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2     Summary 

Ubiquitination is one of the important post-translational modifications and a vital cellular 

process involved in various tasks of targeted protein degradation via the Ubiquitin-Proteasome 

system (UPS), intracellular signaling, cell death, transcriptional control, etc. Importantly, it 

prevents the aggregation of non-functional, misfolded, and potentially harmful proteins to 

maintain protein homeostasis. Ubiquitination is accomplished by the concerted action of three 

enzymatic steps involving E1 activating enzymes, E2 conjugating enzymes, and E3 ligases. 

Tripartite motif-containing (TRIM) proteins are one of the integral members of E3 ubiquitin 

ligases in metazoans, modulating essential cellular pathways. For long, MuRFs (Muscle ring 

finger proteins) were the most extensively studied TRIMs for their cardiac function. Recent 

advances in the field, however, have demonstrated broader and ever-increasing reports of 

various TRIM E3 ligases in the (patho-) physiology of the heart. A schizophrenia susceptibility 

protein, Dysbindin was reported by our group to also play a role in the heart and to be the 

robust inducer of cardiomyocyte hypertrophy via activation of Rho-dependent serum-response 

factor (SRF) signaling pathway. A Yeast two-hybrid screen was performed using Dysbindin as 

bait against a human cardiac cDNA library to identify the cardiac Dysbindin interactome. Among 

several putative binding proteins, TRIM24 was identified and confirmed to be interacting with 

Dysbindin by experimental methods of co-immunoprecipitation and co-immunostaining. 

Another TRIM family protein, TRIM32, has earlier been reported as an E3 ubiquitin ligase for 

Dysbindin in skeletal muscle. Consistently, TRIM32 degraded Dysbindin in neonatal rat 

ventricular cardiomyocytes (NRVCMs) as well. Surprisingly, however, TRIM24 did not promote 

Dysbindin decay but rather protected Dysbindin against possible degradation by TRIM32. 

Correspondingly, TRIM32 attenuated the activation of SRF signaling and hypertrophy through 

Dysbindin decay, whereas TRIM24 promoted Dysbindin-induced hypertrophic effects in 

NRVCMs. Further experiments in this study also signify that TRIM32 is a key regulator of cell 

viability and apoptosis in cardiomyocytes via simultaneous activation of p53 and caspase-3/-7 

and inhibition of X-linked inhibitor of apoptosis. In conclusion, we here provide a novel 

mechanism of post-translational regulation of Dysbindin and hypertrophy via TRIM24 and 

TRIM32 and show the importance of TRIM32 in cardiomyocyte apoptosis in vitro. 
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3     Zusammenfassung 

Die Hauptkomponente von post-translationalen Modifikationen, die Ubiquitinierung durch das 

Ubiqutin-Proteasome-System (UPS), ist ein entscheidender zellulärer Prozess. Sie ist an 

verschiedenen Aufgaben beteiligt, beispielswiese dem gezielten Proteinabbau, der 

intrazellulären Signalkaskaden bei Apoptose sowie an der transkriptionellen Kontrolle. Wichtig 

dabei ist, dass es die Aggregation von nicht-funktionalen, falsch gefalteten und potentiell 

schädlichen Proteinen verhindert und somit die Proteinhomöostase unterstützt. Die 

Ubiquitinierung wird durch die gemeinsame Aktivität von drei enzymatischen Prozessen 

erreicht. Diese bestehen aus E1 (aktivierende Enzyme), E2 (konjungierende Enzyme), sowie E3 

(Ligasen). Dabei gehören TRIM (tripartite motif) Proteine in Metazoen zu den wichtigsten 

Gruppen von E3-Ubiqutin-Ligasen, die essenzielle Signalwege modulieren. Aufgrund ihrer 

kardialen Funktion waren MuRFs (Ringfinger-Muskel-Proteine) lange Zeit die am meisten 

untersuchten TRIMs. Jüngste Forschungsergebnisse in diesem Bereich zeigen jedoch eine 

breitere und stets wachsende Palette an Funktionen von verschiedenen TRIM-E3-Ligasen in der 

(Patho-)Physiologie des Herzens. Für das mit Schizophrenie assoziierte Protein Dysbindin konnte 

unsere Gruppe zeigen, dass es die Hypertrophie in Kardiomyozyten durch das Aktivieren von 

Signalwegen via des Rho-abhängigen Serum-Response-Faktors (SRF) stark beeinflusst. Mit Hilfe 

des Hefe-Zwei-Hybrid-Systems wurde, unter der Verwendung einer cDNA-Datenbank aus dem 

humanen Herzen und Dysbindin als Köderprotein, unter mehreren Bindungsproteinen TRIM24 

identifiziert. Zusätzlich wurde die Interaktion mit Dysbindin durch experimentelle Methoden wie 

Co-Immunpräzipitation und Co-Immunfärbung bestätigt. Ein weiteres Protein aus der 

TRIM-Familie, TRIM32, ist als E3 Ubiquitin Ligase für Dysbindin in der Skelettmuskulatur 

bekannt. Es wurde herausgefunden, dass TRIM32 in neonatalen ventrikulären Kardiomyozyten 

aus Ratten (NRVCMs) Dysbindin-Level ebenfalls abschwächt. Überraschenderweise unterstützte 

TRIM24 jedoch nicht den Abbau von Dysbindin, sondern schützte es vor einer Degradierung 

durch TRIM32. Entsprechend mildert TRIM32 die Aktivierung von SRF-Signalen und hypertrophe 

Effekte durch den Abbau von Dysbindin, wohingegen TRIM24 Dysbindin-induzierte hypertrophe 

Effekte in NRVCMs fördert. Weitere Experimente in dieser Studie zeigen auch, dass TRIM32 ein 

Schlüsselregulator für die Überlebensfähigkeit von Zellen ist und Apoptose in Kardiomyozyten 

über die simultane Aktivierung von p53 sowie Caspase-3/-7 und die Inhibierung von 
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X-verknüpften Inhibitoren der Apoptose (XIAP) induziert. Zusammenfassend wird hier ein neuer 

Mechanismus der post-translationalen Regulation von Dysbindin und kardialer Hypertrophie 

über TRIM24 und TRIM32 vorgestellt. Außerdem wird die Bedeutung von TRIM32 in 

Apoptose-Signalwegen in Kardiomyozyten in vitro dargelegt. 
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4     Introduction 

4.1     Prelude 

A collective highlight in research areas related to biomedical studies in the last decades directs 

to the increased toll of pathophysiology, instigating metabolic imbalance and piloting various 

organ related disorders and diseases, particularly like the heart diseases. Regardless of several 

years of cardiac research and circulatory understanding over the decades, cardiovascular 

diseases (CVDs) remain at the top of epidemic deaths in the modern world. With vastly changing 

lifestyles ensuing diminutive physical activity, addiction to drugs, tobacco & alcohol and 

detrimental dietary orientations, these numbers are on the constant rise. The death toll by CVDs 

is increasing particularly in developing countries with low and middle income, according to the 

World Health Organization, where CVDs are the primary causes of deaths, irrespective of 

gender. In 2015 alone, CVDs accounted for 17.7 million deaths globally, representing 31% of all 

deaths, with coronary heart disease and stroke contributing the biggest share with 14.1 million 

deaths (WHO-CVDs data) (Figure 1). Dietary malpractices leading to various metabolic disorders 

like obesity, diabetes, and high blood pressure sequentially result in numerous CVDs like 

cardiomyopathies, cardiac arrest, hypertension, cardiac valve calcification, and arrhythmias 

among others.  

