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Kurzfassung 
 
Seit Darwin die natürliche Auslese als Motor der Evolution vorgestellt hat, sind Evolutionsbiologen bestrebt 

zu verstehen, wie vorteilhafte Mutationen die Anpassung der Arten an ihre Umwelt beeinflussen. Die 

Erforschung der Anpassung erfordert jedoch ein Verständnis der komplexen Dynamik zwischen 

Nukleotiden, Sequenzen, Proteinen, Organismen, Populationen und Arten. Mit anderen Worten, es 

erfordert die Bewertung des Zusammenspiels evolutionärer Prozesse über Systeme hinweg. Hier habe ich 

die Anpassung auf diese Weise untersucht, indem ich die Häufigkeit und Art der adaptiven Mutationen 

innerhalb der Gene, innerhalb der Genome und zwischen den Arten untersucht habe. 

 Auf intramolekularer Ebene zeigte dieses Projekt, dass die Zugänglichkeit des Rückstandes zu den 

Lösungsmitteln als primäre Determinante der Raten adaptiver Substitutionen sowohl bei Tieren als auch bei 

Pflanzen wirkt, wo adaptive Mutationen an der Proteinoberfläche häufiger vorkommen. Diese Analysen 

zeigten außerdem höhere Anpassungsraten für Gene, die für Proteine mit zentralen zellulären Funktionen 

kodieren, auf die Krankheitserreger bei einer Wirtsinfektion normalerweise abzielen. Diese Befunde legten 

daher nahe, dass die adaptive Evolution von Proteinen durch Interaktionen zwischen Molekülen abläuft, 

insbesondere auf der interspezifischen Ebene, wo die Wirt-Pathogen-Koevolution wahrscheinlich eine 

zentrale Rolle spielt.  

 Durch einen Schritt zurück und die Betrachtung der Anpassung auf verschiedenen Zeitskalen 

innerhalb des Genoms zeigte diese Arbeit die Rolle junger Gene in der adaptiven Evolution auf. Da diese 

Gene weiter von ihrem Fitness-Optimum entfernt sind, suggerieren diese Ergebnisse vor, dass sich die 

Proteine auf eine "adaptive Walk"-Art und Weise anpassen. Dieses Projekt hob ferner hervor, dass die 

Verteilung der adaptiven Mutationen über die Zeit einem Muster abnehmender Erträge folgt.  

 Wenn man eine noch breitere Skala betrachtet, indem man die Anpassung auf der Ebene der Spezies 

untersucht und den Effekt der intramolekularen Variation über mehrere Tierarten hinweg betrachtet, zeigte 

diese Arbeit eine negative Korrelation zwischen den Raten der adaptiven Substitutionen und der effektiven 

Populationsgröße (!"). Trotz des relativ schwachen Signals widersprechen diese Ergebnisse der 

ursprünglichen Populationsgenetik-Theorie. Stattdessen scheinen sie mit den theoretischen Erwartungen an 

den phänotypischen Raum übereinzustimmen. Die Ergebnisse bezüglich der negativen Selektion wiederum 

bestätigen die !"-Hypothese, wonach die Effizienz der Selektion bei großen !"-Arten stärker ist. Dieser 

Effekt wurde gut in den Unterschieden der Verteilung der Fitnesseffekte zwischen vergrabenen und 

exponierten Rückständen dargestellt, wobei erstere vergleichsweise mildere Effektmutationen in niedrigen 

!"-Spezies akkumulieren. Dieses Projekt erweiterte unsere Ergebnisse auf intramolekularer Ebene, indem 

es den starken Einfluss der makromolekularen Struktur des Proteins auf die Raten der molekularen 

Anpassung über mehrere Taxa hinweg aufzeigte. 

 Durch die Bewertung des Zusammenspiels adaptiver Mutationen über verschiedene 

Organisationsebenen hinweg lieferte diese Arbeit ein tieferes Verständnis der Raten der adaptiven Evolution 

auf molekularer Ebene und damit eine umfassende Sicht auf die molekulare Basis der Anpassung. 
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Abstract 
 
Ever since Darwin presented natural selection as a driver of evolution, evolutionary biologists have thrived 

to understand how beneficial mutations shape species adaptation to their environment. Studying adaptation, 

however, requires an understanding of the complex dynamics between nucleotides, sequences, proteins, 

organisms, populations, and species. In other words, it requires assessing the interplay of evolutionary 

processes across systems. Here, I studied adaptation in such a way by exploring the frequency and nature of 

adaptive mutations within genes, within genomes, and between species. 

 At the intramolecular level, this project revealed that the residue’s solvent accessibility acts as the 

primary determinant of rates of adaptive substitutions both in animals and in plants, where adaptive 

mutations are more frequent at the protein surface. These analyses further showed higher rates of adaptation 

for genes encoding proteins with central cellular functions, which are the ones usually targeted by pathogens 

during host infection. These findings, therefore, suggested that protein adaptive evolution proceeds through 

interactions between molecules, particularly at the interspecific level, where host-pathogen coevolution 

likely plays a central role.  

 By taking a step back and looking at adaptation at different time-scales within the genome, this 

thesis revealed the role of young genes in adaptive evolution. As these genes are further away from their 

fitness optimum, these findings suggested that proteins adapt in an “adaptive walk” manner. This project 

further highlighted that the distribution of adaptive mutations across time follows a pattern of diminishing 

returns.  

 Looking at an even broader scale by studying adaptation at the species level and considering the 

effect of intramolecular variation across several animal species, this thesis demonstrated a negative 

correlation between rates of adaptive substitutions and the effective population size (!"). Despite the 

relatively weak signal, these findings contradict initial population genetics theory. Instead, they seem to 

agree with theoretical expectations at the phenotypic space. In turn, the results regarding negative selection 

confirm the !"  hypothesis, where the efficiency of selection is stronger in large-!"  species. This effect was 

well depicted in the differences of the distribution of fitness effects between buried and exposed residues, 

where the former accumulates comparatively more mild effect mutations in low-!"  species. This project 

further expanded our findings at the intramolecular level, by revealing the strong influence of the protein’s 

macromolecular structure on rates of molecular adaptation across several taxa. 

 By assessing the interplay of adaptive mutations across distinct organizational levels, this thesis 

provided a more profound understanding of rates of adaptive evolution at the molecular level, thus delivering 

a comprehensive view of the molecular basis of adaptation.

iv 
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CHAPTER I 

General Introduction 
 

 

Understanding evolution requires one to account for the complex dynamics between molecules, cells, 

tissues, organisms, and populations. In other words, to study evolution, one needs to explore the remarkable 

interactions across systems, rather than focusing on particular elements. Evolution can be defined as the 

accumulation of changes in the elements that constitute a system over a specific time. Such changes can occur 

at different time-scales. Some occur rapidly, as evidenced in the evolution of antibiotic resistance in a 

microbial population (Laehnemann et al. 2014), or the genetic changes endured during host-pathogen 

interactions (Schulte et al. 2010; Alves et al. 2019). Many others, however, extend over thousands or 

millions of years, such as the evolution of new species. Understanding how such changes occur constitutes 

the sole basis of evolutionary thinking.  

 

1.1 Towards an understanding of evolution: the first steps 

More than 150 years ago, in the iconic book “The origin of species”, Charles Darwin proposed that species 

evolve through natural selection by looking at the gradual changes of phenotypes (1859). Despite being 

unaware of the laws of inheritance, he argued that natural selection acts through a steady accumulation of 

differences rather than a burst of episodic events. As he mentioned, “[…] she [natural selection] can never 

take a leap, but must advance by the shortest and slowest steps”. This theory provided the foundation for the 

rise of quantitative approaches to measure the impact of selection on phenotypic traits: the so-called 

biometric school of evolution pioneered by Weldon (1895) and Pearson (1898). This system allowed 

studying how traits are passed through generations and how evolution responds to selection in a continuous 

and gradual scale (Weldon 1895; Pearson 1898). Although influential, this “micromutational” view of 

evolution did not appeal to everyone’s eyes. Galton (1894), Darwin’s cousin, was the first to refute this 

theory. He believed that evolution proceeded by discontinuous steps with small bursts of selective events. 

This conflict continued to grow as the school of Mendelian genetics started to rise (Morgan 1903; Bateson 

1913; Punnet 1915), leading to the introduction of concepts such as discrete inheritable units, later defined 

as “genes” (Johannsen 1911), and independent assortment. This debate was later reconciled, as Fisher (1918) 

demonstrated that the biometrical and the Mendelians’ views were, in fact, compatible. In this classical 

paper, he developed the mathematical framework to understand how genes produce phenotypes. He 

described the infinitesimal model, which assumes that a phenotypic trait is affected by an infinite number of 

genes, all unlinked to each other, with no interactions, each having a small infinitesimal effect on the trait of 
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interest. Based on the segregation analysis founded by Weinberg (1908) and Hardy (1908) - the Hardy-

Weinberg law (Stern 1943), Fisher’s astonishing work provided the avenue for a deeper understanding of 

how genes interact within a population.  

 

1.2 The modern synthesis and the rise of population genetics 

As Mendelian genetics became prominent, a new perspective started to rise: the notion of evolution as a 

random process. Hagedoorn and Hagedoorn (1921) were the first to point out that some genes may be lost 

simply by chance because the number of reproducing individuals is considerably smaller than of those that 

compose the species. Fisher (1922, 1930a, b) and Wright (1931) performed the mathematics of the so-called 

“Hagedoorn Effect” and reached the solution for the rate of decay in a population of finite size due to the 

random sampling of genetic variants every new generation, a process known as genetic drift. The pioneering 

work of Fisher and Wright was followed by Haldane (1939) and Malécot (1944), leading to a deeper 

understanding of how gene frequencies change over time, which culminated in the birth of the field of 

population genetics.  

As Sewall Wright (1949, 1951) stated, the determinants of gene frequency variation can be seen as 

two sorts: systematic, such as selection, migration, and mutation, which tend to move the gene frequency 

towards an equilibrium; and dispersive, like the chance fluctuations in finite populations, which cause gene 

frequencies to spread. This “process of trial and error” as referred by Motoo Kimura (1955), which combines 

natural selection with population genetics, defines the evolutionary theory that is still considered today: the 

“Modern Synthesis” (Huxley 1942). 

 

1.3 The nature of evolutionary changes: neutral evolution and natural selection 

The 1950s were characterized by the “Watson-Crick bombshell”, citing James F. Crow (2003). The 

discovery of the DNA molecule (Crick and Watson 1953) led to the rise of molecular genetics, allowing for 

a more thorough understanding of evolution and species differences. The analysis of molecular data between 

and within species (e.g., Freese 1962; Sueoka 1962; Zuckerkandl and Pauling 1962) identified two types of 

genetic variants: polymorphisms, corresponding to the variation within a population, and substitutions, 

consisting of the differences between species. Up until the 1960s, the nature of evolutionary changes was 

attributed to directional natural selection, and balancing selection was the fuel that maintained alleles at 

intermediate frequencies within a population (e.g., Dobhansky 1955; Ford 1964, 1975; Mayr 1965). In the 

late 1960s and 1970s, however, the discovery of large amounts of protein polymorphisms in natural 

populations raised the question of whether selection was the main force maintaining them (Shaw 1965; 

Harris 1966; Lewontin and Hubby 1966). The controversy started to grow: are genetic differences 

prompted by natural selection or by random genetic drift? This question has long been critical in the study 

of molecular evolution and established the long-standing debate between the so-called “selectionists” and 

“neutralists”. These two fronts laid in the two most conspicuous theories of molecular evolution: the theory 
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of evolution by natural selection, also known as Darwinian evolution, and the neutral theory, later proposed 

by Kimura (1968). 

 

 

The selectionist front has been around since Darwin's evolution was presented. Fisher, although a pioneer 

in the stochastic population genetics theory, was well-known for being Darwin's advocate. In 1930, he 

presented the first model that allowed for different mutations to have different effects on the phenotype: the 

geometric model of adaptation (Fisher 1930a). With this model, Fisher wanted to answer a simple question: 

is adaptation made of phenotypically small or large mutations? By considering that an environmental change 

moves the population away from its optimal conditions, Fisher proposed that adaptation occurs through the 

accumulation of mutations with different size and random effects on the phenotype (either towards or away 

from the optimum), each having a pleiotropic effect on the trait (i.e., the same mutation might have different 

effects on different traits). Fisher’s model then inferred the fitness effect of a mutation according to its size 

and direction on the phenotypic space. From this, he estimated that the probability that a mutation is 

beneficial is 50%, although this falls rapidly with increasing mutational size. Fisher, therefore, concluded 

that adaptation proceeds through the acquisition of mutations with small effect size on fitness. Early after, 

Wright introduced the shifting balance theory of evolution and gave rise to the concept of fitness and adaptive 

landscape (Wright 1931). Wright’s view of adaptation was different from Fisher’s: he believed that 

adaptation could not be explained solely by natural selection. His model combined the effect of genetic drift, 

which shifts local populations to temporarily lower fitness, and natural selection, which brings the population 

back to higher fitness. Wright's landscapes were then characterized by its ruggedness, a concept later fully 

developed by Kauffman and Levin (1987), where adaptation results from the complex interaction between 

population structure, epistasis, drift, and migration. These landscapes typically represented the fitness values 

of a "field of [all] possible gene combinations," where the valleys represent the lowest fitness, and the "hills" 

illustrate the highest fitness (Figure 1).  

Fisher and Wright’s models of adaptation considered the Mendelian nature of mutations but were 

lacking the knowledge of the molecular basis of inheritance. John Maynard Smith was a key contributor in 

this sense by introducing one of the first sequence-based models of adaptation (Smith 1962). He presented 

the idea that adaptation occurs in the sequence space, which, unlike the phenotypic space, is discrete. 

Maynard Smith further suggested that adaptation consists of an “adaptive walk” throughout the space of all 

possible sequences, from one functional protein, or DNA sequence, to another (Smith 1970a). Maynard 

Smith’s ideas, however, were ignored for almost two decades due to the rise of the Neutral Theory. It was 

only in the late 1980s that the theoretical study of adaptation returned, with John Gillespie playing a 

significant role (Gillespie 1983, 1984). Gillespie’s work focused on understanding the distribution of fitness 

effects of beneficial mutations at the molecular level. Contrary to Fisher’s geometric model of adaptation, 

where mutations have a direct phenotypic effect, molecular models of adaptation derive allele fitness’s from 

a certain probability distribution (Gillespie 1983, 1984, 1991; Kimura 1983). Gillespie’s key insight, in this 

sense, was the use of extreme value theory (EVT) to estimate the distribution of fitness effects of beneficial 

The selectionist and the study of adaptation 
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mutations. His use of EVT relied on the fact that the wild-type allele has high fitness. Hence, the fittest few 

alleles are always drawn from the right tail of the fitness distribution (Gillespie 1983, 1984). In other words, 

the probability distribution does not matter, as beneficial alleles will behave in a similar way. EVT then 

provides the differences in fitness of beneficial mutations, which is used to estimate the distribution of fitness 

effects. Gillespie used this theory to study adaptation over his “mutational landscape” by considering a strong 

selection-weak mutation model. The idea of weak mutations was similar to that proposed by Maynard Smith: 

the per-site mutation rate is low enough for one to overlook double mutants. The assumption of strong 

selection relied on the fact that mutations are either beneficial or deleterious, leaving no room for neutral 

mutations. One of the most important contributions of Gillespie’s work was the estimation of the “move 

rule” in a mutational landscape under positive natural selection (Gillespie 1983, 1984, 1991). He proposed 

that the probability of fixation of a beneficial allele depends only on its selective advantage, large-effect 

beneficial mutations being, therefore, more likely to be fixed. Moreover, Gillespie (1991) suggested that, 

while neutral evolution leaves a signature of a simple molecular clock, natural selection is represented by a 

dispersed clock, due to the small bursts of substitutions. He argued that his adaptive view of evolution 

explained the data better than neutrality (Gillespie 1986, 1989, 1991).  

 

 

 
 

Figure 1. Representation of a fitness landscape. The genotypes are arranged in the x-y plane and fitness is 

depicted on the z axis. This landscape is rugged, having three adaptive peaks separated by fitness “valleys”. 

Two alternatives evolutionary routes are represented in red. The white circles denote the different the 

different states a gene can take. Adapted from Steinberg and Ostermeier (2016). 

 

 

 

Following studies of adaptation were based on Gillespie’s model of molecular evolution, among which is the 

seminal work of Allen Orr. Orr supported Gillespie ideas of adaptation occurring through large jumps in 

fitness, and further showed that, in most cases, an increased in fitness was derived by a single substitution 

(Orr 2002). He, therefore, characterized adaptation with the “Pareto principle”, where “the majority of an 
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effect (increased fitness) is due to a minority of causes (one substitution)” (Orr 2005). Moreover, Orr 

assessed Fisher’s geometrical model of phenotypic evolution (1930) and suggested that adaptation comprises 

not just mutations of small effects, but also a few mutations of relatively large effect on fitness (Orr 1998, 

1999). His work further showed that the mean selection coefficient in the course of an “adaptive walk” 

decreases almost proportionally, roughly approaching a geometric sequence. This view of adaptation was 

characterised by a pattern of diminishing returns, where mutations of larger effect reach fixation earlier than 

small effect ones (Barton 1998; Orr 1998, 1999, 2005; Barton and Keightley 2002). This pattern agrees 

with the findings of previous studies suggesting that the distribution of selection coefficients of beneficial 

mutations should be exponentially distributed (Rozen et al. 2002; Orr 2003). 

 

 

The controversy started when, in 1968, Kimura suggested that the bulk of segregating polymorphisms and 

substitutions do not alter protein function, being therefore neutral and subject only to random genetic drift. 

He presented the Neutral Theory of molecular evolution, which states that most of the new mutations are 

either deleterious, therefore unlikely to become fixed due to purifying selection, or neutral, where selection 

is so weak that these become fixed by genetic drift (Kimura 1968, 1983; King and Jukes 1969). Conversely, 

beneficial mutations are thought to be sufficiently rare to contribute much to the segregating variation, 

mainly because they reach fixation at a higher rate when compared to neutral mutations (Kimura 1968, 

1983; King and Jukes 1969). Similar to what Morgan proposed (Morgan 1925, 1932), the Neutral Theory 

is based on the fact that evolution proceeds through mutation, and that the main role of natural selection is 

to remove variants that damage gene function. With this theory, Kimura solved several problems in 

theoretical population genetics, such as the probability of fixation of a new mutation as well as the time 

needed for fixation (Kimura 1968, 1983). The simplicity of this theory provided a remarkable explanation 

for the reasonably constant evolutionary rate across lineages in individual proteins, such as haemoglobins 

(Kimura 1969) and cytochrome C (King and Jukes 1969). Different patterns of protein polymorphism were 

then assessed by Kimura and Ohta (1971), leading to the conclusion that the neutral mutation-random drift 

hypothesis of molecular evolution can be used to explain such patterns.  

Later on, Ohta (1973, 1976) extended this theory by proposing that there is a class of mutations 

that are affected both by drift and selection: the slightly deleterious mutations. In the so-called nearly neutral 

theory of molecular evolution, Ohta suggested that a considerable fraction of mutant substitutions in a 

population were produced by the random fixation of slightly deleterious mutations. She further 

demonstrated that in populations with larger effect sizes, the impact of selection was stronger, while in 

smaller populations, the effect of drift prevailed. This observation led to the conclusion that evolution is 

determined both by population size and mutation rate (Ohta 1992).  

 

 

The Neutral Theory revolutionised the way evolution at the molecular was perceived. In the 1980s, the data 

at the DNA level brought knowledge on the substantial variation on non-functional sequences, side-tracking 

The neutralist 

Today’s views 



 11 

the debate to the neutralist view (Li et al. 1981; Miyata and Yasunaga 1981; Kimura 1983; Nei 1987). 

Indeed, neutral evolution provided a simple and elegant way to explain levels of genetic variation at the 

divergence and polymorphism levels. Natural selection, however, is a complex process that can take a 

myriad of forms, making the development of mathematical methods an arduous task.  

Hudson, Kreitman, and Aguadé (1987) motivated the first attempts of studying the impact of 

positive natural selection on molecular evolution. They introduced a statistical method that tests neutral 

evolution under the assumption that polymorphisms and substitutions are uniformly distributed under 

neutrality. To do so, the authors compared two types of loci: a non-coding region, which is assumed to 

evolve neutrally, and a protein-coding gene, which is assumed to be under selection. If the patterns of 

polymorphism and substitution in the coding locus differ from that in the neutral region, then it is assumed 

to be under selection. This statistical test, also known as the HKA test, provided the first evidence for the 

role of natural selection in maintaining polymorphic variants in Drosophila. This approach paved the way for 

the study of the impact of positive selection on segregating genetic variants (e.g., McDonald and Kreitman 

1991; Eanes et al. 1993), leading to the question of whether adaptation plays a significant role in molecular 

evolution. 

Today, the debate is still ongoing. Some authors argue that the Neutral Theory should be revisited 

(Hahn 2008; Kern and Hahn 2018), while others emphasize its undeniable role, even in light of the recent 

findings suggesting pervasive effects of positive selection along the genome (Graur et al. 2013; Jensen et al. 

2019). With the thriving of genome-scale data, however, the role of adaptive mutations in molecular 

evolution can be addressed with a lot more accuracy. Studies assessing the genetic basis of phenotypic 

differences revealed several quantitative trait loci that may have experienced adaptive evolution (e.g., Sucena 

and Stern 2000; Colosimo et al. 2004). At the genome level, association studies also provide evidence for 

several loci linked to phenotypic traits under selection (e.g., Shapiro et al. 2006; Carneiro et al. 2014; Boyle 

et al. 2017; Alves et al. 2019; Liu et al. 2019). These studies provide the link between phenotypic and 

molecular evolution. However, they are limited in scope and cannot discern how much of the observed 

variation is actually adaptive. Some questions remain: “How much of the genetic variation can be explained 

by adaptive evolution? What is the frequency of adaptive mutations along the genome? Are there regions 

where adaptive mutations are more likely to occur?” These are some of the questions that can now be tackled 

by combining population genomics data and a new generation of methods for detecting and quantifying 

selection, thus providing a deeper understanding of the molecular rate of adaptation. 

 

1.4 Measuring selection and adaptive evolution 

This section provides a summary of the methods used to infer the rate of adaptive evolution from sequence 

data (for a more detailed description see (Moutinho et al. 2019a). Two main approaches are described: (1) 

phylogenetic methods, applied at the divergence between several species, and (2) population genetic 

methods, which contrast the within-species polymorphisms to the divergence with an outgroup species. 
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The strength and direction of selection in a given gene can be measured with the #$/#& (w) ratio, which 

contrasts the rate of non-synonymous (#$) and synonymous substitutions (#&) (e.g., Miyata et al. 1979; Li 

et al. 1985; Yang and Nielsen 2002). Under the assumption that synonymous substitutions are effectively 

neutral, and that mutations rates at synonymous and non-synonymous sites are constant and equal, neutrally 

evolving genes are expected to have an ω	ratio equal to 1. Genes evolving under positive selection at the 

protein level display an ω > 1, while genes evolving under negative selection have ω < 1. This is because 

non-synonymous substitutions are either favoured or discarded compared to neutral synonymous 

substitutions. However, as ω averages the substitution rate across multiple sites that experience both 

positive and negative selection, tests based on ω can only detect a strong signal of positive selection (e.g., 

Yang and Nielsen 2002). This is because the majority of non-synonymous substitutions are expected to be 

either neutral or deleterious, thus making the average #$ lower than #&, leading to an ω generally lower 

than 1, even in the presence of positive selection (e.g., Yang and Nielsen 2002).  

More complex phylogenetic models have been developed to account for variable selective pressure 

among sites (Nielsen and Yang 1998; Yang et al. 2000, 2005), branches (Yang and Nielsen 1998), and the 

combination of the two (Yang and Nielsen 2002; Zhang et al. 2005; Kosakovsky Pond et al. 2011), thus 

accounting for the great variation in selective constraints in space and/or in time. Even though these methods 

have the potential to detect adaptation at the site level, they tend to be more conservative in measuring 

selection throughout a specific region or lineage (Rodrigue and Lartillot 2017). This is due to the fact that 

adaptive events are often spread across several positions in the genome, rather than being concentrated on 

specific sites (Rodrigue and Lartillot 2017). Moreover, branch-site models underestimate the rate of 

adaptation in proteins that experience frequent adaptation over long evolutionary periods, as they assume 

that evolution is neutral on most branches and that adaptive processes are rare and usually isolated (Nielsen 

and Yang 1998; Yang et al. 2000, 2005; Rodrigue and Lartillot 2017). Finally, since these methods rely on 

multi-species alignments, they only account for more ancient genes that are shared by all species, being, 

therefore, more conserved. Fast-evolving genes are thus typically discarded from such analyses, as their 

alignment becomes less reliable with increasing divergence times between species. 

 

 

Population genetics approaches require data from only two closely-related species: typically several 

individuals in the target species and one individual from an outgroup species (McDonald and Kreitman 

1991). McDonald and Kreitman (1991) were the first to extend the HKA test (1987) to detect adaptive 

evolution in proteins. The MK test (1991) contrasts the number of polymorphisms and substitutions at two 

classes of sites: synonymous, which are assumed to evolve neutrally, and non-synonymous, which are 

potentially under selection. It is usually represented through the so-called MK table:  

 

 

Phylogenetic methods 

Population genetics methods 
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 Polymorphisms Substitutions 

Synonymous '( )( 

Non-synonymous '* )* 

 

The MK test is based on the fact that a beneficial mutation reaches fixation faster than neutral mutations, 

thus contributing comparatively more to divergence than to polymorphism levels. Hence, it can test three 

scenarios: (1) neutral evolution, where )*/)( is expected to be equal to '*/'(, (2) positive selection, in 

which )*/)( is higher than '*/'(, and (3) balancing selection, where )*/)( is lower than '*/'(.  
Extensions of this method estimate the proportion of amino-acid substitutions driven by positive 

selection: a = 1- ()('*)/()*'() (Charlesworth 1994; Smith and Eyre-Walker 2002). As the numbers of 

polymorphic sites and non-synonymous substitutions are generally low, estimates of a for genes taken 

individually have usually large sampling variances. This prevents the use of this statistic for single genes and 

requires pooled data across multiple genes (Smith and Eyre-Walker 2002; Stoletzki and Eyre-Walker 2011). 

Such pooling can be done by summing numbers of polymorphisms and substitutions (Fay et al. 2001), or by 

taking the average across genes (Smith and Eyre-Walker 2002). However, a limitation of these approaches 

is that they do not consider the segregation of slightly deleterious mutations, which can bias estimates of a 

depending on the demographic history of the population (Eyre-Walker and Keightley 2009). On the one 

hand, a can be underestimated if the population size remained relatively constant or has undergone a 

decrease compared to the ancestral population. This is because slightly deleterious mutations may be 

observed as polymorphism while having a much lower chance of fixation when compared to neutral 

mutations. One way to mitigate this effect is to remove polymorphisms that are segregated at low 

frequencies (Charlesworth 1994; Smith and Eyre-Walker 2002). On the other hand, a may be 

overestimated if the population has gone through a demographic expansion: as polymorphism levels are very 

low, there is an apparent excess of substitutions (Eyre-Walker 2002). It is, therefore, crucial to account for 

the full range of fitness effects of mutations, as well as the demography of the population, to reach more 

precise estimates of a.  

More recent methods specifically model the distributions of fitness effects (DFE) from the site 

frequency spectrum (SFS) of the derived allele in order to infer the molecular adaptive rate. These likelihood 

methods assume that the numbers of segregating mutations and substitutions are Poisson distributed and that 

polymorphism levels can be summarized by summing the categories of the unfolded (when the ancestral 

allele is known) or folded (counts of the minor allele frequency) SFS. The differences between methods rely 

on how demography is accounted for and the type of distribution of selection coefficients (!"s), i.e. DFE, 

used to infer the rate of adaptive evolution (Moutinho et al. 2019a). The first models only accounted for the 

DFE of deleterious and neutral mutations (Bierne and Eyre-Walker 2004; Welch 2006a; Keightley and Eyre-

Walker 2007; Eyre-Walker and Keightley 2009). Further extensions also consider the distribution of 

positively selected mutations (Schneider et al. 2011; Galtier 2016; Tataru et al. 2017; Tataru and Bataillon 
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2019), where some are based on fitness landscape models (see Bataillon and Bailey 2014, for a detailed 

review), and others are driven by statistical convenience, where they fit the data with a flexible distribution 

(reviewed in Moutinho et al. 2019a).  

 

 

From these methods, two major statistics are generally used to infer the rate of adaptive evolution: +,  and 

a. +,  is the rate of adaptive non-synonymous substitutions relative to the mutation rate and is given by +,  

= + - +*, , where +*,  denotes for the portion of the + ratio contributed by neutral and deleterious 

mutations. a is the proportion of adaptive amino-acid substitutions and is estimated as +,/+. Although all 

of these statistics provide an estimate for the molecular adaptive rate, they cannot be used in the same 

context. For instance, a is contingent on both +,  and +*, , making it unsuitable for distinguishing between 

the effects of positive and negative selection. In turn, +,  cannot be used to evaluate the impact of mutation 

rate, as the mutation rate itself normalizes it (e.g., Castellano et al. 2016). It is, therefore, important to 

accurately assess the context of the question one aims to address, to choose the best measure of the rate of 

adaptation.  

 

1.5 Variation of the adaptive substitution rate between species  

Over the last few years, there has been an increased interest in understanding how the molecular adaptive 

rate varies between and within species (e.g., Gossmann et al. 2012; Galtier 2016; Zhen et al. 2018; 

Moutinho et al. 2019a). Previous studies have shown that the rate of adaptive evolution varies across species, 

where, for example, the fruit fly (e.g., Brookfield and Sharp 1994; Smith and Eyre-Walker 2002; Sella et 

al. 2009), the wild mouse (Halligan et al. 2010), and the European rabbit (Carneiro et al. 2012a) have a 

much higher rate of adaptation when compared to plant species (Gossmann et al. 2010) and primates (e.g., 

Boyko et al. 2008; Hvilsom et al. 2012; Galtier 2016). The determinants of such variability, however, 

remain unclear.  

Multiples studies proposed that the cross-species variation of the adaptation rate is explained by 

differences in effective population size (!") (Eyre-Walker et al. 2006; Eyre-Walker and Keightley 2009; 

Gossmann et al. 2012). This hypothesis assumes that species with smaller !"  accumulate more slightly 

deleterious mutations and less advantageous mutations due to the effect of drift, therefore increasing ω*,  

while decreasing ω, and, consequently, reducing estimates of a. In turn, in species with larger !", the 

impact of purifying and positive selection is more efficient, thus eliminating deleterious mutations from the 

allele pool at a faster rate while allowing for the fixation of advantageous mutations.  

Another hypothesis relied on the so-called cost of complexity (Orr 2000), which is based on Fisher’s 

geometric model of adaptation (Fisher 1930). According to this theory, more complex organisms, i.e. larger 

long-lived species, typically increase in fitness at a slower rate, thus theoretically needing more consecutive 

beneficial mutations to reach their fitness optimum. This assumption was previously proposed to explain the 

Statistics used to estimate the rate of adaptive substitutions 
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differences in the adaptation rates between humans and flies (Lourenço et al. 2013; Rousselle et al. 2018, 

2019; Zhen et al. 2018). Despite these efforts, the underlying cause of the variation in the molecular adaptive 

rate between species is not fully resolved and more research is required to clarify this issue. 

 

1.6 Variation of adaptive substitution rate within genomes 

Since the time of the first sequence data, it was known that genetic diversity varies comparatively more 

between genes than between species (Kimura 1983; Ohta 1992). In the early 1970s, it was observed that 

rates of protein evolution were highly dependent on their function and structure (e.g., King and Jukes 1969; 

Dickerson 1971). Moreover, the effect of selection on closely linked sites was also shown to cause allele 

frequency changes throughout the genome (e.g., Maynard Smith and Haigh 1974; Charlesworth et al. 1993; 

Barton 1995; Andolfatto 2007). Linked selection can take the form of selective sweeps, in a process known 

as genetic draft (Gillespie 2000a) when genetic variation is reduced due the spread of beneficial mutations 

(Maynard Smith and Haigh 1974) (Figure 2a), and background selection, which causes the removal of neutral 

variants that are linked to deleterious mutations (Charlesworth et al. 1993; Charlesworth 2012) (Figure 2b). 

In turn, the effect of linkage is counteracted by recombination, which increases the levels of genetic variation 

(Begun and Aquadro 1992). 

Molecular rates of adaptation seem to follow such pattern, where there is substantially more 

variation within genomes than between species (Moutinho et al. 2019a). At the genome level, 

recombination, mutation rate, and gene density were found to positively impact the rate of adaptive 

evolution (Marais and Charlesworth 2003; Campos et al. 2014; Castellano et al. 2016). As the 

recombination rate breaks down linkage disequilibrium, it is expected to favour the fixation of adaptive 

substitutions (Marais and Charlesworth 2003; Campos et al. 2014; Castellano et al. 2016). Genes in low 

recombining regions suffer from the Hill-Robertson interference (HRi; Hill and Robertson 1966): the 

interaction between favourable mutations occurring at linked sites, eventually leads to the fixation of only 

one of the mutations, unless a recombination event generates a haplotype carrying both of them (Figure 2c). 

Consequently, genes in low recombining regions tend to have lower rates of adaptive substitutions. 

Following the same reasoning, regions with high gene density might be subject to stronger HRi and lower 

molecular adaptive rates (Castellano et al. 2016). Conversely, genes with high mutation rates might adapt 

faster by increasing genetic diversity levels, which increases the chance for an adaptive process to occur.  

At the gene level, previous studies have shown that protein function substantially impacts the rate 

of adaptive substitutions, where genes implicated in the immune response present the highest adaptation 

rates in several species (Nielsen et al. 2005; Sackton et al. 2007; Kosiol et al. 2008; Obbard et al. 2009; 

Slotte et al. 2011). Besides, studies focusing on sex-related genes also reported high rates of adaptive 

evolution across taxa (Pröschel et al. 2006; Haerty et al. 2007; Hvilsom et al. 2012; Gossmann et al. 2014; 

Crowson et al. 2017). At the intra-genic level, however, little is known about the factors influencing the 

frequency and nature of adaptive mutations. 
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Figure 2. Impact of linked selection on genetic diversity. Black lines represent individual genomes. Filled 

circles denote SNP variants. Distinct variants at the same position are depicted with different colours: neutral 

variants in grey, positive variants in red or yellow, and negative variant in blue. (a) A positively selected 

new variant spreads in the population and removes genetic diversity at linked loci, generating a selective 

sweep. (b) Reduction of neutral diversity because of linkage to deleterious mutations (background 

selection). (c) Competitive segregation of positively selected variant at distinct loci, resulting in the loss of 

advantageous variants (Hill–Robertson interference). Figure and legend adapted from Gustavo et al. (2020). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Selective Sweep

(b) Background Selection

(c) Hill-Robertson Interference
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1.7 Scope of the thesis 

My thesis addresses patterns of selection at different organizational levels, particularly aiming to unravel the 

main determinants of adaptive evolution between-species, within-genomes, and within-genes. These three 

domains are individually addressed in the following chapters of my thesis in the form of three major 

questions: 

 

(1) Chapter II: Does protein architecture impact the rate of adaptive evolution? 

 

In the second chapter, I looked at molecular evolution on a fine-scale by studying the impact of protein 

architecture on the rate of adaptive evolution. By assessing the frequency and nature of adaptive 

mutations at the intramolecular level both in animals and in plants, I aimed to understand how protein 

biophysics influences fitness and adaptation. 

 

(2) Chapter III: How do rates of adaptation vary across time? 

 

In the third chapter, I took a step back to look at a broader scale of molecular evolution, aiming to 

understand how rates of adaptation vary in time. I studied genes with different evolutionary origins in 

animal and plant species to assess the dynamics of the distribution of beneficial mutations across the 

phylogeny of the species. 

 

(3) Chapter IV: What is the interplay between intramolecular variation and patterns of 

adaptation at the species level? 

 

In the fourth chapter, I looked even at a broader scale by studying patterns of adaptation at the species 

level. By analysing several animal species, I aimed to understand the interplay between patterns of 

intramolecular variation and the differences in the molecular adaptive rate between species. 

 

 

 

 

 

 

 

 



 18 

 

 

 

 

 

CHAPTER II 

Does Protein Architecture Impact the Rate 
of Adaptive Evolution? 

 

 

 

Adaptive mutations play an important role in molecular evolution. However, the frequency and nature of 

these mutations at the intra-molecular level is poorly understood. To address this, we analysed the impact 

of protein architecture on the rate of adaptive substitutions, aiming to understand how protein biophysics 

influences fitness and adaptation. Using Drosophila melanogaster and Arabidopsis thaliana population genomics 

data, we fitted models of distribution of fitness effects and estimated the rate of adaptive amino-acid 

substitutions both at the protein and amino-acid residue level. We performed a comprehensive analysis 

covering genome, gene and protein structure, by exploring a multitude of factors with a plausible impact on 

the rate of adaptive evolution, such as intron number, protein length, secondary structure, relative solvent 

accessibility, intrinsic protein disorder, chaperone affinity, gene expression, protein function and protein-

protein interactions. We found that the relative solvent accessibility is a major determinant of adaptive 

evolution, with most adaptive mutations occurring at the surface of proteins. Moreover, we observe that 

the rate of adaptive substitutions differs between protein functional classes, with genes encoding for protein 

biosynthesis and degradation signalling exhibiting the fastest rates of protein adaptation. Overall, our results 

suggest that adaptive evolution in proteins is mainly driven by inter-molecular interactions, with host-

pathogen coevolution likely playing a major role.  

 

 

A long-standing focus in the study of molecular evolution is the role of natural selection in protein evolution 

(Eyre-Walker 2006). One can measure the strength and direction of selection at the divergence level through 

the #$/#& ratio (w). However, because w represents a summary statistic across nucleotide sites, it can only 

provide the average trend, while proteins will typically undergo both negative and positive selection. Branch-

site models address this issue by fitting phylogenetic models with heterogeneous #$/#& ratio among codons 

and branches, thus considering the great heterogeneity in selective constraints among sites, both in space 

and time (Nielsen and Yang 1998; Yang et al. 2005; Zhang et al. 2005). Although these methods potentially 

allow to study adaptation at the site level, they require large amounts of data across species and are therefore 

2.1 Abstract 

2.2 Introduction 
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restricted to more conserved genes along the phylogeny. Conversely, the McDonald and Kreitman (MK) 

test (McDonald and Kreitman 1991) is applied at the population level and it only requires data from two 

closely-related species, usually several individuals from the study species and one individual from the other. 

