
The Institute for Agricultural Economics 

of the Christian-Albrechts-Universität Kiel 

 

 

 

Essays on Technology Adoption in Senegal 

 

Dissertation 

submitted for the Doctoral Degree 

awarded by the Faculty of Agricultural and Nutritional Sciences 

of the  

Christian-Albrechts-Universität Kiel 

Submitted 

M.Sc Anatole Goundan 

Born in Benin 

Kiel, 2020 

 

 

Dean: Prof. Dr. Dr. Christian Henning 

1.  Examiner: Prof. Dr. Dr. Christian Henning 

2.  Examiner: Prof. Dr. Awudu Abdulai 

Day of Oral Examination: 13 May 2020 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MACAU: Open Access Repository of Kiel University

https://core.ac.uk/display/343640537?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

vi 

 

Gedruckt mit Genehmigung der Agrar- und Ernährungswissenschaftlichen 

Fakultät der Christian-Albrechts-Universität zu Kiel 



 

vii 

 

            

            

            

            

            

            

            

            

            

            

For my wife Paulette, who supported me throughout this project, and for my daughters 

Sèdami and Esseh, who fill me with joy every day.



 

viii 

 

Acknowledgments  

I give all glory to the Almighty God for the successful completion of this dissertation. 

I would like to express my deepest appreciation to my supervisor Professor Dr.Dr. Christian 

Henning for his continuous support and guidance. It has been a pleasure working with you. 

You believed in me and gave me the opportunity to work with you. 

I’m deeply indebted to Dr. Ousmane Badiane, head of International Food Policy Research 

Institute - IFPRI Africa – for his support and for granting me access to the survey data used. 

I’m extremely grateful to my uncle Mathias Goundan for his continuous encouragement and 

support since my first day at school. This work is also yours. 

Many thanks to all my co-authors for this thesis: Dr. Amy Faye, Alhassane Camara, 

Christophe Adjin, Peron A. Collins-Sowah, Dr. Abdoulaye Amadou Fall, and Dr. Moussa 

Sall. Your contributions are really helpful to complete this work. Thank you, guys. 

Thanks to Vanessa Ndong, Julia Collins, Maybelle Bulan, Zuzanna Turowska, Daniel Simpa, 

and Dieynab Diatta for proofreading parts of this thesis. Your contribution is greatly 

appreciated. 

I would like to thank all the team of the department of agricultural economics of the Christian 

Albrechts University of Kiel. 

I could not forget Eric, Ousmane, Alphonse, Dicko, and Lea for their always supports. You are 

the best! 

Many thanks to my colleagues at IFPRI. I don't want to make people jealous. Thank you so 

much, guys. 

 

 

 

Ich danke Ihnen vielmals. 

 

 



 

ix 

 

Table of Contents 

List of Tables .......................................................................................................................................... xii 

List of Figures ......................................................................................................................................... vi 

List of abbreviations and acronyms .......................................................................................................vii 

1. Introduction .................................................................................................................................... 1 

 Introduction ............................................................................................................................ 2 

Reference ............................................................................................................................................ 7 

2. Modeling Interrelated Inputs Adoption in Rainfed Agriculture in Senegal .................................. 10 

 Introduction .......................................................................................................................... 11 

 Input subsidies in Senegal ..................................................................................................... 13 

 Conceptual framework ......................................................................................................... 14 

 Empirical model .................................................................................................................... 16 

 Data ....................................................................................................................................... 18 

2.5.1. Certified seeds and fertilizer adoption in Senegal ........................................................ 19 

2.5.2. Variables used in the adoption model .......................................................................... 21 

 Results and discussion .......................................................................................................... 23 

2.6.1. Joint adoption of rice certified seeds and chemical fertilizers ..................................... 24 

2.6.2. Joint adoption of groundnut certified seeds and chemical fertilizers .......................... 28 

 Conclusion ............................................................................................................................. 31 

References ........................................................................................................................................ 33 

Supplementary materials .................................................................................................................. 36 

3. Multiple Technology Adoptions, Technical Efficiency and Yield in Senegalese Rice Sector: A Meta-

frontier Framework ............................................................................................................................... 39 

 Introduction .......................................................................................................................... 40 

 Conceptual framework ......................................................................................................... 42 

3.2.1. Sample selection and efficiency analysis ...................................................................... 42 

3.2.2. Meta Stochastic Production Frontier framework ......................................................... 44 



 

x 

 

3.2.3. The multinomial endogenous treatment effects model ............................................... 45 

 Data presentation and descriptive results ............................................................................ 47 

3.3.1. Data presentation ......................................................................................................... 47 

3.3.2. Technology adoption and rice yield .............................................................................. 48 

3.3.3. Definition and summary statistics for variables used ................................................... 49 

 Results and discussion .......................................................................................................... 51 

3.4.1. Rice production function estimates .............................................................................. 51 

3.4.2. Rice technical efficiency estimates ............................................................................... 54 

3.4.3. Technology choice, factors mix and land productivity ................................................. 57 

3.4.4. The treatment effect of technology adoption on efficiency scores ............................. 59 

 Conclusion ............................................................................................................................. 61 

References ........................................................................................................................................ 63 

Supplementary materials .................................................................................................................. 65 

4. Investing in Risky Inputs in Senegal: Implications for Farm Profit and Food Production ............. 68 

 Introduction .......................................................................................................................... 69 

 Review of the literature ........................................................................................................ 71 

 Conceptual framework and estimation strategies ............................................................... 73 

4.3.1. Theoretical framework.................................................................................................. 73 

4.3.1. The Heckman selection model ...................................................................................... 76 

4.3.2. The endogenous switching regression model .............................................................. 78 

 Data and descriptive summary ............................................................................................. 80 

 Results and discussion .......................................................................................................... 85 

 Conclusion and policy recommendations ............................................................................. 91 

References ........................................................................................................................................ 93 

Supplementary materials .................................................................................................................. 99 

5. Market Participation Regimes and Rural Household’s Welfare in Senegal: Evidence using a 

Multinomial Treatment Endogenous Framework ............................................................................... 102 



 

xi 

 

 Introduction ........................................................................................................................ 103 

 Conceptual framework and empirical strategy .................................................................. 105 

5.2.1. Conceptual framework ............................................................................................... 105 

5.2.2. Empirical framework ................................................................................................... 108 

 Data and Pre-estimation Analysis ....................................................................................... 110 

 Estimation results ............................................................................................................... 115 

5.4.1. Market participation regimes ..................................................................................... 115 

5.4.2. Effects of market participation regimes ..................................................................... 119 

5.4.3. Discussions .................................................................................................................. 120 

 Conclusion ........................................................................................................................... 122 

References ...................................................................................................................................... 124 

6. Final Remarks .............................................................................................................................. 126 

 Main findings ...................................................................................................................... 127 

 Policy implications .............................................................................................................. 129 

 Future research ................................................................................................................... 130 

Appendix ................................................................................................................................................. a 

A. Summary ..................................................................................................................................... a 

B. Zusammenfassung ...................................................................................................................... c 

 

 

 

 

  



 

xii 

 

List of Tables 

Table 2- 1 Distribution of fertilizer use per crop .................................................................................................. 20 

Table 2- 2 Crop yield across technology adoption groups in Senegal .................................................................. 21 

Table 2- 3:  Definitions and summary statistics of variables used in the analysis ................................................ 22 

Table 2- 4 Bivariate probit estimates for rice technology adoption ...................................................................... 25 

Table 2- 5 Marginal effects of covariates on the probability of technology adoption for rice .............................. 27 

Table 2- 6 Bivariate probit estimates for groundnut technology adoption ........................................................... 29 

Table 2- 7 Marginal effects of covariates on the probability of technology adoption for groundnut ................... 30 

 

Table A2- 1 Estimates of Full- and Partial-Moment Function of Senegalese Rice Production ............................ 36 

Table A2- 2 Estimates of Full- and Partial-Moment Function of Senegalese Groundnut Production .................. 37 

Table A2- 3 First stage estimates for addressing potential endogeneity (probit model). ...................................... 38 

 

Table 3- 1: Technology adoption and rice yield (kg/ha) in Senegal ...................................................................... 48 

Table 3- 2: Rice yield (kg/ha) across regions of Senegal ....................................................................................... 49 

Table 3- 3: Summary Statistics of most Variables used in the analysis ................................................................ 50 

Table 3- 4: Parameters of group production frontiers, meta-frontier framework ............................................... 52 

Table 3- 5: Rice production efficiency scores by farmers’ groups (mean and standard deviation) ..................... 56 

Table 3- 6: Predicted rice yield across technologies and group of farmers .......................................................... 58 

Table 3- 7: Treatment effects of technology choices ........................................................................................... 60 

 

Table A3- 1: Determinants of rice technology choices (multinomial logit model) ............................................... 65 

Table A3- 2: Determinants of technical efficiency and rice yield (results of outcome equations) ....................... 66 

 

Table 4- 1: Treatment effects ............................................................................................................................... 80 

Table 4- 2: Descriptive summary of selected variables used in estimations ......................................................... 83 

Table 4- 3 : Drivers of investment on risky inputs, Heckman model results ........................................................ 87 

Table 4- 4: Predicted outcomes and treatment effects ........................................................................................ 89 

Table 4- 5: OLS regression of the differential impact ........................................................................................... 90 



 

xiii 

 

Table 4- 6: Comparison of mean of yield and land allocation across groups ....................................................... 91 

 

Table A4- 1: Determinants of per hectare farm profits and Food produced (endogenous switching regression 

model) .......................................................................................................................................................... 99 

Table A4- 2: Results of probit models for the control function .......................................................................... 100 

 

Table 5- 1: Descriptive statistics ......................................................................................................................... 113 

Table 5- 2: Mean comparison of crop profit per hectare across market choice (‘000 CFA) ............................... 114 

Table 5- 3: Estimation results based on the mixed multinomial logit model ..................................................... 117 

 

 

 

 
 



 

vi 

 

List of Figures 

Figure 2- 1 Multiple technology adoption across crops in Senegal ...................................................................... 20 

 

Figure 5- 1: Market participation regimes .......................................................................................................... 108 

Figure 5- 2: Comparison of predicted household level profit for producing the two groups of products by market 

regimes ...................................................................................................................................................... 121 

 

  



 

vii 

 

List of abbreviations and acronyms 

AEZ: Agroecological Zones 

AIC: Akaike Information criterion 

ATE: Average Treatment Effect 

ATT: Average Treatment Effect on the Treated 

ATU: Average Treatment Effect on the Untreated 

BIC: Bayesian Information Criterion 

BVP: Bivariate Probit Model 

BVP-E: Extended Bivariate Probit Model 

CFA: Communauté Financière Africaine  

FAO: The Food and Agriculture Organization (FAO) is a specialized agency of the United 

Nations 

FIML: Full Information Maximum Likelihood  

FOC: First Order Conditions  

GDP: Gross Domestic Product  

GLS: Generalized Least Squared 

GPS: Global Positioning System 

IFPRI: International Food Policy Research Institute  

IPAR: Initiative Prospective Agricole et Rurale 

ISRA: Institut Sénégalais de Recherches Agricoles 

MTE : Meta Technical Efficiency 

OLS: Ordinary Least Squares 

PAPA : Project d’Appui aux Politiques Agricoles 

PNAR : Programme National d'Autosuffisance en Riz 

PSM : Propensity Score Matching 

RGPHAE : Recensement General de la Population et de l’Habitat, de l’Agriculture et de 

l’Elevage 

SFA: Stochastic Frontier Analysis 

TE : Technical Efficiency 

TGR: Technological Gap Ratio 

TH: Transitional Heterogeneity effect 

USAID: Unites States Agency for International Development. 

  



 

1 

 

 

 

 

Chapter 1 

 

 

 

1. Introduction 
  



 

2 

 

 Introduction 

The adoption of new and profitable technologies (certified seed, inorganic fertilizer, irrigation, 

mechanization, etc.) is crucial to increase agricultural productivity, generate more incomes, 

and reduce poverty. However, the level of adoption of agricultural technologies is still low in 

African countries. For example, the average fertilizer used per hectare stood at 9 kg over 2002-

2003 in the Sub-Saharan Africa region compared to 100 kg in South Asia, 135 kg in Southeast 

Asia and 73 kg in Latin America (Crawford, Jayne, & Kelly, 2006). According to Gebeyehu 

(2016) who cited Dethier & Effenberger (2011), the fertilizer use intensity in 2012 was 23.7 

kg per hectare in Ethiopia, 44.3 kg/ha in Kenya, 39.9 in Malawi, 181.7 in Brazil, and 163.67 in 

India. 

As a critical consequence of this low adoption in Sub-Saharan African countries, agricultural 

productivity is very low. For example, cereals yield in Africa was on average 1.45 tons/ha over 

the period 2000-2017, while during the same period it was 3.61 tons/ha for Asian countries and 

6.05 tons/ha for Northern American countries (FAOSTAT, 2019). Regarding rice which is one 

of the imported and consumed commodities in Africa, the corresponding land productivity is 

also very low compared to other regions of the world. In fact, the average rice yield was 

estimated at 2.37 tons/ha for African countries compared to 4.36 tons/ha among Asian countries 

and 7.87 tons/ha among Northern American countries over 2000-2017. Among West African 

countries, the average rice yield over 2000-2017 stood at 1.51 tons/ha in Guinea, 1.68 tons/ha 

in Nigeria, 2.17 tons/ha in Cote d’Ivoire, 2.92 tons/ha in Benin and 3.24 tons/ha in Senegal. 

Therefore, there is a real need to assess the agricultural sector in African countries in order to 

identify context-specific reasons for the underuse of improved inputs. 

In the technology adoption literature, several studies list factors that influence the adoption of 

new or advanced technologies. Feder, Just, & Zilberman (1985) identified several factors such 

as farm size, land tenure, labor availability, risks and uncertainty, credit constraints, and 

household characteristics. Sunding & Zilberman (2001) also modeled technology adoption as 

dependent on farmer’s characteristics such as education, age, or risk preferences. Other factors 

identified in the literature include market intervention, social network, specialization, farmer 

organization, extension services, transaction costs (Batz, Peters, & Janssen, 1999; El-Osta & 

Morehart, 2000; Garforth, Angell, Archer, & Green, 2003; Millar, 2011; Miller & Tolley, 

1989). A recent review of the literature on agricultural technology adoption was done by 

Ugochukwu & Phillips (2018). 
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The importance of assessing the determinants of technology adoption resides in the 

identification of agricultural policy options to reverse the current trend of low technology 

adoption. Evidence that investment in agricultural inputs is profitable, even in the presence of 

production risks, could finally trigger the Green Revolution in Africa. However, to produce 

high quality and relevant policy recommendations, two central inputs are required. The first 

ingredient is the data used for the research. As usually said ‘garbage in, garbage out’. Without 

good data quality, any nice or sophisticated research methodology would result in bad or at 

least misleading findings and policy recommendations. This work took advantage of a huge 

project of data collection conducted in Senegal between 2017 and 2018. This data collection 

process received technical support from the International Food Policy Research Institute and 

Michigan State University. This project aimed to provide key information on local agriculture. 

To the best of our knowledge, we are the first to use this rich dataset to analyze technology 

adoption in Senegal.  

The second major input to inform policymaking, in addition to good data, is the identification 

of the right methodology to apply for generating relevant policy recommendations. A good 

methodology is as important as a good dataset. In methodological terms, we have decided to 

apply methods that are at the frontier of applied economic research to address each of our 

research problems. The most relevant microeconometrics approaches have been selected and 

applied in this research work.  

The entry point of this dissertation is the exploration of the decision to adopt improved 

technologies such as certified seed and chemical fertilizers in crop production. When a farmer 

makes an adoption choice in the presence of two or more agricultural technologies, should the 

econometrician analyze these choices separately or together? If these technologies are 

complements or substitutes, the choice of one technology is not independent of the others. 

Thus, the modeler would benefit from considering a simultaneous analysis of the different 

choices. Although many studies have focused on the analysis of the determinants of the 

adoption of agricultural technologies, very few have taken into account the issue of dependency 

between technologies available on the market. However, since Feder (1982) and Feder et al. 

(1985), it is obvious that agricultural technology choices analysis should be carried out in a 

multidimensional context. Thus, the chapter 2 of this dissertation, following some recent 

studies (Abay et al., 2018; Ogada, Mwabu, & Muchai, 2014; Teklewold, Kassie, & Shiferaw, 

2013),  considers a joint adoption of certified seeds and inorganic fertilizers in Senegal. A 

bivariate probit model is adopted to analyze the joint adoption of certified seeds and inorganic 
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fertilizers. The standard assumption in this model is that the joint distribution is a bivariate 

normal distribution with a constant correlation. In this chapter, we challenge this assumption 

of constant correlation parameter. To the best of our knowledge, no study before this one went 

in that direction in the literature of agricultural technology adoption. However, in the statistics 

literature, it is well known that the conditional correlation between two random variables given 

a set of covariates is not constant but depends on the covariates (Filippou, Marra, & Radice, 

2017; Marra & Radice, 2011, 2013; Vatter, 2016). Therefore, this chapter contributes to the 

literature by first testing the presence of a heterogeneous correlation between the two decisions 

under consideration, and second, when a heterogeneous correlation is confirmed to the 

identification of the drivers of that heterogeneous correlation. The main advantage of this 

flexible bivariate probit model lies in the fact that it allows better targeting of the policy 

implications of joint modeling. 

As a consequence of the arguments developed in chapter 2, we consider in chapter 3 the impact 

of joint technology adoptions on rice farmers' technical efficiency and production per hectare. 

Recent studies (Kassie, Teklewold, Marenya, Jaleta, & Erenstein, 2015; Manda, Alene, 

Gardebroek, Kassie, & Tembo, 2016) went in that direction by assessing the impact of multiple 

technology adoptions on various outcomes. Using similar logic, chapter 3 uses a two-step 

approach to estimate the level of productivity and technical efficiency of rice for each 

technology adoption group, and then to identify the treatment effects of technology choices on 

the technical efficiency and rice productivity measured as the potential production per hectare. 

Three technology choices were considered: irrigation, rice certified seeds, and inorganic 

fertilizers. These technologies are critical for rice production in Senegal dominated by the 

irrigated system. Since the choice of improved inputs influences the mix of production factors, 

farmers in the various groups may operate under different production frontiers. Under these 

conditions, estimating a common production function will bias the estimated productivity 

levels. Hence the adoption here of the stochastic meta frontier approach (Battese, Rao, & 

O’donnell, 2004; Huang, Huang, & Liu, 2014; O’Donnell et al., 2008). A stochastic meta 

frontier framework is an extension of the standard stochastic frontier analysis to the case of 

heterogeneous frontiers of production in a selected industry. This framework has the advantage 

to disentangle the overall (meta) technical efficiency into group-specific technical efficiency 

(managerial efficiency) and the technology gap ratio which measures the gap between group-

specific frontiers and the metafrontier. Even though the metafrontier approach takes into 

account the heterogeneity of the frontiers, it does not account for selection bias in the choice 
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of technologies. This chapter combines the metafrontier framework with an impact assessment 

approach appropriate in the context of a multinomial treatment variable. We specifically use 

the multinomial treatment effects model proposed by Deb & Trivedi (2006a, b) that accounts 

for selection bias due to both observed and unobserved. 

The remaining chapters complement the first two in the sense that they focus on the motives 

of market participation, especially the drivers of the decisions to buy inputs or sell part of 

produced outputs. In chapter 4, we investigate the decision of farm households to invest in 

agricultural inputs, especially on those we named ‘risky inputs’ that include seeds and 

inorganic fertilizers. We qualified these inputs as risky because farmers need to make these 

decisions before the realization of rainfall, while the return of such investment is highly 

correlated with rainfall volume and distribution over the rainy season. Following the theoretical 

model by Karlan, Osei, Osei-Akoto, & Udry (2014) extended by Magruder (2018), this chapter 

develops a model of investment in risky inputs. The model mainly focuses on credit constraints, 

production risks, and imperfect information. In the empirical estimation, a Heckman model is 

used to identify the main drivers of the investment decision and the level of investment. The 

main advantage of the Heckman model is that the investment decision as well as the level of 

investment are simultaneously analyzed. Moreover, in order to test the return on investment in 

risky inputs, an endogenous switching regression model is used to identify the causal effect of 

this investment decision on agricultural profit and household food security. This framework 

accounts for selection bias and allows one to estimate the common treatment effects statistics 

(average treatment effects, average treatment effect on the Treated, etc.), but also the 

heterogeneity effect which is the difference of performances between the two groups under 

each level of treatment. The outcome variables considered are per hectare profit and the food 

availability per capita. 

In chapter 5, the analysis in chapter 4 is extended to analyze the joint input-output market 

participation in Senegal. From the production theory, firms produce to sell and maximize their 

profit. To accomplish that, they make input choices. Therefore, the decision to adopt 

technologies or invest in inputs are directly linked to productivity, and thus correlated with the 

decision to market produce. Hence, the joint modeling of these decisions should be a standard 

choice in empirical works. From the farm household perspective, these decisions may have a 

big impact on their likelihood. For example, a staple producer can buy improved inputs to 

produce enough for his consumption. When the production is large enough, this farmer may 

decide to sell the surplus. Thus, in a context where improved inputs are profitable, farmers 
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should purchase inputs to maximize production in order to satisfy self-consumption and 

generate income for the purchase of other goods and services. In the literature, only Teklewold 

(2016) had simultaneously analyzed the decisions to adopt technologies and to sell output in a 

multivariate probit framework. Our framework goes beyond that adopted by these authors at 

least for two reasons. First, all the market participation regimes are considered and analyzed in 

a multinomial framework. Second, the impact of market participation regimes on the 

agricultural gross income per hectare is analyzed. Thus, in this chapter, we develop a theoretical 

farm household model of input-output market participation. Empirically, we use a multinomial 

endogenous treatment effects model, which accounts for the selection bias on observed and 

unobserved factors, to assess the welfare impact of market participation regimes.  
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 Introduction 

Adoption of new and profitable technologies is crucial for smallholder farmers to increase their 

productivity (yield), and then their production, which in turn will allow them to move from 

subsistence farming towards market-oriented production. However, the level of adoption of 

agricultural technologies is still low in African countries. For example, the average amount of 

fertilizer used per hectare stood at 9 kg over 2002-2003 in Sub-Saharan Africa compared to 

100 kg in South Asia, 135 kg in Southeast Asia and 73 kg in Latin America (Crawford, Jayne, 

& Kelly, 2006). According to Dethier & Effenberger (2011) (cited in Gebeyehu, 2016), the 

fertilizer use intensity in 2012 was 23.7 kg per hectare (kg/ha) in Ethiopia, 44.3 kg/ha in Kenya, 

39.9 kg/ha in Malawi, 181.7 kg/ha in Brazil, and 163.67 kg/ha in India. The low adoption rate 

in Sub-Saharan Africa may be explained by apparent financial constraints. As a response, 

policy reforms have been launched by almost all African countries to disseminate new 

agricultural technologies and make them accessible to farmers. In Senegal, fertilizer subsidies 

mainly focus on fertilizer price paid by farmers, still set at levels well below international 

prices. Over 2006-2010, according to the agricultural ministry, the Senegalese government 

spent more than $20 million on fertilizer subsidies per year. The Senegalese government also 

provides certified seeds to farmers at subsidized prices, but the seed value chain is not totally 

controlled by parastatal institutions as is the case for chemical fertilizer. 

At farm household level, various technology options are available (certified seeds, inorganic 

fertilizers, agricultural mechanization, etc.). These different agricultural technologies can act 

as complements or substitutes. For example, various studies have shown that the production 

per unit of land area increases significantly if farmers adopt both certified seeds and chemical 

fertilizers (Abay et al., 2018; Ogada, Mwabu, & Muchai, 2014; Teklewold, Kassie, & Shiferaw, 

2013). Therefore, for agronomic or economic reasons, technology choices by farmers may be 

interrelated and the choice of multiple technologies will be more relevant to maximize 

production or revenue. Consequently, agricultural technology adoption usually takes place in 

a multivariate choice setting. In addition, various surveys conducted in different contexts have 

shown that farmers do not usually adopt a single technology. Studies that consider the adoption 

of only one technology (i.e. fertilizer use or adoption of improved seeds) may be biased since 

they do not consider the potential dependency between the decisions to use different elements 

of a technology package (Dorfman, 1996; Feder, 1982; Feder, Just, & Zilberman, 1985). Abay 

et al. (2018) argue that studies based on univariate technology adoption models show a partial 
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view of technology adoption status at hand and are subject to endogeneity and simultaneity 

problems. 

In Senegal, the literature on agricultural technology adoption, especially agricultural inputs, 

remains very limited. Regarding the adoption of seeds or fertilizers, only two papers are found, 

namely Thuo et al. (2011, 2014). Both studies use data collected between 1998-2006 in the 

peanut basin of Senegal. In the first one, Thuo et al. (2011) analyzed the adoption of chemical 

fertilizer among groundnut and millet farmers. They found that education, larger family size 

and farm size encourage the use of chemical fertilizers. Their study also revealed a decrease in 

fertilizer application intensity over the period under consideration. On the other hand, Thuo et 

al. (2014) were interested in the joint adoption of a groundnut variety (La Fleur 11) and 

chemical fertilizer. They found that the two decisions were independent. Groundnut variety 

adoption was positively associated with ownership of draft power but negatively related to 

farmers’ level of experience. Conversely, greater farm size and number of plots increased the 

probability of fertilizer use, while this probability was negatively affected by access to off-farm 

income and ownership of draft power. 

This paper contributes to the literature on agricultural technology adoption in several ways. 

First, our analysis focuses on two common technologies (certified seeds and inorganic 

fertilizers) in the context of rainfed agriculture in Senegal. Studies on agricultural technology 

adoption in Senegal is very limited in scope and coverage (Thuo et al., 2011; 2014). Second, 

we consider a flexible framework that simultaneously models the decision to adopt improved 

seeds and fertilizers. The dependence between the two decisions (correlation) is modeled as a 

function of different covariates. For example, from one agroecological area to another, farmers 

may have different motives to make joint adoption decisions or not. Knowledge of input 

complementarity may influence the set of technologies to adopt. Risks related to crop 

production or climate change affect both individual technology adoption and joint adoption. 

Third, to the best of our knowledge, this is the first time that a country representative 

agricultural survey is used to analyze agricultural technology adoption in Senegal. 

The rest of the paper is organized as follows: Section 2 presents background information on 

agricultural input policies in Senegal. The theoretical framework and the empirical model are 

discussed in sections 3 and 4. Section 5 presents the study area, the data used for analysis, and 

a short description of selected variables. Section 6 displays and discusses the results. Section 7 

provides concluding remarks and policy implications.  
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 Input subsidies in Senegal 

Input subsidy policies pursued by most governments in developing countries are generally 

aimed at improving productivity in the agricultural sector through easier access to and better 

use of improved seeds and fertilizers by producers. Overall, the agricultural sector in Senegal 

has always been supported by the different governments since independence through input 

subsidies, especially for fertilizers and seeds. Among the various public policies in favor of 

agriculture, Senegal has recently chosen to focus on subsidies (Seck, 2017). Fertilizer is the 

main target of subsidy programs. Fertilizer subsidies represent 30% of total agricultural 

subsidies and aim to improve the availability and use of fertilizer through a reduced purchase 

price (Seck, 2017). The government plays a key role in the access and distribution of fertilizers. 

It sets the minimum levels of manufacturing and imports of fertilizers as well as their market 

prices.  

Fertilizer subsidy usually focuses on the producer price which is set below the price on the 

international fertilizer market. Thus, the government plays a role in regulating the domestic 

market of supply and demand through legislation, taxation, credit system, and establishment of 

basic infrastructure (port infrastructure, roads, and rural tracks, etc.). The level of subsidy 

remains relatively high since the country aims to increase the uptake of improved inputs in 

order to improve its productivity. However, the process of distribution of inputs established is 

far from being efficient due to several unclear procedures to select private operators (IPAR, 

2015). In addition, significant delays in reimbursement to private businesses by the government 

can affect the efficiency of subsidies. 

On the other hand, the level of private investment in this area remains very low due to an 

inadequate institutional environment that often results in opacity surrounding the allocation of 

quotas between suppliers, as well as the absence of reliable control over the actual quality and 

quantity of fertilizer sold to farmers (Seck, 2017). Indeed, the current architecture for input 

subsidies in Senegal suffers from multiple failures that would limit their effects on productivity. 

In addition, the lack of relevant information and data makes it almost impossible to assess the 

effectiveness of fertilizer subsidies, which would legitimize the continuation of such policy or 

suggest changes. It is therefore of interest to conduct a study on the input sector to provide new 

guidance for a better operationalization of the subsidies which remain a necessity for the 

agricultural development of Senegal. 
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 Conceptual framework 

In this paper, we model the farm household’s choice of improved inputs (certified seed and 

fertilizer) in the risky environment following a framework similar to that by Koundouri, 

Nauges, & Tzouvelekas (2006). This framework assumes that technology choice by farmers is 

influenced by the distribution of risky agricultural output. The output distribution in this model 

is represented by its first and higher-order central moments (Antle, 1983, 1987; Antle & 

Goodger, 1984). The approach adopted could be seen as an extension of that by Koundouri et 

al. (2006) in various aspects. First, we consider a multi-output framework, while these authors 

modeled the production risk for a single output. Our setting is preferred since farm households 

in developing countries are generally involved in several crop farming. Therefore, we assume 

that farmers decide to adopt technologies to maximize their overall farming returns. In addition, 

crop diversification is a risk management strategy for farmers (Di Falco & Chavas, 2009). 

Moreover, Antle (1987) and Kim & Chavas (2003) argue that strong assumptions are required 

to estimate any behavioral equation-based single farming activity. Second, we extended the 

single technology adoption to multiple technology adoption (two in this case). A similar 

approach was also adopted by Ogada et al. (2014) who studied the adoption of maize improved 

variety and inorganic fertilizer in Kenya. Third, we follow the risk-value model that is more 

general than the prospect theory or expected utility-based models. The latter are special cases 

of the risk-value model (Antle, 2010). This model assumes that the behavior of decision-makers 

is not the same in presence of negative or positive outcomes. 

Let consider a farm household that chooses variable inputs to produce n crops in a risky 

environment (weather shocks, pests, price uncertainty, etc.). The stochastic output is defined 

as 

𝑞 = 𝑓(𝑥, 𝑧, 𝑒)    (2.1) 

where q is output per unit of land, x represents variable inputs, z is a vector of farm or 

household-specific variables such as agroecological zones, access to extension services, e is 

weather variables (rainfall and temperature), and 𝑓(. ) is well-behaved (i.e., continuous and 

twice differentiable) production function. For simplicity purposes, we consider x, z, and e as 

scalars. We assume that 𝑞 follows a distribution 𝜙(𝑞|𝑥, 𝑧, 𝑒). 

The gross income from all farming activities when w is the unit cost of variable inputs is defined 

as 
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𝜋 =  𝑞 − 𝑤𝑥  (2.2) 

Let define the expected net returns as  𝜇1 − 𝑤𝑥 > 0, where 𝜇1is the first moment of 𝑞.  

The objective function in the risk-value model depends on the expected outcome, and on 

negative and positive deviations from this expected outcome. 

max
𝑥

𝑉[𝜇1(𝑥), 𝜂2(𝑥), 𝜑2(𝑥), 𝜂3(𝑥), 𝜑3(𝑥)]   (2.3) 

Where 𝜂𝑗(𝑥) are the jth central moments for negative deviations, 𝜑𝑗(𝑥) is the jth central 

moments for positive deviations, and  𝑗 ≥ 2. 

The first-order condition of equation (2.3) in the elasticity form is as follow 

𝜇1
∗ −

𝑤𝑥

𝜇1
= 𝑠2(𝑉2𝜂𝜂2

∗ − 𝑉2𝜑𝜑2
∗) + 𝑠3(𝑉3𝜂𝜂3

∗ − 𝑉3𝜑𝜑3
∗)   (2.4) 

where 𝑠𝑗 = 𝜇𝑗/(𝜇1(𝜇1 − 𝑤𝑥)𝑗−1), 𝜂𝑗
∗ = 𝜕 ln 𝜂𝑗 /𝜕 ln 𝑥, 𝜑𝑗

∗ = 𝜕 ln 𝜑𝑗 /𝜕 ln 𝑥, 𝜇1
∗ =

𝜕 ln 𝜇1

𝜕 ln 𝑥
, 

𝑉𝑗𝜂 =  −(𝜇1 − 𝑤𝑥)𝑉𝜂𝑗
/𝑉𝜇1

, and 𝑉𝑗𝜑 =  −(𝜇1 − 𝑤𝑥)𝑉𝜑𝑗
/𝑉𝜇1

. In the model (4), 𝑉𝑗𝜂 and 𝑉𝑗𝜑 

represent the risk attitude to negative and positive deviations from the expectation and are 

interpreted as disappointment and elation in the risk value model. Input will have a symmetrical 

impact of the jth central moment of the outcome if 𝜂𝑗
∗ = 𝜑𝑗

∗. In the empirical investigation, we 

compared results using partial moments (𝜂𝑗  , 𝜑𝑗) with that from the full moments (𝜇𝑗). 

From equation (2.4), input use is a function of its cost (𝑤), expected profit (𝜇1), partial moments 

of profit (𝜂𝑗 and 𝜑𝑗), and farm and household characteristics. Therefore, the adoption of 

productivity-enhancing technology such as inorganic fertilizers or improved seeds will depend 

on expected technology returns, risk premium (R), and any information-related costs required 

to efficiently use the technology (Koundouri et al., 2006). 

For a selected crop k, a farm household will adopt a technology t (t=1 for adoption and t=0 for 

non-adoption) if and only if the gap between expected utility associated to certainty equivalent 

of the use of technology and the non-adoption is greater than any additional premium related 

to the technology (VI). 

𝐸[𝑈(𝜇1 − 𝑤𝑥 − 𝑅)]𝑘,𝑡=1 − 𝐸[𝑈(𝜇1 − 𝑤𝑥 − 𝑅)]𝑘,𝑡=0 > 𝑉𝐼𝑡=1   (2.5) 
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 Empirical model 

From equation (2.5), the adoption of an improved input for a selected crop depends on the 

expected total gross income per unit of land, its higher-order partial moments, farm and 

household characteristics, and any sources of information that are useful about technologies. 

Following Koundouri et al. (2006), we estimate the first three moments of the total gross 

income from crop production. As stated by Antle (1983, 1987, 2010), the specification of the 

mean gross income distribution is critical in this framework. Therefore, following Antle (1987) 

and Ogada et al. (2014), we adopt a quadratic functional form for the first moment of the gross 

income. The variables considered in this quadratic function are farm size in hectares, fertilizer 

use in kilograms, total rainfall, and average temperature over the rainy season. These weather-

related variables are obtained using farm household coordinates and the dataset from the 

Climate Hazards Center of the University of California, Santa Barbara 

(https://www.chc.ucsb.edu/data). We include also three agroecological zones in the model 

(Senegal River Valley, Groundnut Basin, and Casamance), a soil quality index, and three 

dummies for household level overall technology choice: (i) adoption of certified seeds for at 

least one crop, but with no use of fertilizer, (ii) adoption of fertilizer only for at least one crop, 

(ii) adoption of certified seeds and fertilizers. 

