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Zusammenfassung
Gegenstand dieser Arbeit sind undiskontierte optimale Stoppprobleme mit un-
endlichem Zeithorizont und verallgemeinert-linearen Kosten sowie ergodische
Impulskontrollprobleme. In beiden Problemtypen ist das Hauptanliegen dieser
Arbeit das Finden (semi-)expliziter Lösungen im Falle, dass der zugrunde-
liegende Prozess Sprünge aufweist.
Zum Lösen der Stoppprobleme machen wir uns dem Ausgangsproblem inne-
wohnende monotone Probleme zu Nutzen und finden gut handhabbare
hinreichende Bedingungen dafür, dass Erstübertrittszeiten Optimierer sind.
Darüber hinaus charakterisieren wir die optimale Stoppgrenze im Falle, dass der
zugrundeliegende Prozess ein eindimensionaler Markovprozess in stetiger oder
diskreter Zeit ist. Während in diskreter Zeit das Konzept der Leiterzeiten
angewendet werden kann, um die innewohnenden monotonen Strukturen zu
nutzen, entwickeln wir in stetiger Zeit eine Maximumsdarstellung von Integral-
typ, um eine vergleichbare Argumentationsweise zu ermöglichen.
Betrachtet werden zudem Impulskontrollprobleme. Die Resultate bezüglich
dieser Probleme gliedern sich in zwei Hauptbereiche. Einerseits charakterisieren
wir für zugrundegelegte allgemeine eindimensionale Markovprozesse den Wert
des Impulskontrollproblems sowie mögliche optimale Strategien durch ein as-
soziiertes Stoppproblem. Andererseits entwickeln wir eine Schritt für Schritt
durchführbare Lösungstechnik für den Fall, dass der zugrundeliegende Prozess
ein Lévyprozess ist. Die Nützlichkeit der Technik wird dadurch veranschaulicht,
dass wir sie auf mehrere Beispiele anwenden, darunter Fragestellungen aus dem
Gebiet der Lagerhaltung und des Ressourcenmanagements. Neben diesen klas-
sischen Anwendungen benutzen wir unsere theoretischen Resultate dazu, den
Einfluss des Fixkostentermes auf das Kontrollproblem zu erörtern, untersuchen
ein Impulskontrollproblem mit einer Einschränkung bezüglich der Kontrollfre-
quenz und behandeln Mean-Field-Spiele und -Probleme der Impulskontrolle.
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Abstract
In this thesis we consider undiscounted, infinite time horizon optimal stopping
problems with generalized linear costs and long-term average impulse control
problems. The main goal is to find (semi-)explicit solutions in case the under-
lying process contains jumps.
In order to solve the stopping problems, we utilize embedded monotone prob-
lems to find su�cient conditions, that are easy to handle, for a threshold time to
be optimal. Further, we characterize the threshold for one-dimensional Markov
processes in both discrete and continuous time. While in the discrete time case
the concept of ladder times can be used to exploit inherent monotone struc-
tures, in continuous time we develop an integral type maximum representation
to enable a comparable line of argument.
The findings on long-term average impulse control problems are structured in
two main areas. First, for a general one-dimensional Markov process we char-
acterize the problem’s value and possible optimal strategies by an associated
stopping problem. Then, we develop a step-by-step solution technique in case
the process is a Lévy process and demonstrate its usefulness by applying it to
relevant examples, among others problems from inventory control and optimal
harvesting. Apart from these direct applications we use our theoretical findings
to investigate the influence of varying fixed costs on the impulse control prob-
lem, study a control problem with a restriction to the impulse frequency and
treat mean field games and problems of impulse control.
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Chapter 1

Introduction



2 CHAPTER 1. INTRODUCTION

Two mathematical problems and their inherent connection form the basis of this
thesis. The first one is optimal stopping with general linear costs, the second
one is long-term average (sometimes also called ergodic) impulse control.
Optimal stopping problems heuristically ask for the best time to perform some
kind of an action in a randomly evolving environment. A classical, yet in some
generalization still discussed, example is the parking problem. Here, the ques-
tion is whether one should take the next free parking spot or keep on searching
if one wants to reduce the average walking distance after parking. Another
prominent example from the field of finance is the question how to find the
best time to exercise an American option. Further, common applications are
the optimal time to end a clinical study and decide on the approval of a new
drug or the question when to stop playing some game in a casino in order to
maximize the expected profit (admittedly most of the times to answer the last
question with ’as soon as possible’ no elaborate mathematical theory is needed).
Apart from these externally motivated questions plenty of stopping problems
originate inside the world of mathematics. Some examples are explicit stopping
games like the yet to be fully solved Chow-Robins-Problem or questions from
neighbouring fields like hypotheses testing in sequential analysis.
While these examples already outline the broad range of applicability of optimal
stopping in fields like economics, biology, engineering, computer science and fi-
nance, they also point to the next obvious question: what if we are faced with
the task to perpetually act optimal instead of only having to make one optimal
decision?
This is where impulse control theory comes into play. In this field we may
choose an infinite sequence of (random) times and may also determine actions
at all these chosen times to influence a stochastic process to our advantage. This
process can model a stock price or even the evolution of a whole market and
our controls reflect the ongoing management of a portfolio. Another prominent
example is the management of a natural resource, like a forest or the population
of fish in the sea. Here, economical gains have to be balanced against environ-
mental aspects, therefore the modelling requires special care and attention. The
so-called ’long-term average’ pay-o� structure we investigate in this thesis aims
for solutions that – in terms of these resource management examples – do not
deplete the resources and therefore can be viewed as sustainable solutions.
In the following, we define the two problems, optimal stopping and impulse
control, mathematically, briefly sketch some main ideas that greatly influenced
the study of these problems and give a short overview of recent results in these
fields. Afterwards, we illustrate how this thesis contributes to the two fields of
optimal stopping and impulse control as well as some neighbouring fields and
give an overview over its contents. We close this chapter with an structural
outline of the rest of the thesis.
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1.1 Optimal Stopping Problems
The origin of stopping problems lie in Bellman’s work in the field of dynamic
programming (see [Bel57] for an overview) as well as in Wald’s and Wolfowitz’s
work regarding sequential statistics ([WW48], [WW50]), and the work of Snell
[Sne51]. Nowadays the problem is usually stated as follows: given some process
(Yt)tœT adapted to a filtration F = (Ft)tœT where T ™ [0, Œ) (most prominent
examples are [0, Œ), N0, [0, T

Õ) or {0, ..., n} for some fixed T
Õ

œ R and n œ N),
we want to find a stopping time ·

ú such that

E(Y·ú) = sup
·

E(Y· ),

where the supremum is taken over a set of stopping times. Multifarious mani-
festations of this type of problem with diverse motivations ranging from engi-
neering to economics and clinical studies have been investigated and still are of
great interest. These di�er fundamentally not only in their origin but also in
their mathematical structure. As a result, the developed solution techniques as
well as the structure of the stopping problem’s value (function) and the optimal
stopping time are equally as diverse. For example, it plays a crucial role whether
the time set T is discrete or continuous, bounded or unbounded. Additionally,
discounting, (in)homogeneity or more general the class of processes Y belongs
to bring along both di�culties and possible approaches for the solution. Nev-
ertheless, there are two main approaches to tackle optimal stopping problems
that are widely used in various applications. The first is the use of martingale
methods. This approach goes along with the game theoretic interpretation of
optimal stopping problems. The underlying heuristic can basically be phrased
as: ’Continue as long as you don’t expect to lose anything on average in the fu-
ture, stop as soon as you do’. This leads to the characterization of the stopping
problem’s value over time as the smallest super-martingale dominating Y , that
is defined by St := esssup

·Øt
E(Y· | Ft) for all t œ T and named Snell envelope

after Laurie James Snell. While in the easiest case, the case that T = {0, ..., N}

for some N œ N, S can be obtained explicitly via backwards induction, i.e., by
SN = YN and Sn = max{Yn,E(Sn+1 | Fn)} for all n < N , explicit calculations
are usually not possible if the time set is infinite. Nevertheless,

·
ú := inf{n | Sn = Yn}

is the almost surely smallest optimal stopping time in all of these cases, provided
·

ú is attained almost surely in finite time. Chapter 1 of [Shi78] provides a
comprehensive overview over these super-martingale techniques. To get more
explicit results in the more complicated cases for T , some more structure in
Y is useful, or to state it more precisely: If Y = “(X), where X is a strong
Markov process, “ some function and T = N0 or T = [0, Œ) (these problems are
usually described as problems with an infinite time horizon), the idea of the Snell
envelope leads to a useful spatial characterization of the optimal stopping time
that utilizes the so-called pay-o� function “. Simplified as much as possible, the
approach can be paraphrased as: ’If stopping or continuing once was right at
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some state x, due to the homogeneity this action will also be right at any other
time at x.’ This idea leads to a separation of the state space into one stopping
region and one continuation region and leads to ’stop as soon as the process hits
the stopping region’ as an optimal stopping time. To formalize this, we work
with the usual associated family of measures Px(·) := P(· | X = x). Then, we
get a stopping problem for each measure Px and therefore may define the value
function by

V (x) := sup
·

Ex (“(X· )) . (1.1)

Depending on the area of application often additional time dependence is added,
like, for example, a finite end time or exponential discounting or running costs.
The additional dependence of the value on the starting point first looks like a
major complication of the problem, because instead of just solving one stopping
problem, now one has to solve a whole bunch of them. But actually it is a major
simplification. So due to the homogeneity under minor technical assumptions
the first entry time in the set S := {x | V (x) = “(x)}, called stopping region,
is optimal regardless of the starting point. Snell’s description of the value as
the smallest super-martingale dominating the pay-o� process carries over to the
Markovian case as follows: the value function is characterized as the smallest
super-harmonic majorant of “. In the discrete case V additionally satisfies the
Wald Bellman equation

V (x) = max{AV (x), “(x)}

for all x, where A is the transition operator of X. Under some technical condi-
tions, this property becomes a characterization, meaning each solution of this
equation is the value function, see [Shi78, Chapter 2] for proofs and details. A
direct continuous time analogue does not exist. In this case, of course under
some technical conditions, for example a smooth fit condition on the boundaries
of S, V satisfies the system of equations

AV (x) = 0 ’x œ S
c
,

V (x) = “(x) ’x œ S
c
,

where A is the characteristic operator of X. This is often used as an approach
to find the value function: one first solves the system of equations to obtain
a candidate, then tries to verify that the obtained solution indeed is the value
function. While this approach heavily relies on PDE methods, another idea,
which stays in the area of stochastics, is the notion of monotone stopping prob-
lems. This idea was developed back in the early days of sequential decision
making, see, e.g., [CR61] for one of the first works in this field and [CRS71]
for an overview over the field. In the discrete time case, where the definition is
most intuitive, a stopping problem with value function (1.1) is called monotone
if for all n œ N holds

Xn Ø E(Xn+1 | Fn) ∆ Xn+1 Ø E(Xn+2 | Fn+1),
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see [CI19, Section 4]. This definition can not be directly carried over to the
continuous time case. Instead one essentially has to model an infinitesimal look
into the future with a limit, see [Irl79]. For a monotone problem, it is easily
seen that the myopic stopping time

·
Õ := inf{n œ N0 | Xn > E(Xn+1 | Fn)}

is optimal. While not too many stopping problems are monotone ones by de-
fault, it has proven itself a fruitful approach to transform given problems to
monotone ones or search for embedded monotone ones that help to find the
optimizer for the initial, non-monotone problem. More recently, the power of
this easy line of argument was rediscovered for more advanced problems, see
[Chr17, CI19], or [CS19a] in the context of impulse control problems.
In the case of a discounted pay-o� functional the problem is very well investi-
gated. Especially if the underlying process is a one-dimensional di�usion, the
problem is very well understood, see [Sal85]. But more recently some advances
towards processes with jumps were made: for the case that the underlying pro-
cess is a Lévy process see, e.g., [Mor02], [NS07], works covering more general
classes of Markov processes are, for example, [MS07] and [CST13]. Most of these
works utilize in some way the running maximum process X :=

!
sup

sÆt
Xs

"
tœT

of X evaluated at an independent exponentially distributed time. For undis-
counted stopping problems with linear or general running costs, problems that
occur, for example, in sequential decision making, most results are also obtained
in the di�usion setting, see, e.g., [IP04], [Pau00] or [CI16]. For Lévy processes,
[Bei98] is one of the few examples for undiscounted, infinite time problems.
Here, the pay-o� function is assumed to be bounded from above, concave and
unimodal, no running cost term is present and a discretization technique is
utilized to find a solution.

1.2 Impulse Control Problems
Impulse control problems may either be seen as a problem of repeated stopping
or they can be interpreted as a special case or rather a restricted version of
continuous control problems.
While we already have introduced the first ones, the latter ones usually start
with a stochastic di�erential equation that contains an additional adapted pro-
cess as input. This process models the controller’s continuously performed ac-
tion and the goal is to optimize a functional of the SDE’s solution over all these
controls (see [ØS05, Chapter 3] for a formal definition in a jump di�usion set-
ting). The mathematical origins of these problems lie in dynamic programming.
Also, the most common starting point for the search for solutions, the Hamilton
Jacobi Bellman equation, roots in the Bellman principle and its non-random
counterpart. Probably one of the most commonly known examples even beyond
the world of mathematics is the work of Merton regarding portfolio manage-
ment (see [Mer69] and [Mer75]). A comprehensive overview over this field may
be found in [ØS05]. However, continuous control also shows a major drawback.
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Usually the optimal strategy requires an infinite number of actions in a finite
time interval and is therefore not realizable in practice. Additionally, the con-
tinuous activity of the controller would lead to instant bankruptcy if there were
fixed costs for each control.
To circumvent this issue, in the seventies a new class of control problems was
introduced by Lions and Bensoussan: impulse control problems. These only al-
low strategies consisting of countably many actions. Therefore, impulse control
models are the natural choice when the underlying problems entail some fixed
costs for each action or one aims for realizable optimizers. Here, for a given
continuous time Markov process (Xt)tœ[0,Œ) adapted to a filtration (Ft)tœ[0,Œ),
the allowed strategies are sequences (·i, ’i)iœN of stopping times ·i that indicate
when the controller acts and F·i-measurable random variables ’i that model,
whereto the controller shifts the process. The sequence of stopping times is re-
quired to converge to infinity almost surely. Depending on the specific situation,
usually there are some restrictions on how the controller may chose the ’i. For
example, often only downwards (or upwards) shifts of the process are allowed
or the values of the ’i may be required to lie in a certain set or can depend on
the values X·i,≠ right before the shift. The goal is to find the value function
that is given by

v (x) := sup
SœSB

Jx (S) ,

where SB is a set of admissible strategies. Of course, yet another goal is to
find optimal strategies. The functional J usually depends on a pay-o� function
“ that models the controller’s gain at each action, a fixed cost term K Ø 0
modelling, e.g., fixed transaction costs, and a running cost function h that is
used to model ongoing cost occurring regardless of the controller’s action. The
three most common choices for J are the finite time functional

J
fin

x
(S) = Ex

Q

a
ÿ

n:·nÆT Õ

!
“

!
X

S

·n,≠
"

≠ “ (’n) ≠ K
"

≠

T
Õ⁄

0

h
!
X

S

s

"
ds

R

b

for some end time T
Õ
œ (0, Œ), the discounted functional

J
disc

x
(S) = Ex

Q

a
ÿ

nœN
e

≠r·n
!
“

!
X

S

·n,≠
"

≠ “ (’n) ≠ K
"

≠

Œ⁄

0

e
≠rs

h
!
X

S

s

"
ds

R

b ,

where r > 0 models the discount rate, and the long-term average functional

J
lta

x
(S) = lim inf

T æŒ

1
T
Ex

Q

a
ÿ

n:·nÆT

!
“

!
X

S

·n,≠
"

≠ “ (’n) ≠ K
"

≠

T⁄

0

h
!
X

S

s

"
ds

R

b .

These impulse control problems were intensively studied over the last decades.
The foundation of the theoretical framework was laid by Bensoussan and Li-
ons (see [BL84]) by connecting impulse control problems to quasi variational
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inequalities (QVIs). The overwhelmingly large field of applications ranges from
economics and finance ([BC19], [Kor99]), control of the exchange rate ([MØ98]),
over optimal harvesting ([Alv04]) to inventory control ([HSZ15]). Furthermore,
[ØS05] provides a broad range of additional applications. Variants of the dis-
counted pay-o� functional J

disc are probably used most. Partly, because in
finance the discount factor possesses the reasonable interpretation as interest
rate. Partly, because the discounting enables the use of resolvents and can be
interpreted as exponential killing, two properties that are useful on the methodi-
cal side. Still, in various fields of application there are at least reasonable doubts
on the justification of a discount factor, amongst them forest management (see
[AH20]), the control of exchange rates (see [JZ06]) and inventory control (see
[HSZ18], [HSZ17]). Especially a long-term average criterion is of interest when
one aims for a sustainable and long-term nature of the problem.
Regarding solution approaches, a traditionally popular way is to use the charac-
terization of the value function by a system of QVIs. This has the disadvantage
that the occurring QVIs are often tremendously di�cult to solve and therefore
are rather used as a verification theorem than as a provider of explicit can-
didates for value function and optimal strategies. Therefore, especially in the
discounted case, progress was recently made to characterize the value function
in a more accessible and less technical way, similar to the characterization of
the value function of stopping problems. In the case of J

disc and h = 0 [Chr14]
characterized the value function under quite general conditions as the smallest
super-harmonic function v, such that

v(x) Ø Mv(x) := sup
aœB(x)

(v(a) ≠ (“(x) ≠ “(a)))

for all x, see [Chr14, Proposition 2.3]; B(x) is the set, whereto the process is
allowed to be shifted to from x. [Chr14, Proposition 3.1], a result that itself
relies on [Ega08, Proposition 3.1], states that this characterization of the value
function by super-harmonicity and the maximum operator M in the case that
X is a di�usion yields a characterization of v by an implicit stopping problem.
Namely, v is the smallest non-negative function such that

v(x) = sup
·

Ex

!
e

≠r·
Mv(X· )

"
= sup

·

Ex

A
e

≠r· sup
aœB(X· )

“(X· ) ≠ “(a) + v(a)
B

,

where the supremum is taken over all stopping times fulfilling some technical
conditions. In [CS17] the characterization by super-harmonicity and the maxi-
mum operator is used to obtain (semi-)explicit solutions under the assumption
that “ is representable by a function f via

“(x) = Ex

!
f(Xe)

"

for all x, where X again is the running supremum of X and e an exponentially
distributed random variable independent of X. Therein it is shown that, given
the function f in the representation above is shaped appropriately, a threshold
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strategy is optimal, where the threshold x
ú is given as the solution to f(x) = c

for a certain value c. The existence of such a function f under quite general
assumptions as well as a way to obtain it in specific cases including Lévy pro-
cesses is worked out in [CST13]. Apart from these results there are few explicit
or semi-explicit results that do not require continuity of the sample path and
do not rely on characteristic properties of di�usions. One of the few examples
in the branch of inventory control is [Yam17], where the underlying process is
assumed to be a spectrally one-sided Lévy process and the pay-o� function is
assumed to be linear. Herein the theory of scale functions for spectrally one-
sided Lévy processes, which was developed in the last two decades (see [Kyp14]
for an overview), is utilized to obtain results comparable to those for di�usions.
In contrast to these advances in the discounted case, apart from the connec-
tion to QVIs ([LP86]) and some results with strong ergodicity assumptions on
the underlying process ([Ste86], [PS17]), the vast majority of results for the
long-term average functional J

lta stays in the case of a one-dimensional di�u-
sion as underlying process, see, e.g., [HSZ17] and [HSZ18] for examples in the
field of inventory control or [JZ06] for a model with the control of exchange
rates or inflation rates as potential applications. Especially when the goal is a
(semi-)explicit characterization of optimal control strategies, continuity of sam-
ple paths is needed almost always and often only special types of di�usions are
studied.
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1.3 The Contributions of this Thesis
One of the main results of this thesis is devoted to long-term average control
problem for underlying processes with jumps. While in the discounted case the
results in [Chr13] and [CS17] for general underlying Markov processes give con-
ditions under that the control problem is one-sided, similar results for long-term
average problems are only present for di�usions ([HSZ17], [HSZ18]) or require
quite strong ergodicity assumptions and just yield existence results but no ex-
plicit solution methods ([Ste86], [PS17]). This thesis contributes to filling that
gap: In the setting of one-dimensional Markov processes assuming an integral
type representation of the pay-o� function in terms of the running maximum
under quite general conditions we elaborate, when (s, S) strategies are optimal
and characterize the boundaries s and S in terms of the function occurring in
the maximum representation. So-called (s, S) strategies for two real numbers
s, S are a particularly easy type of control strategies: wait till the process hits
or exceeds the boundary S the first time and then shift it back to s. In the
case of Lévy processes we develop such a representation with help of the ladder
height process. This leads to a solution technique for Lévy processes yielding
(semi-)explicit characterizations of the boundaries.
A deep theoretical result, as well as a substantial ingredient in our line of proof
of the mentioned results, is a characterization of the value of the long-term av-
erage impulse control problem by a stopping problem with generalized linear
costs that we develop under minimal conditions on the underlying Markov pro-
cess. The second key topic of this thesis is to show under which condition these
type of stopping problems have a threshold time as an optimizer, again under
the assumption that an integral type maximum representation exists. This is
not only an auxiliary result for the control problems, these undiscounted stop-
ping problems with generalized linear costs are also of interest on their own.
So these problems have been investigated for quite a long time, nevertheless
general solution techniques are only known for underlying di�usion processes
([IP04, CPT12]) or certain subclasses of problems ([WLK94, Bei98]). Here, we
are able to show under what conditions those kind of problems are one sided and
have a threshold time as an optimizer, even if the underlying process contains
jumps. In case of Lévy processes we even characterize the stopping boundary
in terms of the Lévy triple and the ladder height process. The line of argument
again strongly relies on the maximum representation. Apart from the continu-
ous time stopping problems we also treat the discrete time equivalent. In the
discrete time stopping problem the analogue to the maximum representation
can straightforwardly be given by a functional utilizing ladder times. We also
investigate in how far the discrete and continuous time problems are connected
and how the representation used in the discrete time problem converges to the
maximum representation in the continuous time case. To show the applicability
of our results, we give a variety of examples, including many long-term aver-
age equivalents to discounted one-sided control problems of interest that were
collected in [ØS05] as well as applications in forest management and inventory
control. Here, the focus lies on giving as explicit results as possible in case the
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underlying process is a Lévy process, because there are yet very few of such re-
sults when the underlying process contains jumps. Further, we investigate the
dependence of both value and optimal strategy on the fixed cost term by use of
the maximum representation. Here, the behavior of the control problem’s value
and the optimal strategies suggest interesting connections to singular control
when the fixed costs converge to zero.
Finally, we treat a topic that exceeds the status of a mere application, although
we utilize our previous technique for long-term average impulse control prob-
lems. We study mean field impulse control games and show that both for a
di�usion model and a Lévy driven model there exist mean field equilibria in
threshold strategies in the context of resource management under economically
reasonable assumptions. Additionally, we solve associated mean field problems
that – contrary to the competitive mean field games – model markets where the
participants cooperate. Then, we compare the solutions for game and problem.

1.3.1 Structure of the thesis
Chapter 2 briefly collects the necessary results from the present literature. Addi-
tionally the end of Chapter 2, in Section 2.6, marks the beginning of the authors
own contributions. Here, a key ingredient to many of the most important later
results, an integral type maximum representation, is developed and its structure
is specified in the case of Lévy processes.
Chapter 3 contains the solution of three undiscounted stopping problems: a
discrete time problem in Section 3.1, its continuous time analogue in Section
3.2 and in Section 3.4 one, that will serve as an auxiliary tool for the control
problems later on. Further, in Section 3.3 the connection between the discrete
time problem and the continuous time problem is examined.
Chapter 4 deals with long-term average impulse control problems. Here, the the-
oretical foundation for the later chapters is laid by developing a super-martingale
type verification theorem and characterizing value of the problem and optimal
strategies by an associated stopping problem in Section 3.3. This connection
is then condensed in the theoretical main theorem of this thesis in Section 4.3.
Section 4.4 deals with the most important special case, Lévy processes. Therein
the theoretical results are used to develop a step-by-step solution technique for
long-term average impulse control problems in case, the underlying process is a
Lévy process.
Chapter 5 contains four areas of application. First, in Section 5.1 the solu-
tion technique developed in Section 4.4 is applied to questions in the area of
inventory control. Then, in Section 5.2, optimal harvesting problems, a special
branch of impulse control problems, are studied. Both fields have in common
that there are yet very few examples in the literature where (semi-) explicit
solutions are obtained for underlying processes with jumps. Section 5.3 shows
that the impulse control problem continuously depends on the fixed cost term
and further examines the behavior of the control problem’s value and the opti-
mal threshold strategies if the fixed costs converge to zero and hereby unveils
connections to singular control. The last field of application in Section 5.4 form
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impulse control problems with a restriction to the average amount of controls
per time unit.
Chapter 6 contains the study of mean field control problems and mean field
games with an underlying long-term average impulse control problem.
The last chapter, Chapter 7, briefly discusses possible further questions this
thesis has given rise to.

1.3.2 Connected scientific articles
Parts of this thesis’ work was submitted to journals in form of scientific arti-
cles. Some of Chapter 3’s results on stopping problems may be found in [CS20].
The results on long-term average impulse control theory from Chapter 4 as well
as the tailor-made stopping problem from Section 3.4 and the development of
the maximum representation, that can be found in Section 2.6, is presented in
[CS19a] in a Lévy process centred fashion. Additionally, the results on mean
field theory in Chapter 6 have their origins in the collaborative and yet to be
published work [CNS20] of Sören Christensen, Berenice Neumann and myself.
Here, the results in Sections 6.3, 6.5, 6.6 and 6.7 were developed in direct co-
operation. The rest of Chapter 6 as well as the results in the whole Chapters
3, 4, 5 and the results in Section 2.6 are my own work carried out under the
consulting and supporting supervision of Sören Christensen.
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This chapter serves as preparation for the following ones. In as much brevity as
possible, we collect the necessary results from the present literature in a broad
range of topics. Further, we give the needed basic definitions. Since this really
is an application centred collection, it is abstained from giving broader context
and proofs, for that we rely on a range of well known standard references in
probability theory as well as a variety of specialized articles. When the needed
results are stated, it is always referred to said sources to provide context and
proofs. An exception is Section 2.6. After an overview of the relevant literature
regarding maximum representations we develop an explicit way to construct
a maximum representation in the case that the underlying process is a Lévy
process. This was originally developed in [CS19a] by Christensen and Sohr.

2.1 Markov Processes
Throughout the whole thesis we work with a probability space (�, F ,P). Markov
chains in discrete time or Markov processes in continuous time can be heuris-
tically understood as processes whose progression only depends on the present
state, but not on the path in the past. Almost all results in this thesis are
formulated for Markov processes. Because this process class is very broad and,
therefore, often per se provides not enough structure to admit explicit results,
usually additional assumptions are needed. Hereby sometimes we straightfor-
wardly seclude ourself on well known subclasses like Lévy processes or di�u-
sions, sometimes we try to stay as general as possible and only state precisely
the needed additional assumptions, depending on whether we aim for as general
results as possible or prefer explicity and accessibility.
The intuitive explanation of Markov processes, which is also called memory-
lessness, can be directly translated to a formal definition in the discrete time
case.

Definition 2.1.1. A discrete time process (Xn)nœN that is adapted to a filtration
(Fn)nœN is called Markov chain if for all n œ N we have

P(Xn œ · | Fn≠1) = P(Xn œ · | Xn≠1).

To define the continuous time analogous, a bit more preparation is needed. First
of all we need the notion of a stopping time.

Definition 2.1.2. Let T ™ [0, Œ) be a set and (F)tœT be a filtration. A random
variable · : � æ T is called stopping time if for all t œ T

{· Æ t} œ Ft.

Now we have everything at hand to define a continuous time Markov process
on the real line; we follow the definition given in [CW05].

Definition 2.1.3. Let E ™ R be an interval that we will call state space, B

its Borel ‡-field and (Ft)tØ0 a filtration that fulfils the usual conditions as,
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for example, stated and discussed in [Bic02, Warning 1.3.39], implicating it
is a right continuous, complete filtration. Let (Xt)tØ0 be a process adapted to
(Ft)tØ0 with values in (E, B). Let (Px)xœE be a family of probability measures
on (�, F). The process (Xt)tØ0 with values in E is called Markov process (on
the real line) on (�, F , P, (Ft)tØ0, (Px)xœE) if

1. for each t Ø 0 and each B œ B the mapping x ‘æ Px(Xt œ B) is measur-
able,

2. for each Ê œ � and each h > 0 there is a Ê̂ œ �, such that

Xt+h(Ê) = Xt(Ê̂)

for all t Ø 0,

3. for each x œ E holds X0 = x a.s. under Px,

4. for each s, t Ø 0, x œ E and B œ B holds

Px(Xt+s œ B | Ft) = PXt(Xs œ B) a.s. under Px.

Further, we assume a Markov process to have càdlàg paths. If additionally holds
that

Px(X·+s œ B | F· ) = PX· (Xs œ B) Px a.s.

for each s Ø 0, B œ B(E) and each stopping time · , then the process (Xt)tØ0
is called a strong Markov process. Without loss of generality, whenever working
with a continuous time process, we will assume � to be the canonical function-
space. Furthermore, we assume the time shift operator that is defined via

◊t((Ês)sØ0) = (Êt+s)sØ0

for every t Ø 0, to be measurable.

Later on most of the times we will just write ’let X be a strong Markov process’
and by doing so implicitly define the associated objects �, F , P, (Ft)tØ0, E,

(Px)xœE as in the definition above. Only when we deviate from this exact
definition and, for example, specify the state space we will explicitly mention
this.
Note that in contrast to this technical way of defining Markov processes, which
can be found, e.g., in [CW05], often definitions of Markov processes directly
translate the heuristic interpretation that the progression of the process after
time t may only depend on the value Xt, but not on the ’pre-t-past’, into
a profound mathematical definition that, of course, is equivalent to the one
given here (see, e.g., [Kal02, Chapter 8]). We refer to [CW05] or [Kal02] for
comprehensive treatises of Markov processes. Here, we will, in as much brevity
as possible, define and introduce the later needed tools and objects, always in
a manner targeted towards their later purpose. As the name suggests, one of
the most important objects in optimal stopping, but also in impulse control
theory, are stopping times, hence in addition to the mere definition above, now
we establish a nomenclature for some of the most used stopping times.
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Definition 2.1.4. For a stochastic process (X)tœT on E ™ R, T ™ [0, Œ)
adapted to a filtration (F)tœT set for all x œ E

·x := inf{t Ø 0 | Xt Ø x},

·̊x := inf{t Ø 0 | Xt > x},

·=x := inf{t Ø 0 | Xt = x}

and for sets B œ B(E) (where B(E) the Borel ‡-algebra) define

·B := inf{t Ø 0 | Xt œ B}.

Note that provided they are finite all of these are stopping times, if T = N0,
see [Kal02, Lemma 7.6, (i)]. In the case T = [0, Œ), if the filtration fulfils the
usual conditions and X is a right continuous Markov process, the first three
are also stopping times, see [Kal02, Lemma 7.6, (iii)] combined with [Kal02,
Lemma 7.3]. Under fairly general conditions on the set B the last one is also a
stopping time, see [Kal02, Theorem 7.7]. Later on the stopping times that occur
in the optimization problems have to be compatible with pay-o� and running
cost functions. This leads to the following definition.

Definition 2.1.5. 1. For a Markov process X on E, a measurable function
“ : E æ R and a continuous function h : E æ R let T (X, “, h) be the set
of all stopping times · such that Ex(“(X· )) exists and we have Ex (·) < Œ

and Ex

!s
·

0 | h (Xs) | ds
"

< Œ for all x œ E.

2. For each x œ E set

Tx(X, “, h) := {· œ T (X, “, h) | X· Ø x a.s. under Px}.

If it is clear by the context, which functions and which process are meant, we
also shortly write T for T (X, “, h) and Tx for Tx(X, “, h).

The next important object for our later analysis is the generator of a Markov
process that can be interpreted as a derivative of the processes semi-group,
which is an essential tool to find martingales associated to Markov processes.

Definition 2.1.6. Let X be a Markov process on E and for all f œ C0, x œ E

set
AXf(x) := lim

tæ0

Exf(Xt) ≠ f(x)
t

if this limit exits in (C0, || · ||Œ). The set of all functions f for which this limit
exist is denoted by D(AX) and A is called the generator of X.

There are many useful properties of the generator, that we discuss in more detail
in Section 2.5, when we have introduced Lévy processes and di�usions. Another
process that will be of importance later on is the running maximum process of
a Markov process.
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Definition 2.1.7. Let X be a Markov process. The process X defined by

Xt := sup
sÆt

Xs

for all t œ [0, Œ)] is called the running maximum process of X.

Remark 2.1.8. Note that X is not a Markov process with respect to the filtra-
tion (Ft)tØ0, but the two dimensional process (X, X) is. Whenever the running
maximum occurs later on, we tacitly assume Px to be P(x,x), the measure cor-
responding to the two dimensional Markov process

!
Xt, Xt

"
tØ0 started in (x, x).

So we are still able to exploit the Markovian structure.

2.2 Lévy Processes
There are two ways to heuristically describe Lévy processes. Either as stochastic
analogues to linear functions or as continuous time extensions of random walks.
Both interpretations are directly visible in the following definition.