Because adaptive mutations contribute relatively more to substitution than to polymorphism, the MK test 

disentangles positive and negative selection by contrasting the number of substitutions to the number of 

polymorphisms at synonymous and non-synonymous sites. Charlesworth (1994) extended this method to 

estimate the proportion of substitutions that are adaptive (a). Yet, one limitation of this approach was that 

it didn’t account for the segregation of slightly deleterious mutations, which can either over- or 

underestimate measurements of a according to the demography of the population (Eyre-Walker 2002; 

Smith and Eyre-Walker 2002). Recent methods solved this issue by taking into consideration the distribution 

of fitness effects (DFE) of both slightly deleterious (Fay et al. 2001; Smith and Eyre-Walker 2002; Bierne 

and Eyre-Walker 2004; Eyre-Walker et al. 2006; Eyre-Walker and Keightley 2009; Stoletzki and Eyre-

Walker 2011) and slightly beneficial mutations (Galtier 2016; Tataru et al. 2017). By allowing the estimation 

of the rate of non-adaptive (+*, = 	#$*,0 /#&) and adaptive (+, = w	 −	+*, ) non-synonymous 

substitutions, in addition to measurements of a (+,/w), these methods triggered new insights on the impact 

of both negative and positive selection on the rate of protein evolution.  

Several studies have reported substantial levels of adaptive protein evolution in various animal 

species, including the fruit fly (Smith and Eyre-Walker 2002; Sawyer et al. 2003; Bierne and Eyre-Walker 

2004; Haddrill et al. 2010), the wild mouse (Halligan et al. 2010) and the European rabbit (Carneiro et al. 

2012b), but also in bacteria (Charlesworth and Eyre-Walker 2006) and in plants (Ingvarsson 2010; Slotte et 

al. 2010; Strasburg et al. 2011). Whereas for other taxa, such as primates (Boyko et al. 2008; Hvilsom et 

al. 2012; Galtier 2016), and many other plants (Gossmann et al. 2010), the rate of adaptive mutations was 

observed to be very low, wherein amino-acid substitutions are expected to be nearly neutral and fixed mainly 

through random genetic drift (Boyko et al. 2008). Several authors proposed that this across-species variation 

in the molecular adaptive rate is explained by an effective population size (!") effect, where higher rates of 

adaptive evolution are observed for species with larger !"  due to a lower impact of genetic drift (Eyre-

Walker 2006; Eyre-Walker and Keightley 2009; Gossmann et al. 2012). Galtier (2016), however, reported 

that !"  had an impact on a and +*,	but not +,. Hence, he proposed that the relationship with !"  is mainly 

explained by deleterious effects, wherein slightly deleterious non-synonymous substitutions accumulate at 

lower rates in large-!"  species due to a higher efficiency of purifying selection, thus decreasing +*,  and 

consequently inflating a.  

The rate of adaptive substitutions, however, was observed to vary extensively along the genome. 

On a genome-wide scale, it was reported that +,  correlates positively with both the recombination and 

mutation rates, but negatively with gene density (Campos et al. 2014; Castellano et al. 2016). When looking 

at the gene level, previous studies have demonstrated the role of protein function in the rate of adaptive 

evolution, wherein genes involved in immune defence mechanisms appear with higher rates of adaptive 
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mutations in Drosophila (Sackton et al. 2007; Obbard et al. 2009), humans and chimpanzees (Nielsen et al. 

2005). In Drosophila, sex-related genes also display higher levels of adaptive evolution, being directly linked 

with species differentiation (Pröschel et al. 2006; Haerty et al. 2007). At the intra-genic level, however, the 

factors impacting the frequency and nature of adaptive mutations remain poorly understood. 

There are several structural factors that have been reported to influence the rate of protein 

evolution but have not been investigated at the population level. Molecular evolution studies of protein 

families revealed that protein structure, for instance, significantly impacts the rate of amino-acid 

substitutions, with exposed residues evolving faster than buried ones (Liberles et al. 2012). As a stable 

conformation is often required to ensure proper protein function, mutations that impair the stability or the 

structural conformation of the folded protein are more likely to be counter-selected. Moreover, distinct 

sites in a protein sequence differ in the extent of conformational change they endure upon mutation, a pattern 

generally well predicted by the relative solvent accessibility of a residue (Goldman et al. 1998; Mirny and 

Shakhnovich 1999; Franzosa and Xia 2009). In this way, residues at the core of proteins evolve slower than 

the ones at the surface due to their role in maintaining a stable protein structure (Perutz et al. 1965; 

Overington et al. 1992; Goldman et al. 1998; Bustamante et al. 2000; Dean et al. 2002; Choi et al. 2006; 

Lin et al. 2007; Conant and Stadler 2009; Franzosa and Xia 2009; Ramsey et al. 2011). Inter-specific 

comparative sequence analyses also revealed that positively selected sites are often found at the surface of 

proteins (Proux et al. 2009; Adams et al. 2017). Hence, exploring the role that these structural elements 

play in shaping the rate of adaptive evolution is crucial in order to fully understand what are the main drivers 

of adaptation within proteomes.  

Our study addresses protein adaptive evolution at a fine scale by analysing the impact of several 

functional variables among protein-coding regions at the population level. To further assess the potential 

generality of the inferred effects, we carried our comparison on two model species with distinct life-history 

traits: the dipter Drosophila melanogaster and the brassicaceae Arabidopsis thaliana. We fitted models of DFE 

and estimated the rate of adaptive substitutions, both at the protein and amino-acid residue scale, across 

several variables and found that solvent exposure is the most significant factor influencing protein adaptation, 

with exposed residues undergoing ten times faster +,  than buried ones. Moreover, we observed that the 

functional class of proteins has also a strong impact on the rate of protein adaptation, with genes encoding 

for processes of protein regulation and signalling pathways exhibiting the highest +,  values. We therefore 

hypothesized that inter-molecular interactions are the main drivers of adaptive substitutions in proteins. This 

hypothesis is consistent with the proposal that, at the inter-organism level, coevolution with pathogens 

constitute a so-far under-assessed component of protein evolution (Sackton et al. 2007; Obbard et al. 2009; 

Enard et al. 2016; Mauch-Mani et al. 2017).  
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In order to identify the genomic and structural variants driving protein adaptive evolution we looked at 

10,318 protein-coding genes in 114 Drosophila melanogaster genomes, analysing polymorphism data from an 

admixed sub-Saharan population from Phase 2 of the Drosophila Population Genomics Project (DPGP2, Pool 

et al. 2012) and divergence out to D. simulans; and 18,669 protein-coding genes in 110 Arabidopsis thaliana 

genomes, with polymorphism data from a Spanish population (1001 Genomes Project, Weigel and Mott 

2009) and divergence to A. lyrata. The rate of adaptive evolution was estimated with the Grapes program 

(Galtier 2016). The Grapes method extends the approach pioneered by the DoFE program (Fay et al. 2001; 

Smith and Eyre-Walker 2002; Bierne and Eyre-Walker 2004; Eyre-Walker et al. 2006; Eyre-Walker and 

Keightley 2009; Stoletzki and Eyre-Walker 2011), by explicitly accounting for mutations with slightly 

advantageous effects. Grapes estimates the rate of non-adaptive non-synonymous substitutions (+*, ), which 

is then used to estimate the rate of adaptive non-synonymous substitutions (+,) and the proportion of 

adaptive non-synonymous substitutions (a). A high a can be potentially explained both by a higher +,  or a 

lower +*, , and therefore does not allow to disentangle the two effects. Thus, we explored whether, and 

how, +,  and +*, , as well as the total w, depend on the different functional variables analysed here.  

Results from model comparison of DFE showed that the Gamma-Exponential model is the one that 

best fits our data according to Akaike’s information criterion (Akaike 1973) (Table S1 in supplementary file 

S1, Appendix I). This model combines a Gamma distribution of deleterious mutations with an exponential 

distribution of beneficial mutations. In agreement with previous surveys within animal species, this model 

suggests the existence of slightly deleterious, as well as slightly beneficial segregating mutations in D. 

melanogaster and A. thaliana genomes (Galtier 2016). Genome-wide estimates of +,  for A. thaliana and D. 

melanogaster are 0.05 and 0.09, respectively, and are in the range of previously reported estimates for these 

species (Bierne and Eyre-Walker 2004; Gossmann et al. 2012; Smith and Eyre-Walker 2002).  

In order to investigate the main drivers of protein adaptive evolution, we divided the datasets into 

sets of genes and amino-acid residues according to the variables analysed, and fitted models of DFE in each 

subset independently. We distinguished two types of analyses: gene-based and site-based, where we looked 

into how the molecular adaptive rate varies across different categories of genes and amino-acid residues, 

respectively. Gene-based analyses allowed us to explore the impact of the background recombination rate, 

number of introns, mean expression levels and breadth of expression. At the protein level, we investigated 

the effect of binding affinity to the molecular chaperone DnaK, protein length, cellular localization of 

proteins, protein functional class and number of protein-protein interactions. Finally, site-based analyses 

enabled us to study the effect of the secondary structure of the protein, by comparing residues present in b-

sheets, a-helices and loops; the tertiary structure, by considering the relative solvent accessibility of a 

residue (RSA) and the residue intrinsic disorder; and whether an amino-acid residue participated or not in 

an annotated active site. 

 

 

2.3 Results and Discussion 
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To study the impact of gene and genome architecture on the rate of adaptive evolution we looked at 

recombination rate and the number of introns. Recombination rate was previously reported to favour the 

fixation of adaptive mutations in Drosophila by breaking down linkage disequilibrium (Marais and 

Charlesworth 2003; Castellano et al. 2016). Our results are consistent with previous observations by 

showing a significant positive correlation in estimates of +,  with increasing levels of recombination rate for 

D. melanogaster (Table 1, supplementary figure S1, and file S2 in Appendix I). This was also observed in A. 

thaliana (Table 1, supplementary figure S1, and file S2 in Appendix I), thus corroborating the effect of 

recombination in the rate of adaptive evolution. 

Previous studies proposed that genes containing more introns are under stronger selective 

constraints due to the high cost of transcription, especially in highly expressed genes (Castillo-Davis et al. 

2002). Hence, we would expect regions with more introns to be under stronger purifying selection. 

Conversely, by increasing the total gene length, introns might also effectively increase the intra-genic 

recombination rate, which could in turn increase the efficacy of positive selection and have a positive impact 

on +,. To disentangle the two effects, analyses were performed by comparing genes with different intron 

content. Results showed a significant negative correlation of +*,  with increasing number of introns in D. 

melanogaster (Table 1, supplementary figure S2, and file S2 in Appendix I). Conversely, the number of introns 

did not significantly correlate with +,  (Table 1, supplementary figure S2, and file S2 in Appendix I). These 

findings suggest that the effect of the intron content on the rate of protein evolution is essentially due to 

stronger purifying selection, while having a negligible influence on the rate of adaptive substitutions. 

 

 

We further explored the impact of three different levels of protein structure (i.e., primary, secondary and 

tertiary) on the rate of adaptive evolution. We first looked at the primary structure by categorizing proteins 

according to their length. Former studies correlating gene length and #$/#& have shown that smaller genes 

evolve more rapidly (Zhang 2000; Lipman et al. 2002; Liao et al. 2006). Here, we investigated whether this 

faster evolution is followed by a higher rate of adaptive substitutions. Results show significant negative 

correlations with protein length for values of w and +*,  in both species (Table 1, supplementary figure S3, 

and file S2 in Appendix I). The same trend was observed for +,, although it was only significant in D. 

melanogaster (Table 1, supplementary figure S3, and file S2 in Appendix I). These findings suggest that smaller 

protein-coding regions are indeed under more relaxed purifying selection but might also evolve, in some 

cases, under a higher rate of adaptive substitutions. 

The analysis at the secondary structural level showed significant differences in the evolutionary rate 

between the structural motifs, with loops demonstrating the highest values of w, followed by a-helices and 

b-sheets (Table 2 and Figure 1). When considering adaptive and non-adaptive substitutions separately, b-

sheets show significantly lower values of +*,  in A. thaliana and +,  in both species, with marginally 

significant values observed for D. melanogaster (Table 2, Figure 1, and supplementary file S3 in Appendix I). 

The impact of gene and genome architecture on adaptive evolution 

The impact of protein structure on adaptive evolution 



 23 

This implies that the structural motif has an impact on the selective constraints in A. thaliana and also 

contributes to the rate of adaptation in the two species. Previous studies investigating protein tolerance to 

amino-acid change have similarly shown that loops and turns are the most mutable, followed by a-helices 

and b-sheets (Goldman et al. 1998; Guo et al. 2004; Choi et al. 2006). Some authors posed this relationship 

as an outcome of residue exposure (Goldman et al. 1998; Guo et al. 2004), while others associate it to the 

degree of structural disorder, where ordered proteins are under stronger selective constraint (Choi et al. 

2006). In order to clarify this, we further look into the impact of tertiary structure, by exploring the 

relationship between residue exposure to solvent and intrinsic protein disorder with the rate of adaptive 

evolution. 

Considering the relative solvent accessibility, several studies previously demonstrated that residues 

at the surface of proteins evolve faster than the ones at the core (e.g. Goldman et al. 1998; Choi et al. 2007; 

Lin et al. 2007; Franzosa and Xia 2009). This higher substitution rate can be either due to a reduced selective 

constraint at exposed residues and/or to an increased rate of adaptive substitutions. To disentangle the two 

effects, we compared the site frequency spectra across several categories of RSA. Our results recapitulate 

those of previous studies on divergence and demonstrate a significant positive correlation with solvent 

exposure for values of w (Table 1 and Figure 2a). Moreover, we demonstrate that both a relaxation of the 

selective constraints (+*, ) and a higher rate of adaptive non-synonymous substitutions (+,) explain the 

higher evolutionary rate at the surface of proteins (Table 1, Figure 2a, and supplementary file S2 in Appendix 

I). 

Intrinsically disordered proteins are defined by lacking a well-defined three-dimensional fold 

(Dunker et al. 2002; Dyson and Wright 2005), more specifically, proteins that have a higher degree of loop 

dynamics (“hotloops”) (Linding et al. 2003). As these structures are more flexible we expect them to be 

under less structural constraint and to accumulate more substitutions (Guo et al. 2004; Wilke et al. 2005; 

Choi et al. 2006; Afanasyeva et al. 2018), either deleterious and/or beneficial. To test this hypothesis, we 

asked two different questions: (1) Are intrinsically disordered protein regions more likely to respond to 

adaptation? (2) Are proteins with more disordered regions undergoing more adaptive substitutions? For the 

first question, we divided amino-acid residues based on their predicted value of intrinsic disorder. We report 

a significant positive correlation with w, +,  and +*,  with residue intrinsic disorder for both species (Table 

1, Figure 2b, and supplementary file S2 in Appendix I). For the second question, proteins were categorized 

according to their proportion of disordered residues (see Material and Methods). Our results reveal a 

significant positive correlation of protein disorder with w in both species, +*,  in A. thaliana and +,  in D. 

melanogaster (Table 1, supplementary figure S4, and file S2 in Appendix I). These findings suggest that, at 

the residue level, intrinsically disordered regions are more likely to respond to adaptation and are also under 

less selective constraint in both species. However, when considering the whole protein, we observe that 

intrinsically disordered proteins have different effects between species. In particular, they contribute to the 

relaxation of purifying selection in A. thaliana and to a higher rate of adaptation in D. melanogaster. The reason 

for the difference between species is unclear and will require further analyses. 
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Figure 1. Estimates of the rate of protein evolution (w), non-adaptive non-synonymous substitutions (+*, ) 

and adaptive non-synonymous substitutions (+,) for each of the secondary structural motif (b-sheets, a-

helices and loops) in A. thaliana (top) and D. melanogaster (bottom). Mean values of w, +*,  and +,  for each 

motif are represented with the black points. Error bars denote for the 95% confidence interval for each 

category, computed over 100 bootstrap replicates. The hand-drawings of A. thaliana and D. melanogaster 

were made by AFM.  

 

 

Finally, we tested whether the rate of adaptive substitutions is affected by the binding affinity of 

proteins to molecular chaperones. It has been suggested that binding to a chaperone leads to a higher 

evolutionary rate due to the buffering effect for slightly deleterious mutations (Bogumil and Dagan 2010; 

Kadibalban et al. 2016). Here, we investigate whether binding to the chaperone DnaK could also favour the 

fixation of adaptive mutations. In agreement with previous studies, we find a higher w and +*,  in proteins 

binding to DnaK in D. melanogaster (Table 2; supplementary figure S5 in Appendix I), but no impact on +,  

(Table 2, supplementary figure S5, and file S3 in Appendix I), suggesting that the interaction with a 

molecular chaperone does not influence the fixation of beneficial mutations. 
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Figure 2. Relationship between w, +*,  and +,  with (a) the relative solvent accessibility (RSA) and (b) 

the probability of residue intrinsic disorder for A. thaliana (top) and D. melanogaster (bottom). The x axis is 

scaled using a squared root function. Mean values of each estimate for each category are represented with 

connected black dots. The shaded area represents the 95% confidence interval of each category, computed 

over 100 bootstrap replicates.
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Table 1. Number of genes and categories analysed for each continuous variable.  

 

 A. thaliana D. melanogaster 

 Number of 
Categories 

Number 
of genes !" !#" w 

Number of 
Categories 

Number 
of genes $% $&% w 

Recombination rate 50 18668 0.2065 (*) -0.2212 (*) 0.0857 30 8485 0.3839 (**) -0.402 (**) 0.0759 

Intron number 13 15347 -0.1538 -0.3590 (.) -0.7949 (***) 10 10318 -0.3333 -0.866 (***) -0.7333 (**) 

Protein length 30 18669 -0.1310 -0.6735 (***) -0.6782 (***) 50 10318 -0.4775 (***) -0.6963 (***) -0.7763 (***) 

Relative Solvent Accessibility 28 9034 0.7513 (***) 0.8466 (***) 0.9841 (***) 19 4944 0.8129 (***) 0.5789 (***) 0.9766 (***) 

Protein Intrinsic Disorder (Site) 30 18668 0.6000 (***) 0.9172 (***) 0.9770 (***) 30 8485 0.7057 (***) 0.6690 (***) 0.9540 (***) 

Proportion of Disordered 
Residues (Gene) 30 18668 0.1908 0.7333 (***) 0.7517 (***) 20 8485 0.7263 (***) 0.0631 0.5684 (***) 

Breadth of Expression 4 17999 -0.6667 -1.0000 (*) -1.0000 (*) 6 4601 -0.7333 (*) -0.4667 -0.7333 (*) 

Mean Gene Expression 40 17999 -0.1385 -0.9154 (***) -0.9282 (***) 15 6247 -0.5048 (**) -0.6190 (**) -0.7714 (***) 

Protein-Protein Interactions - - - - - 19 5628 -0.3099 (.) -0.1111 -0.3684 (*) 

 

Note. For each variable, the Kendall’s τ is shown with the respective significance (*P < 0.05; **P < 0.01; ***P < 0.001; “.” 0.05 ≤ P < 0.10) for w, '()  and ')  in A. thaliana and D. 

melanogaster. 
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Table 2. Number of genes and categories analysed for each discrete variable and the corresponding difference between the mean values of each category is reported for w, '()  and ')  

for A. thaliana and D. melanogaster. 

 

 A. thaliana D. melanogaster 

 Pairwise 
comparisons 

Number of 
Categories 

Number 
of genes !" !#" w 

Number of 
Categories 

Number of 
genes !" !#" w 

Secondary 
structure 

β-sheets -  
⍺-helices 

3 9034 

-0.01346 (*) -0.0182 (.) -0.0317 (*) 

3 4944 

-0.0132 (.) -0.0033  -0.0060 (*) 

β-sheets - loops -0.0130 (*) -0.0231 (*) -0.0361 (*) -0.0131 (.) -0.0146  -0.0137 (*) 

⍺-helices - loops 0.0004 -0.0049  -0.0045 (*) 0.00009 -0.0114 -0.0076 (*) 

Affinity to 
Molecular 
Chaperone 

Binder - Non-
Binder 2 17775 0.0092  0.0260  0.0352 (*) 2 9420 0.00009  0.0606 (*) 0.0515 (*) 

Protein 
Location a 

 7 18669    7 10318    

Protein 
Functional 

Class a 

 27 3780    23 2948    

 

Note. Significance levels as in Table 1. 
a Due to the large amount of comparisons, the detailed pairwise comparisons and the corresponding p-values are detailed in supplementary Files S3 and S4 in Appendix I.

27
 

 



 28 

 

We further explored the impact of protein function on sequence evolution. To do so, we analysed the effect 

of mean gene expression, breadth of expression, protein location and protein functional class on the rate of 

adaptive substitutions. Several studies on both Eukaryote (Pal et al. 2001; Subramanian and Kumar 2004; 

Wright et al. 2004; Lemos et al. 2005) and Prokaryote (Rocha and Danchin 2004) organisms have shown 

that highly expressed genes have lower rates of protein sequence evolution. Here we investigated if the 

lower evolutionary rate is followed by a reduced rate of adaptive substitutions. Our results support previous 

findings by displaying a significant negative correlation of mean gene expression with estimates of w and 

!"#  in both species (Table 1, Figure 3, and supplementary file S2 in Appendix I). Besides, we find that mean 

gene expression is also significantly negatively correlated with !#  in D. melanogaster (Table 1, Figure 3, and 

supplementary file S2 in Appendix I), suggesting that gene expression also constrains the rate of adaptation, 

in addition to the well-known effect on purifying selection. It has been hypothesized that the higher selective 

constraint in highly expressed genes could be driven by the reduced probability of protein misfolding, 

wherein selection acts by favouring protein sequences that accumulate less translational missense errors 

(Drummond et al. 2005). Hence, the higher selective pressure to increase stability in highly expressed 

proteins could also be hampering the fixation of adaptive mutations. Moreover, as mean gene expression is 

positively correlated with the breadth of expression (Kendall’s t = 0.3376, p < 2.2e-16 in A. thaliana; 

Kendall’s t = 0.2170, p < 2.2e-16 in D. melanogaster; supplementary figure S6 in Appendix I), and the latter 

is a good proxy for the pleiotropic effect of a gene, which is known to impose high selective constraints (i.e., 

Salvador-Martínez et al. 2018), we also analysed the impact of the number of tissues where a gene is 

expressed on the rate of adaptive evolution. We report a significant negative correlation of the breadth of 

expression (number of tissues) with w in both species (Table 1 and supplementary figure S7 in Appendix I), 

thus corroborating previous findings (Duret and Mouchiroud 2000; Slotte et al. 2011; Salvador-Martínez et 

al. 2018). When looking at adaptive and non-adaptive substitutions separately, we observe a significant 

negative impact on values of !#  in D. melanogaster and !"#  in A. thaliana (Table 1, supplementary figure S7, 

and file S2 in Appendix I). This suggests that the breadth of expression is acting together with the mean 

expression levels, although with an apparently lower magnitude effect both in !"#  and !#.  

In order to assess the impact of protein location we classified genes into the following cellular 

categories: cytoplasmic, endomembrane system, mitochondrial, nuclear, plasma membrane and secreted 

proteins (Tables S2 and S3 in supplementary file S1, Appendix I). Results show significantly higher rates of 

protein evolution in nuclear and secreted proteins, with the lowest values observed in the mitochondria, 

plasma membrane and endomembrane system (pairwise comparisons; p = 0.0128 in A. thaliana; p = 0.0104 

in D. melanogaster; supplementary figure S8 in Appendix I). However, this result seems to be explained by a 

reduced purifying selection, with significantly higher values of !"#  observed in cytoplasmic, nuclear and 

secreted proteins (pairwise comparisons; p = 0.0128 in A. thaliana; p > 0.0729 in D. melanogaster; 

supplementary figure S8 in Appendix I), and not by a higher rate of adaptive substitutions, since no significant 

Protein function and adaptive evolution 
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differences were found between the categories in the estimates of !#  (supplementary figure S8 and file S3 

in Appendix I).  

 

 

Figure 3. Estimates of w, !"#  and !#  for each category of genes with distinct mean gene expression levels 

for A. thaliana (top) and D. melanogaster (bottom). The x axis is scaled using a squared root function. Legend 

as in Figure 2. 

 

 

By analysing the different categories of protein functional class (Tables S2 and S3 in supplementary 

file S1 in Appendix I), we observe that genes involved in protein biosynthesis (i.e., mRNA and ribosome 

biogenesis and transcription machinery) and signalling for protein degradation (ubiquitin system) exhibit the 

highest rates of adaptive substitutions (Figure 4 and supplementary file S4 in Appendix I), functions coded 

mostly by nuclear and cytoplasmic proteins. Signal transduction pathways also appear to play a role in 

adaptation, since protein phosphatases also present high rates of adaptive mutations (Hunter 1995). 

Moreover, in A. thaliana, cytochrome P450 proteins are also in the top categories of !#  (Figure 4 and 

supplementary file S4 in Appendix I). We fitted a linear model to the !#  values of the shared categories (21 

categories in total) to see if results were consistent between the two species and found a positive correlation 

(Kendall’s t = 0.257, p = 0.1101; supplementary figure S9a in Appendix I), which is stronger after 

discarding the two outliers, mRNA biogenesis and glycosyltransferases (Kendall’s t = 0.333, p = 0.0490; 

supplementary figure S9b in Appendix I). Our findings therefore suggest that adaptive mutations occur 

mainly through processes of protein regulation and signalling pathways.  
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Figure 4. Estimates of w, !"#  and !#  for each category of protein functional class in (a) A. thaliana and 

(b) D. melanogaster. Categories are ordered according to the values of !#. Mean values of w, !"#  and !#  

for each class are represented with the black points. Error bars denote the 95% confidence interval for each 

category, computed over 100 bootstrap replicates. 

 

 

 

Overall, we found multiple factors influencing protein adaptive evolution, specifically recombination rate 

(positive correlation), protein length (negative correlation), secondary structural motif (lower values 

observed for b-sheets), relative solvent accessibility (positive correlation), protein intrinsic disorder 

(positive correlation), gene expression levels (negative correlation) and protein functional class. Since some 

of these variables are intrinsically correlated we next asked whether some of the inferred effects are spurious. 

First of all, it is known that protein length and gene expression are negatively correlated, wherein highly 

expressed genes tend to be shorter, as previously reported for vertebrates (Subramanian and Kumar 2004), 

yeast (Coghlan and Wolfe 2000; Akashi 2003) and observed in this study (Kendall’s t = -0.015, p = 1.22e-

02 in A. thaliana; t = -0.093, p = 1.70e-28 in D. melanogaster; supplementary figure S10 in Appendix I). 

Since highly expressed genes have lower rates of adaptive substitutions and shorter genes have higher rates 

of adaptive evolution, we may conclude that these two variables independently impact the rate of adaptation 

in proteins. Protein length is also negatively correlated with the proportion of exposed residues (Kendall’s 

t = -0.310, p = 0.00 in A. thaliana; t = -0.404, p = 1.03e-223 in D. melanogaster; supplementary figure S11 

in Appendix I), as the surface / volume ratio of globular proteins decrease when protein length increases 

(Janin 1979). By estimating the rate of adaptive mutations of buried and exposed sites separately, we observe 

that the effect of protein length is no longer significant (Table 3, Figure 5a, and supplementary file S5 in 

Appendix I). This suggests that the effect of protein length on the rate of adaptive substitutions is a by-

product of the effect of the residue’s solvent exposure. Furthermore, mean gene expression is positively 
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correlated with solvent exposure (Kendall’s t = 0.016, p = 0.1037 in A. thaliana; t = 0.327, p = 4.50e-45 

in D. melanogaster; supplementary figure S12 in Appendix I), as expected since highly expressed genes are 

shorter and shorter genes have a greater proportion of exposed residues (supplementary figures S10 and S11 

in Appendix I). These two variables, however, have opposite effects on !#, and we therefore conclude that 

gene expression is acting independently from solvent exposure on the rate of adaptive protein evolution. 

 We further note that the secondary structure motif is intrinsically correlated with the degree of 

intrinsic disorder, where loops and turns represent the most flexible motifs (supplementary figure S13 in 

Appendix I), consistent with previous studies (Choi et al. 2006). When analysing different degrees of protein 

disorder across the structural motifs, we observe that secondary structure has only an impact on estimates 

of w, while intrinsic protein disorder is significantly positively correlated with w within the three motifs in 

both species, and !#  within b-sheets in A. thaliana and within a-helices in D. melanogaster (supplementary 

figure S14 and file S5 in Appendix I). Moreover, we report that the secondary structure motif is correlated 

with solvent exposure (supplementary figure S15 in Appendix I), b-sheets being mostly found at the core of 

proteins, while a-helices and loops have, on average, higher solvent exposure (Bowie et al. 1990; Guo et 

al. 2004). By estimating the rate of adaptive substitutions in buried and exposed residues across the three 

motifs, the impact of secondary structure is no longer noticeable on estimates of !#  (Table 3, supplementary 

figure S16, and file S5 in Appendix I), thus suggesting that the effect of secondary structure motif is also a 

by-product of solvent exposure. When looking at the tertiary structure level, in agreement with Choi et al. 

(2006), we report that structures with more exposed residues tend to be more flexible (Kendall’s t = 0.001, 

p = 0.4726 in A. thaliana; t = 0.015, p = 0.0256 in D. melanogaster; supplementary figure S17 in Appendix 

I). Estimation of the rate of adaptive mutations in buried and exposed sites across different levels of residue 

intrinsic disorder shows that solvent exposure plays the main role in protein adaptive evolution, with a 

significant positive impact of protein disorder only observed in values of w in both species and !#  in exposed 

residues for D. melanogaster (Table 3, Figure 5b, and supplementary file S5 in Appendix I). To further clarify 

the relative contribution of solvent exposure and protein disorder on the rate of adaptive evolution we 

performed an analysis of covariance (ANCOVA), using both measures and their interaction as explanatory 

variables. Results show that the RSA explains 95% (p =3.176e-14) and 99% (p < 2.2e-16) of the variation 

in !#  and !"# , respectively, in A. thaliana; and 87% (p = 1.011e-13) and 62% (p = 0.00012) in !#  and 

!"# , respectively, in D. melanogaster. These findings suggest that the level of exposure of a residue in the 

protein structure is the main driver of adaptive evolution, and that structural flexibility potentially 

constitutes a comparatively small, if any, effect to protein adaptation. By comparing the level of exposure of 

the residues across the different classes of protein function, no differences were observed (supplementary 

figure S18 in Appendix I), thus suggesting that these two variables independently affect the rate of protein 

adaptation.  
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Figure 5. Estimates of w, !"#  and !#  plotted as a function of (a) the relative solvent accessibility and 

protein length and (b) the relative solvent accessibility and the probability of residue intrinsic disorder in A. 

thaliana (top) and D. melanogaster (bottom). The x axis is log scaled. Analyses were performed by comparing 

buried (RSA < 0.05) and exposed (RSA >= 0.05) residues across 10 categories of protein length in (a) and 

20 categories of intrinsic disorder in (b) for both species. Legend as in Figure 2. 

 

 

 

Summarizing, after accounting for potentially confounding effects, our results show that besides population 

genetic processes such as recombination and mutation rate (Hill and Robertson 1966; Marais and 

Charlesworth 2003; Castellano et al. 2016), three major protein features significantly impact the rate of 

protein adaptive evolution: gene expression, relative solvent accessibility and the protein functional class. 

When looking at the magnitude effect of each of these variables, we observe that exposed residues have a 

ten-fold higher rate of adaptive substitutions when compared to completely buried sites (Figure 2a and 

supplementary file S2 in Appendix I). The effect of gene expression seems to be of lower magnitude, wherein 

less expressed genes have a two-fold higher rate of adaptive substitutions with a significant negative 

correlation observed only in D. melanogaster (Figure 3 and supplementary file S2 in Appendix I). As a 

comparison, genes in highly recombining regions have up to a ten-fold higher rate of adaptive substitutions 

compared to genes within regions with the lowest recombination rates (supplementary figure S1 and file S2 

in Appendix I), being therefore similar to that observed with solvent exposure. Previous studies reported 

that the type of amino-acid change also plays an important role in protein adaptive evolution, where more 

similar amino-acids present higher rates of adaptive substitutions (Grantham 1974; Miyata et al. 1979; 

Bergman and Eyre-Walker 2019). In order to evaluate a potential bias on the type of amino-acid at the 

surface and at the core of proteins, we computed the proportion of conservative and radical residue changes, 

according to volume and polarity indices, as defined by Grantham (Grantham 1974). We found similar 

frequencies of conserved and radical changes in buried and exposed residues, thus suggesting that our results 

at the structural level are not influenced by the type of amino-acid mutation (97% of conservative and 3% 
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changes on buried residues; 96% of conservative and 4% changes on exposed sites). Our findings therefore 

suggest that protein architecture strongly influences the rate of adaptive protein evolution, wherein selection 

acts by favouring a greater accumulation of adaptive mutations at the surface of proteins.  

 

 

Our results show that solvent exposure is the protein feature with the strongest impact on the rate of adaptive 

substitutions at the intra-molecular level. To explain this effect, we discuss three hypotheses in which protein 

adaptive evolution occurs through (1) the acquisition of new biochemical activities at the surface of proteins, 

(2) the emergence of new functions via network rewiring at the level of protein-protein interactions, and 

(3) inter-molecular interactions between organisms, as a consequence of host-pathogen coevolution.  

We first hypothesized that protein adaptation results from new catalytic activities, wherein adaptive 

mutations arise within active sites. Barlett et al (2002) reported that active sites are mostly present in more 

intrinsically disordered regions of the protein. Moreover, they proposed that apo-enzymes, which are not 

yet bound to the substrate or cofactor, present a greater residue flexibility and more exposed catalytic 

residues, which could favour a higher rate of adaptive substitutions. In order to test this, we estimated the 

rate of adaptive substitutions on active and non-active sites, controlling for solvent exposure, and observed 

only significant differences in w within buried residues in A. thaliana (Table 3, supplementary figure S19, 

and file S5 in Appendix I), although with higher values observed for non-active sites. While the non-

significant differences in the rate of adaptive mutations could result from incomplete annotations, which 

tend to be biased towards motifs highly conserved across species (De Castro et al. 2006), this suggests that 

being present in an active site does not influence the rate of adaptation. Active sites, however, are rather 

mobile, presenting different levels of solvent exposure and residue flexibility according to the stage of the 

enzymatic reaction (Bartlett et al. 2002). Therefore, it may be arbitrary to assign them a certain solvent 

exposure class based on the phase the enzymes were crystallized, limiting our capacity to test their role on 

adaptive evolution. 

Several studies discussed the impact of protein-protein interactions (PPI) on the rate of protein 

evolution. Valdar and Thornton (2001) and Caffrey (2004) proposed that PPI may be acting as an inhibitor 

of protein evolution by enhancing the efficiency of purifying selection due to a higher degree of protein 

connectivity, typically associated with more complex functions. Mintseris and Weng (2005) supported this 

assumption but proposed that the proteins evolving slowly are the ones involved in obligate interactions, 

while proteins involved in transient interactions evolve at faster rates due to a higher interface plasticity. 

Here, we ask whether the higher rate of adaptive mutations at the surface of proteins could have arisen 

through inter-molecular interactions at the protein network level. We addressed this question by estimating 

the rate of adaptive mutations in genes with different degrees of PPI. This was only possible in D. melanogaster 

since there was limited data available for A. thaliana. We report a negative correlation between the number 

of PPI and w, !"#  and !#, respectively, with only significant values observed for w (Table 1, supplementary 

figure S20 and file S2 in Appendix I). These findings suggest that a higher degree of protein connectivity 

Why does adaptation occur mainly at the surface of proteins? 
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leads to lower rates of protein sequence evolution, but prevent us to assess with confidence whether this 

effect is due to a stronger purifying selection and/or a slower rate of adaptive substitutions. A potential 

limitation of this analysis is the low number of genes with PPI information available and the noise associated 

with the BioGRID annotations. As a physical interaction does not necessarily imply a functional link, we 

might lack statistical power to detect any putative effect of PPI on !#  (Chatr-Aryamontri et al. 2017).  

In support to our third hypothesis, several studies have described the role of the immune and 

defence responses in molecular evolution across taxa (Sackton et al. 2007; Obbard et al. 2009; Enard et al. 

2016; Mauch-Mani et al. 2017). These studies suggest that pathogens could be key drivers of protein 

adaptation, by acting as a powerful selective pressure through the coevolutionary arms race between hosts 

and parasites. This could be driving the higher rate of adaptive mutations in protein biosynthesis enzymes 

(Figure 4), which are the ones typically hijacked by pathogens during host infection (Dangl and Jones 2001; 

Enard et al. 2016). Moreover, one of the fastest evolving protein class is the ubiquitin system (Figure 4), 

which is known to be involved in the defence mechanism, both by the host, through processes like the 

activation of innate immune responses and degradation signalling of pathogenic proteins; and by the 

pathogen, which inhibits and/or uses this system in order to modulate host responses (Loureiro and Ploegh 

2006; Collins and Brown 2010; Dielen et al. 2010; Trujillo and Shirasu 2010; Hiroshi et al. 2014). 

Membrane trafficking proteins are also well-known for being involved in the immune response mechanisms, 

a functional class that also presents high values of !#, and “DNA replication” together with “mRNA 

biogenesis” and “transcription machinery” are typical signatures of viruses’ activities (Figure 4). Likewise, in 

A. thaliana, cytochrome P450 proteins present a high rate of adaptive mutations (Figure 4), which have been 

reported to play a crucial role in the defence response in plants (Schuler and Werck-Reichhart 2003). 

Besides, the reduced selective pressure on nuclear and secreted proteins (supplementary figure S6 in 

Appendix I) may be also a consequence of their role in disease and pathogen immunity (i.e., Motion et al. 

2015; Mosmann et al. 2016), as observed in yeast (Julenius and Pedersen 2006), insects (Sackton et al. 2007; 

Obbard et al. 2009) and primates (Nielsen et al. 2005).  