𝜋𝑖 = 𝑔(𝑥𝑖) + 𝐳𝒊
′𝛾 + 𝑢𝑖        (2.6) 

where 𝜋𝑖 is the gross income per hectare for ith farm household from all crops produced, 𝑔(𝑥𝑖) 

denotes the quadratic specification in inputs x, 𝐳 are additional variables included in the 

moments (dummy for technology adoption and agroecological zones). As suggested in the 

literature, a Feasible Generalized Least Squared (FGLS) was used to estimate equation (6). The 

empirical variance is estimated as follow 

log [(𝜋𝑖 − 𝑢𝑖̂)
2] = 𝑔′(𝑥𝑖) + 𝐳𝒊

′𝛾 + 𝑢′𝑖        (2.6’) 

where 𝑢𝑖̂ are the residuals from an OLS estimation of equation (2.6), 𝑔′(𝑥𝑖) is a linear function 

of inputs. The log transformation is preferred to ensure the positivity of the predicted variance. 

The predicted variance is used as a weight in the GLS estimation to consistently estimate the 

mean gross income per hectare (𝜇1) and the residuals (𝑢𝑖
𝐺𝐿𝑆) useful for higher-order moments. 

The higher-order moments are estimated following 

𝜇𝑖
𝑗

= 𝑔′(𝑥𝑖) + 𝐳𝒊
′𝛾𝑗 + 𝑢𝑖

𝑗
          (2.7) 

𝜂𝑖
𝑗

= 𝑔′(𝑥𝑖) + 𝐳𝒊
′𝛾𝑗,𝑛 + 𝑢𝑖,𝑛

𝑗
     if  𝑢𝑖

𝐺𝐿𝑆 < 0    (2.8) 

https://www.chc.ucsb.edu/data
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𝜑𝑖
𝑗

= 𝑔′(𝑥𝑖) + 𝐳𝒊
′𝛾𝑗,𝑝 + 𝑢𝑖,𝑝

𝑗
         if  𝑢𝑖

𝐺𝐿𝑆 > 0     (9) 

Equation (2.7) represents the full higher-order moments' specification, equations (2.8) and (2.9) 

are for partial moments. Equation (2.8) and (2.9) are combined in a kind of threshold regression 

for their joint estimation. The dependent variable in equation (2.7) is the residuals 𝑢𝑖
𝐺𝐿𝑆 raised 

to the power j (2, 3), while the dependent variables in (2.8) and (2.9) are the absolute residuals 

𝑢𝑖
𝐺𝐿𝑆 raised to the power j. For the variance specification (2nd moment) of (2.7) and for all 

partial moments, a log transformation is preferred to preserve the positivity of predicted 

moments.  Equations (2.7) to (2.9) were estimated using OLS corrected for heteroscedasticity 

following MacKinnon & White (1985). The predicted mean and higher-order partial (full) 

moments are used in the adoption model as explanatory variables. 

From equation (5), the adoption of an improved input can be modeled using a probit model. 

Since certified seeds and fertilizers are generally proposed to farmers as complementary 

technologies, their adoption may not be independent. In addition, the return to certified seeds 

will be higher if farmers use inorganic fertilizers as a complementary technology. Therefore, 

simultaneous modeling is more appropriate (Abay et al., 2018; Feder et al., 1985; Ogada et al., 

2014; Teklewold et al., 2013; Yu et al., 2012). Hence, the two technology decisions may be 

modeled in a bivariate probit setting. Following Greene (2012), the model can be written as: 

𝑦1
∗ =  𝐱1

′𝛽1 +  𝜀1,    𝐶𝑆 = 1 𝑖𝑓 𝑦1
∗ > 0 and 0 otherwise; 

𝑦2
∗ =  𝐱2

′𝛽2 +  𝜀2,    𝐶𝐹 = 1 𝑖𝑓 𝑦2
∗ > 0 and 0 otherwise. 

(
𝜀1

𝜀2
| x𝟏, x𝟐) ~𝑁 [

0
0

, (
1 𝜌
𝜌 1

)]            (2.10) 

where 𝑦𝑘
∗ is the latent variable associated with the adoption of technology k (1,2), CS and CF 

are the binary choice variables for certified seeds (CS) and chemical fertilizers (CF), 𝐱1 et 𝐱2 

are the explanatory variables associated with the two decisions, and 𝜌 is the correlation 

(dependence) between the two decisions. 

The model (10) is the standard bivariate probit model. This model assumes a constant 

correlation between the two decisions. The assumption is quite strong, as the correlation 

between the two decisions may be heterogeneous across farmers. From a statistical point of 

view, the correlation between the two dependent distributions should not be constant. As stated 

by Vatter (2016), the conditional correlation between two random variables Y1 and Y2 given 

X is not constant, but depends on the “value of the conditioning variable explicitly”. See Vatter 
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(2016) for short proof. Therefore, there is a need to account for variable or heterogeneous 

correlation while modeling joint adoption. To the best of our knowledge, this is the first-time 

heterogeneous correlation is accounted for in the technology adoption literature. For simplicity, 

we assume that the correlation is a linear function of factors such as access to extension 

services, farmer organization membership, access to credit, agroecological zones, production 

risk, and other information-related factors. 

𝜌 =
exp(𝐱′3𝛽3) − 1

exp(𝐱′3𝛽3) + 1
                     (2.11) 

where 𝛽3 are the parameters of interest. A positive and significant 𝛽3 means the selected 

covariate increases the dependency between the two inputs under consideration, while a 

negative sign can be interpreted as decreasing the likelihood of adopting the two inputs. 

Readers interested in non/semi-parametrical specification of the correlation equation (2.11) are 

referred to Ieva, Marra, Paganoni, & Radice (2014); Marra & Radice (2017); Giampiero Marra 

& Radice (2011, 2013); McGovern, Bärnighausen, Marra, & Radice (2015).  

We argue here that information and production risk are critical in technology adoption, 

especially for the correlation between interrelated technologies. For a two-dimensional 

technology adoption model, a standard maximum likelihood can be used. For higher-

dimensional model, advanced methods are required (Filippou, Marra, & Radice, 2017; Vatter, 

2016; Vatter & Nagler, 2018). 

 Data  

Data used in this study were collected under the PAPA1 project, which is an initiative of the 

Government of Senegal funded by USAID-Senegal as part of the "Feed The Future" initiative 

implemented for a 3-year period (2015 - 2018) by the Ministry of Agriculture and Rural 

Facilities with a technical support provided by the International Food Policy Research Institute 

(IFPRI). 

A two-stage sampling method was used with the primary units being the census districts (CDs) 

as defined by the 2013 General Census of Population, Housing, Agriculture and Livestock 

(RGPHAE2) and the secondary units being agricultural households. In order to have a better 

 

1 The ‘Project d’Appui aux Politiques Agricoles’ (PAPA) is an ambitious country-wide project. The website of the 
project is http://www.papa.gouv.sn/, where more information about the project are available. 

2 Recensement Général de la Population, de l’Habitat, de l’Agriculture et de l’Élevage  

http://www.papa.gouv.sn/
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picture of rice production in the country, we combine the rain-fed led agriculture survey (4,533 

farm households) and the irrigated rice oriented survey (730 farm households) distributed 

across all the 42 agricultural departments of the country (except the urban departments of 

Dakar, Pikine, and Guediawaye). Data collection took place between April and May 2017. 

After data cleaning, the final sample size for this analysis is 5207 farm households. We remove 

all households that have a very small land size (less than 0.1 hectares, a total of 33 households). 

2.5.1. Certified seeds and fertilizer adoption in Senegal 

This section discusses the joint adoption of certified seeds and chemical fertilizers at crop level. 

Figure 2- 1 shows the number of households involved in the production of each crop and the 

associated technology adoption pattern. Among farming activities, the top 5 crops include 

groundnut (63% of households), millet (53%), maize (33%), rice (28%), and cowpeas (19%). 

In terms of the use of certified seeds or inorganic fertilizer, Figure 2- 1 shows that except for rice 

production, most households do not use any of the two selected inputs to produce crops. For 

rice production, only 33 percent of farmers do not use any improved inputs compared to 93 

percent in sorghum production, 86 percent for cowpeas, 75 percent for millet and 61 percent 

for groundnut. It is obvious that technology adoption pattern is specific to cropping systems. 

For millet and maize, technology adopters put priorities on the adoption of certified seeds, 

while for rice production a simultaneous adoption of certified seeds and inorganic fertilizers is 

the most common choice. For the groundnut system, the major cash crop in Senegal, the 

technology choice is more heterogeneous; respectively 41 percent, 39 percent, and 20 percent 

of adopters have used chemical fertilizers, certified seeds, and the two technologies, 

respectively. For all farm households in the sample, about 33 percent had adopted certified 

seeds for at least one crop, while 45 percent of them had used inorganic fertilizers. 
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Figure 2- 1 Multiple technology adoption across crops in Senegal 

 

Source: PAPA data (2017). 

One key statistic of technology adoption is the intensity of chemical fertilizer use. Table 2- 1 

displays for each crop the mean fertilizer uses per hectare along with the three quartiles and the 

standard deviation. Results reveal that rice producers have the highest rate of fertilizer 

application in the sample (192 kg/ha) followed by maize producers (63 kg/ha), and 20 kg/ha 

for groundnut and millet producers. At household level, the average fertilizer intensity is 

estimated at 69 kg/ha3. This high level of fertilizer use intensity is mainly driven by fertilizer 

use in the irrigated rice system which is clearly oversampled. When only rainfed agriculture is 

considered, the fertilizer application rate is much lower. In fact, the average inorganic fertilizer 

used per hectare is around 27.8 kg in the rainfed system compared to 271.3 kg in the irrigated 

system. 

Table 2- 1 Distribution of fertilizer use per crop 

 
Observation Quartile 1 Mean Median Quartile 3 

Standard 

deviation 

Groundnut 3258 0 20.02 0 0 49.72 

Millet 2739 0 20.06 0 0 55.28 

Maize 1721 0 62.62 0 100 111.56 

Rice 1482 0 191.66 131.05 366.67 198.42 

Cowpeas 1001 0 2.48 0 0 22.90 

Sorghum 764 0 4.19 0 0 27.35 

Total 5207 0 69.04 0 64.52 134.23 

Source: PAPA data (2017). 

 

3 This result is based on the sample of households in the survey. With the sampling weight, the estimated 
country’s fertilizer use intensity is about 62 kg/ha. 
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From Figure 2- 1, we know that not all technologies are of equal importance across crops. Table 

2- 2 displays the distribution of crop production per hectare across technology adoption groups. 

For millet, the two common technology choices are “no technology adoption” (75%) and “only 

fertilizer use” (21.4%). In terms of millet yield, the mean millet output per hectare is greater 

when fertilizer is adopted (530 kg/ha) compared to the situation where no improved inputs are 

used (424 kg/ha). For sorghum, almost all producers do not use any technologies (93%). For 

maize production, the most productive technology in the sample is fertilizer. In the rice system, 

the most productive technology is the joint use of certified seeds and inorganic fertilizers. As 

with maize, fertilizer adoption seems to be the best choice for groundnut farmers.  

Table 2- 2 Crop yield across technology adoption groups in Senegal 

 

No technology 

adoption 

Only CS 

adoption 

Only CF 

adoption 

Both technology 

adoption 
Full sample 

Millet 
423.58  

(393.19) 

312.27 

(301.22) 

529.99 

(406.05) 

489.48  

(422.27) 

445.46 

(397.65) 

Sorghum 
522.93  

(576.08) 

464.27 

(458.1) 

499.78 

(323.59) 

1777.22 

(1191.35) 

525.41 

(572.74) 

Maize 
559.84  

(718.48) 

458.16 

(497.91) 

788.04 

(826.18) 

771.65  

(692.63) 

647.57 

(756.57) 

Rice 
1152.94 

(1647.23) 

595.42 

(508.79) 

2010.28 

(2105.68) 

3347.88 

(2463.43) 

2254.31 

(2332.57) 

Cowpeas 
212.05  

(305.26) 

260.83 

(307.33) 

316.38 

(600.43) 

128.7  

(19.71) 

219.57 

(315.42) 

Groundnut 
583.85  

(753.37) 

570.56 

(835.19) 

728.2  

(663.5) 

586.84  

(545.55) 

605.33 

(739.97) 

Source: PAPA data (2017). 

2.5.2. Variables used in the adoption model 

For the empirical part of this paper, we applied the theoretical model to study the joint 

technology adoption for groundnut production (the main cash crop in Senegal) and rice 

production (the main staple in the country). The adoption models include several explanatory 

variables based on economic theory and empirical literature on technology adoption. The most 

common factors used in the literature of technology adoption include farm and households’ 

characteristics, and risk-related or transaction costs factors (Abay et al., 2018; D’souza, 

Cyphers, & Phipps, 1993; Feder et al., 1985; Gebremedhin & Swinton, 2003; Isham, 2002; 

Kassie, Jaleta, Shiferaw, Mmbando, & Mekuria, 2013; Kassie, Shiferaw, & Muricho, 2011; 

Lee, 2005; Marenya & Barrett, 2007; Neill & Lee, 2001; Teklewold et al., 2013). For the 

estimation of the farm household-specific production risk parameters, we also include variables 

such as rainfall, temperature, and soil quality index. The description and summary statistics 
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(mean and standard deviation) of the variables used in the econometric models are given in 

Table 2- 3. 

Table 2- 3:  Definitions and summary statistics of variables used in the analysis 

   Rice producers Groundnut producers 

 Variable Description Mean Std dev. Mean Std dev. 

Technology adoption 

tech_none No technology 0.33 0.47 0.61 0.49 

tech_CS Certified seed only 0.03 0.17 0.15 0.36 

tech_CF Fertilizer only 0.20 0.40 0.16 0.37 

tech_both CS and CF adoption 0.44 0.50 0.08 0.27 

Outcome profit_ha Total gross crop income (1000 FCFA/ha) 216.71 265.12 108.65 148.95 

Production inputs 

x1_land Land use (ha) 2.68 5.65 5.52 4.77 

x2_fert Fertilizer use (ha) 436.79 1944.65 179.91 482.66 

x3_rainfall Total rainfall (mm) 781.63 407.03 652.70 245.15 

x4_temp Temperature (degree C) 35.47 2.26 35.19 1.07 

SQI Soil quality index 0.25 0.06 0.28 0.06 

profit_dum Share of negative profit 0.07 0.26 0.05 0.21 

Household variables 

Gender Gender (1=Female) 0.10 0.30 0.05 0.23 

Age Age (years) 52.75 12.42 53.15 13.49 

education Education (1=Yes) 0.45 0.50 0.38 0.48 

Hhsize Household size 9.46 5.08 10.58 5.63 

wealth_index Wealth index 3.10 1.74 3.06 1.77 

livestock_act Livestock income dummy 0.31 0.46 0.34 0.48 

non_farm_act Off-farm income dummy 0.34 0.47 0.26 0.44 

farmsize Land holding (ha) 3.45 6.87 6.92 8.99 

organization Farmer organization 0.27 0.44 0.10 0.29 

extension Extension services 0.30 0.46 0.09 0.29 

extension_need Extension services (need) 0.86 0.35 0.75 0.44 

insurance_need Agricultural insurance (need) 0.45 0.50 0.40 0.49 

credit_received Credit access 0.09 0.28 0.04 0.19 

Infrastructures and locations 

distance2market Distance to market (km) 15.05 12.27 12.31 10.29 

distance2road Distance to road (km) 16.19 16.85 8.27 9.49 

zone_vfs Distance to the regional city 68.11 48.54 45.28 31.09 

zone_vfs AEZ: Basin 0.26 0.44 0.02 0.14 

zone_bassin AEZ: Casamance 0.01 0.12 0.58 0.49 

Sample size 1462 1462 3257 3257 

Source: PAPA, 2017. 

 

It shows that 33 percent of rice producers do not use any fertilizers or improved seeds, whereas 

for groundnut production, only 39 percent of producers use at least one of these inputs. Rice 

households manage lower total land area (2.7 ha) on average compared to groundnut 

households (5.5 ha).  Table 2- 3 also shows that on average, a household’s head in the sample is 

about 53 years old and is generally a man. At least 27 percent of rice households have a member 

that belongs to a farmer organization, while only 10 percent of groundnut households have a 

member in a farmer organization. In terms of access to extension services and credit, results 

also show a greater proportion among rice producers than groundnut producers. In general, rice 

producers have a better access to services than groundnut producers. Regarding the overall 
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household wealth indicator4, households in the two samples have very close scores (on average 

3 over 6). Concerning access to infrastructures, groundnut households seem to be closer than 

rice households, on average. 

 Results and discussion  

This section presents results based on our econometric specification. As presented in section 

2.4, the study proceeds in two steps. The first step estimates the moments of crop profit (gross 

crop income) per hectare that are used to characterize production risk. That production risk is 

an input for the second step which focuses on the drivers of bivariate technology adoption in 

Senegal. This second step is the main interest of this study. Therefore, we directly present the 

results for that step. The results of the first step are displayed as supplementary materials at the 

end of the chapter (see Table A2- 1 and Table A2- 2). However, it is worth noting that results from 

the first step show that the hypothesis of symmetric input effects of profit distribution is 

strongly rejected among rice producers and groundnut producers in Senegal. Moreover, 

positive deviations from the profit mean are weakly related to inputs use. For partial moments, 

results also reveal a strong correlation between the 2nd and 3rd partial moments. A simple 

regression between these two variables displays an adjusted R-squared of 0.82 for the 

groundnut sample and 0.93 for the rice sample. To avoid multicollinearity, we do not include 

the third partial moment in the adoption equations. Multicollinearity between variance and 

skewness was also found in a similar context by Ogada et al. (2014). 

Before the estimation of the bivariate probit model, it is critical to address the potential 

endogeneity of three variables included in the model: farmer organization, extension services, 

and off-farm income. We follow the control function approach explained in Wooldridge 

(2015). The first step consists of a probit model to compute the generalized residuals. This 

residual is used as an additional covariate in the bivariate probit. As instruments, we use 

distance to road, distance to the regional city, and the household’s need for extension services 

 

4 The wealth index is computed as a count of a selected dummy variables related to household’s assets. The 

formula used is: 𝑊𝐼 = ∑ 𝐷𝑖
6
𝑖=1 , where D is a dummy variable, i stands for various dimensions considered. The 

dimensions included are : use of running water for cooking and drinking, access to electricity or solar power for 
light, quality of the roof (1 if the material used for the roof is either cement, tile, slate or metal sheet, 0 
otherwise), quality of the wall (1 if the wall is made of cement, 0 otherwise), quality of the floor (1 if the floor is 
tiled, cement, or carpet, 0 else) and number of rooms available for household’s members (1 if the ratio of 
household size to the number of rooms is less than or equal to 2, zero otherwise). 
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and for agricultural insurance. Results from these probit models are presented in the appendix 

(Table A2- 3). 

Two model specifications are considered and compared: (i) Standard Bivariate Probit (BVP), 

(ii) Extended Bivariate Probit (BVP-E) which identify predictors for the correlation 

parameters. These models are estimated using the package GJRM by Marra & Radice (2017) 

under the free statistical software R (Team & others, 2013). 

2.6.1. Joint adoption of rice certified seeds and chemical fertilizers 

Table 2- 4 presents the results of the two models in the competition (BVP and BVP-E) for rice 

technology adoption. Estimated coefficients for the two models are very similar. The main 

difference is about the impact of expected profit on the probability of adopting fertilizer which 

is only significant in the second model. The fact that estimates are similar across model 

specifications show that the choice of a BVP or a BVP-E has little impact on the direct effect 

of a covariate. However, since in a bivariate probit model the impact of a covariate depends on 

the direct effect and the indirect effect, which is a function of the correlation between the two 

marginal distributions (Greene, 2012). Therefore, if the hypothesis of heterogeneous 

correlation across households is accepted, the BVP-E model may generate more reliable 

marginal effects. Discussion of the marginal effects will reveal whether if it is worth investing 

on more complex model such as BVP-E in our context. When a flexible BVP model is 

considered, results show that the main drivers of heterogeneous correlation between the 

decision to adopt rice certified seeds and that to adopt chemical fertilizers for rice are education, 

farm size, and profit variance. The first two covariates have a negative coefficient, which 

reveals that households whose heads were educated display lower dependency between the two 

decisions. Similar results for households with larger farm size. On the other hand, the expected 

profit variance has a positive impact on the dependence between the two decisions. This reveals 

certified seeds and chemical fertilizers are more interrelated in the presence of production risk. 

Regarding the standard BVP model, one important aspect is whether the correlation parameter 

is significant. Results show that the correlation between the two technology adoption decisions 

for rice is positive, quite high (0.63), and statistically significant. This means that the two 

decisions are not independent if BVP is the correct specification. The complementarity between 

certified seed and chemical fertilizer is not uncommon in the literature (Abay et al., 2018; 

Kassie et al., 2013; McGuirk & Mundlak, 1991; Ogada et al., 2014; Singh & Kohli, 2005; 

Teklewold et al., 2013). For the heterogeneous dependency specification, the predicted average 
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correlation is about 0.73 and highly significant. Therefore, the average correlation from the 

heterogeneous correlation’s model is higher than when the standard model is used. 

Table 2- 4 Bivariate probit estimates for rice technology adoption 

 Standard BVP Extended BVP 

 Certified seed Fertilizer Certified seed Fertilizer Correlation 

Head gender (1=Female) 0.44 (0.365) 
0.564** 

(0.237) 
0.395 (0.35) 

0.61*** 

(0.235) 
  

Head’s age (years) -0.008** (0.003) -0.001 (0.005) -0.007** (0.003) -0.002 (0.004)   

Education 0.601** (0.241) 
0.694*** 

(0.207) 
0.579** (0.228) 

0.716*** 

(0.197) 
-0.353** (0.172) 

Household size 0.057*** (0.018) 
0.06*** 

(0.02) 
0.052*** (0.017) 

0.066*** 

(0.02) 
  

Wealth index (0/6) -0.157** (0.068) -0.101 (0.062) -0.148** (0.064) -0.092 (0.061)   

Livestock income dummy 1.049*** (0.25) 
1.251*** 

(0.248) 
1.024*** (0.232) 

1.298*** 

(0.241) 
  

Off-farm income dummy -0.163 (0.104) 
-0.274** 

(0.116) 
-0.144 (0.1) 

-0.306*** 

(0.107) 
  

Land holding (ha)  0.001 (0.011) -0.01 (0.01) -0.003 (0.011) -0.004 (0.013) -0.099*** (0.027) 

Organization membership 0.537*** (0.123) 
0.518*** 

(0.142) 
0.536*** (0.123) 

0.557*** 

(0.132) 
0.367 (0.342) 

Extension services  0.476*** (0.146) 0.38* (0.215) 0.46*** (0.14) 
0.439** 

(0.196) 
  

Access to credit 1.013*** (0.339) 
0.565* 

(0.316) 
0.958*** (0.33) 

0.605* 

(0.317) 
  

distance to market, KM 0.007 (0.009) 
0.022** 

(0.009) 
0.008 (0.009) 

0.021*** 

(0.008) 
  

AEZ: VFS -0.532 (0.387) 0.224 (0.459) -0.534 (0.377) 0.176 (0.453)   

Profit mean 0.014* (0.007) 0.014 (0.009) 0.012* (0.007) 
0.017** 

(0.008) 
  

Profit Variance (Lower)     0.015*** (0.005) 

Profit variance (Upper)     0.033*** (0.009) 

Organization membership (res) 0.968* (0.586) 0.574 (0.579) 0.956* (0.539) 0.667 (0.575)   

Extension services (res) -0.464** (0.225) -0.448* (0.25) -0.469** (0.217) 
-0.454** 

(0.23) 
  

Off-farm income dummy (res) 2.71*** (0.813) 
4.02*** 

(0.74) 
2.609*** (0.77) 

4.106*** 

(0.709) 
  

Constant -4.745*** (1.507) 
-5.626*** 

(1.277) 
-4.513*** (1.399) 

-5.935*** 

(1.25) 
0.741*** (0.24) 

Correlation 0.632   0.726     

Correlation (Lower) 0.49   0.55    

Correlation (Upper) 0.732   0.846    

Log-Likelihood -1177.981   -1147.594    

Degree of freedom 37   42    

Akaike criteria 2429.962   2379.189    

Schwartz criteria 2625.601   2601.266    

Sample size 1462   1462     

Notes: This table presents the estimates of the two bivariate probit models using the sample of rice producers. Robust 

standard errors clustered at the Communes level (116 communes are present in total in the sample) in parentheses. 

Significance: *** p<0.01, ** p<0.05, * p<0.1. 

 

To select the best model specification, we used AIC and BIC. The results show that the 

extended BVP has the lowest values of AIC and BIC. This suggests that the model BVP-E fits 

better the data at hand than the BVP. Concerning endogeneity of farmer organization, extension 
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services, and off-farm income, results show that for the adoption of certified seeds, all these 

factors are endogenous. For the decision to use inorganic fertilizers, farmer organization seems 

to be exogeneous. Since estimates from a bivariate model could not be interpreted directly, 

Table 2- 5 reports the marginal effects of covariates on marginal technology adoptions and joint 

technology adoption. 

Table 2- 5 shows that there is a very small difference between marginal effects from the two 

model specifications. Therefore, from an empirical point of view, there is no new insight from 

the more complicated model specification (BVP-E compared BVP) for rice technology 

adoption. In other words, there is not much information provided to policymakers by adopting 

the most general bivariate probit instead of the standard model. However, opposite results may 

be found in other contexts. Consequently, one has to check that before using the standard 

bivariate probit.   

Regarding marginal effects, results reveal that several factors has a significant effect on 

technology adoption among rice-producing households. Expected higher agricultural profit 

enhance the probability of adoption of rice certified, inorganic fertilizer and joint adoption of 

inorganic fertilizer and improved maize variety. Similarly, increased access to livestock income 

of 1 percent results in an increase in the probability of certified seed adoption by 0.27 percent, 

inorganic fertilizer adoption by 0.29 percent, and joint adoption of 0.26 percent.  

Increased access to agricultural extension services is critical in promoting the adoption of 

certified seeds, the adoption of inorganic fertilizer, and their joint adoption. Our results show 

that a 1 percent increase in farmers’ access to extension services strongly increases the 

probability of CS adoption by 0.1 percent, CF adoption by 0.12 percent, and their joint adoption 

by 0.11 percent. This is consistent with the findings of Feder et al. (1985), Olwande, Sikei, & 

Mathenge (2009), and Kassie et al. (2013). 

Another policy instrument is a farmer organization, which is found here to positively affect 

rice technology adoption in Senegal. Indeed, a 1 percent increase in farmers’ participation in 

an organization strongly increases the probability of CS adoption by 0.13 percent, CF adoption 

by 0.14 percent, and the joint adoption of the two technologies by 0.13 percent. Similar results 

are found in the literature (Abay et al., 2018; Kassie et al., 2013; Kassie, Zikhali, Manjur, & 

Edwards, 2008; Teklewold et al., 2013; Wollni, Lee, & Thies, 2010). 

Access to credit is also revealed to have a strong relationship with rice technology adoption. 

Improvement of credit access index by one percent improves significantly the three 
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probabilities under consideration, especially the probability of joint adoption of CS and CF. 

The marginal effects of the different levels of education variables are very high, positive and 

significant. These results suggest that households whose heads were educated, either formal 

education or education in local languages, have a higher likelihood to adopt technologies for 

rice production. These results corroborate those of Gerhart (1975), Ogada et al. (2014), and 

Thuo et al. (2011). 

Table 2- 5 Marginal effects of covariates on the probability of technology adoption for rice 

 Standard BVP Extended BVP 

 Certified seed Fertilizer Joint adoption Certified seed Fertilizer Joint adoption 

Head gender (1=Female) 
0.116*** 

(0.023) 

0.126*** 

(0.042) 

0.116*** 

(0.035) 

0.116*** 

(0.024) 

0.124*** 

(0.043) 

0.105*** 

(0.037) 

Head’s age (years) 
-0.001** 

(0) 

-0.001  

(0.001) 

-0.002** 

(0.001) 

-0.001**  

(0) 

-0.001 

 (0.001) 

-0.002** 

(0.001) 

Education 
0.15*** 

(0.017) 

0.164*** 

(0.031) 

0.154*** 

(0.025) 

0.15*** 

(0.017) 

0.165*** 

(0.031) 

0.148*** 

(0.028) 

Household size 
0.014*** 

(0.002) 

0.015*** 

(0.003) 

0.014*** 

(0.003) 

0.014*** 

(0.002) 

0.015*** 

(0.003) 

0.013*** 

(0.003) 

Wealth index (0/6) 
-0.03*** 

(0.005) 

-0.034*** 

(0.009) 

-0.037*** 

(0.008) 

-0.028*** 

(0.005) 

-0.033*** 

(0.009) 

-0.035*** 

(0.008) 

Livestock income dummy 
0.266*** 

(0.021) 

0.29*** 

(0.038) 

0.271*** 

(0.031) 

0.269*** 

(0.021) 

0.294*** 

(0.038) 

0.262*** 

(0.037) 

Off-farm income dummy 
-0.05*** 

(0.013) 

-0.053** 

(0.023) 

-0.046** 

(0.02) 

-0.052*** 

(0.013) 

-0.054** 

(0.022) 

-0.041** 

(0.021) 

Land holding (ha)  
-0.001 

(0.001) 

-0.001  

(0.001) 

0  

(0.001) 

-0.001  

(0.001) 

-0.001  

(0.002) 

-0.001 

 (0.001) 

Organization membership 
0.122*** 

(0.015) 

0.136*** 

(0.027) 

0.133*** 

(0.022) 

0.127*** 

(0.015) 

0.142*** 

(0.027) 

0.133*** 

(0.023) 

Extension services  
0.099*** 

(0.015) 

0.112*** 

(0.028) 

0.115*** 

(0.022) 

0.104*** 

(0.015) 

0.118*** 

(0.028) 

0.113*** 

(0.023) 

Access to credit 
0.184*** 

(0.029) 

0.214*** 

(0.054) 

0.233*** 

(0.043) 

0.181*** 

(0.031) 

0.216*** 

(0.055) 

0.226*** 

(0.043) 

distance to market, KM 
0.003*** 

(0.001) 

0.003*** 

(0.001) 

0.003*** 

(0.001) 

0.003*** 

(0.001) 

0.003*** 

(0.001) 

0.002** 

(0.001) 

AEZ: VFS 
-0.037 

(0.031) 

-0.059  

(0.064) 

-0.099** 

(0.043) 

-0.042  

(0.034) 

-0.07  

(0.064) 

-0.109** 

(0.046) 

Profit mean 
0.003*** 

(0.001) 

0.004*** 

(0.001) 

0.003*** 

(0.001) 

0.003*** 

(0.001) 

0.004*** 

(0.001) 

0.003*** 

(0.001) 

Notes: This table presents the estimates of the two bivariate probit models using the sample of rice producers. Robust 

standard errors clustered at the Communes level (116 communes are present in total in the sample) in parentheses. 

Significance: *** p<0.01, ** p<0.05, * p<0.1. 

 

Conversely, a negative marginal effect was associated with off-farm income. On average, 

farmers who generated an off-farm income had a 0.05 percent lower probability of using CS 

and CF, and 0.04 percent lower probability to adopt the two technologies. Similar results were 

found by Thuo et al. (2014) for groundnut production in Senegal and by Rahim, Ruben, & van 

Ierland (2005) in the Sahel context. Therefore, in Senegal, off-farm activities and rice 

production activity are not complementary (Thuo et al., 2014). 

The household wealth index is found to decrease the probability of adopting rice technologies. 

This result suggests that wealthier households do not seem to use their endowments to buy 
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improved technologies. On the other hand, the age of the heads of households has a negative 

effect on the adoption of certified rice seeds and on the joint adoption. In other words, 

households whose heads are old are less likely to adopt certified seed and to jointly adopt 

certified seed and chemical fertilizer. 

2.6.2. Joint adoption of groundnut certified seeds and chemical fertilizers 

Table 2- 6 presents the results of standard and extended bivariate probit of technology adoption 

for groundnut production in Senegal. Unlike results for rice technology adoptions, the 

correlation parameter is quite low (0.18), but significant. On the other hand, when the more 

flexible specification of the dependence between the two technologies is used (BVP-E), results 

reveal farmer organization, agroecological zone, and variance of the total household profit per 

hectare as main drivers of decisions dependence among groundnut producers. All these factors 

have a positive impact on the joint distribution of certified seeds and inorganic fertilizer 

adoptions. In other words, households that are members of farmer organizations and those who 

are in the Groundnut Basin are more likely to jointly use the two technologies than others. 

Similarly, households that expect negative or positive deviations from the profit mean tend to 

adopt both technologies with a higher correlation. As for the rice study case, production risk is 

a key determinant of the dependence between technology choices. 

In terms of the best model to use, AIC favors the flexible model specification, while the 

smallest BIC is found for the most restrictive model. For a parsimonious reason, the restricted 

BVP model is preferred. Considering this model (BVP), the correlation is positive and 

significant, therefore, one could not reject the hypothesis of dependency between the two 

decisions to adopt improved inputs for groundnut production. In order to get an economically 

meaningful interpretation of findings, Table 2- 7 reports the marginal effects of covariates on 

technology adoption decisions. 