 

Figure 1: Worldwide causes of mortality in the year 2015. As per the World Health Organization mortality data, 
cardiovascular diseases are still the biggest reason for deaths globally with a share of 31% deaths. 
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Thus, these amplifying numbers of global deaths collectively craft a call for effective tools that 

can alleviate the burden of various CVDs, shaping the current stream of cardiovascular research 

into exemplified inter-systemic approaches aimed at generating therapeutic strategies. 

4.2     Cardiomyopathies 

Cardiomyopathy is a general terminology for dysfunctional heart muscle predominately 

culminating in cardiac-related disease conditions. Historically, definitions and classifications of 

cardiomyopathies or CMPs have been attempted by several physicians consistently with the 

occurrence of newer cases. Most prominently, CMPs were classified into three major groups by 

British physicians (Goodwin et al., 1961) depending on the clinical presentation of the disease, 

like congestive heart failure (often with atrioventricular valvular incompetence), constrictive 

cardiomyopathy and obstructive cardiomyopathy. Better research understanding, genetic 

studies, and diverse disease occurrence have led to establishing several newly adapted 

definitions of cardiovascular diseases.  

The most noted one, accepted by the American Heart Association defines cardiac muscle 

diseases as, “Cardiomyopathies are a heterogeneous group of diseases of the myocardium 

associated with mechanical and/or electrical dysfunction that usually (but not invariably) exhibit 

inappropriate ventricular hypertrophy or dilatation and are due to a variety of causes that 

frequently are genetic. Cardiomyopathies either are confined to the heart or are part of 

generalized systemic disorders, often leading to cardiovascular death or progressive heart 

failure-related disability” (Maron et al., 2006).  

However, the classification of CMPs has developed in a similar direction as suggested by 

Goodwin, with congestive (now being referred as dilated) cardiomyopathy (DCM), hypertrophic 

cardiomyopathy (HCM), and constrictive (now referred to as restrictive) cardiomyopathy (RCM). 

A fourth category, arrhythmogenic cardiomyopathy has been added recently. In further efforts 

to accommodate all varieties of CMPs, each of these categories has been subdivided by their 

pathogenesis, like a systemic disorder, an infection, inflammation, or an inherited disorder. In 

the absence of pathogenesis identification, CMPs are termed idiopathic cardiomyopathies in 

their respective category (Braunwald, 2017). 
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The most common indicators of several CMPs are increased heart weight to body weight ratio, 

reduction of ejection fraction, and an increased cardiomyocyte size, which together culminate 

into cardiac hypertrophy. 

4.3     Cardiac hypertrophy  

The innate reaction of the heart to increasing biomechanical stress dictates the development of 

cardiac hypertrophy with a set of pathological events. Elevated heart weight (with or without 

fluids) in the hypertrophic heart is referred to the enhanced mass of cardiomyocytes, which can 

be coupled together with various other parameters to interpret the tangible hypertrophic 

conditioning (Dorn et al., 2003). Initially, cardiac hypertrophy is a physiological reaction, similar 

to the heart-growth condition observed in athletes or pregnant women (Li et al., 2012). Here, 

adaptive hypertrophy inducing muscle growth is beneficial, helping to increase the blood 

pressure and volume ejection, overall favoring cardiac function. However, enduring pressure 

overload and subsequent biomechanical stress progressively turn this adaptive compensation 

into a maladaptive condition, severely affecting the mechanical properties of the heart. This 

maladaptive response is harmful and needs to be treated, in turn, to avoid heart tissue 

remodeling followed by myocardial infarction, chronic hypertension or other cardiovascular 

diseases (Pfeffer and Braunwald, 1990); (Zwadlo and Borlak, 2005); (Frantz et al., 2009).  

To study the mechanistic features of cardiac hypertrophy, cell culture systems are widely used, 

allowing observation of the adverse effects that various proteins and signaling molecules 

impose on the disease outcomes, prior to the investigation in animal models and ultimately in 

humans. Increase in cell size, measured by the cell surface area is the primary indicator of 

hypertrophy in cultured cells. The increase in cell surface area is typically accompanied by the 

elevated expression of the hypertrophic fetal gene program, which is activated during 

development and stress, and encodes natriuretic peptides like nppa (atrial natriuretic peptide) 

and nppb (brain natriuretic peptide) (Sergeeva et al., 2016). Several other genetic factors and 

protein expression patterns can also be employed to investigate cardiac hypertrophy, possibly 

by tracing the symptoms of the hypertrophy induction. 
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4.3.1     Dysbindin is a potent inducer cardiac of hypertrophy 

The genetic and mechanistic factors associated with the specific type of cardiac hypertrophy 

observed, provide valuable information about the involved proteins and signaling pathways. 

Cardiac hypertrophy is a complex process with the association of multiple signaling pathways 

that either alone or in tandem lead to the disease condition. Some of the major signaling 

pathways associated with cardiac hypertrophy are calcineurin-NFAT, PI3K/Akt/GSK-3, G-protein 

coupled receptors (GPCRs), MAPKs, and RhoA-SRF-mediated pathways (Molkentin et al., 1998); 

(Sotiropoulos et al., 1999); (Naga Prasad et al., 2000); (Frey and Olson, 2003). An intercalated 

disc protein, Myozap, was earlier reported to activate RhoA-SRF signaling (Seeger et al., 2010). A 

yeast-two-hybrid assay with Myozap as bait and human cardiac cDNA library as prey suggested 

Dysbindin as one of the potential interactors of Myozap (Rangrez et al., 2013).  

The name Dysbindin was coined more than a decade ago for a protein found to interact with 

α/β-dystrobrevins (Benson et al., 2001). Now, this ubiquitously expressed Dysbindin is well 

known as a schizophrenia susceptibility protein with a central role in the brain. It works by 

facilitating neurite outgrowth by promoting the transcriptional activity of p53; whereas its 

deletion leads to the activation of NFκB in the nucleus (Owen et al., 2004); (Arnold et al., 2005); 

(Fei et al., 2010); (Ma et al., 2011); (Fu et al., 2015). In other tissues such as kidney and liver, 

Dysbindin has been characterized as a vital component of the BLOC-1 complex (biogenesis of 

lysosome-related organelles complex-1), which is associated with intracellular trafficking and 

the biogenesis of specialized organelles of the endosomal-lysosomal system (Li et al., 2003); 

(Starcevic and Dell'Angelica, 2004); (Larimore et al., 2014). Most recently, Dysbindin has been 

endorsed with the regulation of lysosomal degradation of GPCRs, supporting the notion of a role 

in signaling (Rosciglione et al., 2014). Of note, Dysbindin has also been linked to other disorders 

such as limb-girdle muscular dystrophy, and its homozygous point mutation is linked to 

Hermansky-Pudlak syndrome (Li et al., 2003); (Wakayama et al., 2010); (Shieh et al., 2011).  

After the discovery of its significant cardiac presence and the possibility of activating 

hypertrophic signaling through Myozap, Dysbindin was characterized in cardiac aspect. It was 

found to be a direct interaction partner of the small GTPase RhoA through which Myozap 

induces cardiac hypertrophy. This direct interaction with RhoA allows Dysbindin to strongly 
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activate SRF signaling in the neonatal cardiomyocytes. Moreover, Dysbindin also activated 

MEK1-ERK1 dependent MAPK signaling, in combination leading to the robust activation of 

cardiac hypertrophy, evidenced by activation of the fetal gene program and increased 

cardiomyocyte cell surface area (Rangrez et al., 2013). 

4.3.2     TRIM24 and TRIM32 are potential cardiac interaction partners of Dysbindin 

To dissect further players in Dysbindin-RhoA-SRF associated cardiomyocyte hypertrophy axis 

and cardiac Dysbindin interactome, a yeast two-hybrid screening was performed using 

Dysbindin as bait against a human cardiac cDNA library. Among several putative binding 

proteins, we identified tripartite motif-containing protein 24 (TRIM24) as a potential interaction 

partner of Dysbindin in the heart (Borlepawar et al., 2017).  

