Zürich: European
Mathematical Society (EMS), 2010. isbn: 978-3-03719-093-7/pbk.
doi: 10.4171/093.

[122] Jinwen Ou, Joseph Y-T Leung, and Chung-Lun Li. “Scheduling
parallel machines with inclusive processing set restrictions.”
In: Naval Research Logistics (NRL) 55.4 (2008), pp. 328–338. doi:
10.1002/nav.20286.

[123] Sang-il Oum and Paul D. Seymour. “Approximating clique-
width and branch-width.” In: J. Comb. Theory, Ser. B 96.4 (2006),
pp. 514–528. doi: 10.1016/j.jctb.2005.10.006.

[124] Daniel R. Page and Roberto Solis-Oba. “A 3/2-Approximation
Algorithm for the Graph Balancing Problem with Two Weights.”
In: Algorithms 9.2 (2016), p. 38. doi: 10.3390/a9020038.

[125] Daniel R. Page, Roberto Solis-Oba, and Marten Maack. “Make-
span Minimization on Unrelated Parallel Machines with Simple
Job-Intersection Structure and Bounded Job Assignments.” In:
Combinatorial Optimization and Applications - 12th International
Conference, COCOA 2018, Atlanta, GA, USA, December 15-17,
2018, Proceedings. 2018, pp. 341–356. doi: 10.1007/978-3-030-
04651-4_23.

[126] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial
Optimization: Algorithms and Complexity. Prentice-Hall, 1982.
isbn: 0-13-152462-3.

https://doi.org/10.1016/j.cor.2018.07.020
https://doi.org/10.1007/s10107-014-0830-9
https://doi.org/10.1287/opre.41.5.981
http://ukcatalogue.oup.com/product/9780199233212.do
http://ukcatalogue.oup.com/product/9780199233212.do
https://doi.org/10.1016/j.orl.2009.09.010
https://doi.org/10.1007/s00453-013-9829-5
https://doi.org/10.4171/093
https://doi.org/10.1002/nav.20286
https://doi.org/10.1016/j.jctb.2005.10.006
https://doi.org/10.3390/a9020038
https://doi.org/10.1007/978-3-030-04651-4_23
https://doi.org/10.1007/978-3-030-04651-4_23

bibliography 199

[127] Michael Pinedo. Scheduling: Theory, Algorithms, and Systems.
Springer, 2012. isbn: 978-3-319-26580-3. doi: 10.1007/978-3-
319-26580-3.

[128] Gurulingesh Raravi and Vincent Nélis. “A PTAS for Assigning
Sporadic Tasks on Two-type Heterogeneous Multiprocessors.”
In: Proceedings of the 33rd IEEE Real-Time Systems Symposium,
RTSS 2012, San Juan, PR, USA, December 4-7, 2012. 2012, pp. 117–
126. doi: 10.1109/RTSS.2012.64.

[129] Marko Samer and Stefan Szeider. “Constraint satisfaction with
bounded treewidth revisited.” In: J. Comput. Syst. Sci. 76.2
(2010), pp. 103–114. doi: 10.1016/j.jcss.2009.04.003.

[130] Thomas J. Schaefer. “The Complexity of Satisfiability Prob-
lems.” In: Proceedings of the 10th Annual ACM Symposium on
Theory of Computing, May 1-3, 1978, San Diego, California, USA.
1978, pp. 216–226. doi: 10.1145/800133.804350.

[131] Frans Schalekamp, René Sitters, Suzanne van der Ster, Leen
Stougie, Víctor Verdugo, and Anke van Zuylen. “Split schedul-
ing with uniform setup times.” In: J. Scheduling 18.2 (2015),
pp. 119–129. doi: 10.1007/s10951-014-0370-4.

[132] Petra Schuurman and Gerhard J Woeginger. “Polynomial time
approximation algorithms for machine scheduling: Ten open
problems.” In: Journal of Scheduling 2.5 (1999), pp. 203–213.
doi: 10.1002/(SICI)1099-1425(199909/10)2:5<203::AID-
JOS26>3.0.CO;2-5.