Expected higher agricultural profit enhanced the probability of adoption of groundnut certified, 

inorganic fertilizer and joint adoption of inorganic fertilizer and improved maize variety. More 

variable agricultural profit per hectare seems also to have a positive impact on technology 

adoption. This means that households that expect more volatile returns are more likely to adopt 

technologies in order to increase the expected return. 
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Table 2- 6 Bivariate probit estimates for groundnut technology adoption 

 Standard BVP Extended BVP 

 Certified seed Fertilizer Certified seed Fertilizer Correlation 

Head gender (1=Female) -0.097 (0.2) -0.896*** (0.214) -0.059 (0.195) -0.951*** (0.215)   

Head’s age (years) 0.001 (0.011) 0.045*** (0.011) 0 (0.011) 0.048*** (0.011)   

Education -0.035 (0.344) -1.231*** (0.299) 0.007 (0.334) -1.33*** (0.302)   

Household size 0.011 (0.03) -0.105*** (0.028) 0.015 (0.029) -0.114*** (0.028)   

Wealth index (0/6) -0.09*** (0.029) 0.026 (0.029) -0.078*** (0.028) 0.02 (0.029)   

Livestock income dummy -0.127 (0.417) -1.453*** (0.39) -0.023 (0.404) -1.61*** (0.393)   

Off-farm income dummy 0.043 (0.077) -0.049 (0.078) 0.049 (0.076) -0.051 (0.079)   

Land holding (ha)  0.024 (0.021) 0.096*** (0.02) 0.019 (0.02) 0.105*** (0.02)   

Organization membership 0.156 (0.117) 0.093 (0.118) 0.155 (0.111) 0.102 (0.116) 0.224* (0.131) 

Extension services  0.081 (0.106) 0.366** (0.144) 0.059 (0.101) 0.36** (0.141)   

Access to credit 0.363 (0.572) -2.067*** (0.555) 0.42 (0.558) -2.242*** (0.564)   

distance to market, KM -0.023*** (0.007) 0.031*** (0.008) -0.022*** (0.007) 0.033*** (0.008)   

AEZ: Basin 0.665 (0.896) 4.311*** (0.836) 0.492 (0.864) 4.633*** (0.842) 0.484*** (0.126) 

Profit mean 0.045*** (0.013) 0.093*** (0.016) 0.041*** (0.012) 0.083*** (0.015)   

Profit variance (Lower) 0.033*** (0.006) 0 (0.004) 0.032*** (0.005) 0.007 (0.005) 0.019*** (0.005) 

Profit variance (Upper) 0.012*** (0.004) 0.003 (0.002) 0.011*** (0.003) 0.009*** (0.003) 0.013*** (0.003) 

Constant -1.713 (1.885) 4.238** (1.754) -1.969 (1.843) 4.796*** (1.771) -0.512*** (0.154) 

Correlation 0.177   0.061     

Correlation (Lower) 0.085   -0.105    

Correlation (Upper) 0.266   0.239    

Log-Likelihood -3161.892   -3149.331    

Degree of freedom 41   45    

Akaike criteria 6405.784   6388.661    

Schwartz criteria 6655.415   6662.646    

Sample size 3257   3257     

Notes: This table presents the estimates of the two bivariate probit models using the sample of groundnut producers. Robust 

standard errors clustered at the Communes level (288 communes are present in total in the sample) in parentheses. Significance: 

*** p<0.01, ** p<0.05, * p<0.1. 

 

As for rice technology adoptions, increased access to agricultural extension services is critical 

in promoting the adoption of CS and/or CF. Our results show that a 1 percent increase in 

farmers’ access to extension services strongly increases the probability of CS adoption by 0.03 

percent, CF adoption by 0.08 percent, and their joint adoption by 0.03 percent. Therefore, the 

impact of extension workers is more critical for fertilizer adoption. 

Regarding farmer organization, which is a central institution in a rural area, results showed a 

positive effect on groundnut technology adoption in Senegal. Similar results are found for 

households’ heads age and farm size. As for extension services, larger farm size has a higher 

marginal effect on fertilizer adoption (0.023) compared to certified seeds (0.01) or joint 

adoption (0.008). 
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Table 2- 7 Marginal effects of covariates on the probability of technology adoption for groundnut 

 Standard BVP Extended BVP 

 Certified seed Fertilizer Joint adoption Certified seed Fertilizer Joint adoption 

Head gender (1=Female) 
-0.069** 

(0.033) 

-0.204*** 

(0.035) 

-0.073*** 

(0.017) 

-0.069** 

(0.032) 

-0.204*** 

(0.034) 

-0.065*** 

(0.015) 

Head’s age (years) 
0.003** 

(0.001) 

0.01*** 

(0.001) 

0.003*** 

(0.001) 

0.003** 

(0.001) 

0.01*** 

(0.001) 

0.003*** 

(0.001) 

Education 
-0.073** 

(0.044) 

-0.274*** 

(0.044) 

-0.092*** 

(0.022) 

-0.078** 

(0.043) 

-0.28*** 

(0.043) 

-0.085*** 

(0.02) 

Household size 
-0.003  

(0.004) 

-0.023*** 

(0.004) 

-0.007*** 

(0.002) 

-0.004  

(0.004) 

-0.023*** 

(0.004) 

-0.006*** 

(0.002) 

Wealth index (0/6) 
-0.018*** 

(0.005) 

0.001 

(0.005) 

-0.005** 

(0.002) 

-0.015*** 

(0.005) 

-0.001 

(0.005) 

-0.004** 

(0.002) 

Livestock income dummy 
-0.105** 

(0.055) 

-0.328*** 

(0.055) 

-0.116*** 

(0.027) 

-0.101** 

(0.053) 

-0.341*** 

(0.053) 

-0.105*** 

(0.024) 

Off-farm income dummy 0.007 (0.014) 
-0.009 

(0.014) 
0 (0.007) 0.007 (0.013) 

-0.008 

(0.014) 
0 (0.006) 

Land holding (ha)  
0.01*** 

(0.003) 

0.023*** 

(0.003) 

0.009*** 

(0.001) 

0.01*** 

(0.003) 

0.023*** 

(0.003) 

0.008*** 

(0.001) 

Organization membership 
0.039**  

(0.02) 

0.029 

(0.021) 

0.019**  

(0.01) 

0.039**  

(0.02) 

0.032  

(0.02) 

0.017** 

(0.009) 

Extension services  0.037** (0.02) 
0.086*** 

(0.02) 

0.033*** 

(0.01) 
0.034** (0.02) 

0.08*** 

(0.019) 

0.027*** 

(0.009) 

Access to credit 
-0.031  

(0.078) 

-0.437*** 

(0.079) 

-0.123*** 

(0.039) 

-0.046  

(0.076) 

-0.446*** 

(0.076) 

-0.117*** 

(0.035) 

distance to market, KM 
-0.003*** 

(0.001) 

0.006*** 

(0.001) 
0.001 (0) 

-0.003** 

(0.001) 

0.005*** 

(0.001) 

0.001  

(0) 

AEZ: Basin 
0.376*** 

(0.116) 

0.991*** 

(0.116) 

0.365*** 

(0.059) 

0.381*** 

(0.112) 

1.01*** 

(0.112) 

0.33*** 

(0.053) 

Profit mean 
0.015*** 

(0.002) 

0.023*** 

(0.002) 

0.01*** 

(0.001) 

0.014*** 

(0.002) 

0.02*** 

(0.002) 

0.008*** 

(0.001) 

Profit variance (Lower) 
0.007*** 

(0.001) 

0.002*** 

(0.001) 
0.002*** (0) 

0.007*** 

(0.001) 

0.004*** 

(0.001) 

0.003*** 

(0) 

Profit variance (Upper) 
0.003***  

(0) 

0.001***  

(0) 

0.001***  

(0) 

0.003***  

(0) 

0.003***  

(0) 

0.001***  

(0) 

Notes: This table presents the estimates of the two bivariate probit models using the sample of groundnut producers. Robust 

standard errors clustered at the Communes level (288 communes are present in total in the sample) in parentheses. Significance: 

*** p<0.01, ** p<0.05, * p<0.1. 

Access to credit, surprisingly, is revealed to have a negative and significant relationship with 

groundnut technology adoption. Farm households that have access to credit seem to invest less 

on technology adoption and on fertilizer. In the same direction, the marginal effects of 

education are very high, negative, and significant. The highest effect (0.28) is found for 

fertilizer adoption. These results suggest that households whose heads are educated, either 

formal education or education in local languages, are less likely to buy fertilizers for groundnut. 

This result may be related to the fact that farmers could get appropriate yield for this commodity 

without fertilizer. Therefore, there is little incentive to adopt fertilizer. On the other hand, most 

farmers prefer to use their past production as seeds for the next season. Descriptive statistics 

do not reveal any big yield gap between the use of self-produced seeds and certified seeds. 

Consequently, more educated households would prefer to produce groundnut without the use 

of improved inputs. Therefore, there is a need for policymakers to investigate the value-added 

of improved inputs for groundnut proposed to farmers. 
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Results also show that gender, household size, household wealth, and livestock income are also 

revealed to negatively and significantly affect groundnut technology adoption. Unlike results 

found for the rice model, women-headed households have lower probability to adopt groundnut 

technologies than male-headed households. Likewise, larger households used to adopt 

technologies less than smaller ones. Contrary to the result for rice, being involved in livestock 

activities tend not to be complementary to groundnut production, at least in terms of adoption 

technology. Conversely, participating in off-farm activities does not have any significant 

impact on groundnut related technology adoptions as far as certified seeds and chemical 

fertilizers are concerned. 

 Conclusion   

In this paper, we describe agricultural technology adoption patterns in Senegal and identify 

their determinants using a flexible bivariate probit. The most recent farm survey data collected 

in 2017 in Senegal is used for this purpose. The descriptive statistics reveal that the adoption 

rate depends on technologies and crops under consideration. Only 7 percent of sorghum 

producers have used improved inputs (certified seeds and/or chemical fertilizers) compared to 

14 percent for cowpeas producers, 25 percent for millet, 39 percent for groundnut, and 67 

percent for rice producers. For millet and maize, the most popular technology is certified seeds, 

while for the rice production, the joint adoption of certified seeds and chemical fertilizers is the 

most common choice. In the groundnut system, the major cash crop in Senegal, improved 

inputs choice is more heterogeneous; respectively 41 percent, 39 percent, and 20 percent of 

adopters have used chemical fertilizers, certified seeds, and the two technologies respectively. 

In terms of quantity of chemical fertilizers used per hectare, results reveal that rice producers 

have the highest rate of fertilizer application in the sample (192 kg/ha) followed by maize 

producers (63 kg/ha), and 20 kg/ha for groundnut and millet producers. For cowpeas and 

sorghum, the intensity of fertilizers is very low and is less than 5 kg per hectare. 

Our econometric results show that the decision to adopt certified seeds and that to adopt 

chemical fertilizers are not independent in the context of Senegal, but the two technologies are 

complementary. Therefore, our choice to use a multivariate model is appropriate. On the other 

hand, the use of a more flexible bivariate probit fits better the data, especially for rice samples. 

Consequently, the hypothesis of a constant correlation between two decisions (probability 

distributions) needs to be tested. As drivers of the dependence between the decisions to adopt 

certified seeds and chemical fertilizers for rice production are education, farm size, and 
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production risk. Regarding the drivers of technology adoption for rice and groundnut, the key 

factors identified include extension services,  farmer organization membership, credit access, 

education level of the household head, size of the farm operated by the household, livestock 

activity, off-farm activity, household size, age of household head, production risks, and 

agroecological zones. 

These findings have some direct policy implications for Senegal. Firstly, it is important to 

promote complementary technologies, especially chemical fertilizer and certified seeds, as a 

package to facilitate their adoption. Especially for rice production, descriptive statistics show 

that farmers that adopted the two technologies were three times more productive than those 

who did not adopt any of these technologies. Due to households' limited financial capital, 

policymakers should ensure that the technologies are available and affordable to farm 

households. 

Furthermore, results show that farmer organization membership is central for agricultural 

technology adoption. In addition, extension services also encourage farmers to adopt advanced 

technologies. It would be interesting to directly associate research with extension in the same 

structure to increase efficiency by pooling resources and to better facilitate the scaling up of 

technologies. In the presence of market failure or absence of markets, these instruments 

(organization membership, extension services) facilitate the exchange of key information, 

influencing farmers’ behavior. There is a need for policymakers to promote and help rural 

farmers´ associations, as well as support extension services that disseminate information on 

agricultural technologies and best practices. 

Additionally, access to credit has a positive effect on the adoption of certified seeds and 

fertilizers. Removing credit constraints and easing access to inputs in the production areas are 

essential to increase the adoption of capital-intensive technologies. The heterogeneity of 

technology adoption across regions and agroecological zones calls for location-specific 

technology promotion policies. 

Production risks are found to influence both marginal technology adoption distribution and the 

joint distribution of technology adoption, policymakers need to design policies that account for 

uncertainty associated with agricultural activities. Solutions like agricultural insurance would 

be a good option to increase technology adoption in Senegal.  
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Supplementary materials 

Table A2- 1 Estimates of Full- and Partial-Moment Function of Senegalese Rice Production 

 𝜇1 𝜇2 𝜇3 𝜂2 𝜑2 𝜂3 𝜑3 

(Intercept) 
-1886.553*** 

(588.735) 

12.485*** 

(1.914) 

-67.012 

(417.809) 

10.428*** 

(1.787) 

6.662 

(4.838) 

15.641*** 

(2.681) 

9.993 

(7.257) 

x1_land 
-27.775*** 

(9.642) 

-0.273*** 

(0.041) 
0.801 (7.075) 

-0.263*** 

(0.036) 

0.021 

(0.066) 

-0.395*** 

(0.055) 
0.031 (0.1) 

x2_fert 0.07** (0.04) 0*** (0) -0.012 (0.023) 0.001*** (0) 0 (0) 0.001*** (0) 0 (0) 

x3_rainfall 
0.389*** 

(0.142) 
-0.003*** (0) -0.022 (0.067) -0.003*** (0) 

-0.001 

(0.001) 
-0.004*** (0) 

-0.001 

(0.001) 

x4_temp 
104.97*** 

(30.765) 

-0.177*** 

(0.049) 
5.08 (12.193) 

-0.123*** 

(0.046) 

-0.175 

(0.123) 

-0.185*** 

(0.068) 

-0.263 

(0.185) 

x11 0.065** (0.039)       

x12 0 (0)       

x13 
0.004*** 

(0.001) 
      

x14 0.664** (0.262)       

x22 0 (0)       

x23 0*** (0)       

x24 -0.002 (0.001)       

x33 0** (0)       

x34 
-0.026*** 

(0.007) 
      

x44 
-2.828*** 

(0.805) 
      

tech_CS 0.762 (1.648) -0.012 (0.336) 
-33.33** 

(16.854) 
-0.074 (0.348) 

0.048 

(0.78) 
-0.111 (0.522) 

0.072 

(1.17) 

tech_CF 1.56 (1.077) -0.114 (0.19) 
-48.031** 

(25.058) 
-0.181 (0.194) 

0.091 

(0.437) 
-0.272 (0.291) 

0.136 

(0.656) 

tech_both 1.701 (1.238) -0.062 (0.212) 
-11.949 

(17.989) 
-0.066 (0.195) 

-0.072 

(0.484) 
-0.099 (0.292) 

-0.108 

(0.726) 

SQI 
21.228*** 

(8.097) 

2.743*** 

(0.971) 

-181.292 

(259.997) 

2.499** 

(1.063) 

0.598 

(2.16) 

3.749** 

(1.595) 

0.897 

(3.239) 

profit_dum 
-19.486*** 

(1.385) 

-1.335*** 

(0.274) 

-54.566 

(33.399) 

-1.017*** 

(0.334) 

-0.941 

(0.606) 

-1.525*** 

(0.501) 

-1.411 

(0.91) 

zone_vfs -0.671 (2.916) 
-0.395** 

(0.207) 
44.195 (65.61) 

-0.398** 

(0.213) 

0.032 

(0.45) 

-0.598** 

(0.319) 

0.047 

(0.675) 

R-Sq adjusted 0.414 0.243 -0.001 0.244 0.244 0.244 0.244 

Fisher Statistics 52.688 47.789 0.826 23.431 23.431 23.431 23.431 

Sample size 1462 1462 1462 890 572 890 572 

 

 

 

 

 

 

 

  



 

37 

 

Table A2- 2 Estimates of Full- and Partial-Moment Function of Senegalese Groundnut Production 

 𝜇1 𝜇2 𝜇3 𝜂2 𝜑2 𝜂3 𝜑3 

(Intercept) 
66.897 

(168.743) 

11.135*** 

(1.821) 

280.848 

(406.34) 

12.733*** 

(1.723) 

-4.651 

(4.899) 

19.099*** 

(2.585) 

-6.977 

(7.349) 

x1_land 
-4.605*** 

(1.317) 

-0.078*** 

(0.011) 

-5.18*** 

(1.941) 

-0.065*** 

(0.012) 

-0.032 

(0.026) 

-0.098*** 

(0.018) 

-0.049 

(0.04) 

x2_fert 
-0.008 

(0.034) 
0*** (0) 0.019 (0.013) 0** (0) 0 (0) 0** (0) 0 (0) 

x3_rainfall 
0.18*** 

(0.048) 
-0.001*** (0) 

-0.213*** 

(0.08) 
-0.001*** (0) 0 (0.001) -0.002*** (0) 0 (0.001) 

x4_temp 
-4.802 

(9.341) 

-0.206*** 

(0.046) 

-0.774 

(12.362) 

-0.25*** 

(0.043) 

0.124 

(0.127) 

-0.375*** 

(0.065) 

0.186 

(0.19) 

x11 
0.032*** 

(0.004) 
      

x12 0*** (0)       

x13 0.001*** (0)       

x14 
0.094*** 

(0.036) 
      

x22 0 (0)       

x23 0*** (0)       

x24 0.001 (0.001)       

x33 0 (0)       

x34 
-0.011*** 

(0.003) 
      

x44 0.196 (0.259)       

tech_CS 0.909 (0.571) 
0.406*** 

(0.129) 

51.375 

(34.495) 

0.345** 

(0.139) 

0.218 

(0.314) 

0.518** 

(0.208) 

0.327 

(0.471) 

tech_CF 0.572 (0.552) 0.091 (0.116) 
10.539** 

(5.566) 

-0.082 

(0.137) 

0.438** 

(0.249) 

-0.123 

(0.205) 

0.658** 

(0.374) 

tech_both 
2.596*** 

(0.731) 

0.808*** 

(0.126) 

59.715** 

(24.326) 

0.729*** 

(0.136) 
0.187 (0.3) 

1.094*** 

(0.204) 
0.28 (0.45) 

SQI 
-1.321 

(3.607) 

1.387** 

(0.799) 

-207.678 

(137.338) 
0.53 (0.841) 

2.824 

(1.917) 
0.794 (1.262) 

4.236 

(2.875) 

profit_dum 
-10.08*** 

(0.522) 

-2.142*** 

(0.186) 

-48.277** 

(22.536) 

-1.893*** 

(0.226) 

-0.57 

(0.422) 

-2.839*** 

(0.339) 

-0.856 

(0.633) 

zone_bassin 
-2.313*** 

(0.656) 

-0.999*** 

(0.117) 

-49.196** 

(24.084) 

-0.909*** 

(0.123) 

-0.179 

(0.293) 

-1.364*** 

(0.184) 

-0.268 

(0.44) 

R-Sq 

adjusted 
0.188 0.084 0.013 0.089 0.089 0.089 0.089 

Fisher 

Statistics 
38.765 30.993 5.255 16.143 16.143 16.143 16.143 

Sample size 3257 3257 3257 2109 1148 2109 1148 
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Table A2- 3 First stage estimates for addressing potential endogeneity (probit model). 

 Rice sample Groundnut sample 

 

Farmer 

organization 

(0,1) 

Extension 

services (0,1) 

Off-farm 

activity (0,1) 

Farmer 

organization (0,1) 

Extension 

services (0,1) 

Off-farm 

activity (0,1) 

Head gender 

(1=Female) 
0.053 (0.127) -0.091 (0.134) 

0.338*** 

(0.121) 
0.089 (0.155) 0.133 (0.14) 0.155 (0.108) 

Head’s age (years) -0.003 (0.003) -0.005 (0.003) 0 (0.003) -0.006** (0.003) 
0.007*** 

(0.002) 
-0.003* (0.002) 

Education 0.06 (0.08) -0.056 (0.084) 
0.268*** 

(0.077) 
0.426*** (0.069) 

0.247*** 

(0.067) 

0.125** 

(0.052) 

Household size 0.024*** (0.008) 0.013* (0.008) 
0.017** 

(0.007) 
0.026*** (0.005) -0.003 (0.006) 0.008* (0.005) 

Wealth index (0/6) -0.029 (0.023) 
0.103*** 

(0.025) 
-0.041* (0.024) -0.026 (0.02) 0.012 (0.019) 

0.039*** 

(0.015) 

Livestock income 

dummy 
0.114 (0.082) 

0.224*** 

(0.086) 

0.434*** 

(0.077) 
0 (0.069) 0.089 (0.067) 

0.44*** 

(0.051) 

Land holding (ha)  0.006 (0.005) -0.002 (0.006) -0.007 (0.006) 0.006* (0.003) 
0.008*** 

(0.003) 

-0.018*** 

(0.005) 

Access to credit 0.57*** (0.122) 0.184 (0.131) -0.085 (0.132) 0.877*** (0.127) 0.038 (0.159) -0.006 (0.13) 

distance to market, 

KM 

-0.012*** 

(0.003) 

-0.012*** 

(0.003) 

0.009*** 

(0.003) 
-0.018*** (0.004) 0.001 (0.004) 

0.011*** 

(0.003) 

Distance to road (km) 0.012*** (0.002)    0.007* (0.004) 
-0.014*** 

(0.004) 

-0.012*** 

(0.003) 

Distance to the 

regional city (km) 
     -0.001 (0.001) 

  0.418*** (0.076)    0.266*** (0.068) 0.067 (0.066) -0.12** (0.052) 

  0.203* (0.114)    0.275*** (0.091) 0.802*** (0.11) 0.13** (0.06) 

AEZ: VFS 0.521*** (0.103) 
1.329*** 

(0.107) 

-0.369*** 

(0.115) 
   

AEZ: Basin    -0.73*** (0.077) 
-0.261*** 

(0.075) 

-0.498*** 

(0.06) 

Log Likelihood -766.049 -766.049 -766.049 -866.109 -866.109 -866.109 

Sample size 1462 1462 1462 3257 3257 3257 
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Introduction 

Improved technology adoption is central to crop production. Appropriate technologies use can 

help improve farmers’ welfare, especially through productivity and efficiency. Many studies 

have analyzed the relationship between improved inputs use and efficiency (Kalirajan and 

Shand 2001; Alene and Hassan 2006), productivity (Crost et al. 2007; Abate et al. 2015; Battese 

et al. 2017) or welfare (Amare et al. 2012; Bezu et al. 2014). Most of these studies considered 

only one improved input and quantified the impact on yield, income, efficiency, or poverty. 

However, some agricultural technologies were revealed to be complementary (Ogada et al. 

2014; Abay et al. 2018). This is why technologies are generally proposed as a package. Indeed, 

the introduction of an agricultural innovation without the appropriate agronomic practices will 

limit its impact. Therefore, when farmers are exposed to such complementary technologies 

(multiple choices), it would be interesting to compare the impact of the different technology 

options. Thus, such analysis will offer a larger view for discussing policy options. 

This article’s objective is to analyze the impact of three technologies that are critical 

for rice production: irrigation, certified seeds, and chemical fertilizers in the rice. As stated 

previously, the aim will be to consider the impact of individual technology use as well as the 

combination of the three technologies on technical efficiency and land productivity in Senegal. 

These technologies are important for the country since a lot of investments (irrigation 

equipment, input subsidies, etc.) were made by the Senegalese government to reach self-

sufficiency for rice. In fact, the 2014–2017 National Program for Self-Sufficiency in Rice 

(PNAR) was specifically formulated to achieve this goal. Over recent years (2013–2016), the 

country’s rice production has experienced a 160% increase. 

Senegal has dedicated crucial efforts to boosting agricultural production, mainly 

through area expansion and productivity intensification. These have relied on the assumption 

that local rice can compete with imports in terms of quality and quantity (Fiamohe et al. 2018). 

Rice cultivation in Senegal is based on five major rice-producing systems (irrigated, rainfed, 

mangrove, upland, and lowland). Unlike irrigation, the other rice cropping systems depend on 

rainfall, are less intensive, and use fewer inputs, inducing lower yields (1–2 t/ha). Rice 

produced is mainly intended for self-consumption. Irrigated rice cropping is characterized by 

an intensive system with total water control, mechanization of most production and post-

harvest operations, and the systematic use of fertilizers inducing higher yields, between 5 and 

6.5 t/ha. As a comparison, the average West African rice yield for the same years is 1.82 tons, 
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but the Senegalese rice system is still characterized by poor value addition, impeding the 

country from realizing its income and employment generation potential.  

The rice system in the Senegal River valley is based on small and medium-sized family 

farms varying between 0.25 and 1 ha. It is practiced in the Senegal River valley (45,000 ha on 

an annual average) and the Anambe basin in the south of the country (4,500 ha). Rice 

production (irrigated) in the Senegal River valley is between 47% and 75% of domestic 

production, depending on the years. Of this production, 69% is marketed, of which one-third 

represents in-kind payments for input credits (FNDASP, 2017). This reveals a rise in the flow 

of rice from the valley to the consumption basins (major cities in the country including Saint 

Louis, Touba, Thies, and Dakar). 

Therefore, it is well known that irrigation is central to the country’s self-sufficiency 

program. In addition, access to inputs, especially inorganic fertilizers, is facilitated for 

parastatal agencies. Moreover, there is a complementarity among irrigation, certified seeds, 

and fertilizer use. The combination of these three technologies by a farmer may create some 

differences in farming; thus, there may exist heterogeneous production behavior across 

different groups of farmers. Therefore, improved inputs use is expected to shift the production 

frontier upward for adopters. Consequently, the first objective of this study is to test the 

existence of heterogeneous rice production frontiers in the sample due to technological choices. 

The second objective is to analyze technical efficiency across farmers in the presence of 

potentially heterogeneous production frontiers. The last objective is to assess the impact of 

technological choices on rice production per hectare. 

This article contributes to the literature on the impact of technology adoption on 

efficiency in several aspects. First, unlike in many studies, three common rice technologies are 

considered (irrigation, certified seeds, and chemical fertilizer). Second, we assume that the 

production frontier is different across farmers, based on technology choices. This assumption 

is tested using the meta-frontier stochastic frontier as proposed by Huang et al. (2014). This 

framework explicitly separates the overall farm efficiency into managerial efficiency and the 

technology gap. Managerial efficiency is the farm-specific technical efficiency relative to its 

group-specific frontier of production. On the other hand, the technology gap measures the 

distance between the group-specific frontier of production and the best available technology 

frontier (meta frontier) in the economy under consideration. The third main contribution of this 

article is the use of an impact evaluation approach that accounts for potential multinomial 

selection processes where the expected benefits of technology choices induce the adoption 
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decisions. We specifically use a multinomial endogenous treatment effects model proposed by 

Deb and Trivedi (2006a, b) to account for selection bias due to both observed and unobserved 

heterogeneity and to assess the differential impacts of the adoption of a single technology as 

well as a combination of them. Fourth, this article uses a recent survey representative of 

irrigated and rainfed rice production in Senegal. 

The article is organized as follows. The first section describes the methodology of the stochastic 

meta frontier used, the second presents the data, and the third provides the empirical results. 

The final section presents the conclusion. 

 Conceptual framework 

3.2.1.  Sample selection and efficiency analysis 

The assessment of the adoption of best farming practices or improved inputs on farmers’ 

performances (yield, productivity, efficiency, income, etc.) has been the main target of 

economists for decades (Birkhaeuser et al. 1991; Adesina and Zinnah 1993; Feder et al. 2003). 

Regarding the impact on productivity or efficiency, one of the most-used approaches is the 

stochastic frontier analysis (SFA) (Aigner et al. 1977; Meeusen and van den Broeck 1977). In 

this framework, the common approach consists of assuming a homogeneous function of 

production for all farmers to be estimated. Then, efficiency or productivity scores are derived. 

The last step is to compute certain statistics (mean, median, or other quantiles) to test 

differences among farmer groups. 

However, the issue of selection bias was raised in the SFA literature (Sipilainen and 

Oude Lansink 2005; Solis et al. 2007; Kumbhakar et al. 2009; Greene 2010) since farmers self-

selected into different groups. The decision to belong to a selected group may be affected by 

observable factors as well as unobservable factors (Villano et al. 2015). Still, one has to decide 

which aspects of the framework are affected by this type of endogeneity. Three options are 

available: selection on the production function, selection on the inefficiency term, or selection 

on the noise term. 

The first authors that raised and accounted for sample selection bias in an SFA 

framework used ad-hoc approaches such as the Heckman model (Bradford et al. 2001; 

Sipilainen and Oude Lansink 2005; Solis et al. 2007) or propensity scores matching (PSM) 

(Mayen et al. 2010). In a linear framework, the Heckman model works well, but in a non-linear 

setting such as the stochastic frontier framework, its application is not straightforward (Greene 
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2010). As was shown in the meta-frontier framework (Battese et al. 2004; O’Donnell et al. 

2008; Huang et al. 2014), one could not directly compare efficiency scores across groups of 

farmers when they do not operate under the same production frontier. Consequently, the use of 

the PSM approach is limited in this context.  On the other hand, Greene (2010) proposed a 

theoretically robust approach that assumes that the selection bias affects only the noise term in 

the SFA model. Similarly, but with different assumptions, Kumbhakar et al. (2009) suggested 

a theoretical model in which the selection bias affects the level of farm inefficiency. Even 

though the last two approaches are theoretically well formulated, they have some limitations. 

According to Mayen et al. (2010), they assume different technologies across groups without a 

formal test for differences in technology. In addition, they are computationally demanding or 

may suffer from what Mayen et al. (2010) called a “common vexing occurrence” issue. 

Therefore, we follow the simple approach proposed by Rao et al. (2012). The main objectives 

of this approach are to (i) consistently estimate the production frontier for each group of 

farmers, (ii) test the differences in technology use, (iii) estimate technical efficiency or 

productivity scores, and (iv) assess treatment effects of technology choices on outcomes 

accounting for selection bias. The first three objectives are reached using the meta-frontier 

framework as extended by Huang et al. (2014). This framework explicitly assumes (and tests) 

that each group of farmers may have its own production frontier, and if this is the case, there 

is a meta frontier of production that envelopes all individual frontiers. If the assumption of 

heterogeneous frontiers is not rejected, three efficiency scores are proposed: technical 

efficiency (managerial efficiency), technological efficiency, and meta-technical (overall) 

efficiency. The managerial efficiency is the farm-specific technical efficiency relative to the 

group-specific frontier of production. This efficiency score is comparable only within groups 

of farmers. On the other hand, the technological efficiency measures how close individual 

frontiers are to the meta frontier, which is the best available technology frontier in the economy 

under consideration. The overall technical efficiency is by construction the product of the first 

two efficiency scores. For the last target, since our treatment variable is multinomial, we use a 

multinomial endogenous treatment effects model (Deb and Trivedi 2006b) to account for 

selection bias due to both observed and unobserved heterogeneity and to assess the differential 

impacts of the adoption of a single as well as multiple improved technologies. The next sections 

briefly present the two approaches used for empirical estimations. 
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3.2.2.  Meta Stochastic Production Frontier framework 

The objective of this study is to analyze the technical efficiency of rice producers in Senegal 

in the presence of technology heterogeneity. As explained previously, the meta stochastic 

frontier approach (MSFA) is adopted. 

A two-step approach is used to estimate the meta frontier. The first step estimates the group-

specific frontiers and the second step constructs the frontier boundary of all individual frontiers. 

This methodology has been first proposed by Battese et al. (2004) and O’Donnell et al. (2008). 

Their approach had been extended recently by Huang et al. (2014). 

Let’s consider J production systems and that each system has 𝑁𝑗farms. Wang (2002) proposed 

a more general framework of the stochastic frontier that accounts for inefficiency and 

production risk (variance). 

𝒀𝒊𝒋 = 𝒇𝒋(𝑿𝒋𝒊)𝒆𝑽𝒋𝒊−𝑼𝒋𝒊, 𝑖 = 1, 2, … , 𝑁𝑗;  j=1, 2, …, J                                        (3.1) 

With             𝑽𝒋𝒊~𝑵(𝟎, 𝝈𝒗
𝟐);                 𝑼𝒋𝒊~𝑵+(𝝁𝒊, 𝝈𝒖

𝟐) 

Where 𝒀𝒊𝒋 and 𝑿𝒋𝒊, denote respectively the rice output and input vector of the 𝒊𝒕𝒉 production 

unit in the 𝒋𝒕𝒉 group, and 𝒇𝒋 the individual group-specific production technology. Following 

the standard SFA modeling, the random error terms are represented by 𝑽𝒋𝒊 (which is assumed 

to be independent and identically distributed with mean zero and variance 𝝈𝒗
𝟐), and 𝑼𝒋𝒊 are 

non-negative random errors that account for technical inefficiency (which follows a truncated-

normal/half-normal distribution). Due to the cross-section data used and for the sake of 

simplicity, we consider only a half-normal distribution. In this study, after estimating group-

specific production frontiers, we test whether the various groups share homogenous 

technology, using a likelihood ratio test. Therefore, depending on the model specification 

supported by data, heteroscedastic inefficiency (𝝈𝒖), or production’s risk (𝝈𝒗) will be modeled 

as a function of a set of environmental variables, 𝒁𝒋𝒊, specific to each group of farmers. 

In the empirical section, we adopted the following Cobb-Douglas stochastic production frontier 

function: 

𝑦𝑖 = 𝛼 + ∑ 𝛽𝑘𝑥𝑖
𝑘

𝑘 + 𝒗𝒊 − 𝒖𝒊         (3.2) 

Where 𝑦𝑖𝑡 is the log of the rice output, 𝑥𝑖 
𝑘is the log of the input k. 

The technical efficiency of each farm within its group is computed as: 
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𝑻𝑬𝒊
𝒋

=
𝒀𝒋𝒊

𝒇𝒋(𝑿𝒋𝒊)𝒆
𝑽𝒋𝒊

= 𝒆−𝑼𝒋𝒊      (3.3) 

After estimating the group production frontiers, the common meta stochastic frontier, 𝒇𝑴(𝑿𝒋𝒊), 

is estimated using the group-specific frontiers, 𝒇𝒋(𝑿𝒋𝒊), and is expressed as: 

𝒇𝒋(𝑿𝒋𝒊) = 𝒇𝑴(𝑿𝒋𝒊)𝒆−𝑼𝒋𝒊     (3.4) 

Where all comments related to (3.1) are applicable to (3.4). Once the meta-frontier is estimated, 

the inefficiency score 𝑼𝒋𝒊 will measure the gap between the group-specific technology 

boundary and the best available technology boundary. This gap is known as the technology gap 

ratio (TGR) and is defined as: 

𝑻𝑮𝑹𝒊
𝒋

=
𝒇𝒋(𝑿𝒋𝒊)

𝒇𝑴(𝑿𝒋𝒊)
= 𝒆−𝑼𝒋𝒊 ≤ 𝟏                    (3.5) 

For any selected farm, its performance can be decomposed into three different statistics: (i) the 

technology gap ratio (𝑻𝑮𝑹𝒊
𝒋

=
𝒇𝒋(𝑿𝒋𝒊)

𝒇𝑴(𝑿𝒋𝒊)
) which is the distance between the farm-specific frontier 

and the meta frontier, (ii)  the technical efficiency score (𝑻𝑬𝒊
𝒋

=
𝒇𝒋(𝑿𝒋𝒊)𝒆

−𝑼𝒋𝒊

𝒇𝒋(𝑿𝒋𝒊)
= 𝒆−𝑼𝒋𝒊) which is 

the farm efficiency score relative to its production frontier, and (iii) the meta technical 

efficiency (𝑴𝑻𝑬𝒋𝒊 =
𝒀𝒋𝒊

𝒇𝒋(𝑿𝒋𝒊)𝒆
𝑽𝒋𝒊

= 𝑻𝑮𝑹𝒊
𝒋

× 𝑻𝑬𝒊
𝒋
) of the farm, which is the overall performance 

with respect to the meta-frontier. Therefore, in the meta-frontier stochastic framework, the 

overall efficiency of a decision-making unit relative to the best technology available is a 

product of the technology adoption choice by that unit (TGR) and its ability to better use that 

technology. 