Definition 2.2.1. A process (Yt)tœ[0,Œ) on a interval E ™ R, that is adapted
to a filtration (Ft)tœ[0,Œ) fulfilling the usual conditions, is called a Lévy process
if

1. Y0 = 0 a.s.

2. for all s, t œ [0, Œ) with s Æ t the random variable Yt ≠ Ys is independent
of Fs,

3. for all s, t œ [0, Œ) with s Æ t the random variable Yt ≠ Ys has the same
distribution as Yt≠s,

4. Y has càdlàg paths.

For a more detailed description as well as the proofs to the results we present
here see, e.g., [Kyp14], [Sat13], [Kal02] or [App09].

Remark 2.2.2. By P0 := P and Px(Yt œ ·) = P0(Yt + x œ ·) for all x œ E

a Lévy process Y becomes a strong Markov process in the sense of Definition
2.1.3.

A common tool to analyse Lévy processes is the characteristic exponent that
for each Lévy process Y is defined by

ÂY : R æ C; a ‘æ ≠ ln(E(eaiY1)).

One of the most important results on Lévy processes is the Lévy-Kintchin (often
also spelled Khinchine) formula. It connects the characteristic exponent with
the Lévy triple that consists of two real numbers and a Lévy measure.
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Proposition 2.2.3. For each Lévy process Y there are unique µY œ R,
‡Y œ [0, Œ), and a measure �Y that is concentrated on R \ {0} and fulfilss
R(1 · x

2)�Y (dx) < Œ such that for all a œ R

ÂY (a) = µY a + ‡
2
Y

2 a
2 +

⁄ !
1 ≠ e

iax + iax1{|x|<1}
"

�Y (dx). (2.1)

Further, for each such triple (µY , ‡Y , �Y ) there exists a Lévy process Y such
that its characteristic exponent is given by (2.1).

This result can be found in [Sat13, Chapter 1, Theorem 8.1] or in [Kyp14,
Theorem 1.3]. The measure �Y is called the Lévy or jump measure of Y . The
value µY is sometimes called drift and ‡Y di�usion coe�cient, although the
nomenclature of these two values is not entirely consistent. The next results
connects the so called characteristic triple (µY , ‡Y , �Y ) with the generator of
a Lévy process and is proven in [App09, Theorem 3.3.3] and also in a slightly
di�erent formulation in [Kal02, Theorem 19.10].

Proposition 2.2.4. Let Y be a Lévy process. Let g be a continuous, infinitely
often di�erentiable function, such that for all natural numbers n, k œ N we have
sup

xœE
| x

k
g

(n)(x) |< Œ (These functions are often called rapidly decreasing
functions or Schwartz functions). Then g lies in the range of Y ’s generator AY

and it holds

AY g(x) =µY

d

dx
g(x) + 1

2‡
2
Y

d
2

dx2 g(x)

+
⁄

(g(x + a) ≠ g(a) + 1{aÆ1}a
d

dx
g(x))�Y (da). (2.2)

Definition 2.2.5. A special type of Lévy processes are subordinators. Subor-
dinators are defined as Lévy processes with a.s. non-decreasing paths. For a
subordinator S instead of the characteristic exponent usually the Laplace expo-
nent

„S(a) := ÂS(ia)

is used and furthermore, instead of the Lévy triple, a slightly di�erent parametriza-
tion is used: set µ̃S := µS ≠

s 1
0 t�(dt) then

„S(a) = µ̃Sa +
⁄ Œ

0

!
1 ≠ e

≠at
"

�S(dt).

We call S̃ a killed subordinator if there is a subordinator S and an Exp(÷)-
distributed random variable e÷ for some ÷ Ø 0 (for ÷ > 0 the distribution
function is R æ [0, 1]; x ‘æ (1 ≠ e

≠÷x)1[0,Œ)(x) and for ÷ = 0 we use the
convention e0 = Œ) such that

S̃t :=
I

St; if t Æ e÷,

” ; if t > e÷,
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where ” denotes a cemetery state outside of E. With ÷
S̃

:= ÷, µ̃
S̃

:= µ̃S and
�

S̃
:= �S the Laplace exponent of S̃ then is given by

„
S̃

(a) = ÷
S̃

+ µ̃
S̃

a +
⁄ Œ

0
(1 ≠ e

≠at)�
S̃

(dt).

Remark 2.2.6. For a subordinator S the representation of the generator in
Proposition 2.2.4 simplifies to

ASg(x) = µ̃S

d

dx
g(x) +

⁄
(g(x + a) ≠ g(a))�S(da)

for all x œ E and g as in Proposition 2.2.4.

Especially for subordinators (but sometimes also for general Lévy processes)
often µ̃S is called drift instead of µS .

Definition 2.2.7. For each killed subordinator S we define its potential measure
US by

US(dx) := E
3⁄ Œ

0
1{Stœdx}dt

4
.

Lemma 2.2.8 (Wald’s equation, continuous version). Let Y be a Lévy process
such that E(Y1) exists and 0 < E(Y1) Æ Œ. Let · be a stopping time. Then,

E (Y· ) = E (Y1)E (·) .

Proof. This result supposedly goes back to Doob in 1957 and an even more
general version can be found in [Hal70, Corollary 1].

Lemma 2.2.9. Let Y be a Lévy process such that E(Y1) exists and
0 < E(Y1) < Œ. Then for all a Ø 0 holds E(·a) < Œ and E(Y·a) < Œ.

Proof. The first part of the claim is a direct consequence from the analogous
result for random walks that is proven in [Gut74, Theorem 2.1]. The second
part then follows with Lemma 2.2.8.

Lemma 2.2.10. Let Y be a Lévy process. If Y either is not a compound Poisson
process or if Y is a compound Poisson process whose Lévy measure has no atoms,
then for all x œ E holds ·̊x = ·x a.s. under all Py, y œ E \ {x}.

Proof. This is proven in [PR69, Lemma 2] in case that Y is not a compound
Poisson process. The case that Y is a compound Poisson process whose Lévy
measure has no atoms follows with elementary arguments.

Lemma 2.2.11. Let Y be a Lévy process with 0 < E(Y1) < Œ. Assume Y is
not a compound Poisson process or a compound Poisson process whose jump
measure has no atoms. Define the mapping › by

›(x, y) := Ex(·y)

for all x, y œ E with x < y. Then, › is a continuous real valued mapping that is
non-decreasing in the second and non-increasing in the first argument.
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Proof. Lemma 2.2.9 yields that for all x, y œ E with x Æ y holds Ex(Y·y ) < Œ.
Further, Lemma 2.2.10 implies that for all y œ E holds lima¬y ·a = ·y a.s.
under all Pz, z œ E \{y}. With dominated convergence we hence get continuity
of › in the second argument. Further, for all x, y œ E with x < y we can use
the homogeneity of Y to write Ex(·y) = E(·y≠x), which yields the claim.

Lemma 2.2.12. Let Y be a Lévy process. Let Â : E æ R be a continu-
ous non-decreasing mapping, let y0 œ E and assume that for all y œ E holds
Ey0(Â(Y·y )) < Œ. If Y either is not a compound Poisson process or if Y is a
compound Poisson process whose Lévy measure has no atoms, then the mapping

� : E fl (y0, Œ) æ R; y ‘æ Ey0

!
Â(Y·y )

"

is continuous.

Proof. Let y œ E fl (y0, Œ). Let ” > 0. Then, we have

Ey0

!
Â(Y·y+” )

"
ÆEy0

!
Â(Y·y )

"
+ Py0(Y·y < y + ”) sup

yÆzÆy+”

Ez(Â(Y·y+” ))

ÆEy0

!
Â(Y·y )

"
+ Py0(X·y < y + ”)Ey+”(Â(Y·y+2”+1)).

Now when ” æ 0 we have due to the assumptions on Y that

Py0(Y·y < y + ”) æ 0,

hence � is continuous.

Lemma 2.2.13. Let f : E æ R be a continuous function, x œ E a root of f and
let Y be a subordinator that is either no compound Poisson process, or a com-
pound Poisson process whose Lévy measure has no atoms. Further, assume that
E(Y1) < Œ. Then:

1. The function

� : E æ R; x ‘æ Ex

Q

a
·x⁄

0

f(Ys)ds

R

b

is continuous,

2. The function

�̃ : {(a, b) œ E ◊ E | a < b} æ R; (x, y) ‘æ Ex

Q

a
·y⁄

0

f(Ys)ds

R

b

is continuous.
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Proof. If x is the left boundary of E nothing has to be shown. Hence, assume
there is a z œ E with z < x. Continuity in all points y œ E with y < x follows
from approximation with simple functions and Lemma 2.2.11. To see that � is
continuous on the whole set E, note that �(y) = 0 for all y œ E with y Ø x

hence it remains to be shown that lim
y¬x

�(y) = 0. Let ‘ > 0. Then, for all y œ E

with x ≠ y < x ≠ z such that maxxœ[y,x] |f(x)| < Ez(·x)‘ we have

�(y) < ‘

and since f is continuous and x a root of f , the set of such values y is a non-
empty interval. Hence, 1. holds. 2. then follows with analogous arguments
by the homogeneity of Lévy processes, since we restricted the domain of �̃ to
elements a, b œ E with a < b.

2.2.1 Ladder height process
For the whole subsection let X be a Lévy process. Following [Kyp14, Definition
6.1] we define a local time at the maximum of X as a continuous, non-decreasing,
adapted process (L)tœ[0,Œ) on [0, Œ) with the following properties:

1. The support of dL is {t œ [0, Œ) | Xt = Xt}.

2. For each stopping time · with the property that a.s. X· = X· the process

(L·+t ≠ L· )tœ[0,Œ)

is independent of F· and is distributed as (Lt)tœ[0,Œ) under P.

Such a local time exists for a wide class of Lévy processes. Nevertheless, if (and
only if) 0 is not regular for [0, Œ) (this means that ·̊0 ”= 0 a.s. under P0) such
a continuous local time fails to exist. Then, it is possible to construct a right
continuous alternative we will tacitly work with instead, see [Kyp14, Theorem
6.6], the references thereafter for the proof of existence and [Kyp14, Section 6.1]
for more details and explicit constructions of local times in several cases. For a
local time L we set LŒ := lim

tæŒ
Lt and define the inverse local time process L

≠1

by

L
≠1
t

:=
I

inf{s > 0 | Ls > t}; if t < LŒ

Œ; else
’t œ [0, Œ).

It can be seen in the definition that a local time can only be unique up to a
multiplicative factor which we chose conveniently for our purposes in the next
definition.

Definition 2.2.14. Let L be a local time at the maximum and H defined by

Ht := X
L

≠1
t



22 CHAPTER 2. TOOLBOX

for all t Ø 0. The process H is called the ladder height process of X.
!
H, L

≠1"
is

a two-dimensional Lévy process, even a bivariate subordinator. Since L is only
defined up to a multiplicative constant, w.l.o.g. whenever we have E(·x) < Œ

for all x œ E we choose L such that E
!
L

≠1
1

"
= 1 and, hence, E

!
L

≠1
·x

"
= E (·x)

for all x œ R. Further, we set

·̂x := L
≠1
·x

= inf{t Ø 0 | Ht Ø x}

for all x œ R.
In the same way we define the descending ladder height process H

¿ as the ladder
height process of ≠X.

Remark 2.2.15. With Wald’s equation (see Lemma 2.2.8) we have

E
!
L

≠1
·x

"
= E

!
L

≠1
1

"≠1 E (·x) .

This explains that in the definition above E
!
L

≠1
1

"
= 1 implies

E
!
L

≠1
·x

"
= E (·x)

for all x œ R.

2.2.2 Special subordinators
The following definitions and results can be found in [SSV12], also [Kyp14,
Section 5.6] provides an overview over Bernstein functions that is rather Lévy
process centred.

Definition 2.2.16. Let S be a killed subordinator. Then, S is called a special
subordinator if „S is a special Bernstein function, i.e., „̃ := id

„
is also the Laplace

exponent of a subordinator.

Lemma 2.2.17. Let S be a subordinator with potential measure US. Then, S

is special if and only if US |(0,Œ) has a non-increasing density u with
⁄ 1

0
u (t) dt < Œ.

Proof. This is [Kyp14, Theorem 5.19].

Remark 2.2.18. Many common examples of subordinators are special, includ-
ing:

1. All stable subordinators.

2. Each subordinator whose jump measure has a log convex density.

3. Each subordinator S whose jump measure has a completely monotone den-
sity.
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4. Each subordinator whose Lévy measure �S has the property that
R æ R; x ‘æ log �S(x, Œ) is a convex function.

Remark 2.2.19. Since later on the most favourable case for us will be that the
ladder height process H is a special subordinator, the question arises how one
can make sure that H falls in the class of special subordinators by looking at
characteristics of X. [Kyp14, Theorem 7.8] yields that for each y > 0

�H(y, Œ) =
⁄

[0,Œ)
�X(z + y, Œ)UH¿(dz)

where �X is the Lévy measure of X, �H the one of H and UH¿(dz) is the
potential measure of the descending ladder height process.
Now this formula may help to verify one of the necessary conditions for H to
be a special subordinator stated in Remark 2.2.18 by using our knowledge of
�X . Especially the condition 2.2.18, 3 turns out to be a handy one since, if �X

has a completely monotone density, so has �H . And the former applies to many
Lévy processes of interest, like, for example, gamma processes, inverse Gaussian
processes or Lévy processes with phase type jumps.

2.3 Di�usions
When speaking of di�usions, usually a strong Markov process with continuous
paths and some additional regularity properties is meant.

Definition 2.3.1. We call a time homogeneous strong Markov process X that
takes values in the interval E ™ R a (linear one-dimensional) di�usion if it
has a.s. continuous sample paths. If for all x, y œ E with x œ int(E) holds
Px(·=y < Œ) > 0, X is called regular.

A special subclass of di�usions, that is often used to model phenomena, e.g., in
finance, economics or biology by its infinitesimal behaviour, is the class of Itô
di�usions.

Definition 2.3.2. Let E ™ R be an interval, let W be a standard Brownian
motion on R, ‡ : E æ [0, Œ) and µX : E æ R continuous functions and x œ E.
Call a process (Xt)tØ0 a (linear time homogeneous) Itô-di�usion with drift µX

and di�usion coe�cient ‡X if it is a unique strong solution to the stochastic
di�erential equation X0 = x,

dXt = µX(Xt)dt + ‡X(Xt)dWt.

It is well established that if µ and ‡ are su�ciently smooth (e.g. Lipschitz
continuity is a su�cient condition), this SDE has a unique solution for each
given starting point, that, moreover, indeed is a di�usion in sense of Definition
2.3.1. see, e.g., [Øks03, Theorem 5.4.1 & Theorem 7.2.4.].
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Lemma 2.3.3. Let X be an Itô di�usion as in Definition 2.3.2. Then, its
generator AX is given by

AXf(x) = 1
2‡

2
X

(x)f ÕÕ(x) + µX(x)f Õ(x) (2.3)

for all functions f that lie in the range of AX . Further, the range of AX contains
all infinitely often di�erentiable functions f with compact support.

This result may, for example, be found in [Kal02, Theorem 19.24]. Note that we
do not allow killing of the di�usion, otherwise an additional term would occur
in the generator.

2.3.1 Speed measure and scale function
Now let X be a di�usion as in Definition 2.3.1, furthermore assume, that X is
regular. There are three basic characteristics of a di�usion: speed measure, scale
function and killing measure. Since we will not study killed di�usions explicitly
later on, we will only define the first two here.

Definition 2.3.4. A strictly increasing function S : E æ R is called scale
function of X if for each a, b œ E with a < b

Px(·=b < ·=a) = S(x) ≠ S(a)
S(b) ≠ S(a) ’x œ [a, b].

Each regular linear di�usion possesses a scale function and a scale function
is unique up to a�ne linear transformations, for further details see [Kal02,
Theorem 23.7] or [BS15, Section II.4.].

Definition 2.3.5. The speed measure M of X is defined as the unique measure
M on the interior of E such that for all a, b œ E with a < b and all x œ (a, b)
holds

Ex (·=a · ·=b) =
⁄

b

a

Ga,b(x, y)M(dy), (2.4)

where for all x, y œ [a, b]

Ga,b(x, y) :=
I (S(x)≠S(a))(S(b)≠S(y))

S(b)≠S(a) , x Æ y

(S(y)≠S(a))(S(b)≠S(x))
S(b)≠S(a) , y Æ x.

That such a measure indeed exists and is unique can be found in [RY05, page
304]. A definition also can be found in [BS15, Section II.4]. Immediately from
the definition we may deduce a first result we need in the following chapters.

Remark 2.3.6. A function that later on will be of needed in Chapter 6 on
several occasions is

› : {(x, y) œ E ◊ E | x < y} æ (0, Œ]; (x, y) ‘æ Ex(·=y).
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Provided for x, y œ E with x < y the function › is finite on a neighbourhood
of (x, y), the formula (2.4) together with dominated convergence yields that ›

is continuous at (x, y). Similar arguments also may be used to find su�cient
conditions to ensure that for a continuous function f : E æ R the function

� : E ◊ E æ R; (x, y) ‘æ Ex

3⁄
·y

0
f(Xs)ds

4

is continuous, for the details we refer to [KT81, Section 15.3].

While the scale function can be interpreted as an indicator for the average drift
of the di�usion, the speed measure can be understood as a change of measure
transforming a di�usion that is natural in scale (meaning the identity is a scale
function) to a time changed Brownian motion, see [Kal02, Theorem 23.9] for
more details. Therefore, it is not surprising that for Itô di�usions scale function
and speed measure are connected with µ and ‡. In order to state this connection,
assume, X is an Itô-di�usion as defined in Definition 2.3.2 with values µ and ‡

defined as in Definition 2.3.2, additionally assume ‡ > 0, that S is continuous
with smooth derivative s := S

Õ and M is absolute continuous with respect to
the Lebesgue measure with a smooth Lebesgue density m := dM

d⁄
. Then, (see

[BS15, II.9.] and also [KT81]) speed measure and scale function are connected
to drift µ and di�usion coe�cient ‡ via

m(x) = 2
‡2(x)e

B(x)

and
s(x) = e

≠B(x)

for all x œ E, where B(x) :=
s

x 2µ(y)
‡2(y) dy for all x œ E.

2.3.2 Recurrence and stable distribution
Definition 2.3.7. A di�usion is called recurrent if for all x, y œ E we have
Px(·=y < Œ) = 1 and transient otherwise. A recurrent di�usion is called
positively recurrent if for all x, y œ E we have Ex(·=y) < Œ and null recurrent
otherwise.

Recurrence is connected to the speed measure in the following way, see, e.g.,
[BS15, II.12] or [KT81, p.234].

Lemma 2.3.8. X is positively recurrent if and only if M(E) < Œ.

If X is positively recurrent, the speed measure M and, hence, also the prob-
ability measure M̃ := M

M(E) is an invariant measure in the sense that for all
A œ B(E), t Ø 0 holds

X0 ≥ M̃ ∆ Xt ≥ M̃.
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Also general theory about positively recurrent Markov processes yields that M̃

is a limiting distribution in the sense that

lim
tæŒ

f(Xt)
t

=
⁄

fdM̃

a.s. and in mean, see [Kal02, Theorem 23.15].

2.4 Renewal Theory
The long-term average criterion in the formulation of the control problem, at
least notationally, bears a resemblance to some expressions in the topic of re-
newal theory. And indeed, later on at least for some impulse control strategies
that are in a sense stationary, renewal theory will prove itself a versatile tool to
compute values of the control problem. Hence, here we will collect the needed
tools from that topic. For a detailed treatise of renewal theory and the proofs
of the lemmas originating in that field stated below, we refer to [Asm03] and
[GS01], also [Als91] is a reference in German.

Lemma 2.4.1 (Wald’s equation, discrete version). Let Y0 := 0 and (Yi)iœN be
a sequence of i.i.d. random variables. Let (An)nœN0 be a filtration, such that
(Yi)œN0 becomes an adapted process and let · be a stopping time with E(·) < Œ.
Then we have

E
A

·ÿ

i=0
Yi

B
= E(Y1)E(·)

(with the convention ±Œ ú 0 = 0).

Proof. This is [Als91, Satz 1.4.7].

Lemma 2.4.2 (Renewal Reward Theorem). Assume (Zi, Ri)iœN is a sequence
of i.i.d. random variables, with Zi > 0 a.s. for all i œ N. Set Tn :=

q
iÆn

Zi

and N (t) := sup{n œ N | Tn Æ t}. Assume E (Z1) < Œ and E (| R1 |) < Œ.
Then we have q

N(t)
i=1 Ri

t

a.s.
æ

E (R1)
E (Z1)

and
E

1q
N(t)
i=1 Ri

2

t
æ

E (R1)
E (Z1) .

Proof. This is [GS01, Section 10.5, Theorem 1].

These renewal processes are not only a powerful tool on their own, they also
help to provide versatile results on regenerative processes that lead to helpful
existence and representation results regarding stable or limiting distributions.
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Definition 2.4.3. Following [Asm03, p. 169] we call a process (Zt)tœ[0,Œ) on
R regenerative if is has right continuous paths, there is a (possibly delayed)
renewal process R given by Rn =

q
n

i=0 Yi for all n œ N, such that for all n œ N
the pair of random variables

!!
((Rn+i)iœN), (ZRn+t)tœ[0,Œ)

"
, (R0, ..., Rn)

"
are

independent. R is called embedded renewal process of Z.

Lemma 2.4.4. Assume Z is a regenerative process and the process
(Rn)nœN = (

q
n

i=0 Yi)nœN is an embedded renewal process as defined in Defini-
tion 2.4.3. Assume the Yi, i œ N, have finite mean and non-lattice distribution.
Then, the limiting distribution ‹ of Z exists and is given by

⁄
fd‹ = 1

E(Y1)E
A⁄

Y1

0
f(Zs)ds

B
.

Proof. This is proven in [Asm03, Chapter VI, Theorem 1.2.].

2.5 An Add-On Concerning the Generator
After having introduced the most important process classes for our purposes, we
will come back to the generator of a Markov process. Here, we will discuss some
of its useful properties and illustrate how to work around some di�culties one
has to face when working with the generator. One of the most useful properties
for our purposes is that the generator provides a way to construct martingales.

Proposition 2.5.1. Let X be a Markov process and g œ D(A). Then the process
given by

g(Xt) ≠ g(X0) ≠

⁄
t

0
AXg(Xs)ds

for all t œ [0, Œ) is a martingale.

Proof. This in [RY05, Chapter VII, Proposition (1.6)].

As a consequence by applying the optional sampling theorem we get

Lemma 2.5.2. [Dynkin’s formula] Let X be a Markov process, x œ E, · a
stopping time with Ex(·) < Œ and g œ D(A). Then

Ex (g(X· )) = g(x) + Ex

3⁄
·

0
AXg(Xs)ds

4
.

Now as beautiful and helpful these two results are, there is an obstacle when it
comes to applying them: for a general Markov process X it is di�cult to find the
range of its generator D(AX) ™ C0. And even if this is possible, being restricted
to C0, the class of continuous functions vanishing in infinity, is not what one
hopes for when one wants to construct martingales, e.g., out of common pay-
o� functions. For Feller processes, a process class including both di�usions and
Lévy processes, the range of the generator lies dense in C0 and the characteristic
operator is an extension of the generator.
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Definition 2.5.3. For all continuous functions f and all x œ E we set, if well
defined,

Af(x) := lim
‘æ0

Exf(X·Bx(‘)c ) ≠ f(x)
Ex(·Bx(‘)c)

where Bx(‘) := {y œ E | |y ≠ x| < ‘} and ·Bx(‘)c is the first entry time in the
set Bx(‘)c as defined in Definition 2.1.4. The operator A is called characteristic
operator of X.

Nevertheless, since we basically only need the properties of Proposition 2.5.1
and Lemma 2.5.2 to hold in the case that the stopping time is of the form ·x we
will use these properties to create our own definition of an extended generator,
following the approach in [RY05, Chapter VII]. To that end, first note that the
generator in a sense is the maximal operator with the property in Proposition
2.5.1.

Lemma 2.5.4. Let X be a Markov process and g œ C0 such that a function
h œ C0 exists with the property that the process given by

g(Xt) ≠ g(X0) ≠

⁄
t

0
h(Xs)ds

for all t œ [0, Œ) is a martingale under all Px, x œ E. Then g œ D(AX) and
AXg = h.

Proof. This is [RY05, ChapterVII, Proposition (1.7)].

Revuz and Yor in [RY05, ChapterVII, Definition (1.8)] then proceed to define
the extended generator as follows:

Definition 2.5.5. Let X be a Markov process and B the set of measurable
functions from E to R. We define the relation AX ™ B

2 by defining (g, h) œ AX

if and only if

• for all t Ø 0 holds
s

t

0 |h(Xs)|ds < Œ a.s,

•
1

g(Xt) ≠ g(X0) ≠
s

t

0 h(Xs)ds

2

tœ[0,Œ)
is a martingale under all

Px, x œ E.

The relation AX is called extended generator of X. Furthermore, we call the set

DA := {g œ B|÷h œ B : (g, h) œ AX}

range of the extended generator and for each g œ DA we set

AX(g) := {h œ B | (g, h) œ AX}.

As discussed in [RY05, ChapterVII], the extended generator is no real mapping,
but what Revuz and Yor call a ’multi-valued almost linear mapping’. The reason
is, that, if (g, h) œ AX for some Markov process X then (g, h̃) œ A for each h̃,
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that equals h on a set, whose complement has potential zero (meaning, X a.s
does not occupy it for a positive amount of time). For our purpose of construct-
ing maximum representations, we add two nuances to this definition. Therefore
we remind that for Lévy processes, the generator is explicitly given in terms of
the characteristic triple by a pseudo di�erential operator, see Proposition 2.2.4.

Definition 2.5.6. Let X be a Markov process and g œ D(AX). Then we call
a function h œ AX(g) useful (for g) if and only if for all x, y œ E with x Æ y

holds

Ex

!
g(X·y )

"
= g(x) + Ex

3⁄
·y

0
h(Xs)ds

4
.

If X is a Lévy process, we call a function h œ AX(g) constructive (for g) on a
set I ™ E if for all x œ I holds

h(x) =µX

d

dx
g(x) + ‡X

d
2

dx2 g(x)

+
⁄

(g(x + a) ≠ g(a) + 1{aÆ1}a
d

dx
g(x))�X(da).

and constructive, if h is constructive on E.

Later on, when developing maximum representations, we will aim for useful
elements of the domain of the extended generator to guarantee existence of a
maximum representation. When it comes to the explicit construction of the
maximum representation for underlying Lévy processes, the useful constructive
elements of the extended generator of the ladder height process are what we
need. So let X be a Lévy process and H its ladder height process. The usefulness
of the somehow lengthy definitions above hinges on the question if there is a large
amount of functions g œ D(AH) such that there are useful and (on a su�ciently
large set) constructive h œ AH(g) for g. We will see later in full detail, that this
is indeed the case, because we need to develop the precise requirements for the
maximum representation. But here we already want to remark, that H being a
subordinator and therefore having a.s. monotone sample paths comes in handy
for approximation purposes, on the other hand Remark 2.2.6 yields that for all
g œ D(AH) and all x œ E holds

AHg(x) = µ̃Hg
Õ(x) +

⁄ Œ

0
(g(a + x) ≠ g(x)) da,

so AH has a comparably easy structure.

2.6 Maximum Representations
In this section we develop the main ingredient to exploit monotone structures
embedded in stopping problems as well as in impulse control problems later on,
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namely integral type maximum representations of the pay-o� function. While
in discrete time such representations simply boil down to telescoping sums, the
development of such representations in continuous time bears some technical
di�culties. In this section we first present the state of research depending
that topic, discuss applicability to the setting herein and shortly point out the
connection of maximum representations and super-harmonic functions. Then,
we develop an own, (semi-)explicit way to generate the needed maximum rep-
resentations for Lévy processes by utilizing the ladder height process. This
construction has been developed in [CS19a] and was further adapted in [CS20].
Lastly, we discuss in how far this approach can be adapted for general Markov
processes.

2.6.1 General remarks
The type of maximum representation for our particular setting looks as follows:
for a given continuous function “ and a continuous function h we need a function
f such that for all x, y œ E with x Æ y

“ (x) = ≠Ex

5⁄
·y

0
f

3
sup
rÆt

Xr

4
dt

6
+ Ex

5
“

1
X·y

2
≠

⁄
·y

0
h (Xs) ds

6
. (2.5)

Specifically, such functions f are needed in Assumptions 3.2.2 and 3.4.2, both
crucial ingredients to our solution approaches for stopping and control problem
later on. Nice properties of these functions f therein, as, for example, mono-
tonicity or the right number of roots, ensure threshold times to be optimizers
of stopping problems or threshold strategies to be optimizers of control prob-
lems. But before developing this particular maximum representation, we give
a brief overview on literature regarding maximum representations for general
Markov processes and briefly discuss to what extend maximum representations
are present in control and stopping. The comprehensive intuition for the use
of maximum representations in optimal stopping arises from the fact that un-
der quite general assumptions super-harmonic functions can be characterized as
functions of the form

x ‘æ Ex

3
sup
tØ0

f(Xt)
4

for some function f , see [FK07] and the references therein for a potential the-
oretic perspective on the topic. That the value function of a stopping problem
under general conditions is basically the smallest super-harmonic majorant of
the pay-o� function, suggests the assumption that, when any maximum rep-
resentation of the pay-o� function in terms of a function f can be found, a
candidate for the smallest super-harmonic majorant is the maximum represen-
tation in terms of f

+, the positive part of aforementioned f . And, indeed, in
the discounted case in [CST13], it is shown that, if the pay-o� function has
some kind of maximum representation and a suitable representing function f

is shaped nicely, indeed f
+ is the representing function of the value function’s

maximum representation. Further, in [CST13] a suggestion can be found to get
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such a representation: if somehow there is a terminal time ’ of X such that
neither X’ nor the running maximum M’ are degenerate, then one can first
find a representation of “ in terms of X’ (for example, with Dynkin’s formula
or using resolvents) and then condition on M’ . This can be used to show ex-
istence of a maximum representation. This approach works particularly well in
the discounted setting since the discounting can be interpreted as killing at an
exponentially distributed time independent of the underlying process. For the
problems in this thesis, the approach cannot be applied since both stopping and
impulse control problems are undiscounted problems.

2.6.2 General Markov processes
While without restricting the process further not much can be said regarding the
explicit obtainability of a maximum representation as in (2.5), with the notions
developed in Section 2.5 we can at least give su�cient conditions regarding
existence of such a representation. To that end let X be a Markov process and
take a measurable function “ : E æ R and a non-negative, measurable function
h : E æ R. Now we look at the two dimensional Markov process (X, X)
consisting of X and its running maximum X introduced in Definition 2.1.7
(and abuse the notation of Section 2.5 a tiny bit in a hopefully understandable
way). For each function Ï : E æ R we establish the notation

Ï̃ : E ◊ E æ R; (x, y) ‘æ Ï(x). (2.6)

Assume that “̃ œ D(A(X,X)) and assume there is a useful f1 œ A(X,X)(“̃) for “̃ .
Further assume, there is some g œ D(AX) such that h œ AX(g) and h is useful
for g. Assume g̃ œ D(A(X,X)) such that there is a useful f2 œ A(X,X)(g̃) for g̃.
Then we have for all x, y œ E with x Æ y

Ex(“(X·y
)) = Ex(“̃(X·y

, X·y
))

= “̃(x, x) + E(x,x)

3⁄
·y

0
f1(Xs, Xs)ds

4

= “(x) + E(x,x)

3⁄
·y

0
f1(Xs, Xs)ds

4

and furthermore

Ex

3⁄
·y

0
h(Xs)ds

4
= Ex(g(X·y

)) ≠ g(x)

= E(x,x)(g̃(X·y
, X·y

)) ≠ g̃(x, x)

= E(x,x)

3⁄
·y

0
f2(Xs, Xs)ds

4
.

Putting these two equations together and setting f := f1 ≠ f2 yields

Ex

3
“

1
X·y

2
≠

⁄
·y

0
h(Xs)ds

4
= “(x) + E(x,x)

3⁄
·y

0
f(Xs, Xs)ds

4
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If now f is constant in the second argument, we have found a maximum repre-
sentation as in (2.5). Although this is in general di�cult to see, this approach
at least provides starting points for showing existence of the needed object and
in some cases even to explicitly obtain a maximum representation. One of these
possible starting points is to use, that under some technical assumptions the
generator of a general d-dimensional Markov process (X1, ..., Xd) on a given
relatively compact subset of the state space Rd has the form

AXg(x) =⁄(x)g(x) +
dÿ

i=1
µi(x) ˆg

ˆxi

(x) +
dÿ

i,j=1
‡i,j

ˆ
2
g

ˆxiˆxj

+
⁄

Rd\{0}

A
g(y) ≠ g(x) ≠

dÿ

i=1
(yi ≠ xi)

ˆg

ˆxi

B
‹(x, dy)

where the real valued function ⁄ indicates killing or creation, the real valued
functions µi and ‡i,j are drift and di�usion coe�cient and the measure ‹ cor-
responds to jumps. This representation goes back to Dynkin (see [Dyn65]) and
may be found in [PS06, page 129]. Now the special structure of the two dimen-
sional Markov Process (X, X) together with approximation procedures may be
used to create the objects we need for the maximum representation. We will
proceed to put this general idea to use for underlying Lévy processes. Since
to get a grasp on the generator of the maximum process of a Lévy process
directly is quite tedious, the approach requires a little workaround using the
ladder height process.