TRIM24, in addition to signature RING-both B-boxes-coiled coil conserved structure at the 

N-terminal, has bromo and PHD domains at the C-terminal end. This transcriptional 

intermediary factor (TIFα) was well studied in the context of transcriptional activation of various 

nuclear receptors via activation function 2 (AF2), owing to its nuclear presence and its capacity 

to indulge with histones. TRIM24 interacts with coactivators GRIP1 and CARM1 by forming a 

stable ternary complex and further enhancing the AF2 of either one or both of them (Teyssier et 

al., 2006). TRIM24 was also found to be associated with the protector of genome stability, 

tumor protein 53 (p53, (Allton et al., 2009). It ubiquitinates p53 and thus prompts tumorous 

growth by affecting genomic stability, cell cycle arrest, and apoptosis. Through interaction with 

p53, TRIM24 plays a critical role in the progression of various carcinomas and gliomas, and 

differentially regulated in various cancers, for example breast cancer (Ma et al., 2016), gastric 

cancer (Fang et al., 2017), cervical cancer (Lin et al., 2017), and prostate cancer (Groner et al., 

2016). With such credentials, TRIM24 has established itself as a novel marker in cancer-related 

studies and is targeted in regards to inhibiting tumor growth as a therapeutic strategy. 

Another TRIM protein, TRIM32, has earlier been reported as an E3 ubiquitin ligase for Dysbindin 

in skeletal muscle. TRIM32 harbors tripartite motif at the N-terminus and a FIL domain with six 

NHL repeats at C-terminus. TRIM32 has been subject of various skeletal muscle dystrophy 

studies where two independent mutations in this gene were reported for various muscular 
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dystrophies like, Limb-girdle muscular dystrophy with mutation: 1459 G>A (D487N), 

Bardet-Biedl syndrome with mutation in B-box, sarcotubular myopathy, and dystrophic 

myopathy (Shieh et al., 2011). This ubiquitous protein has been reported to be associated with 

skeletal muscle thick filaments by binding myosin but targeting actin for degradation, 

upregulating skeletal muscle remodeling (Kudryashova et al., 2005).  It has also been reported 

to bind with Dysbindin and PIASy, further ubiquitinating them for degradation via UPS and thus 

serving as a regulator of Dysbindin in skeletal muscle and PIASy in keratinocytes (Albor et al., 

2006); (Locke et al., 2009). With available evidence of TRIM32-Dysbindin interaction in skeletal 

muscle, we hypothesized similar interaction between them in the heart. 

As stated above, both TRIM24 and TRIM32 proteins are important members of the tripartite 

motif (TRIM) family and likely play an important role in ubiquitin-mediated protein degradation 

and thus protein homeostasis in the heart. 

4.4     Proteostasis is essential for normal heart functioning 

Proteins play a central role in maintaining steady cardiac function by participating in critical 

tasks for cardiac signaling and homeostasis. Total protein composition of the cell at any given 

time is coined as its proteome, and maintenance of protein homeostasis or proteostasis is the 

state of a cell when its proteome is in functional balance (Balch et al., 2008); (Korovila et al., 

2017). Polypeptide chains undergo specific folding and modifications, termed post-translational 

modifications and are trafficked to the prerequisite cellular location. Misfolded proteins and 

non-useful native proteins undergo intracellular proteolysis, which in turn becomes a critical 

step for protein homeostasis; with any aberrations in proteolysis further ascending towards the 

disease conditions (Rodrigo-Brenni and Hegde, 2012). Various components of the proteostasis 

machinery mediate the functions of synthesis and disposal of native proteins along with 

detoxification by removal of damaged and misfolded proteins. Heat shock proteins (HSPs or 

chaperones), autophagy and the UPS are some of the most essential components of the 

proteostasis machinery (Korovila et al., 2017); (Borlepawar et al., 2018). 

Cellular levels and functions of key proteins in the cardiomyocytes, like any other cells, are 

altered by various stress, stimuli, diseases, and age. Any changes in the intracellular 

environment can affect protein’s synthesis-folding-degradation trio culminating into disturbed 
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protein pool and impaired proteostasis, and furthermore influencing organ functions. These 

alterations in protein quality control (PQC) subsequently reflect in the impairment of total 

proteome and compromise cellular functions ensuing senescence (Henning and Brundel, 2017). 

Aging of cells is linked with the accumulation of damaged and misfolded proteins after dented 

PQC machinery; accumulating oxidative stress proteins and in turn, affecting cell viability. Such 

protein misfolding has been reported to prevail in terminal neurodegeneration diseases like 

Alzheimer’s and Huntington’s (Gavilan et al., 2009), diabetes-type II (Sciarretta et al., 2015), 

cancers (Wallace, 2005) and cardiovascular diseases (Dai et al., 2012); (Ortega et al., 2014).  

 

Figure 2: Major protein Homeostasis processes. Role of chaperones, autophagy and the ubiquitin-proteasome 
system (UPS), and their interactions with each other is presented diagrammatically. aa, amino acid; CH, chaperone; 
mRNA, messenger RNA. (Borlepawar et al., 2018, Copyright © Elsevier) 

Metabolic pathways (like insulin/IGF-1 signaling), dietary restriction, and reduced mitochondrial 

function are capable of reducing cellular stress and thus have been implied to maintain the 
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lively proteome (Taylor and Dillin, 2011). Proteome imbalance is often linked with aging, which 

can result in altered stoichiometry causing proteostasis stress. However, protein aggregates 

comprising both misfolded proteins and hoisted levels of chaperones have been suggested to 

augment proper PQC response, enabling isolation of potentially harmful protein oligomers and 

thus can be prospective protective strategy against cell death (Walther et al., 2015). This, in 

turn, suggests that a healthy proteome can be maintained by both presences of upregulated 

proteostasis machinery induced by some protein misfolding and reduced stress, constantly 

upholding a youthful proteome.  

4.5     Components of the cellular proteostasis machinery 

4.5.1     Component 1: Heat shock proteins 

HSPs, also known as chaperones (for some members), are highly conserved stress proteins that 

were first detected to cope with thermal stress (Ritossa, 1962), resulting in a serendipitous 

nomenclature. They are present in all cell types with roles in the protein folding-transport 

apparatus, cell cycle, cellular protection from stress and apoptosis, and antigen presentation to 

the major histocompatibility complexes. HSPs represent a large family of proteins that were 

often classified based on their molecular weight (Li and Srivastava, 2004). With increasing 

members, many inconsistencies had risen in their nomenclature. To avoid these discrepancies 

Kampinga (2009) have proposed new guidelines for classification emulating their HUGO 

nomenclature system (Kampinga et al., 2009). HSPs are now categorized into HSPA (HSP70, 13 

members), HSPH (HSP110, 4 members), DnaJ (HSP40, 49 members), HSPB (small HSPs, 11 

members), HSPC (HSP90, 5 members), and Chaperonins and related proteins (14 members). 

Cells constantly undergo challenging conditions responsible for acute and chronic stress. 

Transcriptional activation with preferential translation is the instinctive way to achieve 

upregulation of specific proteins. Diverse environmental and biological stressors like infection, 

disease, UV-light, inflammation, toxins, exercise, starvation, hypoxia, N2-deficiency, water 

deprivation, etc. induce production of HSPs; making them universal stress reaction proteins 

(Santoro, 2000). Heat shock factors (HSF1, HSF2, HSF3, and HSF4) regulate the synthesis of HSPs 

throughout growth and adaptation. Although, they are not sole factors responsible for 
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upregulation of HSP transcription as similar upregulation happens during cell cycle progression 

and primitive proliferation (Gomez-Pastor et al., 2018). In unstressed cells, HSF through its 

interactions with hsp70 is maintained in a monomeric form. Upon introduction of stress, HSF 

assembles into a trimer via binding through specific sequence elements in heat shock gene 

promoters and gets phosphorylated. Phosphorylation induces transcriptional activation of the 

heat shock genes by increasing levels of hsp70 with the escalated formation of an HSF-hsp70 

inactive complex. Finally, HSF dissociates from DNA and is eventually converted to non-DNA-

binding monomers (Morimoto, 1993).  