3.2.3.  The multinomial endogenous treatment effects model 

We model farmers' technology choices (irrigation, certified seed, and fertilizer) and their 

impact on outcome variables using a multinomial endogenous treatment effect model as 

proposed by Deb and Trivedi (2006a, b). The main advantage of this approach as an impact 

evaluation setting is that it accounts for selection bias due to both observed (through the farm 

or household characteristics) and unobserved heterogeneity (via latent variables). This 

approach specifies a joint distribution of endogenous multivalued treatment and outcome using 

observed and unobserved characteristics to link treatment and outcome equations.  
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The framework proposed by Deb and Trivedi (2006a, b) has two components: treatment 

equation and outcome equation; these equations are linked by unobserved and observed 

characteristics. Let 𝑑𝑖𝑡 be binary variables representing the observed market choice (treatment) 

by farmer i and C the number of possible choices. 

𝑑𝑖𝑡(𝑇𝑖) = {
1, 𝑖𝑓 𝑇𝑖 = 𝑡   (t = 0,1,2, … , C)
0,                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

          (3.6) 

The probability of treatment can be represented as: 

𝑃𝑟[𝑑𝑖𝑡|𝑧𝑖, 𝑙𝑖] = 𝑧′𝑖𝛼𝑡 + ∑ 𝛿𝑡𝑘𝑙𝑖𝑘

𝑇

𝑘=1

+ 𝜀𝑖𝑡     (3.7) 

𝜀𝑖𝑡 is the error term, and 𝑃𝑟[𝑑𝑖𝑡|𝑧𝑖, 𝑙𝑖] is supposed to be a multinomial logistic function g, z 

denotes exogenous covariates with their associated coefficients 𝛼𝑡,  𝑙𝑖𝑘 which stand for 

unobserved characteristics (unobserved heterogeneity) common to individual i’s choice and 

outcome such as motivation or level of information. 𝑙𝑖𝑘 are assumed to be independent of 𝜀𝑖𝑡. 

We also assume that t=0 denotes the control group (no technology adoption). 

For the model to be identified, a set of restrictions are imposed. First, we impose 𝛿𝑡𝑘 = 0 ∀ 𝑡 ≠

𝑘, i.e. each market regime choice is affected by a unique unobserved factor. In addition, we 

assume that  𝛿𝑡𝑡 = 1, which implies that the scale of effects of unobserved factor is normalized 

and equal to 1 in the treatment equation. See Deb and Trivedi (2006a, b). 

The outcome equation is as follows 

𝑦𝑖 = 𝑥′𝑖𝛽 + ∑ 𝜃𝑡𝑑𝑖𝑡 +

𝑇

𝑡=1

 ∑ 𝜋𝑡𝑙𝑖𝑡 +

𝑇

𝑡=1

𝜖𝑖    (3.8) 

Where 𝜖𝑖  is the error term, 𝑦𝑖 is supposed to follow a normal density distribution f, x denotes 

exogenous covariates with associated coefficients 𝛽, 𝜃𝑡 are the treatment effects relative to the 

control. The outcome  𝑦𝑖  is affected by unobserved characteristics 𝑙𝑖𝑡 that affect selection into 

treatment.  If 𝜋𝑡 is positive (negative), treatment and outcome are positively (negatively) 

correlated through unobserved characteristics, i.e., there is positive (negative) selection. 

In practice, 𝑙𝑖𝑡 are non-observed. Following  Deb and Trivedi (2006a, b) we assume that they 

are i.i.d and drawn from a normal distribution and their joint distribution h can be integrated 

out of the joint density distribution  of selection and outcome variables as follows: 
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𝝎(𝑦𝑖, 𝑑𝑖𝑡|𝑥𝑖, 𝑧𝑖) = ∫{𝒇(𝑦𝑖, |𝑥𝑖, 𝑑𝑖𝑡, 𝑙𝑖𝑡) ∗ 𝒈(𝑧𝑖, 𝑙𝑖)} 𝒉(𝑙𝑖𝑡)𝑑𝑙𝑖𝑡          (3.9) 

For a given specification of f, g and h, the integral (3.9) do not have a closed solution form. 

Then, the full estimation of equations (3.7) and (3.8) is based on a simulation-based estimation 

framework. This method finds the values of parameters that maximize the simulated log-

likelihood function associated with a joint density distribution of selection and outcome 

variables (equation 3.9). For a large number of simulations (S), the maximization of the 

simulated log-likelihood is equivalent to maximizing the log-likelihood (Train 2009). The 

simulated log-likelihood function of 𝝎(𝑦𝑖, 𝑑𝑖𝑡|𝑥𝑖, 𝑧𝑖) is:  

𝐥𝐧 𝑳(𝑦𝑖, 𝑑𝑖𝑡|𝑥𝑖, 𝑧𝑖)  = ∑ 𝐥𝐧 𝝎̂(𝑦𝑖, 𝑑𝑖𝑡|𝑥𝑖, 𝑧𝑖)

𝑵

𝒊=𝟏

= ∑ ln (
1

𝑆
∑{𝒇(𝑦𝑖, |𝑥𝑖, 𝑑𝑖𝑡, 𝑙𝑖𝑡𝑠) ∗ 𝒈(𝑧𝑖, 𝑙𝑖𝑡𝑠)}

𝑆

𝑠=1

)

𝑁

𝑖=1

 

Where 𝑙𝑖𝑡𝑠  is the sth draw (from a total S draws) of a pseudo-random number from the density 

h. 

Since our outcome variable is continuous, we assume that it follows a normal (Gaussian) 

distribution function. The resulting model was estimated using a Maximum Simulated 

Likelihood (MSL) approach using the Stata command mtreatreg proposed by Deb (2009). 

 Data presentation and descriptive results 

3.3.1.  Data presentation 

Data used in this study were collected under the PAPA5 project, which is an initiative of the 

Government of Senegal funded by USAID-Senegal as part of the “Feed the Future” initiative. 

It was implemented over a period of three years (2015–2018) by the Ministry of Agriculture 

and rural facilities with the International Food Policy Research Institute (IFPRI). 

Data from two surveys (rainfed and irrigated crop systems) were used to construct these 

rice production data. The first survey was representative of the rainfed cropping system in 

Senegal (42 of 45 departments in the country). A total of 4,533 farm households were 

interviewed, among them 851 rice farming households.  

 

5 Official website of the project is http://www.papa.gouv.sn/. 

http://www.papa.gouv.sn/
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The second survey collected information on irrigated rice in the two agroecological 

zones where irrigation is mainly practiced (Senegal River valley and Anambe basin). Irrigated 

rice production accounts for about 70–75% of the country’s total rice production. Most farmers 

surveyed were involved in rice production, for a total of 630 rice producers over the 730 farm 

households surveyed. The Senegal River valley (SRV) is the largest irrigation zone, with about 

75% of irrigated rice production. Therefore, the sampling takes into consideration the 

differentiation in sampling size from the two targeted zones (75% of the sample size from SRV 

and 25% from the Anambe basin (AB). 

The initial sample size was 1,465 rice-farming households. We removed those households that 

had cultivated fewer than 0.01 hectares (10 observations) and more than 15 hectares (10 

observations), which are almost the first (0.02 ha) and the 99th centiles (12.4 ha) of the 

cultivated area. 

3.3.2.  Technology adoption and rice yield 

Table 3- 1 presents the sample distribution across technology choices along with the observed 

land productivity (average, median, and standard deviation). Results show that 33% 

(467/1,415) of rice producers in the sample did not adopt any of the three technologies under 

consideration. 

Table 3- 1: Technology adoption and rice yield (kg/ha) in Senegal 

  Observation Average yield Median yield Standard deviation 

Group 0 No technology in rainfed 467 1204 800 1696 

Group 1 Fertilizer use in rainfed 158 882 750 683 

Group 2 Fertilizer use in irrigated 130 3165 2679 2296 

Group 3 Fertilizer and certified seed in rainfed 120 1410 1020 1522 

Group 4 Fertilizer and certified seed in irrigated 497 3806 3500 2386 

Group 5 Other technology choices 43 815 800 567 

All Total 1415 2268 1233 2303 

Source: Authors' calculations based on PAPA data (2017). 

On the other hand, 35% of rice farmers practiced irrigation in combination with the other two 

improved inputs. This suggests that technology adoption is more frequent for irrigated rice than 

for rainfed rice production. One important observation is that very few rice farmers adopted 

solely certified seeds. One can conclude that farmers are aware of the complementarity between 

certified seeds and inorganic fertilizers. They can use fertilizer alone but seldom certified seeds 

alone. Regarding production per hectare, results show that irrigation-based production is the 
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most productive and that the use of certified and inorganic fertilizers increases land 

productivity. The average yield of irrigated rice is about three times higher than that of rainfed 

rice in Senegal. 

Table 3- 2: Rice yield (kg/ha) across regions of Senegal 

 Observation Average yield Median yield Standard deviation 

Ziguinchor 307 1507 930 1960 

Saint-Louis 364 4703 4541 2325 

Tambacounda 23 1317 933 1458 

Kaolack 4 188 200 63 

Thies 1 8000 8000   

Fatick 4 875 650 780 

Kolda 354 1337 971 1262 

Matam 95 3199 2800 1812 

Kaffrine 7 720 450 486 

Kedougou 63 980 900 665 

Sedhiou 193 766 667 517 

Total 1415 2267.86 1233 2303 

Source: Authors' calculations based on PAPA data (2017). 

Across regions (Table 3- 2), results show also that irrigation-oriented regions (Saint Louis and 

Matam) are the most productive. 

3.3.3. Definition and summary statistics for variables used 

Table 3- 3 describes all variables used in the econometric analysis along with a Kruskal Wallis 

test that checks whether the distribution of these variables is identical across the treatment 

groups.  

In the sample, the average cultivated area for rice stood at 1.2 ha. Farm households 

produced about 3.8 tons of rice per year, with an average yield of 2.3 tons/ha. They employed 

about seven workers and used about 290 kg of chemical fertilizers and 100 kg of seeds. Among 

rice-producing households, more than 50% produced only rice. Extension workers had visited 

about 30% of households. In approximately 27% of households in the sample, at least one 

member belonged to a farmers’ organization. 

The access to credit is very limited: only 8.7% of households had received credit during the 

production season. Most household heads were male (90%) and literate (45%), with an average 
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age of 53 years of age. About two out of five households in the sample own transport means 

(charrette, in French), while about 21% own an agricultural machine. 

Table 3- 3: Summary Statistics of most Variables used in the analysis 

  
Sample description 

Kruskal Wallis test 

over adoption level 

Variable Description Mean SD Chi-squared p-value 

Sexe Household head is male 0.900 0.300 3.874 0.423 

Hhsize Household size (persons) 9.371 5.018 23.611 0.000 

Age Household head's age 53.054 12.457 9.884 0.042 

HeadLiterate Household head is literate 0.443 0.497 7.599 0.107 

Organization Farmers organization 0.276 0.447 128.139 0.000 

extension_services Extension services 0.310 0.463 158.459 0.000 

Credit credit access 0.087 0.283 19.950 0.001 

Rice_only Rice specialization 0.536 0.499 213.120 0.000 

production_kg Rice production, tons 2.997 7.745 539.704 0.000 

production_kg_ha Rice yield, kg/ha 2.322 2.321 543.433 0.000 

Land Rice cultivated area, ha 1.248 1.593 161.234 0.000 

Labor labor (number of workers) 6.328 4.036 118.987 0.000 

Capital Agricultural capital (XOF 1000) 135.627 961.665 30.189 0.000 

lcap2 Dummy for zero capital value 0.223 0.417 16.660 0.002 

qte_fertilizer Fertilizer use, kg 289.945 628.462 982.299 0.000 

lfert2 Dummy for zero fertilizer use 0.339 0.474 914.841 0.000 

seed_kg Seed use, kg 99.980 147.358 151.237 0.000 

other_cost other cost (XOF 1000) 42.857 108.853 519.480 0.000 

Machine Agricultural equipment (1=yes) 0.215 0.411 22.861 0.000 

moyen_transport Transport equipment (1=yes) 0.380 0.486 100.837 0.000 

SQI Soil quality index 0.251 0.060 35.018 0.000 

temperature_2016 Tempature for  2016 (mean) 35.495 2.314 900.916 0.000 

temperature_deg_sd Tempature for 2016 (sd) 2.282 0.633 141.677 0.000 

rainfall_2016 Rainfall for 2016 (total) 781.970 410.664 889.286 0.000 

rainfall_mm_sd Rainfall for 2016 (sd) 104.749 47.683 899.294 0.000 

zone1 AEZ: Senegal River Valley 0.037 0.190 9.585 0.048 

zone2 AEZ: Ferlo 0.276 0.447 340.610 0.000 

zone3 AEZ: Casamance 0.077 0.267 29.057 0.000 

zone4 AEZ: Other 0.609 0.488 481.904 0.000 

Sample size 1361 1361     

Source: Authors' calculations based on PAPA data (2017). Notes: The Kruskal Wallis test is conducted for each variable in 

the Table based on technology adoption groups. 

Across technology adoption groups, the Kruskal Wallis H tests showed a statistically 

significant difference in all factors considered in Table 3- 3 except for gender and literacy rate 
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when considering a 5% level of significance. Therefore, some of these variables may explain 

their heterogeneous behavior regarding input choices. However, such tests do not account for 

comparability across groups, nor do they control for the effect of other covariates. 

Consequently, further analysis is required to establish causality. 

 Results and discussion 

3.4.1.  Rice production function estimates 

Results from the stochastic frontier models estimated on the sample of rice farms in Senegal 

are presented in Table 3- 4. A Cobb-Douglas specification with a half-normal distribution is 

used in this application. Seven inputs were considered: rice allocated area (ha); labor used for 

rice production measured as the number of workers; the value of agricultural equipment in the 

local currency; quantity in kg of chemical fertilizer; certified seeds used; non-certified seeds 

used; and overhead costs in local currency. Since our dataset shows a lot of zero values for 

some important inputs such as fertilizer quantity, value of agricultural capital, and other costs, 

we used the approach proposed by  Battese (1997) and adopted by several authors in the 

literature (Rao et al. 2012; Villano et al. 2015; Abdul-Rahaman and Abdulai 2018). For these 

variables, the undefined logarithm is replaced by zero and a dummy variable is created to 

account for these zero values.  

Agroecological zone differences are accounted for by including a dummy for the 

Casamance zone. Using likelihood ratio tests, heteroscedastic specification in both inefficiency 

and idiosyncratic error are preferred. For the inefficiency variance, we include gender, age 

dummies (younger and older heads), literacy dummy, access to extension services, farmer 

organization, and credit. The production variance is explained by the rice cultivated area and 

the soil quality index. 

The log-likelihood of the pooled SFA is found to be less than that obtained by summing 

the log-likelihood for individual SFA (-1502 vs. -1327). Therefore, the hypothesis of 

homogeneous technology across farmers is rejected as having a high level of significance for 

rice production in Senegal, meaning that across groups, farmers operate under different 

frontiers of production. The meta-frontier approach is therefore appropriate. 

Across equations, land use has the highest elasticity. This finding suggests that farmers 

could be advised to use more land than what they presently use to increase production, 

especially for farmers who used only fertilizers in the irrigated system. The return to labor was 
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found to be insignificant for all groups of rice farmers. This result may be linked to the 

abundance of the labor force in developing countries. Similar results have been reported by 

Abdul-Rahaman and Abdulai (2018) in Ghana. 

Table 3- 4: Parameters of group production frontiers, meta-frontier framework 

  Pooled Frontier 1 Frontier 2 Frontier 3 Frontier 4 Frontier 5 Meta-frontier 

  (1) (2) (3) (4) (5) (6) (7) 

Frontier 

Lland 0.719*** 0.768*** 0.503*** 0.977*** 0.707*** 0.899*** 0.823*** 

  (0.034) (0.062) (0.088) (0.121) (0.111) (0.033) (0.011) 

Llabor -0.059* -0.002 0.100 0.034 -0.145 0.016 -0.009 

  (0.030) (0.065) (0.084) (0.078) (0.097) (0.028) (0.009) 

Lcap 0.070*** 0.028 -0.008 0.066* 0.057 0.027* 0.033*** 

  (0.016) (0.035) (0.050) (0.039) (0.053) (0.016) (0.005) 

lcap2 0.776*** 0.205 0.291 1.008** 0.633 0.231 0.310*** 

  (0.177) (0.380) (0.548) (0.429) (0.589) (0.194) (0.052) 

Lfert 0.279***  0.240*** 0.201** 0.376*** 0.129*** 0.217*** 

  (0.027)  (0.079) (0.081) (0.059) (0.018) (0.010) 

lfert2 1.250***      0.412*** 

  (0.140)      (0.056) 

Lseed 0.025 0.113** 0.008 -0.161*** -0.068 -0.003 0.014*** 

  (0.018) (0.051) (0.054) (0.055) (0.051) (0.010) (0.005) 

lother_cost 0.073*** 0.050 0.090* 0.004 0.087* -0.022** -0.006 

  (0.018) (0.045) (0.049) (0.051) (0.046) (0.009) (0.005) 

lother_cost2 0.325* 0.190 0.438 -0.530 0.774 -0.444*** -0.375*** 

  (0.176) (0.405) (0.428) (0.529) (0.482) (0.102) (0.053) 

SQI 0.161 3.833*** 0.307 -2.140** 1.474 0.273 1.401*** 

  (0.347) (0.771) (1.043) (0.936) (1.580) (0.448) (0.109) 

zone4 -0.816*** 0.051 -0.290** -0.455* -0.185 -0.958***   

  (0.057) (0.195) (0.144) (0.247) (0.147) (0.042)   

Extension services*       0.620*** 

        (0.111) 

Rice specialization*       0.999*** 

        (0.072) 

Farm size*       1.577*** 

        (0.136) 

Constant 5.573*** 4.861*** 5.315*** 7.476*** 4.623*** 8.222*** 4.876*** 

  (0.295) (0.605) (0.738) (0.955) (1.022) (0.224) (0.138) 

Inefficiency 

variance 

extension_services -0.240* -31.177 0.741 -0.565 0.363 -0.186   

  (0.128) (1,792.525) (0.660) (0.612) (0.376) (0.149)   

Organization 0.002 0.933* -0.081 -2.339 -0.108 -0.131   
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  (0.122) (0.560) (0.564) (2.107) (0.367) (0.143)   

Credit -0.605*** 0.520 0.672 -25.194 -1.542*** -0.218   

  (0.209) (1.376) (0.925) (1,247.476) (0.523) (0.176)   

HeadLiterate -0.099 -0.286 -0.072 1.139* 0.154 -0.269*   

  (0.108) (0.406) (0.376) (0.673) (0.361) (0.143)   

Sexe 0.043 -0.298 0.792 3.919 -0.136 -0.245   

  (0.176) (0.554) (0.689) (3.708) (0.448) (0.265)   

age45 -0.141 0.523 -0.251 -0.524 -0.388 -0.158   

  (0.118) (0.416) (0.422) (0.536) (0.384) (0.154)   

age65 -0.433*** -0.115 -0.414 -0.759 -0.710 -0.341*   

  (0.154) (0.501) (0.508) (0.914) (0.459) (0.194)   

Rice_only -0.385*** 0.043 1.207** 1.470 -0.497 -0.073   

  (0.114) (0.458) (0.535) (1.137) (0.390) (0.175)   

Constant 0.202 -1.305** -1.770 -5.810 0.670 0.746** -1.446*** 

  (0.206) (0.656) (1.165) (4.364) (0.434) (0.320) (0.049) 

Error 

variance 

Lland -0.313*** -0.277*** -0.011 -0.200 1.960*** 1.410***   

  (0.078) (0.101) (0.404) (0.183) (0.684) (0.398)   

SQI 5.374*** 2.000 -5.050 13.803*** -62.042*** -35.486*** 

  (1.222) (1.450) (4.188) (2.902) (24.019) (8.809)   

Constant -2.822*** -1.420*** -0.499 -4.627*** 10.673** 3.042* -5.303*** 

  (0.345) (0.386) (1.066) (0.807) (5.175) (1.553) (0.200) 

Log Likelihood -1502 -522.3 -138.0 -142.6 -110.1 -414.3 -154.9 

Wald Chi2 3197 397.6 185 215.0 4172 4702 37418 

Degree of freedom 11 9 10 10 10 10 13 

Observations 1,361 462 158 130 114 497 1,361 

Notes: ***, ** and *: 1, 5 and 10% levels of significance, respectively. Variable names with * stand for the corresponding 

region level average. Farm size represents a dummy for small size rice area (less or equal to 1 hectare). Frontier 1: “No 

technology in rainfed”, Frontier 2: “Fertilizer use in rainfed”, Frontier 3: “Fertilizer use in irrigated”, Frontier 4: “Fertilizer 

and certified seed in rainfed”, Frontier 5: “Fertilizer and certified seed in irrigated”. 

Our results confirmed also that the use of chemical fertilizer has a strong positive effect on the 

production frontier. Conversely, the elasticity of certified seeds was significantly positive for 

non-adopters, negative for the irrigated system when only fertilizers were adopted, and non-

significant for other groups. Based on our descriptive statistics, farmers preferred to adopt the 

full package or adopt only inorganic fertilizers. This finding suggests that only using certified 

seeds does not improve farm productivity. Agroecological dummies in the production frontiers 

were significant and negative, implying that rice productivity is heterogeneous across 

agroecological zones in Senegal. 
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3.4.2. Rice technical efficiency estimates 

presents a summary statistic of the group-specific technical efficiency, technology gap ratio, and 

meta-technical efficiency by technology adoption groups. The group-specific technical 

efficiency cannot be compared across groups because it is estimated with respect to different 

frontiers. This indicator reports the relative technical efficiency: the lower the score, the less 

efficient the farmers using their production technology. The technology gap ratio (TGR) 

measures how far the group-specific frontier is to the best available rice production frontier. A 

lower TGR score suggests that farmers operate on a lower frontier of production compared to 

the meta frontier. This can be compared across groups as the closest or farthest technology 

relative to the meta frontier. Finally, the meta-technical efficiency is the global efficiency score 

and is comparable across groups and farmers. 

Results show that the average relative technical efficiency is 74% for non-adopters, 

64% for the group of fertilizer adopters in the rainfed system, 73% for the group of fertilizer 

adopters in the irrigated system, and about 50% for full adopters (certified seeds and fertilizers) 

in rainfed and irrigated systems. This shows that traditional rice farmers have a better command 

of their technology than do modern rice farmers, especially when farmers had adopted both 

certified seeds and chemical fertilizer. Since fertilizer adopters seem to be more efficient than 

farmers that jointly adopted CS and CF, we may infer that the most challenging technology 

would be certified seeds (CS). These results reveal a significant knowledge gap among farmers. 

Modern technology adopters may need more information or training on these technologies to 

increase their efficiency. In terms of ranking technologies (TGR), on average, full adopters in 

irrigated systems seem to operate under a technology very close to the meta frontier (85%), 

followed by traditional rice producers (74%) and full adopters in rainfed systems (72%). As 

expected, improved inputs combined with irrigation for rice allow farmers to operate under the 

best available production frontier for rice. Nevertheless, these full adopters in irrigation may 

need to improve their productivity for some production factors in which traditional rice 

producers seem to perform better. 

Regarding the meta (overall) technical efficiency (MTE), results indicate that traditional rice 

producers in Senegal have the highest score of technical efficiency (55%), followed by full 

adopters in irrigation systems (44%) and full adopters in rainfed rice production (36%). The 

MTE score at the sample level stands at 45%, which suggests that rice production in Senegal 

could double with the same level of inputs if farmers were fully efficient. There is an urgent 
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need to design a good capacity-building program for rice farmers on rice production’s best 

practices. Issues relating to sowing techniques, proper use of plant protection products, the 

correct dosage of chemical fertilizers, and the correct period of their application should in 

particular be addressed. 

Recently, AfricaRice and the country’s agricultural research institute (ISRA) have 

introduced rice advice technology to improve the combination of input use with the technical 

itinerary. 

Table 3- 5 presents a summary statistic of the group-specific technical efficiency, technology 

gap ratio, and meta-technical efficiency by technology adoption groups. The group-specific 

technical efficiency cannot be compared across groups because it is estimated with respect to 

different frontiers. This indicator reports the relative technical efficiency: the lower the score, 

the less efficient the farmers using their production technology. The technology gap ratio 

(TGR) measures how far the group-specific frontier is to the best available rice production 

frontier. A lower TGR score suggests that farmers operate on a lower frontier of production 

compared to the meta frontier. This can be compared across groups as the closest or farthest 

technology relative to the meta frontier. Finally, the meta-technical efficiency is the global 

efficiency score and is comparable across groups and farmers. 

Results show that the average relative technical efficiency is 74% for non-adopters, 

64% for the group of fertilizer adopters in the rainfed system, 73% for the group of fertilizer 

adopters in the irrigated system, and about 50% for full adopters (certified seeds and fertilizers) 

in rainfed and irrigated systems. This shows that traditional rice farmers have a better command 

of their technology than do modern rice farmers, especially when farmers had adopted both 

certified seeds and chemical fertilizer. Since fertilizer adopters seem to be more efficient than 

farmers that jointly adopted CS and CF, we may infer that the most challenging technology 

would be certified seeds (CS). These results reveal a significant knowledge gap among farmers. 

Modern technology adopters may need more information or training on these technologies to 

increase their efficiency. In terms of ranking technologies (TGR), on average, full adopters in 

irrigated systems seem to operate under a technology very close to the meta frontier (85%), 

followed by traditional rice producers (74%) and full adopters in rainfed systems (72%). As 

expected, improved inputs combined with irrigation for rice allow farmers to operate under the 

best available production frontier for rice. Nevertheless, these full adopters in irrigation may 

need to improve their productivity for some production factors in which traditional rice 

producers seem to perform better. 
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Regarding the meta (overall) technical efficiency (MTE), results indicate that traditional rice 

producers in Senegal have the highest score of technical efficiency (55%), followed by full 

adopters in irrigation systems (44%) and full adopters in rainfed rice production (36%). The 

MTE score at the sample level stands at 45%, which suggests that rice production in Senegal 

could double with the same level of inputs if farmers were fully efficient. There is an urgent 

need to design a good capacity-building program for rice farmers on rice production’s best 

practices. Issues relating to sowing techniques, proper use of plant protection products, the 

correct dosage of chemical fertilizers, and the correct period of their application should in 

particular be addressed. 

Recently, AfricaRice6 and the country’s agricultural research institute (ISRA)7 have 

introduced rice advice technology to improve the combination of input use with the technical 

itinerary. 

Table 3- 5: Rice production efficiency scores by farmers’ groups (mean and standard deviation) 

 

Sample size 
Group specific 

Technical Efficiency 

Technology gap 

ratio 

Meta (overall) 

Technical Efficiency 

No adoption 462 0.742 (0.121) 0.742 (0.117) 0.551 (0.125) 

CF adoption in rainfed system 158 0.637 (0.164) 0.489 (0.15) 0.313 (0.129) 

CF adoption in irrigated system 130 0.731 (0.215) 0.458 (0.164) 0.333 (0.16) 

CF and CS adoption in rainfed system 114 0.521 (0.255) 0.719 (0.152) 0.364 (0.188) 

CF and CS adoption in irrigated system 497 0.518 (0.241) 0.848 (0.072) 0.437 (0.204) 

Total 1361 0.629 (0.223) 0.722 (0.18) 0.445 (0.188) 

Notes: Standard deviations are in parenthesis. CF stands for chemical fertilizer, and CS for certified seeds. 

 

The study reveals that efforts to fill the efficiency gap identified for farmers’ groups are 

not identical across groups. For traditional rice producers, there is room to increase the relative 

 

6 The Africa Rice Center (AfricaRice), http://www.africarice.org,  is a leading pan-African rice research 

organization committed to improving livelihoods in Africa through strong science and effective partnerships. 

AfricaRice is a CGIAR Research Center—part of a global research partnership for a food-secure future.  

7 The Senegalese Institute of Agricultural Research (ISRA, in French), https://www.isra.sn, is an applied scientific 

and technical research institute. A public scientific institution, it was created in 1974 to design, organize, and 

carry out all research relating to the rural sector in Senegal. 

http://www.africarice.org/
https://www.isra.sn/
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technical efficiency by 25 percentage points and to shift the production frontier by about 25 

percentage points. For full adopters of improved inputs, the challenge is more related to their 

managerial skills. For households that adopted only fertilizers in both systems (rainfed and 

irrigation), results reveal a huge technology gap to fill. To sum up, policymakers need to adjust 

interventions for each group of farmers depending on where the highest gap is identified. 

3.4.3. Technology choice, factors mix and land productivity 

From the meta frontier framework, one could analyze different scenarios of technology choices 

and its implications on land productivity. For example, we could identify the technology choice 

that would generate the highest yield for each group of farmers. In our context, five individual 

rice production frontiers and one reference rice technology (meta frontier) are available. Table 

3- 6 gives the number of observations in each group of farmers and the predicted rice production 

per hectare for various groups of farmers using a selected rice technology. Figures in bold are 

the predicted yield for each group of farmers (rows) using their observed technology choice. 

Other figures give the “counterfactual” potential yield had they made another technology 

choice. For each row (group of farmers), if the number in bold is higher than the other numbers 

in that row, it is concluded that the farmers in this group made the best choice of technologies 

given their mix of factors of production. Otherwise, another choice of production frontier 

would have been more optimal based on their factors mix in terms of yields per hectare. This 

analysis did not consider the potential cost of another input or of switching to another 

technology (learning curve). Where possible, we will briefly discuss the potential increase or 

decrease in cost among the different choices and the existence of a significant cost of mastering 

the destination technology. More detailed analyses could be carried out using our results as a 

starting point. The last column gives the expected yield if farmers were using the reference 

technology. 

Results show that non-adopters would have gained about 487 kg per hectare if they had 

applied certified seeds and fertilizers in an irrigated context. However, it should be noted that 

there are more barriers when switching from a traditional technology to the most advanced 

technology in another production system (rainfed vs. irrigated). This technology is very 

expensive, and the learning and transitioning cost remain a huge challenge. On the other hand, 

the other three technology options (frontiers 2, 3, and 4) generate barely half the yield of their 

initial choice. Thus, it can be concluded that non-adoption of an improved input is the best 

feasible choice for these farmers. 
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For farmers that had initially adopted fertilizer in the rainfed system, they would reach higher 

rice yield by combining fertilizer with certified seeds or/and irrigation. If the cost is affordable, 

three better choices are available to them. The potentially simpler choice would be to jointly 

adopt certified seeds and fertilizer for a yield gain of 433 kg per hectare. However, these 

farmers would reach 2.5 times their current yield by producing irrigated rice using fertilizer 

and certified seeds. Despite the huge yield gain for this group in shifting from their current 

choice to the full package, it should be noted that this group gets only half the yield of current 

irrigated rice farmers making an identical choice. This shows the importance of the mix of 

factors of production in the level of yield reachable. 

Table 3- 6: Predicted rice yield across technologies and group of farmers 

  
Sample  

size 
Frontier 1 Frontier 2 Frontier 3 Frontier 4 Frontier 5 

Meta 

frontier 

Non-adopters 462 1147 (383) 557 (353) 650 (249) 388 (152) 1634 (498) 1539 (419) 

Fertilizer adopters (1) 158 1014 (345) 1287 (701) 1836 (838) 1721 (771) 3253 (1754) 2707 (1448) 

Fertilizer adopter (2) 130 1278 (457) 2968 (1264) 3927 (1591) 3549 (1239) 7773 (2063) 9290 (3166) 

Certified seeds and fertilizer adopters 

(1) 
114 1188 (309) 1676 (707) 2315 (1064) 2476 (998) 3945 (1771) 3462 (1441) 

Certified seeds and fertilizer adopters 

(2) 
497 1192 (328) 2706 (1176) 3853 (1408) 3647 (1250) 7240 (2424) 8719 (3400) 

All rice farmers 1361 1164 (367) 1750 (1334) 2410 (1798) 2210 (1721) 4649 (3160) 5198 (4159) 

Note: Standard deviations are in parenthesis. Figures in bold represent the expected yield based on 

the current choice of technology. (1) stands for rainfed system, and (2) represents irrigation-based 

system. 

For fertilizer adopters in the irrigated production system, results reveal that they could 

expect higher rice production only by adding certified seeds to their current choice. 

Importantly, this choice would result in doubling their potential yield from a current 3.9 metric 

tons per hectare to 7.8 metric tons per hectare. In addition, this potential yield is the highest 

predicted using this technology. This suggests that this group of farmers has on average a better 

factors mix to produce rice using this technology. Since the targeted technology is not too 

different from their current technology, and the additional cost is not critical, it would be good 

for these farmers to opt for this technology choice. 

In the group of farmers that jointly adopted certified seeds and fertilizer, they would 

get 60% higher yield if they were using the same technology in the irrigated instead of the 

rainfed system. Even if the expected gain is substantial, the change from rainfed to irrigated 
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production requires huge costs and skills that may outweigh the gain in the short term. 

However, if the government could facilitate this transition, the expected gain for these farmers 

is certain. 

For irrigated rice producers that had already adopted certified seeds and fertilizer, 

results show that they could not make a better choice among the five options considered here. 

It seems to appear that farmers in this group selected a mix of factors of production that better 

fit the technology they used. This is the only group that could not make a better choice if 

alternative technologies were costless.  

When it comes to the meta frontier (reference technology), as expected, farmers would get 

higher potential yield compared to their current yield. However, with respect to the five 

individual production frontiers analyzed earlier, two trends emerge: (i) the groups of farmers 

that have the highest yield along the reference frontier, and (ii) the groups with the highest rice 

yield with one of the individual frontiers. Indeed, the meta frontier allows farmers in the 

irrigated system to reach higher rice production per hectare, while farmers in the rainfed system 

would reach the maximum rice yield by transitioning to irrigated rice. 

3.4.4.  The treatment effect of technology adoption on efficiency scores 

The previous sections directly compare the overall efficiency (MTE) and predicted yields of 

rice production across groups of farmers. Even though the meta-frontier framework assumes a 

different production frontier for each group of farmers, it is difficult to interpret observed 

differences across groups as caused only by the technology choice. In fact, farmers are not 

randomly assigned to treatment groups. Some of the factors determining technology adoption 

may also influence efficiency and productivity. Therefore, as discussed in the Technology 

Adoption and Rice Yield section, we estimate a multinomial endogenous treatment effects 

model.  