2.6.3 Lévy processes
In this subsection we develop an own approach for an explicit obtainability of a
maximum representation of integral type as in (2.5) under the assumption that
X is a Lévy process, such that E(X1) exists and 0 < E(X1) < Œ. First, we will
give su�cient conditions for a function f as in (2.5) to exist and thereafter take
some steps to the (semi-)explicit obtainability in interesting cases.
The approach heavily utilizes the ascending as well as the descending ladder
height process of X. The definition and the needed properties can be found in
Section 2.2.1. We fix a y œ R, a continuous non-decreasing function “ : E æ R
and a continuous function h : E æ [0, Œ) throughout the section and let H

denote the ascending ladder height process of X and H
¿ denote the descending

ladder height process of X as defined in Definition 2.2.14. Our aim is to find a
function f such that for all x, y œ R with x Æ y

“ (x) = ≠Ex

5⁄
·y

0
f

3
sup
rÆt

Xr

4
dt

6
+ Ex

5
“

1
X·y

2
≠

⁄
·y

0
h (Xs) ds

6
.

The applicability of such a representation is not only inseparably intertwined
with the existence of such a function f , but also relies on the explicit obtainabil-
ity. Thus we will give su�cient conditions for such an f to exist and thereafter
take some steps to the (semi-)explicit obtainability of f in interesting cases.
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Lemma 2.6.1. For each non-negative function g define for all y œ E

ĝ (y) := Ey

Q

a
Œ⁄

0

g

1
H

¿
t

2
dt

R

b .

Then, for all x, y œ E with x Æ y

Ex

3⁄
·y

0
g (Xt) dt

4
= Ex

A⁄
·̂y

0
ĝ (Ht) dt

B
.

Proof. This result is a reformulation of [Kyp14, Exercise 7.10] and originates in
[Sil80].

Remark 2.6.2. The process H
¿ acts in law like a killed subordinator, see

[Kyp14, Theorem 6.9].

Essentially, now we want to exploit that for all y œ E holds “(Y·y ) = “(H·̂y )
(where ·̂ is the first entry time of the ladder hight process defined in Definition
2.2.14) and then apply Dynkin’s formula to “(H·̂y ). Hence, we will make the
following assumption.

Assumption 2.6.3. Assume “ is in the range of the extended generator AH of
H and for each compact interval I ™ E there is a Â œ AH(“) that is useful and
constructive on I.

Now our candidate for f looks as follows:

Definition 2.6.4. Define AH“(x) := µ̃H“
Õ(x) +

s Œ
0 (“(a + x) ≠ “(x))�H(da)

(Note that hereby we extend the generator to functions not lying in C0). Further
define

f :=
1

AH“ ≠ ĥ

2
.

Lemma 2.6.5. For all x, y œ E with x, y < y holds

Ex

3
“

!
X·y

"
≠

⁄
·y

0
h (Xs) ds

4
= Ex

A⁄
·̂y

0
f (Hs) ds

B
+ “ (x) .

Proof. For all x, y œ E with x, y < y we have, using Dynkin’s formula and
Lemma 2.6.1:

Ex

3
“

!
X·y

"
≠

⁄
·y

0
h (Xs) ds

4
= Ex

A
“

!
H·̂y

"
≠

⁄
·̂y

0
ĥ (Hs) ds

B

= Ex

A⁄
·̂y

0

1
AH“ ≠ ĥ

2
(Hs) ds

B
+ “ (x)

2.6.4= Ex

A⁄
·̂y

0
f (Hs) ds

B
+ “ (x) .
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Lemma 2.6.6. For all x, y œ E with x < y and all measurable functions Ï

such that the following expressions exist holds

Ex

C⁄
·̂y

0
Ï (Hs) ds

D
=Ex

5⁄
·y

0
Ï

3
sup
rÆs

Xr

4
ds

6
.

Proof. This can be proven by algebraic induction (or in other words, the mono-
tone class theorem): Wald’s identity shows

Ex (·̂y) = E
!
L

≠1
1

"
Ex (·y) = Ex (·y) ,

hence, the claim holds for indicator functions of the form 1[x,y] and with the
Markov property this extends to indicator functions of general intervals. This
carries over to simple positive functions due to linearity and with Fatou’s lemma
to general positive functions. Decomposition in a positive and a negative part
yields the claim for general regular functions.

As an easy consequence we get

Lemma 2.6.7. For all x Æ y

“ (x) = Ex

5⁄
·y

0
≠f

3
sup
rÆt

Xr

4
dt

6
+ Ex

5
“

1
X·y

2
≠

⁄
·y

0
h (Xs) ds

6
.

Proof. Lemma 2.6.5 with y = y combined with Lemma 2.6.6 and Lemma 2.6.1
yields

“ (x) 2.6.5= Ex

C⁄
·̂y

0
≠f (Hs) ds

D
+ Ex

C
“

1
X·y

2
≠

⁄
·̂y

0
ĥ (Hs) ds

D

2.6.6
2.6.1= Ex

5⁄
·y

0
≠f

3
sup
rÆt

Xr

4
dt

6
+ Ex

5
“

1
X·y

2
≠

⁄
·y

0
h (Xs) ds

6
.

Remark 2.6.8. Assume, X is spectrally positive (that means X has only upward
jumps). Then, its descending ladder hight process H

¿ acts in law as the non-
random process (t)tœ[0,Œ) killed exponentially with a positive rate q > 0 where
q := „ (0), „ being the right inverse of the Laplace exponent of ≠X, see [Kyp14,
Subsection 6.6.2.]. Hence, the function ĥ can be obtained via

ĥ (x) =
⁄ Œ

0
e

≠qt
h (t + x) dt.

Further, the Lévy measure �H can be expressed in terms of q and the Lévy
measure �X of X via the formula

�H (x, Œ) = e
qx

⁄ Œ

x

e
≠qy�X (y, Œ) dy,

see [Kyp14, Corollary 7.9].
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Discussion of Assumption 2.6.3
Now the crucial question is of course, how restrictive Assumption 2.6.3 is.
Phrased di�erently, the question is, to what extend functions “ may be ap-
proximated with functions in the domain of the generator in a suitable way for
our purposes. Here, an answer is given in [ØS05, Theorem 1.24]. Assume, that
“ is twice continuously di�erentiable. Assume · is an a.s. finite stopping time
and assume that for all x œ E

AH“(x) = µ̃H“
Õ(x) +

⁄ Œ

0
“(x + y) ≠ “(x)�H(dy) œ R (2.7)

(Note that this definition of AH in Definition 2.6.4 is a generalization of the
generator of H to possibly unbounded functions). Then [ØS05, Theorem 1.24]
states that for all x œ E if both

Ex|“(H· )| < Œ

and
Ex

3⁄
·

0
|AH“(Hs)|ds

4
< Œ,

then it holds that

Ex (“(X· )) = “(x) + Ex

3⁄
·

0
AH“(Hs)ds

4
.

Therefore, only the finiteness of the above integrals in the case · = ·y is needed
to ensure that Assumption 2.6.3 is fulfilled.
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Optimal stopping problems with linear running costs, that often are interpreted
as costs of observation, occur in several fields. One of the most prominent fields
of application is sequential decision making, see [IP04] for an overview of many
examples ranging from sequential statistics to finance. Although these problems
have been investigated for quite a long time, general solution techniques are only
known for underlying di�usion processes ([IP04, CPT12]) or certain subclasses
of problems ([WLK94, Bei98]). The first two parts of this chapter are dedicated
to fill in the blank. The main tool here will be the concept of monotone problems
that we discussed in the introduction. First in discrete time, then in continuous
time we solve one-sided stopping problems. In the discrete time case we utilize
an approach similar to the one in [CI19]: we embed monotone problems into
a priori non-monotone stopping settings to make use of the handy monotone
structure. This technique enables us to tackle (undiscounted) problems with
generalized linear costs and characterize under which conditions the problems
have a threshold time as an optimizer. The second part of this chapter tackles
the continuous time analogous to the discrete time problem. The right tool
to carry over the idea to utilize monotonicity turns out to be the maximum
representation of the pay-o� function that we developed in Section 2.6. The root
of the function f occurring in said maximum representation yields the optimal
threshold. We proceed to discuss to what extent the two cases are related
and show that under some integrability conditions the continuous problem may
be approximated by discrete time problems and the optimal thresholds of the
discrete problems converge to the one for the continuous problem. Lastly, we
tackle a non-standard continuous time stopping problem that later one is needed
as an auxiliary tool to solve impulse control problems.

Structure of the chapter
Section 3.1 entails the solution of the discrete time stopping problem. In Sub-
section 3.1.3 we take a closer look on the important special case that the under-
lying process is a random walk. Section 3.2 tackles the continuous time stopping
problem. Section 3.3 compares the two problems and discusses in how far an
approximation of the continuous problem with discrete problems is possible.
Section 3.4 treats a stopping problem tailor-made to be applied in the solution
of impulse control problems later on.
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3.1 Discrete Time
This section entails a discrete time stopping problem for general Markov chains
without discounting and general linear costs. First, we give su�cient condi-
tions for a threshold time to be optimal in terms of what can be understood as
the discrete time equivalent to the maximum representation of Section 2.6 or a
spatial infinitesimal look ahead rule. After that, in Subsection 3.1.3 we show
how our results simplify and essentially become a characterization in case the
underlying process is a random walk.

3.1.1 Notation and prerequisites
Let (Yn)

nœN be a discrete time Markov chain on the real line. We aim to study
the stopping problem for

“ (Yk) ≠

kÿ

i=1
h (Yi) , k œ N0, (3.1)

where “ is a non-decreasing function and h a non-negative non-decreasing func-
tion (we define the empty sum

q0
i=1 ai := 0 for all ai œ R).

Namely, we want to find the value function

V (y) := sup
·œT

Ey

A
“ (Y· ) ≠

·ÿ

i=1
h (Yi)

B

where T is the set of all (real valued) stopping times. In order to make sure
that waiting infinitely long is not optimal and hence there is no need to allow
Œ as possible value for the admissible stopping times, we make the following
assumption that is quite standard for stopping problems.

Assumption 3.1.1.

Ey

A
sup

n

A
“ (Yn) ≠

nÿ

i=1
h (Yi)

BB
< Œ ’y œ R,

“ (Yn) ≠

nÿ

i=1
h (Yi) æ ≠Œ a.s.

Additionally, to finding the value function, we want to characterize the cases
in which a first entry time in an interval is an optimal stopping time, even the
almost surely smallest.

Remark 3.1.2. A standard result in optimal stopping without running costs is
that under assumptions similar to Assumption 3.1.1 the stopping time

·
ú := inf{n | Yn œ S

ú
}
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for S
ú := {y œ R | V (y) = “ (y)} is the a.s. smallest optimal stopping time. For

example, in [Shi78, Chapter 2, Theorem 8] a similar result without running costs
can be found. Many works in optimal stopping start from this characterization
and then, for example, proceed to show that S

ú is an interval in order to verify
optimality of threshold times. The approach here is di�erent and we do not rely
on knowing that ·

ú is optimal beforehand.
A main ingredient in our line of argument will be the function f defined by

f (y) = „ (y) ≠ “ (y)
Ey (·+) , (3.2)

for all y œ R, where ·
+ := inf{n œ N | Yt > Y0} and

„ (y) := Ey

Q

a“ (Y·+) ≠

·
+ÿ

i=1
h (Yi)

R

b

for all y œ R. Note that with the convention ≠Œ
Œ := ≠Œ f becomes a well

defined function R æ R fi {≠Œ}. Heuristically, f being positive means that
the gain one would get by waiting for the process to rise above the present level
exceeds the possible pay-o� at the present level. The following assumption on
the shape of f will be essential to verify optimality of a threshold time.
Assumption 3.1.3. • There is exactly one x œ R such that f (x) > 0 for

all x œ (≠Œ, x), and f (x) < 0 for all x œ (x, Œ).

• On [x, Œ) the function f is non-increasing.
From now on we will always assume Assumption 3.1.1 and Assumption 3.1.3
to be true for the rest of the section. Under these assumptions we are able to
show that the first entrance time into (x, Œ) or [x, Œ) is the optimizer for V (y)
for all y œ R. Which type of interval is the right choice, depends on the value
f (x). In the following, we assume f (x) > 0 and show that the first entry time
in (x, Œ) is optimal. With the same line of argument, one can show that the
first entry time into [x, Œ) is optimal if f (x) Æ 0.

Remark 3.1.4. While the numerator has an obvious interpretation, the neces-
sity of dividing by the expected waiting time for the process to exceed the present
level is not entirely obvious (although, especially if we compare the discrete time
case with the continuous time case, it forges links to the generator of the ladder
height process occurring therein). And, indeed, if the function f as in Assump-
tion 3.1.3 fails to be monotone after the root x, one can instead work with a
function

f̃(y) := „ (y) ≠ “ (y)
Ey

1q
·+

i=1 g (Yi)
2 = f(y) Ey(·+)

Ey

1q
·+

i=1 g (Yi)
2

for some suitable positive function g. All the later proofs work with such a f̃

that fulfils Assumption 3.1.3 as well, nevertheless, for the sake of brevity and
clarity, we will just use the ’standard’ f .
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3.1.2 Proof that a threshold time is optimal
For all x œ R we remind of the notation ·̊x = inf{n œ N0 | Yn > x} established
in Definition 2.1.4. The first step towards the proof of the optimality of ·̊x is to
show that ·̊x is optimal in the class of threshold times. Here, the next result will
be helpful, that also connects this function f with the maximum representations
that we developed in Section 2.6.

Lemma 3.1.5. Let
Ÿ0 := 0

and for all n > 0 let

Ÿn := inf{k Ø Ÿn≠1 | Yk > YŸn≠1}

be the n-th ladder time. Then, for all x, y œ R with x Æ y we have

Ex

Q

a“(Y·̊y ) ≠

·̊yÿ

i=1
h(Yi)

R

b = “(x) + Ex

Q

a
ÿ

ŸnÆ·̊y

f(YŸn)EYŸn

!
·

+"
R

b .

Proof. Expand Ex

!
“(Y·̊y )

"
≠ “(x) in a telescoping series.

Corollary 3.1.6. The stopping time ·̊x is an optimizer for the original stopping
problem amongst all threshold times.

Proof. Lemma 3.1.5 yields that in order to maximize Ex

1
“(Y·̊y ) ≠

q·̊y

i=1 h(Yi)
2

in y, one has to sum as many positive summands of the form f(YŸn)EYŸn
(·+)

on the right-hand side as possible. Assumption 3.1.3 ensures that ·̊x indeed
yields the maximum, because f only changes sign once.

Theorem 3.1.7. The stopping time

·̊x = inf{n Ø 0 | Yn > x}

is optimal for V (y) for all y œ R.

Proof. As Corollary 3.1.6 indicates, the value function when only threshold
times are admissible is given by

Ṽ (y) =
I

“ (y) ; y > x

Ey

1
“

!
Y·̊x

"
≠

q
·̊x
i=1 h (Yi)

2
; y Æ x.

Let y œ R. We have
Ṽ (y) Ø “ (y) .

Hence, it remains to show h-exessivity, meaning

Ṽ (y) Ø Ey

!
Ṽ (Y1) ≠ h (Y1)

"
.
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First look at the case y Æ x: here we have

Ṽ (y) = Ey

Q

a“
!
Y·̊x

"
≠

·̊xÿ

i=1
h (Yi)

R

b .

Further, by the strong Markov property, we have By the strong Markov property
we have since y Æ x

Ey

!
Ṽ (Y1) ≠ h (Y1)

"
= Ey

Q

a“
!
Y·̊x

"
≠

·̊xÿ

i=1
h (Yi)

R

b . (3.3)

and (3.3) yields

Ey

!
Ṽ (Y1) ≠ h (Y1)

"
= Ey

Q

a“
!
Y·̊x

"
≠

·̊xÿ

i=1
h (Yi)

R

b = Ṽ (y) .

Now assume y > x. We again use a type of adjusted ladder times, which
we define by Ÿ̃0 := 0, Ÿ̃1 := inf{n > 0 | Yn > x} and for each n > 1
we set Ÿ̃n := inf{n > Ÿ̃n≠1 | Yn > YŸ̃n≠1}. Again we use the notation
·

+ = inf{t Ø 0 | Yt > Y0}. Since this expression will occur later, we notice
that

Œÿ

n=0
Ey

Q

aEYŸ̃n

Q

a
·

+ÿ

i=1
h (Yi)

R

b 1{Ÿ̃n<·̊y}

R

b

=
Œÿ

n=0
Ey

A
Ey

A
Ÿ̃n+1ÿ

i=Ÿ̃n+1
h (Yi) |FŸ̃n

B
1{Ÿ̃n<·̊y}

B

=
Œÿ

n=0
Ey

A
Ey

AA
Ÿ̃n+1ÿ

i=Ÿ̃n+1
h (Yi)

B
1{Ÿ̃n<·̊y}|FŸ̃n

BB

=
Œÿ

n=0
Ey

AA
Ÿ̃n+1ÿ

i=Ÿ̃n+1
h (Yi)

B
1{Ÿ̃n<·̊y}

B

= Ey

Q

a
·̊yÿ

i=1
h (Yi)

R

b . (3.4)
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We obtain

Ey

!
Ṽ (Y1) ≠ h (Y1)

"
≠ „ (y) = Ey

Q

a“
!
Y·̊x

"
≠

·̊xÿ

i=1
h (Yi)

R

b ≠ „ (y)

= Ey

Q

a“
!
Y·̊x

"
≠ “

!
Y·̊y

"
+

·̊yÿ

i=·̊x+1
h (Yi)

R

b

=
Œÿ

n=0
Ey

AA
“ (YŸ̃n) ≠ “

!
YŸ̃n+1

"
+

Ÿ̃n+1ÿ

i=Ÿ̃n+1
h (Yi)

B
1{Ÿ̃n<·̊y}

B

=
Œÿ

n=0
Ey

AA
“ (YŸ̃n) ≠

A
“

!
YŸ̃n+1

"
≠

Ÿ̃n+1ÿ

i=Ÿ̃n+1
h (Yi)

BB
1{Ÿ̃n<·̊y}

B

=
Œÿ

n=0
Ey

AA
“ (YŸ̃n) ≠ Ey

AA
“

!
YŸ̃n+1

"
≠

Ÿ̃n+1ÿ

i=Ÿ̃n+1
h (Yi)

B
|FŸ̃n

BB
1{Ÿ̃n<·̊y}

B

=
Œÿ

n=0
Ey

Q

a

Q

a“ (YŸ̃n) ≠ EYŸ̃n

Q

a“ (Y·+) ≠

·
+ÿ

i=1
h (Yi)

R

b

R

b 1{Ÿ̃n<·̊y}

R

b

=
Œÿ

n=0
Ey

!
(“ (YŸ̃n) ≠ „ (YŸ̃n)) 1Ÿ̃n<·̊y

"

=
Œÿ

n=0
Ey

Q

a

Q

a≠f (YŸ̃n)EYŸ̃n

Q

a
·

+ÿ

i=1
h (Yi)

R

b

R

b 1{Ÿ̃n<·̊y}

R

b

f√
Æ

Œÿ

n=0
Ey

Q

a

Q

a≠f (y)EYŸ̃n

Q

a
·

+ÿ

i=1
h (Yi)

R

b

R

b 1{Ÿ̃n<·̊y}

R

b

=
Œÿ

n=0
Ey

Q

a

Q

a(“ (y) ≠ „ (y))
EYŸ̃n

1q
·

+

i=1 h (Yi)
2

Ey

1q·̊y

i=1 h (Yi)
2

R

b 1{Ÿ̃n<·̊y}

R

b

(3.4)= “ (y) ≠ „ (y)
= Ṽ (y) ≠ „ (y) .

Remark 3.1.8. Since we are aiming for the one-sided case, it, of course,
seems natural to use the ascending ladder times to construct f . We consider
it worth mentioning that when one instead uses ’skew’ ladder times of the form
·̃

+ := inf{n œ N | l(Yn) > l(y)} for some suitable (possibly non-monotonic)
function l, in principle the same proofs as above still work and can lead to a
characterization of the stopping sets by roots of an analogue function f even in
more complicated cases. However, the applicability of this more general result in
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concrete examples requires to ’guess’ the right function l, which we only man-
aged to do in trivial cases or situations which can be reduced to the one-sided
case anyway. So we decided to stick to the one-sided situation in the proofs.

3.1.3 Special case: random walk
A nice application of our theory is the stopping problem for a random walk
with linear costs. Assume (Xi)iœN is a sequence of independent, identically
distributed random variables with P (X1 > 0) > 0. For all n œ N0 let

Sn :=
nÿ

i=1
Xi.

Then with the usual family of measures given by

Py(Sn œ dx) := P(Sn + y œ dx)

for all y œ R, n œ N0 the process S becomes a discrete time Markov process and
the previous results are applicable. Using the notation of the previous sections,
we have

„ (y) = E

Q

a“ (y + S·+) ≠

·
+ÿ

i=1
h (y + Si)

R

b .

Further,

“ (y) ≠ „ (y) = E
!
“ (y) ≠ “

!
y + S·+

""
+ E

A
·+ÿ

i=1
h (y + Si)

B

for all y œ R. Now y ‘æ E
!
“ (y) ≠ “

!
y + S·+

""
is non-decreasing if

y ‘æ “ (y) ≠ “ (y + s)

is non-decreasing for all s > 0 or equivalently if “ is concave. With the same
argument we get that

y ‘æ E
A

·+ÿ

i=1
h (y + Si)

B

is non-decreasing if h is non-decreasing. Hence, in the random walk case our
findings read as follows:

Theorem 3.1.9. Assume that Y is a random walk and define

x := inf
I

z œ R
--- E

!
“ (z) ≠ “

!
z + S·+

""
Ø ≠E

A
·+ÿ

i=1
h (z + Si)

BJ
.

Further, let Assumption 3.1.1 hold true and assume that “ is concave on [x, Œ)
and that h in non-decreasing and non-negative.
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• If f(x) Æ 0, then
·

ú := inf{n Ø 0 | Sn Ø x}

is an optimal stopping time.

• If f(x) > 0, then
·̊

ú := inf{n Ø 0 | Sn > x}

is an optimal stopping time.

Corollary 3.1.10. Assume that Y is a random walk. Further, let Assumption
3.1.1 hold true, assume that “ is concave on [x, Œ), and that h is constant, i.e.,
h(x) = c for some c > 0. Define

x := inf{z œ R | E
!
“ (z) ≠ “

!
z + S·+

""
Ø ≠cE (·+)}.

Then, we get:

• If f(x) Æ 0, then
·

ú := inf{n Ø 0 | Sn Ø x}

is an optimal stopping time.

• If f(x) > 0, then
·̊

ú := inf{n Ø 0 | Sn > x}

is an optimal stopping time.

Here we want to point out the connection to [WLK94] who study traditional
parking problems for random walks without running costs. If h is constant,
Wald’s identity can be used to transform the problem to a stopping problem
with no running costs. So these results can be viewed as a generalization of the
results in the mentioned article. Also the line of argument here is inspired by
the considerations there, but we avoid the use of the Wiener-Hopf factorization,
see also the discussion in [CI19].
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3.2 Continuous Time
This section translates the ideas from the discrete time case to the continuous
time case. As discussed before, a more elaborate approach to define an analogous
function f is needed. Nevertheless, the underlying idea stays roughly the same.
Once again looking at one of the key ingredients for the discrete time case,
Lemma 3.1.5, we see that for x, y œ R we have with the notations of the previous
section

Ex

Q

a“(Y·̊y ) ≠

·̊yÿ

i=1
h(Yi)

R

b = “(x) + Ex

Q

a
ÿ

ŸnÆ·̊y

f(YŸn)EYŸn

!
·

+"
R

b .

The right-hand side herein can be viewed as the discrete time analogue to an
expected integral of Y ’s maximum process plugged in to f . This integral repre-
sentation together with the monotonicity properties of f postulated in Assump-
tion 3.1.3 first ensured that ·̊x was the optimizer amongst all threshold times
and later on also helped to ensure maximality in the initial problem. In the
continuous time case we aim to take the same road utilizing the idea of maxi-
mum representations from Section 2.6. So in this section later we will assume
that there is a function f as in Assumption 2.5 that enables an integral type
maximum representation and furthermore assume, this function f has the right
shape. Given that, we are able to follow an analogue line of argument as in the
discrete time case. The approach here was developed in [CS19a] and [CS20] by
Christensen and Sohr in the contexts of impulse control and stopping.

3.2.1 Notation and prerequisites
Let X be a strong Markov process on R as defined in Definition 2.1.3. Let
“ : E æ R and h : E æ R be real functions. From now on we will always
assume:

Assumption 3.2.1. 1. “ is non-decreasing and continuous.

2. h is continuous and for all x, y œ R with x < y, we have

Ex

3⁄
·y

0
|h (Xs) | ds

4
< Œ.

Define the set T as the set of all stopping times · with Ex (·) < Œ and
Ex

!s
·

0 |h (Xs) | ds
"

< Œ for all x œ R (note that in our main case of interest,
that is h Ø 0, this only excludes stopping times that would yield a pay-o� of
the form ’Œ ≠ Œ’). We look at the stopping problem

V(x) := sup
·œT

Ex

3
“ (X· ) ≠

⁄
·

0
h (Xt) dt

4

for all x œ R. With similar steps as in the discrete time case we develop su�cient
conditions under that a threshold time whose threshold is given as the root of
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a function f is optimal. A key issue of these stopping problems is that there
occurs no killing and/or discounting, which excludes the possibility to use resol-
vents to obtain maximum representations, what is one of the major approaches
in settings with discounting, see, among others, [MS07], [NS07], [Sur07] and
[CST13]. Instead, the right type of maximum representation is an integral type
one, as (2.5) in Section 2.6. To make this approach work, we then proceed to
justify that it su�ces to only work with stopping times bounded by first entry
times to intervals of the form [y, Œ) for large enough y.

Assumption 3.2.2. We assume that there is a function f such that:

1. For all x, y œ R with x Æ y holds

“ (x) = ≠Ex

5⁄
·y

0
f

!
Xt

"
dt

6
+ Ex

5
“

1
X·y

2
≠

⁄
·y

0
h (Xs) ds

6
.

2. The function f has a unique root x œ R, is strictly positive on (≠Œ, x)
and is strictly decreasing on [x, Œ).

For the remainder of the section we fix such a function f and denote its unique
root with x. Note that this maximum representation may be seen as the ana-
logue to the discrete telescoping sum in Lemma 3.1.5. As discussed in Remark
2.1.8, in a slight abuse of notations, the measure Px is assumed to be P(x,x),
the measure corresponding to the two dimensional Markov process

!
Xt, Xt

"
tØ0

started in (x, x). This enables us to still use the Markov property. To be able to
make use of the maximum representation, we need to show that the value of the
stopping problem does not change if we only maximize over a subset of stopping
times. This subset will be called the set of upper regular stopping times.

Definition 3.2.3. Call a stopping time · upper regular if there is a value y œ R
such that · is under all Py a.s. bounded by the first entry time of X into [y, Œ).
Define U := {· œ T | · is upper regular}.

The name of as well as the idea to utilize upper regular stopping times is inspired
by [IP04], where in a two sided optimal stopping problem for di�usions the set
of stopping times to maximize over is restricted to regular stopping times.

3.2.2 Proof that a threshold time is optimal
Now we have everything at hand to show that under the assumptions made
above a threshold time is optimal. The first step is to show that it su�ces to
consider upper regular stopping times.

Lemma 3.2.4. For all x œ R we have

V(x) = sup
·œU

Ex

3
“ (X· ) ≠

⁄
·

0
h (Xs) ds

4
.
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Proof. Let ‘ > 0. Take · œ T that is ‘-optimal. Set for all n œ N

‡n := · · inf{t Ø 0 | Xt Ø n}.

The stopping time · is a.s. finite, thus we have ‡n æ · a.s. under all Pz and
since

s
·

0 |h (Xs) | ds works as an integrable majorant, we get with dominated
convergence

Ex

3⁄
·

0
h (Xs) ds

4
= lim

næŒ
Ex

3⁄
‡n

0
h (Xs) ds

4
.

Again dominated convergence yields

Ex (“ (X· )) = Ex

1
lim

næŒ
“ (X· ) · “ (X‡n)

2

= lim
næŒ

Ex (“ (X· ) · “ (X‡n))

Æ lim
næŒ

Ex (“ (X‡n)) .

Altogether we get

Ex

3
“ (X· ) ≠

⁄
·

0
h (Xs) ds

4
Æ lim

næŒ
Ex

3
“ (X‡n) ≠

⁄
‡n

0
h (Xs) ds

4
.

The next step towards the solution is the analogue to the monotone problem in
the discrete time case.

Lemma 3.2.5. Let x, y œ R with x Æ y. For ay := y · x holds

sup
·Æ·y

Ex

5⁄
·

0
f

!
Xt

"
dt

6
= Ex

5⁄
·ay

0
f

!
Xt

"
dt

6
.

Proof. This is a direct consequence of the properties of f posed upon it in
Assumption 3.2.2 and the monotonicity of X.

Now we have everything at hand to prove the main theorem of this section:
showing that the threshold time ·x is optimal provided we have a maximum
representation as in Assumption 3.2.2. Note that this maximum representation
will be used in a similar way as the telescoping sum over the ladder times in the
proof of Theorem 3.1.7.

Theorem 3.2.6. Let Assumption 3.2.2 hold. Then, for all x œ R holds

V(x) = Ex

3
“

!
X·x

"
≠

⁄
·x

0
h (Xs) ds

4
.
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Proof. We define for all x œ R

g̃ (x) := Ex

3
“

!
X·x

"
≠

⁄
·x

0
h (Xs) ds

4
.

One immediately sees that V Ø g̃ Ø “. Let x œ R. Lemma 3.2.4 tells us that it
su�ces to show

g̃ (x) Ø sup
·œU

Ex

3
“ (X· ) ≠

⁄
·

0
h (Xs) ds

4

in order to prove V = g̃.
Let · œ U be an upper regular stopping time and fix a y > x, x such that · Æ ·y

a.s. under Px. Then we have, using Assumption 3.2.2 four times,

Ex

5
“ (X· ) ≠

⁄
·

0
h (Xs) ds

6

=Ex

;
≠EX·

5⁄
·y

0
f

!
Xt

"
dt

6

+EX·

5
“

1
X·y

2
≠

⁄
·y

0
h (Xs) ds

6
≠

5⁄
·

0
h (Xs) ds

6<

= ≠ Ex

;
EX·

5⁄
·y

0
f

!
Xt

"
dt

6<
+ Ex

5
“

1
X·y

2
≠

⁄
·y

0
h (Xs) ds

6

= ≠ Ex

;
Ex

5⁄
·y

·

f
!
Xt

"
dt | F·

6<
+ Ex

5
“

1
X·y

2
≠

⁄
·y

0
h (Xs) ds

6

Æ ≠ Ex

C⁄
·y

·x

f
!
Xt

"
dt

D
+ Ex

5
“

1
X·y

2
≠

⁄
·y

0
h (Xs) ds

6

= ≠ Ex

C⁄
·y

·x

f
!
Xt

"
dt

D
+ “ (x) + Ex

5⁄
·y

0
f

!
Xt

"
dt

6

=“ (x) + Ex

5⁄
·x

0
f

!
Xt

"
dt

6

=Ex

5
“

!
X·x

"
≠

⁄
·x

0
h (Xs) ds

6
.

Remark 3.2.7. The line of proof in Theorem 3.2.6 also directly yields, what
happens if the function f in the maximum representation is negative. Then stop-
ping immediately is the optimal stopping time regardless of the starting point.
This can be seen by just inserting 0 in the calculations for ·x.
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3.3 Connection of the Problems
As already mentioned when discussing the lines of argument in Sections 3.1 and
3.2, there are deep inherent similarities between the discrete time and the con-
tinuous time stopping problem. Especially the similarity in the functions f that
determine the optimal threshold suggests that the solution of the continuous
problem can be found via discretization. Hence, this section aims to give condi-
tions under that the solution of suitably embedded discrete problems converges
to the solution of the continuous problem.
Again, let X be a strong Markov process on R as defined in Definition 2.1.3. As
before, we look at the continuous time stopping problem

V(x) = sup
·œT

Ex

3
“ (X· ) ≠

⁄
·

0
h (Xt) dt

4

for all x œ R, where “ and h are function that fulfil Assumption 3.2.1. Further
for the sake of easier lines of argument assume that h Ø 0.

Definition 3.3.1. We call a sequence of ascending sequences of stopping times
((·n

k
)kœN)

nœN a suitable discretization if

• {·
n

k
| k œ N} ™ {·

n+1
k

| k œ N} for all n œ N,

• for each n œ N the process Y
n defined by Y

n

k
:= X·

n
k

for all k œ N is a
Markov process,

• for each X-stopping time ‡, for each n œ N there is a Y
n-stopping time

‡̃
n such that with the definition Á‡Ë

n := ·
n

‡̃n we have for all n œ N that
‡ Æ Á‡Ë

n+1
Æ Á‡Ë

n and a.s.

lim
næŒ

Á‡Ë
n = ‡.

We say a suitable discretization ((·n

k
)kœN)

nœN harmonizes with “, if for all x œ R
and all X-stopping times ‡

lim
næŒ

Ex

!
“(XÁ‡Ën)

"
= Ex (“(X‡)) .