 Our findings therefore support the hypothesis that coevolutionary arms race of the host-pathogen 

interactions, in particular intra-cellular pathogens such as viruses, are a major driver of adaptation in 

proteins. While we do not rule out that protein-protein interactions and the acquisition of new biochemical 

functions could also have an impact, more and better annotation data is required to further evaluate their 

role. In conclusion, our study reveals that, in addition to genome architecture, protein structure has a 

substantial impact on adaptive evolution consistent between D. melanogaster and A. thaliana, unravelling the 

potential generality of such effect. Our study further emphasizes that the rate of adaptation not only varies 

substantially between genes, but also at the intra-genic scale, and we posit that accounting for a fine-scale, 

intra-molecular evolution is necessary to fully understand the patterns of molecular adaptation at the species 

level. 
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The D. melanogaster data set included alignments of 114 genomes for one chromosome arm of the two large 

autosomes (2L, 2R, 3L and 3R) and one sex chromosome (X) pooled from 22 sub-Saharan populations with 

negligible amount of population structure ($%& = 0.05; DPGP2, Pool et al. 2012). Release 5 of the Berkeley 

Drosophila Genome Project (BDGP5, http://www.fruitfly.org/sequence/release5genomic.shtml, last 

updated June 2018) was used as the reference genome. Estimations of divergence were performed with D. 

simulans, for which genome alignments with the reference genome were available 

(http://www.johnpool.net/genomes.html). For A. thaliana, analyses were carried out with 110 genomes 

for the 5 chromosomes of the Spanish population from the 1001 Genomes Project (Weigel and Mott 2009), 

using the release 10 from The Arabidopsis Information Resource (TAIR10, 

ftp://ftp.ensemblgenomes.org/pub/plants/release-40/fasta/arabidopsis_thaliana/dna/) as reference 

genome. Divergence estimates were made with A. lyrata as an outgroup species, for which a pairwise 

alignment with the reference genome was available (ftp://ftp.ensemblgenomes.org/pub/plants/release-

38/maf). Data processing was conducted with the help of GNU parallel (Tange 2011). 

 

 

Coding DNA sequences (CDS) were extracted from the alignments with MafFilter (Dutheil et al. 2014) 

according to the General Feature Format (GFF) file of the reference genome of both species. First, a cleaning 

and filtering process was performed to keep only non-overlapping genes with the longest transcript, in cases 

of multiple transcripts per gene. At this stage, 12,801 and 27,072 genes, for D. melanogaster and A. thaliana 

respectively, were kept for further analysis. CDS sequences were then concatenated in order to obtain the 

full coding region per gene. For the analysis with A. thaliana, the alignment of A. lyrata with the reference 

sequence was re-aligned with each gene alignment of the ingroup using MAFFT v7.38 (Katoh and Standley 

2013) with the options add and keeplength so that no gaps were included in the ingroup. CDS alignments with 

premature stop codons were excluded and alignment positions lacking a corresponding sequence in the 

outgroup were discarded. Final datasets included 10,318 genes for D. melanogaster/D. simulans and 18,669 

genes for A. thaliana/A. lyrata. These datasets were then used to infer both the synonymous and non-

synonymous unfolded and folded site frequency spectra (SFS), and synonymous and non-synonymous 

divergence based on the rate of synonymous and non-synonymous substitutions. Sites for which the outgroup 

allele was missing were considered as missing data. All calculations were performed using the BppPopStats 

program from the Bio++ Program Suite (Guéguen et al. 2013). The Grapes program was then used to 

compute a genome-wide estimate of the rate of non-adaptive (!"# ) and adaptive non-synonymous 

substitutions (!#) (Galtier 2016). This method assumes that all sites were sampled in the same number of 

chromosomes and since some sites were not successfully sampled in all individuals, the original dataset was 

reduced to 110 and 105 individuals for D. melanogaster and A. thaliana respectively, by randomly down-

sampling polymorphic alleles at each site. The following models were fitted and compared using Akaike’s 

2.4 Materials and Methods 
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information criterion: Neutral, Gamma, Gamma-Exponential, Displaced Gamma, Scaled Beta and Bessel K. 

A model selection procedure was conducted on the two datasets using the complete set of genes for 

comparison (see Table S1 in supplementary file S1, Appendix I). Following analyses consist in fitting the 

selected model on several subsets of the data according to the variables analysed, comprising sets of genes 

(see Tables S2 and S3 in supplementary file S1 for detailed information on the genes used for each variable 

as well as the population genetic parameters estimated per gene for A. thaliana and D. melanogaster 

respectively, Appendix I) and amino-acid residues (see Tables S4 and S5 in supplementary file S1 for detailed 

information on the amino-acid residues used for each category as well as the population genetic parameters 

estimated per site for A. thaliana and D. melanogaster respectively, Appendix I). We next described the 

different variables analysed. 

 

 

Recombination rates were obtained with the R package “MareyMap” (Rezvoy et al. 2007), by using the cubic 

splines interpolation method. Hereafter we computed the mean recombination rate in cM/Mb units for each 

gene. Discretization of the observed distribution of recombination rate was performed in 50 and 30 

categories with around 350 and 280 genes each for A. thaliana and D. melanogaster respectively. Intronic 

information was obtained using the GenomeTools from a GFF with exon annotation and the option addintrons 

(Gremme et al. 2013). Genes were discretized into 13 and 10 categories according to their intron content 

for A. thaliana and D. melanogaster respectively. 

 

 

Genes were discretized according to the total size of the coding region, for which 30 and 50 categories with 

around 620 and 210 genes each were made for A. thaliana and D. melanogaster respectively. 

In order to obtain structural information for each protein sequence, blastp (Schaffer 2001) was first 

used to assign each protein sequence to a PDB structure, and respective chain, by using the “pdbaa” library 

and an E-value threshold of 1e-10. When multiple matches occurred, for instance in cases of multimeric 

proteins, the match with the lowest E-value was kept. This resulted in 5,008 genes for which a PDB structure 

was available, making a total of 3,834 PDB structures for D. melanogaster and 9,121 genes with a total of 

3,832 PDB structures for A. thaliana. The corresponding PDB structures were then downloaded and further 

processed to only keep the corresponding chain per polymer. PDB manipulation and analysis were carried 

on using the R package “bio3d” (Grant et al. 2006). Values for secondary structure (SS) and solvent 

accessibility (SA) per residue were obtained using the “dssp” program with default options, and were 

successfully retrieved for 3,613 PDB files corresponding to 4,944 genes for D. melanogaster and 3,806 PDB 

files for a total of 9,106 genes for A. thaliana. Subsequently, to map SS and SA values to each residue of the 

protein sequence a pairwise alignment between each protein and the respective PDB sequence was 

performed with MAFFT, allowing gaps in both sequences in order to increase the block size of sites aligned. 

The final data set comprised a total of 1,397,885 and 1,395,666 sites with SS and SA information, 

respectively, out of 4,821,113 total codon sites obtained with BppPopStats for the complete set of genes of 

Categorization of gene and genome architecture 

Categorization of protein structure 
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D. melanogaster; and 2,585,468 and 2,585,467 sites mapped with SS and SA information, respectively, out 

of 7,479,808 codon sites of A. thaliana. We computed the relative solvent accessibility (RSA) by dividing SA 

by the amino-acid’s solvent accessible area (Tien et al. 2013).  

Categorization of secondary structure was performed by comparing 460,702, 975,934 and 523,880 

amino-acid residues in b-sheets, a-helices and loops respectively in A. thaliana, and 258,898, 516,356 and 

282,588 sites in b-sheets, a-helices and loops respectively in D. melanogaster. RSA values were analysed with 

28 categories with around 85,000 sites each, with the exception of the totally buried residues (RSA = 0) 

category containing 299,684 sites in A. thaliana; and 19 categories with approximately 69,000 residues each, 

except for 151,417 completely buried residues in D. melanogaster. For the analysis of correlation between 

variables two categories of RSA were considered, comparing buried (RSA < 0.05) and exposed (RSA >= 

0.05) residues, following Miller et al (Miller et al. 1987).  

Estimates of intrinsic protein disorder were acquired via the software DisEMBL (Linding et al. 

2003), wherein intrinsic disorder was estimated per site and classified according to the degree of “hot loops”, 

meaning loops with a high degree of mobility. This analysis was successfully achieved for a total of 7,479,807 

out of 7,479,808 sites for A. thaliana and 3,952,602 out of 4,821,113 sites for D. melanogaster. Amino-acid 

residues were divided into 30 categories with an average of 249,000 and 131,000 sites in A. thaliana and D. 

melanogaster respectively. For the proportion of disordered regions per protein, we considered a residue 

“disordered” if it was in the top 25% of the measured probabilities of disorder across the proteomes of each 

species. Analyses were performed with 30 categories with around 620 and 420 genes for A. thaliana and D. 

melanogaster respectively. 

 

 

Prediction of the molecular chaperone DnaK binding sites in the protein sequence was estimated with the 

LIMBO software using the default option Best overall prediction. This setting implies 99% specificity and 

77.2% sensitivity (Van Durme et al. 2009). Genes were categorized according to this prediction setting, 

which suggests that every peptide scoring above 11.08 is a predicted DnaK binder. Genes scoring below that 

value were not consider as possible binders. 

 

 

Mean gene expression data was obtained from the database Expression Atlas (http://www.ebi.ac.uk/gxa; 

Petryszak et al. 2016), wherein one baseline experiment was used for each species (D. melanogaster, E-

MTAB-4723; A. thaliana, E-GEOD-38612). In addition, for D. melanogaster, we obtained the breadth of 

expression data over the embryo anatomy from the BDGP database (Tomancak et al. 2007) and the data was 

processed and analysed as in Salvador-Martínez et al. (2018). Mean gene expression levels were obtained by 

averaging across samples and tissues for each gene, ending up with 40 and 15 categories with around 450 

and 430 genes each for A. thaliana and D. melanogaster respectively. For the analysis on the breadth of 

expression, expression patterns in A. thaliana were analysed in four different tissues: roots, flowers, leaves 

Identification of proteins binding to a molecular chaperone 

Categorization of gene expression 
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and siliques; and for D. melanogaster we used the anatomical structures of the embryo development, analysing 

18 structures (see Tomancak et al. 2007 and Salvador-Martínez et al. 2018). Analyses were carried with 

four and six categories in A. thaliana and D. melanogaster respectively, according to the number of 

tissues/organs a gene is expressed (see Tables S2 and S3 in supplementary file S1 for detailed information, 

Appendix I). 

 

 

Cellular localization of each protein sequence was predicted with the software ProtComp (from Softberry, 

http://www.softberry.com/) with the default options and genes were classified into the following cellular 

categories: cytoplasmic, endomembrane system, mitochondrial, nuclear, peroxisome, plasma membrane 

and secreted proteins. The category peroxisome was excluded from further analysis due to the small number 

of annotated genes (114 and 250 genes in D. melanogaster and A. thaliana respectively; detailed information 

in Tables S2 and S3 in supplementary file S1, Appendix I). Protein functional classes were obtained with the 

Bioconductor package for R “KEGGREST”, using the KEGG BRITE database (Kanehisa et al. 2002). Analysis 

were carried out with 2,950 and 3,780 genes for D. melanogaster and A. thaliana respectively, discretized into 

the highest levels of each of the three top categories of protein classification: metabolism, genetic information 

processing and signalling and cellular processes (see Tables S2 and S3 in supplementary file S1, Appendix I).  

 

 

In order to check whether a residue was present in an active site, we used the ScanProsite software (De 

Castro et al. 2006). Datasets included 1,061,876 and 1,870,166 active sites for D. melanogaster and A. thaliana 

respectively. All sites that were not predicted by the program were considered as non-active (see Tables S4 

and S5 in supplementary file S1, Appendix I). Data on the degree of protein-protein interactions was 

obtained with the BioGRID database (Chatr-Aryamontri et al. 2017). This was only possible for D. 

melanogaster since the data available for A. thaliana was very limited (only 878 annotated genes mapping to 

our dataset). Analyses were carried out with 5,628 genes divided into 19 categories, with 1,114 genes in the 

first category, and the others ranging from 700 to 130 according to the respective number of interactions 

(see Tables S2 and S3 in supplementary file S1, Appendix I).  

 

 

For all gene and amino-acid sets, 100 bootstrap replicates were generated by randomly sampling genes or 

sites in each category. The Grapes program was then run on each category and replicate with the Gamma-

Exponential distribution of fitness effects (Galtier 2016). The first step included the removal of replicates 

for which the distribution of fitness effects parameters was not successfully fitted. For this purpose, we 

discarded 1% in the maximum and minimum values for the mean and shape parameters of the DFE (see 

supplementary files for detailed R scripts in Appendix I). Results for w, !"#  and !#  were plotted using the 

R package “ggplot2” (Wickham 2017) by taking the mean value and the 95% confidence interval of the 100 

Protein cellular localization and protein functional class 

Enzymatic active sites and protein-protein interactions 

Estimation of the adaptive and non-adaptive rate of non-synonymous substitutions 
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bootstrap replicates computed for each category (both for main and supplementary figures, for continuous 

and discrete variables, see supplementary files Appendix I). 

 

 

Significance for all continuous variables, including protein length, number of introns, gene expression, 

intrinsic residue disorder, proportion of disordered regions, recombination rate, number of protein-protein 

interactions and RSA, was assessed through Kendall’s correlation tests. Kendall’s correlation test is non-

parametric and does not make any assumption on the distribution of the input data. Furthermore, it can be 

applied to ordinal data, making it appropriate to analyse discretized continuous variables. To do so, the mean 

value of the 100 bootstrap replicates was taken for each category (see detailed script as well as all statistical 

results in supplementary file S2 in Appendix I). Significance values for discrete variables, comprising binding 

affinity to DnaK, protein location, protein functional class and secondary structure motif, were achieved by 

estimating the differences between each pair of the categories analysed, by randomly subtracting each 

bootstrap replicate. Following steps included counting the number of times the differences between 

categories were below and above 0, which by taking the minimum of those values gives us a statistic that we 

call k. The two-tailed p-value was then estimated by applying the following equation: p = (2k + 1)/(N + 

1), where N in the number of bootstrap replicates used. For variables comparing more than two categories 

we corrected the p-value for multiple testing using the FDR method (Benjamini and Hochberg 1995) as 

implemented in R (R Core Team 2015) (see detailed script and all statistical results in supplementary files 

S3 and S4 in Appendix I). Analyses on the correlations between variables are described in supplementary 

Files S5 and S6. The analysis of covariance (ANCOVA) was performed by applying a linear model to the 

values of !"#  and !#  with the interaction between RSA and protein disorder following a control for the 

normality, homoscedasticity and independence of the corresponding error (supplementary file S5 in 

Appendix I). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Statistical analyses 



 40 

 

 

 

 

 

CHAPTER III 

How Do Rates of Adaptation Vary Across 
Time? 

 

 
3.1 Abstract 

Understanding the dynamics of species adaptation to their environments has long been a central focus in the 

study of molecular evolution. Early adaptive theories proposed that populations evolve by “walking” in an 

adaptive landscape. This “adaptive walk” is characterized by a pattern of diminishing returns, where 

populations further away from their fitness optimum take larger steps than the ones closer to their optimal 

conditions. This pattern seems to reflect the faster evolution of young genes: as these genes are theoretically 

further away from their fitness optimum, they need to take larger steps to reach their full potential. Testing 

the impact of gene age on molecular evolution, however, constitutes an arduous task. Young genes are small, 

have a higher degree of intrinsic disorder, are expressed at lower levels, and are involved in species-specific 

adaptations. These factors could, therefore, be mystifying the high rates of evolution of young genes. By 

controlling for multiple confounding factors, we provide the first attempt to test the effect of gene age on 

the molecular rate of adaptation both in plants and in animals. To estimate the rate of adaptive substitutions, 

we fitted models of the distribution of fitness effects both at the protein and amino-acid residue levels. Our 

findings suggest that the evolutionary origin of a gene acts as a primary determinant of the molecular adaptive 

rate at the gene level, thus supporting a model of adaptation in young genes in an “adaptive-walk” manner. 

 

3.2 Introduction 

How does adaptive evolution proceed in space and in time? This question has long intrigued evolutionary 

biologists as adaptive mutations are often too rare to study. At the phenotype level, Fisher (1930) proposed 

that adaptation relies on mutations with small effect sizes. He presented the geometric model of adaptation 

where phenotypic evolution occurs in a continuous and gradual scale towards some optimum fitness (Fisher 

1930a). At the molecular level, Wright (1931, 1932) was the first to introduce the idea that populations 

evolve in the space of all possible gene combinations to acquire higher fitness. He characterized this model 

of evolution as a walk in an adaptive landscape. He proposed the shifting balance theory of adaptation, where 

drift moves the population away from its local peak, and natural selection directs the population to higher 

fitness, the so-called “global optimum” in a fitness landscape. With the rise of molecular genetics, John 
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Maynard Smith (Smith 1962, 1970a) extended this idea to a sequence-based model of adaptation. He 

introduced the concept of an “adaptive walk,” where a protein “walks” in the space of all possible amino-acid 

sequences towards the ones with increasingly higher fitness values. Gillespie (1983, 1984, 1991) further 

developed Wright’s model of adaptation and presented the “move rule” in an adaptive landscape. He 

suggested that adaptation proceeds in large steps, where mutations with higher effects on fitness are more 

likely to reach fixation. The ”adaptive walk” was later fully developed by Allen Orr (1998, 1999). Orr 

extended Fisher’s geometric model of adaptation and demonstrated that, apart from small effect mutations, 

adaptation also relies on mutations of large fitness effects. He, therefore, characterized the adaptive walk 

with a pattern of diminishing returns. Under this model, a sequence that is further away from its local 

optimum will tend to accumulate large-effect mutations at the beginning of the “walk.” Small-effect 

mutations will then only be fixed when the sequence is approaching its high fitness. Experimental studies 

tracing the evolution of microbial populations (e.g., Lenski et al. 1991; Cooper and Lenski 2000; Gerrish 

2001; Imhof and Schlötterer 2001; Rozen et al. 2002) and fungi (Schoustra et al. 2009) provided evidence 

for this view of adaptation as a walk with diminishing returns. These studies, however, can only assess 

patterns of adaptation at relatively short time scales. The challenge lies in studying adaptation across time: 

how does the distribution of beneficial mutations vary along the phylogeny of the species? 

 One way to look at molecular evolution in time is to study genes with different evolutionary origins. 

Different genes within a genome not only differ in function, expression, or length but also age (e.g., Lynch 

2002; Daubin and Ochman 2004; Tautz and Domazet-Lošo 2011; Neme and Tautz 2013). One can estimate 

the age of a gene by using sequence similarity searches (BLAST; Altschul et al. 1998) across the phylogeny 

of the species. A gene is considered “old” if a homolog is identified in several taxa over a deep evolutionary 

scale, or “young” or lineage-specific if the recognized homologs are only present in closely-related species. 

This approach is known as phylostratigraphy (Domazet-Lošo et al. 2007).  

Multiple studies suggested that young or lineage-specific protein-coding genes evolve faster than 

old ones (Thornton and Long 2002; Domazet-Loso and Tautz 2003; Krylov et al. 2003; Daubin and Ochman 

2004; Albà and Castresana 2005; Wang et al. 2005; Cai et al. 2006; Wolf et al. 2009; Cai and Petrov 2010; 

Zhang et al. 2010; Vishnoi et al. 2010; Tautz and Domazet-Lošo 2011; Cui et al. 2015). In humans, Albà 

and Castresana (2005) showed a negative correlation between '(/'% and gene age, where young genes 

present higher '(/'%. Cai and Petrov (2010) confirmed these findings also in chimpanzees. They further 

suggested that the faster evolution in young primate genes may be due to the lack of selective constraint 

posed by purifying selection and provided evidence that positive selection might be also at play. Similar 

patterns were observed in fungi (Cai et al. 2006), Drosophila (Domazet-Loso and Tautz 2003; Zhang et al. 

2010; Domazet-Lošo et al. 2017), bacteria (Daubin and Ochman 2004), viruses (García-Vallvé et al. 2005), 

plants (Arendsee et al. 2014; Cui et al. 2015), and protozoan parasites (Kuo and Kissinger 2008).  

Despite the observed consistency across taxa, the drivers of such an effect remain unclear. Besides, 

young and old genes differ in their structural properties, expression level, and protein function. Young genes 

tend to be smaller (Cai and Petrov 2010; Vishnoi et al. 2010; Neme and Tautz 2013), have a higher level of 
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intrinsic disorder (Wilson et al. 2017), and are expressed at lower levels (Wolf et al. 2009; Cai and Petrov 

2010; Vishnoi et al. 2010; Tautz and Domazet-Lošo 2011). Moreover, young genes tend to encode proteins 

involved in the development of species-specific characteristics (e.g., Hughes 1994; Lynch 2002; Zhang et 

al. 2002), as well as in the immune and stress responses (e.g., Hughes 1994; Lynch 2002; Zhang et al. 2002). 

As the macromolecular structure (Afanasyeva et al. 2018; Moutinho et al. 2019b), gene expression levels 

(e.g., Rocha and Danchin 2004; Subramanian and Kumar 2004; Moutinho et al. 2019b), and protein 

function (e.g., Stukenbrock et al. 2011; Enard et al. 2016; Moutinho et al. 2019b) are known determinants 

of the rate of protein adaptation; they could be mystifying the effect of gene age. Several studies reported 

the substantial impact of gene expression on the adaptive rate of proteins, where highly expressed proteins 

are significantly more constrained and have lower rates of adaptation (Pal et al. 2001; Rocha and Danchin 

2004; Subramanian and Kumar 2004; Moutinho et al. 2019b). Moreover, studies have shown that the 

structure of a protein significantly impacts the molecular adaptive rate, where highly disordered (Afanasyeva 

et al. 2018; Moutinho et al. 2019b) and exposed residues (Moutinho et al. 2019b) present higher rates of 

adaptive evolution. Proteins involved in the immune and stress response were also reported with higher 

rates of molecular adaptation (e.g., Sackton et al. 2007; Obbard et al. 2009; Stukenbrock et al. 2011; Enard 

et al. 2016; Moutinho et al. 2019b). It is thus crucial to account for these confounding factors to better assess 

the impact of gene age on the molecular adaptive rate. 

Here, we further investigate the impact of gene age on protein adaptive evolution to test whether 

adaptation along the phylogeny of a species follows an “adaptive walk” model. To assess the consistency of 

the inferred effects, we used two species with different life-history traits: the dipteran Drosophila melanogaster 

and the Brassicaceae Arabidopsis thaliana. To estimate the molecular rate of adaptation, we fitted models of 

the distribution of fitness effects (DFE) both at the protein and amino-acid residue levels across different age 

classes. Moreover, we assessed whether protein length, gene expression, relative solvent accessibility (RSA), 

intrinsic protein disorder, protein divergence, and protein function act as confounding factors of the effect 

of gene age. Our study aims to achieve a more comprehensive understanding of how the age of a gene impacts 

the rate of protein adaptation and gives light to the potential determinants of the higher evolutionary rate in 

young genes. 

 

3.3 Results 

We assessed the role of gene age on adaptive evolution using the divergence and polymorphism data 

published in Moutinho et al. (2019b). The data included 10,318 protein-coding genes in 114 Drosophila 

melanogaster individuals from an admixed sub-Saharan population from Phase 2 of the Drosophila Genomics 

Project (DPGP2, Pool et al. 2012) and divergence estimates from D. simulans; and 18,669 protein-coding 

genes in 110 Arabidopsis thaliana genomes comprising polymorphism data from a Spanish population (1001 

Genomes Project, Weigel and Mott 2009) and divergence out to A. lyrata. The rate of adaptive evolution 

was estimated with the Grapes program (Galtier 2016). Grapes disentangles the effects of negative and 

positive selection on the '(/'%	ratio (!) by inferring the rate of non-adaptive (!"# ) and adaptive (!#) 
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non-synonymous substitutions, as well as the proportion of adaptive amino-acid substitutions (a). In our 

study, we focused on analysing the impact of the age of a protein on !"#  and !#, as well as the total !.  

 

 

The age of protein-coding genes was obtained from published data in Drosophila melanogaster (Domazet-Lošo 

et al. 2017) and Arabidopsis thaliana (Arendsee et al. 2014). The analyses of D. melanogaster were carried with 

12 age categories corresponding to the phylogenetic branches defined in the work of Domazet-Lošo et al. 

(2017) (Figure 1a). We report a significant positive correlation between w, !"#, and !#  with increasing 

phylostrata level for all chromosomes considered together (Table 1 and Figure 1b). As X-linked genes are 

known to evolve faster (Vicoso and Charlesworth 2006, 2009), we performed separate analyses for the X 

and the autosomal chromosomes to evaluate whether there were significant differences between them. 

While we observed a positive correlation between w, !"#, and !#  with the phylostrata level, the 

correlations were weaker, as only marginally significant estimates were reported for !#  in the X and !"#  

for autosomal genes (Table 1 and Figure 1b). We performed an analysis of covariance (ANCOVA) to assess 

whether the chromosome had an impact on the effect of gene age, by comparing a model M1 that included 

the effects of chromosome, age, and their interaction, with a model M0 that included age only. We found 

low support for the effect of the chromosome (p = 0.041 for !"#  and p = 0.094 for !#) and, therefore, 

combined all chromosomes for subsequent analyses.  

 The analyses of A. thaliana were performed with 15 categories according to the clades defined in 

Arendsee et al. (2014) (Figure 1a). We reported a consistent pattern with that observed in D. melanogaster, 

where a significant positive correlation can be observed for estimates of w, !"# , and !#  (Table 1 and Figure 

1b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The individual effect of gene age on adaptive evolution 
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Figure 1. (a) Phylogenetic relationship between the clades analysed for A. thaliana (top) and D. melanogaster 

(bottom). (b) Relationship between the rate of protein evolution (w), non-adaptive non-synonymous 

substitutions (!"# ) and adaptive non-synonymous substitutions (!#) with gene age in A. thaliana (top) and 

in D. melanogaster (bottom). Clades are ordered according to (a). In D. melanogaster, the results for X-linked, 

autosomal, and total genes are showed. Mean values of w, !"#  and !#  for each category are represented 

with the black points. Error bars denote for the 95% confidence interval for each category, computed over 

100 bootstrap replicates. 
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Table 1. Statistical results for the analysis of the individual effect of gene age on w, !"# , and !#. 

 A. thaliana D. melanogaster 

 w $%& $& w $%& $& 

All chromosomes 0.962 (***) 0.848 (***) 0.733 (***) 0.727 (***) 0.697 (**) 0.636 (**) 

X chromosome - - - 0.576 (***) 0.636 (**) 0.485 (.) 

Autosomes - - - 0.756 (**) 0.424 (.) 0.424 (*) 

 

Note. For each variable, the Kendall’s τ of gene age is shown with the respective significance (*P < 0.05; **P < 0.01; ***P < 0.001; “.” 0.05 ≤ P < 0.10) for w, !"#  and !#  in A. 

thaliana and D. melanogaster. 
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Table 2. ANCOVA estimates for the contribution of gene age, protein length, gene expression, residue intrinsic disorder, RSA, and sequence similarity in !"# , !#, and the interaction 

between the variables analysed. 
 

A. thaliana D. melanogaster 
  

$%& $& $%& $& 
Gene Age  96.76 (***) 25.90 (.) 77.21 (***) 88.52 (**) 
Protein Length 0.70 5.19 12.83 (.) 6.41 
Interaction 2.30 (*) 63.00 (*) 7.34 0.25 
Gene Age  76.90 (***) 89.79 (**) 83.81 (***) 65.19 (**) 
Gene Expression 21.78 (***) 3.01 0.75 10.83 
Interaction 0.74 2.92 12.79 (.) 20.43 (.) 
Gene Age  41.77 (***) 70.02 (***) 29.11 (**) 47.89 (***) 
Relative Solvent Accessibility 46.88 (***) 27.78 (***) 62.48 (***) 49.87 (***) 
Interaction 9.15 (.) 0.98 6.70 (.) 0.633 
Gene Age  97.09 (***) 73.93 (**) 84.61 (***) 84.06 (**) 
Exposed Residues/Gene 0.11 0.01 13.13 (*) 0.84 
Interaction 0.31 18.92 0.07 7.87 
Gene Age  87.55 (**) 93.02 (***) 67.80 (***) 83.81 (***) 
Residue Intrinsic Disorder 11.94 (**) 1.22 25.75 (*) 10.73 
Interaction 0.03 4.27 2.24 0.30 

 

Note. For each variable, the proportion of explained variance is shown with the respective significance (*P < 0.05; **P < 0.01; ***P < 0.001; “.” 0.05 ≤ P < 0.10) for !"#  and !#  in A. 

thaliana and D. melanogaster. 
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We assessed whether gene age constitutes the main determinant of the rate of molecular adaptation by 

controlling for multiple confounding factors. As estimates of the rate of adaptive substitutions for single 

genes generate large sampling variances (Smith and Eyre-Walker 2002; Stoletzki and Eyre-Walker 2011), 

analyses were performed by pooling genes according to the categories analysed. Hence, each confounding 

factor was analysed individually and their magnitude effects were compared.  

Previous studies reported that younger genes encode shorter proteins (Vishnoi et al. 2010; Ding et 

al. 2012; Neme and Tautz 2013) and are expressed at lower levels (Wolf et al. 2009; Cai and Petrov 2010; 

Vishnoi et al. 2010; Tautz and Domazet-Lošo 2011), a pattern that we also observe in our data set (gene age 

vs. protein length: t = -0.485, p = 2.81e-02; t = 0.752, p = 9.249e-05, Figure S1a; gene age vs. gene 

expression: t = 0.636, p = 3.976e-03; t = -0.880, p = 5.154e-06, Figure S1b in Appendix II; for D. 

melanogaster and A. thaliana, respectively). As protein length and gene expression are known to have an 

impact on the rate of protein evolution (Rocha and Danchin 2004; Liao et al. 2006; Moutinho et al. 2019b), 

we performed the analysis on gene age controlling for these two factors to assess whether the effect of gene 

age persisted. When looking at short and long genes separately (see Material and Methods), we observed 

that gene age is positively correlated with w, !"# , and !#  in D. melanogaster (Figure 2a). In A. thaliana, we 

reported the same pattern, although with a comparatively weaker correlation observed for !#  (Figure 2a). 

To further assess the relative contribution of protein length and gene age on !"#  and !#, we performed 

analyses of covariance (ANCOVA), using both factors and their interaction as explanatory variables. Our 

analyses showed that gene age is the largest contributor for the observed correlation with estimates of !"#  

and !#  in both species, although with only marginally significant estimates for !#  in A. thaliana. Moreover, 

in A. thaliana, the interaction between protein length and gene age was also significant, suggesting that the 

two factors may be acting together (Table 2).  

The analysis considering low and highly expressed genes individually reported a positive correlation 

for estimates of w, !"# , and !#  in both species (Figure 2b). By examining the relative contribution of each 

of the variables, we showed that gene age is the main determinant of both !#  and !"#  in both species, with 

gene expression only significantly contributing to !"#  in A. thaliana. Moreover, the interaction between the 

two variables also appears to slightly affect the rate of molecular adaptation in D. melanogaster, with 

marginally significant results observed for !#  and !"#  (Table 2).  

 

Is gene age the main determinant of the molecular adaptive rate? 
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Figure 2. Estimates of w, !"#  and !#  plotted as a function of (a) protein length and (b) mean expression 

levels and gene age in A. thaliana (top) and D. melanogaster (bottom). Analyses were performed by comparing 

short and long (a), low and highly expressed (b) genes (see Methods) across 6 categories of gene age for both 

species. Legend as in Figure 1. 

 

 

As proteins encoded by young genes are short, we expect them to have more exposed residues (Moutinho 

et al. 2019b), a pattern that we observed in our dataset (t = 0.697, p = 0.0016; t = 0.676, p = 0.0004, 

for D. melanogaster and A. thaliana respectively; Figure S2a in Appendix II). Moreover, as exposed residues 

are more flexible (Moutinho et al. 2019b), young genes tend to encode for proteins with a higher degree of 

intrinsic disorder, a pattern previously reported in mice (Wilson et al. 2017). We confirm this pattern in D. 

melanogaster (t = 0.697, p = 0.002) and A. thaliana (t = 0.505, p = 0.009; Figure S2b in Appendix II). The 

analysis of gene age on exposed and buried residues shows a positive correlation for estimates of w, !"# , 

and !#  in both species (Figure 3a). By looking at the relative contribution of each of the variables, we 

observed that both RSA and gene age act as determinants of !"#  and !#  in both species, with gene age 

contributing relatively more to !#  in A. thaliana, and RSA to !"#  in D. melanogaster (Table 2). As RSA 

constitutes a main determinant of the rate of adaptive substitutions in these species (Moutinho et al. 2019b), 

we further assessed if the observed effect of gene age was driven by the variation of !#  and !"#  within each 

category of RSA. We did so by reducing the dataset into two groups of sites with similar RSA levels (see 

Material and Methods) and re-analysed the effect of gene age on both. Our analyses showed that the effect 

of gene age persisted in estimates of w, !"# , and !#  in A. thaliana. In D. melanogaster, however, only 

marginally significant results were observed for estimates of !#  in all residues and for !"#  in exposed 

residues (Figure S3 and Table S1 in Appendix II). 
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Figure 3. Estimates of w, !"#  and !#  plotted as a function of (a) relative solvent accessibility and (b) 

residue intrinsic disorder and gene age in A. thaliana (top) and D. melanogaster (bottom). Analyses were 

performed by comparing buried and exposed (a), low and highly disordered (b) residues (see Methods) 

across 12 and 6 categories of gene age in (a) for D. melanogaster and A. thaliana respectively, and with 6 and 

4 categories in (b) for D. melanogaster and A. thaliana respectively. Legend as in Figure 1. 

 

 

 

To further disentangle the effect of these two variables, we analysed the correlation between RSA and gene 

age at the gene level. We stratified the dataset into two groups of genes according to their proportion of 

exposed residues (see Material and Methods) and assessed the effect of gene age on both. We reported a 

positive correlation between gene age and estimates of w, !"# , and !#  in both species (Figure S4 in 

Appendix II). ANCOVA analyses showed that, at the gene level, gene age constitutes the main determinant 

of !#  and !"#  in both species, with the proportion of exposed residues only having a significant impact on 

!"#  in D. melanogaster (Table 2).   

When performing the analysis of gene age on residues with high and low intrinsic disorder, we 

observed a positive correlation for estimates of w, !"# , and !#  in both species (Figure 3b). ANCOVA 

analyses showed that gene age constitutes the main determinant of both !"#  and !#  in both species, with 

residue intrinsic disorder only contributing for estimates of !"#  (Table 2).  

In summary, the correlations performed with protein length, gene expression, RSA, and residue 

intrinsic disorder, show that gene age is the major factor determining the molecular adaptive rate at the gene 

level. When looking at the site the site level, however, our findings suggest that both RSA and gene age 

substantially impact the rate of adaptive evolution.  
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While physlostratigraphy is the most-widely used approach to identify the emergence of new genes, some 

studies have pointed out its potential limitations (Elhaik et al. 2006; Albà and Castresana 2007; Moyers and 

Zhang 2015, 2016; Domazet-Lošo et al. 2017). The problem lies on the fast-evolving and short genes: as 

BLAST homology searches might fail to identify homologs in these genes, they could be mistakenly classified 

as young. To assess whether the correlation of gene age with the rate of adaptive evolution could be explained 

by BLAST’s false negative rate, we analysed the effect of gene age by correcting for protein divergence. As 

expected, we observed that younger phylostrata groups present higher rates of protein divergence (t = 

0.757, p = 0.0006; t = 0.886, p = 4.178e-06, for D. melanogaster and A. thaliana respectively; Figure S5a 

in Appendix II). To remove this effect, we randomly sampled a subset of genes (see Material and Methods) 

for which the positive correlation between gene age and protein divergence was no longer significant (t = 

0.156, p = 0.531; t = 0.182, p = 0.411, for D. melanogaster and A. thaliana respectively; Figure S5b in 

Appendix II), and analysed the effect of gene age on the selected genes. We observed that the effect of gene 

age prevailed for estimates of w and !#  in A. thaliana (w: t = 0.697, p = 0.002; !"#: t = -0.424, p = 

0.055; !#: t = 0.515, p = 0.020; Figure S6). In D. melanogaster, however, we found no significant positive 

correlations (w: t = -0.652, p = 0.652; !"# : t = 0.333, p = 0.293; !#: t = -0.333, p = 0.293; Figure 

S7 in Appendix II), suggesting a comparatively weaker effect of gene age in Drosophila.  

 

 

Lineage-specific genes are known to be involved in species-specific adaptive processes, such as the evolution 

of morphological diversity (Khalturin et al. 2009) and immune and stress responses (e.g., Kuo and Kissinger 

2008; Khalturin et al. 2009; reviewed in Tautz and Domazet-Lošo 2011). As proteins encoding such 

functions tend to have higher molecular rates of adaptation (Sackton et al. 2007; Obbard et al. 2009; Slotte 

et al. 2011; Stukenbrock et al. 2011; Enard et al. 2016; Moutinho et al. 2019b), we further assessed whether 

these could be confounding the effect of gene age. We first examined which functions are encoded by young 

genes in these species. Our analyses showed that, in Drosophila, lineage-specific genes (Clades 11 and 12 in 

Figure 1a) encode mostly functions involved in response to stress, nervous system processes, enzyme 

regulators, and immune system mechanisms (Figure 4a). In Arabidopsis, young genes (Clades 14 and 15 in 

Figure 1a) seem to be involved in a large variety of cellular processes, but also in response to stress and 

external stimulus, protein binding, and signal transduction (Figure 4b). To note, however, that these 

functions represent general terms and not direct gene products due to the difficulty of annotating young 

genes. 

 

 

 

 

 

The effect of protein divergence on the relation between gene age and the molecular adaptive rate 

The functions of lineage-specific genes 
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Figure 4. Frequency of young genes for the respective protein function in (a) D. melanogaster and (b) A. 

thaliana. 