Because we are primarily interested in the effects of the use of improved inputs on rice technical 

efficiency and predicted yields, we do not discuss the determinants of farmers’ choices. The 

estimation results are provided as supplementary materials at the end of the article. It is worth 

noting that in the selection equation, various factors affecting technology adoption were 

considered, including gender, family size, transport means, education, access to extension 

services, access to credit, farm size, soil quality index, farmer organization membership, and 

access to mechanization. We also controlled for heterogeneity among farmers in the outcome 
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equation by accounting for, among others, gender, education, farmer organization, extension 

services, credit, average rainy season temperature for 2016, average rainfall during the wet 

season for 2016, quantity of fertilizer used per hectare, quantity of certified seed used per 

hectare, value of agricultural equipment per hectare, farm size, soil quality, and agroecological 

zones fixed effects.  

 

Table 3- 7: Treatment effects of technology choices 

 
Technical Efficiency 

Group specific 

yield (kg/ha) 

Meta yield 

(kg/ha) 

CF adoption in rainfed system -0.338***(0.006) -439***(142) 1,000***(80) 

CF adoption in irrigated system -0.163***(0.011) -1,716***(213) 502***(159) 

CF and CS adoption in rainfed system -0.155***(0.007) 832***(119) 338**(135) 

CF and CS adoption in irrigated system -0.097***(0.011) 2,307***(185) 639***(135) 

Notes: The baseline is farm households that did not adopt any improved inputs in the rainfed system. The sample size is 1 361 

households and 1 000 simulation draws were used. ***P < 0.01, **P < 0.05, *P < 0.1. Robust standard errors are in parenthesis.  

 

Table 3- 7 presents the estimates of the impact of rice technology choices on technical 

efficiency, predicted yield from individual frontiers of production, and predicted rice yield 

using the meta frontier (reference technology). 

As already observed in Table 3- 5, results show that farmers that used improved inputs 

(certified seeds, fertilizer, or irrigation) were less efficient than non-adopters of those inputs. 

The treatment effects of use of improved inputs are negative on rice production technical 

efficiency. Even though the efficiency gap decreases from the simple choice of fertilizer to the 

combined choice of irrigation, fertilizer, and certified seeds, the conclusion is that there is a 

knowledge gap among rice farmers. Adopting fertilizers is 34 percentage points and 16 

percentage points less efficient than no technology adoption strategy respectively in rainfed 

and irrigated systems. The joint adoption of certified seeds and fertilizer has a negative impact 

of 16 percentage points in the rainfed system and 10 percentage points in the irrigated system. 

Regarding the expected land productivity of rice production from the use of each 

technology choice, results show that the joint adoption of certified seeds and fertilizer in rainfed 

or irrigated fields have a higher expected yield than the “no adoption” choice. Results also 

reveal that an irrigation system is a superior technology. On the other hand, the adoption of 
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fertilizer did not really affect the land productivity when selection bias was controlled for. 

These results show that in the two rice production systems, it is critical for farmers to adopt the 

two proposed technologies (certified seeds and chemical fertilizer) to expect higher yield 

compared to the reference technology (no technology adoption). The expected productivity 

gain from such adoption is 840 kg/ha in the rainfed system and 2,574 kg/ha for the irrigated 

system. If the mix of factors of production remains unchanged, farmers that have currently 

adopted only fertilizer in rainfed or irrigated systems should give up such a choice. Ceteris 

paribus, farmers performed better than farmers in the reference group. 

On the other hand, if all farmers were using the reference rice technology, the use of improved 

inputs would have a positive effect on rice yield. These results clearly reveal the positive impact 

of improved inputs on rice production per hectare if farmers were using the right technology 

and the right factors mix. Technology and factors mix are crucial to get the maximum benefits 

of a production technology. Using the best technology with the wrong factor mix would lead 

to a lower productivity. Therefore, it is important to identify clearly what is the right factor mix 

of each technology choice. One interesting pattern of the results is that the best technology 

choice depends upon the system of production considered. In the rainfed system, the best 

improved inputs choice is to use only fertilizer. This result certainly means that water control 

(irrigation) is an important factor in the adoption of certified seeds. As far as irrigated rice 

production is concerned, the joint adoption of certified seeds and fertilizers is the most 

interesting choice to be made by the rice growers. This confirms the correlation between water 

control and the use of certified seeds. Another result of this work is that with the production 

technology, the use of fertilizers in rice production in Senegal is sufficient to obtain the best 

possible yield. 

 Conclusion 

In Senegal, as in many developing countries, rice plays a central role in the diet. In addition, 

the major share of rice consumption in Senegal is satisfied by imports. Therefore, one of the 

most important objectives for the country’s successive governments is to implement policies 

that lead to rice self-sufficiency. Among other policies to pursue are the promotion of irrigated 

rice access to good quality inputs, especially through subsidies. Thus, this article contributes 

to the debate on the relationship between farm inputs and farm productivity by using a recent 

farm household survey to analyze the level of technical efficiency in the rice sector. A special 

focus was put on the role of the most important technologies used for rice production, especially 
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irrigation, certified seeds, and inorganic fertilizer. On the methodological side, this study 

applies the most advanced and appropriate techniques to analyze technical efficiency by 

accounting for heterogeneous rice production frontiers (meta-frontier framework) and selection 

bias in a multinomial setting (multinomial endogenous treatment effects model). These 

approaches allowed for the estimation of the unbiased and consistent impact of technology 

choices on rice yield and technical efficiency.  

The estimates revealed both the presence of heterogeneous production frontiers and 

selection bias. The estimated technical efficiency was very low, suggesting that with the right 

policies, the country’s rice production could double with any additional investment in inputs. 

Across groups, the traditional rice system is the most efficient. A huge technological gap was 

also observed, especially for farmers that partially adopt improved inputs (certified seeds and 

inorganic fertilizer). In terms of impact on yield, results show that the most productive choice 

for farmers is to adopt certified seeds and fertilizer in the irrigated system. However, if all 

farmers were using the reference rice technology, it was found that the use of improved inputs 

would have a positive effect on rice yield. Regarding current input choice by farmers, results 

reveal that most farmers made a wrong technology choice, except farmers using an irrigated 

system who had adopted both certified seeds and fertilizers. 

A number of policy implications can be drawn from the findings of this study. First, results 

suggest that public policies aimed at increasing rice production to cover the local rice demand 

should support innovations that increase farmers’ skills in terms of technology management 

and best practices of rice production based on local experience. The positive impact of 

irrigation on rice yield is an additional motive for the government to continue implementing 

irrigation-related policies and to make irrigation more accessible to farmers. On the other hand, 

as shown in many studies, certified seeds and inorganic fertilizers are complementary inputs, 

so policymakers should promote them as a package for a maximum impact and facilitate 

farmers’ access through input credits or the promotion of contract farming. Finally, technology 

choice is a serious challenge for farmers, as most of them did select the wrong improved inputs. 

Therefore, there is a need to assist them in selecting the right improved inputs based on their 

other factors mix.  
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Supplementary materials 

Table A3- 1: Determinants of rice technology choices (multinomial logit model) 

 

Note: Robust standard errors are in parentheses. Significance : *** p<0.01, ** p<0.05, * p<0.1. Notes: Group 0: “No technology in 

rainfed” (the reference group), Group 1: “Fertilizer use in rainfed”, Group 2: “Fertilizer use in irrigated”, Group 3: “Fertilizer 

and certified seed in rainfed”, Group 4: “Fertilizer and certified seed in irrigated”. 

  

 Technology choices 

 Group 1 Group 2 Group 3 Group 4 

HeadLiterate -0.018 -0.641*** -0.361 -0.496*** 

  (0.199) (0.236) (0.235) (0.186) 

Sexe 0.221 0.211 -0.473 0.915*** 

  (0.357) (0.349) (0.354) (0.313) 

hhsize 0.021 -0.075*** 0.015 -0.056*** 

  (0.021) (0.025) (0.020) (0.020) 

extension_services 0.284 1.284*** 1.269*** 1.924*** 

  (0.307) (0.264) (0.282) (0.215) 

organization 0.278 1.419*** 0.938*** 2.215*** 

  (0.312) (0.313) (0.304) (0.259) 

credit 0.906 2.241*** 2.445*** 2.977*** 

  (0.647) (0.591) (0.573) (0.542) 

moyen_transport 0.700*** 2.026*** 0.943*** 1.849*** 

  (0.211) (0.242) (0.253) (0.197) 

Rice_only -0.418* 2.705*** 0.494* 2.540*** 

  (0.249) (0.318) (0.300) (0.222) 

machine -0.157 0.735** 1.131*** 0.427 

  (0.247) (0.309) (0.280) (0.260) 

land 1.045*** 0.830*** 1.098*** 1.166*** 

  (0.163) (0.187) (0.170) (0.166) 

SQI -3.497** -3.581* -1.370 -7.894*** 

  (1.738) (1.920) (1.952) (1.532) 

Constant -1.702*** -3.343*** -2.995*** -2.609*** 

  (0.580) (0.691) (0.580) (0.521) 

Pseudo R-Squared 0.283 0.283 0.283 0.283 

Log-Likelihood -1382 -1382 -1382 -1382 

Wald chi2 (44) 572.8 572.8 572.8 572.8 

Observations 1,361 1,361 1,361 1,361 
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Table A3- 2: Determinants of technical efficiency and rice yield (results of outcome equations) 

  

Technical 

efficiency 

group-specific 

yield 

Meta-frontier 

specific yield 

Treatment level 

Fertilizer use in rainfed -0.350*** -352.930*** -374.900*** 

  (0.003) (130.888) (126.321) 

Fertilizer use in irrigated -0.233*** -1,223.273*** 565.874*** 

  (0.003) (204.627) (190.203) 

Fertilizer and certified seed in rainfed -0.214*** 840.206*** 488.732*** 

  (0.002) (170.264) (158.449) 

Fertilizer and certified seed in irrigated -0.121*** 2,573.704*** 519.205*** 

  (0.002) (177.284) (159.016) 

Exogenous 

factors 

Sexe -0.007*** 207.307*** 352.979*** 

  (0.001) (72.160) (127.917) 

HeadLiterate 0.033*** 30.210 79.707 

  (0.002) (42.623) (66.690) 

Organization -0.021*** -131.031** -173.610** 

  (0.001) (57.690) (76.900) 

extension_services 0.068*** 48.262 -15.846 

  (0.001) (63.435) (77.583) 

Credit 0.027*** -273.338*** -490.802*** 

  (0.002) (88.369) (151.511) 

Temperature, std dev  -521.381*** 647.623*** 

   (106.018) (198.817) 

Temperature, mean  231.843*** 55.778 

   (38.545) (60.966) 

Rainfall 2016, total  -1,723.250*** -5,991.150*** 

   (325.184) (560.888) 

Rainfall 2016, std dev  644.753* 3,633.476*** 

   (380.071) (620.137) 

qte_fertilizer_ha  2.524*** 5.048*** 

   (0.246) (0.301) 

qte_seed_cert_ha  -1.339** -0.247 

   (0.612) (0.775) 

capital_ha  0.000** 0.000*** 

   (0.000) (0.000) 

Land -0.003*** -10.152 105.229*** 

  (0.000) (19.425) (21.854) 

SQI  2,742.356*** 10,701.581*** 

   (573.991) (655.888) 

zone2 -0.077*** 512.802*** 952.050*** 
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  (0.002) (115.531) (135.919) 

zone4 -0.001 -774.030*** -615.309*** 

  (0.002) (107.317) (139.118) 

Unobserved 

factors 

Lnsigma -5.455*** 6.416*** 5.694*** 

  (0.144) (0.079) (0.988) 

Fertilizer use in rainfed 0.156*** 183.997 861.977*** 

  (0.001) (154.389) (99.055) 

Fertilizer use in irrigated 0.047*** -175.503*** 70.337 

  (0.001) (54.737) (142.419) 

Fertilizer and certified seed in rainfed 0.016*** -56.329 -317.121*** 

  (0.001) (114.528) (103.642) 

Fertilizer and certified seed in irrigated 0.023*** -355.514*** -152.701*** 

  (0.001) (118.193) (55.222) 

  Constant 0.578*** 3,111.978* 19,701.250*** 

    (0.002) (1,787.482) (2,834.558) 

Log-Likelihood -808.8 -12308 -12613 

Wald chi2 25265 30460 29625 

N simulations 1000 1000 1000 

Observations 1,361 1,361 1,361 

Note : Robust standard errors are in parentheses. Significance : *** p<0.01, ** p<0.05, * p<0.1. 
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 Introduction 

Access to input markets is considered to have positive effects on agricultural productivity and 

therefore on poverty reduction and food security. However, in Sub-Saharan Africa few farmers 

invest on inputs even though the returns of such an investment was high (De Groote et al. 2005; 

Duflo, Kremer and Robinson 2008; Marenya and Barrett 2009; Karlan et al. 2014). This low 

level of investment is partly related to the random nature of agricultural production.  Rainfed 

agricultural production is a risky endeavor, risks relate to climate, presence of pests (invasions 

of plant bugs), presence of herds of cattle that can destroy crops, etc. Agricultural production 

and returns on investments are highly dependent on rainfall occurrence (Karlan et al. 2014; 

Rosenzweig and Udry 2013) and on the other risks previously mentioned. In Senegal, 

D’Alessandro et al. (2015) observed that a major limiting factor to the widespread adoption of 

improved seeds and fertilizer among smallholder farmers is the reluctance to assume risks 

associated with increased productivity. This is intuitive because agricultural production 

processes take place over time. Farmers must make some decisions regarding inputs before the 

beginning of the production season and therefore before the occurrence of the shocks affecting 

the productivity of these inputs. Furthermore, once a shock has occurred there is no way to 

retrieve the invested resources. This implies that when a farmer decides to invest in inputs, 

he/she does so without any certainty about the outcome of such a decision. Therefore, 

investments in agricultural inputs such as seeds (improved seeds or not) and fertilizers are 

considered risky investments. 

Solutions exist in theory to manage this risk. The literature identifies several strategies for 

managing production risks. Some of these include diversification (Di Falco, Bezabih and Yesuf 

2010; Bezabih and Di Falco 2012; Bezabih and Sarr 2012; Obiri and Driver 2017; Birthal and 

Hazrana 2019; Ullah and Shivakoti 2014), formal insurance products such as index-based 

products (Velandia et al. 2009; Enjolras, Capitanio and Adinolfi 2012; D’Alessandro et al. 

2015; Obiri and Driver 2017; Wang, Ye and Shi 2016), agronomic practices such as 

conservation farming practices, mulching, sustainable land management (Liniger et al. 2011; 

Obiri and Driver 2017; Choudhary et al. 2016) and adoption of risk-reducing inputs or 

technologies8 such as improved and high yield seeds, fertilizer, pesticides, and irrigation 

 

8 It must be worth noting that although these inputs or technologies are expected to have risk reducing effects, 

they can also potentially increase risk. For example, (Horowitz and Lichtenberg 1993) find that both fertilizer and 

pesticides may be risk-increasing inputs. 
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(Barnett, Barrett and Skees 2008; Kahan 2008; Obiri and Driver 2017). Thus, the adoption of 

such innovations can mitigate the consequences of risks by enabling farmers to optimize their 

production choices and thus achieve higher profits (Rosenzweig and Udry 2013). In a nutshell, 

the adoption or use of these risky inputs allows farmers to make riskier but more profitable 

decisions.  

However, not all producers have easy access to these solutions. The literature has shown that 

investment constraints are due to farmers' inability to use existing theoretical solutions due to 

incomplete financial and insurance markets resulting in low access to capital, insurance, 

information, etc. Therefore, farmers who do not have access to a well-functioning insurance 

market will tend to act conservatively by investing less on their farms and making crop 

decisions (crop choice, production techniques, etc.) that reduce the volatility of farm profits 

(Rosenzweig and Udry 2013). Thus, farmers' investments in developing countries are 

conditioned by their financial environment and incomplete insurance markets that limit risky 

decisions that can lead to high expected profits. Risk-averse producers will prefer production 

choices that reduce risk even if it means giving up riskier choices that lead to higher expected 

profits. Karlan et al. (2014) show that when farmers are insured, they are able to find the funds 

to facilitate their investments. 

To increase participation in input markets, policies in Sub-Saharan Africa have focused on 

reducing risk (insurance, climate information systems) or increasing access to capital (access 

to credit). In Senegal, where rural households depend mainly on agriculture, policies and 

programs have encouraged farmers to invest in risky inputs by subsidizing the purchasing price 

of inputs (fertilizers and seeds), managing the risk associated with rainfall through the 

introduction of subsidized insurance products and promoting climatic information systems and 

improving access to credit or agricultural implements (Sall 2015; CIAT and BFS/USAID 2016; 

Ribeiro and Koloma 2016). 

These efforts show the importance of such investments. However, in Senegal, empirical results 

on the constraints to private investment in risky inputs is scanty despite the high return on 

investment demonstrated in other countries in sub-Saharan Africa (Duflo et al. 2008; Karlan et 

al. 2014; Wiredu, Zeller and Diagne 2015; Manda et al. 2016; Liverpool-Tasie 2017; Mensah 

and Brummer 2015; Suri 2011). Therefore, there is a real need to produce evidence for the 

country. To help reduce this gap and better inform these constraints, this study aims to 

understand the factors that influence the decision to invest in seeds and inorganic fertilizers, 

the level of investment, and the welfare impacts of such investment. 
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The rest of the paper is organized as follows. The next section briefly summarizes the literature 

on risks faced by smallholder farmers. Section 3 discusses the theoretical framework of 

household decision making under uncertainty and our empirical specifications. In section 4, we 

present the source of data and briefly describe the sample. Section 5 presents and discusses the 

results and finally, section 6 concludes the study and highlights some policy recommendations 

on risky inputs adoption policies. 

 Review of the literature 

Agricultural commodities production are subjects to many risks that cause distortions in 

production, incomes and hence farm households’ welfare. These risks, which includes climatic 

risks, biological risks, and market risks are numerous, complex, interconnected, and vary in 

their levels of frequency and severity. Risk in general play a crucial role in a great variety of 

economic decisions and is widely acknowledged as one of the factors that shape agricultural 

behavior such as farmers’ technology adoption decisions (Byerlee 1993; Knight, Weir and 

Woldehanna 2003; Gillespie, Davis and Rahelizatovo 2004; Baerenklau and Knapp 2005). For 

instance, several studies (Rosenzweig and Udry 2013; Alem et al. 2010; Zerfu and Larson 

2010; Gebregziabher and Holden 2011; Berhane et al. 2015; Fufa and Hassan 2006; Cavatassi, 

Lipper and Narloch 2011; Yu et al. 2011; Dercon and Christiaensen 2011) have observed that 

in anticipation of covariate shocks, such as droughts, poor farm households are especially prone 

to selecting less risky technology portfolios so as to evade lasting damage and these often also 

generate lower returns on average. 

The presence of risk, therefore, stifles agricultural investments and imposes ex-ante barriers to 

the use of technologies, which in a nutshell, affect agricultural productivity and economic 

growth (Barnett et al. 2008; Di Falco and Chavas 2009; Dercon and Christiaensen 2011; 

Demeke et al. 2016). At the same time, a substantial strand of the empirical literature suggests 

that uninsured risk and uncertainty may be the main driver of the low levels of adoption of new 

and improved technologies. For example, in India, Lamb (2003) shows that in the absence of 

incomplete insurance, risk avoidance as a strategy employed by farmers may be key in 

understanding limited fertilizer use. Hence the protection from downside risk has been 

observed to be a key determinant of technology uptake among subsistence agricultural 

households (Liu and Huang 2013; Mobarak and Rosenzweig 2012; Elabed and Carter 2014; 

Karlan et al. 2014; Cai et al. 2015; Farrin and Miranda 2015). 
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However, limited access to credit or formal insurance markets makes it challenging for farm 

households to manage the myriad production risks that they face. Therefore, farm households 

mostly rely on a range of alternative strategies to avoid or minimize losses. Most of these are 

centered on the adoption of agronomic practices such as conservation farming practices, 

mulching, sustainable land management (Liniger et al. 2011; Di Falco and Veronesi 2013; 

Obiri and Driver 2017; Choudhary et al. 2016), and diversification which could be crop or 

income-based (Mishra and Goodwin 1997; Harwood et al. 1999; Adger et al. 2003; Ullah and 

Shivakoti 2014; Obiri and Driver 2017; Birthal and Hazrana 2019). Another strand of literature 

also suggests the adoption of the so-called “risk-reducing inputs or technologies” such as 

improved and high yield seeds, inorganic fertilizer and pesticides (Holzmann and Jørgensen 

2001; World Bank 2005; Barnett et al. 2008; Kahan 2008; Chetaille et al. 2011; Obiri and 

Driver 2017). However, these “risk-reducing inputs or technologies” have also been observed 

to be potentially risk increasing (Just and Pope 1979; Horowitz and Lichtenberg 1993; 

Gardebroek, Chavez and Lansink 2010; Moser and Mußhoff 2017). 

In parallel, several other studies have evaluated the impact of these “risk-reducing inputs or 

technologies”. In fact, the general conclusion of these studies is that interventions built on the 

adoption of productivity-enhancing technologies such as quality fertilizers, better seeds, 

improved livestock, etc. improve household welfare outcomes. For instance, Graf et al. (2015) 

show that potential gains from adopting productivity-enhancing technologies increase the 

incomes of smallholder farmers between 80-140%. In Burkina Faso, Koussoubé and Nauges 

(2017) find that the profitability of fertilizer use, which they measured through the marginal 

value cost ratio (MVCR), was 1.4 on plots on which fertilizers were applied. In using the 

endogenous switching regression approach, Abdoulaye et al. (2018) found that the adoption of 

improved maize varieties in Nigeria increased maize grain yield by 574 kg/ha and per-capita 

total expenditure by US$ 77 (US$ 0.21/day). Furthermore, they found that poverty incidence 

among adopters would have been higher by 6% without adoption. Similarly, by using the 

endogenous switching regression approach, Asfaw (2010) finds that the adoption of improved 

varieties of chickpea and pigeonpea in Ethiopia and Tanzania has a significant positive impact 

on crop income.  

Biru et al. (2019) in a panel data analysis via a multinomial endogenous switching regression 

model found that the adoption of improved technologies significantly increases the 

consumption expenditure of Ethiopian farm households. Furthermore, they observed that the 

likelihood of a household remaining poor or vulnerable decreased with the adoption of different 
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complementary technologies. In Ethiopia, Mekonnen (2017) finds a positive and significant 

effect of improved technology adoption on rural households’ crop productivity and welfare. 

Cunguara and Darnhofer (2011) find that rural Mozambican households using improved maize 

seeds and tractors have significantly higher incomes. 

Kassie et al. (2014) found that on average, the adoption of improved maize varieties in 

Tanzania reduced the probabilities of chronic and transitory food insecurity from between 0.7 

and 1.2 % and between 1.1 and 1.7 %, respectively. Comparably, Zeng et al. (2017) in 

evaluating the impact of improved maize varieties adoption on child nutrition outcomes using 

a household survey from rural Ethiopia, found positive and significant impacts of adoption on 

child height-for-age and weight-for-age. They further observed that such impacts were largest 

among children with the poorest nutrition outcomes. Kassie et al. (2011) also found that the 

adoption of improved groundnut varieties significantly increases crop income of Ugandan farm 

households and reduces poverty. Similarly, Khonje et al. (2015) found that the adoption of 

improved maize in Zambia had significant poverty-reducing impacts. They find that adoption 

leads to significant gains in crop incomes, consumption expenditure, and food security. 

Wopereis-Pura et al. (2002) in evaluating the effect of nitrogen application on rice yield, grain 

quality, and profitability in the Senegal River valley, finds that the benefit to cost ratios of 

nitrogen application for farmers ranged from 2.8 in the wet season to 5.4 in the dry season. 

Conceptual framework and estimation strategies 

4.3.1. Theoretical framework 

In microeconomic theory, uncertainty occurs when the outcome of a decision is not known 

with certainty. While the decision-maker may know the probabilities of the different possible 

outcomes, the outcome of the decision is only known when it occurs (Jehle and Reny 2011). 

This phenomenon is observed in agricultural production where farmers make production 

decisions before rainfall and other risks are realized. Thus, farmers have no certainty about 

what their product will be when they decide what crops to produce, what investments to make, 

etc. Here, our focus is on investment decisions on risky inputs, particularly seeds and fertilizers 

for cereals production. The risky nature of these expenditures is exacerbated by their high 

opportunity cost in a context where liquidity constraints are severe. 

We model farmers’ decision to purchase risky inputs (seed and inorganic fertilizer) in Senegal 

following the theoretical framework suggested by Karlan et al. (2014) and extended by 
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Magruder (2018). The model accounts for credit constraints, production risks, and imperfect 

information. A two-period model is considered where farmers purchase inputs (x) at time 0 

before random rainfall risk is realized at period 1. Uncertainty related in period 1 implies the 

existence of several potential states of the world, s ∈ S. This state of the world occurs with 

probability πs and affects the production that a farmer can obtain from any input choice. 

Another barrier to technology adoption is related to incomplete information, especially about 

purchased inputs mainly in developing countries (Bold et al. 2017; Magruder 2018). In addition 

to rainfall variability faced by farmers, the quality of inputs is crucial for its potential 

productivity under different various states of the world. For example, a test of fertilizer and 

seed products in local markets in Uganda by Bold et al. (2017) showed that about 30% of 

nutrients were missing in fertilizer, and hybrid maize seeds contained less than 50% of 

authentic seeds. However, various instruments may be used by farmers to reduce this risk. 

Farmer organization and extension services allow farmers to get more information about inputs 

and the most reliable input providers. Thus, information emerges in the model as an additional 

dimension of the state space, t ∈ T. Suppose the farmer’s beliefs about the probability of any 

technological realization t are given by πt. 

A household obtains the utility us
0 at period zero and ut,s

1  at period 1. Preferences are 

represented by a Von Neuman and Morgenstern utility function. The household consumes c0 

in the initial period (t=0) and ct,s
1  in the second period (t=1) and maximizes its expected utility: 

u(c0) + β ∑ πtπsu(ct,s
1 )t,sϵTxS      (4.1) 

Subject to budget constraints: 

𝑐0 = 𝑦 − 𝑥 − 𝑎   (4.2) 

𝑐𝑡,𝑠
1 = 𝑓𝑡,𝑠(𝑥, 𝑧) + 𝑅𝑎      (4.3) 

𝑥 ≥ 0    (4.4) 

𝑎 ≥ 𝑎̅     (4.5) 

where y is its wealth at period 0 that the household uses to buy its inputs 𝑥 and saves a, which 

is a risk‐free asset that has a return R in the next period. 𝛽 is the discount factor. fs,t (x) is a 

state-specific production function.  

Constraint (4.5) represents a constraint on borrowing. Thus, this model incorporates all three 
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constraints: Credit is constrained by 𝑎̅ , the risk is generated through the realization of s, and 

incomplete information enters through the realization of t.  

In time 1, we assume there are two states of the world that may be good (g) or bad (b) rainfall; 

thus, the state of nature that is known at period 1 is 𝑠 𝜖 𝑆 = {𝑔, 𝑏}. In the case of complete 

information, the expected yield is higher when the state of the world is ‘good’: 𝑓𝑏(𝑥) < 𝑓𝑔(𝑥). 

Considering the full information context and assuming the Inada conditions on fs(x), farmers 

solving this problem realize the following first-order conditions: 

u′(c0) = β ∑ πs f ′
s(x) u′(c s

1 )sϵS                 (4.6) 

and 

u′(c0) = βR E(u′(c s
1 )) + λa      (4.7) 

The derivative of the first-order conditions on x with respect to a̅ shows that if credit constraints 

bind (a = a̅), then optimal input use is increasing in the amount of available credit (
dx∗

da̅
< 0). 

Second, it is straightforward to observe that risk (or imperfect insurance) reduces input use: If 

there were perfect insurance, then c s
1 = c1I  ∀ s. If we denote λ a

I , the multiplier associated with 

full insurance, then the two first-order conditions point out that  

βR + λ a
I / E(u′(c1I)) =  βE(f ′

s
(x))  (4.8) 

In contrast, in the absence of perfect insurance, we know that for some λa, 

βR +
λ a

I

E(u′(c s
1 ))

= βE(f ′(x)) +  
cov(f′(x),   u′(c s

1 ))

E(u′(c s
1 ))

. (4.9) 

When farmers are not credit constrained, cov(f ′(x),   u′(c s
1 )), and λa = 0 suggests that the 

implication of fundamental risk is to reduce investment in inputs, x. A second implication is 

that risk reduces the demand for credit: In an unconstrained case (where λa = 0), we know that 

input use is lower in period 1 and hence that marginal utility of consumption in period 1 is 

lower at any given borrowing choice a. Therefore, first-order condition (4.7) implies that 

farmers must reduce their consumption in period 1 as well, which is accomplished by 

borrowing less. This model lays out a clear priority for research. Credit constraints and risk can 

both reduce the adoption of new technologies, and the presence of risk further reduces the 

demand for credit. However, a good risk management behavior of farmers may qualify these 

theoretical expectations. A lot of studies currently focus on farmers’ risk perceptions and 

managements (Smit, McNabb and Smithers 1996; Smit and Pilifosova 2003; Finger, Hediger 

and Schmid 2011; Bryan et al. 2009; Huang et al. 2015). Therefore, accounting for various risk 

management strategies of farmers is central to understanding technology adoption. 
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In the case of limited information, Magruder (2018) observed that the absence of full 

information on inputs emerges as an additional uninsured risk. Therefore, incomplete 

information will have a similar influence on technology adoption and on demand for credit just 

as climatic risks. As previously noted, information related uncertainty may be reduced at farm 

household level through different channels such as farmer organization, extension services, and 

education. We may expect also that inputs purchased from cooperatives or government 

recommended shops may be of better quality. 

For the empirical part of this study, two main issues are being investigated: (i) the drivers of 

risky investment, and (ii) the impact of risky investment decisions on farm household 

outcomes. We considered two outcomes: agricultural profit per hectare and food production 

(in calories) per adult-equivalent per day. The first outcome measures the economic return of 

investment in crop production, whereas the second outcome tends to measure a household’s 

self-sufficiency in food production. The latter is very important for households and for 

policymakers since most farm households in Senegal are involved in staples production and 

that they only sell a marginal part of produced food crops. As argued by Kassie et al. (2015), 

food productivity is a good proxy for food security since for most farmers in Sub-Saharan 

Africa ‘the availability of food – and access to food – is crucially determined by the production 

of basic staples at the household level due to pervasive market weaknesses, poverty, and 

subsistence orientation’. 

4.3.1. The Heckman selection model 

From the theoretical model, it is clear that the level of investment in risky inputs depends on a 

set of factors such as production risks, credit constraints, information on inputs, and other 

factors including risk management strategies, and farm households’ characteristics. On the 

other hand, all farm households in the sample do not buy risky inputs. Based on market 

participation literature, the decision to purchase inputs is genuinely linked among others to 

various transaction costs (Goetz 1992; Staal, Delgado and Nicholson 1997; Key et al. 2000; 

Alene et al. 2008; Barrett 2008; Asfaw, Lipper, et al. 2012). Therefore, a Heckman model is 

commonly used to explain in the first step the binary decision to buy risky inputs, in our case, 

then accounting for selection bias, a regression model is used to identify drivers of the level of 

investment made.  

Since individuals self-select in a group (those who invest and those who do not), there is a 

latent variable Di
∗ that dictates the decision to invest. Assume U1 and U0, the expected utilities 
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related to the decision to invest or not. We define Di
∗ = U1-U0, the difference between the 

expected utilities. Di
∗ cannot be directly observed, since it is a latent variable, we express it as 

a function of observable elements in the following latent variable model. 

Di
∗ = 𝐐1,i

′ γ + ui, ui~ N(0,1)       (4.10) 

Individual i decides to invest in inputs if the utility derived from the investment is higher than 

the utility obtained when he/she does not invest. Thus, the decision to invest in risky inputs Di  

is defined according to Di
∗:  

Di = {
1        if           Di

∗ > 0  

0      if          Di
∗ ≤ 0  

         (4.11) 

Once the decision to purchase risky inputs is made, the corresponding investment level (X) is 

modeled as follow: 

Xi =  𝐙1i
′  β + εi         (4.12) 

Where Qi is a non-stochastic vector of observed farm and non-farm characteristics determining 

adoption, Zi represents a vector of exogenous variables thought to influence the level of the 

risky investment. Equations (4.11) and (4.12) are simultaneously estimated using the 

Maximum Likelihood method with the assumption that the two error terms follow a bivariate 

normal distribution with ρ as the covariance between the two distributions: 

( ui, εi)~N [(
0
0

) , (
1 ρ
ρ σ

)]                                         (4.13) 

The existence of a selection bias between the two decisions depends on the covariance ρ. If ρ 

is significantly different from zero, we conclude that there is a selection bias, otherwise, either 

the selection equation is misspecified or there is no selection bias. For the Heckman model to 

be identified, it is important to have at least one variable in the selection equation (4.11) that is 

not included in the intensity equation (4.12). As instruments, we considered three factors. The 

first one is the farmer’s self-report need for extension services on agricultural best practices. 

The second instrument considered is the farmer’s self-report need for insurance. The last one 

is the distance to the nearest market. All these factors have a direct effect on the decision to 

buy risky inputs but do not directly affect the level of investment. 

One common issue related to this kind of estimation is the problem of endogeneity of some 

explanatory factors such as farmer organization, access to extension services, access to credit, 

and the participation in the off-farm activity. For all these factors, it is possible to think of a 
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scenario of reverse causality between these factors and the decision to invest in agricultural 

inputs. To account for this endogeneity, we used the control function approach as exposed in 

Wooldridge (2015). For binary endogenous variables, the correction is made by adding the 

generalized residuals as an additional factor in the selection equation. This additional factor is 

computed from a standard probit model where each potential endogenous variable is the 

dependent variable9. In the absence of obvious instruments for each of these endogenous 

variables, we considered as instruments the department level average of the following factors: 

(i) farmer organization membership, access to extension services,  access to credit, off-farm 

activity dummy, the expressed extension services need, and that of agricultural insurance. The 

average is computed as the total number of farmers with a value 1 for the selected dummy 

minus one divided by the number of farmers in the department. This gives the share of other 

farmers with a value of 1 for a selected factor. 

4.3.2. The endogenous switching regression model 

Endogenous Switching Regression (ESR) model is commonly used to assess the impact of 

treatment when especially experimental data are not available (Di Falco, Veronesi and Yesuf 

2011; Asfaw, Shiferaw, et al. 2012; Abdulai and Huffman 2014; Khonje et al. 2015; Abdulai 

2016).  Consider the following model, which describes the welfare outcome of households with 

two regression equations, and a criterion function Ii that determines which regime the 

household faces: 

Ii
∗=𝐐2,i

′ γ + ϵi         (4.14) 

Regime 1:   Y1i = 𝐙2i
′ β1 + u1i   if   Ii=1    (4.15a)              

Regime 2:   Y2i = 𝐙2i
′ β2 + u2i  if  Ii =0    (4.15b) 

where Ii
∗ i is the unobservable or latent variable for risky input adoption, Ii is its observable 

counterpart, Qi is a non-stochastic vector of observed farm and non-farm characteristics 

determining adoption, Yi is welfare outcome of interest (agricultural profit per hectare or per 

adult food production in calories), Regime 1 stands for adopters (buying risky inputs) and 

Regime 2 for non-adopters, Zi represents a vector of exogenous variables thought to influence 

the considered welfare outcome, and u1i, u2i and ϵi  are the error terms of the three equations 

 

9 The curious reader is referred to Wooldridge (2015, Pp. 427 - 428). 
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(14, 15a, 15b) and follow a trivariate normal distribution of zero mean and variance-covariance 

matrix specified as follows: 

cov(ϵi, u1i, u2i) = (

1 . .
σ1ε σ1

2 .