[133] Petra Schuurman and Gerhard J. Woeginger. “Preemptive
Scheduling with Job-Dependent Setup Times.” In: Proceedings of
the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms,
17-19 January 1999, Baltimore, Maryland, USA. 1999, pp. 759–767.
url: http://dl.acm.org/citation.cfm?id=314500.314911.

[134] Ulrich M. Schwarz. “A PTAS for Scheduling with Tree As-
signment Restrictions.” In: CoRR abs/1009.4529 (2010). arXiv:
1009.4529.

[135] Ulrich M. Schwarz. “Approximation algorithms for scheduling
and two-dimensional packing problems.” PhD thesis. Univer-
sity of Kiel, 2010. url: http://eldiss.uni-kiel.de/macau/
receive/dissertation_diss_00005147.

[136] Georgios Stamoulis. Private communication. 2019.

[137] Ola Svensson. “Santa Claus Schedules Jobs on Unrelated Ma-
chines.” In: SIAM J. Comput. 41.5 (2012), pp. 1318–1341. doi:
10.1137/110851201.

[138] Maxim Sviridenko. “A note on the Kenyon-Remila strip-
packing algorithm.” In: Inf. Process. Lett. 112.1-2 (2012), pp. 10–
12. doi: 10.1016/j.ipl.2011.10.003.

https://doi.org/10.1007/978-3-319-26580-3
https://doi.org/10.1007/978-3-319-26580-3
https://doi.org/10.1109/RTSS.2012.64
https://doi.org/10.1016/j.jcss.2009.04.003
https://doi.org/10.1145/800133.804350
https://doi.org/10.1007/s10951-014-0370-4
https://doi.org/10.1002/(SICI)1099-1425(199909/10)2:5<203::AID-JOS26>3.0.CO;2-5
https://doi.org/10.1002/(SICI)1099-1425(199909/10)2:5<203::AID-JOS26>3.0.CO;2-5
http://dl.acm.org/citation.cfm?id=314500.314911
http://arxiv.org/abs/1009.4529
http://eldiss.uni-kiel.de/macau/receive/dissertation_diss_00005147
http://eldiss.uni-kiel.de/macau/receive/dissertation_diss_00005147
https://doi.org/10.1137/110851201
https://doi.org/10.1016/j.ipl.2011.10.003

200 bibliography

[139] Stefan Szeider. “On Fixed-Parameter Tractable Parameteriza-
tions of SAT.” In: Theory and Applications of Satisfiability Testing,
6th International Conference, SAT 2003. Santa Margherita Ligure,
Italy, May 5-8, 2003 Selected Revised Papers. 2003, pp. 188–202.
doi: 10.1007/978-3-540-24605-3_15.

[140] Stefan Szeider. “Not So Easy Problems for Tree Decomposable
Graphs.” In: CoRR abs/1107.1177 (2011). arXiv: 1107.1177.

[141] Craig A. Tovey. “A simplified NP-complete satisfiability prob-
lem.” In: Discrete Applied Mathematics 8.1 (1984), pp. 85–89. doi:
10.1016/0166-218X(84)90081-7.

[142] Wenceslas Fernandez de la Vega and George S. Lueker. “Bin
packing can be solved within 1+epsilon in linear time.” In:
Combinatorica 1.4 (1981), pp. 349–355. doi: 10.1007/BF02579456.

[143] Chao Wang and René Sitters. “On some special cases of the
restricted assignment problem.” In: Inf. Process. Lett. 116.11

(2016), pp. 723–728. doi: 10.1016/j.ipl.2016.06.007.

[144] Andreas Wiese, Vincenzo Bonifaci, and Sanjoy K. Baruah. “Par-
titioned EDF scheduling on a few types of unrelated multipro-
cessors.” In: Real-Time Systems 49.2 (2013), pp. 219–238. doi:
10.1007/s11241-012-9164-y.

[145] David P. Williamson and David B. Shmoys. The Design of Ap-
proximation Algorithms. Cambridge University Press, 2011. isbn:
978-0-521-19527-0. url: http : / / www . cambridge . org / de /

knowledge/isbn/item5759340/?site_locale=de_DE.

[146] Gerhard J. Woeginger. “A polynomial-time approximation
scheme for maximizing the minimum machine completion
time.” In: Oper. Res. Lett. 20.4 (1997), pp. 149–154. doi: 10.1016/
S0167-6377(96)00055-7.