Post-synthesis, nascent proteins are stabilized and folded accordingly to enact function in their 

active conformation and then transported to cellular compartments for their purpose through 

interaction or binding with others (Yahara, 1996). Furthermore, chaperones bind to active 

proteins reducing their mutual interaction and thus preventing them from the aggregate 

formation. hsp60, hsp70, and hsp90 are involved in ATP-dependent folding and refolding, 

singularly or by even forming multicomponent complexes of de novo proteins. In brief, HSP70 

folds budding polypeptides and releases them in the cytoplasm after HSP90 mediated 

conformational changes, where HSP60 supports in final folding of proteins. This folding 

apparatus is further assisted by the small HSPs, which function as ‘holdases’ involving binding of 

unfolded proteins and assisting its delivery to the ‘foldases’ (Henning and Brundel, 2017).  

4.5.2     HSPs in cardioprotection 

Cardiomyocytes express relatively high levels of HSPs; specifically members of HSPBs. 

Myocardial ischemia originating from rupture of an unstable plaque or congestive heart failure 

involves upregulation of some of HSPs. These include HSPB1 (HSP27), HSPB5 (α­crystallin B 

chain), HSPB6 (HSP20), HSPB7 (cardiovascular HSP), and HSPB8 (HSP22), which protect 

cardiomyocytes from proteotoxicity by stabilizing the contractile apparatus (Benjamin and 

McMillan, 1998). Small HSPs like αB-crystallin, MKBP, Hsp25, Hsp20, and cvHsp were found to 

translocate from the cytoplasm to myofibrils after cardiac ischemia (Golenhofen et al., 2004).  

When hsp70 was overexpressed in stably transfected embryonal rat heart-derived H9c2 (2-1) 

cells, they displayed more resistance to ischemia-like stress (Mestril et al., 1994) and improved 
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recovery after heat-shock pretreatment before the prolonged ischemia-reperfusion (IR) (Hutter 

et al., 1994), indicating protective role. Free radical scavengers import oxidative stress after 

ischemic injuries and increased ROS ameliorates ventricular dysfunction, arrhythmias, and 

progressive cell damage. Catalases like superoxide dismutase and glutathione peroxidase are 

established to be protective against such oxidative stress. Many HSPs are speculated to act as 

chelators, cooperating in a synergistic way with the catalases for cardioprotection (Mocanu et 

al., 1993). For example, HO-1 (hsp32) was found to be upregulated in hypertensive rat aortas by 

mechanisms unique to AngII introduction and inhibited vasodilation of vascular SMCs after 

hemodynamic stress (Ishizaka et al., 1997). Hsp27 gets phosphorylated after physical stimuli like 

perfusion in IR rats and play a vital role in actin filament dynamics through p38-MAPKs and ERKs 

signaling (Bogoyevitch et al., 1996).  

 

Figure 3: Heat shock proteins and their functions in the heart. 

Another interesting member of chaperones is striated muscle-specific hsp22 or αB crystallin. 

The 20kD protein localizes to the Z-band, specifically with desmin filaments in cardiomyocytes. 

It was reported to bind to actin filaments after heat shock, preventing them from aggregate 

formation, thus playing a cardioprotective role in stress conditions (Bennardini et al., 1992).  A 
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R120G mutation in αB crystallin causes aberrant desmin and αB crystallin aggregation in mice 

hearts inducing severe desminopathy (Wang et al., 2001); (Sanbe et al., 2004). It was also found 

to reduce elevated stiffness in failing human myocardium by relieving titin aggregation 

(Franssen et al., 2017).  

With roles from ubiquitous hsp70 and hsp90 to striated muscle-specific αB crystallin, HSPs play 

vital roles in cardioprotection by maintaining a healthy proteome regardless of various ischemic 

injuries, oxidative stresses, aggregate formations, arrhythmias, atrial fibrillation, and CMPs. 

4.5.3     Component 2: Autophagy 

Cellular life is under constant change with elements being recycled and reconstructed. The 

recycled elements are then used as building blocks for the generation of new. Eukaryotic cells 

carry out recycling via two major degradation systems: lysosomal and proteasomal. While the 

proteasomal system remains energy dependent and highly specific; lysosomes provide an 

all-inclusive approach, even capable of degrading cytoplasmic components and cellular 

organelles. Autophagy is thus, a fundamental, essential and cell regulated 

degradative-mechanism that eliminates dysfunctional components with the help of degradative 

enzymes known as lysozymes (Mizushima and Komatsu, 2011). The word ‘autophagy’ was 

invented by Christian de Duve, whose pioneering experiments also provided biochemical proof 

of the lysosomal involvement in autophagy (Klionsky, 2008). After its description in the 1960s, 

autophagy had been a neglected subject; until the discovery of atg, autophagy-related genes in 

S. cerevisiae boosting collective interest in autophagy, making it one of the most studied 

mechanisms in later decades, which culminated in Nobel Prize for physiology in 2016 to 

Yoshinori Ohsumi (Brokstad, 2016). 

The process of vacuolar proteolysis was explained after starvation initiated the formation of 

spherical bodies in vacuoles, having thinner membranes than cell organelles in S. cerevisiae. 

Isolation of these spherical bodies displayed the existence of cytosolic components like 

ribosomes, mitochondria, and lipid & glycogen granules. These 400-900 nm diameter spheres 

were named ‘autophagic bodies’ and considered as an intermediate step before the autophagic 

process (Takeshige et al., 1992). Autophagic bodies undergo fusion with vesicles containing 
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lysozymes and carry out the destruction of cellular material. Autophagy is responsible for the 

significant turnover of proteins in a nonselective manner, resulting in pronounced protein 

degradation at a rate of 3-4 % of the total cellular proteins per hour (Kopitz et al., 1990). 

This adaptive cell survival response is conducted in three different ways. One is 

macroautophagy, enclosing a substantial segment of cytoplasm including organelles by an 

isolating membrane to form an autophagosome. The outer membrane of the autophagosome 

blends with the lysosome and internal material is then degraded by this autolysosome. 

Macroautophagy that is responsible for the degradation of mitochondria is called mitophagy 

and is in fact controlled by the E3 ubiquitin ligase Parkin through the Sirtuin3-Foxo3A-Parkin 

complex in cardiomyocytes (Yu et al., 2017). A second mechanism is a microautophagy, 

engulfing smaller pieces of the cytoplasm by the development of the lysosomal membrane 

around them. And the third mechanism is chaperone-mediated autophagy, specific for certain 

protein degradation, translocating substrate proteins containing a KFERQ-like pentapeptide 

sequence to the lysosomal lumen after binding via Lamp-2A (Mizushima and Komatsu, 2011). 

4.5.4     Autophagy in the heart 

Autophagy controls vital physiological functions mediating degradation and recycling of cellular 

components. It is also necessary for providing energy and building blocks for the formation of 

new cellular components, eliminating invaders like bacteria & viruses after infection, elimination 

of damaged proteins & organelles, PQC in aging, etc. and thus, is an essential mechanism in 

combating against various stresses. Aberration of autophagy has been linked to various diseases 

like Parkinson’s disease, Diabetes mellitus, cancer, and cardiovascular diseases (Brokstad, 2016). 