σ2ε . σ2
2 

)      (4.16) 

The variance of ϵi is equal to 1, σ1
2 and σ2

2 represent the variance of the error terms u1i  and u2i, 

σ1ε is the covariance of ϵi and u1i and σ2ε is the covariance of ϵi  and u2i. The covariance of 

the error terms u1iand u2i (σ12 or σ22) is not defined because of the two regimes Y1i and Y2i 

are not observed simultaneously. The selection equation is used to calculate the inverse Mills 

ratios λ1i and λ2i which are incorporated in equations (4.15a) and (4.15b) to correct for 

selection bias: 

λ1i =
ϕ(𝐐2,i

′ γ)

Φ(𝐐2,i
′ γ)

  and  λ2i =
ϕ(𝐐2,i

′ γ)

1−Φ(𝐐2,i
′ γ)

   (4.17) 

From the theoretical framework, factors included in Qi and Zi are production risks face by 

farmers, production structure (land allocation across crops), credit access, information on 

inputs (prices and origins), output prices, risk management strategies, and household 

characteristics (e.g., age, gender, family size, education, and other household composition 

indicators). 

According to Lokshin and Sajaia (2004), given the joint normality of the error terms in equation 

14 and equation 15a and 15b, to obtain robust standard errors, the model can be estimated using 

the Full Information Maximum Likelihood (FIML) which allows the parameters of the three 

equations to be estimated simultaneously. For identification purposes, one need to include at 

least one instrument (Lokshin and Sajaia 2004; Di Falco et al. 2011; Asfaw, Shiferaw, et al. 

2012; Abdulai and Huffman 2014) which is expected to influence the adoption of risky inputs 

(equation 14) but not the welfare outcome of interest (equation 4.15a and 4.15b). The same 

identification strategy is used as explained in the previous section.   

Conditional expectations, treatment, and heterogeneity effects 

The previously estimated model allows us to calculate the average treatment effect on the 

treated (ATT) and the average treatment effect on the untreated (ATU). The estimations of the 

ATT and ATU is presented in Table 4- 1. The impact on adopters is measured by the ATT, 

which corresponds to the difference between the average predicted agricultural profit of 

investors in the situation where they invested (observed in the sample) and in the situation 
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where they did not invest (unobserved, counterfactual). The ATU allows us to have the 

difference between the average predicted agricultural profit of non-investors in the situation 

where they invested (not observed in the sample, counterfactual) and in the situation where 

they did not invest (observed in the sample) (Di Falco et al. 2011; Khonje et al. 2015). 

Following Carter and Milon (2005) and Di Falco et al. (2011), one could also investigate “the 

effect of base heterogeneity” for the group of farm households within the same treatment 

decision. The first base heterogeneity (BH1) is the difference of predicted outcome of treated 

farmers in the treatment group and that in the untreated group in the situation where they 

invested (counterfactual). The second base heterogeneity (BH2) is the difference in the 

predicted outcome of treated farmers in the treatment group in the situation where they did not 

invest (counterfactual) and the untreated group. Finally, the difference between the ATT and 

the ATU measures the “transitional heterogeneity” (TH) which compares the effect of already 

adopters to not yet adopters of risky inputs. 

Table 4- 1: Treatment effects 

Sub-samples 
Decision 

Effects 
To buy risky inputs To not buy risky inputs 

Investors E(y1i|I = 1; x) = x1iβ1 + σε1λ1i    (a) E(y2i|I = 1; x) = x1iβ2 −  σε2λ1i   (c) ATT=(a)-(c) 

Non-investors E(y1i|I = 0; x) = x2iβ1 + σε1λ2i   (d) E(y2i|I = 0; x) = x2iβ2 −  σε2λ2i   (b) ATU=(d)-(b) 

Heterogenous effects BH1 = (a) – (d) BH2 = (c) – (b) TH = ATT - ATU 

Source: Adapted from Di Falco et al. (2011) 

The equations (a) and (b) in Table 4- 1 represent the situations observed in the sample: (a) 

would be the predicted outcome of investors who decide to buy risky inputs and (b) would be 

the predicted agricultural outcome if non-investors; ii) the counterfactual situations are 

expressed in equations (c) and (d) and allow to obtain respectively the predicted agricultural 

outcome if investors and non-investors had invested or not invested. 

 Data and descriptive summary 

Data used in this study were collected under the PAPA10 project, which is an initiative of the 

Government of Senegal funded by USAID-Senegal as part of the "Feed The Future" initiative 

implemented for a 3 years period (2015 - 2018) by the Ministry of Agriculture and Rural 

Equipment with the International Food Policy Research Institute (IFPRI) technical support. 

 

10 Official website of the project is http://www.papa.gouv.sn/. 

http://www.papa.gouv.sn/
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A two-stage sampling method was used with the primary units being the census districts (CDs) 

as defined by the 2013 General Census of Population, Housing, Agriculture and Livestock 

(RGPHAE11) and the secondary units being agricultural households. The sample for rain-fed 

led agriculture is 4,533 farm households distributed across all the 42 agricultural departments 

of the country (except the urban departments of Dakar, Pikine, and Guediawaye).  

 Data collection took place between April and May 2017. After data cleaning, the final sample 

size for this analysis is 4,465 farm households. To control for influential observations, we 

remove from the analysis outcome values lower than its first centile (1%) or greater than the 

highest centile (99%). 

The survey gathered information on household characteristics, input quantities, and prices, 

output quantities, and prices, experience of production (climatic) shocks, risk management 

strategies, as well as social and institutional characteristics.  

Treatment variable. The treatment variable is based on the reported expenditure at the 

household level on at least one of the two main inputs in crop production: seeds and inorganic 

fertilizers. We created a binary variable equal to 1 if the total expenditure on these inputs is 

different from zero. The focus here is not on the quality of the input used, but on the presence 

of an investment. The objective being to identify factors that may increase input market 

participation in general and an increase in farm household’s investment in agricultural 

investment. In our sample, the share of households that had purchased seeds (49.79 %) was 

higher than for inorganic fertilizers (35.30 %), while the number of households investing in 

both technologies at the same time was very low (4.97 %).  

Outcome variables. To assess the benefits of investing in risky inputs (seeds and fertilizers), 

this study considered two outcomes: farm profit per hectare and food availability (in calories) 

per adult equivalent per day. The cropping profit per hectare, which measures the economic 

return of investment in crop production, which is computed as the value of crops produced per 

hectare net of the total production costs per hectare. The production is valued using the average 

crop-specific price received by farmers on the local market. On the other hand, the total cost 

includes expenditure on seeds, fertilizers, the wage paid, equipment rental cost, land rental cost, 

and other inputs cost reported. The second outcome measures the household level of self-

sufficiency in food production. This indicator is very important for households and for 

 

11 Recensement Général de la Population, de l’Habitat, de l’Agriculture et de l’Élevage 
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policymakers since most farm households in Senegal are involved in staples production and 

that they only sell a marginal part of produced food crops. The food crops considered are 

cereals (millet, sorghum, maize, rice, and fonio) and cowpeas. Using the West African Food 

Composition Table (Stadlmayr and others 2012), we converted food crops production into 

calories (kcal). The total food available (kcal) was divided by total household size adjusted for 

adult equivalent using weights provided by Claro et al. (2010) and converted to daily food 

available by dividing by 365. The reference food requirement for an adult (men and women 

from 19 to 50 years of age) was 2550 kcal/day (Claro et al. 2010). 

 Table 4- 2 shows that households produced on average 1461 kcal of food per adult equivalent 

per day (AED). According to FAO (2010), the Senegalese population got about 62 percent of 

the energy requirement from cereals. Therefore, food crops considered here should provide 

more than 1600 kcal per AED.  On average, households who invested in risky inputs were able 

to produce this required food while non-buyers produced only 1238 kcal/AED. 

Explanatory variables. The choice of explanatory variables is based on both theoretical and 

empirical reasons. The most important factors include farm characteristics (farm size, crop 

diversification, etc.), production risks factors (rainfall standard deviation over the past years, 

number of risks events reported by households), the risk attitude of households (whether 

farmers reduced cultivated area or reoriented towards non-farm activities due to the production 

shocks experienced), and household characteristics (gender, age, and education of the 

household heads). Factors relative to services are considered, among which are farmer 

organization membership, access to extension services, access to credit. Farm mechanization 

(plow and tractor) dummy, as well as ownership of transportation equipment (cart), are 

considered in the model. Dummy variables accounting for other sources of income of the 

households are also included. 

At the farm level, we considered the total cultivated area, the value of the farm equipment, the 

total number of crops produced,  the share of the farm size allocated to cash crops to measure 

the market orientation of households, the quality of seeds and that of fertilizers. We assume 

here that inputs purchased from parastatal agencies or farmer organizations are of better 

quality. We also controlled for regional heterogeneity and differences by including in the model 

regional dummies. 
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Table 4- 2: Descriptive summary of selected variables used in estimations 

Variable Variable description All sample Investors 

Non-

investors Difference 

Treatment variable         

Treatment 1 if households spent on risky inputs, 0 otherwise 0.63       

Seed investment  1 if households invested in seeds, 0 otherwise 0.50 0.79     

Fertilizer investment  1 if households purchased fertilizers, 0 otherwise 0.35 0.56     

Joint investment 

1 if households jointly purchased both inputs, 0 

otherwise 
0.22 0.34     

Risky investment Value of the risky investment (1000 FCFA) 41.69 65.73     

Outcome variables         

Food availability   1461.96 1593.75 1238.49 355.27*** 

Profit per hectare   115.00 115.88 113.47 2.41 

Household characteristics        

Gender Household head is female (1=YES) 0.07 0.06 0.08 -0.02*** 

Household size The household size in adult equivalence scale 8.91 9.34 8.17 1.16*** 

Age Household head age (years) 53.07 53.33 52.61 0.72* 

Age squared Household head age (years), squared 2996.28 3027.53 2942.12 85.41* 

Formal education Household head received a formal education (1=YES) 0.24 0.25 0.22 0.03** 

Extension services Access to extension services (1=Yes) 0.10 0.12 0.08 0.04*** 

Organization Membership of farmer organization (1=YES) 0.09 0.12 0.04 0.08*** 

Access to credit Household received credit (1=YES) 0.03 0.04 0.01 0.03*** 

Livestock activity Has a livestock income (1=YES) 0.33 0.35 0.28 0.08*** 

Off-farm activity Has an off-farm income 0.27 0.25 0.30 -0.04*** 

Remittance Has received remittances (1=YES) 0.09 0.10 0.08 0.02 

Farm characteristics        

Farm size Total cultivated area (hectare) 4.46 5.23 3.11 2.12*** 

Farm equipment value Value of agricultural equipment (1000 FCFA) 106.75 130.46 65.65 64.8*** 

Number of crops Number of crops produced 2.35 2.51 2.07 0.44*** 

Cash crops Land share allocated to cash crops (%) 0.35 0.39 0.27 0.12*** 

Diversification index Herfindahl–Hirschman Index of crop diversification 0.43 0.47 0.36 0.11*** 

Owned plough/tractor Mechanization (1= if plough or tractor) 0.09 0.08 0.09 -0.01 

Owned cart Transportation equipment (1= if cart) 0.44 0.49 0.35 0.14*** 

Seed quality Certified and subsidized seeds (1,0) 0.24 0.37 0.00 0.37*** 

Fertilizer quality Fertilizers purchased from parastatal agencies 0.23 0.37 0.00 0.37*** 

Risk variables/indicators         

Risk events (count) Number of risk events reported (past 5 years) 2.19 2.24 2.11 0.12** 

Risk attitude 
1 if household reduced cultivated area or reoriented 

in off-farm activities 
0.47 0.46 0.48 -0.01 

Rainfall 2010-2015 (std dev) 
Monthly rainfall standard deviation over  2010-2015 

in rainy season 
93.17 88.42 101.39 -12.97*** 

Rainfall 2016 

Annual rainfall observed in 2016 during the rainy 

season 
675.37 644.77 728.42 -83.65*** 
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Instrument variables         

Distance Distance to the nearest market (km) 13.62 12.46 15.63 -3.17*** 

Best practices 

1 if farmers reported to need support on  

farming best practices, 0 otherwise 
0.49 0.53 0.42 0.11*** 

Insurance need 

1 if farmers reported to need agricutural insurance, 0 

otherwise 
0.38 0.41 0.32 0.09*** 

Organization2 

Share of farmers members of farmer organization at 

department level 
0.08 0.09 0.06 0.03*** 

Ext. services need 

Share of farmers that need extension services supports 

at the department level 
0.72 0.73 0.71 0.02*** 

Best practices2 

Share of farmers that need supports on best practices 

at the department level 
0.48 0.49 0.45 0.05*** 

Ext. services2 

Share of farmers that received extension services at 

department level 
0.10 0.10 0.08 0.03*** 

Credit2 

Share of farmers that received credit at department 

level 
0.02 0.02 0.02 0.01*** 

Off-farm activity2 

Share of farmers involved in off-farm activities at 

department level 
0.26 0.24 0.30 -0.06*** 

Insurance need2 

Share of farmers that need insurance products at 

department level 
0.37 0.38 0.34 0.03*** 

Regional dummies         

Dakar Dakar 0.01 0.01 0.00 0.01*** 

Ziguinchor Ziguinchor 0.08 0.03 0.16 -0.14*** 

Diourbel Diourbel 0.09 0.09 0.09 0 

Saint-Louis Saint-Louis 0.03 0.05 0.01 0.04*** 

Tambacounda Tambacounda 0.10 0.08 0.13 -0.04*** 

Kaolack Kaolack 0.09 0.12 0.05 0.07*** 

Thies Thies 0.07 0.08 0.06 0.02*** 

Louga Louga 0.08 0.09 0.06 0.03*** 

Fatick Fatick 0.06 0.05 0.08 -0.03*** 

Kolda Kolda 0.10 0.10 0.09 0.01 

Matam Matam 0.04 0.01 0.10 -0.09*** 

Kaffrine Kaffrine 0.12 0.15 0.06 0.09*** 

Kedougou Kedougou 0.05 0.05 0.05 0 

Sedhiou Sedhiou 0.08 0.08 0.07 0.01 

Observation Sample size 4133.00 2621.00 1512.00 0*** 

 Source: Authors from PAPA data (2017). Note: FCFA = XOF is the local currency in Senegal and most of the West African 

countries. 1 USD is approximatively equal to 550 FCFA. 

Instrument variables. The identification of the different models estimated required to find 

some instruments variables that may directly affect the decision to invest in seeds or fertilizers 

but will not directly influence various outcomes. As explained in the methodology section, we 

consider distance to the nearest market, farmer’s willingness to receive extension services on 
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farming best practices, and that to access to insurance products. Regarding the issue of 

endogeneity raised, we used the average of various indicators at the department level. 

 Results and discussion 

Investment in risky inputs 

Table 4- 3 shows the results from the Heckman model of the decision to buy risky inputs 

(improved seeds and fertilizers) and the corresponding level of investment. For each model, 

the coefficient estimates as well as the standard error (see Equations (4.2) and (4.3)) are 

presented.  Heteroskedasticity-corrected standard errors using a cluster approach at the census 

district are displayed. The Wald test (Table 4- 3 and Table 4- 4) of the hypothesis that all regression 

coefficients are jointly equal to zero is highly rejected. Similarly, the Wald test of the 

hypothesis that there is no selection bias (rh0=0) is highly rejected. Therefore, the Heckman 

model is appropriate in modeling investment on risky inputs. The exogenous test for potential 

endogenous variables (farmer organization, extension services, access to credit, and off-farm 

activity) reveals that only farmer organization and off-farm activity participation are not 

exogenous in the model. Therefore, the final model corrected that for these two variables. The 

same specification is used in the endogenous switching regression model. 

The decision to invest in risky inputs is linked to household and farm characteristics, risk 

factors, and access to services. We find that household size, household head age and 

educational level, membership of farmer-based organizations and having livestock income 

sources positively and significantly drives the decision to invest in risky inputs. The effect of 

the household head age on the decision to invest in risk inputs is positive but very small. 

Conversely, we find that access to extension services and participation in off-farm activities is 

negatively related to the decision to invest in risk inputs. Both results here are a bit surprising, 

but the negative effect of extension access on risky inputs investment decisions can be 

modulated by the need for extension services which is positively and significantly related to 

the investment decision. Hence farmers that have a need for extension services are more likely 

to invest in risky inputs. Furthermore, since access to information can be obtained through 

farmer-based organizations, we find that membership of farmer-based organizations is positive 

and significantly correlated to the decision to invest in risky inputs. This modulating effect is 

supported by many empirical studies (Conley and Udry 2010; Isham 2002; Abdulai 2016; 

Hailu, Cao and Yu 2017; Husen, Loos and Siddig 2017). 
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The gender of the household head, credit access, and remittance do not significantly affect the 

decision to invest in risk inputs. The results obtained here are congruent with some studies in 

the empirical literature. For instance, Asfaw et al. (2012b) found the education level of a 

household head to drive the adoption of  Pigeonpea in Tanzania. Muzari et al. (2012) also find 

gender-related differences in technology adoption in Sub-Saharan Africa. Due to gender 

inequalities in sub-Saharan Africa, women have less access to production resources such as 

land, lower access to education and information on new technologies (Muzari et al. 2012). In 

addition, women are sometimes disadvantaged in terms of access to credit (Muzari et al. 2012) 

that reduces their financial ability to have higher levels of investment in risky inputs compared 

to their male counterparts.  

We find that farm-related variables including size, number of crops grown, and the share of 

land allocated to cash crops correlates positively to the decision to invest in risky inputs. The 

effects are also highly significant. At the same time, the value of farm equipment and ownership 

of a plow or tractor is negatively related to the decision to invest in risky inputs although the 

effect is not significant. The standard deviation of rainfall was found to negatively correlate to 

the decision to invest in risky inputs and the effect is significant. Hence as rainfall becomes 

more and more variable, farmers are less likely to invest in risky inputs. 

Our regional fixed effect variables are all significant at 1%, implying that the location of a 

farmer likely influences their decision to invest in risk. The estimates for the potential 

endogenous variables12, membership of a farmer-based organization and participation in an 

off-farm activity are significant, meaning that endogeneity was indeed present and well 

controlled for in the model.  

 

 

 

 

 

 

 

12 We do not include the residuals of the other potentially endogenous variables, credit access and extension 

because they were not statistically significant. They are however available on request 
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Table 4- 3 : Drivers of investment on risky inputs, Heckman model results 

  Selection equation Log input investment 

  Estimate SE Estimate SE 

Household characteristics 

  

  

  

  

Gender 0.132 0.085 -0.339*** 0.112 

Household size (adult equivalent) 0.018*** 0.006 0.006 0.006 

Age -0.013 0.01 0.027** 0.012 

Age squared 0.000* 0 -0.000** 0 

Formal education 0.091* 0.055 0.04 0.056 

Extension services -0.232*** 0.087 0.248*** 0.089 

Organization 1.599*** 0.256 0.113 0.095 

Access to credit 0.113 0.14 0.089 0.115 

Livestock activity 0.300*** 0.056 -0.157*** 0.054 

Off-farm activity -0.573*** 0.206 0.032 0.058 

Remittance 0.064 0.077 -0.136 0.086 

Farm characteristics 

  

  

  

  

Farm size (log, ha) 0.082** 0.038 0.605*** 0.044 

Farm equipment value (log) 0 0.012 0.039*** 0.014 

Number of crops 0.122** 0.053 -0.291*** 0.057 

Cash crops (% of farm size) 0.340*** 0.098 0.645*** 0.13 

Diversification index 0.076 0.204 0.567** 0.25 

Owned plough/tractor -0.022 0.085 -0.108 0.097 

Owned cart 0.059 0.052 -0.007 0.062 

Risk variables/indicators 

  

  

  

  

Risk events (count) 0.012 0.016     

Risk attitude 0.06 0.043     

Std. rainfall 2010-2015 -0.363*** 0.133     

Instruments used 

  

  

  

  

Distance to market (log) -0.003 0.019     

Extension services need 0.159*** 0.037     

Insurance need 0.036 0.043     

Organization (RES) -0.678*** 0.133     

Off-farm activity (RES) 0.357*** 0.123     

Regional fixed effects 

  

  

  

  

Ziguinchor -0.418*** 0.142     

Diourbel -0.352*** 0.063     

Tambacounda -0.627*** 0.075     

Louga -0.317*** 0.086     

Fatick -0.423*** 0.084     

Kolda -0.438*** 0.076     
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Matam -1.381*** 0.237     

Constant 1.551** 0.635 2.663*** 0.332 

rho -0.929   -0.929   

Wald chi2 (1) for rho = 287.2*** 287.2   287.2   

Wald chi2 (18) = 405.1*** 405.1   405.1   

Number of clusters 945   945   

Sample size 4,133   4,133   

Note: Bootstrapped standard errors are reported. rho denotes the correlation coefficient between the error term of the selection 

equation and the error term of the outcome equations. Organization (RES) and Off-farm (RES) denote the generalized residuals 

from the first-stage regressions farmer organization membership and off-farm activity participations, respectively. 

Significance: *** p<0.01, ** p<0.05, * p<0.1. Source: Authors from PAPA data (2017). 

 

Results of the second stage estimation show that the gender of the household head, age, 

extension access, and livestock income sources significantly drive the levels of investment in 

risky inputs. We, however, find the effect of gender and livestock ownership to be negative. 

Hence, female-headed households invest less in seeds and fertilizers compared to male-headed 

households. Furthermore, households that have livestock income sources invest less in risky 

inputs. On the contrary, the effect of a household’s head age on the level of risky input 

investments decreases with increasing age. Extension access is related to increasing levels of 

investment in risky inputs. The effect of remittance is, however, negative which implies that 

households that receive remittances reduce the level of investment in risky inputs. 

Farm characteristics including size, equipment value, the share of land allocated to cash crops 

and diversification are significant and positively correlated to investment levels of risky inputs. 

On the contrary, despite being significant, the number of crops grown decreases the level of 

investment in risky inputs. We also find that ownership of farm equipment (plow/tractor and 

cart) decreases investment levels in risky inputs but the effect is not significant. 

In summary, we find the age of a household head, extension access, having livestock income 

sources, farm size, the number of crops grown and the share of land allocated to cash crops to 

simultaneously affect the decision to invest in risky inputs and the level of investment in these 

inputs. Extension access, on the other hand, has an opposing effect, it reduces the probability 

of investing in risky inputs but increases the level of investment. The effect of livestock income 

sources and the number of crops grown has the opposite effect of extension access. The 

presence of livestock income sources and the number of crops grown increases the probability 

of investing in risky inputs but decreases the level of investment. Farm size and the share of 

land allocated to cash crops have a consistently positive effect across the decision to invest in 
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risky inputs and the levels of investment. They both significantly increase the probability of 

investing in risky inputs and the level of investment in risky inputs. 

Household welfare impacts 

Since the drivers of agricultural profit are not the main interest of this study, we directly 

discussed the impact of the decision to invest in risky inputs. Detailed results of the model are 

presented in the Supplementary materials section. Table 4- 4 shows the predicted welfare 

outcomes of risky investments under actual and counterfactual conditions for Senegal.  

The results showed that investment in risky inputs (fertilizers and/or seeds) has a positive and 

significant impact on the profit per hectare and on food produced per AED. The treatment effect 

on the treated was estimated at 24 000 FCFA13 per hectare for the profit and 238 kcal per AED 

for food availability. This is equivalent to a 44 percent increase in the profit per hectare and a 

24 percent increase in food availability per AED relative to the expected outcome if they did 

not purchase risky inputs. Moreover, if non-buyers had purchased risky inputs, their average 

profit per hectare and food availability per AED would have increased by 150 percent and 107 

percent, respectively. Therefore, investment in risky inputs increases household welfare 

measured in terms of crop profit per hectare or food availability.  

Table 4- 4: Predicted outcomes and treatment effects 

 Decision stage 
Treatment effects 

 To invest Not to invest 

(Outcome 1): Profit per hectare (1000 FCFA)  

Farm households who invested (a)   79.5 (0.7) (c)   55.4 (0.5) ATT = 24.2*** (0.5) 

Farm households who did not invested (d)   218.9 (2.4) (b)   87.7 (1) ATU = 131.2 (1.6) 

Heterogeneity effects BH1 =  -139.3*** (2.1) BH2 =    -32.3*** (1) TH = -107*** (1.4) 
    

(Outcome 2): Food availability (Kcal/AED) 
 

Farm households who invested (a)   1219.1 (16.6) (c)   980.7 (12.8) ATT = 238.4*** (7.7) 

Farm households who did not invested (d)   2038.4 (40.3) (b)   987.1 (17.6) ATU = 1051.3*** (25.1) 

Heterogeneity effects BH1 =  -819.3*** (37.7) BH2 =    -6.4 (21.5) TH = -812.9*** (21.7) 

Note: Standard errors in parentheses. Significance: *** p<0.01, ** p<0.05, * p<0.1. Source: Authors from PAPA data (2017). 

 

 

13 FCFA = XOF is the local currency in Senegal and most of West African countries. 1 USD is approximatively equal to 550 

FCFA. 
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However, surprisingly, results also reveal that the treatment effect is higher for non-buyers than 

for actual buyers. De Janvry et al. (2010) stated that such a situation may occur if technology 

adoption increases risks. In the absence of a perfect insurance market, poor farmers will not be 

able to adopt, unlike richer farmers who can adopt the technologies even if their expected gain 

is low. Therefore, the treatment effect on the untreated may exceed the treatment effect on the 

treated. On the other hand, the transitional heterogeneity effect for the two outcomes is 

negative; that is the effect is lower for farm households that did invest compared to the ones 

that did not invest. 

Table 4- 5: OLS regression of the differential impact 

  
Profit equation Food equation 

 

 Estimate Std. Err Estimate Std. Err 

Land share to groundnut (%) 14.139*** 4.850 -986.701*** 62.827 

Land share to Maize (%) 6.188 5.545 4.744 64.552 

Land share to Millet (%) 10.147** 4.650 310.568*** 55.513 

Land share to Rice (%) 32.391*** 5.014 -185.241*** 60.114 

Farm size (Ha) -7.931*** 0.562 59.309*** 6.440 

farm size, squared 0.196*** 0.020 -0.788*** 0.231 

Extension services (0,1) 24.297*** 3.423 348.713*** 39.472 

Credit (0,1) -17.245*** 6.114 231.101*** 69.648 

farmer organization (0,1) 18.148*** 3.764 163.236*** 43.454 

Value of agric. Equipment (1000 FCFA) -0.001 0.002 -0.051** 0.024 

Owned cart 1.788 2.085 113.262*** 23.981 

Mechanization (0,1) 15.457*** 3.630 186.260*** 41.636 

Number of crops 6.917*** 1.228 -15.515 14.587 

Education 4.658** 2.345 46.771* 26.919 

Gender (1=Female) -23.824*** 3.977 -217.998*** 46.446 

Age 0.141* 0.074 0.649 0.847 

Constant 50.228*** 6.002 412.322*** 71.682 

Observations 4,133   3,863   

R-squared adjusted 0.120   0.168   

Note: Robust standard errors are reported. Significance: *** p<0.01, ** p<0.05, * p<0.1. Source: Authors from PAPA data 

(2017). 

To gain further understanding of results, we also examined the differential impact of investing 

in risky inputs by running an OLS estimation on a set of factors where our interest is on the 

production structure (share of the total cultivated area allocated to millet, maize, rice, and 

groundnut). Table 4- 5 shows results from this simple OLS regression. 
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Table 4- 6: Comparison of mean of yield and land allocation across groups 

 Yield (kg/ha) land size share (%) 

 Adopters Non-adopters T-Stat Adopters Non-adopters T-Stat 

Groundnut 604.65 639.31 -1.25 0.35 0.25 12.17*** 

Millet 447.80 478.28 -1.87* 0.28 0.32 -5.06*** 

Maize 614.38 550.92 1.73* 0.12 0.13 -0.46 

Rice 1664.36 1120.93 4.34*** 0.08 0.14 -7*** 

 

Results show that the most influential crops are groundnut, millet, and rice. A test of differences 

between the yield and the land size share allocated to these crops across the groups reveals that 

the most important yield gap between adopters and non-adopters is present in rice production 

with an average gap of 543 kg/ha. In addition, non-adopters had allocated more land area to 

that crop (14%) than adopters (7%). This finding clearly explains why the expected profit for 

non-adopters is clearly higher than for adopters. Regarding the food production gap observed, 

it is explained by the fact that adopters had allocated less land size to millet than non-adopters. 

Moreover, there is no yield gap for millet between the two groups (see Table 4- 6). 

 Conclusion and policy recommendations  

Using recent data of rain-fed agriculture in Senegal, this study provides an analysis of the 

investment decision of farm households in Senegal on “risky inputs”. More than half of the 

households in the sample had bought either inorganic fertilizers or seeds during the campaign 

of interest. However, the level of spending on these inputs is quite low. There is, thus, a need 

to investigate the drivers of the investment decision, the level of investment, and the potential 

impact of the household’s welfare in order to convince farmers to adopt and policymakers to 

use results to design appropriate interventions. 

In summary, we find the age of a household head, extension access, having livestock income 

sources, farm size, the number of crops grown and the share of land allocated to cash crops to 

simultaneously affect the decision to invest in risky inputs and the level of investment in these 

inputs. Farm size and the share of land allocated to cash crops have a consistently positive 

effect across the decision to invest in risky inputs and the levels of investment. They both 

significantly increase the probability of investing in risky inputs and the level of investment in 

risky inputs. 
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The main drivers of the decision to purchase risky inputs are household size, education of 

household heads, membership in a farm organization, access to credit, farm size, the number 

of crops and existence of livestock income. On the other hand, results reveal gender, farm size, 

the number of crops grown and the share of land allocated to cash crops, crop diversification, 

the value of agricultural capital, rainfall variability, and extension services as the determinants 

of the level of investment on risky inputs. In terms of impact, results show a positive effect of 

risky investment on farm profit per hectare, and food produced per adult equivalent per day. 

This positive effect is higher for current non-adopters. This greater expected impact on non-

adopters is explained by their cropping patterns. Most of them are involved in rice production 

which is found to be more sensitive to inputs investment. 

Our results highlight that efforts made so far to encourage investments in inputs need to be 

strengthened through the revision of government interventions’ strategy to ensure public 

expenditure efficiency and substantial impacts on beneficiaries of the promotion of private 

(farm) investment in terms of adoption and investment intensity. Private investments could be 

promoted through several complementary channels that affect both the decision to invest and 

the amount invested. Access to information can play an important role in the decision to invest 

in agricultural activity, particularly in improved inputs. The sources of information identified 

here are membership of a farm organization, access to advisory support, possession of means 

of transportation that allow households to access information. Another source of information 

would be climate information systems. Since liquidity constraints hinder agricultural 

investment, any policy that promotes access to credit could generate important returns. Efforts 

to ease access to credit would have to be accompanied by measures to manage agricultural 

risks. 

Interventions along the lines proposed above could reduce the impact of agricultural risks and 

increase farmers' willingness to invest to increase their well-being. In addition, based on the 

positive effect of the use of risky inputs on farm profit per hectare, food availability, private 

operators may be interested to support public efforts to improve technology adoption and 

poverty reduction.  
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Supplementary materials 

Table A4- 1: Determinants of per hectare farm profits and Food produced (endogenous switching regression 

model) 

  Log farm profit (1000 FCFA/ha) Log Food produced (Kcal/adult/day) 

 (1) (0) (1) (0) 

 Estimate SE Estimate SE Estimate SE Estimate SE 

Household characteristics 
      

Gender -0.070 0.080 -0.249*** 0.091 0.036 0.076 -0.107 0.086 

Household size (adult equivalent) 0.006 0.006 0.003 0.005 -0.090*** 0.007 -0.079*** 0.004 

Age 0.004 0.010 0.003 0.009 -0.006 0.010 0.001 0.008 

Age squared -0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 

Formal education -0.092 0.058 -0.044 0.048 -0.075 0.061 0.014 0.044 

Extension services 0.293*** 0.098 0.274*** 0.083 0.261*** 0.074 0.338*** 0.073 

Organization -0.016 0.111 0.087 0.082 0.002 0.100 0.063 0.073 

Access to credit -0.304* 0.181 -0.305*** 0.101 -0.358* 0.196 -0.097 0.094 

Livestock activity -0.021 0.047 -0.042 0.045 -0.002 0.048 -0.027 0.041 

Off-farm activity -0.116** 0.050 -0.006 0.049 -0.045 0.053 0.035 0.046 

Remittance -0.075 0.076 0.007 0.071 -0.023 0.076 -0.102* 0.059 

Farm characteristics 
      

Farm size (log, ha) -0.396*** 0.038 -0.368*** 0.039 0.571*** 0.042 0.545*** 0.040 

Farm equipment value (log) 0.031*** 0.012 0.026** 0.011 0.028** 0.012 0.035*** 0.010 

Number of crops 0.110*** 0.039 0.167*** 0.040 0.074* 0.042 -0.014 0.036 

Cash crops (% of farm size) 0.462*** 0.103 0.207* 0.112 -1.259*** 0.123 -1.656*** 0.107 

Diversification index 0.289* 0.164 -0.204 0.204 0.207 0.183 0.408** 0.194 

Owned plough/tractor 0.328*** 0.076 0.220*** 0.067 0.257*** 0.079 0.250*** 0.067 

Owned cart 0.083 0.052 0.077 0.052 0.053 0.051 0.047 0.045 

Rainfall 2016 (log, total) 0.382*** 0.074 0.351*** 0.091 0.600*** 0.077 0.223*** 0.085 

Seed quality 
  

0.042 0.043 
  

0.004 0.039 

Fertilizer oquality 
  

0.249*** 0.045 
  

0.334*** 0.042 

Other model parameters 
      

Constant 1.257** 0.519 2.112*** 0.665 3.164*** 0.547 5.857*** 0.601 

lnsigma0 -0.271*** 0.041 
  

-0.324*** 0.029 
  

lnsigma1 0.026 0.036 
  

-0.146*** 0.039 
  

rho0 -0.354** 0.161 
  

-0.110 0.202 
  

rho1 -0.935*** 0.126 
  

-0.742*** 0.138 
  

Wald chi2 (2) for rho = 55.41*** 55.41               

Wald chi2 (19) = 388.0*** 388.0 
       

Number of clusters 945  945  927    

Sample size 4,133  4,133  3,863       

Note : (1) risk takers, (0) No risk takers. Regression with robust standard errors clustered at the Census District was used. Significance 
: *** p<0.01, ** p<0.05, * p<0.1. 
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Table A4- 2: Results of probit models for the control function 

 Farmer organization Extension services Access to credit Off-farm activity 

 Estimate SE Estimate SE Estimate SE Estimate SE 

 (1) (2) (3) (4) (5) (6) (7) (8) 

organisation . . 0.912*** 0.094 0.662*** 0.126 -0.062 0.091 

appui_conseil 0.903*** 0.094 . . -0.087 0.151 0.020 0.086 

credit_recu 0.784*** 0.144 -0.114 0.172 . . -0.045 0.147 

dinc_off -0.042 0.082 0.067 0.077 0.002 0.118 . . 