 

 

To further correct for the potential bias of gene function, we used the gene ontology (GO) terms (Gene 

Ontology Consortium 2004) holding the highest numbers of young proteins (above 10) that were also well 

distributed throughout the oldest clades. Due to the limited number of genes available for analyses, we could 

only compare two age classes, which we classified as “old” and “young”. In D. melanogaster, proteins were 

considered “old” if they were in the root of the tree (clade 1 in Figure 1a) and “young” otherwise. In A. 

thaliana, genes belonging to clades 1 to 7 were considered “old”, and other age classes as “young” (Figure 

1a). In D. melanogaster, we observed a strong effect of gene age on !#  for proteins involved in the 

homeostatic process, protein complex, and response to stress, with younger genes presenting higher 

molecular adaptive rates (Figure 5a). These are known functions involved in immune and stress responses, 

particularly in the co-evolutionary arms-race between the host and parasites (Obbard et al. 2009). Likewise, 

in A. thaliana, we found that the impact of gene age on !#  is stronger in proteins implicated in stress 

response, extracellular regions, and cellular components (Figure 5b). Although the GO terms extracellular 

regions and cellular components represent broad annotations, they denote for the cellular compartments 

where processes such as signal transduction and membrane trafficking occur, which are essential for the 

maintenance of the cell homeostasis (Geldner and Robatzek 2008; Groen et al. 2008). Estimates of !"#  

revealed a strong influence of gene age in all functions analysed in A. thaliana, where young genes present 

higher rates of non-adaptive substitutions (Figure 5b). In D. melanogaster, the same pattern is observed for 

proteins involved in the immune and stress response (Figure 5a). These results suggest that, by restricting 

the analysis to proteins involved in the immune and stress responses, which are known to adapt faster (e.g., 

Slotte et al. 2011; Stukenbrock et al. 2011; Enard et al. 2016), gene age still has an impact on the efficiency 

of selection acting upon a protein. 
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Figure 5. Estimates of w, !"#  and !#  plotted as a function of protein function and gene age in (a) A. 

thaliana and (b) D. melanogaster. Categories are ordered according to the values of !#. Mean values of w, 

!"#  and !#  for each class are represented with the black points. Error bars denote the 95% confidence 

interval for each category, computed over 100 bootstrap replicates. 

 

 

3.4 Discussion 

Overall, our findings suggest that gene age significantly impacts the rate of protein adaptive evolution, with 

young genes presenting higher rates of adaptive substitutions. The same pattern is observed when looking at 

the efficiency of purifying selection, where young genes accumulate comparatively more deleterious 

mutations (Figure 1b). By looking at the magnitude effect of gene age, we observed that young genes present 

a 25-fold higher adaptation rate in D. melanogaster and around 30-fold in A. thaliana, higher than that observed 

for recombination rate and solvent exposure in these species (Castellano et al. 2016; Moutinho et al. 2019b). 

Moreover, the analyses of the potential confounding effects of protein length, gene expression, RSA, protein 

disorder, and protein function revealed that the age of a protein is a key contributor to the molecular adaptive 

rate at the gene level (Table 2 and Figure 5). When looking at protein divergence, however, the effect of 

gene age only persisted in Arabidopsis (Figure S6), suggesting a comparatively weaker impact of gene age in 

Drosophila. We further discuss the inherent limitations of our study as well as the potential drivers of the 

higher adaptive substitution rates of young genes.  

 

 

Even though our approach of protein divergence was extremely conservative, we cannot rule out the 

possibility that, in Drosophila, the lack of effect of gene age after correcting for protein divergence from the 

false negative’s rates of phylostratigraphy. Multiple studies have discussed the potential limitations of this 

method, with authors questioning its accuracy (Elhaik et al. 2006; Moyers and Zhang 2015, 2016), and 
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others defending it (Albà and Castresana 2007; Domazet-Lošo et al. 2007). The fast evolution of young 

proteins raised the question of whether old but fast-evolving genes could be misclassified as “young,” as 

BLAST might fail to identify homologs in these proteins. Domazet-Lošo et al. (2017), however, provided 

evidence for the reliable identification of young genes even when considering a false negative rate of 11-15% 

in BLAST searches. We, therefore, propose three other scenarios that could explain the weak signal observed 

in Drosophila. First, this effect could result from the low number of genes analysed in each clade. While for 

A. thaliana, we managed to sample a total of 1,529 genes, for D. melanogaster, only a sample of 421 genes 

was possible. Second, in Drosophila, the observed effect of gene age on	!#  appears to be mostly driven by 

the two youngest clades (Figure 1b), whereas for the rest of the phylostrata, the correlation loses its power 

(w: t = 0.600, p = 0.016; !"# : t =0.556, p = 0.025; !#: t = 0.467, p = 0.060). Hence, by removing 

the number of genes for analysis, we could be removing this effect. In contrast, in Arabidopsis, the effect of 

gene age still stands after removing the two youngest clades (w: t = 0.9487, p = 6.342e-06; !"# : t =0.872, 

p = 3.345e-05; !#: t = 0.692, p = 9.86e-04). Last and somewhat related to the latter, the weaker effect 

of gene age in D. melanogaster could be derived from the fact that multiple adaptive peaks occurred along the 

phylogeny. Indeed, the shape of the correlation between !#  and gene age in Drosophila is not gradually 

increasing, but instead has a peak in the adaptive substitution rate around the clades 6 and 7 (Figure 1b). 

Intriguingly, this pattern seems to follow the rate of emergence of young genes in this species (Tautz and 

Domazet-Lošo 2011). This adaptive peak appears before the major radiation of animal phyla, around the 

time when Earth was passing through glacial cycles (Hoffman et al. 1998). In turn, the burst of the emergence 

of new genes in Arabidopsis was reported to coincide with the plant-specific radiation, right before the 

emergence of Brassicaceae (Wang et al. 2009; Tautz and Domazet-Lošo 2011). This trend is consistent with 

our results in A. thaliana, where the more pronounced adaptive peaks occur in younger clades (after clades 

11 and 12 in Figure 1b). These patterns were also observed in the analysis of gene age with the same number 

of genes in all clades (Figure S7). 

 Another challenge that we had to overcome was the lack of structural annotations for young genes. 

Even though we observed a relatively good correlation between the prediction method and the annotated 

PDB structures (see Material and Methods), it remains the possibility of potential artefacts from this analysis. 

Hence, more annotated PDB structures would be required to further confirm the effect of RSA and gene 

age. Besides, we have also to point out that our study could only assess the effect of gene age in proteins for 

which a homolog exists in the outgroup species, as estimates of divergence are needed to infer the molecular 

adaptive rate (Eyre-Walker et al. 2006; Eyre-Walker and Keightley 2009; Galtier 2016). We could, 

therefore, be underestimating the impact of gene age on the rate of adaptive substitutions by not accounting 

for the most recently emerged genes. Nonetheless, our study represents a first attempt of inferring the 

impact of gene age on the molecular adaptive rate and gives light to the potential strong influence of the 

evolutionary origin of a gene in species adaptation to their environments. 
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Our findings suggested that the effect of gene age on the molecular adaptive rate differs between species, 

likely being correlated with major species diversifications. Indeed, studies across taxa have proposed that 

young genes are involved in lineage-specific adaptations to their environments, which could explain this 

pattern. In protozoa, Kuo and Kissinger (2008) found that many genus- or species-specific genes code for 

surface antigens that are involved in host-parasite interactions. In basal metazoans, such as Nematostella 

(Babonis et al. 2016) and Hydra (Khalturin et al. 2009), young genes were also found to be important in the 

defence and stress responses. In plants, the same pattern is observed, with lineage-specific genes playing a 

central role in species specification and defence response against pathogens (Cui et al. 2015). In Drosophila, 

Chen et al. (2010) reported that new genes are involved in essential functions for the viability of this 

organism. Our study supported these findings and further revealed that young genes also contribute to the 

higher rates of adaptive evolution in proteins involved in the defence mechanisms in Drosophila and 

Arabidopsis. Moreover, we showed that young genes are likely enhancers of the relaxation of purifying 

selection detected in these proteins (Figure 5). This study, therefore, highlights the strong relationship 

between the age of a protein and its function, suggesting that both factors may be contributing to the higher 

rates of adaptive evolution observed in young genes.  

 

 

Our study further emphasized that the faster evolution observed in young genes is driven both by a higher 

rate of adaptive and non-adaptive substitutions. These findings suggest that, after their emergence, young 

genes evolve through relaxed selection, as first proposed by Ohno (1970), but also by acquiring beneficial 

mutations, as described in the “adaptive-conflict” model (Piatigorsky and Wistow 1991; Hughes 1994). 

Ohno’s idea of evolution was “non-Darwinian” in its nature, as he believed that “natural selection merely 

modified while redundancy created” (Ohno 1970). He proposed that new genes evolve through the 

accumulation of “forbidden” mutations, where they are only preserved if the development of a formerly non-

existent function occurs, a process known as neo-functionalization. In this scenario, natural selection only 

acts at the stage of acquiring a new function. Further extensions of this theory suggested that the preservation 

of a new gene can also occur through sub-functionalization, where the accumulation of deleterious mutations 

leads to a complementary loss of function in both copies of the gene (Force et al. 1999; Prince and Pickett 

2002). In contrast, the “adaptive-conflict” model assumed that the ancestral gene can carry more than two, 

although pleiotropically constrained functions (Piatigorsky and Wistow 1991; Hughes 1994). Once the 

duplication event occurs, each copy then becomes specialized in one of the ancestral functions. In this case, 

the split of the ancestral gene proceeded through positive Darwinian selection (Piatigorsky and Wistow 

1991; Hughes 1994). These theories are based on the evolution of gene duplicates and are in line with the 

idea of evolution as a “tinkerer” proposed by Jacob (1977), where evolution adjusts the already existing 

elements. In de novo evolution, however, new genes emerge by acquiring new functions from the non-coding 

fragments of the genome (Cai et al. 2008; Heinen et al. 2009; Tautz and Domazet-Lošo 2011). This process 

is thought to proceed through a stochastic phase followed by the successive accumulation of beneficial 

The adaptive interplay between gene age and protein function 

What drives the higher rates of adaptation in young genes? 
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mutations, ultimately leading to a new function with a species-specific selective advantage (Carvunis et al. 

2012; Neme and Tautz 2014; Palmieri et al. 2014; Zhao et al. 2014). 

If we look at the fundamental ideas behind these theories, we can draw one major feature that 

portraits the evolution of new genes: young genes are further away from their optimal conditions. Hence, 

we posit that adaptation in these genes agrees with an “adaptive walk” model (Wright 1932; Smith 1970b; 

Orr 2002). As their full potential has yet to be met, more consecutive beneficial mutations are theoretically 

needed to reach their fitness optimum, thus leading to the higher molecular adaptive rates observed in these 

genes. In turn, older genes are closer to their optimal features, thus only accumulating mutations with small 

effects on fitness, translating into the lower rates of adaptation observed in these proteins. Our study, 

therefore, highlights that the distribution of beneficial mutations across deep evolutionary time-scales 

follows a pattern of diminishing returns. 

 

3.5 Material and Methods 

The D. melanogaster and A. thaliana datasets were taken from Moutinho et al. (2019b) and included a total of 

10,318 and 18,669 genes respectively, with data on protein length, gene expression. Gene age data was 

obtained from published data sets, wherein 9,004 Drosophila (Domazet-Lošo et al. 2017) and 15,935 

Arabidopsis (Arendsee et al. 2014) genes were used. Analyses were performed dividing the genes into 12 

and 15 phylostrata for D. melanogaster and A. thaliana, respectively, according to the branches annotated. The 

analyses on the X-linked and autosomal genes in D. melanogaster were performed with 1478 and 7526 genes 

respectively. 

 

 

For the comparison between variables at the gene level we divided the dataset into two categories of protein 

length and gene expression, trying to keep similar number of genes between them. For the analysis of protein 

length, we used the full set of genes for which gene age data was available. Short proteins had length up to 

366 and 389 amino-acids, and long proteins were the ones with length up to 4,674 and 5,098 amino-acids 

in A. thaliana and D. melanogaster respectively. Due to the low number of genes across clades, the stratification 

analyses were accomplished by combining genes across phylostrata. For D. melanogaster, gene age was 

categorized in 6 main clades by combining clades 3 and 4, 5 and 6, 7 to 10, and 11 and 12, keeping the 

others unchanged. In A. thaliana, the 15 clades were combined in 6 main clades by merging clades 5 to 8 and 

clades 9 to 15. For gene expression, a total of 16,117 and 6,247 genes were used for A. thaliana and D. 

melanogaster respectively. Genes were categorized as lowly expressed if the mean expression levels were up 

to 10.3 and 6.8, and highly expressed genes were the ones with expression up to 6,632.8 and 4,237.0 in A. 

thaliana and D. melanogaster respectively. For D. melanogaster, gene age was categorized in 6 categories by 

combing clades 3 to 5, 6 to 9, and 10 to 12.  

 

 

 

Categorization of protein length and gene expression with gene age 
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Since most young genes lack a defined three-dimensional structure (Wilson et al. 2017), they do not have 

information on the residue’s solvent accessibility. Hence, we used a deep learning approach, NetSurfP-2.0, 

that predicts the RSA of each residue from the amino-acid sequence (Klausen et al. 2019) by applying the 

HH-suite sequence alignment tool for protein similarity searches (Remmert et al. 2012). To assess whether 

this approach provided reliable results, we compared the RSA estimates of NetSurfP-2.0 with the ones 

obtained from the PDB structures (Moutinho et al. 2019b). We found a good correlation between the two 

approaches for both species (t = 0.571, p < 2e-216; t = 0.462, p < 2e-216, for D. melanogaster and A. 

thaliana respectively). RSA estimates were successfully obtained for a total of 4,238,686 and 7,479,807 

amino-acid residues for A. thaliana and D. melanogaster respectively. The stratification analysis was performed 

by comparing buried (RSA < 0.05) and exposed (RSA >= 0.05) residues, according to Miller et al. (1987). 

The phylostrata groups were defined by combining clades 5-6, 7-8, 9-10, and 11-12 in D. melanogaster, and 

8-11, and 12-15 in A. thaliana. To correct for the variation within each category of RSA we then took two 

subsets of sites with similar RSA estimates. For lower RSA estimates we took sites with values between 0.03 

and 0.05 in Drosophila, making a total of 187,026 sites, and among 0.10 and 0.20 in Arabidopsis, for a total of 

816,047 sites. For higher RSA estimates, we used sites with values between 0.55 and 0.60 in Drosophila, 

making a total of 386,586 sites, and among 0.60 and 0.65 in Arabidopsis, for a total of 444,995 sites. For this 

analysis, the phylostrata groups were defined by combining clades 7-9 and 11-12 in D. melanogaster, and 9-

11 and 13-15 in A. thaliana. The stratification analysis of RSA per gene was performed for the total number 

of genes in both species by making two categories of genes according to their proportion of exposed residues 

(RSA > 0.05). Genes with lower proportions of exposed residues had values between 0.44 and 0.92 in 

Drosophila, and among 0.689 and 0.89 in Arabidopsis. Genes with higher proportion of exposed sites had 

values between 0.92 and 1 in Drosophila, and among 0.89 and 1.00 in Arabidopsis. The phylostrata groups 

were defined by combining clades 5-7, 8-10, and 11-12 in D. melanogaster, and 10-11, and 12-15 in A. 

thaliana.  

The analysis of residue intrinsic disorder was successfully achieved for a total of 7,126,304 and 

3,645,645 sites for A. thaliana and D. melanogaster respectively. Sites classified as having low intrinsic disorder 

were the ones with a value up to 0.066 and 0.068, and the ones with high intrinsic disorder had a value up 

to 0.586 and 0.590 for A. thaliana and D. melanogaster respectively. In D. melanogaster, analyses were 

accomplished with the 12 clades initially described. In A. thaliana, the 15 clades were combined in 6 main 

clades by merging clades 5 to 8 and clades 9 to 15. 

 

 

Protein divergence was obtained for each gene by computing the proportion of amino-acid differences. To 

remove the positive correlation between protein divergence and gene age we chose an arbitrary value (0.02 

in both species) and randomly sampled around 100 and 150 genes, in D. melanogaster and A. thaliana 

respectively, that were at the maximum difference of 0.01 to that value. Due to the low number of genes 

Categorization of protein structure with gene age  

Correcting for protein divergence 
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available for this analysis, we combined clades 3-4, 5-6, and 7-10, each containing between 15 to 98 genes, 

making a total of 421 genes in Drosophila. In Arabidopsis, the phylostrata groups were defined by combining 

clades 11-12 and 13-15, each containing between 43 and 150 genes, making a total of 1,529 genes for 

analysis. 

 

 

Gene ontology terms were obtained from the “dmelanogaster_gene_ensembl” and the “athaliana_eg_gene” 

databases, for D. melanogaster and A. thaliana respectively, using the R package “biomaRt” (Durinck et al. 

2005). These analyses were accomplished with a total of 2,710 and 15,604 genes for D. melanogaster and A. 

thaliana, respectively, for which annotations were available. The comparison between old and young genes 

was performed by considering the genes in the root of the tree (Clade 1 in Figure 1a) as “old” and the rest as 

“young” in D. melanogaster. In A. thaliana, genes belonging to clades 1 to 7 were considered old, and young 

otherwise. 

 

 

For all analysis, 100 bootstrap replicates were made by randomly sampling genes or sites in each category. 

The Grapes program was then run with the Gamma-Exponential distribution of fitness effects (Galtier 

2016). Results for w, !"#  and !#  were plotted using the R package “ggplot2” (Wickham 2016) by taking 

the mean value and the 95% confidence interval of the 100 bootstrap replicates performed for each category. 

Statistical significance was assessed with Kendall’s correlation tests. To do so, the mean value of the 100 

bootstrap replicates was taken for each category. An analysis of covariance (ANCOVA) was performed using 

the estimates of !"#  and !#  as response variables, and gene age as an explanatory variable, in combination 

with chromosome type (X or autosome), protein length, gene expression, residue intrinsic disorder, and 

RSA, and their respective interactions. Normality, homoscedasticity, and independence of the error terms 

of the model were assessed with the package “lmtest” (Zeileis and Hothorn 2002) in R (R Core Team 2017). 

 

 

 Categorization of protein function with gene age 

Estimation of the adaptive and non-adaptive rate of non-synonymous substitutions 
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CHAPTER IV 

What Is the Interplay Between 
Intramolecular Variation and Patterns of 

Adaptation at the Species Level? 
 

 

4.1 Abstract 

The frequency and nature of adaptive mutations are widely heterogeneous between species. For instance, 

fruit flies and wild mice exhibit higher adaptation rates than primates and plants. What determines this 

variation is, however, not fully understood. Over the years, several studies have proposed different 

hypotheses to explain such heterogeneity in rates of adaptation. Some rely on the stochastic population 

genetics theory at the molecular level, while others consider the phenotypic space, where each organism is 

represented as a number of dimensions climbing a fitness landscape. Molecular rates of adaptation, however, 

also vary between and within genes. Such variation can confound comparative analyses at the species level. 

Here, we try to understand the variability in adaptation rates between species by accounting for patterns of 

variation at the intramolecular level. We used a comparative population genomics approach across multiple 

animal species with distinct life-history traits. To estimate the rate of adaptive substitutions, we fitted models 

of distributions of fitness effects at the amino-acid residue level. We found a negative correlation between 

molecular rates of adaptation and the effective population size (%&). Despite the relatively weak effect, our 

findings contradict the %&  hypothesis on positive selection. Instead, they are in line with the theoretical 

expectations at the phenotypic space. Conversely, when looking at the efficiency of negative selection, our 

findings support the %&  hypothesis. Moreover, we found that this effect reflects the differences in the 

distribution of fitness effects between buried and exposed residues. In lower-%&  species, exposed residues 

accumulate more mutations of mild effects due to weak selection. In turn, buried residues will only fix 

mutations of large effect due to stronger selective constraints. Our study, therefore, emphasizes the 

importance of assessing the interplay of selective patterns at different organizational levels to shed light on 

the molecular basis of adaptation. 
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4.2 Introduction 

Molecular rates of adaptation are widely diverse among species (e.g., Gossmann et al. 2010; Halligan et al. 

2010; Hvilsom et al. 2012; Galtier 2016; Moutinho et al. 2019a). For instance, fruit flies (e.g., Brookfield 

and Sharp 1994; Smith and Eyre-Walker 2002; Welch 2006; Sella et al. 2009), mice (Halligan et al. 2010), 

rabbits (Carneiro et al. 2012a), bacteria (Charlesworth and Eyre-Walker 2006), and some plant species 

(Ingvarsson 2010; Slotte et al. 2010) present higher proportions of adaptive substitutions (a) when 

compared to primates (e.g., Boyko et al. 2008; Eyre-Walker and Keightley 2009; Hvilsom et al. 2012; 

Castellano et al. 2019) and many other plants (Gossmann et al. 2010). Unravelling the determinants of such 

variation, however, is not an easy task.  

At the molecular level, several studies proposed that the observed cross-species variation in rates 

of adaptation could be attributed to differences in effective population sizes (%&) (Eyre-Walker et al. 2006; 

Eyre-Walker and Keightley 2009; Jensen and Bachtrog 2011; Gossmann et al. 2012). On the one hand, 

population genetics theory predicts that adaptation is limited by the population mutation rate (q=4%&µ) 

(Charlesworth 2009; Karasov et al. 2010; Cutter et al. 2013). Under this assumption, populations with 

larger %&, such as fruit flies and mice, adapt faster due to the higher availability of mutations (Gillespie 1999, 

2001). On the other hand, the nearly neutral theory (Kimura and Ohta 1971; Ohta 1972, 1973, 1992) 

predicts that, as the effect of genetic drift is stronger in small-%&  species, the probability of fixation of an 

advantageous mutation decreases, while the accumulation of slightly deleterious mutations increases 

(Gillespie 1999; Lanfear et al. 2014). (Gillespie 1999; Lanfear et al. 2014). Conversely, large-%&  species 

are under stronger selection, thus removing deleterious mutations at a faster rate and increasing the 

probability of fixation of a beneficial mutation (Ohta 1972, 1973, 1992; Orr 1998; Gillespie 1999; Lanfear 

et al. 2014). By performing a comparative analysis across 44 different species, Galtier (2016) showed that 

%&  was positively correlated with a, which would corroborate the “adaptation limited by mutation” theory. 

Fluctuations in a, however, can be explained both by the effect of negative (!"# ) and positive (!#) 

selection, as a = !#/ (!"#  + !#). By looking at the individual effect in these two components, he showed 

that %&  was negatively correlated with the rate of non-adaptive substitutions (!"#). However, he did not 

find any significant correlation between the rate of adaptive substitutions (!#) and %&, suggesting that the 

effect on a was derived from the fraction of mutations that have deleterious effects. 

In turn, long-term fluctuations in %&  can bias estimates of molecular adaptive rates (Eyre-Walker 

and Keightley 2009; Jensen and Bachtrog 2011; Rousselle et al. 2018). On the one hand, a decrease in 

population size may underestimate rates of adaptation because slightly deleterious mutations might be 

detected as polymorphism, while negligibly contributing to divergence. On the other hand, a demographic 

expansion may overestimate the molecular adaptive rate, as the low polymorphism levels mirror a pattern 

of an excess of substitutions (Eyre-Walker 2002). Rousselle et al. (2019) recently assessed the long-term 

and short-term effects of %&  by comparing results among groups of distantly-related and closely-related 

species, respectively. The authors found that, when comparing closely-related species, there was a positive 
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correlation between !#  and %&. By contrasting groups of distantly-related species, however, they found a 

weak negative correlation between !#  and %&. Rousselle et al. (2019) suggested that the observed 

differences between time-frames reflect the hypothesis that the long-term %&  affects the distribution of 

fitness effects (DFE) and, consequently, the molecular rate of adaptation.  

At the phenotypic level, these theoretical expectations take a turn. Populations are expected to 

suffer from the so-called “cost of complexity” (Orr 2000). This theory is based on the Fisher’s geometric 

model of adaptation (Fisher 1930a). Fisher suggested that, in more complex species, i.e., larger long-lived 

organisms, mutations are more likely to be detrimental than beneficial. As Orr (2000) mentioned: “Changing 

the length of an arbitrary mechanical part by one inch, for instance, is more likely to derail the function of a 

microscope than a hammer”. This idea derives from the concept of high dimensionality: as a larger number 

of dimensions is available in more complex organisms, the adaptive walk takes more steps to reach their 

fitness peak. Consequently, these organisms, which typically have small-%&, adapt slower than simple ones 

(Orr 2000; Welch and Waxman 2003). Intriguingly, a higher proportion of adaptive substitutions should be 

expected in such less efficient adaptive walks: as the number of traits (i.e., dimensions) is larger, a higher 

number of adaptive changes are necessary to “climb” fitness peaks (Lourenço et al. 2013). This hypothesis 

was used by Rousselle et al. (2019) to explain the negative correlation observed between !#  and long-term 

%&. 

These different findings suggest that the interaction between rates of molecular adaptation and 

measures of genetic diversity across species is a complex process. Moreover, it is known that molecular 

adaptive rates vary substantially within genomes. Linked selection, for instance, creates heterogeneous 

patterns of polymorphism along the genome (Maynard Smith and Haigh 1974; Charlesworth 1994; Gillespie 

2000b). Besides, we have recently shown that the macromolecular structure of proteins acts as a major 

determinant of the molecular adaptive rate, where beneficial mutations accumulate at a faster rate on 

residues at the surface of proteins (Moutinho et al. 2019b). These factors could, therefore, be confounding 

comparative population genomic inferences of the relationship between !#  and %&. Huber et al. (2017) 

indeed suggested that models accounting for different biological factors, such as mutational robustness and 

organism complexity, lead to different predictions on how the DFE varies among species. 

 Here, we control for this potential bias by analysing patterns of intra-molecular variation between 

species. With this, we aim to understand the interplay between patterns of selection at different 

organizational levels. To do so, we analysed a wide range of species with different life-history traits from a 

previously published dataset (Galtier 2016). We fitted different DFE models across species to estimate the 

molecular rate of adaptation at the amino-acid residue level. By analysing how the effect of the relative 

solvent accessibility (RSA) varies across species, our study aims to deliver a better understanding of the 

variation in molecular rates of adaptation at larger taxonomic scales.  
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4.3 Results 

We analysed patterns of intramolecular variation across 41 species of animals from a previously published 

dataset (Galtier 2016). The data included eleven mammals, ten arthropods, five sauropsids, four 

echinoderms, four molluscs, two tunicates, one annelid, one nematode, one ribbon worm, one cnidarian, 

and one teleost (Table S1 in Appendix III). The number of genes per species varied between 836 and 13,584 

(Table S1 in Appendix III). The DFE model comparison showed that the ScaledBeta and GammaExponential 

models had the best fit for the majority (~64%) of the species (Table S1 in Appendix III), suggesting the 

prevalence of segregating beneficial mutations in these taxa, in agreement with what Galtier (2016) 

reported. To infer the effect of positive and purifying selection across species, we estimated rates of adaptive 

(!#) and non-adaptive (!"# ) amino-acid substitutions with the Grapes program (Galtier 2016).  

 

To assess the effect of the macromolecular structure on the efficiency of selection between species, we 

analysed the relationship between the effect of the residue’s RSA and species genetic diversity ('(), here 

used as a proxy for the effective population size (%&). The separate analysis of buried and exposed residues 

across species suggests a substantial variation on the magnitude effect of RSA both on !"#  (Figure S1 in 

Appendix III) and !#  (Figure S2 in Appendix III). By looking at the singular correlation of buried and 

exposed residues with the log-transformed '(, we observed a significant negative correlation for estimates 

! and !"#  for both types of residues (Table 1 and Figure 1a). While we observed a negative trend for 

estimates of !#, the correlation was not significant (Table 1 and Figure 1a). When looking at the relationship 

between the differences in !, !"# , and !#  between exposed and buried residues, we confirmed the 

negative correlation with the log-transformed '( (Figure 1b). Moreover, by assessing the effect of RSA 

between species, we observed a much higher variability for estimates of !#  than !"# , particularly in lower 

'( species (Figure 1b). For instance, primates and ants present a higher variation between residues than 

molluscs and butterflies (Figure 1b). 

To further assess the interaction between RSA and '(, we discretized RSA values in ten categories 

with similar numbers of sites for each species. Our results suggested that the correlations for !"#  and !#  

with '( are stronger for lower values of RSA, suggesting a lower variation in estimates of !"#  and !#  for 

buried residues (Table 2 and Figure 2). When looking at the slope of the linear regression, we observed a 

strong relationship between the log-transformed '( and !"# , which becomes steeper with higher RSA 

values (Table 2 and Figure 2). For !#, however, this relationship appears to be weaker, with higher values 

observed for intermediate values of RSA (Table 2 and Figure 2). By jointly analysing all species with an 

ANCOVA analysis, we observed that, for !"# , there is a significant effect for the log-transformed '( and a 

marginally significant interaction between RSA and the former, suggesting a stronger impact of '( for higher 

RSA values (Table 3). For !#, our results suggested a significant effect of both RSA and log-transformed 

The impact of the macromolecular structure on rates of adaptive and non-adaptive substitutions between 

species 
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'(. These effects, however, seem to be purely additive, since the interaction between the two variables was 

not retained by the model selection procedure (Table 3). As we were dealing with a wide range of different 

taxa, we assessed whether the phylogenetic relationship between species was biasing our results (Felsenstein 

1985). After correcting for the effect of the phylogeny, we observed that the significant negative correlation 

prevails for estimates of !"#  in all categories of RSA. For !#, however, no significant negative correlation 

was found (Table S2 in Appendix III). This pattern suggests a generally weaker effect of the log-transformed 

'( on estimates of !#.  

 

Table 1. Statistical results for the analysis of the effect of the log-transformed '( on !"#  and !#  in buried 

and exposed residues. 

RSA )*+ )+ 

Buried -0.652 (***) -0.021 

Exposed -0.722 (***) -0.211 

 
Note. For each variable, the Pearson correlation coefficient (r) of the log-transformed '( is shown with 

the respective significance (*P < 0.05; **P < 0.01; ***P < 0.001; “.” 0.05 ≤ P < 0.10) for !"#  and !#.  
 

 

Table 2. Statistical results for the analysis of the effect of the log-transformed '( on !"#  and !#  in ten 

categories of RSA. 

RSA 
)*+ )+ 

Correlation (r) Slope Correlation (r) Slope 

0.031 -0.729 (***) -0.027 (***) -0.011 -0.004 

0.130 -0.723 (***) -0.028 (***) -0.178 -0.009 
0.253 -0.707 (***) -0.028 (***) -0.223 -0.015 
0.370 -0.646 (***) -0.033 (***) -0.324 (*) -0.014 
0.471 -0.706 (***) -0.035 (***) -0.198 -0.012 
0.559 -0.616 (***) -0.032 (***) -0.281 (.) -0.013 
0.630 -0.613 (***) -0.040 (***) -0.130 -0.008 
0.683 -0.494 (**) -0.039 (***) -0.085 -0.010 
0.731 -0.555 (***) -0.037 (***) -0.098 -0.003 
0.781 -0.453 (**) -0.036 (***) -0.040 -0.002 

 

Note. For each variable, the Pearson correlation coefficient (r) and the coefficient of the linear regression 

of the log-transformed '( is shown with the respective significance (*P < 0.05; **P < 0.01; ***P < 0.001; 
“.” 0.05 ≤ P < 0.10) for !"#  and !#.  
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Figure 1. Relationship between the rate of protein evolution (w), non-adaptive non-synonymous 

substitutions (!"# ), and adaptive non-synonymous substitutions (!#) with the log-transformed '(	for (a) 

the separate analysis of buried and exposed residues, and (b) the differences in w, !"# , and !#  estimates 

between exposed and buried residues. (a) Each dot represents the mean values of the 100 bootstrap 

replicates performed for buried and exposed residues in each species. (b) Each dot represents the difference 

in w, !"# , and !#  between exposed and buried residues for the respective species. Species are coloured 

according to the taxonomic group (see Table S1 in Appendix III). In both (a) and (b), lines represent a 

linear model performed as a function of RSA with the log-transformed '(. 

 

 

 

Table 3. ANCOVA estimates for the proportion of contribution of the log-transformed '(, RSA, and their 

interaction obtained with the best model procedure in !"#  and !#. 
 

)*+ )+ 

log (,-)  86.67% (***) 22.25% (**) 
RSA 11.62% (***) 74.68% (***) 
Interaction 1.26% (.) - 

 

Note. For each variable, the proportion of explained variance is shown with the respective significance 

(*P < 0.05; **P < 0.01; ***P < 0.001; “.” 0.05 ≤ P < 0.10) for !"#  and !#. 
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Figure 2. Relationship between w, !"# , and !#  with the log-transformed '( for 10 categories of RSA. 

Each dot represents the respective estimates for the different RSA values in each species. For each category 

of solvent exposure, a quantile regression was fitted to the data, which is represented with the respective 

colours of each RSA category.  

 

 

 

4.4 Discussion 

We first discuss some potential limitations associated with the study of adaptation between species with 

different life-history traits. We then provide an overview of the potential drivers of the variation in molecular 

adaptive rates at the species level by discussing the interplay of adaptive mutations at distinct levels of 

organization.  

  

 

The analyses of several different species carry potential limitations. On the one hand, the wide range of gene 

numbers across taxa could bias estimates of !, !"# , and !#  due to the different number of sites available 

for analyses. To correct this issue, we randomly down-sampled the same number of sites in each species and 

re-analysed Grapes on that subset of the data. Our results showed a good correlation between the reduced 
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and the full datasets for all estimates (r > 0.484, p < 0.001; Figure S3 in Appendix III), thus suggesting that 

the number of analysable sites does not bias our inferences of the rate of adaptive and non-adaptive 

substitutions. 

 Besides, the effect of linked selection could also be biasing our results, since this effect differs 

between species. As the frequency of selective sweeps is stronger in populations with larger %&  (Castellano 

et al. 2018; Chen et al. 2020), a higher proportion of neutral genetic variants at closely linked beneficial 

mutations (i.e., genetic draft) will be removed (Gillespie 2000b, 2001; Castellano et al. 2018; Chen et al. 

2020). This effect could, therefore, be confounding estimates of !"#  and !#  in large-%&  species. With the 

data available, however, we could not test for this effect. One way to overcome this limitation would be to 

estimate the recombination map of each species, as this would provide a thorough overview of the patterns 

of linkage between alleles throughout the genome. More and high-quality genomic data would be required 

to perform such analyses.  

 Moreover, the use of '( as a proxy for %&  constitutes another limitation, as '( reflects both %&  

and levels of mutation rate. Assessing the mutation rate landscape for each species would, therefore, 

contribute to better inferences of adaptation rates across species.  

 

 

Overall, our results suggest a strong effect of solvent exposure both on the rate of adaptive and non-adaptive 

amino-acid substitutions across species, thus expanding our previous findings on Drosophila and Arabidopsis 

(Moutinho et al. 2019a). When looking at the magnitude of this effect between species, our analyses suggest 

a stronger negative correlation between the rate of non-adaptive substitutions and the log-transformed '(, 

here used as a proxy for %&. Intriguingly, we found that this pattern is amplified for higher values of RSA 

(Table 2 and Figure 2). These results suggest that, for low-%&  species, such as primates and ants, the 

differences between RSA classes is enlarged, where buried residues appear under stronger purifying selection 

than exposed ones. In contrast, in large-%&  species, like butterflies and flies, the differences between 

exposed and buried residues substantially decrease, suggesting a stronger effect of purifying selection both 

on residues at the surface and the core of the protein structure (Figure 2).  

Analyses on the molecular adaptive rate, however, showed a weaker negative correlation with the 

log-transformed '(. Despite the lack of significance, the interaction between %&  and RSA seems to follow 

the same trend as in !"#  (Table 1 and Figure 2). In this way, lower-%&  species would be more likely to fix 

advantageous mutations at the surface of the proteins when compared to species with larger effect sizes. 

However, as beneficial mutations are rare, we may be lacking power in the species comparisons performed 

in this study. By using a larger number of species and a deeper evolutionary scale, Rousselle et al. (2019) 

reported a significant negative correlation between !#  and the long-term %&. This signal could, therefore, 

be amplified if more species were included. In contrast to the weak effect of '( on !#, our results suggest 

a strong impact of solvent exposure on the variation of !#  within species, thus supporting our previous 

What is the interplay of adaptation at distinct organizational levels? 
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findings on the relevance of the macromolecular structure on the rates of protein adaptation (Moutinho et 

al. 2019a). This strong effect could also be influencing the weaker pattern observed at the comparison 

between species. 

Our study further revealed that, by contrasting different structural classes of residues, we could 

detect a significant negative relationship between the molecular adaptive rate and the effective population 

size of the species (Table 2). These findings suggest that lower-%&  species have a higher chance of 

accumulating beneficial mutations. This pattern contradicts the initial prediction of the stochastic population 

genetics theory: that populations with larger '( adapt at higher rates (e.g., Eyre-Walker 2006; Charlesworth 

2009; Karasov et al. 2010; Gossmann et al. 2012). Instead, our findings seem to agree with the theoretical 

expectations at the phenotypic space. Under these assumptions, the rate of adaptive substitutions is expected 

to vary according to the rate of environmental change, which, in turn, is proportional to the generation time 

(Gillespie 2001; Lourenço et al. 2013). These predictions are directly linked with the notion of 

dimensionality and the Fisher’s geometric model of adaptation (Fisher 1930a): more complex species, which 

usually have longer generation times, take more steps in an adaptive walk, thus accumulating comparatively 

more beneficial mutations (Orr 2000; Welch and Waxman 2003; Lourenço et al. 2013). Welch and 

Waxman (2003) indeed suggested that adaptation in the phenotypic space better resembles a rugged fitness 

landscape, comprising alternative phenotypic optima (e.g., Kauffman and Levin 1987). Under this model, 

species with more traits under selection potential acquire higher rates of adaptation due to the comparatively 

higher availability of multiple optima (Welch and Waxman 2003). Our results are, therefore, in line with 

this hypothesis. Besides, there are studies suggesting that smaller-%&  species might have a higher proportion 

of beneficial mutations by merely increasing the mutation load due to weak selection (Weissman and Barton 

2012). 