Thus, currently, autophagy remains one of the vital targets for therapeutic actions against 

cardiovascular diseases that result from the accumulation of needless components. 

In cardiac Atg5 deficient mice, the cardiac function remained normal up to 12 weeks; however, 

chronic loss of autophagy resulted in death after 6 months of age due to increased left 

ventricular dimensions and decreased fractional shortening. Moreover, disturbed sarcomeric 

structures and collapsed mitochondria supplemented age-related cardiomyopathy, suggesting a 

cardioprotective role of constitutive autophagy in the heart (Taneike et al., 2010). Histone 
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deacetylases (HDACs) regulate cardiac plasticity and HDAC inhibitors (HDACi) are suggested to 

control PE-hypertrophy and autophagy. Knockdown of autophagy effectors Atg5 and Beclin1 

have similar effects, showing HDACs to be autophagy essentials. When HDACi were subjected to 

pre-hypertrophy mice, near normal cardiac function was maintained, implicating autophagy to 

be an obligatory process in pathological cardiac remodeling where HDACs are essential 

autophagy effectors (Cao et al., 2011). With the help of autophagy-reporter mice, pressure 

overload was found to impart autophagy along with hypertrophy, after 48 h of TAC and both 

remained elevated for 3 weeks. Deletion of Beclin1, which is necessary for early autophagosome 

formation, lowered autophagy and hampered cardiac remodeling after TAC; while its 

overexpression had completely opposite effects. These findings suggest increased autophagy 

under hemodynamic stress to be maladaptive (Zhu et al., 2007); with constitutive autophagy in 

the non-failing heart being an intrinsic mechanism for maintaining overall cardiac structure 

(Nakai et al., 2007). Interestingly, Atg13- and FIP200-knockout mice died embryonically because 

of growth retardation and myocardial growth defects; indicating that these proteins are 

essential for both autophagy and cardiac development in mice (Kaizuka and Mizushima, 2016). 

 

Figure 4: Autophagy in the heart. 



28 
 

4.5.5     Component 3: Ubiquitin-Proteasome system (UPS) 

UPS is the next vital cog in the process of proteostasis, operating through degradation of 

proteins in a selective manner via the proteasome. A handful of non-specific E1 and E2s, as well 

as numerous substrate specific E3 proteins, work in tandem to activate, conjugate and ligate 

ubiquitin to target proteins, facilitating their degradation by proteasomes (Figure 5). Following 

intensified research in targeted protein degradation during the late 1970s and 1980s, a 

landmark paper on ‘The Ubiquitin System’ (Hershko and Ciechanover, 1982) gave exciting 

insights into this vital protein degradation mechanisms in eukaryotes. From the presence of 

proteolysis pathways like lysosomal degradation, the role of ubiquitin-mediated degradation 

was found to be separate, specifically controlling the new energy-dependent mechanism 

resulting in targeted protein degradation. With time, UPS also has now been found to be 

essential for numerous processes like cell-cycle progression, signal transduction, transcriptional 

regulation, receptor down-regulation, endocytosis, immune response, development, and 

programmed cell death. Ciechanover, Hershko and Rose were awarded the Nobel Prize in 

Chemistry in 2004 for ‘the discovery of ubiquitin­mediated protein degradation’. 

 

Figure 5: The process of Ubiquitination. It is accomplished by the concerted action of three enzymatic steps 
involving E1 activating, E2 conjugating enzymes, and E3 ligases. (Borlepawar et al., 2018, Copyright © Elsevier) 

The key enzymatic steps in the ubiquitin proteolytic pathway include ATP-dependent activation 

of ubiquitin with the formation of a high-energy thiol ester bond with enzyme E1; transfer of 
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this activated ubiquitin to enzyme E2 and finally the binding of enzyme E2 to an already formed 

‘substrate protein-specific enzyme E3’ complex. Covalent ligation of ubiquitin to its substrate via 

lysine-48 (K-48) residue is followed by the formation of a poly-ubiquitin chain leading to 

ATP-dependent degradation of the protein into smaller peptides by 26S proteasome complex 

(Figure 5), where free ubiquitin residues are made available by de-ubiquitinating enzymes for 

reuse (Hershko, 1996); (Su and Wang, 2010). However, K-48 mediated ubiquitin tagging is not 

the sole possible way leading to proteolysis. Ubiquitin contains in total of seven lysine residues 

and all of them are reported to be able to bind target proteins. M-1 and K-6 ligations also result 

in protein degradation in the non-canonical way.  Branched poly-ubiquitin chains linked via K-11 

have been found to enhance substrate recognition resulting in amplified proteolysis of cell cycle 

regulators after eukaryotic cell division; while K-27, K-29, and K-33 branched chains have been 

found to delay proteolysis (Meyer and Rape, 2014), suggesting a behavior-driven development. 

Poly-ubiquitin chains linked via K-63 play a central role in various cellular processes like signal 

transduction, endocytosis, kinase activation, and DNA damage control, etc. presenting a 

multifocal scenario of ubiquitination. Furthermore, mono-ubiquitination and multi-

ubiquitination have been reported to be responsible for DNA repair and altered subcellular 

distribution of substrate proteins respectively (Sadowski and Sarcevic, 2010).  

 

Figure 6: Fate of ubiquitinated proteins.  
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4.5.6     E3 ligases provide substrate recognition specificity  

Targeted protein degradation by UPS has been established as a principal mechanism by which 

cells regulate protein levels and functions. The diversity of ubiquitin binding and substrate 

specificity is achieved by the existence of ~600 E3 ubiquitin ligases that catalyze the final step of 

ubiquitination, compared with only one E1 and very few E2 enzymes in mammals (Mearini et al., 

2008). Based on their structural properties and domain structure, E3 ubiquitin ligases are 

classified as RING (Really Interesting New Gene), HECT (homologous to E6AP C- terminus) and 

RBR (RING-between-RING) ligases (Morreale and Walden, 2016). HECT and RBR E3 ligases carry 

a catalytic Cys that accepts ubiquitin from the E2-ubiquitin complex to form an E3-ubiquitin 

thioester intermediate, which subsequently transfers this ubiquitin to the substrate. In contrast, 

RING E3 ligases, which constitute the most abundant ubiquitin ligases, catalyze the direct 

transfer of ubiquitin from the E2-ubiquitin complex to the substrate (Buetow and Huang, 2016). 

Given the crucial role UPS plays in cardiac homeostasis, it is not surprising that several E3 

enzymes have been implicated in various processes and pathologies like heart development, 

signaling cascades, ion channel regulation, autophagy regulation, protein degradation, 

congenital heart diseases and cardiomyopathies (Zolk et al., 2006); (Willis et al., 2014a).  

4.5.7     E3 ubiquitin ligases in the heart 

In higher eukaryotes, UPS mechanism revolves around the specific covalent binding of ubiquitin 

to label target proteins for proteolysis (Freemont, 2000). Many proteins have emerged to be 

playing this particular role and are known as E3 ubiquitin ligases. The UPS system is very 

essential in cardiac aspect, where cells undergo constant aging without duplication and thus 

have increasing stress of maintaining a healthy proteome. Various E3 ligases have been 

reported to play vital roles in cardiac processes like heart development, signaling cascades, ion 

channel regulation, autophagy regulation, protein degradation, cardiovascular disease 

progression, congenital heart diseases, cardiomyopathies, etc. Through intensive data mining 

and literature search in PubMed, several E3 ligases were identified with an assigned cardiac 

function. The majority of these E3 ligases belong to either single- or multi-subunit RING-type E3 

ligases. In appendix 1, these sixty E3 ligases are summarized including their proposed function, 

protein targets, affected biomolecules and pathways, and the respective literature.  
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A major class of E3 ubiquitin ligase proteins, Tripartite motif family (TRIM), containing a highly 

conserved tripartite motif has been reported recently in various publications with vital roles in 

cardioprotection in cardiomyopathies. 