We say a suitable discretization ((·n

k
)kœN)

nœN harmonizes with h, if for each
n œ N there is a function ÁhË

n such that for all x œ R and all X-stopping times
‡ we have

Ex

A
‡̃

nÿ

i=1
ÁhË

n(Y n

i
)
B

Ø Ex

Q

a
‡̃

n+1ÿ

i=1
ÁhË

n+1(Y n+1
i

)

R

b

and

lim
næŒ

Ex

A
‡̃

nÿ

i=1
ÁhË

n(Y n

i
)
B

= Ex

3⁄
‡

0
h(Xs)ds

4
.

With these definitions at hand we immediately get the following result:
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Theorem 3.3.2. Assume ((·n

k
)kœN)

nœN is a suitable discretization. Using the
notations from Definition 3.3.1, define for all n œ N

Vn(x) := sup
‡

Ex

A
“(Y n

‡
) ≠

‡ÿ

i=1
ÁhË

n(Y n

i
)
B

,

where the supremum is taken over all Y
n-stopping times ‡ such that ·

n

‡
œ T .

Assume each Vn has an optimal stopping time and let

Sn := {x œ R | Vn(x) = “(x)}

be the stopping set of Vn and

S := {x œ R | V(x) = “(x)}

the one for V. Then we have point-wise

Vn ¬ V

and ‹

nœN
Sn = S.

Proof. Observe that
“ Æ Vn Æ Vn+1 Æ V

for all n œ N0. Hence, lim
næŒ

Vn exists and lim
næŒ

Vn Æ V. Let x œ R. We only
treat the case that V(x) < Œ, the case V(x) = Œ works analogously with the
obvious alterations. For each x œ R and each ‘ > 0 there is an X-stopping time
‡ such that

V (x) Æ Ex

Q

a“ (X‡) ≠

‡⁄

0

h (Xs) ds

R

b + ‘

2

and an N œ N such that

Ex

Q

a“ (X‡) ≠

‡⁄

0

h (Xs) ds

R

b Æ Ex

Q

a“
!
XÁ‡ËN

"
≠

‡̃
Nÿ

i=1
ÁhË

N
!
Y

N

i

"
R

b + ‘

2 .

Hence, we get

V (x) Æ Ex

Q

a“ (X‡) ≠

‡⁄

0

h (Xs) ds

R

b + ‘

2

Æ Ex

Q

a“
!
XÁ‡ËN

"
≠

‡̃
Nÿ

i=1
ÁhË

N (Yi)

R

b + ‘

Æ VN (x) + ‘

Æ lim
næŒ

Vn (x) + ‘.

Assume x œ Sn for all n œ N. Then, “(x) = limnæŒ Vn(x) = V(x).
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Remark 3.3.3. Note that these proofs don’t even depend on one-dimensionality.
The only requirement needed to have suitable discretizations that harmonizes
with “ and h is strong enough combined continuity properties of the functions
and the process.

Remark 3.3.4. While the theory above is of a very general nature, the most in-
teresting case for the setting here is the one-dimensional one-sided case. Above
results imply that, if the discretized problems are one-sided, the continuous one
also is. Additionally, then the threshold of the continuous problem is the mono-
tone limit of the discretized problems’ thresholds.

Now that we have given conditions under that suitable discrete problems ap-
proximate the continuous one in the right way, depending on the process and
the functions h and “, we have to find suitable discretizations.

3.3.1 Non-random discretization for Lévy processes
As an example for a discretization, let X be a Lévy process with 0 < E(X1) < Œ,
nevertheless, we want to mention that under the right assumptions the results
remain to hold for more general processes. One of the simplest imaginable dis-
cretizations is ((·n

k
)kœN)

nœN =
!
( k

2n )kœN
"

nœN . We assume “ to be di�erentiable
and that there is an M œ R such that |“|, |h| < M . For all x œ R and all n œ N
we set

ÁhË
n(x) := Ex

A⁄ 1
2n

0
h(Xs)ds

B

and for all X-stopping times ‡ and all n œ N

Á‡Ë
n := Â1 + ‡2n

Ê

2n

and with that implicitly ‡̃
n for all n œ N. Now Ex|X1| < Œ implies

Ex

3
sup
tÆ1

|Xt|

4
< Œ,

see [Gut75], and hence we have for all ‡ œ T

--Ex

!
“

!
XÁ‡Ën

"
≠ “ (X‡)

"-- Æ MEx

--X‡ ≠ XÁ‡Ën

-- Æ ME0( sup
tÆ 1

2n

|Xt|)
næŒ
æ 0

as well as
------
Ex

Q

a
‡̃

nÿ

i=1
ÁhË

n (Y n

i
) ≠

‡⁄

0

h (Xs) ds

R

b

------
Æ M

1
2n

næŒ
æ 0.

This yields that the non-random discretization is a suitable discretization that
harmonizes with “ and h. We want to remark two things: First, one can weaken
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the boundedness assumptions to “ and h, as shown in [Bei98] by approxima-
tion with bounded functions. Second, the trade-o� for the relatively strong
restrictions on the functions is a pretty high compatibility of discrete and con-
tinuous problems. When one assumes concavity of “ and monotonicity of h,
the functions ÁhË

n are also monotone, the Y
n are random walks and hence this

immediately yields that the Sn are one-sided intervals as discussed in Subsection
3.1.3.

3.3.2 Spatial discretization
Another approach, which nicely stresses out the connection of the representing
functions f of the discrete and continuous problem, is to use a separation of the
state space instead of the time axis. Again let X be a Lévy process that fulfils
0 < E0(X1) < Œ and assume X to be no compound Poisson process. For each
k, n œ N, define ·

n

0 := 0 and

·
n

k
:= inf

I
t Ø ·

n

k≠1

---Xt œ R \

C
Â2n

X·
n
k≠1

Ê

2n
,

Â1 + 2n
X·

n
k≠1

Ê

2n

BJ
.

Again we use the obvious choice

ÁhË
n(x) := Ex

A⁄
·

n
1

0
h(Xs)ds

B

and define

Á‡Ë
n := inf

;
t Ø ‡

---Xt œ R \

5
Â2n

X‡Ê

2n
,

Â1 + 2n
X‡Ê

2n

4<

for each ‡ œ T and each n œ N (and with that also implicitly ‡̃
n). we see that

((·n

k
)kœN)

nœN is a suitable discretization and if we assume h to be continuous,
“ to be smooth enough to be in the range of the generator AX (understood in
the extended case as defined in Definition 2.6.4) of X and that for all n œ N
Dynkin’s formula is applicable to ·

n

1 , we get for each ‡ œ T

--Ex

!
“

!
XÁ‡Ën

"
≠ “ (X‡)

"-- = Ex

Q

ca

Á‡Ën⁄

‡

AX“(Xs)ds

R

db

Æ Ex

Q

caEX‡

Q

ca

·
n
1⁄

0

AX“(Xs)ds

R

db

R

db

and also
------
Ex

Q

a
‡̃

nÿ

i=1
ÁhË

n (Y n

i
) ≠

‡⁄

0

h (Xs) ds

R

b

------
Æ Ex

Q

caEX‡

Q

ca

·
n
1⁄

0

h(Xs)ds

R

db

R

db .
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Now only some boundedness assumptions are needed to ensure that both these
terms converge to zero. For example, known properties of the stopping region,
like boundedness of the continuation region and monotonicity of “, or if one
can justify only to consider bounded stopping times may help here. Instead
of going into more detail regarding this, we want to emphasize that with this
discretization one can nicely see how the representing functions of the discrete
and the continuous time problems are connected. If we denote the representing
function of the discrete time problem of stopping

“(Y n

k
) ≠

·
n
kÿ

i=1
ÁhË

n(Y n

i
)

as defined in (3.2) in Section 3.1 with fn, we see that if we first assume h = 0
and for the sake of notational simplicity also x œ

1
2n N, we have

fn(x) =
Ex

!
“(Y n

·+)
"

≠ “(x)
E(·n

1 )

=
Ex

1
“(H·̂

x+ 1
2n

)
2

≠ “(x)

E(·̂ 1
2n

)
æ AH“(x),

provided “ is in the range of the extended generator of the ladder height process
H, that was defined in Definition 2.2.14. To treat the case of arbitrary h we use
Lemma 2.6.1. With the notations used therein we see that, again for x œ

1
2n N,

Ex(ÁhË(Y n

·+))
Ex(·n

1 ) =
Ex(

s ·
x+ 1

2n

0 h(Xs)ds)
Ex(·

x+ 1
2n

)

=
Ex(

s ·̂
x+ 1

2n

0 ĥ(Hs)ds)
Ex(·̂

x+ 1
2n

)

æ ĥ(x),

provided h is smooth enough.
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3.4 A Tailor-Made Problem for Impulse Control
Later on, in the chapter about impulse control problems when it comes to solve
control problems motivated by inventory control, the need arises to solve a non-
standard stopping problem. Despite not being of the usual form of a stopping
problem, it is nevertheless in some sense similar to the stopping problem we
tackled in Section 3.2. Therefore, in this section adapt the approach developed
therein to solve the mentioned non-standard problem.

3.4.1 Notations and prerequisites
Throughout the section let X be a strong Markov process on a possibly un-
bounded interval E ™ R. Let “ : E æ R and h : E æ R be real functions and
assume:

Assumption 3.4.1. 1. For all x, y œ E with x < y we have Ex(·y) < Œ.

2. “ is non-decreasing and di�erentiable.

3. h is continuous and for all x, y œ E with x < y, we have

Ex

3⁄
·y

0
| h (Xs) | ds

4
< Œ.

Later in the chapter on impulse control problems, Corollary 4.2.9 stresses the
importance of finding an optimal stopping time for stopping problems of the
form

gTx
fl

(x) := sup
·œTx

Ex

3
“ (X· ) ≠ “ (x) ≠ K ≠

⁄
·

0
(h (Xt) + fl) dt

4
.

for all x œ E for some K œ [0, Œ) and fl œ R, where the optimal stopping time
is required to be in the set

Tx = {· œ T | X· Ø x Px a.s. }.

This type of problem deviates from standard ones twofold. First, only stopping
above the starting point is allowed, which makes it impossible to straightfor-
wardly exploit the Markovian structure. Second, the pay-o� depends on the
starting point. Despite this special structure of the problem, the techniques we
developed in the previous section can be modified and adapted to this scenario.
A first step herein is to instead show that a threshold time is optimal for the
stopping problem given by

g
Tx
fl

(x) := sup
·œTx

Ex

3
“ (X· ) ≠

⁄
·

0
(h (Xt) + fl) dt

4

for all x œ E for a large enough set of starting points. Then, we will show that
in order to find

G(fl) := sup
xœE

gTx
fl

(x)
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– and that value is what we actually have to get a grip on later on in Chapter
4 – it su�ces to know that a threshold time is optimal in the mentioned set of
starting points by making sure the supremum in G(fl) is attained on that set.
In the following, we fix a fl œ R and establish su�cient conditions for a threshold
time ·a to be an optimizer for g

Tx
fl

(x) and partition the state space R in a set
where this threshold time is the optimal one and a set that does not contribute
to the supremum in G. The main tool to characterize the pay-o� functions, or
more precisely the pairs (“, h) of pay-o� function and running costs, for this
to hold is again a representation of “ in terms of expected running suprema
of integral type as in (2.5). As in the previous section, we use the maximum
representation to find a solution on (≠Œ, y] for given y and later on by again
utilizing upper regularity show that our obtained optimizers in fact already are
general optimizers if y is chosen large enough.
Now, step-by-step, we modify the arguments of the previous chapter to work
in this particular setting. The adapted maximum representation we need here
reads as follows:
Assumption 3.4.2. We assume that there is a function f : E æ R such that:

1. For all x, y œ E with x Æ y

“ (x) = ≠Ex

5⁄
·y

0
f

!
Xt

"
dt

6
+ Ex

5
“

1
X·y

2
≠

⁄
·y

0
h (Xs) ds

6
.

2. The function f has a unique maximum a œ E, is strictly increasing on
(≠Œ, a] fl E and strictly decreasing on [a, Œ) fl E.

We again silently identify Px and P(x,x) with each other, whenever the running
maximum occurs as described in Remark 2.1.8. While for the unrestricted
stopping problem a unique root of the function f therein was needed, our aim
to apply this stopping problem in the context of impulse control later on requires
some di�erent structure of the function f . There are main two reasons. First, to
tackle the impulse control problem, we need the solution of a stopping problem
not just for one particular fl but for a range of fl. Second, the representing
function f will also be used to determine the optimal restarting point for the
control problem. These reasons lead to the following assumption in addition to
Assumption 3.4.2 regarding the roots of f . We introduce the notation

ffl := f ≠ fl

for each fl œ R and for this section fix a fl œ R such that the following assumption
holds:
Assumption 3.4.3. The function ffl has exactly two roots x, x œ E with x < x,
is positive on (x, x) and negative on (x, x).
Note that Assumption 3.4.2 implies that, if Assumption 3.4.3 holds, f is negative
on [x, x]c. Again we will work with upper regular stopping times as defined in
Definition 3.2.3. Additionally, define for all y œ E the set

Uy := {· œ Ty | · is upper regular}.
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3.4.2 Proof that in the relevant cases a threshold time is
optimal

With all definitions and assumptions at hand, we are now able to prove a re-
finement of Lemma 3.2.4.

Lemma 3.4.4. For all x œ E we have

g
Tx
fl

(x) = sup
·œUx

Ex

3
“ (X· ) ≠

⁄
·

0
(h (Xs) + fl) ds

4
.

Proof. This proof works just as the one for Lemma 3.2.4, with the small alter-
ation of the definition

‡n := · · inf{t Ø 0 | Xt Ø n + y}

to ensure that ‡n œ Un for all n œ N.

The analogue to the embedded monotone problem here reads as follows.

Lemma 3.4.5. Let x, y œ E with x Æ y. For ay := y · x holds

sup
·Æ·y

Ex

5⁄
·

0
ffl

!
Xt

"
dt

6
= Ex

5⁄
·ay

0
ffl

!
Xt

"
dt

6
.

Proof. This is a direct consequence of the properties of f posed upon it in
Assumptions 3.4.2 and 3.4.3 as well as the monotonicity of X.

Remark 3.4.6. The claim of the Lemma above even holds pathwise.

In Section 3.2 the structure of the function f divides the real line into stopping
and continuation region in a very beautiful manner since one is the support of
f

≠ := max{0, ≠f}, the other the support of f
+ := max{0, f}. The control

problem we want to solve later with this stopping problem here needs the func-
tion f also to determine where to restart the process again. But that requires
ffl to have another root, as postulated in Assumption 3.4.3, and therefore bears
a somehow conflicting nature to the nice relation of f towards the one-sidedness
of the problem. To work around that obstacle, intuitively our approach can
be interpreted as follows: we show that right from the second root of ffl the
monotonicity arguments of the previous section still work and the rest of the
starting points are not important in a way that will clarify when we treat the
impulse control problem later in its full extent. The next ingredients, a simpli-
fying assumption and a lemma, need to be read in that light. Also the version
of the main result, Theorem 3.4.9, entails this distinction in a statement about
the ’important’ part of the real line and a part that ensures that the rest of the
real line indeed is unimportant.
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Lemma 3.4.7. For all x œ E holds

Ex

5⁄
·x

0
f

+
fl

!
Xt

"
dt

6
Æ sup

xúœ[x,x]
Exú

5⁄
·x

0
f

+
fl

!
Xt

"
dt

6
.

Proof. Let ‘ > 0 and take a x
ú

œ [x, x] such that

Exú

5⁄
·x

0
f

+
fl

!
Xt

"
dt

6
+ ‘ Ø sup

xÕœ[x,x]
ExÕ

5⁄
·x

0
f

+
fl

!
Xt

"
dt

6
.

Now for each x œ E with x Ø x we have

Ex

5⁄
·x

0
f

+
fl

!
Xt

"
dt

6
= 0

=Ex

5⁄
·x

0
f

+
fl

!
Xt

"
dt

6

ÆExú

5⁄
·x

0
f

+
fl

!
Xt

"
dt

6
+ ‘.

And for each x Æ x we get

Ex

5⁄
·x

0
f

+
fl

!
Xt

"
dt

6
= Ex

C⁄
·x

·x

f
+
fl

!
Xt

"
dt

D

= Ex

C
Ex

C⁄
·x

·x

f
+
fl

!
Xt

"
dt

---F·x

DD

= Ex

5
EX·x

5⁄
·x

0
f

+
fl

!
Xt

"
dt
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Æ Ex

5
Exú

5⁄
·x

0
f

+
fl

!
Xt

"
dt

6
+ ‘

6

= Exú

5⁄
·x

0
f

+
fl

!
Xt

"
dt

6
+ ‘.

Now to avoid the need to introduce such an ‘ as in the previous proof each
time, we use Lemma 3.4.7 and by that further complicate the notation, we will
assume, an optimizer for the supremum used in Lemma 3.4.7 exists. Later we
will see that in many cases of interest under fairly general conditions such an
optimizer indeed exists.

Assumption 3.4.8. There is an x
ú

œ [x, x] such that for all x œ E:

Ex

5⁄
·x

0
f

+
fl

!
Xt

"
dt

6
Æ Exú

5⁄
·x

0
f

+
fl

!
Xt

"
dt

6
.

Now we have everything at hand to state and prove the main theorem of this
subsection.



3.4. A TAILOR-MADE PROBLEM FOR IMPULSE CONTROL 59

Theorem 3.4.9. 1. For all x œ E fl [x, Œ) holds

g
Tx
fl

(x) = Ex

3
“

!
X·x

"
≠

⁄
·x

0
(h (Xs) + fl) ds

4

and

gTx
fl

(x) = Ex

3
“

!
X·x

"
≠ K ≠ “(x) ≠

⁄
·x

0
(h (Xs) + fl) ds

4
.

2. For all x œ E fl (Œ, x) holds

gTx
fl

(x) Æ gTxú
fl

(xú) .

Proof. We define our candidate for the value function by setting for all x œ R

g̃ (x) := Ex

5
“

!
X·x

"
≠

⁄
·x

0
h ≠ fl (Xs) ds

6
.

Lemma 3.4.4 tells us that it su�ces to show

g̃ (x) Ø sup
·œUx

Ex

3
“ (X· ) ≠

⁄
·

0
(h (Xs) + fl) ds

4

for all x œ E fl [x, Œ) in order to prove g
Tx
fl

(x) = g̃(x) for all x œ E fl [x, Œ).
Let x œ E. Let · œ Ux be an upper regular stopping time and fix a y > x such
that · Æ ·y Px a.s. Then, we have
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Ex

5
“ (X· ) ≠
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·
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(h (Xs) + fl) ds
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5
“

1
X·y

2
≠

⁄
·y
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(h (Xs) + fl) ds

6

=Ex

;
1{·Æ·x}Ex

5⁄
·y

·

≠ffl

!
Xt

"
dt

---F·

6<

+ Ex

;
1{·>·x}Ex

5⁄
·y

·

≠ffl

!
Xt

"
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---F·

6<

+ Ex

5
“

1
X·y

2
≠

⁄
·y

0
(h (Xs) + fl) ds

6

= ...



3.4. A TAILOR-MADE PROBLEM FOR IMPULSE CONTROL 61

... =Ex

;
Ex

5
1{·Æ·x}
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Xt
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dt
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⁄
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C
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5
“
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X·y
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≠

⁄
·y

0
(h (Xs) + fl) ds

6

3.4.2= Ex

5
1{·Æ·x}

⁄
·y

0
≠ffl

!
Xt

"
dt

6

+ Ex

C
1{·>·x}

⁄
·y

·x

≠ffl

!
Xt
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D

+ “ (x) + Ex

5⁄
·y

0
ffl

!
Xt

"
dt

6

=“ (x) + Ex

5
1{·>·x}

⁄
·x

0
ffl

!
Xt

"
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6

= : ı.

To prove the claim, we have to distinguish the cases x Æ x and x > x. If x Ø x,
applying the identity from Assumption 3.4.2 yet another time yields

ı Æ “ (x) + Ex

5⁄
·x

0
f

+
fl

!
Xt

"
dt

6

= Ex

5
“

!
X·x

"
≠

⁄
·x

0
(h (Xs) + fl) ds

6

= g̃(x).

This shows

g
Tx
fl

(x) = Ex

3
“

!
X·x

"
≠

⁄
·x

0
(h (Xs) + fl) ds

4

and

gTx
fl

(x) = Ex

3
“

!
X·x

"
≠ K ≠ “(x) ≠

⁄
·x

0
(h (Xs) + fl) ds

4
.
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If x < x, we get by using Lemma 3.4.7 and an x
ú

œ [x, x] as defined in Assump-
tion 3.4.8

ı ≠ “(x) ≠ K = Ex

5
1{·>·x}

⁄
·x

0
ffl

!
Xt

"
dt

6
≠ K

< Exú

5⁄
·x

0
f

+
fl

!
Xt

"
dt

6
≠ K

= Exú

C
“

!
X·x

"
≠

⁄
x

0
h (Xs) + fl ds

D
≠ “(xú) ≠ K

Æ g·xú (xú),

this yields
g·x(x) Æ g·xú (xú).
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This chapter treats long-term average impulse control problems for Markov pro-
cesses with generalized linear running costs. Under minimal conditions we char-
acterize the long-term average impulse control problem with super-martingales
and from that deduce a general verification theorem. Further, also under min-
imal conditions on the underlying process we characterize the impulse con-
trol problem by an associated stopping problem. The connection to super-
martingales in Theorem 4.2.1 and the connection to a stopping problem in and
after Theorem 4.2.7 can be viewed as a type of long-term average analogous to
the results for discounted problems from [Chr14] we described in Section 1.2.
The characterization by a stopping problem of the type solved in Section 3.4
leads to one of the main results of this chapter, namely that given an integral
type maximum representation as in Assumption 3.4.2 exists an (s, S)-strategy
is optimal and S is given in easy terms of the maximum representation. We fur-
ther give conditions under that s is also given in a similar way. This theoretical
result will be the basis for a step-by-step solution technique for Lévy processes
that leads to nice (semi-)explicit solutions in many interesting special cases.

Structure of the chapter
In Section 4.1 we introduce the necessary notations for the following proofs, de-
fine and motivate the problem and collect a bunch of necessary general results
as well as some first insights on the structure of the problem that will be needed
later.
In Section 4.2 we first prove a verification theorem utilizing super-martingale
techniques. Then, we characterize the value of the control problem by a value
of a ’tailor-made’ stopping problem, that we treated in Section 3.4. We show
that, provided this stopping problem has an optimizer and an optimal restarting
point can be found, this optimizer can be used to construct an optimal strategy
for the control problem.
In Section 4.3 we discuss, under what conditions such an optimal restarting point
exists and then condense our findings to what can be viewed as the theoretical
main result of this chapter, maybe even the whole thesis, Theorem 4.3.2. From
Section 4.4 on, we focus on Lévy processes and under some conditions in Sub-
section 4.4.1 derive a characterization of the optimal restarting point by using
the maximum representation. In Subsection 4.4.2 we condense our findings to
an explicit step-by-step solution technique and illustrate the applicability of our
technique by demonstrating how to show existence of optimal (s, S)-strategies
in quite general settings that cover many examples of interest.
Subsection 4.4.4 is devoted to the proof of the validity of the solution technique.
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4.1 Detailled Setup and General Results
First, we formally state the problem, give detailed definitions and introduce
the necessary notations. Then, we collect some elementary results and discuss
degenerate cases.

4.1.1 Notation and prerequisites
Let X be a strong Markov process on a possibly unbounded interval E ™ R as
defined in Definition 2.1.3. Let “ : E æ R and h : E æ R be real functions, such
that Assumption 3.4.1 is fulfilled. Note that these assumptions and prerequisites
are the same as posed upon process and functions in Section 3.4 what makes
the results there applicable.

Model of the controlled process
To model the controlled process for underlying general Markov processes re-
quires a bit of technical work and is usually done by constructing a new prob-
ability measure that resembles the distribution of the controlled process. Most
works on impulse control problems refer to the dissertation [Rob81] where a
construction is given. [Ste83] provides a reference in English, that itself refers
to [Rob81]. [Chr14] provides a more recent source for the construction that,
despite in principle being the same construction as in the previously mentioned
works, outlines some other aspects of the construction and especially mentions
the importance to be able to distinguish the values of the process at the exact
time of the control right before and after the control is exercised (note that this
discussion may be found in [Chr14, Section 2] and not in [Chr14, Appendix],
where the model itself is constructed). Here, we will use the same model as
[Rob81, Ste83, Chr14], albeit go into a bit more detail than the latter two
works, that seem to be the only references in English for the model.
Axiomatically the model should fulfil the following:

• A control strategy S = (·n, ’n)
nœN should consist of a sequence of increas-

ing stopping times (·n)
nœN and F·n-measurable random variables ’n, that

indicate whereto the process is shifted.

• Between the controls the controlled process evolves following the initial
Markovian dynamics of X.

• At the time of a control ·n we have to be able to work with the value
of the controlled process ’right before the control’, or to be more precise,
at time ·n but with the control not having taken place yet, that we call
X

S

·n,≠, which in general (for processes with jumps) may deviate from both
the value X

S

·n
= ’n at time ·n after the control has taken place and the

left limit X
S

·n≠.

To model the controlled process, we work on the new state space �̃ = �N. A
control strategy S = (·n, ’n)

nœN is defined as a sequence consisting of a sequence
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of increasing stopping times (·n)
nœN in T (as defined in Definition 2.1.5, 1. with

the obvious adaptation of T to the new space). When calling the ·i stopping
times, it is not clear with respect to which filtration. For all n œ N

·n shall be a

Q

a
p

iÆn

Ft ¢

p

iœN,i>n

{ÿ, �}

R

b

tœ[0,Œ)

stopping time

and

’n shall be
p

iÆn

F·n ¢

p

iœN,i>n

{ÿ, �} ≠ measurable,

such that “(’n) is integrable (as the new ’default’ probability measure we take
P̃ :=

o
nœN P). Now define for each n œ N and each (Êi)iœN œ �̃

X
n ((Êi)iœN) := X(Ên).

We construct a new probability measure by setting for all n œ N, all x œ E, all
t œ [0, Œ) and all measurable sets A1, ..., An, An+1

F̃
n :=

p

iÆn

F·n ¢

p

iœN,i>n

{ÿ, �}

and

PS

x

!
X

i

·n+t
œ Ai, ’i Æ n + 1 | F̃

n
"

:=
Ÿ

iÆn

”Xi
·i

(Ai)P’n(Xt œ An+1)

on the set {·n + t < ·n+1}, where ” denotes the Dirac measure. Now we define
the trajectories of the controlled process X̃ by

X̃t((Êi)iœN) := X
n

t
(Ên)

for all (Êi)iœN œ �̃, t œ [0, Œ), where n œ N is chosen such that t œ [·n≠1, ·n)
(with ·0 := 0). Note that this implies

X̃·n = ’n

and to take care of the third point from the requirements on the controlled
process listed above we set

X̃·n,≠ := X
n

·n

to describe the value of the process at time ·n, but right before the n-th control
is exercised. When working with general Markov processes in the following we
will always tacitly assume this change of underlying probability space and this
construction of controlled processes and suppressing the ’ã’ and just write X,
P, etc. as it is common in the literature. Further, we slightly abuse the notation
by writing

P(XS
œ ·) := PS(X̃ œ ·)
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although of course we do not have absolute continuity. Also, while this model
serves its purpose well for most theoretical aspects, when it comes to applica-
tions and with that specifications of the underlying process, not to be able to
compare paths of the process controlled with di�erent control strategies might
raise some issues, as, for example, may be seen in Chapter 6. This amplifies the
need for suitable couplings or path-wise constructions of the controlled process.
Thus, whenever we work with di�usions or our main case of interest in this
treatise, Lévy processes, we work with path-wise construction that are given in
the following.

Model for di�usions In the case that X is a Itô di�usion as defined in
Definition 2.3.2 with di�usion coe�cients µ and ‡ as defined ibd. we may stay on
the initial filtered probability space and define a control strategy by a sequence
S = (·n, ’n)nœN where (·n)nœN œ T

N (where T is defined in Definition 2.1.5,
Part 1.) and each ’n is a F·n -measurable random variable. Then, we define the
controlled process X

S by

X
S

t
= X

S

0 +
t⁄

0

µ(XS(s)) ds +
t⁄

0

‡(XS

s
) dWs ≠

ÿ

n; ·nÆt

(XS

·n≠ ≠ ’n),

where W is the same Brownian motion used to construct the uncontrolled pro-
cess. Further, due to the sample paths being continuous we may set

X
S

·n,≠ := X
S

·n≠

as the left limit for all n œ N.

Model for Lévy processes If X is a Lévy process as defined in Definition
2.2.1 with E(X1) œ (0, Œ) we again may work on the original filtered probability
space, again model a control strategy S = (·n, ’n)nœN by a sequence of stopping
times (·n)nœN œ T

N (where T is defined in Definition 2.1.5, Part 1.) and each
’n is a F·n-measurable random variable. Then, we set

X
S

t
:= Xt ≠

ÿ

n;·nÆt

!
X

S

·n,≠ ≠ ’n

"
(4.1)

for each strategy S = (·n, ’n)
nœN. Herein we use

X
S

·n,≠ := X·n ≠

n≠1ÿ

i=1

!
X

S

·i,≠ ≠ ’i

"

for the value right before the n-th shift (Note that here indeed due to X not
being continuous this value may deviate from both X

S

·n
and X

S

·n≠).

Remark 4.1.1. Note that in full generality the explicit constructions of the
model for Lévy processes are not directly couplings for the family of the controlled
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processes constructed by the general model, since in the general model there might
be a richer filtration. But this may be addressed by just enlarging the filtrations
in the explicit models; as it is commonly known for Markov processes, this does
not change the optimal value of the control problem.

Value function and admissible strategies

We define the long-term average value of the process controlled by a strategy
S = (·n, ’n) by

Jx (S) := lim inf
T æŒ

1
T
Ex

Q

a
ÿ

n:·nÆT

!
“

!
X

S

·n,≠
"

≠ “ (’n) ≠ K
"

≠

T⁄

0

h
!
X

S

s

"
ds

R

b

for all x œ E where “ is the so called pay-o� function, K Ø 0 models fixed costs
and h is called running costs. Further, for each B ™ E we define SB as the set
of all control strategies S = (·n, ’n)

nœN such that X
S

·n,≠ Ø ’n œ B a.s. under all
Px for all n œ N and call all elements of SB admissible strategies. We always
assume that SB ”= ÿ. Fix a B ™ E throughout the following sections and let

v (x) := sup
SœSB

Jx (S) (4.2)

define the value function for all x œ E.
Before defining further necessary objects, let us make one remark on some of the
assumptions. The Assumption 3.4.1, 3 is a quite natural one to make. With-
out this condition, the state space is basically divided in two or more regions
such that we cannot let the process go from one region to the another by itself,
otherwise we have to pay an infinite amount of costs. So in this case we would
basically end up with several disjoint control problems, depending on the start-
ing point. On the other hand, with the later developed tools and notations it
will be clear that the Assumption 3.4.1, 3 is not too restrictive and holds in all
interesting examples for h. Especially in the case of an underlying Lévy process
the finiteness of the integral depends mainly on the length and amplitude of
excursions from the maximum of X and since these are for Lévy processes not
dependent on the starting point, these integrals for most functions h will be
finite either for all or for no pairs of points x, y œ E with x < y.

Some important stopping times and strategies

Since these strategies occur frequently later on, we set Tx := Tx(“, h) for all
x œ E as defined in Definition 2.1.5, 2. For all · œ Tx we set

·1 := ·,

·n := · ¶ ◊·n≠1 + ·n≠1 for all n > 1
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and set R (·, x) := (·n, x)
nœN. Note that R (·, x) = (·n, x)

nœN is an admissible
strategy whenever Ex (·) > 0 and x œ B.
We call these strategies admissible stationary strategies. Note that this name is
not only justified by the stationarity in the controller’s action. The controlled
process also possesses a stationary distribution.

Lemma 4.1.2. For each admissible stationary strategy R(·, x), · œ Tx, a lim-
iting distribution for the process X

R(·,x) (or more precisely for the process X

under the measures PR(·,x)
y

, y œ E), denoted by �R(·,x), exists and is given by
⁄

f(x)�R(·,x)(dx) = 1
Ex·

Ex

⁄
·

0
f(Xs)ds.

Proof. It is immediately seen that X
R is a regenerative processes in the sense

of Section 2.4, therefore the result follows by Lemma 2.4.4.

We call all stationary strategies R(·y, x) given by a threshold time ·y for some
y > x threshold strategies and shortly write R(y, x) := R(·y, x).

4.1.2 Degenerate case
As last precaution, we take a look at the degenerate case that an infinite gain
per period is possible.

Lemma 4.1.3. If there is x œ B and · œ Tx such that

Ex

5
“ (X· ) ≠

⁄
·

0
h (Xs) ds

6
= Œ,

then v (y) = Œ for all y œ E.

Proof. We take the strategy S := (·i, x)
iœN := R (·, x), write �·i := ·i ≠ ·i≠1

for all i œ N and, making use of Lemma 2.4.2, we first show that Jx (S) = Œ.
To that end we split h up in positive and negative part. Define for all i œ N

Ri := “

1
X

S

·i,≠

2
≠ “ (x) ≠ K.

Now (�·i, Ri)iœN is a sequence of i.i.d. random variables under Px, but the Ri

violate the integrability requirements of Lemma 2.4.2. To circumvent that issue,
we note that since for all i œ N

Ri

d= “ (X· ) ≠ “ (x) ≠ K,

under Px and since · œ Tx for the negative part R
≠
1 of R1 we have Ex

!
R

≠
1

"
< Œ.