Age 0.019 0.018 0.015 0.016 0.020 0.025 -0.020* 0.011 

age2 -0.000 0.000 -0.000 0.000 -0.000 0.000 0.000 0.000 

Gender 0.011 0.153 0.000 0.140 0.156 0.213 0.144 0.091 

hsize_aduleq 0.012 0.007 -0.011 0.007 -0.009 0.011 0.005 0.005 

formal_educ 0.278*** 0.079 0.223*** 0.077 0.265** 0.108 0.127** 0.057 

dinc_live 0.097 0.075 0.073 0.069 0.223** 0.100 0.501*** 0.050 

dinc_remit 0.018 0.121 0.343*** 0.101 -0.099 0.180 -0.201** 0.082 

Lsuptot 0.104* 0.055 0.144*** 0.049 0.120 0.078 -0.093*** 0.036 

Lcap 0.020 0.020 0.007 0.018 0.028 0.027 -0.040*** 0.013 

plough_tractor -0.004 0.118 0.021 0.112 0.118 0.164 0.230*** 0.086 

transport_char -0.043 0.093 0.037 0.085 -0.096 0.122 0.121* 0.062 

N_crop -0.049 0.072 -0.023 0.069 0.087 0.091 -0.012 0.049 

cash_crop 0.263** 0.131 0.271** 0.121 0.139 0.194 0.054 0.089 

HHI_div 0.128 0.311 -0.292 0.284 -0.333 0.423 0.221 0.204 

risk_count_5y 0.030 0.024 0.138*** 0.021 0.020 0.031 0.061*** 0.017 

risk_averse_strategy -0.007 0.073 0.076 0.067 0.214** 0.100 0.362*** 0.049 

lrain_sd 0.276 0.232 0.525** 0.220 -0.088 0.346 0.018 0.159 

ldistmark -0.023 0.037 0.117*** 0.038 -0.026 0.048 -0.009 0.024 

extension_bestpractices 0.130* 0.077 0.322*** 0.072 0.061 0.105 0.054 0.051 

insurance_need 0.346*** 0.078 0.180** 0.075 0.291*** 0.110 -0.209*** 0.054 

reg_organization 5.787*** 0.625 -1.157** 0.588 -0.653 0.910 0.785* 0.444 

reg_ext_need 0.037 0.438 -0.126 0.436 0.001 0.708 0.030 0.269 

reg_ext_best -0.219 0.343 -0.319 0.314 -0.291 0.542 0.035 0.221 

reg_ext_access -1.672*** 0.515 5.611*** 0.458 0.499 0.858 -0.702** 0.325 

reg_credit_access -0.113 2.166 1.715 1.870 13.653*** 3.094 -0.963 1.449 

reg_offfarm_access 0.230 0.326 -0.494* 0.291 -0.243 0.459 2.755*** 0.214 

reg_insur_need -0.403 0.267 -0.170 0.256 -0.043 0.362 0.116 0.164 

REG2 -0.017 0.189 0.023 0.189 0.283 0.321 0.010 0.131 

REG3 -0.614** 0.301 0.323* 0.182 -0.317 0.385 -0.032 0.117 

REG5 -0.033 0.170 0.116 0.144 -0.242 0.232 0.035 0.107 

REG6 -0.102 0.169 0.247 0.156 -0.059 0.206 -0.094 0.132 

REG7 -0.113 0.198 0.223 0.147 -0.151 0.303 0.126 0.108 

REG8 -0.388 0.243 0.256 0.161 -0.060 0.251 0.171 0.118 

REG9 -0.254 0.215 -0.165 0.252 -0.537 0.428 0.093 0.115 



 

101 

 

REG10 -0.108 0.128 0.217* 0.121 0.064 0.180 -0.121 0.099 

REG11 -0.065 0.327     0.143 0.155 

Constant -3.975*** 1.193 -5.701*** 1.076 -2.907* 1.672 -1.423* 0.788 

Observations 4,133   4,133   4,133   4,133   

Pseudo R-squared 0.325  0.299  0.193  0.178   

Log-Likelihood Ratio (Chi2) 795.4   823.4   198.9   857.1   

Note : Significance : *** p<0.01, ** p<0.05, * p<0.1. 
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 Introduction 

Agricultural market participation is widely recognized as a key determinant of structural 

transformation in developing countries (Alene et al. 2008; Barrett 2008; Poole 2017). The 

reasons that call for such a view are i) market participation is a way for poor smallholders to 

generate higher income and therefore to increase their welfare (Poole 2017), ii) it improves 

access to new technology14 that can generate a shift upward of total factor productivity 

increasing the production of marketable surplus (Barrett 2008; Asfaw et al. 2012). 

There is a large body of literature on determinants of market participation since the seminal 

work by Goetz (1992), which suggests that transaction costs (transportation and search costs), 

productive assets endowment (land, labor, machinery and transport equipment), or socio-

economic characteristics of households farmers (age of head, gender of head, education), are 

the main drivers of farmer’s decisions to participate and supply in agricultural market (Goetz 

1992; Staal et al. 1997; Key et al. 2000; Alene et al. 2008; Barrett 2008; Ouma et al. 2010; 

Asfaw et al. 2012; Burke et al. 2015; Olwande et al. 2015). 

With exception of Alene et al. (2008) and Asfaw et al. (2012), most empirical studies 

emphasize output market participation, while there may be important transaction costs in inputs 

(fertilizers/ seeds) markets, preventing farmers to get access to new technologies. As a 

consequence, this can jeopardize the intensification process and mitigate the production of 

marketable surplus (Winter-Nelson and Temu 2005; Camara 2017). While Alene et al. (2008) 

studied the determinants of maize supply and fertilizer demands, Asfaw et al. (2012) analyzed 

participation in pigeonpea and seed markets, and their implications for household welfare. 

However, some elements can be raised as limitations of these studies. First, they analyze output 

market participation distinctly from input market participation; therefore, they might hide 

important heterogeneities among participants either in output market or input market. For 

example, a buyer of fertilizer may (not) sell a surplus of production because he/she faces 

specific low (high) costs-information and search costs (i.e. time spent to find a better price or 

a buyer- when trading in output market) can affect the intensity of participation in the fertilizer 

market and the production of marketable output surplus. The point we make here is that buyers 

in input market may have idiosyncratic factors creating considerable differences in transactions 

costs when deciding (not) to participate in output market; therefore, it is possible to observe 

 
14 use of fertilizer, improved seed or mechanization 
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different profiles of farmers based on their overall market strategies15. Thus, a joint analysis of 

input and output markets might be more insightful as it allows for better profiling of farmers 

and a better formulation of targeted policies aiming at improving households’ welfare. 

Studies by Alene et al. (2008), and Asfaw et al. (2012) are applied in specific regions in Kenya 

and pay attention to specific crops markets (maize, or pigeonpea) or analyze specific input 

market (fertilizer or seed), whereas the determinants of output market participation depend on 

the context and the nature of crop, and farmers’ demands for inputs may include both fertilizers 

and seeds. On the other hand, Teklewold (2016) modeled simultaneously the decisions to adopt 

technology and to participate in output market. This study was very similar to ours, however, 

it only focused on the correlation between decisions (using a multivariate probit model) instead 

of the analysis of the determinants of the choice of a specific market participation regime. 

This study pays attention to the above gaps. More specifically, we seek to answer the following 

questions: (i) What is the most gainful market regime when both input and output markets are 

simultaneously considered? (ii) Is this regime invariant across crops? The main objective of 

this study is to draw a joint analysis of participation in both output and input markets and find 

the market participation regimes that lead to the highest net revenue per hectare at the 

household level. Contrary to previous studies, we rely on a recent representative survey of 

Senegalese rainfed agriculture with more than 4,000 farm households and consider both 

fertilizers and seed as inputs and pay attention to both staple and cash crops. 

From an econometric standpoint, we account for selection bias that may affect market 

participation by using the multinomial endogenous treatment effects model (Deb and Trivedi 

2006a, b). The main advantages of this approach are that it accounts for selection bias due to 

both observed (through farm or household characteristics) and unobserved (via latent variables) 

heterogeneity in an impact evaluation setting. 

The next section gives a description of the conceptual framework and the empirical strategy 

used. Section 3 presents the data and a descriptive summary of the variables used in the 

analysis. Results are presented and discussed in section 4. The last section provides conclusions 

and implications. 

 

15 A farmer may buy inputs (fertilizers) because he/she wants to be self-sufficient regarding food crops, or to increase food 

surplus in order to sell that surplus. Therefore, farmer’s behavior on output market may have its origin on the inputs choices 

and depends on the household-specific final objective.  Thus, when considering simultaneously both markets, a set of four 

regimes of market participation emerge. 
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 Conceptual framework and empirical strategy 

5.2.1. Conceptual framework 

The theoretical framework builds on the work by Alene et al. (2008), who analyzed the effects 

of transaction costs on both output and input market participation. Unlike these authors, this 

study supports that the decision to buy input is likely correlated with that of participating in the 

output market, thus revealing the strategic behaviors of farmers under transaction costs. A 

similar argument was made by Teklewold (2016) who modeled jointly the decisions to adopt 

crossbreeding technology (input side) and to participate in milk and milk products marketing 

(output side). Using a multivariate probit model, these authors found that input-side technology 

adoption decision was not independent of that to participate in the output market.  

The analysis is based on a static farm household model where a decision-maker maximizes its 

utility that is a function of net revenue (5.1) under production technology constraint (5.2) 

𝑀𝑎𝑥{𝑋}𝑈(𝑅) =  𝑈{𝑝̂𝑄 − 𝑤̂𝑋 − 𝑡𝑐𝑤𝑏
𝑓(𝑧) − 𝑡𝑐𝑞𝑠

𝑓(𝑧)}     (5.1) 

𝑄 = 𝐺(𝑋, 𝐴)          (5.2) 

𝑝̂ = 𝑝 − 𝑡𝑐𝑞𝑠
𝑣(𝑧)          (5.3) 

𝑤̂ = 𝑤 + 𝑡𝑐𝑤𝑏
𝑣(𝑧)         (5.4) 

𝑄 = 𝑆 + 𝐶̅            (5.5) 

𝑋 = 𝑋𝑏 + 𝑋̅𝑜         (5.6) 

𝜕𝑈 𝜕𝑅⁄ > 0; 𝜕2𝑈 𝜕2𝑅⁄ < 0 ; 𝜕𝑄 𝜕𝑋⁄ > 0; 𝜕2𝑄 𝜕2𝑋⁄ < 0 

𝑝̂ is the specific price that the decision-maker gets when he/she decides to sell in the output 

market. This price is equivalent to market price 𝑝 minus incurred variable transaction costs 

such as transportation costs 𝑡𝑐𝑞𝑠
𝑣(𝑧) (3). 𝑄 is the production which can be sold (𝑆) or consumed 

at home (𝐶̅) (5). Similarly, 𝑤̂ is the specific price that farmer faces when buying input 𝑋; this 

price is equivalent to market price 𝑤 plus variable transaction costs 𝑡𝑐𝑤𝑏
𝑣(𝑧) (4). A farmer can 

buy input in the market 𝑋𝑏 or relies on his/her own resources16 𝑋̅𝑜 (6). 𝑡𝑐𝑤𝑏
𝑓(𝑧), 𝑡𝑐𝑞𝑠

𝑓(𝑧) stand 

for fixed transactions when buying input and/or selling output. Fixed transaction costs include 

information and research costs and are not directly observable in surveys. However, they can 

 

16 For fertilizer, farmer only relies on market. 



 

106 

 

be expressed in terms of observable variables 𝑧 at the household level. 𝐴 stands for fixed 

factors. 

The optimization problem and the associated Lagrange ℒ function can be rewritten as: 

𝑀𝑎𝑥{𝑠,𝑥𝑏}𝑈(𝑅) =  𝑈{(𝑝 − 𝑡𝑐𝑞𝑠
𝑣)𝑆 + 𝑝𝐶̅ − (𝑤 + 𝑡𝑐𝑤𝑏

𝑣)𝑋𝑏−𝑤𝑋̅𝑜 − 𝑡𝑐𝑤𝑏
𝑓

− 𝑡𝑐𝑞𝑠
𝑓

}  (5.1’) 

                       S/C       𝑆 + 𝐶̅ = 𝐺(𝑋𝑏 + 𝑋̅𝑜, 𝐴)    (5.2’) 

ℒ = 𝑈{(𝑝 − 𝑡𝑐𝑞𝑠
𝑣)𝑆 + 𝑝𝐶̅ − (𝑤 + 𝑡𝑐𝑤𝑏

𝑣)𝑋𝑏−𝑤𝑋̅𝑜 − 𝑡𝑐𝑤𝑏
𝑓

− 𝑡𝑐𝑞𝑠
𝑓

}

+ 𝜆{𝐺(𝑋𝑏 + 𝑋̅𝑜, 𝐴) − 𝑆 − 𝐶̅}  (5.7) 

Due to the existence of fixed transactions costs that influence the decisions to participate in 

markets, there is a discontinuity when maximizing over 𝑆 𝑎𝑛𝑑 𝑋𝑏. The literature suggests, first 

to determine the first-order condition (FOC) under each regime and second to retain one that 

gives the highest utility level (Alene et al. 2008; Ouma et al. 2010). 

FOC 1: Seller in the output market and buyer in the input market   (𝑆 > 0 and 𝑋𝑏>0; 

j=3). 

{𝑆}:  𝑈′(∙)(𝑝 − 𝑡𝑐𝑞𝑠
𝑣) − 𝜆 = 0                                  (5.8) 

{𝑋𝑏}:     −𝑈′(∙)(𝑤 + 𝑡𝑐𝑤𝑏
𝑣) + 𝜆𝐺′(∙) = 0              (5.9) 

Combining (5.8) and (5.9) ➔ 𝑤 + 𝑡𝑐𝑤𝑏
𝑣 = 𝐺′(∙)(𝑝 − 𝑡𝑐𝑞𝑠

𝑣)   (5.10) 

Equation (5.10) shows that for farmers who decide to sell a part of their production and buy 

inputs, the unit cost including transaction costs in the input market must be equivalent to 

marginal productivity value net of incurred transaction costs when selling output. This reveals 

the rationale underlying the behavior of this group of farmers. More specifically, higher 

transaction costs in the output market 𝑡𝑐𝑞𝑠
𝑣 compared to those existing in the input market 𝑡𝑐𝑤𝑏

𝑣 

impose a reduction of the quantity bought in the input market, thus increasing marginal 

productivity. Similarly, when transaction costs are relatively higher in the input market, rational 

behavior imposes a reduction of output sales as the farmer could reduce the output volume 

because he/she may decrease the quantity bought in the input market. Thus, for this group, an 

idiosyncratic shock affecting transaction costs when selling output may result in a considerable 

gap between transaction costs incurred in output and input markets; the consequence is an 

adjustment in the quantities traded in the input market. Under this condition, public policies 

focusing on input (output) market only may not be enough to significantly affect the 

household’s participation. 



 

107 

 

 FOC 2: Only seller in the output market (𝑆 > 0 and 𝑋𝑏=0; j=2). 

Under this regime, equation (5.8) remains valid only if the farmer relies on his/her own input, 

which we suppose is exogenous 𝑋̅𝑜. The rationale behind this equation is that the relative 

opportunity cost of selling (𝜆/𝑝 − 𝑡𝑐𝑞𝑠
𝑣)  must be equivalent to the marginal utility. Thus, higher 

transaction costs increase the relative opportunity cost, therefore, a rational farmer should 

reduce output sales in order to maintain the same utility level. So far, for this group, variable 

transaction costs are added to the fixed transaction costs that households could face before 

deciding (or not) to participate in the input market. As they are already non- participants in the 

input market, they could stay in that position if there are high costs of marketing. 

FOC 3: Only buyer in the input market (𝑆 = 0 and 𝑋𝑏>0; j=1). 

In this regime, only equation (5.9) remains valid and households buy input to increase farm 

productivity in order to meet home consumption needs 𝐶̅ (exogenous). The underlying 

rationale here is that the relative opportunity costs (𝜆/(𝑤 + 𝑡𝑐𝑤𝑏
𝑣)) of output is equivalent to 

relative marginal utility. In this case, an increase in transaction costs reduces relative 

opportunity cost; and a rational behavior suggests that a farmer should increase the marginal 

productivity by reducing the quantities bought in the input market. Similarly, to the previous 

case, a farmer who belongs to this regime could not be a participant in the output market as 

long as input market conditions are not good enough to allow him/her to produce a marketable 

surplus. 

FOC 4: Autarky  (𝑆 = 0 and 𝑋𝑏=0; j=0). 

In this regime, equations (5.8) and (5.9) are not valid. The farmer relies on his/her production 

to meet household consumption needs and depends exclusively on his/her own input to 

produce. To focus on market participation process, we assume that these quantities 𝐶̅ and 𝑋̅𝑜 

are exogenous. 

As the choice of the regime is based on the comparison of utilities 𝑈𝑗 derived from above FOCs 

(see Figure 5- 1), conditional on crop choice, the representative farm household would choose a 

regime k if: 

𝑈𝑘 > 𝑈𝑗   , 𝑘 ≠ 𝑗 

𝑈(𝜋𝑘) > 𝑈(𝜋𝑗) , 𝑘 ≠ 𝑗 
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The utility function is monotone and strictly increasing; therefore 𝜋𝑘 > 𝜋𝑗 and the potential 

welfare gain related to regime k is  ∆𝑈 =  𝑈(𝜋𝑘) − 𝑈(𝜋𝑗) . As transaction costs play a critical 

role in determining the utility level associated with each market regime, we investigate 

empirically their effects on market regime choices and the implications for household’s 

income.   

Figure 5- 1: Market participation regimes 

  

5.2.2. Empirical framework 

Following the conceptual framework, four groups of farmers may exist when we analyze both 

markets jointly: (i) no market participation at all (autarky), (ii) farmers buy inputs, but don’t 

sell their production (input), (iii) farmers don’t buy any inputs, but sell part of their production 

(output), (iv) farmers buy inputs and sell part of their crop production (joint). 

As we have more than two groups, the standard propensity score approach or the endogenous 

switching model is not appropriate. Furthermore, in a multivalued treatment framework, 

efficient-influence function estimator (EIF) by Cattaneo (2010) could be a good candidate to 

be applied for the analysis. However, this method relies on a strong assumption of Conditional 
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Buyer 
Non-Buyer 

Non-seller 
Seller Non-seller Seller 



 

109 

 

Independence which implies, in our case, that the market choice regime is random once one 

can control for farmers’ characteristics. Therefore, we adopt a more flexible modeling 

framework. 

We model a farmer’s choice between the four options and its impact on outcome variables in 

a multinomial endogenous treatment effect model as proposed by Deb and Trivedi (2006a, b). 

This framework simultaneously models the treatment equation (multinomial mixed logit 

model) and the outcome equation. The main advantages of this approach are that it accounts 

for selection bias due to both observed (through farm or household characteristics) and 

unobserved (via latent variables) heterogeneity in an impact evaluation setting. 

Let 𝑑𝑖𝑡 be binary variables representing the observed market choice (treatment) by farmer i. 

𝑑𝑖𝑡(𝑇𝑖) = {
1, 𝑖𝑓 𝑇𝑖 = 𝑡   (t = 0,1,2,3)
0,                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The probability of treatment can be represented as: 

𝑃𝑟[𝑑𝑖𝑡|𝑧𝑖, 𝑙𝑖] = 𝑧′𝑖𝛼𝑡 + ∑ 𝛿𝑡𝑘𝑙𝑖𝑘

𝑇

𝑘=1

+ 𝜀𝑖𝑡     (5.11) 

𝜀𝑖𝑡 error term, and 𝑃𝑟[𝑑𝑖𝑡|𝑧𝑖, 𝑙𝑖] is supposed to be a multinomial logistic function g, z denotes 

exogenous covariates with associated coefficients 𝛼𝑡,  𝑙𝑖𝑘 stands for unobserved characteristics 

(unobserved heterogeneity) common to individual i’s choice and outcome such as motivation 

or level of information. 𝑙𝑖𝑘 are assumed to be independent of 𝜀𝑖𝑡. We assume that t = 0 denotes 

the control group (autarky). 

For the model to be identified, a set of restrictions are imposed. First, we impose 𝛿𝑡𝑘 = 0 ∀ 𝑡 ≠

𝑘, i.e. each market regime choice is affected by a unique unobserved factor. In addition, we 

assume that  𝛿𝑡𝑡 = 1, which implies that the scale of effects of an unobserved factor is 

normalized and equal to 1 in the treatment equation (Deb and Trivedi 2006a, b). 

The outcome (net revenue per hectare) equation is as follows: 

𝑦𝑖 = 𝑥′𝑖𝛽 + ∑ 𝜃𝑡𝑑𝑖𝑡 +

𝑇

𝑡=1

 ∑ 𝜋𝑡𝑙𝑖𝑡 +

𝑇

𝑡=1

𝜖𝑖    (5.12) 

𝜖𝑖   error term, 𝑦𝑖 is supposed to follow a normal density distribution f, x denotes exogenous 

covariates with associated coefficients 𝛽, 𝜃𝑡 are the treatment effects relative to the control. 

The outcome  𝑦𝑖  is affected by unobserved characteristics 𝑙𝑖𝑡 that affect selection into 
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treatment.  If 𝜋𝑡 is positive (negative), treatment and outcome are positively (negatively) 

correlated through unobserved characteristics, i.e., there is positive (negative) selection. 

In practice, 𝑙𝑖𝑡 are non-observed. Following  Deb and Trivedi (2006a, b) we assume that they 

are i.i.d and drawn from a normal distribution and their joint distribution h can be integrated 

out of the joint density distribution  of selection and outcome variables as follows: 

𝝎(𝑦𝑖, 𝑑𝑖𝑡|𝑥𝑖, 𝑧𝑖) = ∫{𝒇(𝑦𝑖, |𝑥𝑖 , 𝑑𝑖𝑡, 𝑙𝑖𝑡) ∗ 𝒈(𝑧𝑖, 𝑙𝑖)} 𝒉(𝑙𝑖𝑡)𝑑𝑙𝑖𝑡          (5.13) 

For a given specification of f, g and h, the integral (13) does not have a closed-form solution. 

Then, the full estimation of equations 11 and 12 is based on a simulated-based estimation 

framework. This method finds the values of parameters that maximize the simulated log-

likelihood function associated with a joint density distribution of selection and outcome 

variables (equation 13). For a large number of simulations (S), the maximization of the 

simulated log-likelihood is equivalent to maximizing the log-likelihood (Train 2009). 

The simulated log-likelihood function of 𝝎(𝑦𝑖, 𝑑𝑖𝑡|𝑥𝑖 , 𝑧𝑖) is:  

𝒍𝒏 𝑳(𝑦𝑖, 𝑑𝑖𝑡|𝑥𝑖, 𝑧𝑖) = ∑ 𝒍𝒏𝝎̂(𝑦𝑖, 𝑑𝑖𝑡|𝑥𝑖 , 𝑧𝑖)

𝑵

𝒊=𝟏

= ∑ 𝑙𝑛 (
1

𝑆
∑{𝒇(𝑦𝑖, |𝑥𝑖 , 𝑑𝑖𝑡, 𝑙𝑖𝑡𝑠) ∗ 𝒈(𝑧𝑖, 𝑙𝑖𝑡𝑠)}

𝑆

𝑠=1

)

𝑁

𝑖=1

 

Where 𝑙𝑖𝑡𝑠  is the sth draw (from a total S draws) of a pseudo-random number from the density 

h. 

Since our outcome variable is a continuous variable, we assume that it follows a normal 

(Gaussian) distribution function. The resulting model was estimated using a Maximum 

Simulated Likelihood (MSL) approach using the Stata command mtreatreg proposed by Deb 

(2009). 

 Data and Pre-estimation Analysis 

Data used in this study were collected under the PAPA17 project, which is an initiative by the 

Government of Senegal funded by USAID-Senegal as part of the "Feed The Future" initiative. 

PAPA has a 3 years implementation period (2015 - 2018) and is being carried out jointly by 

the Ministry of Agriculture and Rural Equipment and the International Food Policy Research 

Institute (IFPRI). 

 

17 Official website of the project is http://www.papa.gouv.sn/. 

http://www.papa.gouv.sn/
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A two-stage sampling method was used with the primary units being the census districts (CDs) 

as defined by the 2013 General Census of Population, Housing, Agriculture and Livestock 

(RGPHAE18), and the secondary units being agricultural households. The sample for rain-fed 

agriculture is 4,533 farm households distributed across all the 42 agricultural departments of 

the country (except the urban departments of Dakar, Pikine, and Guediawaye). Data collection 

took place between April and May 2017. After data cleaning, the final sample size for this 

analysis is 4,160 farm households. 

Regarding other income sources, about 33 % of households in the sample received income 

from livestock activities, 27 % from off-farm activities, while only 9 % of households had 

received transfers from migrants. Regarding the overall household wealth indicator, 

households in different subsamples have very close scores (3 over 6). 

 

Table 5- 1 shows the socio-demographic characteristics of the households in our sample per main 

crop groups (staples, groundnut, and other crops). In the staples group, crops included are 

millet, sorghum, maize, rice, fonio, and beans. The “Other” group is composed of crops that 

are not included in the first two groups. The sample is mainly composed of households with, 

on average, 10 individuals. Household heads are mainly older (53 years old on average) and 

males (93%). This table also shows that few household heads (36.4%) are literate. In terms of 

crop choices, results show that about 94 % of households are involved in grain or beans 

production, while around 69 % of the total households produced groundnut, which is the main 

cash crop in Senegal. Other crops are produced by less than 10 % of households. About 70 % 

of staple food producers also produced groundnut, while almost all groundnut producers also 

produced staple foods (92%). 

Only a few farm households have access to extension services (11%), to credit (3%), and are 

members of farmer organizations (9%). Surprisingly, households involved in staples 

production had more access to extension services and farmer organizations than households 

that produced groundnut. However, it is important to note that the staples group is a very broad 

group with about six individual crops.  

Many households owned transport means (carts) and relied on animal traction tools. As 

groundnut is the major crop in the country, households seemed to allocate about half of their 

 

18 Recensement Général de la Population, de l’Habitat, de l’Agriculture et de l’Élevage 
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total farm size to its production. All staple crops occupied 2.7 ha of land on average. The net 

crop production value (profit) per household is around 447,000 CFA19. For staples producers, 

the average profit from crops is 213,000 CFA per household and for groundnut producers, the 

average profit from crops is about 292,000 CFA. The few households that are involved in other 

crop production earned higher net income. It is worth noting that the crop profit is computed 

as the total production value net of the total production cost (fertilizer, seed, wage paid, land 

and equipment rental cost, and other costs). The production is valued using the observed 

average crop marketing price in the sample for each crop. In terms of crop profit per hectare, 

the highest is observed for other cash crops (209, 000 CFA) followed by staples production 

(74, 000 CFA) and groundnut production (60, 000 CFA). 

In terms of market participation, as expected, almost half staples producers (45%) do not 

participate in any market. About 36 % of these households bought inputs during the campaign 

but they did not sell any of their harvests. Only 13 % of staples households had purchased 

inputs and had sold part of their production. So far, only 14 % of groundnut producers 

intervened neither in the input market nor in the output market -autarky-. About 24 % of 

groundnut producers had participated only in the output market, while 17 % were present only 

in the input market during the season of interest. About half of groundnut producers (45%) had 

bought inputs and sold part of the produced groundnut. Therefore, market participation depends 

on crop choices. Finally, food producers had sold less than 25 % of the total value of food 

produced, while groundnut producers had sold about 70 % of the total production in value. 

Regarding other income sources, about 33 % of households in the sample received income 

from livestock activities, 27 % from off-farm activities, while only 9 % of households had 

received transfers from migrants. Regarding the overall household wealth indicator20, 

households in different subsamples have very close scores (3 over 6).  

 

 

 

19 CFA is the local currency in Senegal. 1 USD ≈ 550 CFA. 

20 The wealth index is computed as a count of a selected dummy variables related to household’s assets. The 

formula used is: 𝑊𝐼 = ∑ 𝐷𝑖
6
𝑖=1 , where D is a dummy variable, i stands for various dimensions considered. The 

dimensions included are : use of running water for cooking and drinking, access to electricity or solar power for 
light, quality of the roof (1 if the material used for the roof is either cement, tile, slate or metal sheet, 0 
otherwise), quality of the wall (1 if the wall is made of cement, 0 otherwise), quality of the floor (1 if the floor is 
tiled, cement, or carpet, 0 else) and number of rooms available for household’s members (1 if the ratio of 
household size to the number of rooms is less than or equal to 2, zero otherwise). 
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Table 5- 1: Descriptive statistics 

 
Staple crops 

producers  

(N= 3880) 

Groundnut 

producers 

(N=2917) 

Other crops 

producers 

(N=329) 

Total 

(N=4157) 

HH gender (1 male, 0 female) 0.936 0.948 0.933 0.935 

HH age (year) 53.104 53.151 54.410 53.132 

HH education (1=yes; 0=non) 0.362 0.364 0.435 0.363 

Size of Household 9.932 10.419 10.529 9.887 

Farmer organization (1=yes; 0=non) 0.085 0.073 0.164 0.086 

Extension services (1=yes; 0=non) 0.107 0.090 0.134 0.107 

Access to credit (1=yes; 0=non) 0.027 0.032 0.046 0.027 

Received livestock income (1=yes) 0.335 0.341 0.347 0.328 

Received off-farm income (1=yes) 0.266 0.245 0.264 0.266 

Received remittances (1=yes) 0.094 0.098 0.097 0.092 

Wealth index (0/6) 3.023 3.038 3.377 3.080 

Cart ownership (1=yes; 0=non) 0.442 0.496 0.465 0.443 

Farm machinery ownership (1=yes; 0=non) 0.088 0.089 0.073 0.087 

Produced staples (1=yes) 1.000 0.923 0.796 0.933 

Produced groundnut (1=yes) 0.694 1.000 0.653 0.702 

Produced other crops (1=yes) 0.068 0.074 1.000 0.079 

Total cultivated area (ha) 2.820 2.482 1.176 4.467 

Labor costs ('1000) 4.936 3.207 4.778 7.235 

Fertilizer costs (rent) ('1000) 12.764 9.254 6.232 18.900 

Seed costs (rent) ('1000) 2.547 32.590 7.793 25.863 

Other inputs costs ('1000) 5.803 4.846 4.631 9.183 

Agricultural profit ('1000) 213.035 292.268 543.107 446.910 

Agricultural profit per hectare ('1000) 74.282 60.614 209.055 130.034 

Total crop sale value ('1000) 40.794 200.581 474.665 216.392 

Market participation: None 0.445 0.140 0.064 0.206 

Market participation: Input only 0.355 0.168 0.070 0.202 

Market participation: Output only 0.072 0.243 0.319 0.155 

Market participation: Both markets 0.128 0.449 0.547 0.438 

Distance to the nearest road (km) 10.244 7.950 8.809 10.070 

Distance to the nearest market (km) 13.598 12.409 13.353 13.540 

Distance to the regional city (km) 46.395 43.851 45.962 45.929 

AEZ: Agro Sylvo Pastorales 0.114 0.091 0.009 0.110 

AEZ: Groundnut Basin 0.504 0.609 0.526 0.502 

AEZ: Senegal River 0.046 0.015 0.021 0.045 

AEZ: Littoral and Niayes 0.007 0.010 0.082 0.014 

AEZ: Sylvo-pastoral of Ferlo 0.081 0.047 0.125 0.083 

AEZ: Casamance 0.248 0.229 0.237 0.246 
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Number of observations 3880 2917 329 4157 

Source: Authors from PAPA data (2017). Note: CFA is the local currency in Senegal. 1 USD ≈ 550 CFA. 

Our theoretical model shows the central role of transaction costs in market decisions, especially 

for smallholder farmers in developing countries. Since these costs are directly collected and 

are even difficult to collect or empirically computed, we follow the standard approach in the 

literature, which is to use some observed factors that explain or mitigate transaction costs 

(Alene et al. 2008; Teklewold 2016). Factors considered in this study due to data availability 

are distance to the nearest market; distance to the nearest road; distance to the regional city; 

ownership of animals used for transportation (cart); and membership in farmers’ organization. 

Distance variables were computed for each household using its GPS coordinates. 

Table 5- 2: Mean comparison of crop profit per hectare across market choice (‘000 CFA) 

  Staples Groundnut 

input vs Autarky -11.73 (4.24)** -21.72 (5.89)*** 

output vs Autarky 7.48 (7.57) 21.44 (5.47)*** 

Joint vs Autarky 49.9 (5.98)*** 14.65 (4.99)** 

output vs input 19.2 (7.7)* 43.15 (5.17)*** 

Joint vs input 61.62 (6.14)*** 36.37 (4.66)*** 

Joint vs output 42.42 (8.78)*** -6.78 (4.1) 

Note: “Autarky” if a farm household does not buy any inputs and does not sell any crop groups; “Input” if a farm household 

only buys inputs for production and does not sell any crop produced; “output” if the farmer does not buy an input, but sells 

part of crop production; “joint” if the farm household participates into the two markets (input/output). 

Our theoretical model shows the central role of transaction costs in market decisions, especially 

for smallholder farmers in developing countries. Since these costs are directly collected and 

are even difficult to collect or empirically computed, we follow the standard approach in the 

literature, which is to use some observed factors that explain or mitigate transaction costs 

(Alene et al. 2008; Teklewold 2016). Factors considered in this study due to data availability 

are distance to the nearest market; distance to the nearest road; distance to the regional city; 

ownership of animals used for transportation (cart); and membership in farmers’ organization. 

Distance variables were computed for each household using its GPS coordinates. 

Table 5- 2 shows the mean comparison for crop profit per hectare across market choice (4 

categories). Results show that for staples production, the largest positive gap is observed 

between the group “Joint” and the group “Input”. This suggests that farmers that are present on 

the two markets for staples production earned about 62, 000 CFA of profit per hectare more 

than farmers that only purchased inputs. Moreover, the latter choice is even less profitable than 
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being in autarky for staples production. For all other choices, being more involved in market 

participation is positively correlated with higher profit in staples production. For groundnut 

production, results show that buying inputs associated with autarky in the output market is 

worse than being completely in autarky. On the other hand, there is no significant difference in 

profit per hectare between farmers connected in the two markets and those that participated in 

the output market. Therefore, it seems that input market participation for groundnut production 

does not significantly increase groundnut productivity. 