4.6     TRIM E3 ubiquitin ligases 

The tripartite motif family is a famed metazoan subfamily of E3 ubiquitin ligases, containing 

RING finger-B-Box-Coiled-coil domains at the N-terminus. These three motifs are highly 

conserved in a sequential manner, throughout all cell types. The remaining sequences, however, 

have evolved to acquire possible organ-specific physiological functions. The RING domain is one 

of the most prominent domains bestowing property of covalently tagging ubiquitin to specific 

proteins; as all of the TRIMs contain RING domain, they participate in ubiquitin ligation. The 

coiled-coil domain allows TRIMs to establish an interaction with the target protein, facilitating 

the transfer of the ubiquitin moiety. 

In Homo sapiens, KEGG database classifies TRIM proteins into the Single Ring-Finger type E3 

proteins class. With the idea of similar structures performing similar functions at the 

biochemical level, the width of the TRIM family grew significantly along with an exploration of 

the human genome (Short and Cox, 2006). This superfamily now containing more than 65 

members is studied significantly for its multifocal functions in diverse tissues and species. The 

classification of TRIM proteins into eleven different subclasses depend mostly on the type of 

domains present at their C-terminus (Ozato et al., 2008). Beyond conserved N-terminal domains 

mediating interaction and ubiquitin ligation roles; it is the C-terminus domains that provide 

specificity of differential functions. Subclass IV forms almost two/third of TRIM/RBCC family 

possessing RFP- like B30.2 (PRY and SPRY) domains at the C-terminus in vertebrates. As in 

humans, in fishes also the B30.2 containing subclass is most prominent, although other human 

TRIMs have limited orthologs (Boudinot et al., 2011). In invertebrates, however, the total TRIMs 

number goes down to almost twenty members (Meroni and Diez-Roux, 2005).  
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Figure 7: Classification of Tripartite motif family proteins into 11 subclasses.  The classification mainly depends on 
the C-terminal domain structure. (Borlepawar et al., 2018, Copyright © Elsevier) 

4.6.1     N-terminal invariable domains in TRIM24 and TRIM32 

Identification of protein domains plays a crucial role in recognizing the function and localization 

of a particular protein. As per titular implication, TRIM/RBCC family contains the rigidly 

conserved tripartite motif, namely: a RING domain, one or two B-box domains (BB1, BB2) and a 

coiled-coil (CC) region. The Cys and His residues responsible for RING and B-box domain 

patterns are also highly conserved along with ß-sheets of the CC domain, suggesting 

conservation of domain sequence. The ability of the RING domain to carry conjugation of 

ubiquitin, SUMO or IFN-stimulated protein of 15 kDa (ISG15) to the target proteins provides a 

multifocal activity to TRIMs. B-boxes are bona fide domains for TRIM family members, while CC 

domains allow TRIMs to interact with target proteins, as well as to homo-dimerize resulting in 

protein-super complexes occupying various cell compartments (Reymond et al., 2001). 

The RING finger is a zinc-binding domain that characteristically provides the ubiquitin ligation 

property. It was firstly identified in 1991 as the protein product of the gene RING1 (Really 
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Interesting New Gene 1) (Freemont et al., 1991) and was named A-box domain. The 40-60 

residues long domain binds two zinc ions in a unique "cross-brace" arrangement through a 

defined motif of Cys and His residues. This arrangement provides the RING domain with a 

globular conformation, where an alpha-helix is positioned centrally to loops of variable lengths, 

which are separated by various small beta-strands forming finger-like protrusions (Chasapis and 

Spyroulias, 2009). This domain is typically present after the first 10-20 amino acids in TRIM 

proteins. (Borden and Freemont, 1996). Although the domain was identified in very few 

functionally distinct proteins, the number of such proteins has grown enormously, and now 

Hugo Gene Nomenclature Committee (HGNC) identifies ~ 275 proteins with a Ring finger.  

B-boxes are another kind of zinc finger domains with ~40 residues in length that strictly succeed 

RING finger domains in the tripartite motif. They are divided into two groups B-box 1 (BB1) and 

B-box 2 (BB2), containing similar pattern but different consensus sequences of cysteine and 

histidine residues (Lovering et al., 1993). Both B-boxes have a ternary structure to similar RING 

domains, suggesting a common ancestry. Several TRIMs possess both BB1 and BB2, implying 

some level of cooperativity, with BB1 always preceding in case of mutual presence. They are 

found in over 1500 proteins in a variety of organisms. All human TRIMs certainly possess a BB2 

domain, while BB1 shows sporadic presence among TRIMs. B-boxes are famous for their role in 

innate immunity against various genetic disorders with Mendelian inheritance and HIV.  The BB2 

domain in TRIM5α has been shown to influence C-terminal PRY-SPRY domains to recognize HIV 

capsid (Li et al., 2007), and in TRIM15 to mediate HIV restriction (Brass et al., 2008). Moreover, 

mutations in B-box of TRIM18 cause Opitz G/BBB syndrome (Ferrentino et al., 2007), suggesting 

a multifocal role of B-boxes and asserting TRIMs with functional importance. 

In 1953 Pauling and Corey, and Crick separately described the CC domain in a large class of 

fibrous proteins like keratin, myosin, and fibrinogen. The 100 residues long region is usually 

fragmented in many separate CC-motifs (Torok and Etkin, 2001).  The name coiled-coil 

originates from its structure, as it is a bundle of α-helices that are wound into a superhelix by 

knobs-into-holes packing. They have variable sequences in many TRIMs but have strictly 

conserved hydrophobic areas that are responsible for the knob-in-hole structure with a 

characteristic repetitive pattern of seven hydrophobic and hydrophilic residues, called heptad 
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repeats. The CC domains are responsible for mediating homomeric or heteromeric interactions. 

Various TRIMs e.g. TRIM6, 8, 11, 18, 19, 23, 27, 28, 30, etc. have been reported to form high 

molecular weight complexes through homomeric interactions (Reymond and Brent, 1995) 

defining specific subcellular structures (Reymond et al., 2001). Many of these subcellular 

structures play central roles in cellular defense, for example, TRIM19s that are assigned to the 

nucleus to induce antiviral defense (Everett and Chelbi-Alix, 2007) and trimerization of TRIM5α 

is vital for the restriction against viral infection (Javanbakht et al., 2005).  

4.6.2     C-terminal variable domains occurring in TRIM24/32 

When the invariable presence of tripartite motif at one end imparts interaction and presents 

ubiquitin to target proteins, the other end is responsible for variable physiological properties. A 

diverse range of C-terminal domains has prompted the TRIMs classification in various subclasses 

over the years (Short and Cox, 2006); (Ozato et al., 2008). The prominent domains are COS, FN3, 

PRY & SPRY, PHD, BR, FIL, NHL, MATH, ARF, TM etc. among others. Presence of these domains in 

solo or in combination has resulted in 11 subclasses, dividing TRIMs by their functional 

properties (Figure 7) (Ozato et al., 2008); (Borlepawar et al., 2018).  