Hence, for all a > 0 the random variable Ri·a is integrable, and (�·i, Ri · a)
iœN

fulfils the requirements of Lemma 2.4.2. This yields

1
T
Ex

Q

a
N(T )ÿ

i=1
Ri · a

R

b T æŒ
æ

Ex (R1 · a)
Ex (·)
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where N (t) := sup{n œ N0 | ·n Æ t}. We tackle the running cost term also with
Lemma 2.4.2. To this end write h

+ := max{h, 0} and h
≠ := max{≠h, 0}. We

define

Q
+
i

:=
⁄

·i

·i≠1

h
+ !

X
S

s

"
ds

and

Q
≠
i

:=
⁄

·i

·i≠1

h
≠ !

X
S

s

"
ds

and note that for each ú œ {+, ≠} the process (�·i, Q
ú
i
)
iœN also fulfils the

requirements of Lemma 2.4.2 because · œ Tx implies that
s

·

0 | h(Xs) | ds < Œ

and hence we get for each ú œ {+, ≠}

1
T
Ex

Q

a
T⁄

0

h
ú !

X
S

s

"
ds

R

b

Æ
1
T
Ex

Q

a
·N(T )+1⁄

0

h
ú !

X
S

s

"
ds

R

b

= 1
T
Ex

Q

a
N(T )+1ÿ

i=1
Q

ú
i

R

b

T æŒ
æ

Ex (Qú
1)

Ex (·)

=
Ex

!s
·

0 h
ú (Xs) ds

"

Ex (·)
=: C

ú
.

Now for each T Ø 0 and each a Ø 0:

1
T
Ex

Q

a
ÿ

n:·nÆT

!
“

!
X

S

·n,≠
"

≠ “ (x) ≠ K
"

≠

T⁄

0

h
!
X

S

s

"
ds

R

b

Ø
1
T
Ex

Q

a
N(T )ÿ

n=1
(Rn · a) ≠

T⁄

0

h
!
X

S

s

"
ds

R

b

T æŒ
æ

Ex (R1 · a)
Ex (·) ≠ C

+ + C
≠

.

Now the monotone convergence theorem yields

lim
aæŒ

Ex (R1 · a) = Ex (R1) = Œ
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and we finally get

1
T
Ex

Q

a
ÿ

n:·nÆT

!
“

!
X

S

·n,≠
"

≠ “ (x) ≠ K
"

≠

T⁄

0

h
!
X

S

s

"
ds

R

b T æŒ
æ Œ.

It remains to show that also for all y œ R with y ”= x holds Jy (S) = Œ. This can
be easily done by adding a new first control to the strategy constructed above,
where we shift the process back to x as soon it exceeds x for the first time.
Assumption 3.4.1, 3. ensures that this is still an admissible control strategy and
the renewal processes we worked with above then are delayed renewal processes,
hence the renewal theoretic results we used still hold, as is worked out, e.g., in
[Asm03].

4.2 Connection to Martingales and Optimal Stop-
ping

This section aims to characterize the control problem in a general manner in
order to unveil inherent structures and forge links to neighbouring fields. When
looking at the more extensively studied control problems with discounting, in
[Chr14] the value function was characterized as the smallest super-harmonic
majorant h of the pay-o� function that su�ced h Ø Mh for the maximum
operator M , see Section 1.2 or directly in [Chr14, Proposition 2.2]. Further,
therein was a connection made between the value function of the control prob-
lem and a connected value function of a stopping problem. The two main
results of this section can – in a very broad sense – be understood as the ana-
logue for the long-term average control problems. Because the value function of
the long-term average control problem often is constant, no direct connection to
superharmonic functions can be made, but, nevertheless, the idea behind that
characterization still can be used. So, in Theorem 4.2.1 we use an underlying
super-martingale to describe value and optimal strategy by a function occuring
in the super-martingale. The second part, which is also one of the main ingre-
dients of the solution technique we will present in Section 4.4.2, connects the
control problem to an associated optimal stopping problem, even more directly
than in the discounted case. In Theorem 4.2.7 and the corollaries thereafter it
is shown that the value of the long-term average control problem can directly be
derived from the value of a stopping problem. It is also shown that an optimal
stopping time for said stopping problem and an optimal starting point for the
problem can be merged to an optimal control strategy.

4.2.1 Super-martingale type verification theorem
The main theorem of this subsection, Theorem 4.2.1, establishes su�cient con-
ditions for a strategy to be an optimizer and a real number to be the value of the
control problem by super-martingale techniques. While it does not explicitly
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provide optimal strategies or candidates for the value function, it may serve as
a verification theorem.

Theorem 4.2.1. Let g : E æ R be a measurable function, let u be defined by

u (x, y) = “ (x) ≠ “ (y) ≠ K ≠ g (x) + g (y)

for all x, y œ E with y Æ x, let fl œ R and define

M :=
3

g (Xt) ≠

⁄
t

0
(h (Xs) + fl) ds

4

tØ0

and for each S œ SB set

M
S :=

3
g

!
X

S

t

"
≠

⁄
t

0

!
h

!
X

S

s

"
+ fl

"
ds

4

tØ0
.

(i) Assume

(a) M is a super-martingale under Px for all x œ E,
(b)

lim sup
T æŒ

Exg
!
X

S

T

"

T
Ø 0 for all S œ SB , x œ E,

(c)
u (x, y) Æ 0 for all x œ E, y œ B with y Æ x.

Then
v (x) Æ fl for all x œ E.

(ii) If there is a strategy S
ø =

!
·

ø
n

, ’
ø
n

"
nœN œ SB such that

(a)

Ex

1
M

·
ø
n·T,≠ ≠ M

·
ø
n≠1·T

2
Ø 0 for all n œ N, x œ E, T Ø 0,

(b)

lim
T æŒ

Exg

1
X

S
ø

T

2

T
Æ 0 for all x œ E,

(c)
u

1
X

·
ø
n,≠, ’

ø
n

2
Ø 0 PS

ø

x
-a.s. for all x œ E, n œ N.

Then,
v (x) Ø Jx

!
S

ø"
Ø fl, for all x œ E.
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(iii) If (i) holds and a strategy S
ú = (·ú

n
, ’

ú
n
)
nœN œ SB as in (ii) exists, then

v (x) = fl for all x œ E

and S
ú is optimal in SB in the sense that v (x) = Jx (Sú) for all x œ E.

Proof. We first fix S = (·n, ’n)
nœN œ SB and T > 0 and assume the conditions

(a), (b), (c) in (i) to hold. Since the process X
S uncontrolledly follows the

initial dynamic of X on each interval [·k≠1, ·k), the optional sampling theorem
yields that Ex

1
M

S

·k·T,≠ ≠ M
S

·k≠1·T

2
Æ 0 for each k œ N, x œ R. Hence,

Ex

S

U
ÿ

nœN:·nÆT

!
“

!
X

S

·n,≠
"

≠ “ (’n) ≠ K
"

≠

⁄
T

0
h

!
X

S

s

"
ds

T

V

Æ Ex

S

U
ÿ

nœN:·nÆT

!
“

!
X

S

·n,≠
"

≠ “ (’n) ≠ K
" ⁄

T

0

⁄
T

0

⁄
T

0

ÿ

T

⁄
T

0
≠

Œÿ

k=1

1
M

S

·k·T,≠ ≠ M
S

·k≠1·T

2
≠

⁄
T

0
h

!
X

S

s

"
ds

D

= Ex

S

U
ÿ

nœN:·nÆT

!
“

!
X

S

·n,≠
"

≠ “ (’n) ≠ K
"

≠

Œÿ

k=1

A
g

!
X

S

·k·T,≠
"

≠ g

1
X

S

·k≠1·T

2 ÿ

TT

⁄
·

0

ÿ

T

⁄
T

0
≠

⁄
·k·T

·k≠1·T

h
!
X

S

s

"
ds ≠ fl (·k · T ) + fl (·k≠1 · T )

B
≠

⁄
T

0
h

!
X

S

s

"
ds

D

= Ex

S

U
ÿ

1Æn:·nÆT

Q

a“
!
X

S

·n,≠
"

≠ “ (’n)
ÿ

nœN:·nÆT

⁄
T

0

ÿ

nœN:·nÆT

⁄
T

0
≠ K ≠ g

!
X

S

·n,≠
"

+ g (’n)

R

b ≠ g
!
X

S

T

"
+ g

!
X

S

0
"

+ flT

T

V

= Ex

S

U
ÿ

1Æn:·nÆT

u
!
X

S

·n,≠, ’n

"
T

V ≠ Exg
!
X

S

T

"
+ g (x) + flT

Æ ≠Exg
!
X

S

T

"
+ g (x) + flT.

Dividing by T and taking the limit T æ Œ, we obtain the first assertion.
To prove (ii), we see that similar calculations for a strategy S

ø as defined in (ii)
yield
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Ex

S

U
ÿ

nœN:·ø
nÆT

1
“

1
X

S
ø

·
ø
n,≠

2
≠ “

!
’

ø
n

"
≠ K

2
≠

⁄
T

0
h

1
X

S
ø

s

2
ds

T

V

Ø Ex

S

U
ÿ

nœN:·ø
nÆT

1
“

1
X

S
ø

·
ø
n,≠

2
≠ “

!
’

ø
n

"
≠ K

2

ÿ

T

⁄
T

0
≠

Œÿ

k=1

3
M

S
ø

·
ø
k

·T,≠ ≠ M
S

ø

·
ø
k≠1·T

4
≠

⁄
T

0
h

1
X

S
ø

s

2
ds

D

= Ex

S

U
ÿ

nœN:·ø
nÆT

1
“

1
X

S
ø

·
ø
n,≠

2
≠ “

!
’

ø
n

"
≠ K

2

ÿ

T

⁄
T

0
≠

Œÿ

k=1

A
g

1
X

S
ø

·
ø
k

·T,≠

2
≠ g

3
X

S
ø

·
ø
k≠1·T

4 ⁄
T

T

TT

ÿ

T

⁄
T

0
≠

⁄
·

ø
k

·T

·
ø
k≠1·T

h

1
X

S
ø

s

2
ds ≠ fl·

ø
k

· T + fl·
ø
k≠1 · T

B
≠

⁄
T

0
h

1
X

S
ø

s

2
ds

D

= Ex

S

U
ÿ

1Æn:·ø
nÆT

A
“

1
X

S
ø

·
ø
n,≠

2
≠ “

!
’

ø
n

" ÿ

T

⁄
T

0

ÿ

T

⁄
T

0
≠ K ≠ g

1
X

S
ø

·
ø
n,≠

2
+ g

!
’

ø
n

"
B

≠ g

1
X

S
ø

T

2
+ g

1
X

S
ø

0

2
+ flT

D

= Ex

S

U
ÿ

1Æn:·ø
nÆT

u

1
X

S
ø

·
ø
n,≠, ’

ø
n

2
T

V ≠ Exg

1
X

S
ø

T

2
+ g (x) + flT

Ø ≠Exg

1
X

S
ø

T

2
+ g (x) + flT.

Again T æ Œ yields the claim.
Lastly, (iii) is a direct consequence of (i) and (ii).

4.2.2 Reduction to stopping
In this subsection we characterize the value of the impulse control problem by
the value of a stopping problem that in a way resembles the maximal gain
with one control. In that process we also show that optimal stopping times for
that stopping problem, when repeatedly used, form an optimal control strategy,
provided an optimal restarting point exists. For all x, y œ E and all fl œ R we
set

g
Ty
fl

(x) := sup
·œTy

Ex

3
“ (X· ) ≠

⁄
·

0
(h (Xt) + fl) dt

4
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and

gTy
fl

(x) := sup
·œTy

Ex

3
“ (X· ) ≠ “ (x) ≠ K ≠

⁄
·

0
(h (Xt) + fl) dt

4
.

Recall that herein Ty was defined as the set of all stopping times · with
Ey (·) < Œ as well as Ey

!s
·

0 | h (Xs) | ds
"

< Œ and X· Ø y under Py for all
y œ E, see Definition 2.1.5.

Remark 4.2.2. Looking at the definition of T and Ty, we see that for all
x, y œ E the expressions g

Ty
fl (x) and g

Ty
fl (x) are well defined and further

≠K Æ gTx
fl

(x) since immediate stopping is allowed is the case y = x.

Definition 4.2.3. We define

G : E æ [≠K, Œ]; fl ‘æ sup
xœB

gTx
fl

(x) .

Lemma 4.2.4. G is decreasing, on G≠1 ((≠K, Œ)) even strictly decreasing,
convex and continuous on R\ {—} where — := sup{fl œ R | G (fl) = Œ} (with the
convention inf ÿ = Œ = ≠ sup ÿ).

Proof. The monotonicity is clear, G is convex as supremum over a�ne functions,
hence also continuous on R \ {—}.

Lemma 4.2.5. There is a fl
+

œ R such that G(fl+) > 0.

Proof. Here Assumption 3.4.1 comes into play. We take x œ B and y œ E with
x < y and Ex(·y) ”= 0. Note that this is possible since otherwise the only element
in B would be the supremum of E and hence SB = ÿ which by assumption must
not hold. Assumption 3.4.1 ensures Ex(·y) < Œ and Ex(

s
·y

0 h(Xs)ds) < Œ.
Hence, if we set

fl
+ :=

Ex(
s

·y

0 h (Xt) dt) + K + 1
Ex(·y) ,

then we have, since “ is non-decreasing,

Ex

3
“

!
X·y

"
≠

⁄
·y

0

!
h (Xt) + fl

+"
dt

4
≠ “ (x) ≠ K

Ø ≠ Ex

3⁄
·y

0
h (Xt) dt

4
≠ K + fl

+Ex(·y)

> 0

This yields gTx

fl+(x) > 0 and hence also G(fl+) = sup
xœB

g
Tx

fl+(x) > 0.

Definition 4.2.6. We define

fl
ú := sup{fl œ R | G (fl) > 0}.
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Note that due to the monotonicity

fl
ú = inf{fl œ R | G (fl) Æ 0}

and if fl
ú

”= —, fl
ú is the only root of G (In the case fl

ú = — the function G may
jump from infinity to a negative value). Now, in the following, we show that
v (y) = fl

ú for all y œ E.

Theorem 4.2.7. For all fl œ R with G (fl) œ R holds

G (fl) > 0 … ’x œ E : v (x) > fl.

Proof. If there is an x œ B and a stopping time · œ Tx, such that
Ex (“ (X· )) = Œ. Then, Lemma 4.1.3 yields the equivalence, therefore, in
the following, we assume that no such stopping time exists. First, let fl œ R
such that for all x œ E holds v (x) > fl. Then, there is an admissible strategy
S = (·n, ’n) œ SB such that

lim inf
T æŒ

1
T
Ex

Y
]

[
ÿ

1Æn:·nÆT

!
“

!
X

S

·n,≠
"

≠ “ (’n) ≠ K
"

≠

⁄
T

0
h

!
X

S

s

"
ds

Z
^

\ > fl

and due to excluding strategies with an infinite gain in one period or infinite
costs in one period, we also have

lim inf
T æŒ

1
T
Ex

Y
]

[
ÿ

1Æn:·n≠1ÆT

A
“

!
X

S

·n,≠
"

≠ “ (’n≠1) ≠ K ≠

⁄
·n

·n≠1

h
!
X

S

s

"
ds

BZ
^

\ > fl,

because we sum over one more control and hence add one summand with finite
expectation. For notational convenience set ·0 := 0 and ’0 := x.
The equation above implies that there is a T̃ > 0 such that for all T Ø T̃ we
have

1
T
Ex

Y
]

[
ÿ

1Æn:·n≠1ÆT

A
“ (X·n,≠) ≠ “ (’n≠1) ≠ K ≠

⁄
·n

·n≠1

h (Xs) ds

BZ
^

\ > fl

and hence

1
T
Ex

Y
]

[
ÿ

1Æn:·n≠1ÆT

A
“ (X·n,≠) ≠ “ (’n≠1) ≠ K ≠

⁄
·n

·n≠1

(h (Xs) + fl) ds

BZ
^

\ > 0.

For all n œ N set ·̃
n

i
=

I
·i; i Æ n

Œ; i > n
and S̃n := (·̃n

i
, ’i)iœN. Although this is

not an admissible impulse control strategy, we still use the established notations
for these strategy.
Fix an n œ N. The process Y given by Yt := X

S̃n≠1
·n≠1+t

is still a Markov process
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(started in X
S̃n≠1
·n≠1 ) both under its natural filtration F

Y and under the filtration
F̃ given by F̃t := F·n≠1+t for all t œ [0, Œ). It is well established that in
optimal stopping problems for Markov processes the value of the problem does
not change, when one only considers optimization over first entry times, which
are in the natural filtration of the process. We define

Sx (G) := {· | · is G st. time, Y· Ø x,Ex

3⁄
·

0
(| h (Yt) | +fl) dt

4
, Ex (·) < Œ}

for each x œ E, and each G œ {F̃ , F
Y

}. We set

‡ := 1{·n≠1ÆT } (·n ≠ ·n≠1) œ Sx

!
F̃

"

and we have due to the aforementioned reason

Ex

I
1{·n≠1ÆT }

A
“ (X·n,≠) ≠ “ (’n≠1) ≠ K ≠

⁄
·n

·n≠1

h (Xs) + fl ds

BJ

= Ex

I
Ex

C
1{·n≠1ÆT }

⁄
T

T

·x̄

⁄
T

T

·x̄

A
“ (X·n,≠) ≠ “ (’n≠1) ≠ K ≠

⁄
·n

·n≠1

h (Xs) + fl ds

B----- F·n≠1

DJ

= Ex

I
1{·n≠1ÆT }

⁄
T

T

·x̄

Ex

CA
“

!
Y(·n,≠)≠·n≠1

"
≠ “ (Y0) ≠ K ≠

⁄ (·n,≠)≠·n≠1

0
h (Ys) + fl ds

B----- F·n≠1

DJ

= Ex

;
1{·n≠1ÆT }EX·n≠1

3
“ (Y‡) ≠ “ (Y0) ≠ K ≠

⁄
‡

0
h (Ys) + fl ds

4<

Æ Ex

I
1{·n≠1ÆT }

⁄
T

T

·x̄

⁄
T

T

·x̄

sup
·œSX·n≠1 (F̃)

EX·n≠1

3
“ (Y· ) ≠ “ (Y0) ≠ K ≠

⁄
·

0
(h (Yt) + fl) dt

4Z
^

\

= Ex

I
1{·n≠1ÆT }

⁄
T

T

·x̄

⁄
T

T

·x̄

sup
·œSX·n≠1 (FY )

EX·n≠1

3
“ (Y· ) ≠ “ (Y0) ≠ K ≠

⁄
·

0
(h (Yt) + fl) dt

4Z
^

\

Æ Ex

!
1{·n≠1ÆT }G (fl)

"

= Px (·n≠1 Æ T )G (fl) ,
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hence for all T Ø T̃

0 <
1
T
Ex

Y
]

[
ÿ

1Æn:·n≠1ÆT

A
“ (X·n,≠) ≠ “ (’n≠1) ≠ K ≠

⁄
·n

·n≠1

h (Xs) + fl ds

BZ
^

\

= 1
T

ÿ

nœN
Px (·n≠1 < T )G (fl)

and we get
0 < G (fl) .

Now we show the reverse inequality.
Let fl œ R such that G (fl) > 0. Then, there is an y œ B and a · œ Ty with

Ey

3
“ (X· ) ≠ “ (y) ≠ K ≠

⁄
·

0
(h (Xs) + fl) ds

4
> 0. (4.3)

We set
S

ø := (·n, y)
nœN := R (·, y) ,

and we define

Ri := “ (X·i) ≠ “ (y) ≠ K ≠

⁄
·i

·i≠1

(h (Xs)) ds.

Then,
Ey (Ri) > flEy (·)

and Lemma 2.4.2 yields

lim inf
T æŒ

1
T
Ex

Y
]

[
ÿ

1Æn:·nÆT

1
“

1
X

S
ø

·n,≠

2
≠ “ (’n) ≠ K

2
≠

⁄
T

0
h

1
X

S
ø

s

2
ds

Z
^

\

= lim
T æŒ

Ey

1q
·nÆT

Ri

2

T

= Ey (R1)
Ey (·)

> fl.

Corollary 4.2.8. It holds v(y) = fl
ú for all y œ E.

Proof. By the definition of fl
ú in Definition 4.2.6 we have that fl

ú is the smallest
upper bound of the set L := {fl œ R | G(fl) > 0}. Theorem 4.2.7 yields that for
all x œ E the value v(x) also is an upper bound of L. This yields for all x œ E

v(x) Ø fl
ú
.
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On the other hand the characterization of fl
ú right after Definition 4.2.6 yields

that fl
ú is the largest lower bound of R \ L. Again Theorem 4.2.7 yields that for

all x œ E the value v(x) is a lower bound of R \ L. This yields for all x œ E

fl
ú

Ø v(x).

Corollary 4.2.9. If G (flú) = 0 and there are y œ B and · œ Ty such that

G (flú) = Ey

3
“ (X· ) ≠

⁄
·

0
(h (Xt) + fl

ú) dt

4
≠ “ (y) ≠ K,

then the strategy R (·, y) is optimal for v. Further,

v =
Ey

!
“ (X· ) ≠

s
·

0 h (Xt) dt
"

≠ “ (y) ≠ K

Ey(·) (4.4)

Proof. For each fl œ R with fl < fl
ú holds G (fl) > 0 and y and · fulfil (4.3) in

the previous proof of Theorem 4.2.7. Hence, the calculations therein show that
Jy (R (·, y)) > fl for all fl < fl

ú, This is why Jy (R (·, y)) Ø fl
ú = v, which means

that R (·, y) is an optimizer for v.
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4.3 Main Result
After we have characterized the impulse control problem by use of a stopping
problem, the purpose of this section is twofold. First, we will unravel the dense
and technical structure of the previous section and summarize the results of that
section into clear, relatively short statements. Further, we connect these results
with our findings on the tailor-made stopping problem from Section 3.4. This
connection will unveil a nice existence result of optimal threshold strategies,
given a maximum representation as in Assumption 3.4.2 exists. But before we
are able to state, what is the main theorem of this chapter, maybe even the
main theoretical result of this whole thesis, we have to make a short observation
on possible optimal restarting points.

Lemma 4.3.1. Assume B = E, a maximum representation in terms of a func-
tion f as in Assumption 3.4.2 exists and let fl œ R such that Assumption 3.4.3
holds. Then we have G(fl) = sup

xœ[x,x] g
Tx(x).

Proof. This is a direct consequence of Theorem 3.4.9, Part 2.

Now we have gathered everything to state and prove the main theorem.

Theorem 4.3.2. Let Assumption 3.4.1 hold and assume that K > 0.

1. The value v defined in (4.2) is constant and given by

v = sup
yœB

sup
·œTy

Ey

!
“ (X· ) ≠

s
·

0 h (Xt) dt
"

≠ “ (y) ≠ K

Ey(·) . (4.5)

2. If a pair of maximizers y œ B, · œ Ty for the term in (4.5) exists, then
the strategy R(·, y) is optimal for the impulse control problem.

3. If B = E and a maximum representation f as in Assumption 3.4.2 exists
and fulfils Assumption 3.4.3 and furthermore Assumption 3.4.8 holds, then
an optimal threshold strategy R(·x, x

ú) exists, where x is given as the larger
of the two roots of f ≠v, x

ú lies between the two roots of f ≠v. Furthermore
x

ú equals the smaller root, if X has no upward jumps.

4. If B = E and a maximum representation f as in Assumption 3.4.2 exists
and fulfils Assumption 3.4.3, then

v = sup
y,zœE;y<z

Ey

!
“ (X·z ) ≠

s
·z

0 h (Xt) dt
"

≠ “ (y) ≠ K

Ey(·z) . (4.6)

Proof. Corollary 4.2.8 yields that the value is characterized as the, due to
Lemma 4.2.4 unique, value fl

ú where the function

G : R æ [≠K, Œ]; fl ‘æ sup
xœB

gTx
fl

(x) ,
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defined in Definition 4.2.3, changes sign and moves from a positive to a negative
value. Now we split the proof into two cases.
Case 1: fl

ú is the root of G.
Then, for each x œ B, · œ Tx we have

0 Ø Ex

3
“ (X· ) ≠

⁄
·

0
(h (Xt) + fl

ú) dt

4
≠ “ (x) ≠ K (4.7)

and hence, if not · = 0 a.s. under Px, then

fl
ú

Ø
Ex

!
“ (X· ) ≠

s
·

0 h (Xt) dt
"

≠ “ (x) ≠ K

Ex(·) .

On the other hand, with appropriate pairs x, · one can get arbitrary close to
0 in (4.7) due to G’s definition as supremum. Further, these appropriate pairs
can without loss of generality be chosen such that not · = 0 a.s. under Px since
such a · would regardless of x yield a value of ≠K. Hence, if a root fl

ú of G
exists, then Part 1 of the claim holds.
Case 2: fl

ú is not the root of G.
If no such root of G exists, the only case left to analyze due to G being convex,
decreasing (see Lemma 4.2.4) and not constant (see Lemma 4.2.5) is that the
function G jumps from Œ to a negative value. Then, with the same argument
as above we still see that

fl
ú

Ø
Ex

!
“ (X· ) ≠

s
·

0 h (Xt) dt
"

≠ “ (x) ≠ K

Ex(·)

for all x œ B, · œ Tx. Additionally, for all ‘ > 0, there is an x œ B and a · œ Tx

such that

0 < Ex

3
“ (X· ) ≠

⁄
·

0
(h (Xt) + fl

ú
≠ ‘) dt

4
≠ “ (x) ≠ K,

hence,

fl
ú

<
Ex

!
“ (X· ) ≠

s
·

0 h (Xt) dt
"

≠ “ (x) ≠ K

Ex(·) + ‘

which also yields the claim.
Now Corollary 4.2.9 directly yields Part 2 of the claim. Regarding part 3, now
let Assumption 3.4.2 hold true and let Assumption 3.4.3 hold true for fl

ú. Fix
a function f as in Assumption 3.4.3 and denote the two solutions of f(x) = fl

ú

with x and x with the usual convention x < x. Theorem 3.4.9 yields that for
each x œ E with x Ø x the threshold time ·x is optimal for gTx(x). Additionally,
Lemma 4.3.1 yields that there is an x

ú
œ [x, x] such that

G(flú) = gTxú (xú) = Exú

3
“

!
X·x

"
≠

⁄
·x

0
(h (Xt) + fl

ú) dt

4
≠ “ (xú) ≠ K.

Now with Part 2 of this theorem here and Corollary 4.2.9 follows that R(·x, x
ú)

is optimal for the impulse control problem. Lastly Part 4 directly follows from
Part 3 and 1.
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4.3.1 Discussion of Assumption 3.4.3 and further results
if a maximum representation exists

While Assumption 3.4.2 certainly is essential in order for Theorem 4.3.2, Part
3 to hold, since it was one of the main tools to solve the tailor-made stopping
problem, the question is if Assumption 3.4.3 is also essential and furthermore, if
Assumption 3.4.3 is a restrictive one. The short answer to both question is no.
In the following, we will justify that answer and pick up some helpful results
on the way. Throughout this subsection we assume a maximum representation
as in Assumption 3.4.2 exists and fix a function f as in Assumption 3.4.2. We
will only assume K Ø 0 and thus in contrast to Theorem 4.3.2 include the case
K = 0. Note that this is a slightly weaker assumption as in Theorem 4.3.2. Now
step-by-step we will look at all of the cases that may occur, when Assumption
3.4.3 fails, and hence the function fflú = f ≠ fl

ú has less than two roots. Now in
Assumption 3.4.2 f is assumed to have one global maximum at a value a œ E

and is strictly increasing, right of a and strictly decreasing left of a.
Hence the first reason for fflú to violate Assumption 3.4.3 could be that it is
discontinuous and jumps from a positive to a negative value. But then the place
of the jump could be used to replace the ’missing’ root and all of the proofs
would work just the same, since we only used that fflú is positive between the
roots and negative elsewhere. When the right of the two roots is replaced by
a value x

Õ
flú with fflú(xÕ

flú) ”= 0 one has to distinguish the cases fflú(xÕ
flú) > 0

and fflú(xÕ
flú) < 0 and as in the discrete time stopping problem in Section 3.1,

depending on the case, instead of ·x
Õ
flú also ·̊x

Õ
flú could be an optimizer for the

tailor-made stopping problem from Section 3.4 and hence a strategy R(̊·x
Õ
flú , x

ú)
for some x

ú
œ B could be optimal for the long-term average control problem.

The second reason could be that fl
ú lies strictly beneath all values f(x), x œ E

and is bounded away from the graph of f . Under minimal assumptions on
expected hitting times, we are able to show that this is not possible.

Lemma 4.3.3. Assume that the sets {Ex(·y) | (x, y) œ E
2
, x < y Æ a} and

{Ex(·y) | (x, y) œ E
2
, a Æ x < y} are not bounded from above. Then

fl
ú

Ø max {inf{f(x)|x œ E fl (≠Œ, a)}, inf{f(x)|x œ E fl (a, Œ)}} .

Proof. Assume

fl
ú

< max {inf{f(x)|x œ E fl (≠Œ, a)}, inf{f(x)|x œ E fl (a, Œ)}} .

Due to all the cases needing similar arguments, we will only discuss the case

– := inf{f(x)|x œ E fl (≠Œ, a)} > fl
ú

> inf{f(x)|x œ E fl (a, Œ)}.

Define ‘ := –≠fl
ú

2 . Now we use the function G defined in Definition 4.2.3 and
that

fl
ú = inf{fl | G(fl) Æ 0} = sup{fl | G(fl) > 0} (4.8)
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as Definition 4.2.6 and the discussion right after that definition yields. Let
y œ E fl (a, Œ) be the value where fflú+‘ changes sign. Now take a x œ E

such that Ex(·y) >
K

‘
(due to our boundedness assumptions this is possible).

Then, we have utilizing the maximum representation and due to the fact that
our choice of ‘ and y yields f(z) ≠ (flú + ‘) Ø ‘ for all z œ [x, y]

G(flú + ‘) Ø Ex

3
“

!
X·y

"
≠ “ (x) ≠ K ≠

⁄
·y

0
(h (Xt) + fl

ú + ‘) dt

4

= Ex

3⁄
·y

0

!
f(Xs) ≠ (flú + ‘)

"
ds

4
≠ K

Ø Ex

3⁄
·y

0
‘ ds

4
≠ K

= ‘ · Ex (·y) ≠ K

> 0.

But this is a contradiction to (4.8).

The third reason why the assumption could be violated is that fl
ú strictly could

lie above f , but that case can be shown to not occur even without additional
assumptions. That fl

ú is also bounded from above by the maximum of the
function f , is needed later on, hence we formulate this result as a lemma.

Lemma 4.3.4. Let a œ E be the due to Assumption 3.4.2 unique maximum of
f . Then v Æ f(a).

Proof. That everywhere stopping immediately is optimal when the function
in the maximum representation is negative, was discussed in Remark 3.2.7.
Transferred to our situation this yields that if we would have fl

ú
> f(a), for

‘ := fl
ú≠f(a)

2 > 0 this would yield G(flú
≠ ‘) = ≠K Æ 0, but this is again a

contradiction to (4.8).

Since for Assumption 3.4.3 to hold we need v < f(a) instead of v Æ f(a), a re-
finement of the previous result is needed, that requires the additional assumption
that we have non-zero fixed costs.

Lemma 4.3.5. Assume K > 0. Assume that there is an open interval I ™ E

with a œ I such that the set {Ex(·y) | (x, y) œ I
2
, x < y} is bounded from above.

Then fl
ú

< f(a).

Proof. Again we utilize the function G and remind that in Lemma 4.2.4 we have
shown that G is strictly decreasing on G≠1(≠K, Œ). Now for all ” œ (0, Œ) that
are small enough the discussion above yields that

G(f(a) ≠ ”) Æ (f(a) + ” ≠ f(a)) sup
x,yœI,x<y

Ex(·y) ≠ K

and this term converges to ≠K if ” æ 0.
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To summarize our results, there are two reasons, why Assumption 3.4.3 may
fail: First, f may jump over fl

ú, but then one can replace the needed root of fflú

with the point of the jump. The second reason could be, that the assumption
of Lemma 4.3.3 fails. Heuristically this may be interpreted as ’X gets too large
too fast’. This could be circumvented by including the boundaries of E to the
domain of f (if they are not included already) and setting f to ≠Œ at these
boundaries. But we will not dive into the technical details required for that
here, since our main case of interest is a Lévy process on R and such a process
fulfils the Assumption of Lemma 4.3.3 anyway.
Our last aim is to show that even if K = 0 the formula (4.6) still holds.

Theorem 4.3.6. Assume a maximum representation as in Assumption 3.4.2
exists, fix a function f as in Assumption 3.4.2 and denote its unique maximum
with a. Assume f is continuous in a. Further, we assume K Ø 0. Then holds

v = sup
y,zœE;y<z

Ey

!
“ (X·z ) ≠

s
·z

0 h (Xt) dt
"

≠ “ (y) ≠ K

Ey(·z) .