 Estimation results 

We estimate the econometric framework presented above using two sub-samples: staple food 

producers and cash crop producers (groundnut). We chose these two groups for two reasons: i) 

their importance in terms of cultivated areas in the context under analysis, ii)  the optimal 

market regime may be crop-specific (cash or staples crops). 

5.4.1. Market participation regimes 

The full estimation of equations (5.11) and (5.12) for both sub-samples is presented in  

Table 5- 3. Columns 1-6 present estimation results for treatment equations for both types of 

crops; the autarky regime is overlooked as it stands for the control group; the last 2 columns 

present results for the two outcome equations. The likelihood-ratio test for exogeneity of 

treatment, which is a test for the joint hypothesis that coefficients associated to the latent factors 

(unobserved heterogeneities) are jointly equal to zero, shows that the null hypothesis is rejected 

in both cases; therefore, unobserved heterogeneities are critical when explaining market choice 

and its linkage with a farm’s net revenue. 

For the market choice decisions, results (columns 1-6) suggest that these decisions are quite 

distinct and that the factors driving the participation decision across groups are different. This 

suggests that analyzing participation as we have done may bring more insights than the 

common approach of market participation that separately analyzed input market participation 

and output market participation. In addition, results are quite different between staples 

producers and groundnut producers, thus revealing the critical role played by the crop selection. 

Ownership of transport means (cart) has a positive and significant effect on market 

participation regimes. Households that owned carts had fewer constraints to transport 

purchased inputs (products to sell) from (to) local markets to farms. In addition, in rural 
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Senegal, these households may rent their owned assets to other households, thus allowing them 

to generate more income. Alene et al. (2008) and Teklewold (2016) found similar results.  

Membership in farmer organizations increases the probability that staple food producers 

intervene in the inputs market and in the two markets. For groundnut producers, being a 

member of a farmer organization has a positive effect on the probability to sequentially 

participate in both input and output markets. In general, farmer organizations increase market 

access for their members by reducing search and information costs or by increasing their 

bargaining power (Holloway et al. 2000; Teklewold 2016). For example, Burke et al. (2015) 

showed that the presence of milk cooperative in the village is likely to increase milk market 

participation in Kenya; and Fan and Salas Garcia (2018) revealed that being a member of an 

association increases farmers’ market participation in Peru. 

Other proxy variables for transaction costs are the distance from the household’s location to 

some infrastructures such as market, road, and regional city. Results show that distance to the 

nearest market has a strong negative effect on groundnut input market participation. A similar 

result is found for Ethiopia by Woldeyohanes et al. (2017). Regarding distance to the nearest 

paved road, results are a bit ambiguous. A positive correlation is found for staples input market 

participation, groundnut joint market participation, while a negative and significant effect is 

observed for staples output and joint market participation. Distance to the regional city is found 

to have a very limited impact on market participation regimes. These ambiguous results may 

be due to the fact that agroecological zone dummies may already account partly for regional 

accessibility effects. 

Access to extension service is found to decrease the probability to be connected to output 

market participation for staples food. Opposite results were found by Alene et al. (2008). 

Education (literacy rate) improves the bargaining power of farmers, therefore it increases the 

probability of intervention in the input market, and both markets for staple food producers. 

Household heads' gender and age seem to not have significant impacts on market choice 

decisions for farmers in the sample. Access to credit helps to relieve financial constraints for 

cash crop producers who are connected to both markets; therefore, it positively affects market 

participation. In the milk sector in Kenya, Burke et al. (2015) found similar results. The impact 

of credit is very limited in the case of staples crops, the associated coefficient is positive and 

significant at a 10 percent level. 
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Table 5- 3: Estimation results based on the mixed multinomial logit model 

 
To buy inputs To sell output Joint participation Net crop revenue per hectare 

 
(1) (2) (1) (2) (1) (2) (1) (2) 

Treatment: Input 
 

          0.348 -27.705*** 

  
 

          (11.919) (4.674) 

Treatment: Output 
 

          -0.284 38.140*** 

  
 

          (7.179) (5.755) 

Treatment: Joint 
 

          69.959*** 13.934*** 

  
 

          (14.376) (4.568) 

HH gender (1=Female) 0.037 -0.129 -0.324 0.458 0.459 0.473* 7.096 5.175 

  (0.178) (0.286) (0.281) (0.304) (0.307) (0.285) (7.239) (6.786) 

HH age (years) 0.013 -0.051 0.026 -0.041 0.031 -0.024 -0.930 1.282** 

  (0.022) (0.038) (0.035) (0.036) (0.031) (0.034) (0.860) (0.637) 

HH age squared -0.000 0.001 -0.000 0.000 -0.000 0.000 0.012 -0.011* 

  (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.008) (0.006) 

HH education 0.283*** -0.234 0.189 -0.170 0.260* 0.122 -1.796 3.948 

  (0.097) (0.167) (0.157) (0.156) (0.134) (0.146) (3.656) (3.821) 

Organization membership 0.787*** 0.515 -0.205 0.240 1.366*** 0.874** 38.783*** 0.659 

  (0.189) (0.388) (0.407) (0.377) (0.204) (0.341) (10.638) (5.179) 

Extension services  -0.018 0.459 -0.743** -0.069 0.225 0.342 77.885*** 12.331* 

  (0.165) (0.283) (0.349) (0.283) (0.210) (0.255) (11.013) (6.297) 

Access to credit 0.092 0.527 -0.234 0.876 0.620* 1.832*** -24.976*** -10.696** 

  (0.300) (0.724) (0.536) (0.706) (0.341) (0.651) (7.653) (4.620) 

Livestock income dummy 0.415*** 0.160 0.088 -0.043 0.636*** 0.342** 4.105 8.793** 

  (0.098) (0.170) (0.161) (0.160) (0.138) (0.149) (3.955) (4.396) 

Off-farm income dummy -0.254** -0.128 -0.445** -0.410** 0.015 -0.026 -0.632 -5.419 

  (0.106) (0.183) (0.190) (0.174) (0.153) (0.159) (4.120) (3.469) 

Remittances income dummy 0.086 -0.023 0.341 -0.302 -0.286 -0.535** -19.136*** 15.334 

  (0.155) (0.240) (0.235) (0.238) (0.225) (0.224) (5.194) (9.881) 

Wealth index (0/6) 0.129*** 0.113** 0.066 0.024 0.219*** 0.066 4.360*** 1.679* 

  (0.029) (0.050) (0.048) (0.047) (0.040) (0.044) (0.988) (0.949) 

Transport equipment 0.355*** -0.321** 0.711*** 0.173 0.522*** 0.552***     

  (0.096) (0.160) (0.148) (0.153) (0.135) (0.143)     

Mechanization 0.092 -0.412 0.394 -0.587** -0.399 -0.278 24.611*** 16.039*** 

  (0.176) (0.289) (0.287) (0.257) (0.277) (0.240) (6.555) (4.621) 

Land holding (ha)  0.080*** 0.097*** 0.063*** 0.126*** 0.155*** 0.174*** -4.770*** -2.006*** 

  (0.016) (0.033) (0.020) (0.032) (0.019) (0.033) (0.402) (0.364) 

distance to market, KM 0.001 -0.042*** 0.012 -0.007 -0.002 -0.009     

  (0.004) (0.009) (0.008) (0.008) (0.007) (0.008)     

distance to road, KM 0.017*** 0.019* -0.018** -0.005 -0.010** 0.019**     

  (0.004) (0.010) (0.008) (0.010) (0.005) (0.009)     

Distance to city 0.003 0.002 -0.002 0.005* -0.000 0.001     
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  (0.002) (0.003) (0.003) (0.002) (0.002) (0.002)     

Produced also staples 
 

-1.809***   -1.104***   -1.646***   -54.429*** 

  
 

(0.352)   (0.359)   (0.338)   (13.670) 

Produced also groundnut 0.111   -0.384**   -0.245   -63.177***   

  (0.120)   (0.195)   (0.166)   (4.285)   

Produced also other cash crops -0.029 0.095 0.590** 0.569* 0.310 0.484 -18.037*** -12.110* 

  (0.197) (0.371) (0.262) (0.337) (0.245) (0.330) (4.797) (6.234) 

AEZ: Agro Sylvo Pastorales 0.249 0.453 2.084*** -0.168 1.523*** 0.057     

  (0.163) (0.350) (0.319) (0.340) (0.271) (0.346)     

AEZ: Groundnut Basin -0.108 0.409 1.649*** 0.755*** 1.069*** 1.950***     

  (0.135) (0.296) (0.311) (0.280) (0.230) (0.289)     

AEZ: Senegal River 0.054   0.514   2.835***       

  (0.344)   (0.680)   (0.355)       

AEZ: Littoral and Niayes 3.097***   -37.634***   5.001***       

  (1.146)   (1.113)   (1.164)       

AEZ: Sylvo-pastoral of Ferlo -1.897***   1.388***   1.033***       

  (0.255)   (0.409)   (0.322)       

AEZ: Casamance 
 

-0.027   2.630***   2.536***     

  
 

(0.362)   (0.315)   (0.321)     

lnSigma 
 

          4.587*** 4.423*** 

  
 

          (0.049) (0.156) 

Lambda (Input) 
 

          -8.548 4.981*** 

  
 

          (13.985) (0.694) 

Lambda (Output) 
 

          25.251*** -18.215*** 

  
 

          (4.691) (5.105) 

Lambda (Joint) 
 

          -20.396 7.086*** 

  
 

          (12.686) (1.330) 

Constant -2.133*** 2.219* -4.430*** 0.623 -5.813*** -0.330 115.483*** 59.388*** 

  (0.618) (1.156) (1.021) (1.079) (0.925) (1.030) (24.128) (17.889) 

  
 

              

Observations 3,880 2,917 3,880 2,917 3,880 2,917 3,880 2,917 

LR test for treatment exogeneity (Lambdas=0) 
    

13.43*** 15.73*** 

Log-Likelihood 
    

-27661 -20461 

Number of simulations         5000 5000 

Notes: ***P < 0.01, **P < 0.05, *P < 0.1. Robust standard errors in parentheses. AEZ refers to agroecological zones. Note: 

HH stands for household head. 

Farm size is a critical determinant of market participation for both types of producers. This 

finding is common in the literature on market participation (Alene et al. 2008; Burke et al. 

2015). Farmers with larger farms show a greater propensity to participate in markets. The 
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largest coefficients are associated with the joint market participation. This suggests that 

increased farm size has a great impact on joint market participation. 

Households that received income from livestock activities seem to be more integrated into 

markets, especially the input market for staples producers, and both markets for groundnut and 

staples producers. Therefore, a complementarity may exist between livestock and crop 

production as livestock activities help farmers to produce organic fertilizer (manure), thus 

increasing crop productivity. This finding is in line with results by Woldeyohanes et al. (2017). 

However, being involved in off-farm activity is shown to reduce the propensity to participate 

in the input market for staples food and output market for both groundnut and staples. 

Participating in off-farm activities is likely to reduce the time allocated to farming and thus, 

may reduce the productivity and likelihood to sell output. Farmers that received remittances 

similarly tend to reduce their joint participation in the two markets. The overall household 

wealth index is positively correlated with market participation, especially input market 

participation for both products, and the joint market participation for staples producers. This 

confirms that financial constraints may seriously reduce market choice in rural Senegal. 

Finally, results show that staples producers that also produce groundnut appear to participate 

less in markets for staples. On the other hand, when groundnut producers also produce staples, 

they commercialize less on the groundnut output market. This suggests that market 

participation regimes depend on the crop under consideration and also on the mix of crops 

produced.  

5.4.2. Effects of market participation regimes 

Columns 7-8 in   

Table 5- 3 display results of the outcome equation for staples and groundnut production. Before 

analyzing the impact of market participation regimes on net production value per hectare, a 

brief look at other explanatory variables is worth it. Results reveal that crop profit per hectare 

is heterogeneous across farmers. For staples producers, their profit per hectare is positively and 

significantly associated, among others, with farmer organizations, extension services, wealth 

index, and mechanization. On the contrary, the following factors display a negative correlation 

with staples profit per hectare: access to credit, access to remittances, and farm size. Regarding 

groundnut profit per hectare, farmer’s access to livestock income and mechanization have a 

positive effect, while access to credit and farm size seem to decrease groundnut profit. 
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In terms of impacts of the treatment variable, results reveal that once one controls for farm 

household characteristics and agroecological zones, a strong and positive effect is observed for 

joint market participation choice in the context of staples producers. Ceteris paribus, staples 

producers that decided to participate in input and output markets will earn around 70,000 CFA 

more profit per hectare than staples producers in complete autarky. Conversely, any other 

choice of participation in the markets, ceteris paribus, is unprofitable compared to autarky for 

food crops.  

For groundnut production, the impact of market participation regimes is more nuanced. In fact, 

all else being equal, the purchase of inputs for self-consumption production generates a loss of 

nearly 28,000 CFA per hectare compared to households that remain self-sufficient. On the other 

hand, production intended for sale but without buying inputs generates a profit gain of 38,000 

CFA, whereas when the farmer buys inputs and sells part of the harvest (joint participation), 

he obtains a net gain of about 14,000 CFA per hectare on average. 

5.4.3. Discussions 

From the results presented in the previous section, we found that the most gainful market 

participation regimes depend on the crop under consideration, as far as profit per hectare is 

concerned. For staples producers, the only strategic choice to maximize net cropping income 

per hectare is to buy inputs (fertilizer and/or seeds) in order to increase production for 

marketing. The average treatment effect (ATE) associated with this choice is about 70,000 

CFA per hectare. In the case of groundnut production, the most profitable choice is to avoid 

purchasing inputs (especially seeds) but to sell products. The associated ATE is estimated at 

38,000 CFA per hectare of groundnut farm. The second-best choice for groundnut production 

is to jointly participate in the two markets (buy inputs and sell groundnut), with an ATE of 

14,000 CFA. 

When looking at production cost structure, we note that for staples producers, the main inputs 

from markets are inorganic fertilizers, which account for about 83% of the total seed-fertilizer 

cost. On the other hand, most groundnut producers spent around 88 percent of their input costs 

(seeds and inorganic fertilizers) on seeds. This suggests that fertilizers are more important for 

cereals and other staples crops than for groundnut production. Moreover, farmers may use 

seeds from their previous production, which in turn will lower the production cost. Therefore, 

it is not surprising that staples producers rely more on markets to meet their input needs than 
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groundnuts producers. In addition, we do not note any yield gap between groundnut producers 

that bought seeds and those who used their groundnut stock. 

Previous discussions were on the most profitable market choice if farmers produced one of the 

two crops under consideration. However, as stated in the data description section, about 70 

percent of staple food producers also produced groundnut, while almost all groundnut 

producers also produced staple foods (92%). Therefore, it is interesting to see which choice is 

the most profitable at the household level, summing the two profits. 

Figure 5- 2: Comparison of predicted household level profit for producing the two groups of products by 

market regimes 

Notes: On the X-axis, labels are related to market regimes per household regarding the two value chains (staples 

and groundnut). The first digit is related to the participation regime adopted for food crops, while the second digit 

is the one for groundnut production. Example: “00” autarky for both products; “13” input market participation for 

staple food production combined with input and output market participation for groundnut production. 

Figure 5- 2 displays the average profit per hectare from the two farming activities for households 

that were involved in both. Results show that the top 3 strategies of crop diversification and 

market regimes choice are: (i) being in autarky for groundnut and fully integrated in the staples 

input/output markets; (ii) being fully integrated in staples markets and participate in the 

groundnut output market; and (iii) being fully integrated in the two segments (staples and 

groundnut). Among the three most profitable choices, the best one is the first choice: being 

fully integrated for staples production and autarky for groundnut production. The main lesson 
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from this finding is that to maximize farming profit per hectare in rainfed agriculture in 

Senegal, farm households need to invest in inputs for staples production, and to produce staples 

for marketing. Results also reveal that is not enough to get access to inputs for staples 

production. A marketing target for staples production seems to be the key to better welfare 

gain. Therefore, policymakers should find a way to increase access to inputs for producers, 

especially those involved in staples production. On the other hand, any policy that facilitates 

access to the output market should complement input side policies. 

 Conclusion 

Agricultural commercialization is a critical pathway to stimulate a structural transformation in 

developing countries, as it allows poor smallholders to generate more income for better welfare. 

Analyses of determinants of market participation have focused on identifying factors 

influencing participation in the output market. However, transaction costs--i.e information and 

search costs, may exist in the input market -fertilizers/seed-and may be highly different from 

those existing in the output market; this can result in jeopardizing the production of marketable 

surplus. In addition, technology adoption (input side) has a great impact on farm productivity 

and thus on the propensity to market products (Teklewold 2016). A few studies (Alene et al. 

2008; Asfaw et al. 2012) have included determinants of input market participation when 

analyzing output market participation. However, these studies suffer from some limitations: i) 

they analyze output market participation distinctly from input market participation; and 

therefore, they might hide important heterogeneities among participants either in the output 

market or the input market; ii) they are located in specific regions in Kenya and pay attention 

to specific crops markets (maize, or pigeonpea) or analyze specific input market (fertilizer or 

seed), while the determinants of output market participation depend on the context and the 

nature of crop, and farmers’ demands for inputs may include both fertilizers and seeds. To the 

best of our knowledge, the only paper that jointly analyzed technology adoption (input side) 

and output market participation was Teklewold (2016). Nevertheless, he only focused on that 

joint modeling and did not analyze the impact of such strategic choices on farm household’s 

welfare. 

This study goes beyond these limitations. Specifically, we jointly model the market 

participation regimes and their impact on farm profit per hectare. The theoretical model is 

applied to an agriculture representative survey conducted in Senegal in 2017. Using a 

multinomial endogenous treatment effects model, results show that the transaction costs drive 
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market participation decisions. We also find that the drivers of the choice of market 

participation regimes depend on the crop under study. More importantly, we find that the most 

gainful market participation regime for staples producers is the joint participation in both input 

and output markets, while for groundnut producers, the most profitable regime is to market 

their products without a need to purchase inputs. Finally, when farmers choose to produce both 

groundnut and staples, the efficient market choice combination is to be fully integrated into the 

two markets for staples production and being in autarky for groundnut production. 

As policy implications of our findings, it is important to promote market access for farm 

households to increase their livelihood. Especially, it is not enough to provide inputs to 

producers, there is a need to find the right policy to connect them to both input and output 

markets. Especially, this study shows that staple crops are more responsive to joint market 

participation than groundnut which is the most common cash crop in Senegal. Therefore, 

special attention to the staples sector is required. Such a policy would increase farming profit 

per hectare and also reduce food insecurity in the country. 
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 Main findings 

Adoption of new and profitable technologies is crucial for smallholder farmers to increase their 

productivity (yield), and then their production, which in turn will allow them to move from 

subsistence farming towards market-oriented production. However, the level of adoption of 

agricultural technologies is still low in African countries. In Senegal, there is very little up-to-

date data on the technologies adopted by small-scale farmers. Thus, this thesis aims to provide 

more information on the level of technology adoption and to identify the drivers and impacts 

of agricultural technology adoption in Senegal. 

Using the most recent survey data, collected in 2017, results show a two-tier agricultural 

economy in terms of technology adoption. In the irrigated agriculture dominated by rice 

production, almost all farmers adopt the most advanced technologies (certified seeds and 

chemical fertilizers), with an average intensity of chemical fertilizer use of more than 300 kg 

per hectare. On the other hand, in the rain-fed agriculture characterized by a lack of financial 

resources and climatic variability, only a few farmers use improved agricultural inputs. For 

example, in this rain-fed agriculture, less than 30 kg of chemical fertilizer per hectare is used 

in the survey year (the 2016/2017 season). 

In Chapter 2, we explore the determinants of joint adoption of certified seeds and inorganic 

fertilizers in rainfed agriculture in Senegal using a flexible bivariate probit model in a context 

of production risk. The proposed framework is applied to study the joint adoption of certified 

seeds and inorganic fertilizers in rice and groundnut sectors in Senegal. Results show a 

heterogeneous correlation between the two decisions under consideration for rice, while for 

groundnut technology adoptions, a homogeneous correlation is found. For both sectors, the 

decision to adopt certified seeds and that to apply inorganic fertilizers were dependent. 

Production risk measured by the partial moments of agricultural profit per hectare has a 

significant effect on technology adoption in Senegal. For the rice sector, profit variance has a 

significant and positive influence on the correlation parameter of the joint distribution. For in 

the groundnut sector, profit variance has a positive impact on both marginal distributions. 

Therefore, production risk has an unobserved effect on the joint adoption of rice technologies, 

while it has a direct and positive effect on the probability to adopt individual technologies and 

their joint adoption for groundnut. Other drivers of technology adoption identified include 

cooperative membership, access to extension services, access to credit, education, family size, 

and farm size. 
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Based on findings from Chapter 2, we assess the impact of joint technology adoption on the 

rice sector. It is worth noting that rice is the main staple in the country. Three main rice 

technologies are considered: irrigation, rice certified seeds, and inorganic fertilizers. Data 

description shows that the rice irrigated system is the most productive in terms of rice produced 

per hectare. The metafrontier framework reveals that different rice production frontiers are 

present in the rice sector. The estimated technical efficiency is very low (about 50%), 

suggesting that with the right policies the country rice production could double without any 

additional investment on inputs. Across groups, the traditional rice system is the most efficient. 

A huge technological gap is also observed, especially for farmers that partially adopt improved 

inputs (certified seeds or inorganic fertilizer). Therefore, there is an important knowledge gap 

regarding advanced technologies. In terms of impact on rice yield, results show that the most 

productive technology choice is the joint adoption of certified seeds and inorganic fertilizers in 

both systems of production (rain-fed and irrigated). We also find that the most impactful 

technology between certified seeds and inorganic fertilizers is the use of the latter. 

In chapter 4, we model the decision to invest in inputs (seeds and inorganic fertilizers) under 

uncertainty. A Heckman model is used to study the main drivers of the investment decision 

and the level of investment, while an endogenous switching regression model is applied to 

analyze the causal effect of the risky investment on agricultural profit and food security. Results 

show that the main drivers of the decision to purchase risky inputs include household 

composition, farmer organization, farm size, access to livestock income, and crop 

diversification. Drivers of the level of investment in risky inputs are gender, extension services, 

farm size, agricultural capital, and cropping patterns. On the other hand, results reveal a 

positive impact of risky investment on agricultural profit per hectare and food security 

measured as total food crops produced per capita. The expected impact for non-adopters is 

found to be higher than that for adopters. In addition, the heterogeneity effect shows that for 

each treatment level, current adopters perform less than current non-adopters. 

In chapter 5, we model the choice of market participation regimes for both input and output 

markets and the corresponding welfare effect. Using a farm household model, we show that 

transaction costs have a strong impact on the choice of a market participation regime. 

Empirically, a multinomial treatment effects model, that combines a multinomial logistic 

regression and an outcome equation, is used. The framework is applied to study the cases of 

groundnut and staples crops. The driving factors of the market choices identified are very 

distinct across value chains and market regimes. This suggests that analyzing participation as 
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done here brings more insights, revealing more heterogeneities among farmers. Regarding the 

impact of market participation regimes on agricultural profit per hectare, being integrated into 

the two markets displays the highest staples profit per hectare, whereas participating only in 

the output market is the best choice for groundnut producers, as far as profit per hectare is 

concerned. For farmers who are involved simultaneously in the production of food crops and 

groundnut, the most profitable alternative is to be fully integrated for staples production and to 

be in autarky for groundnut production. 

 Policy implications 

Based on our results, several policy implications are obvious. Firstly, the adoption of a given 

technology is not an isolated fact and takes into account the existence of complementary and 

non-complementary technologies. Thus, a comprehensive vision to promote complementary 

technology packages is required. Secondly, in some contexts, the most obvious combination of 

technologies is not necessarily the most efficient or productive choice. For example, results 

show, among other things, that the adoption of certified rice seed does not particularly improve 

the yield of irrigated rice. In this context, the adoption of chemical fertilizers is largely 

sufficient. This result shows the usefulness of identifying the best choice of technologies 

adapted to each crop and agroecological zone, hence the importance of the work of extension 

agents in advising producers. Therefore, to better assist producers, the government must 

provide good training to the agents supplying advisory support services. Thirdly,  results show 

that investment in inputs such as seeds and chemical fertilizers is generally profitable in 

Senegal and even the expected return for those who have spent nothing is even higher when 

they would make that decision. This suggests that the government and the private sector should 

pay more attention to the agricultural sector since the sector is profitable and remains the basis 

for structural transformation. Fourth, production risks and climate shocks are found to impact 

the choice and performance of agricultural technologies. Thus, the development of contract 

farming and agricultural insurance are serious options to be explored by the different actors in 

the sector (cooperatives, government, and the private sector). Finally, results have shown that 

the option that provides the maximum profit per hectare for the food sector is agriculture that 

buys inputs and sells part of the production. In other words, market-oriented food agriculture 

gives the best welfare to farm households. Thus, policies to facilitate access to inputs only are 

no longer sufficient to bring the desired structural transformation. Above all, it is necessary to 



 

130 

 

develop joint policies for access to markets for both inputs and products. This calls for a 

thorough review of the current policies and for structural reforms in the agricultural sector. 

 Future research 

The current research has focused on the analysis of technology adoption, market participation, 

and their impacts on farm profit or food security in Senegal. One possible extension of this 

work would be to consider more than two improved technologies in order to find the best 

technology combination that generates the most welfare effects for farm households.  Another 

interesting direction in the technology adoption literature would be to extend our flexible 

bivariate probit using the copula framework. This extension will be useful to study the drivers 

of joint decisions in a higher dimension.   Finally, since transaction costs are so central in the 

literature of technology adoption and market participation, it would be important to find an 

empirical strategy to estimate them. One approach would be to use the Bayesian framework 

(data augmentation approach) to solve this issue of missing data. 
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Appendix 

A. Summary 

Essays on Technology Adoption in Senegal 

Anatole Goundan, M.A. 

African agriculture is characterized by very low average productivity. This results in a very 

high yield gap, i.e. the average yields achieved by farms are up to 90% below the yields that 

can be achieved by applying proven best-practice technologies. A central problem of low 

agricultural productivity is, therefore, technology adoption, i.e. the question of why farms do 

not apply available best-practice technologies. In this context, this dissertation investigates the 

mechanisms of technology adoption using a unique farm data set of more than 4000 farms in 

Senegal and innovative econometric methods. A first descriptive analysis reveals dual 

Senegalese agriculture with a small percentage of farms using modern technologies, i.e. 

irrigation, use of mineral fertilizers and pesticides and improved seeds, and a majority of farms 

using traditional extensive farming without the use of purchased inputs and irrigation. For 

example, the use of N-fertilizer in the majority of traditional farms is less than 30kg/ha while 

modern farms use more than 300kg/ha. While a shift from traditional to modern agriculture at 

the macro level has a clear positive effect on food security and rural development, the question 

arises as to the key micro-level barriers that prevent traditional farms from using modern 

technologies. While the potential obstacles have been identified from the theoretical literature, 

i.e. transaction costs in credit, labor, goods, and insurance markets as well as imperfect 

technological knowledge of farmers, for practical agricultural policy the question arises as to 

which are the central causes in a specific empirical case. This is particularly important because 

the efficient agricultural policy measures to reduce these obstacles differ significantly 

depending on the specific obstacle. In this interesting and highly relevant area of agricultural 

policy, the present study makes central contributions by applying innovative econometric 

methods for the microeconomic analysis of technology adaptation, i.e. the concrete obstacles 

to the application of modern agricultural technology at the farm level. In total, the dissertation 

comprises 4 contributions. In the first contribution, a flexible bivariate probit model is applied 

to analyze the joint use of certified seed and mineral fertilizer in rice and peanut production. 

While the flexible versus the standard probit model is theoretically and statistically preferable, 

both approaches lead to the same key policy implications. The second paper analyzes the 
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impact of multiple technology decisions on technical efficiency and yield using rice production 

as an example. On a methodological level, the paper combines a metafrontier approach with a 

multinominal treatment-effects model to take into account the heterogeneity in rice production 

and potential selection bias in the choice of technologies. A remarkable result of the analyses 

is the identification of significant knowledge gaps as a central obstacle for the use of modern 

inputs. The third paper examines the importance of yield risk for the use of modern inputs and 

its significance for the income and food security of agricultural households. Methodologically, 

an endogenous switching regression model is used to adequately analyze the treatment effects 

of modern input use. In the fourth paper, an interdependent farm household model is used as a 

theoretical approach to analyzing participation in relevant agricultural input and output 

markets. Transaction costs are a central determinant of the market participation of agricultural 

enterprises. Since transaction costs can be specific for different input and output markets, 

different market regimes result, including complete self-sufficiency, selective participation in 

specific output or input markets, and complete market participation. Methodologically, a 

multinomial endogenous treatment effects model is applied to empirically analyze the market 

participation decisions of individual farm households. Interestingly, farms participate 

selectively in output and input markets. This implies market-specific transaction costs, which 

cannot be explained by general factors such as infrastructure and market distance, but rather, 

for example, by specific social network structures that determine selective access to markets. 
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B. Zusammenfassung 

Essays on Technology Adoption in Senegal 

Anatole Goundan, M.A. 

Die afrikanische Landwirtschaft ist durch eine sehr geringe durchschnittliche Produktivität 

gekennzeichnet ist. Dabei ergibt sich ein sehr hohes Yield-GAP, d.h. die von den 

landwirtschaftlichen Betrieben durchschnittlich erzielten Erträge liegen bis zu 90% unter den 

Erträgen, die bei der Anwendung bewährter best practice Technologien erzielt werden können. 

Ein zentrales Problem der geringen landwirtschaftlichen Produktivität ist somit Technology 

Adoption, d.h. die Frage, warum landwirtschaftliche Betriebe verfügbare best practice 

Technologien nicht anwenden. In diesem Zusammenhang untersucht die vorliegende Arbeit 

anhand eines einmaligen landwirtschaftlichen Betriebsdatensatzes von über 4000 Betrieben im 

Senegal mit Hilfe innovativer ökonometrischer Methoden die Mechanismen des technology 

adapotion. Eine erste deskriptive Analyse ergibt eine duale senegalische Landwirtschaft mit 

einem kleinen Anteil an Betrieben, der moderne Technologien, d.h. Bewässerung, Einsatz von 

mineralischem Dünger und Pestiziden sowie verbessertem Saatgut, verwendet und einer 

Mehrheit an Betrieben, die eine traditionelle extensive Landwirtschaft ohne Einsatz 

zugekaufter Inputs und Bewässerung betreibt. Zum Beispiel beläuft sich der Einsatz von N-

Dünger in der Mehrheit der traditionell wirtschaftenden Betriebe auf unter 30kg/ha während 

der modern wirtschaftenden Betriebe über 300 kg/ha einsetzten. Während ein Wechsel von der 

traditionellen zu der modernen Landwirtschaft auf der Makroebene einen klar positiven Effekt 

auf die Nahrungsmittelsicherheit und die ländliche Entwicklung ausübt, stellt sich die Frage 

nach den zentralen Hindernisse auf der Mikroebene, die traditionell wirtschaftenden Betriebe 

davon abhalten, moderne Technologien anzuwenden. Während die potentiellen Hindernisse 

klar aus der theoretischen Literatur herausgearbeitet worden sind, dies sind im Wesentlichen 

Transaktionskosten auf Kredit-, Arbeits-, Güter- und Versicherungsmärkten sowie 

unvollkommenes technologisches Wissen der Farmer, stellt sich für die praktische Agrarpolitik 

die Frage, welches jeweils die zentralen Ursachen in einem konkreten empirisch Fall sind. Dies 

ist insbesondere deshalb von Bedeutung, da sich die effizienten agrarpolitischen Maßnahmen 

zum Abbau dieser Hindernisse je nach konkretem Hindernis signifikant unterscheiden. In 

diesem interessanten und agrarpolitisch hoch relevantem Bereich leistet die vorliegende Arbeit 

zentrale Beiträge, in dem diese innovative ökonometrische Verfahren zur mikroökonomischen 

Analyse von technology adaption, d.h. der konkreten Hindernisse der Anwendung moderner 
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landwirtschaftlicher Technologie auf Betriebsebene, anwendet. Insgesamt umfasst die 

Dissertation 4 Beiträge. Im ersten Beitrag wird ein flexibles bivariates Probitmodell zur 

Analyse des gemeinsamen Einsatzes von zertifiziertem Saatgut und mineralischem Dünger in 

der Reis- und Erdnussproduktion angewendet. Während das flexible gegenüber dem Standard-

Probit-Model theoretisch und statisch zu präferieren ist, führen beide Ansätze zu den gleichen 

zentralen Politikimplikationen. Im zweiten Beitrag wird die Bedeutung von multiplen 

Technologieentscheidungen auf die technische Effizienz und den Ertrag am Beispiel der 

Reisproduktion analysiert. Auf methodischer Ebene kombiniert der Beitrag einen 

Metafrontier-Ansatz mit einem multinominalen treatment-effects-Modell um die Heterogenität 

in der Reisproduktion sowie potentielle Selektionsverzerrungen bzgl. der Auswahl der 

Technologien zu berücksichtigen. Ein bemerkenswertes Ergebnis der Analysen ist die 

Identifikation von signifikanten knowledge-gaps als zentrales Hindernis für den Einsatz 

moderner Inputs. Der dritte Beitrag untersucht die Bedeutung des Ertragsrisikos für den Einsatz 

von modernen Inputs und deren Bedeutung für das Einkommen und die 

Nahrungsmittelsicherheit landwirtschaftlicher Haushalte. Methodisch wird ein endogenous 

switching regression Modell verwendet, um Treatment Effekte des Einsatzes modernen Inputs 

adäquat zu analysieren. Im vierten Beitrag wird ein interdependentes Farm-Haushalts-Modell 

als theoretischer Ansatz verwendet, um die Partizipation in relevanten landwirtschaftlichen 

Input- und Outputmärkten zu analysieren. Zentrale Determinante der Markteilnahme 

landwirtschaftlicher Betriebe sind Transaktionskosten. Da diese spezifisch für unterschiedliche 

Input- und Outputmärkte ausfallen können, ergeben sich unterschiedliche Marktregimes, die 

eine komplette Autarkie, eine selektive Teilnahme an speziellen Output- bzw. Inputmärkten 

sowie eine komplette Marktteilnahme umfassen. Methodisch wird ein Multinomial endogenous 

treatment effects model angewendet, um die Marktpartizipations-Entscheidungen individueller 

Farm-Haushalte empirisch zu analysieren. Interessant ist, dass Betriebe durchaus selektiv an 

Output- und Inputmärkten teilnehmen. Dies impliziert marktspezifische Transaktionskosten, 

die nicht durch generelle Faktoren wie Infrastruktur und Marktdistanz erklärt werden können, 

sondern z.B. durch spezielle soziale Netzwerkstrukturen, die einen selektiven Zugang zu 

Märkten determinieren. 