Our study confirmed the %&  hypothesis regarding the effect of purifying selection across species, 

an effect that is amplified at higher levels of solvent exposure. For positive selection, however, our findings 

contradict the initial assumptions of the stochastic population genetics theory. Instead, our results agree with 

the hypothesis at the phenotypic space, where species with more traits under selection tend to accumulate 

more beneficial mutations due to longer adaptive walks. These findings further emphasize the importance of 

integrating distinct levels of organization to better assess the fitness effects of mutations, thus providing a 

more profound understanding of the molecular basis of adaptation. 

 

4.5 Material and Methods 

 

We reanalysed a total of 41 species from a previously published dataset (Galtier 2016) (Table S1 in Appendix 

III). From this dataset, seven species pairs were “mirror species”, as referred by Galtier (2016), where each 

served as the outgroup for the other (Table S1 in Appendix III). We started by filtering the data to keep only 

one sequence with the lowest amount of missing data missing data for each outgroup species. Gene 

alignments with premature stop codons were discarded. Final dataset sizes ranged from 836 to 13,584 genes 

Population Genomics Data and Data Filtering 
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per species (Table S1 in Appendix III). The synonymous and non-synonymous unfolded site frequency 

spectrum (SFS), the number of synonymous (Lps) and non-synonymous (Lpn) polymorphic sites, and the 

synonymous (.() non-synonymous (./) divergence were estimated using the BppPopStats program from 

the Bio++ Program Suite (Guéguen et al. 2013). As this dataset included genes with little polymorphism 

and a substantial amount of missing data, we first estimated the ts/tv ratio per gene with BppPopStats. We 

then used the estimated median value to correct the estimations of polymorphisms and substitutions counts 

in each species (Li et al. 1985; Yang and Bielawski 2000) (Table S1 in Appendix III). Moreover, because in 

most species a large amount of positions was missing genotype information in one or several individuals, we 

randomly down-sampled polymorphic alleles at each site by keeping 70% of the sample size of each species 

(see Table S1 in Appendix III). The Grapes program was then used to compute a genome-wide estimate of 

the rate of adaptive (!#) and non-adaptive (!"# ) non-synonymous substitutions. The best distribution of 

fitness effects (DFE) for each species was inferred by comparing six different models using Akaike’s 

information criterion: Neutral, Gamma, Gamma-Exponential, Displaced Gamma, Scaled Beta, and Bessel 

K. This model comparison was performed on every dataset using the complete set of genes (see Table S1 in 

Appendix III). The selected model was then used to fit the different subsets of the data according to the 

macromolecular structure.  

 As our filtering method differed from the one used by Galtier (2016), we assessed whether 

estimates of '/, '(, '//'(, ./, .(, !, a, !"# , and !#  were well corroborated between approaches. 

Our analyses suggested a good correlation between all parameters (r > 0.658, p < 1.195e-06; Figure S4 in 

Appendix III). We further assessed the correlation between !, !"# , and !#  and the effective population 

size (%&) and found the same trend as Galtier (2016) reported: a significant negative correlation between ! 

(r = -0.630, p = 7.529e-06) and !"#  (r = -0.659, p = 2.291e-06) with the log-transformed '(, but no 

significant correlation between !#  and the log-transformed '( (r = -0.111, p = 0.474) (Figure S5 in 

Appendix III). 

 
 

 

To estimate the relative solvent accessibility (RSA) of each amino-acid residue, we used the program 

NetSurfP-2.0, which uses a deep learning approach to predict the RSA of each amino-acid from the protein 

sequence (Klausen et al. 2019). For this, we used the sequence of the focal species with less missing positions 

and applied the HH-suite sequence alignment tool for protein similarity searches (Remmert et al. 2012). To 

assess the effect of RSA on each species we divided the sites in buried (RSA < 0.05) and exposed (RSA > 

0.05) residues according to Miller et al. (1987). For the continuous analysis of RSA, we discretized amino-

acid residues in 10 categories of solvent exposure by keeping similar number of sites in each. Mean values of 

RSA ranged between 0.031 and 0.781 across categories. 

 
 
 

Analysis of the Macromolecular Structure 
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We performed 100 bootstrap replicates by randomly sampling sites in each category. The Grapes program 

was then run with the respective DFE for each category of RSA with the total number of sites in each species 

(Table S1 in Appendix III). Results for w, !"#  and !#  were plotted using the R package “ggplot2” 

(Wickham 2016) by taking the mean value and the 95% confidence interval of the 100 bootstrap replicates 

performed for each category. For the continuous analysis of RSA, results for w, !"#  and !#  were plotted 

by fitting a quantile regression to the data. Statistical significance of the correlations between w, !"#  and 

!#  and the log-transformed '( for each RSA class were assessed with the Pearson correlation coefficient. 

An analysis of covariance (ANCOVA) was performed using the estimates of !"#  and !#  as response 

variables, and RSA and the log-transformed '(, as well as their respective interactions, as explanatory 

variables. A model selection procedure was conducted using the “step” function (Hastie and Pregibon 1992; 

Venables and Ripley 2002) in R, which sequentially removes single effects and selects the model with the 

lowest AIC. Normality, homoscedasticity, and independence of the error terms of the selected model were 

assessed with the package “lmtest” (Zeileis and Hothorn 2002) in R (R Core Team 2017). To analyse the 

potential effect of phylogeny, a phylogenetic tree was obtained from the NCBI 

(http://www.ncbi.nlm.nih.gov/) taxonomy using the R package “taxize” (Chamberlain and Szöcs 2013). A 

generalized least square (GLS) model was used, with Grafen's correlation structure as implemented in the 

R package “ape” (Paradis et al. 2004). The impact of the phylogeny was fitted using the parameter “rho”, 

jointly estimated with the parameters of the linear model (Grafen 1989). A linear model in the form 

“response variable ~ log ('()”, for both !"#  and !#, was fitted independently for each RSA class.  

 

 

 

Estimation of the adaptive and non-adaptive rate of non-synonymous substitutions 
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CHAPTER V 

General Discussion 
 

 

How does adaptation proceed? More than 150 years have passed since Charles Darwin published “The origin 

of species”. With the almost unlimited amount of data and methods to study selection, we now have a deeper 

understanding of Darwin’s evolution. We know that a mutation at the DNA level may lead to a change in 

the protein sequence, which can cause dramatic changes at a higher organizational level, such as the organism. 

Such interplay across systems defines the evolutionary path through distinct organizational levels: from the 

nucleotide to the DNA sequence, to the protein, to the organism, to the population, and, eventually, to the 

species. An adaptive event follows a similar route. When a new beneficial mutation arises within a 

population, selection and drift will determine its fate. If this mutation provides a fitness advantage to the 

organism, then selection will act by increasing its frequency. The spread of this beneficial mutation 

throughout the population occurs at the DNA level, through the process of inheritance. In turn, this process 

depends on the fitness effect of that mutation, which is determined at the residue level. These fitness effects 

may vary along the genome, being contingent on factors such as the functional or structural importance of 

that region, mutation, and recombination rates. The way selection and drift act at the population level, 

however, will depend on demography: in small populations, drift will dominate, whereas, in large 

populations, selection will be more efficient.  

Understanding adaptation, therefore, requires a multilevel study of the patterns of selection: a study 

across systems. This thesis approached adaptation in such a form. By exploring the frequency and nature of 

adaptive mutations between species, within genomes, and within genes, this project delivered a 

comprehensive understanding of the molecular basis of adaptation.  

 

 

What was already known? 

Before the rise of genomics, quantifying the frequency and nature of adaptive mutations within genes was 

challenging. Instead, most of the studies focused on the variation in rates of protein evolution. One of the 

most relevant factors under study was the macromolecular structure of a protein. As a stable conformation 

is usually required to assure proper protein function, mutations that impair this stability are more likely to 

be counter-selected. Hence, residues at the core of the protein, which are essential to sustain a stable 

5.1 Adaptation within genes 
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structure, are expected to be more conserved. Several studies have indeed shown that exposed (e.g., Perutz 

et al. 1965; Choi et al. 2006; Liberles et al. 2012; Chi and Liberles 2016) and disordered residues (Guo et 

al. 2004; Wilke et al. 2005; Afanasyeva et al. 2018) evolve comparatively faster. However, a question 

remained: are these residues evolving faster due to less efficient purifying selection or due to the stronger 

effect of positive selection? 

 

What is new? 

This project showed that both a relaxation of purifying selection and a higher rate of adaptive substitutions 

explain the faster evolution observed in exposed and disordered residues. By analysing multiple confounding 

factors in animals and in plants, this study further revealed that the residue’s solvent accessibility acts as the 

main determinant of the rate of adaptive evolution at the intramolecular level, being even higher than the 

effect of mean gene expression levels. Moreover, these analyses showed a higher number of beneficial 

mutations in genes encoding proteins with central functions in the cell, which are mostly conserved across 

species. Interestingly, such proteins are targeted by pathogens during host infection, notably viruses. These 

findings, therefore, suggest that adaptation in proteins is mainly driven by the interactions between 

molecules, particularly at the between-species level, with host-pathogen coevolution likely playing a major 

role. 

 

 

What was already known? 

Stemming on many years of research, recombination (Hill and Robertson 1966; Marais and Charlesworth 

2003; Campos et al. 2014; Castellano et al. 2016) and mutation rates (King and Jukes 1969; Kimura 1983; 

Ohta 1992; Castellano et al. 2016) are well-known determinants of rates of protein evolution and adaptation 

at the genome level. Highly recombining regions favour the fixation of adaptive substitutions by breaking 

down linkage disequilibrium. In turn, regions with high mutation rates adapt faster due to the higher levels 

of genetic diversity, which increases the chance for adaptation to occur. At the gene level, proteins involved 

in the immune and stress response (e.g., Nielsen et al. 2005; Sackton et al. 2007; Stukenbrock et al. 2011; 

Enard et al. 2016) and in sex-related functions (Pröschel et al. 2006; Crowson et al. 2017) were reported 

with higher rates of adaptive evolution in several species. These studies reflect the vast variability in the 

frequency of adaptive mutations in the genomic space. The dynamics of these mutations across time, 

however, remained unexplored. 

 

What is new?  

This thesis explored the dynamics of adaptation across time by analysing genes with different evolutionary 

origins. By accounting for multiple confounding factors, this study overcame the difficulty of assessing the 

impact of gene age on rates of adaptation. These analyses revealed that young genes adapt at higher rates 

when compared to more ancient ones. As these genes are theoretically further away from their fitness 

optimum, these findings suggest that adaptation in young proteins proceeds in an “adaptive walk” manner 

5.2 Adaptation within genomes: a perspective in space and time 
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(e.g., Gillespie 1984; Orr 1998, 1999). This study, therefore, emphasized that the dynamics of beneficial 

mutations across deep evolutionary scales follow a pattern of diminishing returns.  

 

 

What was already known? 

Molecular rates of adaptation vary widely across species. For instance, primates and plants generally have 

lower rates of adaptive substitutions when compared to fruit flies and mice. Several studies hypothesized 

that such variation is due to the differences in effective population sizes (%&), where species with higher %&  

potentially adapt faster (Eyre-Walker et al. 2006; Eyre-Walker and Keightley 2009; Jensen and Bachtrog 

2011; Gossmann et al. 2012). This rationale follows the effect of mutation rate along the genome, lying in 

the theory that adaptation is limited by mutation. In turn, studies at the phenotypic level suggest that 

adaptation mostly occurs in response to an environmental change. This hypothesis follows Fisher’s geometric 

model of adaptation, which suggests that species with more traits under selection, such as primates, 

accumulate more mutations with beneficial mutations simply because the adaptive walk is much slower (Orr 

2000; Welch and Waxman 2003; Lourenço et al. 2013). The observed controversy in these findings 

highlights the complex dynamics of rates of adaptive evolution across taxa. 

 

What is new? 

To shed light on the determinants of such cross-species variation in molecular adaptive rates, I assessed the 

effect of intramolecular variation across several animal species. This study showed that in species with higher 

%&, the efficiency of purifying selection is much stronger both at buried and exposed residues, leading to 

generally lower evolutionary rates. Conversely, as the effect of selection is weaker in lower-%&  species, the 

variation at the intramolecular level becomes stronger, as only mutations with the strongest fitness effects 

are removed from the population. This leads to a higher accumulation of mutations in exposed residues when 

compared to buried ones. This project, therefore, supports the %&  hypothesis for the efficiency of negative 

selection. 

Despite the generally weaker signal found for rates of adaptation, these analyses suggested that 

species with lower %&  tend to accumulate more beneficial mutations. These findings, therefore, contradict 

the expectations of the %&  hypothesis for rates of adaptive evolution. Instead, they seem to agree with the 

assumptions at the phenotypic level, where large, long-lived species (which typically have lower %&) 

accumulate more adaptive mutations during the adaptive walk. Moreover, this study highlighted the strong 

impact of the macromolecular structure on rates of adaptive evolution across several taxa, as the distribution 

of fitness effects varies between buried and exposed residues. 

 

 

 

 

5.3 Adaptation at the species level 
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What are the major determinants of the molecular rate of adaptation? 

This thesis revealed the vast variability in rates of molecular adaptation at distinct scales of evolution. 

Intriguingly, such variation becomes more pronounced as we zoom in across organizational levels. By 

comparing the magnitude effect in rates of adaptive substitutions between species (Figure 1a), between genes 

(Figure 1b), and within genes (Figure 1c), one can observe that rates of adaptation vary comparatively more 

within genomes. This observation goes back to the initial assumptions of the neutral theory: that rates of 

evolution are relatively constant along the phylogeny while substantially varying among proteins (Kimura 

1983; Ohta 1992). What causes such variation within genomes?  

In summary, at the intramolecular level, solvent exposure acts as the primary determinant of the 

rate of adaptive evolution. Intriguingly, such effect seems to act independently of gene age, recombination 

rate, protein function, and gene expression. When looking at the gene level, however, adaptation seems to 

follow a more rugged path, where the interplay between gene age and protein function plays a significant 

role. At the species level, the effect of %&  interacts with the one of solvent exposure, where the distribution 

of fitness effects between buried and exposed residues varies according to the demography of the population. 

These findings emphasise the role of different factors in the rate of adaptive evolution across all organizational 

levels, thus highlighting the importance of a systematic study of adaptation.  

By including patterns of intramolecular variation at the scale of systems evolution, this thesis 

brought the study of adaptation to its most elemental level. We are now one step closer to obtain a holistic 

comprehension of the molecular basis of adaptation. 

 

 

5.4 Final remarks 
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Figure 1. Variation of the rate of adaptive non-synonymous substitutions (!#; in black) and the rate of non-

adaptive non-synonymous substitutions (!"# ; in grey) between species (a), within genomes (b), and within 

genes (c). The R2 Pearson’s correlation coefficient is given along with significance denoted by asterisks (** 

p-value < 0.01, *** p-value < 0.001). (a) Relationship between !#  and !"#  with the level of species 

nucleotide diversity (p), used as a proxy for effective population size, obtained from Galtier (2016). Each 

sample point represents one species. Dots with bigger sizes correspond to D. melanogaster (data from 

Moutinho et al. 2019b), which is the focus species of plots (b) and (c). (b) Relationship between !#  and 

!"#  with the recombination rate in cM/Mb, taken from Moutinho et al. (2019b). Each dot represents the 

mean value of !#  or !"#  for each recombination rate class. (c) Relationship between !#  and !"#  with the 

relative solvent accessibility (RSA), obtained from Moutinho et al. (2019b). Each dot represents the mean 

value of !#  or !"#  for each RSA class. This figure and legend were taken from Moutinho et al. (2019a). 
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Table S1. Statistical results for the analysis of the effect of gene age as a function of RSA on w, !"# , and 

!#. 

 A. thaliana D. melanogaster 

RSA w )*+ )+ w )*+ )+ 

Buried 0.854 (**) 0.818 (**) 0.709 (**) 0.667 (*) 0.333 0.667 (.) 

Exposed 0.927 (***) 0.491 (*) 0.782 (***) 0.722 (**) 0.444 (.) 0.444 (.) 

 

Note. For each variable, the Kendall’s τ of gene age is shown with the respective significance (*P < 0.05; 

**P < 0.01; ***P < 0.001; “.” 0.05 ≤ P < 0.10) for w, !"#  and !#  in A. thaliana and D. melanogaster. 

 

 

 
Figure S1. Relationship between gene age and gene length (a) and gene expression (b) for A. thaliana (top) 

and D. melanogaster (bottom). This analysis was performed by categorizing gene age according to the clades 

defined in Figure 1a. For each clade, the median value of gene length and gene expression is depicted with 

the black dot. The shaded area represents the values of gene length and mean expression levels within the 

1st and 3rd quartile. 
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Figure S2. Relationship between gene age and RSA (a) and residue intrinsic disorder (b) for A. thaliana (top) 

and D. melanogaster (bottom). Legend as in Figure S1. 

 

 

 

Figure S3. Estimates of w, !"#  and !#  plotted as a function of RSA and gene age in A. thaliana (top) and 

D. melanogaster (bottom). Analyses were performed by comparing a subset of buried and exposed residues 

(see Methods) across 11 and 9 categories of gene age in A. thaliana and D. melanogaster, respectively. Mean 

values of w, !"#  and !#  for each category are represented with the black points. Error bars denote for the 

95% confidence interval for each category, computed over 100 bootstrap replicates. 
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Figure S4. Estimates of w, !"#  and !#  plotted as a function of the proportion of exposed residues per 

protein and gene age in A. thaliana (top) and D. melanogaster (bottom). Analyses were performed by 

comparing proteins with higher and lower proportion of exposed residues (see Methods) across 10 and 7 

categories of gene age in A. thaliana and D. melanogaster, respectively. Legend as in Figure S3. 

 

 
Figure S5. Relationship between gene age and protein divergence before (a) and after (b) correction for A. 

thaliana (top) and D. melanogaster (bottom). Legend as in Figure S1. 
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Figure S6. Estimates of w, !"#  and !#  plotted as a function of gene age by correcting for protein 

divergence in A. thaliana (top) and D. melanogaster (bottom). Legend as in Figure S3. 

 

 

 

Figure S7. Relationship between w, !"#  and !#  and gene age with the same number of sites for each 

phylostrata in A. thaliana (top) and D. melanogaster (bottom). Legend as in Figure S3. 
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Table S1. Information on the number of genes, taxonomic group, the DFE model, and the transition to 

transversion ratio (ts/tv) for each species pair analysed in this study. 

Focal Species Outgroup Species Genes Group DFE Model ts/tv 

Abatus_cordatus Abatus_agassizi 2,144 echinoderms ScaledBeta 1.438 

Allolobophora_chlorotica_L2 Aporrectodea_icterica 9,751 annelids ScaledBeta 2.421 

Aptenodytes_patagonicus Aptenodytes_forsteri 2,479 birds GammaExpo 0.999 

Armadillidium_vulgare Armadillidium_nasatum 9,893 ants GammaExpo 1.780 

Artemia_franciscana Artemia_sinica 7,464 crustaceans GammaZero 2.664 

Caenorhabditis_brenneri Caenorhabditis_sp.10 836 nemtodes GammaZero 2.502 

Camponotus_ligniperdus Camponotus_aethiops 7,588 ants GammaZero 6.347 

Chelonoidis_nigra Chelonoidis_carbonaria 2,474 reptiles ScaledBeta 1.403 

Chlorocebus_aethiops Macaca_mulatta 6,686 primates GammaZero 1.105 

Ciona_intestinalis_A Ciona_intestinalis_B 3,750 sea_squirt GammaZero 2.393 

Ciona_intestinalis_B Ciona_intestinalis_A 3,727 sea_squirt GammaExpo 2.373 

Crepidula_fornicata Crepidula_plana 1,677 molluscs ScaledBeta 2.113 

Culex_pipiens Culex_torrentium 3,704 flies ScaledBeta 2.396 

Cyanistes_caeruleus Parus_major 1,433 birds GammaExpo 1.939 

Echinocardium_cordatum_B2 Echinocardium_mediterraneum 9,957 echinoderms GammaExpo 2.396 

Echinocardium_mediterraneum Echinocardium_cordatum_B2 9,896 echinoderms ScaledBeta 1.939 

Emys_orbicularis Trachemys_scripta 2,387 reptiles GammaZero 1.980 

Eudyptes_moseleyi Pygoscelis_papua 2,453 birds ScaledBeta 2.502 

Eulemur_coronatus Eulemur_mongoz 5,918 primates GammaZero 1.037 

Eulemur_mongoz Eulemur_coronatus 5,857 primates GammaZero 1.008 

Eunicella_cavolinii Eunicella_verrucosa 11,583 coral ScaledBeta 2.097 

Galago_senegalensis Nycticebus_coucang 2,894 primates GammaZero 2.448 

Halictus_scabiosae Halictus_simplex 3,495 ants ScaledBeta 2.555 

Hippocampus_guttulatus Hippocampus_kuda 13,584 sea_horse GammaZero 1.020 

Homo_sapiens Pan_troglodytes 6,102 primates GammaZero 1.020 

Lepus_granatensis Lepus_americanus 1,137 hares DisplGamma 3.706 

Lineus_longissimus Lineus_ruber 9,257 ribbon warms GammaExpo 1.982 

Macaca_mulatta Chlorocebus_aethiops 6,686 primates GammaZero 1.119 

Melitaea_cinxia Melitaea_didyma 5,155 butterflies GammaZero 2.330 

Messor_barbarus Messor_structor 7,894 ants GammaExpo 7.640 

Microtus_arvalis Microtus_glareolus 6,741 mice ScaledBeta 3.918 

Mytilus_galloprovincialis Mytilus_californianus 10,844 molluscs ScaledBeta 1.577 

Necora_puber Carcinus_aestuarii 6,551 crustaceans ScaledBeta 2.436 

Nycticebus_coucang Galago_senegalensis 2,893 primates GammaZero 2.406 

Ophioderma_longicauda_L1 Ophioderma_longicauda_L3 6,461 echinoderms GammaExpo 2.162 

Ostrea_edulis Ostrea_chilensis 2,823 molluscs ScaledBeta 1.980 

Pan_troglodytes Homo_sapiens 6,097 primates GammaExpo 1.167 

Physa_acuta Physa_gyrina 4,208 molluscs ScaledBeta 1.681 

Propithecus_coquereli Varecia_variegata_variegata 5,825 primates ScaledBeta 2.202 

Thymelicus_lineola Thymelicus_sylvestris 12,654 butterflies GammaZero 2.538 

Thymelicus_sylvestris Thymelicus_lineola 12,649 butterflies GammaExpo 2.431 
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Table S2. Statistical results for the analysis of the effect of the log-transformed '( on !"#  and !#  by 

accounting for the effect of the phylogeny. 

RSA            )*+ )+ 

0.031 1.687e-02 (***) 2.111e-02 

0.130 6.9952-10 (***) 3.961 e-10 
0.253 2.873e-01 (***) 8.495 e-02 
0.370 1.010e-01 (***) 3.184 e-02 
0.471 2.675e-01 (***) 5.884 e-03 
0.559 1.241e-01 (***) 7.194 e-02 
0.630 6.029e-02 (***) 8.504 e-03 
0.683 2.233e-01 (***) 2.055 e-01 
0.731 3.590e-02 (***) 6.184 e-02 
0.781 3.203e-10 (***) 1.976 e-10 

 

Note. For each variable, the rho coefficient of the phylogenetic regression (Grafen 1989) of the log-

transformed '( is shown with the respective significance (*P < 0.05; **P < 0.01; ***P < 0.001; “.” 

0.05 ≤ P < 0.10) for !"#  and !#.  
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Figure S1. Estimates of !"#  for buried and exposed residues for each species analysed. Mean values of !"#  

for each category of RSA is represented with the black points. Error bars denote for the 95% confidence 

interval for each category, computed over 100 bootstrap replicates. 

 

Ostrea_edulis Pan_troglodytes Physa_acuta Propithecus_coquereli Thymelicus_lineola Thymelicus_sylvestris

Melitaea_cinxia Messor_barbarus Microtus_arvalis Mytilus_galloprovincialis Necora_puber Nycticebus_coucang Ophioderma_longicauda_L1

Galago_senegalensis Halictus_scabiosae Hippocampus_guttulatus Homo_sapiens Lepus_granatensis Lineus_longissimus Macaca_mulatta

Echinocardium_cordatum_B2 Echinocardium_mediterraneum Emys_orbicularis Eudyptes_moseleyi Eulemur_coronatus Eulemur_mongoz Eunicella_cavolinii

Chelonoidis_nigra Chlorocebus_aethiops Ciona_intestinalis_A Ciona_intestinalis_B Crepidula_fornicata Culex_pipiens Cyanistes_caeruleus

Abatus_cordatus Allolobophora_chlorotica_L2 Aptenodytes_patagonicus Armadillidium_vulgare Artemia_franciscana Caenorhabditis_brenneri Camponotus_ligniperdus

buried exposed buried exposed buried exposed buried exposed buried exposed buried exposed

buried exposed buried exposed buried exposed buried exposed buried exposed buried exposed buried exposed

buried exposed buried exposed buried exposed buried exposed buried exposed buried exposed buried exposed

buried exposed buried exposed buried exposed buried exposed buried exposed buried exposed buried exposed

buried exposed buried exposed buried exposed buried exposed buried exposed buried exposed buried exposed

buried exposed buried exposed buried exposed buried exposed buried exposed buried exposed buried exposed

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

Solvent exposure



 105 

 

Figure S2. Estimates of !#  for buried and exposed residues for each species analysed. Legend as in Figure 

S1. 
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Figure S3. Correlation between estimates of (a) ./, (b) .(, (2)	!, (d) '/, (e) '(, (f) '//'(, (g) a, 

(h) !"# , and (i) !#, for all sites and the minimum number of sites in each species. Each dot represents one 

species. 
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Figure S4. Correlation between our estimates of (a) ./, (b) .(, (2)	!, (d) '/, (e) '(, (f) '//'(, (g) 

a, (h) !"# , and (i) !#, with the ones obtained in Galtier (2016) for the full dataset. Each dot represents 

on species. 
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Figure S5. Relationship between the rate of protein evolution (w), non-adaptive non-synonymous 

substitutions (!"# ) and adaptive non-synonymous substitutions (!#) with the log-transformed '(. Each 

dot represents the mean values of the 100 bootstrap replicates performed for each species. The blue lines 

represent a linear model performed as a function of the log-transformed '(. 
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Chapter 1

A Population Genomics Lexicon

Gustavo V. Barroso, Ana Filipa Moutinho, and Julien Y. Dutheil

Abstract

Population genomics is a growing field stemming from soon a 100 years of developments in population
genetics. Here, we summarize the main concepts and terminology underlying both theoretical and
empirical statistical population genomics studies. We provide the reader with pointers toward the original
literature as well as methodological and historical reviews.

Key words Population genetics, Neutral theory, Coalescent theory, Mutation, Recombination, Selec-
tion, Lexicon

1 Genomic Variation

1.1 Loci, Alleles,

and Polymorphism

Population genomics studies the evolution of genome variants in
populations. A locus (pl. loci) refers to a given location in the
genome. The particular sequence at a given locus may vary between
individuals, each variant being termed an allele. We call loci with at
least two alleles polymorphic and invariant loci monomorphic. The
term polymorphism refers to the presence of multiple alleles but is
commonly used as a countable noun as a substitute for “polymor-
phic locus” (one polymorphism, several polymorphisms).

Alleles may differ because of the nucleotide content, but also in
length, as a result of nucleotide insertions or deletions (a.k.a.
indels). Variable loci of length one can have up to four distinct
alleles (A, C, G, or T) and are termed single nucleotide polymorph-
isms (SNPs). SNPs constitute, so far, the majority of the data
accounted for by population genetic models.

1.2 Mutations Molecular events altering the genome are termedmutations. Muta-
tions include substitution of a nucleotide into another one, removal
or addition of one or several nucleotides, as well as multiplication of
some part of the genome. Mutation is the process by which new
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alleles are formed. The infinite site model assumes that during the
timeframe of evolution modeled, each locus have undergone at
most one mutation [1–3]. This model also implies that each muta-
tion creates a new allele in the population and that there is no
“backward” or “reverse” mutation. The infinite site model is a
generally reasonable assumption as the mutation rate is typically
low and genomes are large. It might be locally invalidated, however,
in case of mutation hotspots or when larger evolutionary timescales
are considered. Under this premise, at most two alleles are expected
per locus. Loci with two alleles are termed diallelic or biallelic, the
first term having historical precedence and being more accurate [4],
while the second is more commonly used since the 1990s. Further-
more, in a population genomic dataset, a sampled diallelic locus is
called a singleton if one of the two alleles is present in only one
haploid genome, and a doubleton if it is present in precisely two
haploid genomes.

1.3 The Wright–

Fisher Model

The simplest process of allele evolution within a single population is
named theWright–Fisher model. It describes the evolution of alleles
in a population of fixed and constant size, where all alleles have the
same fitness, and therefore the same chance to be transmitted to the
next generation (neutral evolution). The population is assumed to
be panmictic, that is, individuals are randomly mating. Time is
discretized in non-overlapping generations so that the alleles in the
current generation are a random sample of the alleles from the
previous generation, without new alleles being generated by muta-
tion. Under such conditions, allelic frequencies evolve only because
of the stochasticity in the sampling of gametes that will contribute
to the next generation, a process termed genetic drift. Because
populations are of finite size, alleles will be sampled at their actual
frequencies on average only and the ultimate fate of any allele is
either to reach frequency zero in the population and be lost, when
by chance no individual carrying this allele has any descendant in
the next generation or to become fixed when all other alleles have
been lost. The time until fixation depends on the population size:
smaller populations will show a stronger sampling effect and
shorter times to fixation. When genetic drift is the only force acting
on a population, the number of alleles at a given locus is necessarily
decreasing over time.

The Wright–Fisher model with mutation extends the Wright–
Fisher model by introducing new alleles in the population, at a
given rate. As the mutation rate is low, new mutations appear in a
single copy, their initial frequency is then 1/2N in a diploid popu-
lation. Mutation and drift act in opposite direction and amutation-
drift equilibrium is reached when the rate of allele creation by
mutation equals the rate of allele loss by drift. The genetic diversity
is then determined by the sole product of the population sizeN and
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the mutation rate u. Under the infinite site model, the expected
heterozygosity at a locus in a population of diploid individuals is
approximated by [1]

ĥ ¼ 4 �N � u
4 �N � u þ 1

while the expected number of distinct alleles and their respective
frequencies can be estimated using Ewens’s sampling formula [5].

A substitution occurs when a new mutation has spread in the
population, increasing from frequency 1/(2N) to 1 (see Note 1).
Kimura showed that the average time to fixation of a new mutation
is 4N in a population of diploid individuals [6]. Furthermore, as a
neutral mutation has a probability of reaching fixation equal to 1/
(2N) and given that there are 2N � u new mutations per genera-
tion, in a purely neutrally evolving population, the expected num-
ber of substitutions per generation is equal to 2N � u � 1/
(2N) ¼ u. The substitution rate is therefore independent of the
population size and, assuming that the mutation rate is constant in
time, the number of substitutions between two populations is a
direct measure of the number of generations separating them, a
phenomenon termed molecular clock [7].

1.4 The Backward

Wright–Fisher Model:

The Standard

Coalescent

While the Wright–Fisher process naturally describes the evolution
of sequences within populations one generation after the other,
population genetic data typically represent individuals sampled at a
given time point. For inference purposes, it is therefore convenient
to model the history of the genetic material that gave rise to the
sample. The modelization of the ancestry of a sample (also known
as the genealogy) is typically done backward in time, as every locus
find a common ancestor in the past, until the most recent common
ancestor (MRCA) of the sample. The merging of two lineages in
the past is called a coalescence event, and the set of mathematical
tools describing this process under a variety of demographic models
is referred to as the coalescence theory. Kingman [8] first described
the standard coalescent, the genealogical model corresponding to
the Wright–Fisher model (but see refs. 9 and 10 for a historical
perspective). The standard coalescent is, therefore, also referred to
as the Kingman’s coalescent.

2 Beyond the Wright–Fisher Model

The Wright–Fisher model has been extended in several ways to
include more realistic assumptions on the underlying evolutionary
process. These extensions led to the concept of Effective population
size (Ne), originally defined as the number of individuals contribut-
ing to the gene pool. When a population deviates from the assump-
tions of the Wright–Fisher model, Ne is no longer equal to the
census population size (N). Often (but not always) in such cases,
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Ne can be obtained by a linear scaling of N such that it reflects the
number of individuals from an idealized Wright–Fisher population
that would display the same genetic diversity as the actual popula-
tion under study [11].

2.1 Demography A possible deviation from the Wright–Fisher assumptions happens
when the population size is not constant across generations. The
term demographic history generally refers to the collection of demo-
graphic parameters (effective sizes, growth rates) that describes the
history of the population until its most recent common ancestor
[12]. When population size varies in a cyclic manner with relatively
small period n generations, the resulting genealogies can be mod-
eled by a Wright–Fisher process with a population size equal to the
harmonic mean of the historical population sizes, so that

Ne ¼ n
Pn

i
1
Ni

,

where Ni refer to the ith population size [13]. More drastic demo-
graphic effects include genetic bottlenecks, corresponding to a sharp
decrease (shrinkage) in population size.

2.2 Population

Structure

In the absence of panmixia, genetic exchanges occur more often
between certain individuals, resulting in population structure with
several subpopulations. Population structure may occur for differ-
ent reasons such as overlapping generations, assortative mating, or
geographic isolation [12]. Assortative mating occurs when indivi-
duals choose their mates according to some similarity between their
phenotypes. If the phenotype is genetically determined, assortative
mating can influence the level of heterozygosity in the
population [14].

Gene flow describes the migration of genetic variants between
subpopulations under a scenario of population structure. It reduces
genetic differentiation among subpopulations [15]. Ultimately,
subpopulations can diverge and become genetically isolated, a pro-
cess called speciation. The simplest speciation processes involve
spontaneous isolation (isolation model) or spontaneous isolation
followed by a period of gene flow (isolation with migration
model) [16].

When speciation events occur in a short timeframe and ances-
tral population sizes are large, ancestral polymorphism may persist
in the ancestral species, a phenomenon called incomplete lineage
sorting (ILS) [17]. The expected amount of ILS depends on the
number of generations between two isolation events (ΔT) and the
ancestral effective population size NeA [18]:

PrðILSÞ ¼ 2
3
e

�2 � ΔT

NeA

� �
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The term introgression is used to depict the transfer of genetic
material between diverged populations or species through second-
ary contact [19]. As a result, extant lineages share a common
ancestor that predates the two isolation or speciation events. The
resulting genealogy may, therefore, be incongruent with the phy-
logeny defined by the two splits, depending on the order of coales-
cence events between lineages [20].

3 Statistics on Nucleotide Diversity

Statistics are needed to infer population genetics parameters from
polymorphism data. The site frequency spectrum (SFS) describes the
empirical distribution of allele frequencies across segregating sites
of a given (set of) loci in a population sample. For a sample of
n sequences (in n haploid individuals or n/2 diploid individuals),
the so-called unfolded SFS is the set of counts of derived alleles
X ¼ (X1, X2, . . ., Xn�1), where sample configurations Xi denote
the number of sites that have n � i ancestral and i derived alleles.
The ancestral state is usually estimated using an outgroup sequence.
In cases where we cannot assess the ancestral allele, the folded site
frequency spectrum, X0, may be calculated instead. X0 represents
the distribution of the minor allele frequencies, such as X 0

i ¼ Xi þ
Xn�i for i < n/2 and X 0

n=2 ¼ Xn=2 [13, 21, 22]. The shape of the

SFS is affected by underlying population genetic processes, such as
demography and selection, and therefore serves as the input of
many population genetics methods [23] (see Fig. 1).

Watterson’s theta, here noted θ̂S , is an estimator of the population
mutation rate θ ¼ 4Ne � u, whereNe is the (diploid) effective popu-
lation size and u the mutation rate. It is derived from the number of
segregating sites Sn of a sample of size n [25]. Assuming an infinite
sites model, Sn is equal to the product of u and the expected time to
coalescence, corrected by the sample size:

E½Sn� ¼ u � 4 �Ne
Xn�1

i¼1

i:

Since 4Ne � u ¼ θ the equation may be written as E[Sn] ¼ θ � an,
where an ¼ Pn�1

i¼1 i. The proposed estimator of θ for the sample is

θ̂S ¼ Ŝn
an

¼ Ŝn

1þ 1
2
þ . . .þ 1

n � 1

� � ,
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where Ŝn is the observed number of segregating sites in the sample.
In order to be comparable, values of θ are usually reported per site,
and θ̂S is then further divided by the sequence length L. This
estimator is unbiased when the data is generated from a Wright–
Fisher process but is not robust to deviations from it, due to
selection or demography [26].

Tajima’s π, the average pairwise heterozygosity is a measure of
nucleotide diversity defined as the number of pairwise differences
between a set of sequences [27]. Under the infinite sites model, the
number of mutations separating two orthologous chromosomes
Dij is equal to the number of nucleotide differences between
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Fig. 1 Effect of demography on the shape of the site frequency spectrum (SFS). The figure depicts four
scenarios: constant population size, exponential growth, genetic bottleneck, and population structure. The red
curve shows the expectation under a constant population size. In the case of exponential growth or a genetic
bottleneck, the SFS displays an excess of low-frequency variants. Population structure, here simulated as two
subpopulations exchanging migrants at a low rate, results in an excess of intermediate frequency variant
when we reconstruct a single SFS from the two subpopulations. Simulations were performed using the
msprime software [24] (see also Chapter 9 and the online companion material)
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sequences i and j. As the expectation of the average pairwise nucle-
otide differences between all pairs of sequences in a sample is equal
to θ ¼ 4Ne � u [28], Tajima’s estimator of θ is:

θ̂π ¼ 2
nðn � 1Þ � L

Xn�1

i¼1

Xn

j¼iþ1

Dij ,

where L is the total sequence length.

4 Selective Processes

4.1 Protein-Coding

Genes

The coding region of a protein-coding gene, also known as Coding
DNA Sequence (CDS) is the portion of DNA, or RNA, that
encodes a protein. A start and stop codons limit the coding region
at the five-prime and three-prime end, respectively. In mRNAs, the
CDS is bounded by the five-prime untranslated region (5-UTR)
and the three-prime untranslated region (3’-UTR), also included in
the exons. Mutations within coding regions are expected to be of
distinct types: synonymous mutations lead to no change of amino-
acid at the protein level due to the redundancy of the genetic code,
as opposed to non-synonymous mutations. Non-synonymous muta-
tions can further be classified as conservative and non-conservative
(¼ radical), whether they replace an amino-acid by a biochemically
similar one or not. Because of the structure of the genetic code, the
four types of mutations at one site (toward A, C, G, or T) can be in
principle both synonymous and non-synonymous. Sites where
n out of four possible mutations are synonymous are called n-fold
degenerated. Four-fold degenerated sites only undergo synonymous
mutations, while a mutation at a so-called zero-fold degenerated site
is necessarily non-synonymous. Most of second codon positions are
zero-fold degenerated, while many of the third positions are four-
fold degenerated.