Proof. Since v Æ f(a) due to Lemma 4.3.4 there is ‘ > 0 small enough such
that Assumption 3.4.3 holds for fl

ú
≠ ‘ (with the roots postulated to exists in

Assumption 3.4.3 if needed replaced with jumping points of as discussed before).
Let x

‘
, x‘ be the roots of fflú≠‘. Then, Theorem 3.4.9 yields that there is x

ú
‘

such that

0 <
1
2G(flú

≠ ‘) Æ Exú
‘

3
“

1
X·x‘

2
≠ “ (xú

‘
) ≠ K ≠

⁄
·x‘

0
(h (Xt) + fl

ú
≠ ‘) dt

4

and therefore

fl
ú

Æ

Exú
‘

1
“

1
X·x‘

2
≠ “ (xú

‘
) ≠ K ≠

s
·x‘
0 (h (Xt)) dt

2

Exú
‘
(·x‘) + ‘

Especially the case that K = 0 will be further investigated in Section 5.3. For
example there will be shown that for K = 0 we get ‘ optimal strategies with
boundaries that are arbitrary close to a.
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4.4 Specification for Lévy Processes
After we have proven the theoretical main results of this chapter, we now con-
centrate our attention on how to explicitly find optimal threshold strategies for
control problems in case the underlying process is a Lévy process. In contrast
to results for di�usions (see [HSZ18] and [HSZ17]) especially regarding explicit
calculation procedures for such strategies little is known if the underlying pro-
cess has jumps. One of the few present works on this topic is [Yam17], where
in the discounted case for an underlying spectrally one-sided Lévy process the
relatively new theory of scale functions for spectrally one-sided Lévy processes
is utilized. Hence, our aim here is to connect our results on maximum repre-
sentation for Lévy processes from Section 2.6 and our theoretical findings on
solving impulse control problems from Sections 4.2 and 4.3 in order to develop
a step-by-step solution technique for impulse control problems for underlying
Lévy processes. By applying our technique to interesting special cases, amongst
them the long-term average analogues to a variety discounted problems dis-
cussed in [ØS05], we will emphasize the versatility of our technique. Hence,
now we assume X to be a Lévy process on E := R as defined in Definition
2.2.1 and, furthermore, write P := P0 and E := E0. Note that as discussed
in Subsection 4.1.1 in this situation it is more convenient to work with an ex-
plicit construction of the controlled process, namely we model the controlled
process as in the explicit model for Lévy processes described in Subsection 4.1.1
recursively by

X
S

t
:= Xt ≠

ÿ

n;·nÆt

!
X

S

·n,≠ ≠ ’n

"
(4.9)

for each strategy S = (·n, ’n)
nœN. Herein we use

X
S

·n,≠ := X·n ≠

n≠1ÿ

i=1

!
X

S

·i,≠ ≠ ’i

"

for the value right before the n-th shift (Note that still due to X not being
continuous this value may deviate from both X

S

·n
and X

S

·n≠). Assume:

Assumption 4.4.1. 1. 0 < E (X1) < Œ.

2. “ is non-decreasing and di�erentiable.

3. h is continuous and for all x, y œ R with x < y, we have

Ex

3⁄
·y

0
| h (Xs) | ds

4
< Œ.

4.4.1 The optimal restarting point
So far, in Corollary 4.2.9 we characterized the (random) optimal times to ex-
ercise controls by optimal stopping times of an associated stopping problem.
Assuming a supremum representation of the pay-o� function “ that involves a
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su�ciently favourably shaped function f , the characterization boils down to ex-
ercise a control, whenever the process exceeds the rightmost root of the function
fflú defined in and after Assumption 3.4.2. The optimal restarting point so far
only is characterized as an optimizer of

sup
yœB

g
Ty

flú (y)

and Lemma 4.3.1 tells us if B = E we may take the supremum only over all y

lying between the roots of f ≠ fl
ú.

While in full generality we do not see much hope to characterize the optimal
restarting point any further, we now assume B = R since this is the most
interesting case for the applications later. In that case we proceed to show that
provided the ladder height process H of X is a special subordinator as defined
in Definition 2.2.16, the lower root of ffl, x, is indeed the maximizer of

G (fl) = sup
yœB

gTy
fl

(y).

If the Assumption 3.4.3 also particularly holds for fl
ú, it immediately follows that

the (s, S)-strategy with s = x and S = x is optimal for the control problem.
Again we fix a fl œ R throughout the section and assume ffl has precisely two
roots x < x.

Theorem 4.4.2. Let x
ú := inf arg maxyœR g

Ty
fl (y). Then holds

x
ú

Ø x.

If X is not a compound Poisson process and H is a special subordinator then
furthermore

x œ arg max
yœR

gTy
fl

(y)

and hence

x
ú = x.

Proof. First, we show x
ú

Ø x.
Assume x < x. Then,

Ex

A⁄
·̂x

0
ffl (Hs) ds

B
< 0
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and hence we obtain by use of Assumption 3.4.2 in combination with Lemma 2.6.6

gTx
fl

(x) + K = Ex

3
“

!
X·x

"
≠

⁄
·x

0
(h (Xs) + fl) ds

4
≠ “ (x)

3.4.2= Ex

3⁄
·x

0
ffl

!
Xs

"
ds

4

2.6.6= Ex

A⁄
·̂x

0
ffl (Hs) ds

B

= Ex

A⁄
·̂x

0
ffl (Hs) ds +

⁄
·̂x

·̂x

ffl (Hs) ds

B

= Ex

A⁄
·̂x

0
ffl (Hs) ds

B
+ Ex

I
EH·̂x

A⁄
·̂x

·̂x

ffl (Hs) ds

BJ

< Ex

I
EH·̂x

A⁄
·̂x

·̂x

ffl (Hs) ds

BJ

Æ Ea

I⁄
·̂x

·̂x

ffl (Hs) ds

J

for some a œ [x, x̄].
Now we show x

ú
Æ x under the assumption that H is a special subordinator

and not a compound Poisson process.
Let U be the potential measure of H. Since H is a special subordinator, ac-
cording to Lemma 2.2.17 U |(0,Œ) has a non-increasing density u. Since X is not
a compound Poisson process, U has, furthermore, no point mass at 0.

Let x œ [x, x̄]. Then,

gTx
fl

(x) + K = Ex

3
“

!
X·x

"
≠

⁄
·x

0
(h (Xs) + fl) ds

4
≠ “ (x)

3.4.2= Ex

3⁄
·x

0
ffl

3
sup
rÆs

Xs

4
ds

4

2.6.6= Ex

A⁄
·̂x

0
ffl (Hs) ds

B

=
⁄

x̄

x

ffl (y) U (dy ≠ x)

=
⁄

x̄

x

ffl (y) u (y ≠ x) dy

= ...
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... Æ

⁄
x̄

x

ffl (y) u (y ≠ x̄) dy

Æ

⁄
x̄

x

ffl (y) u (y ≠ x̄) dy

= Ex

5
“ (X·x̄) ≠

⁄
·x̄

0
(h (Xs) + fl) ds

6
.

These calculations yield
x œ arg max

yœR
gTy

fl
(y)

and hence also x
ú = x.

4.4.2 Step-by-step solution technique
The core of our results is a step-by-step solution technique for long-term average
impulse control problems of the form

v = sup
S=(·n,’n)nœN

lim inf
T æŒ

1
T
Ex

Q

a
ÿ

n:·nÆT

!
“

!
X

S

·n,≠
"

≠ “ (’n) ≠ K
"

≠

T⁄

0

h
!
X

S

s

"
ds

R

b

where X is a Lévy process with 0 < E (X1) < Œ and arbitrary downshifts are
allowed. The approach not only provides a su�cient criterion to verify existence
of an optimal (s, S)-strategy, in many cases it leads to a semi-explicit or explicit
characterization of the boundaries. Our step-by-step solution technique reads
as follows:

1. Find a function f such that for all x, ȳ œ R with x < ȳ

“ (x) = ≠Ex

5⁄
·ȳ

0
f

3
sup
rÆt

Xr

4
dt

6
+ Ex

5
“

!
X·ȳ

"
≠

⁄
·ȳ

0
h (Xs) ds

6
.

One way to obtain such a function, provided the occurring objects exist,
is the choice

f =
1

AH“ ≠ ĥ

2

as discussed in Definition 2.6.4 and thereafter. Here, AH is the generator
of the ascending ladder hight process H of X, extended to non-bounded
function as defined in Definition 2.6.4, normed appropriately, see Defini-
tion 2.2.14 and for all y œ R

ĥ (y) = Ey

Q

a
Œ⁄

0

h

1
H

¿
t

2
dt

R

b =
⁄ Œ

0
h (y + x) dU

¿ (dx) (4.10)

where H
¿ is the descending ladder height process of X and U

¿ the occu-
pation measure of H

¿.
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2. Find a fl
ú

œ R such that the equation f (x) = fl
ú has exactly two solutions

x
flú < xflú and

0 = sup
xœ[xflú ,xflú ]

Ex

3
“

1
X·xflú

2
≠

⁄
·xflú

0
(h (Xs) + fl

ú) ds

4

= sup
xœ[xflú ,xflú ]

Ex

A⁄
·̂xfl

0
f

3
sup
rÆt

Xr

4
≠ fl

ú
dt

B
.

If such a fl
ú exists, we have

v = fl
ú
,

and the (s, S)-strategy with

S := xflú

and

s := arg max
xœ[xflú ,xflú ]

Ex

3
“

1
X·xflú

2
≠

⁄
·xflú

0
(h (Xs) + fl

ú) ds

4

is optimal.

3. If X is not a compound Poisson process and H is a special subordinator
(as defined in Definition 2.2.16), we also have

s = x
flú .

There are two things we want to remark: first, our results exceed this condensed
solution technique and, for example, deliver ‘-optimal (s, S)-strategies, even if
no optimizers exist. Moreover technically the continuity of f is not required, it
only makes live easier, because if f is not continuous lengthy case di�erentia-
tions would be required, see Subsection 4.3.1.
Second, the ascending and descending ladder height processes are in general
di�cult to handle. However, in many special cases there are numerous helpful
results known about these processes that often enable us to handle the ob-
jects occurring in our solution technique quite well. Andreas Kyprianou’s book
([Kyp14]) is an excellent source for theoretical results about these processes, for
some short Remarks focussed on the situation here, see also Subsection 2.2.1 and
Section 2.6. Also for a dense class of Lévy processes, namely the ones whose
positive jumps are of phase type distribution, in [Pis06] an iterative method
to explicitly calculate the law of the ascending ladder height process was de-
veloped. Furthermore, for many examples of interest, not the full distribution
of the ladder height processes needs to be known, but only certain moments.
To illustrate the utility of our solution technique, in the following we look at
some interesting examples and special cases, that cover the long-term average
equivalents to almost all examples of impulse control problems in [ØS05]. We
don’t pose any restrictions on the process X apart from su�cient integrability
to make the problem well defined and non-degenerate.
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Remark 4.4.3. So far for underlying Lévy processes we only have studied the
case that B = E meaning that arbitrary downshifts are allowed in the control
problem. While this is one of the most two common cases, the other is, that
for some y0 œ E we have B = {y0} and hence B is one elementary. Then,
according to our main theorem, Theorem 4.3.2, the value is given by

v = sup
yœB

sup
·œTy

Ey

!
“ (X· ) ≠

s
·

0 h (Xt) dt
"

≠ “ (y) ≠ K

Ey(·)

=
Ey0

!
“ (X· ) ≠

s
·

0 h (Xt) dt
"

≠ “ (y0) ≠ K

Ey0(·) .

Thus there is one optimization step less to do. Also in this case our solution
technique remains unchanged, only the last part of Step 2., namely the search of
the optimal restarting point, vanishes. The proof, that this shortened technique
again yields the optimal value and the optimal strategy works just the same.
There is only one potential obstacle: since we cannot adapt the restarting point,
it might be the case that for the optimal fl

ú the value y0 lies left of the lower
root x

flú of f ≠ fl
ú. Then, additional arguments are needed to verify that still

the threshold time ·x is optimal and not stopping immediately. Nevertheless, in
all applications below, we have that x

flú Æ y0 hence we can follow the solution
techniques without worries.

4.4.3 Interesting special cases
Linear “ and convex h

The first special case we want to focus on is the case when for all x œ R

“ (x) = Cx

for some C œ (0, Œ) and h is positive, convex, continuous and we have
lim

xæŒ
h (x) = lim

xæ≠Œ
h (x) = Œ. This type of pay-o� and cost functions occur

in inventory control, see, e.g., [HSZ17] if the underlying process is a di�usion,
but for Lévy processes there are yet very few results. In [Yam17] in the setting
of discounted pay-o�s Yamazaki proves existence of an optimal (s, S)-strategy
only under the additional assumption that X is spectrally positive. Also the
long-term average equivalent to the dividend problem presented in [ØS05, Ex-
ample 6.4], and the prominent exchange rate control problem ([ØS05, Example
6.5]) is covered by this special case.
With our solution technique one can show existence of an optimal (s, S)-strategy
quite easy.

1. To obtain f we first observe that H is a subordinator and therefore

AH“ = Cµ̃H +
⁄ Œ

0
y�H (dy)
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for the drift term µ̃H and the jump measure �H of H as defined in Remark
2.2.5. Hence AH“(·) is constant. Further, for all y œ R

ĥ (y) =
⁄ Œ

0
h (y + x) dU

¿ (dx) ,

thus ĥ is still convex with lim
xæŒ

ĥ (x) = lim
xæ≠Œ

ĥ (x) = Œ. Further, it
follows that the equation f(x) = fl always has exactly two solutions if we
choose fl large enough.

2. The function given by

fl ‘æ sup
xœ[xfl,xfl]

Ex

3⁄
·xfl

0
f

3
sup
rÆt

Xr

4
≠ fl dt

4

is monotone and continuous, thus either the intermediate value theorem
provides the desired root fl

ú, or we are in a degenerate case and the value
is either Œ or ≠Œ.

As consequence, our solution technique verifies the existence of an (s, S)-strategy.
Furthermore, concerning the explicit obtainability, we want to remark that the
extended generator of the ladder height process in general is di�cult to obtain.
But to obtain the function

f (x) = ≠

1
AH“ (x) + ĥ (x)

2

=

Y
]

[Cµ̃H +
⁄ Œ

0
y�H (dy) + Ex

Q

a
Œ⁄

0

h

1
H

¿
t

2
dt

R

b

Z
^

\

one does not need full knowledge of AH . Only the drift term µ̃H and the
expected jump size of the ladder height process are needed. These parameters
in principal can be expressed in parameters of X which in some cases leads to
good characterizations, as we already have discussed in Section 2.6. But more
importantly they are accessible by path-wise simulation techniques, e.g., Monte
Carlo methods since by simulating paths of the initial process X, one can often
directly derive the ladder height processes path and therefore also its jumps
and drift parts. The same arguments hold for the obtainability of ĥ. In most
treated examples, h are relatively simple functions, like (piecewise) linear ones,
the square function, or even just a constant function. Hence, in that cases ĥ is
just an integral moment of the descending ladder height process.

Polynomial “ and h

To show that basically the same arguments for the obtainability of f hold in
more general cases we now turn our attention to the case where “ and h are
polynomials. This example is certainly one of great interest since on one hand
polynomials are interesting special cases of pay-o� and running cost functions
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on its own. On the other hand, polynomials may serve as a tool for approxi-
mating more general functions. In the following, we will see that the necessary
transformations we have to apply on “ and h have the very compelling property
to transform polynomials to polynomials of the same degree. This makes our
solution technique boil down to an analysis of a polynomial of known degree
whose coe�cients can be expressed in terms of “, h and parameters of the pro-
cess.
This setting includes the long-term average analogous to [ØS05, Example 7.8].
So now we assume “ (x) =

q
l

i=0 aix
i and h (x) =

q
k

i=0 cix
i for some l, k œ N

and ai, ci œ R for all i Æ l ‚ k. For the sake of simplicity and brevity we simply
assume the occurring moments and integrals to exist and be finite. Then,

AH“ (x) =
lÿ

i=0
bix

i

with

bi = (i + 1)µ̃Hai+1 +
lÿ

j=i

aj

3
j

i

4 ⁄ Œ

0
y

j≠i
d�H (y)

for all i œ {0, ..., l} where al+1 = 0 and �H is the Lévy measure of H. Further-
more, using Fubini’s theorem we obtain

ĥ (x) =
kÿ

j=0
djx

j

where

dj : =
kÿ

i=1
ci

3
i

j

4 ⁄ Œ

0
E

31
H

¿
t

2i≠j
4

dt.

Again we remark that some useful formulas to obtain �H can be found in Section
2.6, further [Kyp14, Section 7.4] entails a comprehensive discussion. Further,
H

¿ acts in law like an exponentially killed subordinator, hence the occurring
moments can be obtained via the cumulant function of said subordinator. Also,
we don’t need to know the full distribution of ascending and descending ladder
height processes. To explicitly get the occurring coe�cients one only has to cal-
culate drift rate, moments of the jump measure of the ascending ladder height
process, and cumulative moments of the descending ladder height process, both
up to a previously known given degree. So again this is a good starting point
for simulations.
The observation that f =

1
AH“ ≠ ĥ

2
is also a polynomial with degree max{l, k}

on top of that yields a starting point for a di�erent procedure to (computation-
ally) find f . Our calculations above show that f is a polynomial of known
degree. Hence, it is possible to just start with the desired equation

“ (x) = ≠Ex

5⁄
·ȳ

0
f

3
sup
rÆt

Xr

4
dt

6
+ Ex

5
“

!
X·ȳ

"
≠

⁄
·ȳ

0
h (Xs) ds

6
,
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plug in a general polynomial of the right degree for f , compute the occurring
moments and integrals either explicitly or approximate them numerically and
then compare the coe�cients. For example, the aforementioned work [Pis06]
also gives an iterative method to explicitly obtain the Laplace transform of the
law of the running supremum of X, in case the upward jumps of X are of phase
type.

Exponential Lévy processes
A class of processes which is of great interest in mathematical finance is the
class of exponential Lévy processes, for example, [ØS05, Exercises 6.2 and 7.2]
present examples where this setting is used to determine the optimal stream of
dividends.
Set for all x œ R

“ (x) := e
x

and for all x œ R
h (x) := a1e

a2x + b1e
≠b2x

for a1, a2, b1, b2 œ (0, Œ). Again apart from E (X1) > 0, we only assume the
occurring moments and integrals to exist and be finite.
To obtain f similar to the polynomial case we see that

AH“ (x) = µ̃He
x + e

x

⁄ Œ

0
e

y�H (dy)

= µ̃He
x + e

x

⁄ Œ

0
e

y

⁄ Œ

0
� (z + y, Œ) U

¿ (dz) dy.

Further,

ĥ (x) =
⁄ Œ

0
a1e

a2(x+y)
≠ b1e

b2(x+y)
dU

¿ (dy)

= a1e
a2x

⁄ Œ

0
e

a2y
dU

¿ (dy) + b1e
≠b2x

⁄ Œ

0
e

≠b2y
dU

¿ (dy)

for all x œ R. Hence, in this case finding the optimal value and an optimal
strategy boils down to the analysis of exponential functions.

4.4.4 Proof of the validity of the solution technique
The scope of this subsection is to briefly connect the dots and use our findings in
order to show that the step-by-step solution technique presented Section 4.4.2
indeed is valid.

1. Lemma 2.6.7 shows that for

f =
1

AH“ ≠ ĥ

2
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we have

“ (x) = ≠Ex

5⁄
·ȳ

0
f

!
Xt

"
dt

6
+ Ex

5
“

!
X·ȳ

"
≠

⁄
·ȳ

0
h (Xs) ds

6

for all x, ȳ œ R with x Æ ȳ, hence the desired maximum representation of
“.

2. The second step of the solution technique is to find a fl
ú

œ R such that
f (x) = fl

ú has exactly two solutions x
flú < xflú and

0 = sup
xœ[xflú ,xflú ]

Ex

3
“

1
X·xflú

2
≠

⁄
·xflú

0
(h (Xs) + fl

ú) ds

4
≠ “(x) ≠ K

= sup
xœ[xflú ,xflú ]

Ex

A⁄
·̂x

0
f

!
Xt

"
≠ fl

ú
dt

B
≠ K.

Assume we have found such elements. Then, Theorem 3.4.9 yields that the
threshold time ·xflú is an optimizer for the stopping problem with value
function g

T·
fl

. Further, the first part of Theorem 4.4.2 ensures that there
is an

s œ arg max
xœ[xflú ,xflú ]

Ex

3
“

1
X·xflú

2
≠

⁄
·xflú

0
(h (Xs) + fl

ú) ds

4
.

For this s by definition we have

G(flú) = gTs
flú (s)

where G is defined in Definition 4.2.3 and g right before. Now Corollary
4.2.8 yields

v = fl
ú

and Corollary 4.2.9 shows that the strategy R(·xflú , s) as defined in Sub-
section 4.1.1 is optimal.

3. The second part in Theorem 4.4.2 shows that in case that H is a special
subordinator and not a compound Poisson process, x is a valid choice for
s. Further, Lemma 2.2.17 and Lemma 2.2.18 provided conditions in term
of properties of X under that H is a special subordinator and give some
examples.
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After we have proven the validity of our solution technique and already have seen
some interesting special cases, where we got existence results and good starting
points for numerical analysis, we now demonstrate how our solution technique
yields (semi-)explicit characterizations of the control boundaries by applying it
to two important fields of application. These are inventory control and optimal
harvesting. In both fields we will demonstrate that, especially when it comes to
models with jumps, our technique yields results that exceed the present results
in the literature. After these two applications in a narrower sense of the word,
we turn our attention to a topic that sheds some light on the inherent structure
of the impulse control problem: we investigate the dependence on the fixed cost
term and analyse how value and strategy behave when this term goes to infinity
or zero. By that we unveil connections to singular control. A last application
in the broader sense is the study of long-term average impulse control problems
with a restriction to the average impulse frequency. Therein we show by a
Lagrange type ansatz that the restriction to the impulse frequency is in some
sense equivalent to adding artificial fixed costs.

Structure of the chapter
The first section, Section 5.1, deals with inventory control problems for spec-
trally positive Lévy processes. Section 5.2 contains applications of our technique
to a harvesting problem with an underlying spectrally negative Lévy process.
Section 5.3 entails the analysis of the problem’s dependence on the fixed cost
term. Section 5.4 treats the long-term average impulse control problem with a
restriction to the average impulse frequency.
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5.1 Inventory Control for Spectrally One-Sided
Lévy Processes

The first example we treat is inventory control. We want to remark that in
inventory control one usually seeks to minimize the costs of ordering supplies
and maintaining a stock depending on a draining inventory level modelled by a
process X. Hence here we have to turn the usual setting of inventory control
(see, e.g., [Yam17] or [HSZ17]) ’upside down’ to translate it to the maximization
problem, that this thesis deals with. Although the majority of inventory control
problems uses discounting cost and pay-o� functionals, we want to emphasize
that in inventory control the long-term average reward is of no less interest
compared to the discounted one. For instance in [HSZ17] the authors show
optimality for (s, S) strategies (this means for two values s, S œ E with s < S

shifting the process down to s whenever it exceeds S) in the long-term average
problem under roughly similar conditions as ours here, provided the underlying
process X is a di�usion, after they obtained comparable results in the case with
discounted pay-o� in [HSZ15]. However, the lack of existence of a 0-resolvent
and the often constant value function makes it impossible to directly adapt
techniques from the discounted case in the long-term average one. Usual results
in inventory control prove existence of optimal (s, S) strategies and sometimes
even characterize the optimal boundaries as maximizers of some functionals
given by parameters of the process. In the long-term average setting such results
currently are only present for di�usions, see [HSZ17] and [HSZ18]. Therein the
optimal values are given as optimizers of a functional that consists of integrals
over speed measure and scale function of the underlying di�usion, see [HSZ17,
Proposition 3.5]. For similar results in the discounted case, see, e.g., [HSZ15].
Although there are yet very few comparable results for Lévy processes, over the
course of the last decade the theory of scale functions for spectrally one-sided
Lévy processes gave rise to new advances in control theory of these processes.
In inventory control in [Yam17] Yamazaki applied these techniques to show
optimality of an (s, S) strategy when the reward functional is a discounted
one. Additionally, he characterized the boundaries as optimizers of a certain
functional by use of the scale functions under roughly the following conditions:

1. The process X is a Lévy process, drifts upwards, is spectrally positive and
E (exp (—X1)) < Œ for some — > 0.

2. The pay-o� function “ is linear.

3. The running costs function h is unimodal, convex on the right of its mini-
mum, grows at least polynomially, h

Õ (x) > c > 0 for all x < x0 for some x0
and c > 0 and fulfils some more smoothness and integrability conditions
(which in their full extend can be seen in [Yam17, Assumption 1]).

Under these conditions in [Yam17, Theorem 1] it is shown that an optimal (s, S)
strategy exists. [Yam17, Proposition 1] furthermore states that the value func-
tion can be expressed in terms of integral identities that comprise the running
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cost function, the scale functions and the Lévy exponent of X, as well as the
right inverse of the Lévy exponent of X. The optimal pair of values (sú

, S
ú) is in

Proposition 3 therein characterized as an optimizer of mins maxS G(s, S), where
G is also a function comprising all the objects that occur in the representation
of the value function.
In this subsection we use our solution technique to first prove existence of an
optimal (s, S) strategy in the long-term average case under less restrictive as-
sumptions than the ones used in [Yam17] for the discounted case. Also we
characterize the optimal value and the optimal boundaries using only the Lévy
triplet of X and the root of the right inverse of its Lévy exponent. Namely we
assume

Assumption 5.1.1. 1. The process X is a Lévy process that fulfils
0 < E(X1) < Œ, is spectrally positive and all later occurring integrals
exist.

2. For the pay-o� function “ we have “ (x) = Cx for a C œ [0, Œ).

3. h is positive and unimodal with unique minimum a œ R, it only grows
polynomially and we have lim

xæŒ
h (x) = Œ = lim

xæ≠Œ
h (x).

Now we follow the steps laid out in the solution technique in Subsection 4.4.2.
To tackle 1. we first have to get a grip on f . Note that since X is spectrally
positive its descending ladder high process H

¿ acts in law as the non-random
process (t)tØ0 killed exponentially with a positive rate q > 0 where q = ≠„ (0),
„ being the right inverse of the Laplace exponent of ≠X, see Remark 2.6.8.
Hence, the function ĥ can be obtained via

ĥ (x) =
⁄ Œ

0
e

≠qt
h (t + x) dt.

Further,

AH“ (x) = Cµ̃H + C

⁄ Œ

0
y �H (dy) ,

where AH is the generator of H understood in a generalized sense as discussed
in Section 2.6 and defined in Definition 2.6.4, �H is the Lévy measure of the
ladder height process H and µ̃H is the drift term of H as defined in Definition
2.2.5, so AH“ does not depend on x. The Lévy measure �H can be expressed
in terms of q and the Lévy measure �X of X via the formula

�H (x, Œ) = e
qx

⁄ Œ

x

e
≠qy�X (y, Œ) dy,
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see Remark 2.6.8, hence

AH“ (x) = Cµ̃H + C

⁄ Œ

0
y�H (dy)

= Cµ̃H + C

⁄ Œ

0
�H (z, Œ) dz

= Cµ̃H + C

⁄ Œ

0
e

qz

⁄ Œ

z

e
≠qy�X (y, Œ) dy dz

= Cµ̃H + C

⁄ Œ

0

⁄ Œ

0
e

≠qy�X (y + z, Œ) dz dy.

This yields for all x œ R

f (x) = AH“(x) ≠ ĥ (x)

= Cµ̃H + C

⁄ Œ

0

⁄ Œ

0
e

≠qy�X (y + z, Œ) dz dy ≠

⁄ Œ

0
e

≠qt
h (t + x) dt.

Now we have for each fl such that x
fl

and xfl exist

Exfl

3
“

1
X·xfl

2
≠

⁄
·xfl

0
(h (Xs) + fl) ds

4
≠ “(x

fl
) ≠ K

= Exfl

A⁄
·̂xfl

0
ffl (Hs) ds

B
≠ K

= (AH“ + fl)Exfl

!
·xfl

"
≠ Exfl

A⁄
·̂xfl

0
ĥ (Hs) ds

B
≠ K.

Since ĥ is a Laplace transform of a continuous function and AH“ is constant,
this term is a continuous function of fl. The growth condition Assumption 5.1.1,
3. therefore enables us to use the mean value theorem and we obtain that there
is a fl

ú such that

0 = Exflú

3
“

1
X·xflú

2
≠

⁄
·xflú

0
(h (Xs) + fl

ú) ds

4
≠ “(x

flú) ≠ K.

Thus our solution technique not only yields existence of an optimal threshold
(or (s,S)) strategy, it also characterises the optimal boundaries.
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5.2 Optimal Harvesting

Another field of application for our solution technique is optimal harvesting and
forest management. This problem originates in the work of Martin Faustmann
starting with his seminal paper [Fau49] from 1849. Until now advancements and
derivatives of this approach are used and usually called Faustmann’s formula,
see [Bra01] for an overview. In this branch of impulse control the underlying
process models the growth of a forest, or more general: a natural resource,
and impulse control theory is used to determine the optimal strategy to re-
peatedly harvest the resource. The question how to optimally exploit a natural
resource whose dynamics involve randomness goes back several decades, see
[MBHS78] for one of the earlier works. Nowadays there is a vast amount of
literature present ranging from very applied to rather theoretical treatises (see,
e.g., [BS88, Wil98, Alv04, AK06, SS10]). While both modeling and solution ap-
proaches di�er varying by the specific field of application, most of these works
have in common that they describe the dynamics of the natural resource by
a logistic di�usion. [AS98] provides a solution to the impulse control problem
with an underlying logistic di�usion in the discounted case. Although in this
fields the discounted pay-o� functional is the most common choice, recently
more and more works point out that on one hand it is di�cult to determine
the right discounting factor in practice and on the other hand the discounted
model has the flaw to favor the present compared to the future and therefore
might not be the right choice when one aims for sustainable solutions. The
recent article [AH20] provides an example for the application of the long-term
average criterion to find a ’sustainable’ harvesting strategy and a discussion of
the model, see also [CS19b]. Here, we take a look at a typical Faustmann-type
forest management problem as presented for instance in [AL08] or [AK06], but
we deviate from modelling the forest growth by a logistic di�usion. Instead
we introduce downward jumps to the process since sudden events like storms,
bushfire or diseases of the trees could abruptly destroy large quantities of the
forest stand or make it worthless. First, we tackle the traditional Faustmann
problem with |B| = 1 and hence only a single possible restarting point. Then,
we will investigate the same model, only with arbitrary downward shifts allowed
and compare both cases. After these two quickly solved harvesting problems
here, we will come back to these kind of questions later in Chapter 6. To make
our solution technique applicable we make the following assumption:

Assumption 5.2.1. The process X is a Lévy process with 0 < E(X1) < Œ,
spectrally negative and all later occurring integrals exist and are finite.

Since the homogeneity of a Lévy process doesn’t match the growth of a forest
very well, we will later use the pay-o� function to shape the model in a realistic
way.



5.2. OPTIMAL HARVESTING 101

5.2.1 Fixed restarting point
As discussed, first set B = {0}, hence only one fixed restarting point is allowed.
We will use the solution technique presented in Subsection 4.4.2 with the al-
teration for a fixed restarting point discussed in Remark 4.4.3. We set h = 0
and

“ : R æ R; x ‘æ
L

1 + e≠sx

for L, s > 0. The function “ is called logistic function and is used in many
(mostly non-random) contexts. It was supposedly first introduced over 170
years ago by Pierre Francois Verhulst to model population growth. And it is
still a popular choice when it comes to modelling natural growth in a bounded
environment. The choice of “ is motivated as follows: in the aforementioned
works on optimal harvesting a logistic di�usion is used to model the tree stand.
Since, contrary to a di�usion model, we can’t model di�erent growth rates
dependent on the current population with our Lévy process directly, we interpret
“ (Xt) as the forest stand at time t and since sX is still a Lévy process, we don’t
lose generality by assuming s = 1.
Since there is no choice in the restarting point, no running costs and no upward
jumps, the procedure to find the optimal strategy breaks down to:

1. For arbitrary fl œ R find the rightmost root xfl of E(X1)“Õ
≠ fl.

2. Find fl
ú such that

“
!
x

ú
fl

"
≠ “ (0) ≠ K ≠ fl

úE0
!
·xfl

"
= 0.

It is well known (or easily obtained) that

“
Õ(x) = L

e
x

(1 + ex)2

for all x œ R. Hence, we only have to solve a system of two equations. While for
general L no closed form of the solution may be written down, this is a problem
that easily may be solved numerically for given parameters.
There are some interesting observations to make on this model. First of all,
by looking at the non-random case Xt = t for all t, this model indeed be-
comes the standard non-random model for natural growth as described before.
When one then adds randomness by, say, a compound Poisson process with only
downward jumps to take unforeseeable unfavourable events into account, this
only influences the equations above via the E(X1) term (note that the E0(·xfl)
may be transformed with Wald’s equation (Lemma 2.2.8)). Hence these added
downward jumps would make the forester harvest already at a lower level and
therefore more often and also let the problem’s value decrease. But since only
the expected value of the process influences value and strategy, it does not play
any role whether there are many small or few large downward jumps. This is
due to our choice of h = 0; if we would have a non-zero running cost term,
we would have a more complex influence of X’s path structure to value and
strategies.
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5.2.2 Arbitrary downshifts allowed
Now we consider the same setting as in the previous example with the only
di�erence that we allow arbitrary downshifts. Then, the values x

flú , xflú , fl
ú can

be found as follows:

1. For arbitrary fl œ R find the two roots , x
fl
, xfl of “

Õ
≠ fl (since “

Õ is sym-
metric, we have xfl = ≠x

fl
).

2. Find fl
ú such that

“ (xflú) ≠ “
!
x

flú
"

≠ K ≠ fl
úExflú

!
·xfl

"
= 0.