Association of the two domains; PHD (50-80 residues) and Bromo (110 residues) is specific for 

TRIM24, TRIM28 and TRIM33 belonging to class VI of TRIM family. They are widely known as 

transcriptional intermediary factors (TIF) α, β, and γ respectively. The PHD was first reported in 

A. thaliana and found to have structural similarity with other zinc fingers such as RING finger 

(Schindler et al., 1993). It is one of the vital domains responsible for DNA binding via interaction 

with chromatin (Histone H3) and mediates transcriptional regulation of various genes by virtue 

of its nuclear presence (Aasland et al., 1995). Haynes (1992) first reported sequence motif called 

bromodomain in human, Drosophila, and yeast (Haynes et al., 1992). Its secondary structure 

revealed to have two amphipathic α-helices with reverse turns, suggesting their role in intra- 

and inter-molecular interaction. In TRIM24 they occur as a single copy per protein and along 

with PHD domain mediate transcriptional repression by recognizing acetylated lysine residues 

present on N-terminal tails of histones (Ozato et al., 2008). Through their ability to bind DNA, 

they also act as transcriptional activators via activation function 2 (AF2) (Teyssier et al., 2006).  
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FIL domains appear in association with NHL repeats in subclass VII of TRIMs comprising of 

cytoskeletal TRIMs 2, 3, 2, and 71, but singularly in TRIM45. These domains of ~100 residues 

tandem repeats are rich in Gly and Pro and form a rod-like structure in the actin-binding 

cytoskeleton protein Filamin. They are speculated to be involved in homo-dimerization and 

crosslinking between TRIMs and cytoskeletal proteins through actin binding globular domains 

(Fucini et al., 1997). NHL repeats (~40 residues) are named after Ncl-1, HT2A (human proteins 

that bind to HIV Tat), and Lin-41 (a translational regulator in C. elegans) in which it was first 

identified. They are widely believed to be involved in various protein-protein interactions 

because of their structural similarity to WD repeats (Slack and Ruvkun, 1998). Subclass VIII of 

human TRIMs possesses this abundant pro- and eu-karyotic domain. The sequence repeats (2-6) 

that comprise NHL domains lead to β-propeller-like structures connected by loops. The deletion 

of the NHL domain in brain tumor protein (brat) has been shown to cause excessive growth of 

larval tissue in Drosophila, causing neoplasm in the larval brain (Arama et al., 2000).  

4.6.3     Roles of TRIM family in cardiac proteostasis 

Cardiomyocytes barely undergo cellular differentiation and thus there is constant need to 

maintain their cellular integrity throughout the lifespan. Proteostasis machinery plays a central 

role in discarding non-essential and harmful components through targeted proteolysis. With 

HSPs and autophagy being more constructive and destructive respectively, UPS is essential in 

nurturing youthful proteome by degrading proteins after their native function. With more than 

70 members present in Homo sapiens, not many TRIM proteins have been studied in a cardiac 

perspective. But with increasing scientific input, some TRIMS have been established as essential 

players in cardiac function and diseases, e.g. muscle Ring Fingers (MuRFs TRIM63, TRIM55, and 

TRIM54), TRIM8, and TRIM72, which are discussed in detail below.  

4.6.3.1     Muscle Ring Fingers (MuRFs) 

MuRFs, namely MuRF1 (TRIM63), MuRF2 (TRIM55) and MuRF3 (TRIM54) are members of class II 

TRIM proteins (Figure 7). They characteristically lack B-box 1 and have COS domain at the 

C-terminus. MURF2 is expressed at the early onset of mouse cardiac differentiation, specifically 

at embryonic day 8.5, emerging as a sensitive marker for differentiating myocardium. In 
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contrast, MuRF1 displays strong upregulation postnatally, whereas MuRF3 is expressed only 

after birth (Perera et al., 2011). 

MuRF1 has been shown to mediate skeletal muscle atrophy along with MAFbx, where mice 

deficient in either of them were resistant to muscle atrophy (Bodine et al., 2001). In cardiac 

atrophy, MuRF1 -/- mice were found challenging to return to baseline (70% less than WT mice) 

after the release of TAC (Willis et al., 2009a). Adult MuRF1-tg mice contain thinner LV walls with 

worsened cardiac functioning, leading to heart failure upon TAC (Willis et al., 2009b). MuRF1 

also regulates cardiac ROS production in mitochondria, contemplating a further cardioprotective 

role in IR injuries (Mattox et al., 2014). The degradation of MHC β/slow and MHCIIa by MuRF1 

and MuRF3 via UPS is an essential function to avoid muscle myopathy and hypertrophic 

cardiomyopathy, as evidenced in MuRF1-/- and MuRF3-/- mice, which developed an elevation 

of sub-sarcolemmal MHC accumulation and myofiber fragmentation (Fielitz et al., 2007a).  

In younger HCM patients, MuRF1 and MuRF2 were found to have rare variants leading to higher 

penetrance and more severe clinical manifestation of cardiomyopathy (Su et al., 2014). MuRF1 

and MuRF2, the closely related proteins are known to heterodimerize with each other, thus, 

displaying a high degree of functional redundancy; while the absence of both the proteins 

resulted in abrupt cardiac development with massive spontaneous hypertrophic 

cardiomyopathy and heart failure. MuRF1 alone has been reported to regulate pathologic 

cardiac hypertrophy (Willis et al., 2014b). Study with labeling MuRF2 in microtubules of cardiac 

sarcomeres have demonstrated its vital contribution as a transient adaptor between 

microtubules, titin, and nascent myosin filaments, suggesting that it is playing a key role in 

sarcomere to nucleus signaling  (Pizon et al., 2002).  

MuRF2 and MuRF3 also share considerable functional redundancy for binding to microtubules 

and lead the sarcomere formation in striated muscles. The double knockout mouse resulted in 

protein aggregate myopathy in striated muscles with decreased systolic and diastolic functions 

and increased MHCβ/slow, affecting calcium handling in sarcomere (Lodka et al., 2016). In 

another instance, MuRF2-/- and MuRF3-/- mice were subjected to 60% fat diet for 26 weeks, 

where both MuRF2 (He et al., 2015) and MuRF3 (Quintana et al., 2015) knockout mice 
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demonstrated exaggerated diabetic cardiomyopathy and enhanced activation of peroxisome 

proliferator activating receptors (PPAR) transcription factors, suggesting a role in resistance 

against the development of diabetic cardiomyopathy. MuRF3 interacts with FHL2 and γ-filamin 

proteins leading to their degradation via UPS, which was confirmed after abnormal aggregation 

of these proteins in mice lacking MuRF3. Additionally, MuRF3-/- mice display normal cardiac 

function but are more prone to cardiac rupture after acute myocardial infarction (AMI) (Fielitz 

et al., 2007b). Recently, a clinical study aimed to identify cardiac specific E3 ubiquitin ligases for 

early prognosis of AMI found MuRF3 and MuRF1 to be upregulated in the blood plasma of rats 

and AMI patients (Han et al., 2015). The knockdown of MuRFs in combination with GC/MS and 

non-targeted metabolomics analysis suggested that all MuRFs possibly have overlapping 

substrate specificities with similarly altered metabolome (Banerjee et al., 2015).   

4.6.3.2     TRIM8 (RNF27) 

TRIM8, also known as Ring finger 27 (RNF27), is a 551 residues long protein characteristically 

having both B-boxes but lacking any C-terminal domain. It has been confirmed by interaction-

mating and co-IP to bind with itself, demonstrating homo-interaction in the nuclear region 

(Reymond et al., 2001). Its genetic location has been mapped at a specific locus where genetic 

mutations have resulted in various glioblastoma, suggesting a role in gliomas and other 

malignancies (Vincent et al., 2000). Recently, (Chen et al., 2017) provided a detailed scenario for 

the cardiac role of TRIM8 after it was found to be upregulated in human DCM patients and 

hypertrophied mice. TRIM8 KO mice showed characteristics similar to WT mice without any 

abnormalities and reversed pressure overload effects after TAC, avoiding heart failure. On the 

other hand, TRIM8-tg mice exaggerated pressure overload hypertrophy after TAC and induced 

heart failure. Similarly, AngII mediated pro-hypertrophic effects were also exacerbated by 

TRIM8 in vitro. These pro-hypertrophic effects of TRIM8 are mediated via poly-ubiquitination of 

TAK1 which further activates p38 and JNK1/2 hypertrophic signaling. Thus, TRIM8 has been 

suggested as a prospective therapeutic agent for pathological hypertrophy and heart failure. 
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4.6.3.3     TRIM72 (MG53) 

TRIM72, also widely known as Mitsugumin53 (MG53) possesses the most common structure of 

the TRIM family, with RING-BB1-CC-PRY/SPRY domains conservatively aligned from N-terminus 

to C-terminus (Figure 7). It is noted to play a central role in insulin resistance and thus metabolic 

disorders such as obesity and diabetes, with possible involvement in cardiovascular diseases like 

diabetic cardiomyopathy. MG53 has been reported to mediate degradation of both insulin 

receptor and insulin receptor substrate 1 (IRS1), causing dyslipidemia and hypertension; while 

its ablation has been credited with preserving IRS1. This mechanistic role of MG53 has been 

suggested as a therapeutic agent for targeting metabolic disorders and cardiovascular 

complications (Song et al., 2013).  