4.2 Fitness Effect The resulting change of fitness at the organism level characterizes
the type of mutations: neutral mutations have no impact on the
fitness, while harmful or deleterious mutations induce a lower
fitness. Conversely, advantageous mutations increase the fitness of
the organism compared to the wild-type genotype. There is, how-
ever, a wide range of selective effects, which extends the categori-
zation of mutations from strongly deleterious, through weakly
deleterious, neutral to mildly and highly adaptive mutations. The
relative frequencies of these types of mutations represent the distri-
bution of fitness effects [29, 30].

The selection coefficient (s) is a measure of differences in fitness,
which determines the changes in genotype frequencies that occur
due to selection. It is commonly expressed as a relative fitness. If
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one considers a single locus with two alleles A and a, a standard
parametrization is to attribute a fitness of 1 to the homozygote AA
and relative fitness of 1 + s for the homozygote aa. The heterozy-
gote Aa is attributed a fitness of 1 + h � s, where h is the so-called
coefficient of dominance. The s parameter varies between � 1 and
+ 1 (but see Note 2), wherein values comprised among � 1 and
0 are indicative of negative selection, while positive values corre-
spond to positive selection [13, 31]. The efficiency of selection,
however, depends on both s and the effective population size, Ne,
so that mutations with Ne � s � 1 behave in effect like neutral
mutations, whose fate is determined by genetic drift only [29].

4.3 Types of

Selection

Positive selection acts on alleles that increase fitness, raising their
frequency in the population over time, while negative selection (¼
purifying selection) decreases the frequency of alleles that impair
fitness. Both positive and negative selection decrease genetic diver-
sity. Conversely, balancing selection acts by maintaining multiple
alleles in the gene pool of a population at frequencies higher than
expected by drift alone. Three mechanisms are generally acknowl-
edged: heterozygous advantage, where heterozygotes have a higher
fitness than homozygotes and maintain genetic polymorphism;
frequency-dependent selection, where the fitness of the genotype is
inversely proportional to its frequency in the population; and envi-
ronment-dependent fitness of genotypes (also known as local adap-
tation) [31, 32].

4.4 Inference of

Selection in Protein-

Coding Sequences

The strength and direction of selection acting on protein-coding
regions may be assessed by contrasting the rate of non-synonymous
(potentially under selection, dN) to synonymous (assumed to be
neutral, dS, but see, for instance, [33]) substitutions between spe-
cies. In a population of sequences evolving neutrally, all substitu-
tions are neutral and the two rates are equal, leading to a dN/dS
ratio equal to one on average. Assuming non-synonymous muta-
tions are either neutral or deleterious while synonymous mutations
are always neutral, the rate of non-synonymous substitutions will be
lower than the rate of synonymous substitutions, and the dN/dS
ratio will be lower than one. Conversely, if non-synonymous muta-
tions are positively selected, their rate of fixation may exceed the
rate of synonymous mutation, leading to a higher substitution rate
and a dN/dS ratio higher than one.

At the population level, the ratio of non-synonymous (pN) and
synonymous (pS) polymorphism is indicative of the strength of
purifying selection acting on a protein. Because non-synonymous
mutations are more likely to have a negative fitness effect and be
counter-selected, they tend to be removed from the population by
purifying selection or segregate at low-frequency. We can estimate
the synonymous and non-synonymous genetic diversity by com-
puting the average pairwise heterozygosity π separately for
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non-synonymous and synonymous mutations, noted πN and πS,
respectively. The πN/πS ratio is therefore generally below one, the
stronger the purifying selection, the closer the ratio is to zero.

Contrasting the dN/dS and pN/pS ratios allows to test the
selection regime acting on the sequences [34]. If mutations are all
neutral or deleterious, we expect the ratios dN/dS and pN/pS to be
equal. Positively selected mutations will tend to quickly rise to
fixation and will not be observed as polymorphism, leading to an
increased dN/dS ratio higher than pN/pS. Conversely, balancing
selection will lead to an excess of polymorphism detectable as dN/
dS < pN/pS [35]. A simple measure of the proportion of amino-
acid substitutions resulting from positive selection (α) is given by
1 � (dS � pN/dN � pS) [36]. Using the complete synonymous and
non-synonymous site frequency spectra, it is further possible to
estimate the distribution of fitness effects and account for slightly
deleterious and slightly advantageous mutations when estimating
the rate of adaptive substitutions (see Chapter 5) [37].

5 Linkage and Recombination

5.1 The Coalescent

with Recombination

In sexually reproducing species, recombination refers to both the
shuffling of non-homologous chromosomes and the rearrange-
ment of homologous chromosomes during meiosis. Such cross-
over events cause each chromosome to have two parent chromo-
somes in the previous generation, which are themselves the pro-
ducts of recombination events in the previous generations.
Therefore, any chromosome in the current generation can be
viewed as a mosaic of chromosomes that existed in the past (see
Fig. 2) [38]. The collection of coalescence and recombination
events that describes the history of sampled chromosomes until
the most recent common ancestor of each non-recombining
block is reached (see Fig. 2) is called the ancestral recombination
graph (ARG) [39]. Compared to a tree-like genealogy of a sample
without recombination, whose complexity depends only on the
sample size, the complexity of the ARG grows with the sample
size and the number of recombination events in the ancestry of
the sample.

Backward-in-time, the most recent common ancestor (MRCA)
denotes the first individual where the entire sample (population)
coalesces for a particular non-recombining block. The TMRCA
notes the timing of such event. DNA sequences provide no infor-
mation beyond the MRCA in a sample of genomes since all indivi-
duals will share any mutation that happens further back in time
[40]. In the presence of recombination, different parts of the
genome will have different MRCAs. In this case, all ancestral mate-
rial is eventually found as a contiguous sequence in the grand most

Population Genomics Lexicon 11

https://doi.org/10.1007/978-1-0716-0199-0


recent common ancestor (GMRCA) of the sample (see Fig. 2). If the
GMRCA is not an MRCA for any nucleotide, this individual does
not have any significance for DNA sequences [39].

In the ARG, nucleotide segments that are found both in past
chromosomes and in contemporary samples are termed ancestral
genetic material (see Fig. 2). Conversely, non-ancestral genetic
material refers to segments that are found in past chromosomes
but not in contemporary samples. Furthermore, non-ancestral
genetic material flanked on both sides by ancestral genetic material
is referred to as trapped genetic material. In this setting, recombi-
nation events that happen in trapped genetic material can affect
linkage disequilibrium between present-day nucleotides (see Fig. 2).
Thus the existence of trapped genetic material introduces long-
range correlations between genealogies rendering the coalescent
with recombination a non-Markovian process along chromosomes

Present a b

Past

*

TMRCA

[x, 1]

TMRCA

[0, x]

1

2

3

4

5

x

Fig. 2 An ancestral recombination graph. An ancestral recombination graph is a
collection of recombination (1–2) and coalescence (3–5) events. In each
depicted chromosome, white bars represent segregating ancestral material,
black bars represent coalesced ancestral material, and thin lines represent
non-ancestral material. The asterisk denotes trapped non-ancestral material.
Note that “1” does not impact the sample because the resulting segments are
joined back together in “4” before coalescing in “5.” There are thus only two
relevant TMRCAs in the ARG, separated at position x
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[41]. The Sequentially Markov coalescent (SMC) is an approxima-
tion to the coalescent with recombination whereby recombination
events are assumed to happen only within ancestral material. This
approximation allows the use of efficient algorithms in both simu-
lation and data analysis [42, 43].

5.2 Impact of

Linkage on Selection

An excess of linkage between loci compared to a random associa-
tion is termed linkage disequilibrium (LD). LD arises from genetic
drift, population admixture, and selection, but is reduced by
recombination each generation. It is, therefore, higher between
close loci and decays with increasing physical distance [44].

Linked selection refers to the reduction of diversity at neutral
sites that happens as a result of their physical linkage to variants
under selection [45]. In the absence of recombination, all variants
segregating in a chromosome would undergo the same shift in
frequency as the selected variant. However, recombination creates
new allelic combinations and reduces this correlation as the physical
distance from the selected locus increases (see Fig. 3).

Background selection refers to a form of linked selection where
the reduction of diversity at neutral loci results from linkage to a
locus under purifying selection [46], and genetic hitchhiking is
commonly used to depict linked selection due to linkage to a
locus under positive selection [47], where a new beneficial muta-
tion will rise in frequency in a population. As the new positively
selected allele increases its frequency, nearby linked alleles on the
chromosome will “hitchhike” along with it, also growing in fre-
quency, thus producing a selective sweep of genetic diversity (see
Fig. 3d). Hard sweeps occur when a new mutation is positively
selected and is therefore exclusively associated with the genetic
background where it arose. Conversely, soft sweeps occur when a
mutation is already segregating in the population at the onset of
selection. This mutation may exist in several genetic backgrounds
and therefore does not prompt a complete loss of genetic variation
after the selective sweep [47] (see Fig. 3a–c).

Linkage of two or more loci can also impair the efficacy of
positive selection, a phenomenon termed Hill–Robertson interfer-
ence (HRI) [48]. When two advantageous mutations at distinct loci
in distinct individuals segregate in the population, one will be lost
unless a recombination event brings them together. In the absence
of recombination between the selected loci, only the unlikely event
of recurrent mutations can generate the optimal haplotypic combi-
nation [49] (see Fig. 3e).
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A) Incomplete, then complete hard sweep

B) Incomplete, then complete soft sweep from standing genetic variation

C) Incomplete, then complete soft sweep from recurrent mutations

D) Background selection

E) Hill-Robertson interference

Fig. 3 Impact of selection on genetic diversity. Black lines represent individual genomes. SNP variants are
displayed by filled circles. Distinct variants at the same position are depicted with different colors: neutral
variants in gray, positive variants in red or yellow, and negative variant in blue. (a) A positively selected new
variant spreads in the population and removes genetic diversity at linked loci, generating a hard selective
sweep. (b and c) Segregation of several positively selected variants in different genetic backgrounds, either
from standing variation or recurrent mutations, resulting in a soft selective sweep. (d) Reduction of neutral
diversity because of linkage to deleterious mutations (background selection). (e) Competitive segregation of
positively selected variant at distinct loci, resulting in the loss of advantageous variants (Hill–Robertson
interference)
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6 Notes

1. The use of the term substitution differs in population genetics
and molecular biology. In the latter case, it describes a particu-
lar type of mutation where a single nucleotide replaces a dis-
tinct one (as opposed to insertions/deletions, for instance).

2. In some instances, s is substituted by � s, so that the relative
fitnesses become ωAA ¼ 1, ωAa ¼ 1 � h � s and ωaa ¼ 1 � s.
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Abstract
The importance of adaptive mutations in molecular evolution is extensively debated. 
Recent developments in population genomics allow inferring rates of adaptive mutations 
by fitting a distribution of fitness effects to the observed patterns of polymorphism and 
divergence at sites under selection and sites assumed to evolve neutrally. Here, we sum-
marize the current state-of-the-art of these methods and review the factors that affect the 
molecular rate of adaptation. Several studies have reported extensive cross-species varia-
tion in the proportion of adaptive amino-acid substitutions (α) and predicted that species 
with larger effective population sizes undergo less genetic drift and higher rates of adap-
tation. Disentangling the rates of positive and negative selection, however, revealed that 
mutations with deleterious effects are the main driver of this population size effect and 
that adaptive substitution rates vary comparatively little across species. Conversely, rates 
of adaptive substitution have been documented to vary substantially within genomes. On a 
genome-wide scale, gene density, recombination and mutation rate were observed to play 
a role in shaping molecular rates of adaptation, as predicted under models of linked selec-
tion. At the gene level, it has been reported that the gene functional category and the mac-
romolecular structure substantially impact the rate of adaptive mutations. Here, we deliver 
a comprehensive review of methods used to infer the molecular adaptive rate, the potential 
drivers of adaptive evolution and how positive selection shapes molecular evolution within 
genes, across genes within species and between species.
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Introduction

After Darwin proposed that natural selection acts as a main driver of evolution, a major 
goal of evolutionary biologists has been to understand how beneficial mutations shape 
species adaptation to their environment. Over the years, the number of approaches used 
to detect positive selection has increased substantially, making use of the increasing 
amount of genome data available. In particular, methods have been developed to pin-
point genes, or positions within these genes, that exhibit a pattern of genetic variation 
statistically incompatible with a pure nearly-neutral scenario (Ohta 1992), where muta-
tions are considered to be neutral, nearly neutral or deleterious (i.e. Nielsen et al. 2005; 
Ometto et  al. 2005; Kosiol et  al. 2008). The ecological relevance of such candidate 
genes can be further tested using functional annotations, when available, or experimen-
tally, for instance, by using reverse genetics and ancestral allele reconstruction (i.e. Hil-
son et al. 2004; Nielsen et al. 2005; Voight et al. 2006; Roux et al. 2014). This allowed 
to detect instances of adaptive evolution in many functional categories, such as immune 
genes in ants (Roux et al. 2014) and in hominids (Nielsen et al. 2005), virulence asso-
ciated genes in pathogens (Stukenbrock et al. 2011; Dong et al. 2014), and coat-color 
related genes in hares (Jones et al. 2018) and mice (Hoekstra et al. 2006). While such 
methods allow a detailed understanding of case-studies, they do not enable one to assess 
the genome-wide distribution of the fitness effects of mutations.

By contrast, mutation accumulation (MA) experiments are specifically designed to 
estimate a genome-wide rate of mutation and distribution of effects of mutations on 
fitness (i.e. Shaw et  al. 2002; Bataillon 2003; Rutter et  al. 2012). With this approach, 
one can infer (1) the number of mutations that led to the divergence between MA lines, 
and (2) the fitness effects of these mutations on the (fitness-related) trait of interest (i.e. 
viability or lifetime reproductive success; see Glossary). Previous studies have inferred 
the presence of beneficial mutations in MA line experiments both in the field and in 
greenhouse studies of A. thaliana (Shaw et al. 2002; Rutter et al. 2012). Nonetheless, 
MA approaches can only give insight on recent adaptive events, and, therefore, pro-
vide little information regarding the proportion of adaptive genetic differences between 
species. Furthermore, MA experiments yield too few beneficial mutations to be able to 
test for the occurrence of genomic regions where adaptive mutations are more likely to 
occur. Conversely, population genomic approaches only offer indirect insights on muta-
tion rates and fitness effects but can leverage patterns of sequence variation between 
and within species to infer rates of adaptive evolution, thus providing knowledge on the 
drivers of adaptation at deeper scales of evolution.

The role of positive (a.k.a. Darwinian) selection in molecular evolution is still widely 
debated (Hey 1999; Gillespie 2000; Kern and Hahn 2018; Jensen et al. 2019). The neu-
tral theory of molecular evolution (Kimura 1968) states that the bulk of segregating 
polymorphisms is either neutral or deleterious and that the genetic differences between 
species are explained mainly by neutral substitutions (see Glossary), while beneficial 
mutations are considered to be too rare to contribute much to the observed polymor-
phism and divergence. With an increasing amount of data becoming available, how-
ever, the question of whether adaptive mutations play a role in molecular evolution can 
be investigated with a greater precision. “How much of the genetic variation can be 
explained by adaptive evolution? What is the frequency of adaptive mutations along 
the genome? Are there regions where adaptive mutations are more likely to occur?” are 
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some of the questions that can now be addressed with population genomics data and 
statistical methods for the inference of selection.

Here, we present the current state-of-the-art methods used to model the distribution of 
fitness effects (DFE) and infer the frequency of adaptive mutations. We then review evi-
dence for variation in the rate of adaptive evolution within genes, within genomes and 
between species.

Synthesis of methods

In the following section, we review the methods that can be used to estimate the rate of 
adaptive evolution from sequence data. We distinguish two main approaches: phyloge-
netic methods, based on the divergence between multiple species; and population genetics 
approaches, which contrast within-species polymorphism to the divergence with an out-
group species.

Glossary

Mutation accumulation (MA): experimental design where a single inbred line is used 
to create various sub-lines that are propagated under conditions minimizing the oppor-
tunity for selection. MA lines are allowed to diverge independently for several genera-
tions. The number of mutations that led to the divergence between MA lines and the 
fitness effects of these mutations on the trait of interest influence the empirical distribu-
tion of the mean phenotypic value of the trait. If the trait measured is fitness or a fitness 
component, this setting can be used to infer the genome-wide mutation rates and the 
underlying distribution of fitness effects (DFE, see below).
Synonymous mutation: a mutation, in a protein-coding region, that leaves the amino-
acid residue unchanged.
Non-synonymous mutation: a mutation, in a protein-coding region, that leads to a 
change in the amino-acid residue.
Substitution: a fixed difference between species.
Polymorphism: a mutation segregating within a population (or a species).
Positive selection: selective process by which a beneficial mutation increases in fre-
quency within a population.
Adaptive evolution: at the molecular level, it occurs in a certain genomic region 
through the successive fixation of advantageous mutations (Charlesworth and Charles-
worth 2010).
Negative/Purifying selection: natural selection against a deleterious mutation.
Distribution of fitness effects (DFE) of mutations: represents the distribution of the 
relative frequencies of selection coefficients (s), extending from strongly and weakly 
deleterious, through neutral mutations to slightly and strongly advantageous.
dN: number of non-synonymous substitutions per site.
dS: number of synonymous substitutions per site.
Dn: number of non-synonymous substitutions per gene/region.
Ds: number of synonymous substitutions per gene/region.
Pn: number of non-synonymous polymorphisms per gene/region.
Ps: number of synonymous polymorphisms per gene/region.
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α: proportion of amino-acid substitutions that are adaptive.
Genetic drift: random changes in allele frequencies produced by the sampling of the 
genetic variants that compose a population every new generation.
Genetic draft: a process that induces allele frequency changes through recurrent selec-
tive sweeps at linked positions.
Selective sweep: the process by which a beneficial substitution reduces genetic diversity 
at linked positions.
Background selection: the process by which negatively selected deleterious mutations 
reduce neutral genetic diversity at linked positions.
ωa: rate of adaptive amino-acid non-synonymous substitutions relative to the mutation 
rate.
Ka+: rate of adaptive amino-acid substitutions, denoted as: αKa, where Ka represents an 
alternative notation of dN.

Quantifying the proportion of adaptive substitutions

(1)	 Phylogenetic methods

The strength and direction of selection on the branch of a phylogenetic tree can be 
measured by contrasting the nonsynonymous (dN) and synonymous divergence (dS) in a 
given gene (e.g. Miyata et al. 1979; Li et al. 1985; Yang and Nielsen 2002; Eyre-Walker 
2006). The dN/dS ratio, noted as ω, provides an estimate of the rate of nonsynonymous 
substitutions relative to the rate of synonymous substitutions. Assuming that mutation rates 
at synonymous and non-synonymous sites are constant and equal, and that synonymous 
substitutions are selectively neutral, genes with ω > 1 are considered to be evolving under 
positive selection, while genes with ω < 1 are evolving under negative selection. Because 
ω is based on averages of substitution rates across multiple nucleotide sites that undergo 
both positive and negative selection, this statistic can only detect strong positive selection 
(e.g. Yang and Nielsen 2002; Eyre-Walker 2006). As most nonsynonymous mutations are 
expected to be either neutral or deleterious, dN will tend to be much lower than dS, hence 
ω will tend to be globally lower than one (i.e. Yang and Nielsen 2002; Eyre-Walker 2006).

In order to consider variation in selective constraints in space and time, models have 
been developed to account for variable selective pressure among sites (Nielsen and Yang 
1998; Yang et  al. 2000, 2005), branches (Yang and Nielsen 1998), or both (so-called 
branch-site models; Yang and Nielsen 2002; Zhang et  al. 2005; Kosakovsky Pond et  al. 
2011). In site-based models, the ω ratio varies across sites and positive selection is inferred 
at a specific site if the average dN is higher than dS over all lineages. In branch-based mod-
els, the ω ratio varies among lineages and positive selection is detected if the average dN is 
higher than dS across all sites in a certain branch or a series of branches defining a lineage 
in a phylogenetic tree. In turn, branch-site models allow the ω ratio to vary both across 
sites and lineages. Using this framework, distinct models can be compared to test for the 
occurrence of positive selection at particular sites or branches (e.g. Yang and Nielsen 2002; 
Zhang et al. 2005). Although these methods detect adaptation at the site level, it has been 
shown that they are conservative in measuring selection over a certain region and/or line-
age (Rodrigue and Lartillot 2017). This higher conservatism could be due to adaptive pro-
cesses not being concentrated on a small number of sites but rather scattered across a large 
number of positions in a certain genomic region (Rodrigue and Lartillot 2017). Moreover, 
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branch-site models assume that evolution on the majority of branches is neutral and that 
adaptive processes are rare and usually isolated. Hence, events of frequent adaptation over 
long evolutionary periods would not be captured, leading to underestimates of the rate of 
adaptive evolution in the tested proteins (Nielsen and Yang 1998; Yang et al. 2000, 2005; 
Rodrigue and Lartillot 2017). Besides, as these approaches are based on multiple-species 
alignments, the analysis is focused on genes that are shared by all species, which are more 
ancient and typically more conserved. Rapidly evolving genes are typically discarded from 
such analysis since their alignment becomes less reliable as the divergence between species 
increases. 

(2)	 Population genetics methods
	    

a.	 The McDonald and Kreitman (MK) test

Population genetic methods pioneered by Hudson, Kreitman, and Aguadé (1987) test a 
neutral evolution scenario by comparing the number of polymorphic sites within a popula-
tion with the number of substitutions with a distinct species (HKA test). Under a neutral 
scenario, the relative amount of polymorphism and divergence is constant between loci. 
The HKA test compares these values between at least two genomic regions to test this pre-
diction (Hudson et al. 1987). McDonald and Kreitman (1991) first extended this approach 
to detect adaptive protein evolution (Fig. 1). The so-called MK test requires data from as 
little as two closely-related species, typically including several individuals in the study spe-
cies and one individual from an outgroup species. It compares the number of polymor-
phisms to the number of substitutions for a locus in two classes of sites: synonymous, 
which are assumed to evolve neutrally, and non-synonymous, which are potentially under 
selection (McDonald and Kreitman 1991). The number of nonsynonymous substitutions 
is denoted as Dn, the number of synonymous substitutions as Ds, the number of nonsyn-
onymous polymorphisms as Pn and the number of synonymous polymorphisms as Ps (see 
Glossary), leading to the so-called MK-table: 

Polymorphisms Substitutions

Synonymous Ps Ds

Non-synonymous Pn Dn

Under a scenario where all mutations are either strongly deleterious or neutral, Dn/Ds is 
expected to be equal to Pn/Ps. Conversely, Dn/Ds higher than Pn/Ps is taken as a signature of 
positive selection, and Dn/Ds lower than Pn/Ps can be observed in case of balancing selec-
tion. As a beneficial mutation reaches fixation at a faster rate than a neutral mutation, it 
contributes comparatively more to divergence than to polymorphism levels (McDonald and 
Kreitman 1991; Eyre-Walker 2006).

b.	 Extensions of the MK-test: Estimation of the proportion of amino-acid substitutions (α)

By applying a derivative of the MK-table, Charlesworth (1994) estimated the proportion 
of amino-acid substitutions that are driven by positive selection, a measure referred to as α 
(Fig. 1; see Glossary) (Charlesworth 1994; Smith and Eyre-Walker 2002): α = 1 − (DsPn)/
(DnPs). However, as the levels of nucleotide diversity and amino-acid divergence are gen-
erally low, the numbers of polymorphic sites and nonsynonymous substitutions are very 
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small for most genes taken individually. Hence, estimates of α for single genes have inher-
ently large sampling variances, leading to the need for pooling data across many genes 
(Stoletzki and Eyre-Walker 2011). Such pooling is often done by summing counts of 
polymorphisms and divergence in each category (Fay et al. 2001) or by taking the aver-
age across genes (Smith and Eyre-Walker 2002). By using a different parametrization of 
the MK test, Sawyer and Hartl (1992) used a Poisson random field (PRF) model to derive 
expectations for the counts of Dn, Ds, Pn and Ps by considering the processes of muta-
tion, selection, and genetic drift (see Glossary) acting independently and simultaneously 
at multiple sites (Sawyer and Hartl 1992). From the PRF model, one can relate the scaled 
selection coefficient (γ = Ne S, where Ne represents the effective population size and s the 
selection coefficient) and counts of polymorphism and divergence. Based on this approach, 
Bayesian models were developed where the posterior distribution of scaled selection coef-
ficients for a given locus is inferred either by assuming a fixed-effects model, where γ is 
constant across sites (Bustamante et al. 2002); or a random-effects model, where γ of each 
new mutation is drawn from a single underlying normal distribution (Sawyer et al. 2003).

However, a limitation of these approaches is that they do not account for the segregation 
of slightly deleterious mutations, which can bias estimates of α in a demography-dependent 

1987 1991

MK test (2)

1992 - 2003

First 
estimations of 

and (3)

2004 - 2006

First DFE 
models

Slightly deleterious 
mutations

DoFE 
MKTest

HKA test (1)

Slightly deleterious 
mutations

Demography

DoFE 
DFE-alpha

First DFE 
models using 

the SFS

2006 - 2009

Slightly deleterious 
and beneficial 

mutations
Demography

Grapes
PolyDFE 

DFE models 
with beneficial 

mutations

2016 - 2019

Slightly deleterious 
and beneficial 

mutations
Demography

DFE-alpha

2011

First DFE model 
with beneficial 

mutations

Slightly deleterious 
mutations

α MK

2012

DFE models 
accounting for the 
effect of linkage

Slightly deleterious 
and beneficial 

mutations

ABC-MK

2019

DFE models 
accounting for the 
effect of linkage

Adaptive protein 
evolution in the 
Adh locus (2)

~ 45 - 94% (3)

~ 57% (8)

2010

~ 60% (10)Amino-acid 
substitutions 

mainly 
deleterious (4)

~ 30% (5)

~ 50% (6)

~ 0 (7)

Immune and 
sex-related 

genes

~ 30% (9)

along the 
genome 

Adaptation 
mostly 

regulatory (11)

Gene density 
and mutation 

rate 

does not 
correlate with 

(12)

Gene 
expression 

Protein 
function

Protein’s 
macromolecular 

structure

RSA and type of 
amino-acid 
mutation

2014

Recombination 
rate 

Methods

Major 
findings
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evolution (top) and the major findings on the factors impacting the variation of the molecular adaptive 
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can be found in Table  1. Light orange boxes correspond to the variation of the molecular adaptive rate 
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selection coefficient; ωa: rate of adaptive non-synonymous substitutions; RSA: relative solvent accessibility. 
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cies figures were taken from PhyloPic (http://www.phylo​pic.org)

http://www.phylopic.org
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manner (Eyre-Walker and Keightley 2009). On the one hand, α can be underestimated if 
the population size has been relatively constant or decreased since the divergence from 
the outgroup species, because slightly deleterious mutations may be observed as polymor-
phisms while having a much lower chance of fixation when compared to neutral mutations. 
This, however, can be controlled by removing polymorphisms segregating at low frequen-
cies (Charlesworth 1994; Smith and Eyre-Walker 2002). On the other hand, α can be over-
estimated if the tested population experienced a demographic expansion: as the level of 
polymorphism is much lower, it leads to an apparent excess of substitutions (Eyre-Walker 
2002). Modelling of the full range of the fitness effects of mutations and proper accounting 
of the underlying demography of the sample is, therefore, needed to achieve more accurate 
estimates of α.

Inferring α and the distribution of fitness effects (DFE) from the site frequency 
spectrum (SFS)

In the following, we briefly present methods that are specifically designed to infer the dis-
tribution of fitness effects from the frequency of the derived alleles across the genome in 
order to estimate the rate of adaptive evolution.

a.	 The folded/unfolded Site Frequency Spectrum (SFS)

The site frequency spectrum (SFS) is used to summarize the levels of polymorphisms 
in a sample of individuals. It represents the empirical distribution of the allelic frequencies 
for a given set of loci in the population. If the information on the ancestral allele at each 
variable position is available, the unfolded SFS can be computed, where the set of counts 
of the derived allele will be given. Conversely, if the ancestral allele cannot be inferred, 
the folded SFS may be calculated instead, representing the distribution of the minor allele 
frequencies. In these approaches, the SFS of potentially selected sites is compared to a 
neutral SFS. Most methods do so by comparing a non-synonymous to a synonymous SFS, 
however, this can also be done by contrasting genic with intergenic regions (Racimo and 
Schraiber 2014) or protein-binding with non-binding sites (Jenkins et al. 1995). The shape 
of both SFS provides crucial information on the underlying population genetic processes, 
such as demography and selection (Schraiber and Akey 2015; Barroso et  al. 2019). For 
instance, slightly deleterious mutations segregate more often at low frequencies relative to 
neutral ones, while positively selected mutations are typically segregating at a higher fre-
quency. But demography can also impact the SFS. For example, an expanding population 
has an excess of rare variants relative to what is expected in a stable population (Tajima 
1989; Schraiber and Akey 2015; Barroso et al. 2019). The challenge is, therefore, to dis-
tinguish between the effect of selection and demography. This is done by assuming a neu-
tral reference, for instance, the synonymous SFS, to which a demographic model is fitted. 
Selection is then inferred from the non-synonymous SFS. This assumption, together with 
the assumption of site independence is central to all methods inferring the distribution of 
fitness effects from the SFS.

b.	 The use of divergence data

The number of substitutions is usually computed at the codon level, distinguishing non-
synonymous from synonymous substitutions, or an equivalent if non-coding DNA is used, 
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by comparing the study species with at least one outgroup species. The outgroup sequences 
have to be selected with care. First, a closely-related outgroup species can potentially bias 
estimates of the rate of adaptive substitutions due to potentially shared polymorphisms. 
Second, a distantly-related outgroup species may lead to an underestimation of the diver-
gence, and consequently of the rate of adaptive evolution, due to the possible presence 
of multiple “invisible” substitutions between the two species. One can potentially over-
come this limitation by using multiple outgroup species, in order to span several levels of 
divergence and get more accurate estimates of the local substitution rate (Keightley and 
Jackson 2018). Moreover, if the divergence between the outgroup and the ingroup species 
is too high, we may suffer from the same bias as phylogenetic methods towards the more 
conserved genes, as fast evolving genes will not yield reliable sequence alignments. This 
would potentially underestimate the rate of adaptive substitutions by losing information on 
lineage-specific genes.

c.	 First likelihood models of DFE accounting for slightly deleterious mutations

The first likelihood model used to estimate the molecular rate of adaptive evolution was 
developed by Bierne and Eyre-Walker (2004) (Fig.  1). The authors developed an exten-
sion of the MK test allowing nonsynonymous mutations to be potentially strongly advan-
tageous. This model assumes that, for a given gene, estimates of Dn, Ds, Pn and Ps are 
Poisson distributed and infers the number of adaptive amino-acid substitutions (η) and α 
by assuming that the selection parameters are either constant across all loci or that they fol-
low a certain DFE, in this case, a Gamma or a Beta distribution (see Box 1). Welch (2006) 
extended the method developed by Bierne and Eyre-Walker (2004) by including models 
with a continuous distribution of selection coefficients and a two weighted spikes probabil-
ity distribution of α, where α takes the value α0 or α1 with probabilities q and 1 − q (Eqs. 4 
and 8, respectively; Welch 2006). This likelihood framework has the advantage of enabling 
the comparison between nested models (Mangel and Hilborn 1996; Barton 2000): to test 
the occurrence of positive selection, we compare a model that potentially includes adaptive 
substitutions (η or α > 0) with a neutral model (η or α = 0) (Bierne and Eyre-Walker 2004; 
Welch 2006).

Further extensions of these methods model a deleterious DFE in the form of a Gamma 
distribution (Eyre-Walker et al. 2006; Keightley and Eyre-Walker 2007; Eyre-Walker and 
Keightley 2009). Each mutation arising at a site is ascribed a scaled selection coefficient, 
4Nes, where the effective population size (Ne) is constant among loci, and s is drawn from 
an underlying DFE to be estimated from the data. Moreover, the SFS jointly estimates 
demographic parameters that allow for temporal changes in the effective population size 
(Eyre-Walker et  al. 2006; Keightley and Eyre-Walker 2007; Eyre-Walker and Keightley 
2009). These models come together in two of the most widely used inference methods: 
DoFE and dfe-alpha (Fig. 1, Table 1).

d.	 Extensions accounting for beneficial mutations

The fitness effect of new mutations is unlikely to be uniform within a given gene, but is 
rather expected to vary according to the sequence context and the nature of the functional 
changes that are incurred. It is, therefore, also important to consider the contribution of 
beneficial mutations to the SFS in addition to deleterious mutations. Some model-based 
inference methods account for mutations with positive effects in the DFE. Some of these 
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distributions are theoretically motivated by explicit fitness landscape models (see Batail-
lon and Bailey (2014) for a review of theoretically plausible distributions) while others are 
motivated by statistical convenience (to fit the data with a flexible distribution). An exten-
sion of the dfe-alpha method described above (Schneider et  al. 2011) uses the unfolded 
SFS together with divergence data to model a Gamma DFE that also accounts for posi-
tively selected mutations (Table 1, Fig. 1). The Grapes method (Galtier 2016) can be used 
with both unfolded and folded SFS combined with divergence data (which is optional when 
the unfolded SFS is used) to model five different DFE, including the traditional Gamma 
distribution of deleterious mutations and four other models that account for mutations with 
beneficial effects (Table 1, Fig. 1). Galtier (2016) analyzed the performance of these mod-
els over 44 different datasets and observed that the GammaExponential model, which com-
bines a Gamma distribution of deleterious mutations with an exponential distribution of 
beneficial mutations, and the ScaledBeta model, which uses a Beta-shaped distribution of 
slightly deleterious and advantageous mutations, were the ones with the best AIC scores, 
thus highlighting the important role of beneficial mutations in shaping the SFS. Using a 
similar framework, polyDFE (Tataru et al. 2017) infers the DFE from an unfolded SFS but 
does not require divergence data, thus allowing the estimation of the molecular adaptive 
rate on the branch of the study species. PolyDFE can model different DFE, including a 
model comprising a combination of gamma and exponential distributions to model muta-
tions with negative and positive effects, respectively (Table 1, Fig. 1). At the level of non-
coding DNA, INSIGHT (Gronau et al. 2013) contrasts the unfolded SFS and divergence 

Box 1   The likelihood model of Bierne and Eyre-Walker (2004)

Θi = synonymous diversity (i.e. mean number of synonymous polymorphisms per codon); Li = length of 
the sequence (i.e. number of codons); ωi = nonsynonymous to synonymous diversity ratio 

(

= P̂
ni
∕P̂

si

)

; 
i = synonymous substitution rate per codon; ωii = expected number of neutral nonsynonymous substitutions; 
η = expected number of adaptive nonsynonymous substitutions per codon; α = proportion of amino-acid 
substitutions that are adaptive; *Because αi is denoted as 1 −

(

D̂
si
P̂
ni
∕D̂

ni
P̂
si

)

 (Smith and Eyre-Walker 2002)

The method developed by Bierne and Eyre-Walker (2004) represents the first likelihood model that 
extends the MK test to estimate the rate of adaptive evolution. We further describe the parameters and 
the underlying assumptions of this model, which constitute the foundation for the methods developed 
hereafter

For a sample of ni sequences at a locus i the expected numbers of synonymous polymorphisms 
(

P̂
si

)

 and 
substitutions 

(

D̂
si

)

 and numbers of nonsynonymous polymorphisms 
(

P̂
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)

 and substitutions 
(
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)
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By assuming that sites evolve independently (i.e. are in linkage equilibrium), this method uses a likeli-
hood framework to model the data for n loci where observed data at each locus is summarized via the 
statistics 

(

P̂
si
, P̂

ni
, D̂

si
and D̂

ni

)

 that are each Poisson distributed. This model has four parameters per 
locus and a maximum of 4n parameters. It is possible to reduce the number of parameters by assuming 
that, either some parameters are constant across loci, or selection parameters follow a certain probability 
density function, which constitutes the distribution of fitness effects. The authors evaluated different 
models where η and α are constant over all loci, or where η follows a gamma distribution and αis beta 
distributed
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in the non-coding elements of interest with those in flanking neutral sites. This method 
applies a generative probabilistic model by pooling data across non-coding elements con-
sidering the within-genome variation in mutation rates and coalescent times. INSIGHT 
models a categorical DFE, where each site is assumed to evolve under one of four differ-
ent selective processes: neutral drift, strong negative selection, weak negative selection or 
positive selection (Table 1).