Due to the symmetry these equations are as easy to solve as the ones with
only one allowed restarting point. Of course these two applications mostly
serve the purpose of easy examples to illustrate our findings nicely on a not too
abstract level. Nevertheless, even this easy examples stress out some noteworthy
observations:

• The only thing we have to know about the underlying Lévy process (apart
from the absence of upward jumps) is E (X1). This opens the door to easy
estimation and calculation procedures of the optimal boundaries.

• More freedom in the choice of the restarting point, of course, yields a
higher value for the control problem as well as more frequent trading.
Heuristically this makes sense since we may lay our thresholds in the area
where “ has the highest gradient, so it does not take as long to compensate
the fixed cost term.
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5.3 The Influence of the Fixed Cost Term
Our next aim is to study how the fixed cost term influences the control problem.
Particularly we show here that the value continuously depends on the fixed cost
term K and is non-increasing in K. Further, we investigate the behaviour of
the value and the optimal control boundaries if the fixed cost term converges
to zero and infinity. We see that the former reveals connection to singular con-
trol whereas the latter one (not surprisingly) calls for ’do nothing’ as optimal
solution. Because both singular controls and to do nothing are technically ex-
cluded in our setting, both for too large K ad K = 0 we hence usually only get
‘-optimal strategies.
Throughout this section we again work with the notations and assumptions
given in Subsection 4.1.1, especially X is assumed to be an general Markov pro-
cess as defined in Definition 2.1.3 and the general model for controlled processes
explained in Subsection 4.1.1 is used. Let Assumption 3.4.1 regarding the func-
tions “ and h hold and let Assumption 3.4.2 regarding existence of a maximum
representation hold, further assume that a continuous representing function f

as in Assumption 3.4.2 exist. Lastly assume E = B = R. Since here we want
to study e�ects of changing fixed cost term, we also put more emphasis on the
variable K and write for each K Ø 0 and each S = (·n, ’n) œ SR

JK,x (S) := lim inf
T æŒ

1
T
Ex

Q

a
ÿ

n:·nÆT

!
“

!
X

S

·n,≠
"

≠ “ (’n) ≠ K
"

≠

T⁄

0

h
!
X

S

s

"
ds

R

b

for all x œ R. Further, we define

v(K)(x) := sup
SœSR

JK,x (S)

= sup
SœSR

lim inf
T æŒ

1
T
Ex

Q

a
ÿ

n:·nÆT

!
“

!
X

S

·n,≠
"

≠ “ (’n) ≠ K
"

≠

T⁄

0

h
!
X

S

s

"
ds

R

b (5.1)

for all x œ R and to avoid having to discuss several degenerate cases, we assume
for all x œ R and all K Ø 0 that v(K)(x) < Œ. This implies that for each K Ø 0
the function v(K) is constant (This may be seen elementary: since arbitrary
downward shifts are allowed, for x, y œ R with x < y we have v(K)(x) Æ v(K)(y)
but when the process is started in x waiting until is exceeds y for the first time
due to Assumption 3.4.1 only yields finite costs which are negligible in the
limit, hence v(K)(x) = v(K)(y)). In accordance with Assumption 3.4.2 and the
assumptions above let f be a function such that:

1. For all x, y œ R with x Æ y holds

“ (x) = ≠Ex

5⁄
·y

0
f

!
Xt

"
dt

6
+ Ex

5
“

1
X·y

2
≠

⁄
·y

0
h (Xs) ds

6
.

2. The function f has a unique maximum a œ R, is strictly increasing on
(≠Œ, a] and strictly decreasing on [a, Œ).
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3. f is continuous.

Since here we need actual optimizers for the control problems and not just
‘-optimal strategies we make the following assumption:

Assumption 5.3.1. The functions

� : {(x, y œ R2
|x < y)} æ R; (a, b) ‘æ Ea

3⁄
·b

0
f(Xs)ds

4

and
› : {(x, y œ R2

|x < y)} æ R; (a, b) ‘æ Ea(·b)

are continuous.

That this assumptions hold in many cases of interest is discussed in Lemma
2.2.13, Lemma 2.2.11 and Remark 2.3.6 for Lévy processes and di�usions. To
analyse v’s dependence on the fixed cost term K, let us shortly review the key
results on long-term average impulse control problems again. Theorem 4.3.6
yields that

v(K) = sup
yú,yœR;yú<y

Eyú

1
“

1
X·y

2
≠

s
·y

0 h (Xt) dt

2
≠ “ (yú) ≠ K

Eyú(·y) . (5.2)

Set – := max{inf{f(x) | x Æ a}, inf{f(x) | x Ø a}}.

Remark 5.3.2. The continuity of the function f ensures that for all K with
– < v(K) < f(a) the function fv(K) = f ≠ v(K) has two roots and hence
Assumption 3.4.3 holds. Assumption 3.4.8 holds, because the function � is con-
tinuous, as assumed in Assumption 5.3.1. Theorem 4.3.2 therefore yields that
for K > 0 with v(K) > – an optimal threshold strategy R(·xK , x

ú
K

) is given by
values x

K
, x

ú
K

and xK that are defined as follows: x
K

and xK are due to our
assumption the unique two roots of the equation

f(x) = v(K)

with x
K

Æ xK . The value x
ú
K

œ [x
K

, xK ] in general is an element of the non-
empty set

arg max
yœ[xK ,xK ]

Ey

1
“

1
X·xK

2
≠

s ·xK
0 h (Xt) dt

2
≠ “ (y) ≠ K

Ey(·xK ) .

In special cases we also have x
ú
K

= x
K

. This was discussed in Lemma 4.4.1 and
Lemma 4.3.1 and covers many cases of interest.

The obvious next question is, whether for all K œ [0, Œ) we have

– < v(K) < f(a).
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Here, Lemma 4.3.3 yields that if the sets {Ex(·y) | (x, y) œ R2
, x < y Æ a} and

{Ex(·y) | (x, y) œ R2
, a Æ x < y} are not bounded from above, then for all

K œ [0, Œ) holds v(K) Ø –. Further, Lemma 4.3.4 yields

v(K) Æ f(a)

for all K œ [0, Œ) and Lemma 4.3.5 additionally yields that under our assump-
tion that › is continuous we have

v(K) < f(a)

for all K œ (0, Œ). We will see later that – is not always the lower boundary,
but before we will prove this, we have to analyse the function v further.

Theorem 5.3.3. The function v : [0, Œ) æ [≠Œ, f(a)]; K ‘æ v(K) is non-
increasing, even strictly decreasing on {K | K Ø 0, v(K) > –}, convex, contin-
uous and almost everywhere di�erentiable.

Proof. To check that v is well defined, remind that for all K > 0 holds
v(K) Æ f(a) as was shown in Lemma 4.3.4. Further, by just looking at the
definition of v in (5.1) or the characterization (5.2), it is immediately clear that
v is strictly decreasing until it reaches the (possible infinite) value –. The def-
inition by (5.1) yields convexity since v is defined as the supremum over linear
functions. This also yields di�erentiability and continuity outside zero. To see
that v is continuous in 0 we first note that v(0) Æ f(a) as was shown in Lemma
4.3.4. Now under our assumptions here we have for all y œ R

lim
x√y

Ey

!
“ (X·x) ≠

s
·x

0 h (Xt) dt
"

≠ “ (y)
Ey(·x)

= lim
x√y

Ey

!s
·x

0 f (Xt) dt
"

≠ “ (y)
Ey(·x)

=f(y).

Hence

v(0) = sup
x,yœR,x>y

Ey

!
“ (X·x) ≠

s
·x

0 h (Xt) dt
"

≠ “ (y)
Ey(·x) = f(a).

Further, the thresholds x
K

are non-increasing in K and the thresholds xK are
non-decreasing in K, since they are the roots of f ≠ v(K) and f is unimodal
and v non-increasing. Because › is continuous (see Assumption 5.3.1), there is
a K1 œ (0, Œ) such that the set {Ex(·y) | x, y œ [x

K1 , xK1 ], x < y} is bounded
by some C œ (0, Œ). Now let ‘ > 0 and take x

Õ
, y

Õ
œ [x

K1 , xK1 ] such that

v(0) = sup
x,yœR,x>y

Ey

!
“ (X·x) ≠

s
·x

0 h (Xt) dt
"

≠ “ (y)
Ey(·x)

<
EyÕ

!
“

!
X·xÕ

"
≠

s
·xÕ
0 h (Xt) dt

"
≠ “ (yÕ)

EyÕ(·xÕ) + ‘

2
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Then, for all K < min{
‘

2C
, K1} holds

v(K) = sup
x,yœR,x>y

Ey

!
“ (X·x) ≠

s
·x

0 h (Xt) dt
"

≠ “ (y) ≠ K

Ey(·x)

Ø
EyÕ

!
“

!
X·xÕ

"
≠

s
·xÕ
0 h (Xt) dt

"
≠ “ (yÕ) ≠ K

EyÕ(·xÕ)

Ø
EyÕ

!
“

!
X·xÕ

"
≠

s
·xÕ
0 h (Xt) dt

"
≠ “ (yÕ)

EyÕ(·xÕ) ≠
K

C

Ø
EyÕ

!
“

!
X·xÕ

"
≠

s
·xÕ
0 h (Xt) dt

"
≠ “ (yÕ)

EyÕ(·xÕ) ≠
‘

2
> v(0) ≠ ‘.

This shows continuity of v in 0.

Since it is needed later, we will write down a result we picked up along the way
in the proof of Theorem 5.3.3 as an own lemma.

Lemma 5.3.4. The threshold xK is non-increasing in K and x
K

is non-
decreasing in K.

Proof. This was already shown in the proof of Theorem 5.3.3.

Naturally, the next question that arises is if for K æ 0 we have x
K

≠ xK æ 0.

Theorem 5.3.5. It holds that x
K

Kæ0
æ a and xK

Kæ0
æ a for the maximizer a

of f . Hence in particular
x

K
≠ xK

Kæ0
æ 0.

Proof. We have shown that v is continuous and for small enough K œ (0, Œ)
there are indeed two distinct roots x

K
, xK of f(x) = v(K). Further, we know

that v(0) = f(a). Now the continuity of f and the continuity of v directly yields
the result.

Theorem 5.3.6. Assume the function f in the maximum representation in
Assumption 3.4.2 fulfils lim

xæ≠Œ
f(x) = lim

xæŒ
f(x) = ≠Œ. Then holds

lim
KæŒ

v(K) = ≠Œ.

Proof. Let R œ R. Further, as usual, let a be the maximizer of f . Then,
the support of (f ≠ R)+, that we will denote with L, is compact. Hence,
b := inf L, and b := sup L are real numbers and since › is continuous, some
(aú

, b
ú) œ arg max

(c,b)œ[b,b]2
Ec(·b) exist. Now set

K1 := Eaú(·bú) (f(a) ≠ R) + 1.
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Assume v(K1) Ø R. For v(K1) there are roots x
K1 , and xK1 of f ≠ v(K1) and

an x
ú
K1

œ [x
K1 , xK1 ] such that

vK1 =
Ex

ú
K1

1
“

1
X·xK1

2
≠

s ·xK1
0 h (Xt) dt

2
≠ “

!
x

K1

"
≠ K1

Ex
ú
K1

(·xK1
)

and since we assumed vK1 Ø R we have x
ú
K1

, x
K1 , xK1 œ [b, b] and hence

v(K1) =
Ex

ú
K1

1
“

1
X·xK1

2
≠

s ·xK1
0 h (Xt) dt

2
≠ “

!
x

ú
K1

"
≠ K1

Ex
ú
K1

(·xK1
)

<

Ex
ú
K1

1
“

1
X·xK1

2
≠

s ·xK1
0 h (Xt) dt

2
≠ “

!
x

ú
K1

"
≠ (f(a) ≠ R)Ex

ú
K1

(·xK1
)

Ex
ú
K1

(·xK1
)

=
Ex

ú
K1

1
“

1
X·xK1

2
≠

s ·xK1
0 h (Xt) dt

2
≠ “

!
x

ú
K1

"

Ex
ú
K1

(·xK1
) ≠ (f(a) ≠ R)

=
Ex

ú
K1

1s ·xK1
0 f(Xs)ds

2

Ex
ú
K1

(·xK1
) ≠ (f(a) ≠ R)

Æ

Ex
ú
K1

1s ·xK1
0 f(a)ds

2

Ex
ú
K1

(·xK1
) ≠ (f(a) ≠ R)

= R,

which is a contradiction to the assumption that v(K1) Ø R.

Theorem 5.3.7. Assume – ”= ≠Œ. Then,

lim
KæŒ

v(K) Æ –

and we have equality if with the notations —r := lim
xæŒ

f(x) and
—l := lim

xæ≠Œ
f(x) at least one of the following conditions is fulfilled:

• —l Ø —r and the set {Ex(·y) | (x, y) œ R2
, x < y Æ a} is unbounded.

• —l Æ —r and the set {Ex(·y) | (x, y) œ R2
, a Æ x < y} is unbounded.

Proof. The condition – ”= ≠Œ means that the function f fulfils —r > ≠Œ or
—l > ≠Œ. For each R œ R with R > max{—l, —r} = – we can use the same
compactness argument as in the proof of Theorem 5.3.6 that for large enough
K we have v(K) < R.
Let K > 0. Now we proceed to show that v(K) Ø max{—l, —r} = –, if the
right one of the two sets mentioned in the theorem is not bounded. We assume
—l < —r and unboundedness of the set {Ex(·y) | (x, y) œ R2

, a Æ x < y}; the
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other cases work in a very similar manner. Let x
ú be the only root of f ≠ –.

Then, for all y > x
ú

Exú
!
“

!
X·y

"
≠

s
·y

0 h (Xt) dt
"

≠ “ (xú) ≠ K

Exú(·y)

=
Exú

!s
·y

0 f
!
Xt

"
dt

"
≠ K

Exú(·y)

Ø
Exú

!s
·y

0 – dt
"

≠ K

Exú(·y)

=– ≠
K

Exú(·y) .

But now, due to {Ex(·y) | (x, y) œ R2
, a Æ x < y} being unbounded, for a large

enough value y the value K

Exú (·y) gets arbitrary small, hence v(K) Ø –.

Corollary 5.3.8. Under the set of assumptions made in the beginning of this
section we have

x
ú
K

KæŒ
æ ≠Œ,

x
K

KæŒ
æ ≠Œ,

xK

KæŒ
æ ≠Œ

and hence also
x

ú
K

≠ xK

KæŒ
æ Œ

and
x

K
≠ xK

KæŒ
æ Œ,

where we use for all K > 0 the convention, that x
ú
K

:= ≠Œ, x
K

:= ≠Œ and
xK := Œ if these values otherwise do not exist.

Proof. This is a direct consequence of the previous two theorems.

Remark 5.3.9. We do not want to go into too much detail regarding singular
control here, since even the definition of singular control problems requires some
technical work. To describe it very quickly: Usually monotone processes are used
as allowed control strategies and in some examples of interest impulse control
strategies lie dense in the set of allowed strategies. Thus, we want to remark that
the previous results at least heuristically hint towards the fact, that by letting the
cost converge to zero the impulse control problems for K > 0 may approximate
the optimal singular strategy for the associated singular problem with K = 0
and therefore could be a tool to show that the reflection strategy at the point a

could be optimal for the singular problem. For a substantial analysis of such
a question (albeit in the setting of portfolio optimization in a Black-Scholes-
market) we refer to [CIL17], where further references on this question may be
found.
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5.4 A Restriction to the Impulse Frequency
Throughout this section we again work with the notations and assumptions
given in Subsection 4.1.1, especially let Assumption 3.4.1 regarding the functions
“ and h hold let Assumption 3.4.2 regarding existence of a maximum representa-
tion hold and additionally assume that a continuous representing function as in
Assumption 3.4.2 exists, assume E = B = R and, furthermore, let Assumption
5.3.1 hold, meaning that the functions

� : {(x, y œ R2
|x < y)} æ R; (a, b) ‘æ Ea

3⁄
·b

0
f(Xs)ds

4

and
› : {(x, y œ R2

|x < y)} æ R; (a, b) ‘æ Ea(·b)
are continuous. Now we fix a c > 0 and only allow impulse control strategies
S = (·n, ’n)nœN œ SR such that

lim
T æŒ

1
T
Ex (|{n œ N | ·n Æ T}|) Æ

1
c

. (5.3)

We call the set of all such strategies S
c

R. Now define the value of the restricted
problem by

v
c(x) := sup

SœSc
R

lim inf
T æŒ

1
T
Ex

Q

a
ÿ

n:·nÆT

!
“

!
X

S

·n,≠
"

≠ “ (’n) ≠ K
"

≠

T⁄

0

h
!
X

S

s

"
ds

R

b .

(5.4)

For each stationary strategy R(·, x), x œ R, · œ Tx, by the renewal reward
theorem, Lemma 2.4.2, we see that

1
T
Ex (|{n œ N | ·n Æ T}|) = 1

T
Ex

Q

a
ÿ

n;·nÆT

1

R

b

T æŒ
æ

1
Ex(·) .

Hence, for these strategies the adaptation to the restriction can be done straight-
forwardly. But since it is a non-standard problem, due to the restriction of the
strategies it is by no means obvious that still a threshold strategy is optimal.
Now to check that indeed threshold times are optimal, we use a Lagrange type
ansatz. To that end let ⁄ Ø 0. Define the auxiliary problem

ṽ⁄(x) := sup
SœSR

lim inf
T æŒ

1
T
Ex

Q

a
ÿ

n:·nÆT

!
“

!
X

S

·n,≠
"

≠ “ (’n) ≠ K
"

≠

T⁄

0

h
!
X

S

s

"
ds

R

b

≠ ⁄

3
1
T
Ex (|{n œ N | ·n Æ T}|) ≠

1
c

4
. (5.5)
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To avoid trivialities, we assume that provided there is an optimal strategy S0
for v0, it holds that S0 /œ S

c

R. Now for each S := (·n, ’n) œ SR we have

1
T
Ex (|{n œ N | ·n Æ T}|) = 1

T
Ex

Q

a
ÿ

n;·nÆT

1

R

b

and hence can write

ṽ⁄(x) ≠
⁄

c

= sup
SœSR

lim inf
T æŒ

1
T
Ex

Q

a
ÿ

n:·nÆT

!
“

!
X

S

·n,≠
"

≠ “ (’n) ≠ (K + ⁄)
"

≠

T⁄

0

h
!
X

S

s

"
ds

R

b .

Since the term ⁄

c
does not depend on the strategy, we see that by Theorem

4.3.2 a threshold time is optimal for ṽ⁄ if ⁄ > 0. But on the other hand by the
standard Lagrange argument we have for all S := (·n, ’n) œ S

c

R that

lim
T æŒ

⁄

3
1
T
Ex (|{n œ N | ·n Æ T}|) ≠

1
c

4
Æ 0.

It follows that
ṽ⁄ Ø v

c
.

Hence, if we can verify that an optimal threshold strategy of the restricted
problem ṽ⁄ lies in S

c and hence fulfils the restriction, then it is also optimal for
v

c.

Theorem 5.4.1. Assume the mapping given by ⁄ ‘æ x
ú
⁄

is continuous. Then
there is a threshold time that is optimal for v

c given by an optimal threshold
time for the auxiliary problem ṽ⁄ú for some ⁄

ú
> 0.

Proof. By the definition of ṽ⁄ we see that ṽ⁄ ≠
⁄

c
is just a value function of a

standard ergodic impulse control problem with fixed costs K +⁄. Hence for each
⁄ > 0 there is an optimal threshold strategy R(·x⁄ , x

ú
⁄
) (even for each ⁄ Ø 0

if K > 0). Now our analysis of the dependence of the value on the cost term
yields that the di�erence x⁄ ≠ x

ú
⁄

continuously converges to Œ if ⁄ æ Œ, see
Corollary 5.3.8. Further, we have under our assumptions due to Theorem 5.3.3
and Theorem 5.3.5 that

x
ú
⁄

⁄æ0
æ x0

and
x⁄

⁄æ0
æ x0

where in the case K > 0, the values x0, x0 as usual denote the optimal thresh-
olds and if K = 0 denote the unique maximizer of f . Since we assumed
R(·x0 , x

ú
0) /œ S

c, for all small enough ⁄ > 0 we have that 1
Exú

⁄
(·x⁄

) >
1
c
. Further,
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for all large enough ⁄ > 0 we have that 1
Exú

⁄
(·x⁄

) <
1
c
. Hence the mean value

theorem yields that there is a ⁄
ú

> 0 such that 1
Exú

⁄ú

!
·x⁄ú

" = 1
c

and hence

J(R(·x0 , x
ú
0)) = J(R(·x0 , x

ú
0)) ≠ ⁄

3
1
T
Ex (|{n œ N | ·n Æ T}|) ≠

1
c

4

= v⁄

Ø v
c

Ø J(R(·x0 , x
ú
0)).

Remark 5.4.2. As usual when applying a Lagrange type ansatz, the value ⁄
ú

in Theorem 5.4.1 exceeds the role of a mere auxiliary object. It rather may be
interpreted as some kind of artificial cost or ’shadow cost’ of the restriction. So
again interpreting this result in the exemplary setting of forest management this
means that the restriction to the harvesting frequency from the foresters point
of view is equivalent to additional fixed cost of ⁄

ú. This is especially interesting
in the case of K = 0. Here, usually no impulse control strategy may expected to
be optimal, but with the restriction in place actually an impulse control strategy
becomes optimal. This supports the (usually) heuristic arguments that a benefit
of impulse control problems as a model is that they provide more practically
realizable optimizers than other kind of models.
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Mean field theory is a modelling or approximation approach with origin in
physics. Here, complicated interactions in many-body-systems are replaced with
some kind of an averaging influence. As justification for the reasonableness of
this procedure the law of large numbers is usually adduced. As the problem
how to simplify influences of a large number of sources is widespread amongst
several scientific fields, it is not surprising that mean field theory is used in var-
ious branches, ranging from physics and engineering to neuroscience, artificial
intelligence, statistics and game theory, to name just a few. [OS01] provides an
overview over the areas of application. The introduction of mean field games
into stochastic control theory goes back to [LL07] and [HMC06] and the range of
applications entails many economic applications, like growth models, resource
management and dynamics of opinions, see, e.g., [GLL11]. The underlying
heuristic idea of this theory is that on markets with a large number of similar
participants each individual’s point of view may be modelled as a game against
all the other participants. Now, the mean field approach is to replace the other
participants’ influences by an influence of one ’average’ participant and there-
fore make the otherwise not solvable problem solvable. The solution approach
then consists of the search for an equilibrium with the justification that the
participant whose standpoint we take while modelling the game is similar to
the other participants one and therefore no participant benefits from deviating
from a strategy that is optimal, given all others (and therefore also the artificial
’average’ participant) use the same strategy.
A natural question in these economic applications is how the problem changes,
when instead of being in competition with each other the market participants
cooperate and agree on a common strategy everyone uses. Price rigging or
agreeing on certain production or sale-quotas are economic examples of this.
This so called mean field control problem is also of recent interest (see, e.g.,
[AD11]) and often apart from the separate study of both mean field problem
and game, also the comparison is of interest, see [CDL13] or [AD18].
While most mean field games and problems in control theory work with under-
lying continuous control problems, here, we will study both a mean field game
and a mean field problem in the setting of long-term average impulse control
theory.

Structure of the section
After stating the model in Section 6.1, we first define the mean field game in
Section 6.2 and then solve it both for di�usions (Section 6.3) and for Lévy
processes (Section 6.4). Then, in Section 6.5 we study the mean field control
problem. Section 6.6 compares the solutions of game and problem and in Section
6.7 we study two examples. The results of Section 6.3, 6.5, 6.6 and 6.7 originate
in the collaborative work of Christensen, Neumann and Sohr ([CNS20]) on mean
field games for di�usions.
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6.1 Model
Again we will first work with a general strong Markov process X as defined in
Definition 2.1.3 the notations from Section 4.1 and the model of the controlled
process given in Subsection 4.1.1 (later when working with Lévy processes and
di�usions we will switch to the explicit models for these kind of processes given in
the end of Subsection 4.1.1), but since we want to add an influence of an ’average
market participant’, the pay-o� function “ : E◊E æ R will be two dimensional,
twice di�erentiable and strictly increasing in the first component, di�erentiable
and strictly decreasing in the second component. The first component models
the pay-o�’s dependence on the level of X, the second component resembles
the average level of resources of the other market participants. For the sake of
simplicity we fix a y0 œ E which will be the only allowed restarting point, hence,
we stay in the classical Faustmann setting that was discussed and motivated in
the beginning of Section 5.2. Since a core of the mean field approach is to model
the influence of a large number of similar agents by something like an average, we
define the set Q ™ S{y0} as the set of all admissible impulse strategies Q œ S{y0},
such that the controlled process X

Q has a stable distribution �Q. We call the
elements of Q admissible invariant strategies. To be in accordance with the
interpretation of �Q being a limiting distribution of the controlled process, we
will write

E[XQ

Œ] :=
⁄

x�Q(dx).

Now, for each admissible strategy R := (·i, y0)iœN œ S{y0}, each admissible
invariant strategy Q œ Q and each x œ E we define

Jx(R, Q) := lim inf
T æŒ

1
T
Ex

Q

a
ÿ

n:·nÆT

(“(XR

·n,≠,E[XQ

Œ]) ≠ K)

R

b ,

as the value of the strategy R, if the other market participants use Q.

6.2 Mean Field Game
In order to formally define a mean field equilibrium, first define the relation

A ™ Q ◊ S{y0}

by
QAR :… R œ arg max

SœS{y0}

Jy0(S, Q).

We call each strategy Q œ Q a mean field equilibrium if

QAQ.

Note that if all Jy0(·, Q) had a unique optimizer, A would become a mapping and
mean field equilibria would be its fixed points. Hence, to be in line with the usual
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literature in this branch of game theory, we will also call the elements Q œ Q

with QAQ fixed points of A. There are several ways to approach the search for
a fixed point of A. Since there will be no uniqueness even in canonical examples
(as we will see later), a promising approach is to shape A into a mapping and
then use Brouwer’s fixed point theorem (or related fixed point theorems). Here,
we have to find a topology O such that A becomes a continuous mapping and
maps a compact, convex set onto itself. Now one way is to directly tackle the
problem, another is to first restrict the space of strategies in order to simplify
the application of fixed point theorems. Here, we use the latter one. Hence,
for some cases of interest, namely di�usions and Lévy processes, we will show
that there is a mean field equilibrium in a threshold strategy R(·yg , y0) for some
y

g
œ E with y

g
> y0, provided threshold strategies are optimal. This means

R(·yg , y0)AR(·yg , y0)
or in other words

R(·yg , y0) œ arg max
SœS{y0}

J(S, R(·yg , y0))

where R(·yg , y0) is defined as the stationary threshold strategy for yg, see Sub-
section 4.1.1. Because the restarting point y0 is assumed to be fixed for this
section, we will write

R(x) := R(·x, y0)
for short for all x > y0 throughout the section. Here, we will find an equilibrium
amongst all threshold strategies and rely on general theory or the previous
chapters to justify that this is indeed a general equilibrium. To this end, we
define

a : Efl(y0, Œ) æ Efi{sup E}; y ‘æ inf

Q

aarg max
ỹœ(y0,Œ)

Ey0

1
“(X·ỹ ,E[XR(y)

Œ ])
2

≠ K

Ey0 (·ỹ)

R

b

(6.1)
where we set a(y) = sup E if the arg max set in the above definition is empty.
Provided the infimum is always attained, mean field equilibria in threshold
strategies are precisely the ones whose thresholds are given by the fixed points
of a, hence, we have to show that a indeed has a fixed point and if so, the next
interesting question is whether it is unique. To that end we will use Brouwer’s
fixed point theorem, hence, we have to show that a is continuous and there is
a non-empty closed interval I ™ E such that a(E) ™ I. Since the analysis of a
heavily relies on continuity arguments, we need stronger assumptions on X than
just X being a Markov process. Hence, in the following we will find a mean field
equilibrium in threshold strategies under two sets of additional assumptions on
X. The first one is X being a di�usion, the second one X being a Lévy process.

6.3 Mean Field Game for Di�usions
Here we show that under reasonable assumptions for di�usions, there is a mean
field equilibrium in threshold strategies (or in other words a fixed point of a). To
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prove that this equilibrium is also a equilibrium in general strategies, results,
e.g., from [HSZ17] may be used. Note, however, that the ordinary control
problem for a di�usion X with fixed restarted point y0 according to Theorem
4.3.2 (under the assumptions given there) has the value

v = sup
·œTy0

Ey0

!
“ (X· ) ≠

s
·

0 h (Xt) dt
"

≠ “ (y) ≠ K

Ey0(·) . (6.2)

Hence, all we need to have an optimal threshold strategy is that there is an
optimizer · for (6.2) (which according to Section 4.2.7 is equivalent to being
the optimizer of a stopping problem with general linear costs), that is a first
entry time in some set S, that is bounded away form y0. Because then due to
the continuity of X the control strategy R(·, y0) yields the same value as the
threshold strategy R(·ȳ, y0) with ȳ := inf S fl [y0, Œ).

Additional model assumptions

In this subsection, we assume X to be an Itô di�usion on R+ := (0, Œ) as
defined in Definition 2.3.2, meaning X is given by

dXt = µ(Xt)dt + ‡(Xt)dWt

for a standard Brownian motion W and continuous functions µ : R+ æ R and
‡ : R+ æ R that are smooth enough to guarantee a unique strong solution X to
the SDE above. Further, following the explicit model for controlled di�usions
given in Subsection 4.1.1, for each admissible strategy R = (·n, y0)nœN we define
the controlled process X

R by

X
R

t
= X

R

0 +
t⁄

0

µ(XR(s)) ds +
t⁄

0

‡(XR

s
) dWs ≠

ÿ

n; ·nÆt

(XR

·n≠ ≠ y0).

Following Subsection 2.3.1, we denote the speed measure of X by M and its
scale function by S. We assume existence of their (Lebesgue-)densities dM

d⁄
=: m

and S
Õ =: s, that are given by

m(x) = 2
‡2(x) exp

3⁄
x 2µ(y)

‡2(y) dy

4
, s(x) = exp

3
≠

⁄
x 2µ(y)

‡2(y) dy

4
,

see Subsection 2.3.1 for more details.
Further, we assume X to be positively recurrent with integrable stationary dis-
tribution (meaning the stationary distribution has a mean) denoted by P(XŒ œ

dx) (with a slight abuse of notation). General di�usion theory hence yields that
M(R+) < Œ and the invariant distribution is given by

P(XŒ œ dx) = m(x)
M(R+)dx
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and
EXŒ :=

⁄

R+

x
m(x)

M(R+)dx < Œ,

see Section 2.3. Also, our assumptions imply that for all x, y œ R+ we have
Ex(·y) < Œ. Hence, the function

› : R+ æ [0, Œ); x ‘æ Ey0(·x)

is a well defined real valued function, is even di�erentiable and has a repre-
sentation in terms of m and s, see Subsection 2.3.2. The assumption that
M(R+) < Œ implies that the boundary Œ is natural and 0 is either entrance
or natural (see [KT81, p.234]). Note that X being a di�usion and thus having
continuous sample paths and the existence of a representation of › simplifies the
structure of a considerably. So under the assumptions made in this subsection
we have for all y > y0 that

a(y) = inf

Q

aarg max
ỹœ(y0,Œ)

Ey0

1
“

1
ỹ,E[XR(y)

Œ ]
22

≠ K

›(ỹ)

R

b . (6.3)

Now the feasibility of the search for a’s possible fixed points, of course, heavily
depends on the properties of “ and ›. Here, we aim for reasonably simple
assumptions that cover the main examples of interest while making the proofs
not too theory-heavy. So, in addition to the assumptions on the process made
above, we will also work with the following assumptions:

Assumption 6.3.1. 1. “ is of the form “(y, z) = (y ≠ y0)Ï(z) for a contin-
uously di�erentiable and strictly decreasing function Ï : [z1, z2] æ R+.

2. There is a y1 such that the drift function µ is non-increasing on (y1, Œ)
and strictly increasing on [y0, y1].

Note that it is possible to generalize these assumptions as it is done in [CNS20].
But the assumptions here already cover a wide class of applications. On one
hand, Itô’s lemma can be used to work with more general pay-o� functions, on
the other hand, the assumptions posed on X include the main candidates of X

that are used to model growth of natural resources. Hence, the logistic di�usion
that is given by

dXt = aXt(1 ≠ bXt)dt + ‡(Xt)dWt,

for some a, b œ (0, Œ) and maybe the most common model for stochastic growth
is included here. Also the connection to non-random modelling of natural
growth, that was discussed in Section 5.2, is apparent. So our model may
be seen as the random analogous to the Richards curve, which is the standard
model for non-random natural growth in biology and is given as the solution of
the ODE

R
Õ(x) = a(R(x))m

≠ bR(x)

(see [Ric59, Pre19]) for some a, b œ (0, Œ) and m œ (0, 1).
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Finding a fixed point
Now to find a fixed point for a under our assumptions, we define the functions

b : (y0, Œ) æ (0, Œ); y ‘æ Ey0 [XR(y)
Œ ]

and

c : (0, Œ) æ (y0, Œ); z ‘æ inf
A

arg max
ỹœ(y0,Œ)

Ey0 (“ (ỹ, z)) ≠ K

›(ỹ)

B

and see that
a = c ¶ b.