[147] Gerhard J. Woeginger. “When Does a Dynamic Programming
Formulation Guarantee the Existence of a Fully Polynomial
Time Approximation Scheme (FPTAS)?” In: INFORMS Journal
on Computing 12.1 (2000), pp. 57–74. doi: 10.1287/ijoc.12.1.
57.11901.

https://doi.org/10.1007/978-3-540-24605-3_15
http://arxiv.org/abs/1107.1177
https://doi.org/10.1016/0166-218X(84)90081-7
https://doi.org/10.1007/BF02579456
https://doi.org/10.1016/j.ipl.2016.06.007
https://doi.org/10.1007/s11241-012-9164-y
http://www.cambridge.org/de/knowledge/isbn/item5759340/?site_locale=de_DE
http://www.cambridge.org/de/knowledge/isbn/item5759340/?site_locale=de_DE
https://doi.org/10.1016/S0167-6377(96)00055-7
https://doi.org/10.1016/S0167-6377(96)00055-7
https://doi.org/10.1287/ijoc.12.1.57.11901
https://doi.org/10.1287/ijoc.12.1.57.11901

E R K L Ä R U N G

Hiermit gebe ich folgende Erklärungen ab:

• Diese Abhandlung ist, abgesehen von der Beratung durch den
Betreuer, nach Inhalt und Form meine eigene Arbeit. Ich habe sie
eigenständig und nur mit den angegebenen Hilfsmitteln verfasst.

• Die Arbeit ist unter Einhaltung der Regeln guter wissenschaftli-
cher Praxis der Deutschen Forschungsgemeinschaft entstanden.

• Es wurde mir noch nie ein akademischer Grad entzogen.

Teile dieser Arbeit sind bereits an anderer Stelle im Rahmen eines
Prüfungsverfahrens vorgelegt worden. Dies betrifft Teile, die auf den
Arbeiten [86] und [81] basieren und zwar Kapitel 6, die Abschnitte
8.1 und 8.2 sowie vereinzelte Formulierungen in den einleitenden
Kapiteln 1 und 2. Diese Teile sind in ähnlicher Form auch in der
Dissertation meiner Co-Autorin Malin Rau enthalten. Die besagte
Dissertation hat den Titel „Useful Structures and How to Find Them“
und wurde 2019 an der Technischen Fakultät der Christian-Albrechts-
Universität zu Kiel eingereicht. Kein anderer Teil dieser Arbeit ist
bereits an anderer Stelle im Rahmen eines Prüfungsverfahrens vor-
gelegt worden. Teile wurden, wie in der Arbeit gekennzeichnet, im
Rahmen wissenschaftlicher Veröffentlichungen publiziert.

Kiel, November 2019

Marten Maack

	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	1 Introduction
	2 Preliminaries
	2.1 Basic Concepts and Notation
	2.2 Example Approximation Scheme

	3 Unrelated Scheduling with Few Types
	3.1 Introduction
	3.2 Basic EPTAS
	3.3 Better running time
	3.4 The Santa Claus Problem
	3.5 Uniform Machine Types
	3.6 Vector Scheduling
	3.7 Open Problems

	4 Interval and Resource Restrictions
	4.1 Introduction
	4.2 Interval Restrictions
	4.3 Resource Restrictions
	4.4 Open Problems

	5 Structural Parameter Restrictions
	5.1 Introduction
	5.2 Preliminaries
	5.3 Treewidth Results
	5.4 Clique- and Rankwidth Results
	5.5 Other Objective Functions
	5.6 Open Problems

	6 Machine Scheduling with Setup Times
	6.1 Introduction
	6.2 Preliminaries
	6.3 Module Configuration IP
	6.4 EPTAS results
	6.5 Improvements of the running time
	6.6 Open Problems

	7 Uniform Scheduling with Setup Times
	7.1 Introduction
	7.2 PTAS
	7.3 Open Problems

	8 Machine Scheduling with a Shared Resource
	8.1 Introduction
	8.2 Single resource constrained scheduling
	8.3 Resource Dependent Processing Times
	8.4 Open Problems

	 Bibliography
	Declaration