Despite their similarity, the methods above make slightly different assumptions when 
modeling polymorphism (SFS counts) and divergence (divergent sites relative to an out-
group). All methods assume a Poisson random field model and that the polymorphism data 
can be summarized by counts of the unfolded or folded SFS. Grapes, dfe-alpha and DoFE 
assume that the SFS is known without error, while polyDFE can model an independent rate 
of misorientation in the data, and INSIGHT uses a low dimensional projection of the SFS, 
by treating the ancestral allele as a hidden random variable in the model. Demography is 
either modeled via a set of nuisance parameters (Grapes, polyDFE) or assuming a fixed 
demographic model featuring a specific change of population size back in time that is also 
estimated (DFE-alpha, DoFE). Last but not least, most methods model a single SFS (syn-
onymous versus non-synonymous) across genes, but a recent extension of polyDFE allows 
for fitting jointly several SFS datasets simultaneously (Tataru and Bataillon 2019). This 
can be used to determine whether distinct genomic regions and/or species share a common 
DFE, or provide evidence for differences in DFE among genomic regions/species.

e.	 aMK and ABC-MK models

The previously described methods assume that sites evolve independently. However, 
there has been growing evidence that selection at linked sites might be shaping genome-
wide patterns of polymorphism (Barton 1995; Andolfatto 2007; Macpherson et al. 2007). 
Theoretical and empirical studies showed that, besides genetic drift and purifying selec-
tion, the frequency of a given allele can also be affected by recurrent selective sweeps at 
closely linked positions, a process known as genetic draft (see Glossary) (Gillespie 2000). 
Moreover, background selection (see Glossary) can also affect polymorphism levels at neu-
tral sites if slightly deleterious mutations are segregating, creating interference at linked 
sites (Charlesworth et al. 1993; Bustamante et al. 2005; Keightley and Eyre-Walker 2007; 
Charlesworth 2012). Messer and Petrov (2012) developed an extension of the MK test that 
accounts for the effects of background selection and genetic draft on the levels of polymor-
phisms. They define α(x) as a function of the frequency of the derived mutation: α(x) = 1 
− (d0 · p(x))/d  · p0(x), where p(x) and p0(x) represent the polymorphism levels at nonsynony-
mous and synonymous sites, for a specific derived allele frequency x. Here, any bias affect-
ing the synonymous and nonsynonymous SFS, either demography or selection at linked 
sites, will be excluded, as α(x) only depends on the ratio p(x)/p0(x). The asymptotic value 
of α(x) is then estimated in the limit x → 1, where it should converge to the true value of 
α under the MK assumptions: in practice, this is done by fitting an exponential function to 
the data, given by: α(x) ≈ α + bexp(− cx). This function, however, assumes that all deleteri-
ous mutations have the same selection coefficient and that levels of nonsynonymous muta-
tions decrease roughly exponentially with increasing frequency of neutral polymorphisms. 
Uricchio et al. (2019) extended this method by exploring the impact of background selec-
tion on the rate of adaptation using an approximate Bayesian computation (ABC) method, 
which the authors call ABC-MK (Table 1, Fig. 1). As in the αMK approach, this model is 
less sensitive to the demography of the population. Besides, it separately infers α for both 
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weakly and strongly beneficial alleles, thus accounting for the strength of selection. To do 
so, ABC-MK assumes that deleterious mutations are gamma-distributed and allows α to 
follow a continuous distribution, from weakly to strongly beneficial mutations. As these 
models are less sensitive to the uncertainty associated with the demography of the popula-
tion, they have the power to deliver more robust estimates of the molecular rate of adapta-
tion on non-model organisms. 

f.	 Statistics used to infer the rate of adaptive substitutions

From the above-described methods, three major statistics are often used to qualify the 
rate of adaptive non-synonymous substitutions: ωa, α and Ka+. The rate of adaptive non-
synonymous substitutions relative to the mutation rate, denoted as ωa, is given by ω − ωna, 
where ωna represents the fraction of the ω ratio contributed by neutral and deleterious 
mutations. The proportion of positively selected amino-acid substitutions, α, is then esti-
mated as ωa/ω. Finally, Ka+ represents the rate of adaptive amino-acid substitutions and 
is given by αKa, where Ka is an alternative symbol of dN, which is the number of non-
synonymous substitutions per site. Each of these statistics has its limitations. For instance, 
α depends both on ωa and ωna, thus differences in α may be due to variations in any of the 
two rates or both, making it unsuitable for distinguishing the impact of negative and posi-
tive selection. On the other hand, ωa is normalized by the mutation rate and, therefore, can-
not be used to assess the impact of the mutation rate itself, which is an important varying 
factor along the genome. In this case, Ka+ is more appropriate (Castellano et al. 2016).

Between‑species variation in the molecular adaptive rate

Several studies investigated the prevalence of positive selection in the evolution of distinct 
species. Here, we provide a summary of their main conclusions.

a.	 Drosophila

Building on a long history of genetic studies, the Drosophila species complex was used 
in some of the pioneering research on adaptive evolution (Haudry et al. 2019). Brookfield 
and Sharp (1994) were the first to use the MK test to scan for signs of positive selection 
in Drosophila. They reported that three out of the seven genes analyzed had an excess of 
non-synonymous substitutions, thus suggesting that adaptive evolution was pervasive. By 
studying 35 genes, Smith and Eyre-Walker (2002) confirmed this hypothesis by report-
ing that ~ 45% of the amino-acid substitutions between D. simulans and D. yakuba were 
driven by positive selection. In the same year, Fay et al. (2002) estimated that ~ 70% of the 
amino-acid substitutions between D. simulans and D. melanogaster were adaptive. Fur-
ther genome-wide studies also reported similar levels of adaptive evolution in the Dros-
ophila genome (reviewed in Sella et al. 2009): 25 ± 20% (Bierne and Eyre-Walker 2004; 
Shapiro et  al. 2007); 40 ± 10% (Welch 2006b); ~ 50% (Andolfatto 2007). Looking at the 
divergence between D. pseudoobscura and D. affinis, Haddrill et al. (2010) estimated even 
higher values of α, suggesting that 70–90% of the amino-acid substitutions differentiating 
the two species were driven by positive selection. By applying a Bayesian approach (Saw-
yer and Hartl 1992; Bustamante et al. 2001), Sawyer et al. (2003) estimated that ~ 94% of 
the substitutions were adaptive, although weakly selected (Nes ≈ 5, where s is the selection 
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coefficient). It has been suggested, however, that these values of α could be overestimated 
if the current Ne is larger than the ancestral species (Eyre-Walker 2006; Rousselle et  al. 
2018). Nonetheless, analyses across the Drosophila genus led to similar estimates of α and, 
at least for D. melanogaster, the population size was inferred to have decreased (Akashi 
1996; Haudry et al. 2019). Moreover, a recent study considering the past demography of 
the ancestral species found similar values of α  to those previously reported in D. mela-
nogaster (~ 49%, Zhen et al. 2018). These studies, therefore, provide evidence that positive 
selection may indeed be a prevalent mode of evolution in Drosophila genus.

b.	 Hominids

Alongside Drosophila, humans and apes have been focal species for studies of adaptive 
evolution. Fay et al. (2001) reported that ~ 35% of the fixed amino-acid differences between 
humans and old-world monkeys were positively selected. This study, however, had the 
shortcoming of using a very conserved set of polymorphisms, which can overestimate 
the rate of non-synonymous substitutions, and consequently α (Eyre-Walker 2006). Con-
versely, several studies proposed that the rate of adaptive evolution is almost zero in chim-
panzees (Mikkelsen et  al. 2005; Hvilsom et  al. 2012; Castellano et  al. 2019) and within 
hominids (Zhang and Li 2005; Boyko et al. 2008; Eyre-Walker and Keightley 2009), sug-
gesting that only ~ 10% of the fixed differences between humans and chimpanzees are adap-
tive (Bustamante et al. 2005; Boyko et al. 2008). In turn, Enard et al. (2014) found genome-
wide signals of positive selection in the human genome after correcting for the effects of 
background selection and suggested that adaptation in humans is mainly driven by regu-
latory rather than by coding differences. A recent study using an improved modeling of 
segregating weakly deleterious mutations and accounting for the demographic history of 
the ancestral species reported an α value around 20%, which is consistent when using the 
chimpanzee or the macaque as the outgroup species (Zhen et al. 2018). The authors argued 
that considering the same population size for the outgroup and ancestral species could bias 
estimations of α, especially in humans, where the human ancestral population is known to 
be much smaller than that of, for example, chimpanzees or macaques. We discuss in more 
detail these differences across studies in the last section of this topic (f).

c.	 Non-primate mammals

Halligan et al. (2010) reported that 57% of the amino-acid substitutions were adaptively 
driven in Mus musculus castaneus, a species of murid rodents. In two subspecies of the 
European rabbit, Oryctolagus cuniculus algirus and O. c. cuniculus, more than 60% of the 
amino-acid substitutions were found to be adaptive (Carneiro et al. 2012). Furthermore, a 
study performed on 44 non-model organisms, reported a mean value of α of around 50% in 
twelve mammal species (Galtier 2016).

d.	 Plants

Studies of plants led to a huge variation in the inferred rate of molecular adaptation 
across species. High rates of adaptive evolution have been measured for the grand shep-
erd’s-purse (Slotte et al. 2010), the European aspen (Ingvarsson 2010) and species of sun-
flowers (Gossmann et al. 2010; Strasburg et al. 2011), where more than 30% of the amino-
acid substitutions were estimated to be driven by positive selection. For the majority of 
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plant species studied, though, α was observed to be close to zero (Gossmann et al. 2010). 
For example, in Arabidopsis thaliana, amino-acid substitutions are predominantly deleteri-
ous (Bustamante et al. 2002) with an average adaptive substitution rate very close to zero 
(Slotte et al. 2011). Authors proposed that this could be due to the Arabidopsis mating sys-
tem, which by having a high frequency of inbreeding makes it harder to remove deleterious 
mutations (Bustamante et al. 2002). There are studies, however, reporting signs of adaptive 
evolution in the Arabidopsis genome. Barrier et al. (2003) found signs of positive selection 
in ~ 5% of the genes and Moutinho et al. (2019) showed that rates of adaptive evolution of 
sites at the surface of proteins are higher than the average across the genome, thus suggest-
ing that some regions of the Arabidopsis genome are undergoing positive selection.

Slightly deleterious mutations were also observed to be prevalent in the genomes of A. 
lyrata (Barnaud et al. 2008; Foxe et al. 2008), Sorghum bicolor (Hamblin et al. 2006), and 
Zea species, (Bijlsma et al. 1986; Ross-Ibarra et al. 2009), thus suggesting very low rates 
of adaptive evolution also for these organisms. The reason behind such low rates of adap-
tive evolution in plant species is still unclear and further studies are needed to link plant 
adaptation at the ecological and molecular levels.

e.	 Other species

The rate of adaptive evolution was also studied in a wide range of other organisms. For 
yeast (Liti et al. 2009) and the giant Galapagos tortoise (Loire et al. 2013), α was observed 
to be close to zero. Conversely, studies on the sea squirt (Tsagkogeorga et al. 2012) and 
enterobacteria (Charlesworth and Eyre-Walker 2006) reported that ~ 50% of the amino-
acid substitutions are adaptive. For viruses, a high rate of adaptive substitutions is also 
observed: Williamson (2003) suggested that ~ 50% of the substitutions in the env gene of 
HIV-1 were positively selected. By accounting for the distribution of dN/dS across codons, 
Nielsen and Yang (2003) inferred slightly higher rates of adaptive evolution (75%). Moreo-
ver, they reported an α of about 85% in the hemagglutinin gene of the human influenza 
virus.

f.	 What causes the across species variation of the rate of molecular adaptive evolution?

In the previous sections, we gave an overview of the wide range of data obtained across 
taxa, highlighting the great variation in the inferred rate of adaptive evolution across spe-
cies (Fig.  2a). The factors determining this variability, however, remain unclear. Several 
studies have proposed that cross-species variation is explained by differences in effective 
population size (Eyre-Walker 2006; Eyre-Walker and Keightley 2009; Gossmann et  al. 
2012). According to this hypothesis, species with smaller Ne accumulate more weakly del-
eterious mutations simply by chance, thus increasing ωna and consequently reducing esti-
mates of α. Conversely, large-Ne species are under more efficient purifying selection, hence 
removing mutations with negative effects from the allele pool at a faster rate. By perform-
ing a study on 44 different species, Galtier (2016) confirmed this hypothesis by showing 
that Ne was positively correlated with α and ωna, but not ωa.

On the other hand, if the population size decreases, α can also be strongly underesti-
mated due to segregating slightly deleterious mutations, which will remain within the pop-
ulation (Eyre-Walker and Keightley 2009; Zhen et al. 2018). Such a scenario was reported 
to be the cause of very low rates of adaptive evolution in the human genome (Zhen et al. 
2018). By considering the demography of the ancestral population, Zhen et  al. (2018) 
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revealed an α value of around 30%, higher than previous estimates for this species (Boyko 
et al. 2008; Eyre-Walker and Keightley 2009). Moreover, they found more strongly selected 
and/or more abundant advantageous mutations in humans when compared with mice and 
fruit flies. The authors proposed that these differences could reflect the number of traits 
under selection (Lourenço et  al. 2013; Zhen et  al. 2018). According to this hypothesis, 
larger long-lived organisms, such as humans, have less capacity to adapt to new environ-
ments, due to the greater number of traits under selection. Such organisms are theoretically 
expected to need more consecutive beneficial mutations to reach their fitness optimum, and 
thus a higher proportion of beneficial mutations should be accordingly detected in these 
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species (Lourenço et al. 2013; Rousselle et al. 2018, 2019b). More studies are needed to 
clarify what is causing the observed differences between species.

Within‑genome variation of the molecular rate adaptation

Several studies provided evidence for a substantial variation in the rate of adaptive sub-
stitutions along the genome. In this section, we summarize the factors that were found to 
influence the distribution of adaptive substitutions within species (Fig. 1).

a.	 Genome-wide variables

At the genome level, recombination, mutation and gene density are important determi-
nants of the rate of adaptive substitutions (ωa) (Marais and Charlesworth 2003; Campos 
et al. 2014; Castellano et al. 2016). Recombination rate is predicted to favor the fixation 
of adaptive substitutions (Fig. 2b) by breaking down linkage disequilibrium (Marais and 
Charlesworth 2003; Campos et al. 2014; Castellano et al. 2016). Advantageous mutations 
occurring at linked sites but in distinct individuals will interfere, so that only one will 
ultimately reach fixation unless a recombination event creates a haplotype carrying both 
of them (Hill-Robertson interference, HRi; Hill and Robertson 1966; Felsenstein 1974). 
As a result, genes in low recombining regions are expected to have overall lower rates of 
adaptive substitutions. Following a similar rationale, genes present in regions with high 
gene density may be subject to stronger HRi and slow rates of adaptive evolution (Castel-
lano et al. 2016). In turn, genes with high mutation rates potentially adapt faster because 
they increase the levels of genetic diversity, which, consequently, increases the chance of 
selection operating such that adaptive processes may occur. Interestingly, Castellano et al. 
(2016) found that the positive correlation between mutation rate and the rate of adaptive 
substitutions no longer holds for genes located in regions with low recombination rate and 
high gene density, thus suggesting a strong effect of HRi in the presence of a large num-
ber of selected mutations with a small genetic distance between them. Similarly, Goss-
mann et al. (2011) observed that variations in Ne resulting from linked selection along the 
genome significantly impact the efficiency of natural selection in C. grandiflora and A. 
thaliana, where regions with larger Ne are subject to stronger purifying selection.

b.	 Protein-coding: gene-wide variables

On a gene-wide scale, it has been reported that protein function strongly influences 
the rate of adaptive evolution, with genes involved in the immune response presenting the 
highest rates of adaptation in Drosophila (Sackton et al. 2007; Obbard et al. 2009), Arabi-
dopsis (Slotte et  al. 2011), hominids (Nielsen et  al. 2005; Kosiol et  al. 2008) and other 
mammals (Kosiol et al. 2008). Sex-related genes were also reported to present higher rates 
of adaptive evolution in Drosophila (Pröschel et  al. 2006; Haerty et  al. 2007) chimpan-
zees (Hvilsom et  al. 2012) and in plants (Gossmann et  al. 2014; Crowson et  al. 2017). 
Moreover, a recent study showed that genes involved in protein biosynthesis and sign-
aling for protein degradation exhibit the highest rates of adaptive substitutions in Dros-
ophila and Arabidopsis (Moutinho et  al. 2019). Cytochrome P450 proteins, which are 
involved in defense response in plants, were also characterized by high rates of adaptation 
in Arabidopsis (Moutinho et al. 2019). Several studies have described that host–pathogen 
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interactions act as key drivers of protein evolution in several taxa (Sackton et  al. 2007; 
Obbard et al. 2009; Enard et al. 2016; Ebel et al. 2017; Mauch-Mani et al. 2017; Uricchio 
et al. 2019; Grandaubert et al. 2019), which could explain the observed high levels of adap-
tive evolution in the functions described above. Moreover, mean gene expression levels and 
the breadth of expression negatively impact the rate of adaptive evolution in Drosophila, 
where the two factors may be acting together (Duret and Mouchiroud 2000; Salvador-Mar-
tínez et al. 2018; Moutinho et al. 2019). This relationship with expression may be a con-
sequence of stronger purifying selection in highly expressed genes, where selection acts 
by favoring proteins with the lowest probability of misfolding, which occurs if the protein 
sequence accumulates translational missense errors (Drummond et al. 2005). Additionally, 
the macromolecular structure of the protein was also observed to substantially impact the 
rate of protein adaptation in humans (Afanasyeva et al. 2018), Drosophila and Arabidop-
sis (Moutinho et  al. 2019). In this case, proteins with a higher proportion of disordered 
regions (Afanasyeva et al. 2018; Moutinho et al. 2019) and/or exposed residues (Moutinho 
et al. 2019) are prone to accumulate more adaptive mutations, acting as important targets 
of positive selection.

c.	 Protein-coding: intra-molecular factors

There is growing evidence that adaptive substitution rates also vary significantly at the 
intra-genic level. Studies both at the population and divergence level, have shown that the 
relative solvent accessibility (RSA) significantly impacts the rate of amino-acids substitu-
tions (Fig. 2c), with exposed residues accumulating more adaptive mutations than buried 
ones (Goldman et al. 1998; Mirny and Shakhnovich 1999; Franzosa and Xia 2009; Liberles 
et  al. 2012; Moutinho et  al. 2019). When contrasted with the effect of residue intrinsic 
disorder, RSA was observed to contribute with most of the variation in ωa (95% and 87% 
of variance explained for A. thaliana and D. melanogaster, respectively; Moutinho et al. 
2019). This suggests that solvent exposure is the main determinant of adaptive evolution 
at the level of protein structure, and that protein intrinsic disorder contributes with a mere 
additive small effect to the rate of protein adaptation (Moutinho et al. 2019). Furthermore, 
the type of amino-acid mutation was also reported to be an important factor affecting the 
rate of adaptive evolution, with more similar amino-acid changes presenting higher rates 
of adaptive substitutions (Grantham 1974; Miyata et al. 1979; Bergman and Eyre-Walker 
2019).

d.	 Non-coding DNA

While much attention has been given to the study of the adaptive evolution of protein-
coding genes, there is increasing evidence that the non-coding regions of the genome are 
also key targets of positive selection. By using an MK-like approach, contrasting numbers 
of polymorphisms and substitutions at protein-binding and non-binding sites, Jenkins et al. 
(1995) reported signatures of adaptive change in the control for gene expression in D. mel-
anogaster. Kohn et al. (2004) estimated that ~ 50% of all substitutions in the 5′ region of 
eight Drosophila genes were adaptively driven. By extending these approaches, Andolfatto 
(2005) investigated patterns of molecular evolution in multiple classes of non-coding DNA 
in D. melanogaster and found that around 60% and 20% of the total nucleotide divergence 
with D. simulans were fixed by positive selection, in UTRs and intronic/intergenic regions 
respectively. These findings suggest that the noncoding regions of the D. melanogaster 
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genome are key determinants of adaptive evolution. Likewise, Haddrill et al. (2008) found 
signs of adaptive evolution in the non-coding regions of the D. simulans genome. These 
patterns go beyond the Drosophila genus since there is evidence of widespread positive 
selection in noncoding conserved regions along the Brassicaceae phylogeny (William-
son et al. 2014). In hominids, however, the opposite pattern is observed. Keightley et al. 
(2005) analyzed the downstream and upstream regions of protein-coding genes using an 
MK approach and found no signs of adaptive evolution. This result might reflect the overall 
low levels of adaptive evolution in hominid genomes due to the lower effective population 
sizes. With the thrive of full genome sequence data, adaptive evolution can now be more 
extensively studied outside the coding regions (Gronau et al. 2013), which, until now, were 
the focus of most studies.

Current limitations and future perspectives

In the last two decades, numerous methods have been developed to detect and quantify 
adaptive evolution. This, together with the availability of datasets spanning many genes 
and species, increased our knowledge of the factors underlying the heterogeneity of rates 
of molecular adaptation within genomes and between species. However, existing methods 
rely on several assumptions that can create biases in the estimates of adaptive evolution 
when not met. For instance, the methods reviewed here assume that synonymous mutations 
are neutral, which may not always be a valid approximation, especially in species with 
large effective population sizes (Lawrie et al. 2013). Several studies have documented that 
selection for codon usage also affects the rate of synonymous substitutions in several spe-
cies, including Drosophila (Akashi 1994; Comeron et al. 1999), the European aspen (Ing-
varsson 2010) and non-model animals (Galtier et al. 2018), mammals and birds (Rousselle 
et al. 2019a). Finding a proper neutral reference remains a challenging goal. Yet, a similar 
approach to that used in codon models (Yang and Nielsen 2008; Spielman and Wilke 2016; 
Rodrigue and Lartillot 2017) could, in principle, be considered for methods inferring the 
rate of adaptive evolution by accounting for the evolution of synonymous sites. This would 
lead to a more realistic null model of neutral evolution and, consequently, less biased esti-
mates of the molecular rate of adaptation (Rodrigue and Lartillot 2017).

Another challenge consists of better accounting for the confounding effects of demog-
raphy. Some methods fit a simplified demographic model (DFE-alpha, DoFE) while oth-
ers correct for demography by adding extra parameters, one per frequency category of 
the SFS (Grapes, polyDFE). The number of such parameters, therefore, increases with 
the sample size and can quickly lead to model overparameterization issues. Extend-
ing the methods to use a continuous SFS constitutes one perspective to accommodate 
increasingly larger datasets. Alternatively, the demography of the population could also 
be estimated from the currently available coalescent methods (i.e. the SMC ++, Ter-
horst et al. 2017; or ∂a∂i, Gutenkunst et al. 2009).

Besides, current models often assume a constant DFE across the whole genome. 
This can lead to a bad model fit because selection varies within and between genomic 
regions. Such an assumption can be relaxed by allowing DFE parameters to vary along 
the genome. Moreover, the use of an outgroup species to infer the ancestral allele (poly-
morphism orientation) can lead to biases in the estimates of adaptive evolution, whether 
the outgroup is a very closely-related species or a very distantly-related one (Hernandez 
et  al. 2007). This can be alleviated by using multiple outgroup species and probabil-
istic ancestral allele reconstructions (e.g. Keightley and Jackson 2018). Furthermore, 
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by using only one outgroup sequence, these methods are estimating divergence on the 
total branch separating the focal and the outgroup species. Using a second outgroup spe-
cies and a phylogenetic approach, however, would allow restricting the estimation of the 
divergence parameters to the branch of the study species.

Furthermore, these methods assume that all sites are equally sampled in all individu-
als and do not intrinsically account for the possibility of missing data. Pre-processing of 
the data is therefore required, which can introduce biases if too many sites have to be 
discarded. Finally, methods relying on patterns of polymorphism cannot track positively 
selected mutations of individual sites, limiting the power of these analyses in detecting 
positive selection at the site level. Combing such population genetics approaches with 
mutation accumulation experiments is a promising avenue to further understand the fit-
ness effect of particular mutations. This, however, would have to be done across several 
generations so that enough mutations could be generated.

Conclusions

The development of statistical approaches based on the pioneering work of McDonald 
and Kreitman (1991), together with the increasing availability of genome sequences at 
the population level, paved the way for the qualitative and quantitative assessment of 
rates of adaptive evolution, both between species and within genomes. Growing evi-
dence suggests a substantial variation of the molecular adaptive rate at distinct levels 
of molecular evolution, emphasizing the multitude of factors that can influence the rate 
of adaptation. These studies introduced a conceptual and theoretical framework that, 
we posit, will serve as a basis for increasingly realistic models that will strengthen our 
understanding of the fitness effect of new mutations and, therefore, the molecular basis 
of adaptation.
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Abstract

Adaptive mutations play an important role in molecular evolution. However, the frequency and nature of these
mutations at the intramolecular level are poorly understood. To address this, we analyzed the impact of protein archi-
tecture on the rate of adaptive substitutions, aiming to understand how protein biophysics influences fitness and
adaptation. Using Drosophila melanogaster and Arabidopsis thaliana population genomics data, we fitted models of
distribution of fitness effects and estimated the rate of adaptive amino-acid substitutions both at the protein and amino-
acid residue level. We performed a comprehensive analysis covering genome, gene, and protein structure, by exploring a
multitude of factors with a plausible impact on the rate of adaptive evolution, such as intron number, protein length,
secondary structure, relative solvent accessibility, intrinsic protein disorder, chaperone affinity, gene expression, protein
function, and protein–protein interactions. We found that the relative solvent accessibility is a major determinant of
adaptive evolution, with most adaptive mutations occurring at the surface of proteins. Moreover, we observe that the
rate of adaptive substitutions differs between protein functional classes, with genes encoding for protein biosynthesis and
degradation signaling exhibiting the fastest rates of protein adaptation. Overall, our results suggest that adaptive evo-
lution in proteins is mainly driven by intermolecular interactions, with host–pathogen coevolution likely playing a major
role.

Key words: protein structure, protein function, adaptation, population genetics, Drosophila melanogaster,
Arabidopsis thaliana.

Introduction
A long-standing focus in the study of molecular evolution is
the role of natural selection in protein evolution (Eyre-Walker
2006). One can measure the strength and direction of selec-
tion at the divergence level through the dN=dS ratio (x).
However, because x represents a summary statistic across
nucleotide sites, it can only provide the average trend, while
proteins will typically undergo both negative and positive
selection. Branch-site models address this issue by fitting phy-
logenetic models with heterogeneous dN=dS ratio among
codons and branches, thus considering the great heterogene-
ity in selective constraints among sites, both in space and
time (Nielsen and Yang 1998; Yang et al. 2005; Zhang et al.
2005). Although these methods potentially allow studying
adaptation at the site level, they require large amounts of
data across species and are therefore restricted to more con-
served genes along the phylogeny. Conversely, the McDonald
and Kreitman (MK) test (McDonald and Kreitman 1991) is
applied at the population level and it only requires data from
two closely related species, usually several individuals from
the study species and one individual from the other. Because
adaptive mutations contribute relatively more to substitution
than to polymorphism, the MK test disentangles positive and
negative selection by contrasting the number of substitutions
to the number of polymorphisms at synonymous and non-
synonymous sites. Charlesworth (1994) extended this

method to estimate the proportion of substitutions that is
adaptive (a). Yet, one limitation of this approach was that it
did not account for the segregation of slightly deleterious
mutations, which can either over- or underestimate measure-
ments of a according to the demography of the population
(Eyre-Walker 2002; Smith and Eyre-Walker 2002). Recent
methods solved this issue by taking into consideration the
distribution of fitness effects (DFE) of both slightly deleterious
(Fay et al. 2001; Smith and Eyre-Walker 2002; Bierne and Eyre-
Walker 2004; Eyre-Walker et al. 2006; Eyre-Walker and
Keightley 2009; Stoletzki and Eyre-Walker 2011) and slightly
beneficial mutations (Galtier 2016; Tataru et al. 2017). By
allowing the estimation of the rate of nonadaptive
(xna ¼ d̂na

N =dS) and adaptive (xa ¼ x � xna) nonsy-
nonymous substitutions, in addition to measurements of a
(xa=x), these methods triggered new insights on the impact
of both negative and positive selection on the rate of protein
evolution.

Several studies have reported substantial levels of adaptive
protein evolution in various animal species, including the fruit
fly (Smith and Eyre-Walker 2002; Sawyer et al. 2003; Bierne
and Eyre-Walker 2004; Haddrill et al. 2010), the wild mouse
(Halligan et al. 2010), and the European rabbit (Carneiro et al.
2012), but also in bacteria (Charlesworth and Eyre-Walker
2006) and in plants (Ingvarsson 2010; Slotte et al. 2010;
Strasburg et al. 2011). Whereas for other taxa, such as
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primates (Boyko et al. 2008; Hvilsom et al. 2012; Galtier 2016)
and many other plants (Gossmann et al. 2010), the rate of
adaptive mutations was observed to be very low, wherein
amino-acid substitutions are expected to be nearly neutral
and fixed mainly through random genetic drift (Boyko et al.
2008). Several authors proposed that this across-species var-
iation in the molecular adaptive rate is explained by an effec-
tive population size (Ne) effect, where higher rates of adaptive
evolution are observed for species with larger Ne due to a
lower impact of genetic drift (Eyre-Walker 2006; Eyre-Walker
and Keightley 2009; Gossmann et al. 2012). Galtier (2016),
however, reported that Ne had an impact on a and
xna but not xa. Hence, he proposed that the relationship
with Ne is mainly explained by deleterious effects, wherein
slightly deleterious nonsynonymous substitutions accumu-
late at lower rates in large-Ne species due to the higher effi-
ciency of purifying selection, thus decreasing xna and
consequently inflating a.

The rate of adaptive substitutions, however, was observed
to vary extensively along the genome. On a genome-wide
scale, it was reported that xa correlates positively with
both the recombination and mutation rates, but negatively
with gene density (Campos et al. 2014; Castellano et al. 2016).
When looking at the gene level, previous studies have dem-
onstrated the role of protein function in the rate of adaptive
evolution, wherein genes involved in immune defense mech-
anisms appear with higher rates of adaptive mutations in
Drosophila (Sackton et al. 2007; Obbard et al. 2009), humans,
and chimpanzees (Nielsen et al. 2005). In Drosophila, sex-
related genes also display higher levels of adaptive evolution,
being directly linked with species differentiation (Pröschel
et al. 2006; Haerty et al. 2007). At the intragenic level, however,
the factors impacting the frequency and nature of adaptive
mutations remain poorly understood.

There are several structural factors that have been
reported to influence the rate of protein evolution but
have not been investigated at the population level.
Molecular evolution studies of protein families revealed
that protein structure, for instance, significantly impacts the
rate of amino-acid substitutions, with exposed residues evolv-
ing faster than buried ones (Liberles et al. 2012). As a stable
conformation is often required to ensure proper protein func-
tion, mutations that impair the stability or the structural
conformation of the folded protein are more likely to be
counter-selected. Moreover, distinct sites in a protein se-
quence differ in the extent of conformational change they
endure upon mutation, a pattern generally well predicted by
the relative solvent accessibility (RSA) of a residue (Goldman
et al. 1998; Mirny and Shakhnovich 1999; Franzosa and Xia
2009). In this way, residues at the core of proteins evolve
slower than the ones at the surface due to their role in
maintaining a stable protein structure (Perutz et al. 1965;
Overington et al. 1992; Goldman et al. 1998; Bustamante
et al. 2000; Dean et al. 2002; Choi et al. 2006; Lin et al. 2007;
Conant and Stadler 2009; Franzosa and Xia 2009; Ramsey et al.
2011). Interspecific comparative sequence analyses also
revealed that positively selected sites are often found at the
surface of proteins (Proux et al. 2009; Adams et al. 2017).

Hence, exploring the role that these structural elements
play in shaping the rate of adaptive evolution is crucial in
order to fully understand what are the main drivers of adap-
tation within proteomes.

Our study addresses protein adaptive evolution at a fine
scale by analyzing the impact of several functional variables
among protein-coding regions at the population level. To
further assess the potential generality of the inferred effects,
we carried our comparison on two model species with dis-
tinct life-history traits: the dipter Drosophila melanogaster
and the brassicaceae Arabidopsis thaliana. We fitted models
of DFE and estimated the rate of adaptive substitutions, both
at the protein and amino-acid residue scale, across several
variables and found that solvent exposure is the most signif-
icant factor influencing protein adaptation, with exposed res-
idues undergoing ten times faster xa than buried ones.
Moreover, we observed that the functional class of proteins
has also a strong impact on the rate of protein adaptation,
with genes encoding for processes of protein regulation and
signaling pathways exhibiting the highest xa values. We,
therefore, hypothesized that intermolecular interactions are
the main drivers of adaptive substitutions in proteins. This
hypothesis is consistent with the proposal that, at the inter-
organism level, coevolution with pathogens constitute a so-
far under-assessed component of protein evolution (Sackton
et al. 2007; Obbard et al. 2009; Enard et al. 2016; Mauch-Mani
et al. 2017).

Results and Discussion
In order to identify the genomic and structural variants
driving protein adaptive evolution, we looked at 10,318
protein-coding genes in 114 Drosophila melanogaster
genomes, analyzing polymorphism data from an admixed
sub-Saharan population from Phase 2 of the Drosophila
Population Genomics Project (DPGP2, Pool et al. 2012) and
divergence out to D. simulans; and 18,669 protein-coding
genes in 110 Arabidopsis thaliana genomes, with polymor-
phism data from a Spanish population (1001 Genomes
Project, Weigel and Mott 2009) and divergence to A. lyrata.
The rate of adaptive evolution was estimated with the Grapes
program (Galtier 2016). The Grapes method extends the ap-
proach pioneered by the DoFE program (Fay et al. 2001; Smith
and Eyre-Walker 2002; Bierne and Eyre-Walker 2004; Eyre-
Walker et al. 2006; Eyre-Walker and Keightley 2009;
Stoletzki and Eyre-Walker 2011), by explicitly accounting for
mutations with slightly advantageous effects. Grapes esti-
mates the rate of nonadaptive nonsynonymous substitutions
(xna), which is then used to estimate the rate of adaptive
nonsynonymous substitutions (xa) and the proportion of
adaptive nonsynonymous substitutions (a). A high a can
be potentially explained both by a higher xa or a lower
xna, and therefore does not allow to disentangle the two
effects. Thus, we explored whether, and how, xa and xna,
as well as the total x, depend on the different functional
variables analyzed here.

Results from the model comparison of DFE showed that
the Gamma-Exponential model is the one that best fits our
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data according to Akaike’s information criterion (Akaike
1973) (supplementary table S1 in supplementary file S1,
Supplementary Material online). This model combines a
Gamma distribution of deleterious mutations with an expo-
nential distribution of beneficial mutations. In agreement
with previous surveys within animal species, this model sug-
gests the existence of slightly deleterious, as well as slightly
beneficial segregating mutations in D. melanogaster and A.
thaliana genomes (Galtier 2016). Genome-wide estimates of
xa for A. thaliana and D. melanogaster are 0.05 and 0.09,
respectively, and are in the range of previously reported esti-
mates for these species (Smith and Eyre-Walker 2002; Bierne
and Eyre-Walker 2004; Gossmann et al. 2012).

In order to investigate the main drivers of protein adaptive
evolution, we divided the data sets into sets of genes and amino-
acid residues according to the variables analyzed, and fitted
models of DFE in each subset independently. We distinguished
two types of analyses: gene-based and site-based, where we
looked into how the molecular adaptive rate varies across dif-
ferent categories of genes and amino-acid residues, respectively.
Gene-based analyses allowed us to explore the impact of the
background recombination rate, the number of introns, mean
expression levels, and breadth of expression. At the protein level,
we investigated the effect of binding affinity to the molecular
chaperone DnaK, protein length, cellular localization of proteins,
protein functional class, and number of protein–protein inter-
actions (PPI). Finally, site-based analyses enabled us to study the
effect of the secondary structure (SS) of the protein, by com-
paring residues present in b-sheets, a-helices, and loops; the
tertiary structure, by considering the RSA of a residue and the
residue intrinsic disorder; and whether an amino-acid residue
participated or not in an annotated active site.

The Impact of Gene and Genome Architecture on
Adaptive Evolution
To study the impact of gene and genome architecture on the
rate of adaptive evolution, we looked at recombination rate
and the number of introns. Recombination rate was previ-
ously reported to favor the fixation of adaptive mutations in
Drosophila by breaking down linkage disequilibrium (Marais
and Charlesworth 2003; Castellano et al. 2016). Our results are
consistent with previous observations by showing a signifi-
cant positive correlation in estimates of xa with increasing
levels of recombination rate for D. melanogaster (table 1 and
supplementary fig. S1 and file S2, Supplementary Material
online). This was also observed in A. thaliana (table 1 and
supplementary fig. S1 and file S2, Supplementary Material
online), thus corroborating the effect of recombination in
the rate of adaptive evolution.

Previous studies proposed that genes containing more
introns are under stronger selective constraints due to the
high cost of transcription, especially in highly expressed genes
(Castillo-Davis et al. 2002). Hence, we would expect regions
with more introns to be under stronger purifying selection.
Conversely, by increasing the total gene length, introns might
also effectively increase the intragenic recombination rate,
which could in turn increase the efficacy of positive selection
and have a positive impact on xa. To disentangle the two T
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effects, analyses were performed by comparing genes with
different intron content. Results showed a significant negative
correlation of xna with an increasing number of introns in D.
melanogaster (table 1 and supplementary fig. S2 and file S2,
Supplementary Material online). Conversely, the number of
introns did not significantly correlate with xa (table 1 and
supplementary fig. S2 and file S2, Supplementary Material
online). These findings suggest that the effect of the intron
content on the rate of protein evolution is essentially due to
stronger purifying selection while having a negligible influence
on the rate of adaptive substitutions.

The Impact of Protein Structure on Adaptive
Evolution
We further explored the impact of three different levels of
protein structure (i.e., primary, secondary, and tertiary) on the
rate of adaptive evolution. We first looked at the primary
structure by categorizing proteins according to their length.
Former studies correlating gene length and dN=dS have
shown that smaller genes evolve more rapidly (Zhang 2000;
Lipman et al. 2002; Liao et al. 2006). Here, we investigated
whether this faster evolution is followed by a higher rate of
adaptive substitutions. Results show significant negative

correlations with protein length for values of x and xna in
both species (table 1 and supplementary fig. S3 and file S2,
Supplementary Material online). The same trend was ob-
served for xa, although it was only significant in D. mela-
nogaster (table 1 and supplementary fig. S3 and file S2,
Supplementary Material online). These findings suggest that
smaller protein-coding regions are indeed under more relaxed
purifying selection but might also evolve, in some cases, under
a higher rate of adaptive substitutions.