In the following, we will show that both b and c are continuous and b((y0, Œ))
is a compact set.
First we tackle b. For each y > y0 an explicit formula for the limiting distribution
of X

R(y) is known. By standard di�usion theory, see, e.g., [HSZ17, Proposition
3.1], we have that X

R(y)
Œ has the density

fiy0,y(x) =

Y
_]

_[

0, x > y

Ÿm(x)S[x, y], x œ [y0, y]
Ÿm(x)S[y0, y] x Æ y0

, (6.4)

where

Ÿ =
3⁄

y

y0

S[x, y]dM(x) + S[y0, y]M [a, y0)
4≠1

.

Lemma 6.3.2. The function b is continuously di�erentiable and strictly in-
creasing.

Proof. The di�erentiability directly follows from the definition of fiy0,y. To
tackle the monotonicity, we show that given an arbitrary pair y1, y2 œ R+ with
y1 < y2 there is a switching point z œ [y0, y1] such that for the corresponding
densities it holds that

fiy0,y1(x) > fiy0,y2(x), for all x < z,

and
fiy0,y1(x) Æ fiy0,y2(x), for all x Ø z.

This immediately yields the statement. To this end, we first prove that for fixed
y0 and x Æ y0 the density fiy0,y(x) is strictly decreasing in y: We have

fiy0,y(x) = m(x) g1(y)
f1(y) + f2(y)

with

f1(y) =
⁄

y

y0

S[w, y]dM(w), f2(y) = S[y0, y]M [0, y0], g1(y) = S[y0, y]
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(since S is continuous and M is absolute continuous w.r.t. the Lebesgue mea-
sure, it doesn’t matter if the intervals are open or closed). Using

f
Õ
1(y) = S

Õ(y)M [y0, y], f
Õ
2(y) = S

Õ(y)M [0, y0], g
Õ
1(y) = S

Õ(y)

we obtain
ˆ

ˆy
fiy0,y(x) = m(x)g

Õ
1(y)(f1(y) + f2(y)) ≠ (f Õ

1(y) + f
Õ
2(y))g1(y)

(f1(y) + f2(y))2

= m(x)
(f1(y) + f2(y))2 S

Õ(y)
C ⁄

y

y0

S[w, y]dM(w) + S[y0, y]M [0, y0]

≠ S[y0, y]M [y0, y] ≠ S[y0, y]M [0, y0]
D

= m(x)
(f1(y) + f2(y))2 S

Õ(y)

S

WU
⁄

y

y0

(S[w, y] ≠ S[y0, y])¸ ˚˙ ˝
=≠S[y0,w]

dM(w)

T

XV < 0.

This yields fiy0,y1(x) > fiy0,y2(x) for all x Æ y0. It remains to consider the
case x > y0. We first show that for y œ [y0, y1] and x œ [y0, y] the derivative
ˆ

ˆy
fiy0,y(x) may be decomposed as

ˆ

ˆy
fiy0,y(x) = m(x)h(x, y)

where h(x, y) is non-decreasing in x. Indeed, for all x œ [y0, y] using the notation
g2(y) = S[x, y] we get

ˆ

ˆy
fiy0,y(x) = m(x)g

Õ
2(y)(f1(y) + f2(y)) ≠ g2(y)(f Õ

1(y) + f
Õ
2(y))

(f1(y) + f2(y))2

= m(x)SÕ(y)
(f1(y) + f2(y))2

C ⁄
y

y0

S[w, y]dM(w) + S[y0, y]M [0, y0]

≠ S[x, y]M [y0, y] ≠ S[x, y]M [0, y0]
D

= m(x)
;

1
(f1(y) + f2(y))2

3⁄
y

y0

S[w, x]dM(w) + S[y0, x]M [0, y0]
4<

=: m(x)h(x, y)

where h(x, y) is indeed obviously strictly increasing in x. This decomposition is
su�cient as it yields that

fiy0,y2(x) ≠ fiy0,y1(x) = m(x)
⁄

y2

y1

h(x, y)dy

changes sign just once. Hence, using fiy0,y1(x) > fiy0,y2(x) for x < y0 and
fiy0,y1(x) = 0 < fiy0,y2(x) for x œ (y1, y2), there exists some z œ [y0, y1] satisfying
above conditions.
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Next we show that b((y0, Œ)) is a compact set.
Lemma 6.3.3. Let R be an admissible impulse control strategy. Then

z1 Æ lim inf
T æŒ

EX
R

T
Æ lim sup

T æŒ
EX

R

T
Æ z2,

where z1 := EX
r

Œ œ R+ denotes the mean of the limiting distribution of the
di�usion process X

r reflected downwards in y0 and z2 := EXŒ œ R+ denotes
the mean of the limiting distribution of the uncontrolled di�usion process X.
Proof. First note that the expectations z1, z2 exist since we assumed X to be
ergodic and X

r therefore is positively recurrent. The inequalities can be proved
using an easy (partial) coupling argument:
We construct X

r by letting it run coupled with X
R until a state Ø y0 is reached.

Then, we reflect X
r in y0 downwards and let both processes run independently

following their dynamics until the first time the two paths meet again. Then,
we couple the paths and follow this rule. Consequently, for each t and each Ê

we have X
r

t
(Ê) Æ X

R

t
(Ê), proving the first inequality.

Similarly, we construct a version of the uncontrolled di�usion X by running
coupled with X

R until the first impulse time. Then, we let both processes
run independently following their dynamics until we couple them the next
time the two paths meet and so on. Again, for each t and each Ê we have
X

R

t
(Ê) Æ Xt(Ê).

Next, we tackle c. Here, we first want to make sure that for each z œ [z1, z2] the
set

arg max
ỹœ(y0,Œ)

“ (ỹ, z) ≠ K

›(ỹ)
in the definition of c(z) only has one element. To that end, we first analyse ›.
Lemma 6.3.4. The function ›(·) is convex on (y1, Œ) and concave on [y0, y1].
If µ is strictly increasing (strictly decreasing) on one of the intervals, › is strictly
concave (strictly convex).
Proof. We first show the convexity on (y1, Œ). For r > 0, we introduce the
function Âr via

Âr(x) =
I
Ex(e≠r·y0 ), x Æ y0,

[Ey0(e≠r·x)]≠1
, x > y0,

where ·z denotes the first hitting time of level z. As is well known, see [BS15,
II.10], Âr is the (up to a multiplicative factor unique) strictly increasing funda-
mental solution to AXf = rf where AX as usual denotes the generator of X

extended to possibly non-bounded functions. Due to standard results for the
Laplace transform, it holds that for all x > y0

›(x) = ≠
ˆ

ˆr
Ey0(e≠r·x)|r=0 = ≠

ˆ

ˆr

1
Âr(x) |r=0 =

ˆ

ˆr
Âr(x)

Âr(x)2 |r=0

= lim
ræ0

Âr(x) ≠ 1
r

.
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We see that it is enough to prove convexity of Âr. By [Alv03, Theorem 1] we
have that with ◊r(x) := rx ≠ µ(x) it holds that

‡
2(x)Â

ÕÕ
r
(x)

SÕ(x) = 2r

⁄ Œ

x

Âr(x)(◊r(y) ≠ ◊r(x))mÕ(y)dy,

thus, whenever ◊r(y) Ø ◊r(x) for all y Ø x, we obtain that Â
ÕÕ
r
(x) > 0. Since µ

is strictly decreasing on (y1, Œ), it is obvious that ◊r(x) is strictly increasing on
(y1, Œ), which yields Â

ÕÕ
r
(x) > 0, implying convexity of Âr(x) for all x œ (y1, Œ),

as desired. To show concavity on [y0, y1] basically works just the same. Only
when utilizing the equality

‡
2(x)Â

ÕÕ
r
(x)

SÕ(x) = 2r

⁄ Œ

x

Âr(x)(◊r(y) ≠ ◊r(x))mÕ(y)dy,

we have to note that concavity is a local property and we can therefore modify
µ outside [y0, y1] to be strictly increasing on [y0, Œ).

From this particular shape of › we can deduce that for each z œ [z1, z2] there is
a unique critical point of

Fz : (y2, Œ) æ (0, Œ); y ‘æ
“ (y, z) ≠ K

›(y) = (y ≠ y0)„(z) ≠ K

›(y)

where y2 := K

„(z) + y0 and said critical point is a global maximum, hence equals
c(z). In order to do that, we fix a z œ [z1, z2]. The critical points are the roots
of the function F̃z given by

F̃z(y) := Ï(z)›(y) ≠ ((y ≠ y0)Ï(z) ≠ K)›Õ(y).

We use
ˆ

ˆy
F̃z(y) = ≠((y ≠ y0)Ï(z) ≠ K)›ÕÕ(y).

We see that

(i) F̃z(y2) > 0,

(ii) ˆ

ˆy
F̃z(y) Ø 0 on the (possibly empty) interval (y2, y1),

(iii) ˆ

ˆy
F̃z(y) < 0 for all y Ø y1,

(iv) limyæŒ F̃z(y) < 0 since › is strictly convex on [y1, Œ).

This yields that F̃z has exactly one root y
ú = y

ú(z) on (y2, Œ). Since F̃z has
the same sign as the derivative of Fz, this root is the only maximum of Fz

in (y2, Œ), hence c(z) = y
ú(z). This enables us to obtain c(z) by help of the

implicit function theorem. To that end, we have to di�erentiate F̃z with respect
to z.

Lemma 6.3.5. It holds ˆ

ˆz
F̃ (yú

, z) > 0 for the unique root y
ú of F̃z in (y2, Œ).
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Proof. We first see that for this critical point y
ú, since it is a root of F̃z and we

have Ï(z) > 0, it holds that

0 =Ï(z)›(yú) ≠ ((yú
≠ y0)Ï(z) ≠ K)›Õ(yú)

=Ï(z)
3

›(yú) ≠ (yú
≠ y0)›Õ(yú) + ›

Õ(yú) K

Ï(z)

4
,

hence,

(yú
≠ y0)›Õ(yú) ≠ ›(yú) = ›

Õ(yú) K

Ï(z) .

This yields

ˆ

ˆz
F̃z(yú) = Ï

Õ(z)›(yú) ≠ Ï
Õ(z) ((yú

≠ y0)›Õ(yú))

= ≠Ï
Õ(z)›Õ(yú) K

Ï(z)
> 0

where we used that › is strictly increasing and Ï positive and strictly decreasing.

Now, with Lemma 6.3.5 we are able to apply the implicit function theorem on
F̃z and get that the function c is continuously di�erentiable. This additionally
yields that

c([z1, z2]) ™ [y, y]
for some y, y œ (y0, Œ) with y < y.
Puzzling all the results together, we see that a = c ¶ b is continuous and

a([y, y]) ™ [y, y].

Brouwer’s fixed point theorem hence yields:

Theorem 6.3.6. There is a mean field equilibrium in threshold strategies.

Proof. As discussed, a is a continuous mapping with

a
!
[y, y]

"
™ [y, y].

Brouwer’s fixed point theorem thus guarantees existence of a fixed point.

6.4 Mean Field Game for Lévy Processes
While it was suprisingly di�cult to verify existence of mean field equilibria for
di�usions, it is considerably easier for Lévy processes. Now, instead of X being
a di�usion, we assume X to be a Lévy process with 0 < E(X1) < Œ. We
again will work with the explicit model for controlled Lévy processes presented
in Subsection 4.1.1 and used in Subsection 4.4.2. Further, we assume
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Assumption 6.4.1. “ is for all y, z œ R of the form

“(y, z) = (Â(y) ≠ Â(y0))Ï(z)

for a continuously di�erentiable and strictly decreasing function Ï : R æ R+
and a twice di�erentiable, unbounded, concave and strictly increasing function
Â : R æ [‘, Œ) for some ‘ > 0. Further, assume that lim

xæŒ
Â(x)

x
< 1.

Now, to make sure it su�ces to search a fixed point of a instead of one of A,
we verify that a threshold strategy is optimal for the auxiliary control problems
with value vz given by

vz := sup
R

lim inf
T æŒ

1
T
Ex

Q

a
ÿ

n:·nÆT

(“(XR

·n,≠, z) ≠ “(y0, z) ≠ K)

R

b

for all z œ (0, Œ). This can be done by applying the solution technique developed
in Subsection 4.4.2 with the alterations for a fixed restarting point discussed in
Remark 4.4.3. Here, we use the usual notations for ladder height process H, its
generator AH , its drift µ̃H and its Lévy measure �H as defined in Definition
2.2.14. With that at hand, notice that we have for all x Ø y0 and z œ R

AH“(x, z) = AH(Â(x) ≠ Â(y0))Ï(z)

= Ï(z)
3

µ̃HÂ
Õ(x) +

⁄ Œ

0
(Â(x + y) ≠ Â(x))�H(dy)

4
.

Because Â is concave and strictly increasing, both Â
Õ and Â(· + y) ≠ Â(·) are

positive and strictly decreasing functions. Thus, the same is true for AH“(·, z)
for all z œ (0, Œ) and for all fl œ (limxæŒ AH“(x, z), AH“(y0, z)) there is exactly
one solution to

AH“(x, z) = fl.

Here, the generator is again understood to be defined for general twice contin-
uously di�erentiable functions as discussed in Subsection 2.2.4. Thus, step two
of the solution technique yields that for fixed z œ R, provided this function is
well defined, is given via the function

c : R æ (y0, Œ); z ‘æ inf
A

arg max
ỹœ(y0,Œ)

Ey0

!!
Â(X·ỹ ) ≠ Â(y0)

"
Ï(z)

"
≠ K

›(ỹ)

B
.

Here, again we define › : [y0, Œ) æ (0, Œ); y ‘æ Ey0(·y) and with Wald’s
equation we get for all y Ø y0

›(y) = 1
E(X1)Ey0(X·y ≠ y0)

and since Â is strictly concave this yields that for fixed z œ (0, Œ) the set

arg max
yœ(y0,Œ)

Ey0

!!
Â(X·y ) ≠ Â(y0)

"
Ï(z)

"
≠ K

›(y)
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has exactly one element that, since Â is unbounded, yields a positive value.
Therefore, c is well defined. Further, that Â is strictly concave and „ strictly
decreasing, yields that c is strictly decreasing as well.

Lemma 6.4.2. The mapping c is continuous.

Proof. The mapping

d : R æ R; z ‘æ max
ỹœ(y0,Œ)

Ey0

!!
Â(X·ỹ ) ≠ Â(y0)

"
Ï(z)

"
≠ K

›(ỹ)

is well defined due to the discussion before this lemma. Further, it is continuous,
since it is strictly increasing and as a supremum over a�ne linear functions
strictly convex. By Lemma 2.2.12 the mapping

� : (y0, Œ) æ R; y ‘æ Ey0(Â(X·ỹ ))

is continuous and by Lemma 2.2.11 the mapping › is continuous on (y0, Œ).
Hence, the function

D : (y0, Œ) ◊ R; (ỹ, z) ‘æ
Ey0

!!
Â(X·ỹ ) ≠ Â(y0)

"
Ï(z)

"
≠ K

›(ỹ) ≠ d(z)

is continuous and strictly decreasing in the second component. Therefore, the
implicit function theorem (in the version for monotone functions) yields that the
function c is continuous, because for each z œ R the value c(z) is characterized
as the unique solution to

D(c(z), z) = 0.

Now, we want to show that the function

b : (y0, Œ) æ R, y ‘æ E(XR(y)
Œ )

is continuous and the set Â(b((y0, Œ))) is compact and bounded away from zero.

Lemma 6.4.3. There is C œ R such that Â(b((y0, Œ))) ™ [‘, C].

Proof. Fix a strategy S = (·n, y0)nœN œ Q. Now, since we use the explicit model
for the controlled process given by (4.1), we have for each Ê œ � and for all
t Ø 0

max{sup
sÆt

Xs(Ê) ≠ y0, 0} Ø

ÿ

·n(Ê)Æt

(X·n(Ê)(Ê) ≠ y0)

and hence for the with S controlled process X
S that

X
S

t
(Ê) = Xt(Ê) ≠

ÿ

·n(Ê)Æt

(X·n(Ê)(Ê) ≠ y0) (6.5)

Ø Xt(Ê) ≠ max{sup
sÆt

Xs(Ê) ≠ y0, y0} =: X
r

t
(Ê) (6.6)
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for all t Ø 0. This process X
r is often called the reflection of X at y0 and is

pretty well investigated. It is obviously positive recurrent and hence possesses a
stable distribution, whose mean we denote with E(Xr

Œ). Now since the function
Ï is strictly increasing and bounded below by ‘ > 0 we have

Ï(E(Xr

Œ)) Ø Ï(E(Xr

Œ)) Ø ‘.

Lemma 6.4.4. The function b is continuous.

Proof. Let y œ (y0, Œ). The process X
R(y) possesses a stationary distribution

as shown in Lemma 4.1.2 and thus

E(XR(y)
Œ ) =

Ey0(
s

·y

0 X
R(y)
s ds)

Ey0(·y) =
Ey0

!s
·y

0 Xsds
"

›(y) .

Now with similar arguments as in Lemma 6.4.2 we see that both numerator and
denominator are continuous functions in y, hence b is continuous.

Theorem 6.4.5. There is a mean field equilibrium that is given by a threshold
strategy.

Proof. Lemma 6.4.4 and Lemma 6.4.2 yield that a = c¶ b is continuous, Lemma
6.4.3 yields that a maps a compact interval to itself. Hence, we may apply
Brouwer’s fixed point theorem and get that there is a fixed point of a. The
application of our solution technique in the beginning of this subsection already
proved that fixed points of a also are fixed points of A, hence mean field equi-
libria.

6.5 The Mean Field Control Problem
We now consider the so called mean field control problem. The economic inter-
pretation is that the market participants (if we again imagine, say, a market of
many ’similar’ foresters selling their forest stand) cooperate in the sense that
they agree to choose an invariant strategy Q = (·n, y0)nœN œ Q. We again work
with the general model, hence with a general underlying Markov process X,
and the notations introduced in Section 6.1. The mean-field control problem
consists of maximizing

Jx(Q, Q) = lim inf
T æŒ

1
T
Ex

Q

a
ÿ

n:·nÆT

(“(XR

·n,≠,E[XR

Œ]) ≠ K)

R

b (6.7)

over all invariant admissible strategies Q. Here, we will show that by a Lagrange
type approach this problem can be transformed into an ergodic impulse control
problem with generalized linear cost of the type that was extensively studied in
Chapter 4. This circumvents the issue that the problem (6.7) is a non-standard
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stochastic control problem due to the expectation term.
Instead of restricting the process and the function “ further as we did in Section
6.3 and Section 6.4, we make the following more general assumptions regarding
the restricted problems defined by

vz,⁄(x) = sup
QœQ

lim inf
T æŒ

1
T
Ex

Q

a
ÿ

n:·nÆT

(“(XQ

·n,≠, z) ≠ K) ≠

⁄
T

0
⁄X

Q

t
dt

R

b , (6.8)

for all ⁄ Ø 0, x œ E, z œ R.
Assumption 6.5.1. 1. Assume G := {E(XQ

Œ) | Q œ Q} is a non-empty
interval.

2. Assume for fixed z œ G and ⁄ œ [0, Œ) the function vz,⁄ is constant, finite
and a threshold strategy R(y(⁄, z)) œ Q for some y(⁄, z) > y0 is optimal
for vz.

3. Assume for each z œ E the mapping Lz : [0, Œ) æ (y0, Œ), ⁄ ‘æ y(⁄, z) is
continuous.

4. Assume the mapping b : E æ R; y ‘æ E(XR(y)
Œ ) is non-decreasing and

continuous.

5. It holds b(E) = G.
Note that to verify that this assumption’s Part 2 holds for particular processes
X, we may use the theory of Chapter 4. Especially for Lévy processes, the main
example of this chapter, this may be done by utilizing maximum representations,
also [HSZ17] and [HSZ18] may be used for di�usions. The assumption that
for all pairs (⁄, z) œ [0, Œ) ◊ G an optimal threshold exists for vz,⁄ is quite
restrictive. However as it can easily seen in the line of argument later on, it is
not essential but only needed to apply the mean value theorem and therefore
may be weakened. Regarding Part 4 of the assumption, we know from the
previous section that both the di�usion and the Lévy process therein fulfil this
assumption. Part 3 may be tackled with Theorem 4.3.2 and the representation

vz,⁄ =
Ey0

!
“

!
X·y(⁄,z)

"
≠

s
·y(⁄,z)
0 ⁄ (Xt) dt

"
≠ “ (y0) ≠ K

Ey0(·y(⁄, z)) (6.9)

obtained from (4.5). Lastly, Part 5 also holds in the two cases of the previous
sections.
Now, the first step to reduce the mean field problem to a standard impulse
control problem is to write the problem (6.7) as

sup
QœQ

Jx(Q, Q) = sup
zœE

sup
R with E[XR

Œ]=z

lim inf
T æŒ

1
T
Ex

Q

a
ÿ

n:·nÆT

“(XR

·n,≠, z)

R

b . (6.10)

This enables us to use a Lagrange-type approach to transform the restricted
problem and thus show that there is a threshold type strategy that optimizes
the mean field problem.
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Theorem 6.5.2. The value of the problem given by (6.7) is

sup
QœQ

Jy0(Q, Q) = sup
yœE,y>y0

H(y)

where for all y œ (y0, Œ) fl E

H(y) :=
Ey0“(X·y ,E[XR(y)

Œ ]) ≠ K

›(y)

and for each maximizer y
ú of H, the threshold strategy R(yú) is optimal for the

problem (6.7).

Proof. By the previous discussion it su�ces to fix an arbitrary z œ G and to
show that there is a threshold strategy as an optimizer of the problem

sup
RœQ with E[XR

Œ]=z

lim inf
T æŒ

1
T
Ex

Q

a
ÿ

n:·nÆT

(“(XR

·n,≠, z) ≠ K)

R

b . (6.11)

Now, with a standard Lagrange approach we consider for fixed ⁄ the associated
unconstrained problem

sup
RœQ

lim inf
T æŒ

1
T
Ex

Q

a
ÿ

n:·nÆT

(“(XR

·n≠, z) ≠ K)

R

b ≠ ⁄
!
E[XR

Œ] ≠ z
"

.

By standard calculus it holds that for all R œ Q

E[XR

Œ] = lim
T æŒ

EX
R

T
= lim

T æŒ
ExX

R

T
= lim

T æŒ

1
T
Ex

⁄
T

0
X

R

t
dt,

hence, problem (6.11) may be rewritten as

sup
RœQ

lim inf
T æŒ

1
T
Ex

Q

a
ÿ

n:·nÆT

(“(XR

·n,≠, z) ≠ K) ≠

⁄
T

0
⁄X

R

t
dt

R

b + ⁄z.

As ⁄z is just a constant, this problem is a standard long-term average im-
pulse control problem as (6.8) and by Assumption 6.5.1 there exists a threshold
y = y(⁄, z) such that R(y) is optimal. Denote by y(z) a threshold value
satisfying z = E[XR(y(z))

Œ ]. Then, we obtain that only those values z can
achieve the supremum in (6.10) that satisfy y(z) Æ y(0, z). Indeed, assume
that y(z) > y(0, z). Since “(y, z) is strictly decreasing in the second component,
we obtain

Jx(R(y(z)), R(y(z))) Æ Jx(R(y(z)), R(y(0, z))) Æ Jx(R(y(0, z)), R(y(0, z))),

which is a contradiction. Since

lim
⁄æŒ

y(⁄, z) < y(z),
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and ⁄ ‘æ y(⁄, z) is continuous, we obtain from

lim
⁄æŒ

⁄
wfi

R(y(⁄,z))(dw) Æ z Æ

⁄
wfi

R(y(0,z))(dw)

by Assumption 6.5.1, Part 2. that there is a ⁄z such that

z =
⁄

wfi
R(y(⁄z,z))(dw).

As R(y(⁄z, z)) is an (unconstrained) maximizer for

sup
R

lim inf
T æŒ

1
T
Ex

Q

a
ÿ

n:·nÆT

“(XR

·n≠, z)

R

b ≠ ⁄z

!
E[XR

Œ] ≠ z
"

and fulfils
z = E[XR(y(⁄z,z))

Œ ],

it is a maximizer for (6.11) as well, proving the result.

6.6 Comparison of the Solutions
In the last two sections we have discussed conditions under which both mean
field game and mean field problem have threshold strategies as equilibria. Now,
we will shortly discuss the relationship of the two equilibria. Hence, we assume
both game and problem to have an equilibrium in threshold strategies. Further
we assume “ : E ◊ E æ R to be continuous, strictly increasing in the first and
strictly decreasing in the second argument and we assume all later occurring
integrals to exist. In both cases the threshold can be obtained by maximizing
the function

G : (y0, Œ) ◊ R+; (x1, x2) ‘æ

Ey0

1
“(X·x1

,E[XR(x2)
Œ ])

2
≠ K

›(x1)

in a certain way.
Our assumptions, in particular, the assumption that “(x, z) is strictly decreasing
in z for all x, yields the following comparison result stating that the threshold
under competition is larger than in the cooperative regime:

Theorem 6.6.1. Let “(x, z) be strictly decreasing in z for all x and strictly
increasing in x for all z, further assume that the mapping

b : E æ R; y ‘æ E(XR(y)
Œ )

is strictly increasing. Then, for each threshold value y
p being optimizer of the

mean field problem and each threshold value y
g being optimizer of the mean field

game holds y
p

Æ y
g.



130 CHAPTER 6. MEAN FIELD CONTROL

Proof. Since “(x, z) is strictly decreasing in z and b is strictly increasing, we
obtain that G(x, z) is also strictly decreasing in z. Assume that there is an
equilibrium threshold y

g and a threshold for the mean field control problem y
p

such that y
g

< y
p. Since y

g is an equilibrium, we obtain that

G(yp
, y

g) Æ G(yg
, y

g).

Since y
p is a solution of the mean field control problem, we have

G(yg
, y

g) Æ G(yp
, y

p).

Together with the fact that G is strictly decreasing in the second argument we
obtain

G(yg
, y

g) Æ G(yp
, y

p) < G(yp
, y

g) Æ G(yg
, y

g),

which is a contradiction.

6.7 Examples
6.7.1 Classical example
To illustrate our results, we first consider a standard example of a stochastic
growth model, that is fitted in the mean field model in an easy, natural way.
Namely, we let the underlying process be a (Verlhust-Pearl) logistic di�usion
and hence stay in a classical logistic stochastic growth model. Thus, let the
uncontrolled process follow the dynamics

dXt = Xt(a ≠ bXt)dt + —XtdWt,

where a, b, — are positive constants. This di�usion is well-studied and we re-
fer to [GVWM15] for the results we use here and further references. We set
q := 1/2 ≠ afl

≠2 and fl := 2b—
≠2, and with this notations it is well-known that

X converges towards a unique stationary distribution if q Æ 0; otherwise X

converges to 0 a.s. We use the notation developed in Subsection 2.3.1 for speed
measure and scale function. As outlined in Section 2.3 speed measure and scale
function are given by the densities

s(x) = x
2q≠1 exp

3
2
fl2 b(x ≠ 1)

4

and

m(x) = 2
fl2 x

≠2q≠1 exp
3

≠
2
fl2 b(x ≠ 1)

4
.

Thus, for each y œ the expectation

E[XR(y)
Œ ] =

⁄
y

≠Œ
xfiy0,y(x)dx
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can be calculated as in (6.4). Assume q < 0 in the following. In this case, the
function › is known to be give (semi-)explicitly by:

›(y) = 1
fl2|q|

A
log

3
y

y0

4
+

Œÿ

n=1

1
(1 ≠ 2q)n

(fly)n

n
≠

Œÿ

n=1

1
(1 ≠ 2q)n

(fly0)n

n

B
,

where (u)n = u(u + 1) · · · (u + n ≠ 1) denotes the Pochhammer symbol. Now for
the mean field game we have to find a threshold y

g such that

y
g = arg max

y

“

1
y,EX

R(y
g)

Œ

2
≠ K

›(y) .

As all expressions are known explicitly, this task can be carried out straightfor-
wardly. For illustrative purposes we use the parameters

q := ≠1, — := 1, y0 := 1, b := 1/2, fl := 2b/—, K := 1

and as pay-o� function we use the function

“ : [y0, Œ) ◊ (0, Œ); (y, z) ‘æ y/z.

Numerically we obtain y
g

¥ 5.20 and the corresponding value of the game is
approximately 0.2256. For the mean field problem the function

[y0, Œ) æ [y0, Œ); y ‘æ arg max
y

“

1
y,EX

R(y)
Œ

2
≠ K

›(y) (6.12)

has to be optimized. With the same set of parameters as above, the optimizer
is yp ¥ 4.23 with approximated value 0.2446. As discussed in Section 6.6, the
threshold yp is lower than y

g. The corresponding expected present volumes of
wood per market participant are EX

R(yp)
Œ = 1.624 and EX

R(y
g)

Œ = 1.78. Here,
the value in the game is again higher than the value in the problem.

6.7.2 An example with no unique equilibrium
Always a question of interest in mean field theory is whether the equilibria of
mean field games are unique. In our situation this is not the case in general
and modifying the example above only at one point yields a case with several
distinct equilibria. Thus, we work with the same process X as above and also
take the same set of parameters for our numerical analysis. Compared to the
example above, we change the pay-o� function and now use

“ : [y0, Œ) ◊ (0, Œ) æ R+; (y, z) ‘æ
y ≠ y0

1 + exp(10(z ≠ 1.9)) .

Modelling the dependence on z by this ’mirrored logistic function’ indeed yields
three equilibria which are approximately at the points y

g

1 ¥ 4.6, y
g

2 ¥ 6.8 and
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y
g

3 ¥ 55.5. While the first and the last one of them are stable in the sense that
when starting with a value y1 in an interval around the equilibrium point the
iteration used to numerically determine the equilibrium points defined by

yn+1 = arg max
ỹ

“

1
ỹ,EX

R(yn)
Œ

2
≠ K

›(y)

for all n œ N will converge to y
g

1 and y
g

3 respectively, this is not the case for y
g

2 .
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This thesis connects long-term average impulse control problems and stopping
problems with general linear costs for quite general Markov processes. A solu-
tion to the stopping problems is given and utilized to also show, under which
assumptions the impulse control problem has threshold strategies as an opti-
mizer. These theoretical findings are condensed to a quite constructive step-by-
step solution technique in the case, the underlying process is a Lévy process.
The main ingredient for the theoretical results is an integral type maximum
representation that in the Lévy process case is developed and made explicit by
use of the ladder height process. While the usefulness of this solution technique
is demonstrated by solving control problems for processes with jumps in a way
that exceeds the results present in the literature, the power of the theoretical
findings unveils itself by enabling a study on how the control problem depends
on the cost term that itself is used to show that a restriction to the average
allowed number of controls per time unit in a way is equivalent to an added ar-
tificial fixed cost term. Lastly, mean field impulse control games and problems
are formulated and studied.
Thus, this thesis’ topics – although versatile in its origins and diverse in its
applications – form a self contained unit with deep inherent connections and
therefore nicely wrap up over four years of fruitful research. And neverthe-
less, or maybe rather precisely because of that, it raises a plethora of further
questions. One of the obvious ones is the question, whether the (semi-)explicit
results that are proven here for Lévy processes and are already known for dif-
fusions may be unified to theorems on jump di�usions. The di�culty here lies
in finding an accessible maximum representation.
Then, of course, there is the ever-present question whether the techniques used
here to tackle one-sided problems both in control and stopping theory may be
adapted to the two-sided case or maybe even more complicated types of stop-
ping regions. First this does not seem to be the case because the application of
the running maximum seems pretty tailor-made (and therefore limited to) prob-
lems with some kind of one-sided structure. On the second view, however, it
could be possible to add a dimension and use representations, that in addition
to the maximum also contain the running minimum. Also the connection to
potential theory might be used to replace the integral containing the maximum
by some other kind of additive process. The discussion of generalizations of
the maximum representations in the discrete stopping problem might be a hint
that approaches in this direction might be promising. However these possible
generalizations of the discrete stopping problem also point out one of the major
obstacles of such generalizations: In order to find the right additive process/po-
tential (or, however, the possible generalization of the running maximum might
be called) one basically has to already know the shape of the stopping region.
That this phenomenon is not limited to the discrete time case may be seen in
the works of Föllmer, Knispel and El Karoui (see, e.g., [FK07]) that show how
super-harmonic functions may be seen as expected suprema. There, in order
to find the maximum representation of a super-harmonic function, a stopping
problem is solved. Thus, using these representations to solve stopping problems
bears the serious risk of circular arguments, especially when one aims for con-
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structive, explicit solutions.
The same di�culties, of course, also are to be expected when considering to look
at multidimensional problems. However, here the so far in this wrap up a bit
overlooked connection of discrete and continuous stopping problem bears some
hope. Establishing this connection never utilized one dimensionality or the one-
sided structure. And quite recently in [CI20] Christensen and Irle showed that
(albeit in the discounted setting) by utilizing embedded monotone problems at
least some explicit examples of truly multidimensional stopping problems may
be solved. Now establishing the connection of control and stopping problems
was not entirely free of arguments that used the one sided structure, but at
least did not crucially rely on them. Therefore, examining first easy examples
of multidimensional problems might be a next question worth looking at.
A last possible subsequent question worth mentioning is the connection of im-
pulse control problems with statistics. Although the repetitive structure of
long-term average problems seemingly is beneficial for statistical analysis, apart
from some recent work of Claudia Strauch and Sören Christensen (see [CS19b])
there is not much literature present. And especially the characterization of con-
trol problems by stopping problems might prove itself useful when one wants to
develop statistical procedures.
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