The analysis at the secondary structural level showed sig-
nificant differences in the evolutionary rate between the
structural motifs, with loops demonstrating the highest val-
ues of x, followed by a-helices and b-sheets (table 2 and
fig. 1). When considering adaptive and nonadaptive substitu-
tions separately, b-sheets show significantly lower values of
xna in A. thaliana and xa in both species, with marginally
significant values observed for D. melanogaster (table 2, fig. 1
and supplementary file S3, Supplementary Material online).
This implies that the structural motif has an impact on the
selective constraints in A. thaliana and also contributes to the
rate of adaptation in the two species. Previous studies inves-
tigating protein tolerance to amino-acid change have similarly
shown that loops and turns are the most mutable, followed
by a-helices and b-sheets (Goldman et al. 1998; Guo et al.
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FIG. 1. Estimates of the rate of protein evolution (x), nondaptive nonsynonymous substitutions (xna), and adaptive nonsynonymous substitu-
tions (xa) for each of the secondary structural motif (b-sheets, a-helices, and loops) in Arabidopsis thaliana (top) and Drosophila melanogaster
(bottom). Mean values of x, xna, and xa for each motif are represented with the black points. Error bars denote for the 95% confidence interval for
each category, computed over 100 bootstrap replicates. The hand-drawings of A. thaliana and D. melanogaster were made by A.F.M.
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2004; Choi et al. 2006). Some authors posed this relationship
as an outcome of residue exposure (Goldman et al. 1998; Guo
et al. 2004), while others associate it to the degree of structural
disorder, where ordered proteins are under stronger selective
constraint (Choi et al. 2006). In order to clarify this, we further
look into the impact of tertiary structure, by exploring the
relationship between residue exposure to solvent and intrin-
sic protein disorder with the rate of adaptive evolution.

Considering the RSA, several studies previously demon-
strated that residues at the surface of proteins evolve faster
than the ones at the core (Goldman et al. 1998; Choi et al.
2007; Lin et al. 2007; Franzosa and Xia 2009). This higher
substitution rate can be either due to a reduced selective
constraint at exposed residues and/or to an increased rate
of adaptive substitutions. To disentangle the two effects, we
compared the site frequency spectra (SFS) across several cat-
egories of RSA. Our results recapitulate those of previous
studies on divergence and demonstrate a significant positive
correlation with solvent exposure for values of x (table 1 and
fig. 2a). Moreover, we demonstrate that both relaxation of the
selective constraints (xna) and a higher rate of adaptive non-
synonymous substitutions (xa) explain the higher evolution-
ary rate at the surface of proteins (table 1, fig. 2a and
supplementary file S2, Supplementary Material online).

Intrinsically disordered proteins are defined by lacking a
well-defined 3D fold (Dunker et al. 2002; Dyson and Wright
2005), more specifically, proteins that have a higher degree of
loop dynamics (“hotloops”) (Linding et al. 2003). As these
structures are more flexible, we expect them to be under
less structural constraint and to accumulate more substitu-
tions (Guo et al. 2004; Wilke et al. 2005; Choi et al. 2006;
Afanasyeva et al. 2018), either deleterious and/or beneficial.
To test this hypothesis, we asked two different questions: 1)
Are intrinsically disordered protein regions more likely to re-
spond to adaptation? 2) Are proteins with more disordered
regions undergoing more adaptive substitutions? For the first
question, we divided amino-acid residues based on their pre-
dicted value of intrinsic disorder. We report a significant pos-
itive correlation with x, xa, and xna with residue intrinsic
disorder for both species (table 1, fig. 2b and supplementary
file S2, Supplementary Material online). For the second ques-
tion, proteins were categorized according to their proportion
of disordered residues (see Materials and Methods). Our
results reveal a significant positive correlation of protein dis-
order with x in both species, xna in A. thaliana and xa in D.
melanogaster (table 1 and supplementary fig. S4 and file S2,
Supplementary Material online). These findings suggest that,
at the residue level, intrinsically disordered regions are more
likely to respond to adaptation and are also under less selec-
tive constraint in both species. However, when considering
the whole protein, we observe that intrinsically disordered
proteins have different effects between species. In particular,
they contribute to the relaxation of purifying selection in A.
thaliana and to a higher rate of adaptation in D. melanogaster.
The reason for the difference between species is unclear and
will require further analyses.

Finally, we tested whether the rate of adaptive substitu-
tions is affected by the binding affinity of proteins toT
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molecular chaperones. It has been suggested that binding to a
chaperone leads to a higher evolutionary rate due to the
buffering effect for slightly deleterious mutations (Bogumil
and Dagan 2010; Kadibalban et al. 2016). Here, we investigate
whether binding to the chaperone DnaK could also favor the
fixation of adaptive mutations. In agreement with previous
studies, we find a higher x and xna in proteins binding to
DnaK in D. melanogaster (table 2 and supplementary fig. S5,
Supplementary Material online), but no impact on xa (table 2
and supplementary fig. S5 and file S3, Supplementary Material
online), suggesting that the interaction with a molecular
chaperone does not influence the fixation of beneficial
mutations.

Protein Function and Adaptive Evolution
We further explored the impact of protein function on se-
quence evolution. To do so, we analyzed the effect of mean
gene expression, breadth of expression, protein location, and
protein functional class on the rate of adaptive substitutions.
Several studies on both Eukaryote (Pal et al. 2001;
Subramanian and Kumar 2004; Wright et al. 2004; Lemos
et al. 2005) and Prokaryote (Rocha and Danchin 2004) organ-
isms have shown that highly expressed genes have lower rates
of protein sequence evolution. Here, we investigated if the
lower evolutionary rate is followed by a reduced rate of adap-
tive substitutions. Our results support previous findings by
displaying a significant negative correlation of mean gene
expression with estimates of x and xna in both species (ta-
ble 1, fig. 3 and supplementary file S2, Supplementary Material
online). Besides, we find that mean gene expression is also
significantly negatively correlated with xa in D. melanogaster
(table 1, fig. 3 and supplementary file S2, Supplementary
Material online), suggesting that gene expression also con-
strains the rate of adaptation, in addition to the well-known

effect on purifying selection. It has been hypothesized that the
higher selective constraint in highly expressed genes could be
driven by the reduced probability of protein misfolding,
wherein selection acts by favoring protein sequences that
accumulate less translational missense errors (Drummond
et al. 2005). Hence, the higher selective pressure to increase
stability in highly expressed proteins could also be hampering
the fixation of adaptive mutations. Moreover, as mean gene
expression is positively correlated with the breadth of expres-
sion (Kendall’s s ¼ 0.3376, P< 2.2e-16 in A. thaliana;
Kendall’s s ¼ 0.2170, P< 2.2e-16 in D. melanogaster; supple-
mentary fig. S6, Supplementary Material online), and the lat-
ter is a good proxy for the pleiotropic effect of a gene, which is
known to impose high selective constraints (i.e., Salvador-
Mart�ınez et al. 2018), we also analyzed the impact of the
number of tissues where a gene is expressed on the rate of
adaptive evolution. We report a significant negative correla-
tion of the breadth of expression (number of tissues) with x
in both species (table 1 and supplementary fig. S7,
Supplementary Material online), thus corroborating previous
findings (Duret and Mouchiroud 2000; Slotte et al. 2011;
Salvador-Mart�ınez et al. 2018). When looking at adaptive
and nonadaptive substitutions separately, we observe a sig-
nificant negative impact on values of xa in D. melanogaster
and xna in A. thaliana (table 1 and supplementary fig. S7 and
file S2, Supplementary Material online). This suggests that the
breadth of expression is acting together with the mean ex-
pression levels, although with an apparently lower magnitude
effect both in xna and xa.

In order to assess the impact of protein location, we clas-
sified genes into the following cellular categories: cytoplasmic,
endomembrane system, mitochondrial, nuclear, plasma
membrane, and secreted proteins (supplementary tables S2
and S3 in supplementary file S1, Supplementary Material
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online). Results show significantly higher rates of protein evo-
lution in nuclear and secreted proteins, with the lowest values
observed in the mitochondria, plasma membrane, and endo-
membrane system (pairwise comparisons; P¼ 0.0128 in A.
thaliana; P¼ 0.0104 in D. melanogaster; supplementary fig.
S8, Supplementary Material online). However, this result
seems to be explained by a reduced purifying selection,
with significantly higher values of xna observed in cytoplas-
mic, nuclear, and secreted proteins (pairwise comparisons;
P¼ 0.0128 in A. thaliana; P> 0.0729 in D. melanogaster; sup-
plementary fig. S8, Supplementary Material online), and not
by a higher rate of adaptive substitutions, since no significant
differences were found between the categories in the esti-
mates of xa (supplementary fig. S8 and file S3,
Supplementary Material online).

By analyzing the different categories of protein functional
class (supplementary tables S2 and S3 in supplementary file
S1, Supplementary Material online), we observe that genes
involved in protein biosynthesis (i.e., mRNA and ribosome
biogenesis and transcription machinery) and signaling for
protein degradation (ubiquitin system) exhibit the highest
rates of adaptive substitutions (fig. 4 and supplementary file
S4, Supplementary Material online), functions coded mostly
by nuclear and cytoplasmic proteins. Signal transduction
pathways also appear to play a role in adaptation, since pro-
tein phosphatases also present high rates of adaptive muta-
tions (Hunter 1995). Moreover, in A. thaliana, cytochrome
P450 proteins are also in the top categories of xa (fig. 4 and
supplementary file S4, Supplementary Material online). We

fitted a linear model to the xa values of the shared categories
(21 categories in total) to see if results were consistent be-
tween the two species and found a positive correlation
(Kendall’s s ¼ 0.257, P¼ 0.1101; supplementary fig. S9a,
Supplementary Material online), which is stronger after dis-
carding the two outliers, mRNA biogenesis and glycosyltrans-
ferases (Kendall’s s ¼ 0.333, P¼ 0.0490; supplementary fig.
S9b, Supplementary Material online). Our findings, therefore,
suggest that adaptive mutations occur mainly through pro-
cesses of protein regulation and signaling pathways.

What Are the Major Drivers of Adaptive Evolution
along the Genome?
Overall, we found multiple factors influencing protein adap-
tive evolution, specifically recombination rate (positive cor-
relation), protein length (negative correlation), secondary
structural motif (lower values observed for b-sheets), RSA
(positive correlation), protein intrinsic disorder (positive
correlation), gene expression levels (negative correlation),
and protein functional class. Since some of these variables
are intrinsically correlated, we next asked whether some of
the inferred effects are spurious. First of all, it is known that
protein length and gene expression are negatively corre-
lated, wherein highly expressed genes tend to be shorter,
as previously reported for vertebrates (Subramanian and
Kumar 2004), yeast (Coghlan and Wolfe 2000; Akashi
2003), and observed in this study (Kendall’s s ¼ �0.015,
P¼ 1.22e-02 in A. thaliana; s ¼ �0.093, P¼ 1.70e-28 in D.
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FIG. 3. Estimates of x, xna, and xa for each category of genes with distinct mean gene expression levels for Arabidopsis thaliana (top) and
Drosophila melanogaster (bottom). The x axis is scaled using a squared root function. Legend as in figure 2.
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melanogaster; supplementary fig. S10, Supplementary
Material online). Since highly expressed genes have lower
rates of adaptive substitutions and shorter genes have
higher rates of adaptive evolution, we may conclude that
these two variables independently impact the rate of adap-
tation in proteins. Protein length is also negatively correlated
with the proportion of exposed residues (Kendall’s s ¼
�0.310, P¼ 0.00 in A. thaliana; s ¼ �0.404, P¼ 1.03e-223
in D. melanogaster; supplementary fig. S11, Supplementary
Material online), as the surface/volume ratio of globular
proteins decreases when protein length increases (Janin

1979). By estimating the rate of adaptive mutations of bur-
ied and exposed sites separately, we observe that the effect
of protein length is no longer significant (table 3, fig. 5a and
supplementary file S5, Supplementary Material online). This
suggests that the effect of protein length on the rate of
adaptive substitutions is a by-product of the effect of the
residue’s solvent exposure. Furthermore, mean gene expres-
sion is positively correlated with solvent exposure (Kendall’s
s ¼ 0.016, P¼ 0.1037 in A. thaliana; s ¼ 0.327, P¼ 4.50e-45
in D. melanogaster; supplementary fig. S12, Supplementary
Material online), as expected since highly expressed genes
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FIG. 4. Estimates of x, xna , and xa for each category of protein functional class in (a) Arabidopsis thaliana and (b) Drosophila melanogaster.
Categories are ordered according to the values of xa. Mean values of x, xna, and xa for each class are represented with the black points. Error bars
denote the 95% confidence interval for each category, computed over 100 bootstrap replicates.
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are shorter and shorter genes have a greater proportion of
exposed residues (supplementary figs. S10 and S11,
Supplementary Material online). These two variables, how-
ever, have opposite effects on xa, and we therefore conclude
that gene expression is acting independently from solvent
exposure on the rate of adaptive protein evolution.

We further note that the SS motif is intrinsically correlated
with the degree of intrinsic disorder, where loops and turns
represent the most flexible motifs (supplementary fig. S13,
Supplementary Material online), consistent with previous
studies (Choi et al. 2006). When analyzing different degrees
of protein disorder across the structural motifs, we observe
that SS has only an impact on estimates of x, while intrinsic
protein disorder is significantly positively correlated with x
within the three motifs in both species, and xa within b-
sheets in A. thaliana and within a-helices in D. melanogaster
(supplementary fig. S14 and file S5, Supplementary Material
online). Moreover, we report that the SS motif is correlated
with solvent exposure (supplementary fig. S15,
Supplementary Material online), b-sheets being mostly found
at the core of proteins, while a-helices and loops have, on an
average, higher solvent exposure (Bowie et al. 1990; Guo et al.
2004). By estimating the rate of adaptive substitutions in
buried and exposed residues across the three motifs, the im-
pact of SS is no longer noticeable on estimates of xa (table 3
and supplementary fig. S16 and file S5, Supplementary
Material online), thus suggesting that the effect of SS motif
is also a by-product of solvent exposure. When looking at the
tertiary structure level, in agreement with Choi et al. (2006),
we report that structures with more exposed residues tend to
be more flexible (Kendall’s s ¼ 0.001, P¼ 0.4726 in A. thali-
ana; s¼ 0.015, P¼ 0.0256 in D. melanogaster; supplementary
fig. S17, Supplementary Material online). Estimation of the
rate of adaptive mutations in buried and exposed sites across
different levels of residue intrinsic disorder shows that solvent
exposure plays the main role in protein adaptive evolution,
with a significant positive impact of protein disorder only

observed in values of x in both species and xa in exposed
residues for D. melanogaster (table 3, fig. 5b and supplemen-
tary file S5, Supplementary Material online). To further clarify
the relative contribution of solvent exposure and protein
disorder on the rate of adaptive evolution, we performed
an analysis of covariance (ANCOVA), using both measures
and their interaction as explanatory variables. Results show
that the RSA explains 95% (P¼ 3.176e-14) and 99% (P< 2.2e-
16) of the variation in xa and xna, respectively, in A. thaliana;
and 87% (P¼ 1.011e-13) and 62% (P¼ 0.00012) in xa and
xna, respectively, in D. melanogaster. These findings suggest
that the level of exposure of a residue in the protein structure
is the main driver of adaptive evolution, and that structural
flexibility potentially constitutes a comparatively small, if any,
effect to protein adaptation. By comparing the level of expo-
sure of the residues across the different classes of protein
function, no differences were observed (supplementary fig.
S18, Supplementary Material online), thus suggesting that
these two variables independently affect the rate of protein
adaptation.

Summarizing, after accounting for potentially confounding
effects, our results show that besides population genetic pro-
cesses such as recombination and mutation rate (Hill and
Robertson 1966; Marais and Charlesworth 2003; Castellano
et al. 2016), three major protein features significantly impact
the rate of protein adaptive evolution: gene expression, RSA,
and the protein functional class. When looking at the mag-
nitude effect of each of these variables, we observe that ex-
posed residues have a 10-fold higher rate of adaptive
substitutions when compared with completely buried sites
(fig. 2a and supplementary file S2, Supplementary Material
online). The effect of gene expression seems to be of lower
magnitude, wherein less expressed genes have a 2-fold higher
rate of adaptive substitutions with a significant negative cor-
relation observed only in D. melanogaster (fig. 3 and supple-
mentary file S2, Supplementary Material online). As a
comparison, genes in highly recombining regions have up

Table 3. Statistical Results for the Comparisons Performed Including RSA as a Cofactor.

Categories Statistics Arabidopsis thaliana Drosophila melanogaster

RSA RSA

Buried Exposed Buried Exposed

Protein length 10 xa 20.4222 (.) 20.2889 20.0667 0.3333
xna 20.0222 0.0667 20.0667 (.) 20.4222 (.)

Protein disorder 20 xa 0.2105 0.2105 0.0842 0.5368 (***)
xna 20.0631 20.0211 0.2947 20.0316

Secondary structure B-sheets–a-helices xa 20.0073 20.0074 0.0118 20.0040
xna 0.0003 20.0230 (.) 20.0063 20.0006

B-sheets–loops xa 20.0021 20.0078 0.0178 20.0056
xna 0.0050 20.0173 (*) 20.0133 20.0039

a-helices–loops xa 0.0052 20.0003 0.0059 20.0016
xna 0.0047 0.0056 20.0071 20.0033

Active site Active–nonactive xa 20.0004 20.0048 20.0078 0.0055
xna 20.0057 0.0070 0.0042 20.0045

NOTE.—For each comparison, the value for buried and exposed residues is indicated. For continuous variables (protein length and protein disorder), the Kendall’s s with the
respective significance for xna and xa is reported. For discrete variables (secondary structure motif and active site) the difference between the mean values of each category is
reported for xna and xa . Significance levels as in table 1.
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to a 10-fold higher rate of adaptive substitutions compared
with genes within regions with the lowest recombination
rates (supplementary fig. S1 and file S2, Supplementary
Material online), being therefore similar to that observed
with solvent exposure. Previous studies reported that the
type of amino-acid change also plays an important role in
protein adaptive evolution, where more similar amino-acids
present higher rates of adaptive substitutions (Grantham
1974; Miyata et al. 1979; Bergman and Eyre-Walker 2019).
In order to evaluate a potential bias on the type of amino-
acid at the surface and at the core of proteins, we computed
the proportion of conservative and radical residue changes,
according to volume and polarity indices, as defined by
Grantham (Grantham 1974). We found similar frequencies
of conserved and radical changes in buried and exposed res-
idues, thus suggesting that our results at the structural level
are not influenced by the type of amino-acid mutation (97%
of conservative and 3% changes on buried residues; 96% of
conservative and 4% changes on exposed sites). Our findings
therefore suggest that protein architecture strongly influences
the rate of adaptive protein evolution, wherein selection acts
by favoring a greater accumulation of adaptive mutations at
the surface of proteins.

Why Does Adaptation Occur Mainly at the Surface of
Proteins?
Our results show that solvent exposure is the protein feature
with the strongest impact on the rate of adaptive substitu-
tions at the intramolecular level. To explain this effect, we
discuss three hypotheses in which protein adaptive evolution
occurs through 1) the acquisition of new biochemical activ-
ities at the surface of proteins, 2) the emergence of new
functions via network rewiring at the level of PPI, and 3)
intermolecular interactions between organisms, as a conse-
quence of host–pathogen coevolution.

We first hypothesized that protein adaptation results from
new catalytic activities, wherein adaptive mutations arise
within active sites. Bartlett et al. (2002) reported that active
sites are mostly present in more intrinsically disordered
regions of the protein. Moreover, they proposed that apo-
enzymes, which are not yet bound to the substrate or cofac-
tor, present greater residue flexibility, and more exposed cat-
alytic residues, which could favor a higher rate of adaptive
substitutions. In order to test this, we estimated the rate of
adaptive substitutions on active and nonactive sites, control-
ling for solvent exposure, and observed only significant differ-
ences in x within buried residues in A. thaliana (table 3 and
supplementary fig. S19 and file S5, Supplementary Material
online), although with higher values observed for nonactive
sites. While the nonsignificant differences in the rate of adap-
tive mutations could result from incomplete annotations,
which tend to be biased toward motifs highly conserved
across species (De Castro et al. 2006), this suggests that being
present in an active site does not influence the rate of adap-
tation. Active sites, however, are rather mobile, presenting
different levels of solvent exposure and residue flexibility
according to the stage of the enzymatic reaction (Bartlett
et al. 2002). Therefore, it may be arbitrary to assign them a

certain solvent exposure class based on the phase the
enzymes were crystallized, limiting our capacity to test their
role on adaptive evolution.

Several studies discussed the impact of PPI on the rate of
protein evolution. Valdar and Thornton (2001) and Caffrey
et al. (2004) proposed that PPI may be acting as an inhibitor of
protein evolution by enhancing the efficiency of purifying
selection due to a higher degree of protein connectivity, typ-
ically associated with more complex functions. Mintseris and
Weng (2005) supported this assumption but proposed that
the proteins evolving slowly are the ones involved in obligate
interactions, while proteins involved in transient interactions
evolve at faster rates due to higher interface plasticity. Here,
we ask whether the higher rate of adaptive mutations at the
surface of proteins could have arisen through intermolecular
interactions at the protein network level. We addressed this
question by estimating the rate of adaptive mutations in
genes with different degrees of PPI. This was only possible
in D. melanogaster since there was limited data available for A.
thaliana. We report a negative correlation between the num-
ber of PPI and x, xna, and xa, respectively, with only signif-
icant values observed for x (table 1 and supplementary fig.
S20 and file S2, Supplementary Material online). These find-
ings suggest that a higher degree of protein connectivity leads
to lower rates of protein sequence evolution, but prevent us
to assess with confidence whether this effect is due to a
stronger purifying selection and/or a slower rate of adaptive
substitutions. A potential limitation of this analysis is the low
number of genes with PPI information available and the noise
associated with the BioGRID annotations. As a physical inter-
action does not necessarily imply a functional link, we might
lack statistical power to detect any putative effect of PPI on
xa (Chatr-aryamontri et al. 2017).

In support to our third hypothesis, several studies have
described the role of the immune and defense responses in
molecular evolution across taxa (Sackton et al. 2007; Obbard
et al. 2009; Enard et al. 2016; Mauch-Mani et al. 2017). These
studies suggest that pathogens could be key drivers of protein
adaptation, by acting as a powerful selective pressure through
the coevolutionary arms race between hosts and parasites.
This could be driving the higher rate of adaptive mutations in
protein biosynthesis enzymes (fig. 4), which are the ones typ-
ically hijacked by pathogens during host infection (Dangl and
Jones 2001; Enard et al. 2016). Moreover, one of the fastest
evolving protein class is the ubiquitin system (fig. 4), which is
known to be involved in the defense mechanism, both by the
host, through processes like the activation of innate immune
responses and degradation signaling of pathogenic proteins;
and by the pathogen, which inhibits and/or uses this system
in order to modulate host responses (Loureiro and Ploegh
2006; Collins and Brown 2010; Dielen et al. 2010; Trujillo and
Shirasu 2010; Hiroshi et al. 2014). Membrane trafficking pro-
teins are also well-known for being involved in the immune
response mechanisms, a functional class that also presents
high values of xa, and “DNA replication” together with
“mRNA biogenesis” and “transcription machinery” are typical
signatures of viruses’ activities (fig. 4). Likewise, in A. thaliana,
cytochrome P450 proteins present a high rate of adaptive
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mutations (fig. 4), which have been reported to play a crucial
role in the defense response in plants (Schuler and Werck-
Reichhart 2003). Besides, the reduced selective pressure on
nuclear and secreted proteins (supplementary fig. S6,
Supplementary Material online) may be also a consequence
of their role in disease and pathogen immunity (i.e., Motion
et al. 2015; Mosmann et al. 2016), as observed in yeast
(Julenius and Pedersen 2006), insects (Sackton et al. 2007;
Obbard et al. 2009), and primates (Nielsen et al. 2005).

Our findings, therefore, support the hypothesis that co-
evolutionary arms race of the host–pathogen interactions, in
particular, intracellular pathogens such as viruses, are a major
driver of adaptation in proteins. While we do not rule out
that PPI and the acquisition of new biochemical functions
could also have an impact, more and better annotation data
is required to further evaluate their role. In conclusion, our
study reveals that, in addition to genome architecture, pro-
tein structure has a substantial impact on adaptive evolution
consistent between D. melanogaster and A. thaliana, unrav-
eling the potential generality of such effect. Our study further
emphasizes that the rate of adaptation not only varies sub-
stantially between genes but also at the intragenic scale, and
we posit that accounting for a fine-scale, intramolecular evo-
lution is necessary to fully understand the patterns of molec-
ular adaptation at the species level.

Materials and Methods

Population Genomic Data and Data Filtering
The D. melanogaster data set included alignments of 114
genomes for one chromosome arm of the two large auto-
somes (2 L, 2 R, 3 L, and 3 R) and one sex chromosome (X)
pooled from 22 sub-Saharan populations with a negligible
amount of population structure (FST ¼ 0.05; DPGP2, Pool
et al. 2012). Release 5 of the Berkeley Drosophila Genome
Project (BDGP5, http://www.fruitfly.org/sequence/release5ge-
nomic.shtml, last accessed July 2017) was used as the refer-
ence genome. Estimations of divergence were performed with
D. simulans, for which genome alignments with the reference
genome were available (http://www.johnpool.net/genomes.
html; last accessed July 2017). For A. thaliana, analyses were
carried out with 110 genomes for the five chromosomes of
the Spanish population from the 1001 Genomes Project
(Weigel and Mott 2009), using the release 10 from The
Arabidopsis Information Resource (TAIR10, ftp://ftp.ensembl-
genomes.org/pub/plants/release-40/fasta/arabidopsis_thali-
ana/dna/; last accessed March 2018) as the reference genome.
Divergence estimates were made with A. lyrata as an out-
group species, for which a pairwise alignment with the refer-
ence genome was available (ftp://ftp.ensemblgenomes.org/
pub/plants/release-38/maf; last accessed March 2018). Data
processing was conducted with the help of GNU parallel
(Tange 2011).

Estimation of the Population Genetic Parameters and
Model Selection
Coding DNA sequences (CDS) were extracted from the align-
ments with MafFilter (Dutheil et al. 2014) according to the

General Feature Format (GFF) file of the reference genome of
both species. First, a cleaning and filtering process was per-
formed to keep only nonoverlapping genes with the longest
transcript, in cases of multiple transcripts per gene. At this
stage, 12,801 and 27,072 genes, for D. melanogaster and A.
thaliana, respectively, were kept for further analysis. CDS
sequences were then concatenated in order to obtain the
full coding region per gene. For the analysis with A. thaliana,
the alignment of A. lyrata with the reference sequence was
realigned with each gene alignment of the ingroup using
MAFFT v7.38 (Katoh and Standley 2013) with the options
add and keeplength so that no gaps were included in the
ingroup. CDS alignments with premature stop codons were
excluded and alignment positions lacking a corresponding
sequence in the outgroup were discarded. Final data sets
included 10,318 genes for D. melanogaster/D. simulans and
18,669 genes for A. thaliana/A. lyrata. These data sets were
then used to infer both the synonymous and nonsynony-
mous unfolded and folded SFS, and synonymous and non-
synonymous divergence based on the rate of synonymous
and nonsynonymous substitutions. Sites for which the out-
group allele was missing were considered as missing data. All
calculations were performed using the BppPopStats program
from the Bioþþ Program Suite (Gu�eguen et al. 2013). The
Grapes program was then used to compute a genome-wide
estimate of the rate of nonadaptive (xna) and adaptive non-
synonymous substitutions (xa) (Galtier 2016). This method
assumes that all sites were sampled in the same number of
chromosomes and since some sites were not successfully
sampled in all individuals, the original data set was reduced
to 110 and 105 individuals for D. melanogaster and A. thali-
ana, respectively, by randomly down-sampling polymorphic
alleles at each site. The following models were fitted and
compared using Akaike’s information criterion: Neutral,
Gamma, Gamma-Exponential, Displaced Gamma, Scaled
Beta, and Bessel K. A model selection procedure was con-
ducted on the two data sets using the complete set of genes
for comparison (see supplementary table S1 in supplemen-
tary file S1, Supplementary Material online). As results were
comparable when using the unfolded and folded SFS, subse-
quent analyses were performed on the unfolded SFS only.
Following analyses consist in fitting the selected model on
several subsets of the data according to the variables analyzed,
comprising sets of genes (see supplementary tables S2 and S3
in supplementary file S1, Supplementary Material online, for
detailed information on the genes used for each variable as
well as the population genetic parameters estimated per gene
for A. thaliana and D. melanogaster, respectively) and amino-
acid residues (see supplementary tables S4 and S5 in supple-
mentary file S1, Supplementary Material online, for detailed
information on the amino-acid residues used for each cate-
gory as well as the population genetic parameters estimated
per site for A. thaliana and D. melanogaster, respectively). We
next described the different variables analyzed.

Categorization of Gene and Genome Architecture
Recombination rates were obtained with the R package
“MareyMap” (Rezvoy et al. 2007), by using the cubic splines
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interpolation method. Hereafter, we computed the mean
recombination rate in cM/Mb units for each gene.
Discretization of the observed distribution of recombination
rate was performed in 50 and 30 categories with around 350
and 280 genes each for A. thaliana and D. melanogaster, re-
spectively. Intronic information was obtained using the
GenomeTools from a GFF with exon annotation and the
option addintrons (Gremme et al. 2013). Genes were discre-
tized into 13 and 10 categories according to their intron
content for A. thaliana and D. melanogaster, respectively.

Categorization of Protein Structure
Genes were discretized according to the total size of the
coding region, for which 30 and 50 categories with around
620 and 210 genes each were made for A. thaliana and D.
melanogaster, respectively.

In order to obtain structural information for each protein
sequence, blastp (Schaffer 2001) was first used to assign each
protein sequence to a PDB structure, and respective chain, by
using the “pdbaa” library and an E-value threshold of 1e-10.
When multiple matches occurred, for instance in cases of
multimeric proteins, the match with the lowest E-value was
kept. This resulted in 5,008 genes for which a PDB structure
was available, making a total of 3,834 PDB structures for D.
melanogaster and 9,121 genes with a total of 3,832 PDB
structures for A. thaliana. The corresponding PDB structures
were then downloaded and further processed to only keep
the corresponding chain per polymer. PDB manipulation and
analysis were carried on using the R package “bio3d” (Grant
et al. 2006). Values for SS and solvent accessibility (SA) per
residue were obtained using the “dssp” program with default
options and were successfully retrieved for 3,613 PDB files
corresponding to 4,944 genes for D. melanogaster and 3,806
PDB files for a total of 9,106 genes for A. thaliana.
Subsequently, to map SS and SA values to each residue of
the protein sequence a pairwise alignment between each
protein and the respective PDB sequence was performed
with MAFFT, allowing gaps in both sequences in order to
increase the block size of sites aligned. The final data set
comprised a total of 1,397,885 and 1,395,666 sites with SS
and SA information, respectively, out of 4,821,113 total codon
sites obtained with BppPopStats for the complete set of genes
of D. melanogaster; and 2,585,468 and 2,585,467 sites mapped
with SS and SA information, respectively, out of 7,479,808
codon sites of A. thaliana. We computed the RSA by dividing
SA by the amino-acid’s solvent accessible area (Tien et al.
2013).

Categorization of SS was performed by comparing 460,702,
975,934, and 523,880 amino-acid residues in b-sheets, a-heli-
ces, and loops, respectively, in A. thaliana, and 258,898,
516,356, and 282,588 sites in b-sheets, a-helices, and loops,
respectively, in D. melanogaster. RSA values were analyzed
with 28 categories with around 85,000 sites each, with the
exception of the totally buried residues (RSA ¼ 0) category
containing 299,684 sites in A. thaliana; and 19 categories with
approximately 69,000 residues each, except for 151,417
completely buried residues in D. melanogaster. For the anal-
ysis of correlation between variables two categories of RSA

were considered, comparing buried (RSA<0.05) and exposed
(RSA �0.05) residues, following Miller et al. (1987).

Estimates of intrinsic protein disorder were acquired via
the software DisEMBL (Linding et al. 2003), wherein intrinsic
disorder was estimated per site and classified according to the
degree of “hot loops,” meaning loops with a high degree of
mobility. This analysis was successfully achieved for a total of
7,479,807 out of 7,479,808 sites for A. thaliana and 3,952,602
out of 4,821,113 sites for D. melanogaster. Amino-acid resi-
dues were divided into 30 categories with an average of
249,000 and 131,000 sites in A. thaliana and D. melanogaster,
respectively. For the proportion of disordered regions per
protein, we considered a residue “disordered” if it was in
the top 25% of the measured probabilities of disorder across
the proteomes of each species. Analyses were performed with
30 categories with around 620 and 420 genes for A. thaliana
and D. melanogaster, respectively.

Identification of Proteins Binding to a Molecular
Chaperone
Prediction of the molecular chaperone DnaK binding sites in
the protein sequence was estimated with the LIMBO software
using the default option Best overall prediction. This setting
implies 99% specificity and 77.2% sensitivity (Van Durme et al.
2009). Genes were categorized according to this prediction
setting, which suggests that every peptide scoring>11.08 is a
predicted DnaK binder. Genes scoring below that value were
not considered as possible binders.

Categorization of Gene Expression
Mean gene expression data were obtained from the database
Expression Atlas (http://www.ebi.ac.uk/gxa; last accessed
March 2019. Petryszak et al. 2016), wherein one baseline ex-
periment was used for each species (D. melanogaster, E-
MTAB-4723; A. thaliana, E-GEOD-38612). In addition, for D.
melanogaster, we obtained the breadth of expression data
over the embryo anatomy from the BDGP database
(Tomancak et al. 2007) and the data were processed and
analyzed as in Salvador-Mart�ınez et al. (2018). Mean gene
expression levels were obtained by averaging across samples
and tissues for each gene, ending up with 40 and 15 categories
with around 450 and 430 genes each for A. thaliana and D.
melanogaster, respectively. For the analysis on the breadth of
expression, expression patterns in A. thaliana were analyzed
in four different tissues: roots, flowers, leaves, and siliques; and
for D. melanogaster, we used the anatomical structures of the
embryo development, analyzing 18 structures (see Tomancak
et al. 2007 and Salvador-Mart�ınez et al. 2018). Analyses were
carried with four and six categories in A. thaliana and D.
melanogaster, respectively, according to the number of tis-
sues/organs a gene is expressed (see supplementary tables S2
and S3 in supplementary file S1, Supplementary Material on-
line, for detailed information).

Protein Cellular Localization and Protein Functional
Class
Cellular localization of each protein sequence was predicted
with the software ProtComp v9.0 online (from Softberry,
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http://www.softberry.com/; last accessed May 2018) with the
default options and genes were classified into the following
cellular categories: cytoplasmic, endomembrane system, mi-
tochondrial, nuclear, peroxisome, plasma membrane, and se-
creted proteins. The category peroxisome was excluded from
further analysis due to the small number of annotated genes
(114 and 250 genes in D. melanogaster and A. thaliana, re-
spectively; detailed information in supplementary tables S2
and S3 in supplementary file S1, Supplementary Material on-
line). Protein functional classes were obtained with the
Bioconductor package for R “KEGGREST,” using the KEGG
BRITE database (Kanehisa et al. 2002). Analysis was carried
out with 2,950 and 3,780 genes for D. melanogaster and A.
thaliana, respectively, discretized into the highest levels of
each of the three top categories of protein classification: me-
tabolism, genetic information processing and signaling, and
cellular processes (see supplementary tables S2 and S3 in
supplementary file S1, Supplementary Material online).

Enzymatic Active Sites and PPI
In order to check whether a residue was present in an active
site, we used the ScanProsite software (De Castro et al. 2006).
Data sets included 1,061,876 and 1,870,166 active sites for D.
melanogaster and A. thaliana, respectively. All sites that were
not predicted by the program were considered as nonactive
(see supplementary tables S4 and S5 in supplementary file S1,
Supplementary Material online). Data on the degree of PPI
were obtained with the BioGRID database (Chatr-aryamontri
et al. 2017). This was only possible for D. melanogaster since
the data available for A. thaliana was very limited (only 878
annotated genes mapping to our data set). Analyses were
carried out with 5,628 genes divided into 19 categories,
with 1,114 genes in the first category, and the others ranging
from 700 to 130 according to the respective number of inter-
actions (see supplementary tables S2 and S3 in supplemen-
tary file S1, Supplementary Material online).

Estimation of the Adaptive and Nonadaptive Rate of
Nonsynonymous Substitutions
For all gene and amino-acid sets, 100 bootstrap replicates were
generated by randomly sampling genes or sites in each cate-
gory. The Grapes program was then run on each category and
replicate with the Gamma-Exponential DFE (Galtier 2016).
The first step included the removal of replicates for which
the DFE parameters were not successfully fitted. For this pur-
pose, we discarded 1% in the maximum and minimum values
for the mean and shape parameters of the DFE (see supple-
mentary files, Supplementary Material online, for detailed R
scripts). Results for x, xna and xa were plotted using the R
package “ggplot2” (Wickham 2017) by taking the mean value
and the 95% confidence interval of the 100 bootstrap repli-
cates computed for each category (both for main and supple-
mentary figures, for continuous and discrete variables, see
supplementary files, Supplementary Material online).

Statistical Analyses
Significance for all continuous variables, including protein
length, number of introns, gene expression, intrinsic residue

disorder, proportion of disordered regions, recombination
rate, number of PPI, and RSA, was assessed through
Kendall’s correlation tests. Kendall’s correlation test is non-
parametric and does not make any assumption on the dis-
tribution of the input data. Furthermore, it can be applied to
ordinal data, making it appropriate to analyze discretized
continuous variables. To do so, the mean value of the 100
bootstrap replicates was taken for each category (see detailed
script as well as all statistical results in supplementary file S2,
Supplementary Material online). Significance values for dis-
crete variables, comprising binding affinity to DnaK, protein
location, protein functional class and SS motif, were achieved
by estimating the differences between each pair of the cate-
gories analyzed, by randomly subtracting each bootstrap rep-
licate. The following steps included counting the number of
times the differences between categories were below and
above 0, which by taking the minimum of those values gives
us a statistic that we call k. The two-tailed P value was then
estimated by applying the following equation: P ¼ (2k þ 1)/
(Nþ 1), where N in the number of bootstrap replicates used.
For variables comparing more than two categories, we cor-
rected the P value for multiple testing using the FDR method
(Benjamini and Hochberg 1995) as implemented in R (R Core
Team 2017) (see detailed script and all statistical results in
supplementary files S3 and S4, Supplementary Material on-
line). Analyses on the correlations between variables are de-
scribed in supplementary files S5 and S6, Supplementary
Material online. The ANCOVA was performed by applying
a linear model to the values of xna and xa with the interac-
tion between RSA and protein disorder following a control for
the normality, homoscedasticity, and independence of the
corresponding error (supplementary file S5, Supplementary
Material online).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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