MG53 is reported to be a vital player in both preconditioning and post-conditioning of IR by 

activating PI3K-Akt-GSK3β and ERK1/2 cell survival signaling pathways (Zhang et al., 2016). 

Myocardial injury resulting from IR in dysferlin KO murine strongly correlated with myocardial 

muscle impairment, prompting a clinical trial in pediatric patients with corrective heart surgery. 

But strangely, human myocardium was found to be completely sans of MG53, proposing 

rhMG53 to be an effective tool in skeletal and cardiac muscle repairs (Lemckert et al., 2016). 

Furthermore, MG53 (TRIM72) has been reported to have beneficial roles in phosphatidylserine-

dependent prevention of skeletal muscle damage, protection of heart against IR injury, and 

protection of other vital organs by membrane repair; as well as adverse roles leading in 

development of skeletal muscle insulin resistance, pathogenesis of diabetic cardiomyopathy in 

the heart and negatively regulating myogenesis with skeletal muscle stiffness and relaxation 

(Zhang et al., 2016). This ‘Janus-faced’ nature renders TRIM72 a ‘double-edged sword’ for 

human diseases, questioning its use as a therapeutic agent.  
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5     Aims of the study 

Recent discoveries related to RhoA-SRF axis of cardiac hypertrophy have led to the 

establishment of Dysbindin, a schizophrenia susceptibility protein, to be a robust inducer of 

cardiomyocyte hypertrophy in vitro, by virtue of interactions with hypertrophic proteins like 

Myozap and RhoA. A yeast two-hybrid screen performed with the aim of finding novel cardiac 

binding partners of Dysbindin, suggested an E3 ubiquitin ligase TRIM24 to be one of the 

potential interaction partners. A thorough literature search revealed TRIM32, another TRIM 

family member to interact with Dysbindin in skeletal muscle and leading its degradation via UPS. 

The TRIM protein family, known for promoting selective proteolysis to maintain proteostasis, 

also plays central roles in cellular life regarding the regulation of cell cycle, cell differentiation, 

and cellular defense. In regard to the above-stated observations, the following aims were 

proposed in the current thesis: 

1. Establishment of the cardiac interaction between Dysbindin and TRIM24, thereby 

elucidating the cardiac role of TRIM24 in the context of Dysbindin mediated 

hypertrophy. 

2. Confirmation of the Dysbindin-TRIM32 interaction in the heart, thereby characterizing 

functional aspects of UPS-mediated Dysbindin degradation by TRIM32 and its 

implications on Dysbindin-mediated hypertrophic SRF signaling.  

3. Determination of the roles TRIM24 and TRIM32 play in overall cardiomyocyte 

homeostasis and cell life. 
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6     Materials 

6.1     Hardware and consumables 

AmershamTM Protran NC membrane   GE Healthcare 

Axiovert 40 C Microscope    Zeiss 

Cell Scraper 16cm 2-position blade   Sarstedt 

Cellstar cell culture dishes 6-, 12-, 

24-well, 6cm-, 10cm dishes    Greiner Bio one 

Centrifuge 5810     Eppendorf 

CFX96 Real-Time PCR System   BioRad 

Coverslips 18 mm diameter    Karl Hecht KG 

Duomax 1030 horizontal rotator   Heidolph 

DynaMag-2 Magnet     Invitrogen 

ECX-F26.M UV-trans illuminator   Peqlab 

Electroporation cuvette    Peqlab 

Filter paper 110 mm diameter   Schleicher & Schuell 

FluorChem Q Camera (Western Blot)  Alpha Innotech 

Galaxy MiniStar Microcentrifuge   VWR 

Heraeus Fresco 21 Centrifuge   Thermo Scientific 

Heraeus Pico 21 Centrifuge    Thermo Scientific 

Horizon 11x14 Gel-electrophoresis   Life Technologies 

Infinite M200Pro microplate reader   Tecan 
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Mini PROTEAN Tetra System    Bio Rad 

Mr. Frosty™ Freezing Container   Thermo Fisher Scientific 

MyCycler Thermal Cycler    Bio Rad 

NanoDrop 2000 spectrophotometer   Thermo Fisher Scientific 

Neubauer- cell counter    Assistent 

Slide 76x26x1 mm     MARIENFELD 

Olympus BX53 microscope    Olympus 

Olympus DP72 camera    Olympus 

Parafilm      BEMIS 

Pasteur pipettes, glass    ROTH 

Pipettes Eppendorf-Reference   Eppendorf Research 

Pipette tips Biosphere Filter Tip   Sarstedt 

Pipette tips, with filter    Sarstedt 

Pipetus      Hirschmann Laborgeräte 

Power Pac HC      Bio Rad 

PP-Microplate 96-well    Greiner-Bio One 

RCT Basic magnetic stirrer    IKA 

Tubes 0.5 mL, 1.5 mL, 2 mL, 5 mL   Sarstedt 

Tubes 15 ml, 50 ml     Sarstedt 

Pipettes 2 mL, 5 mL, 10 mL, 25 mL   Sarstedt 

Precellys 24 homogenizer    Peqlab 
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qRT-PCR plates, 96-well, multiply   Sarstedt 

Seven Easy pH-meter     Mettler-Toledo 

Stemi 2000-C microscope    Zeiss 

Steril-Cult 200 incubator    Labotect 

Sterile filter 0.2μm Pore Size    Nalgene Labware 

SterilGARD Hood     The Baker Company 

TE1502S precision scale    Sartorius 

Thermomixer Comfort    Eppendorf 

Titan PCR-working station    ScanLaf 

Vacusafe ventilation     Integra Biosciences 

Variomag Poly magnetic stirrer   Thermo Fisher Scientific 

Vortex-Genie 2     Scientific Industries 

Cell culture flasks 75cm2, 175cm2   Sarstedt 

6.2     Chemicals 

Agarose      Biozym Scientific GmbH 

Albumin fraction V, bovine    Merck KG 

Carbenicillin      Sigma-Aldrich 

DAPI       Sigma-Aldrich 

DEPC      Sigma-Aldrich 

DMEM      PAA Laboratories 

DMSO       Sigma-Aldrich 
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DNA Loading Dye 6x     Fermentas 

Collagen I – solution, bovine skin   BD Biosciences 

DreamTaq 10x green buffer    Thermo Scientific 

DynaBeads Protein G sepharose   Novex by Life Technologies 

EDTA       Serva Electrophoresis 

Ethanol      Carl Roth 

Ethidiumbromide     Invitrogen 

FCS Gold      PAA Laboratories 

Fluor Preserve Reagent    Calbiochem 

Formamide      Sigma-Aldrich 

GeneRuler 1kb Plus DNA Ladder   Fermentas 

HEPES       Carl Roth 

Hygromycin B      Invitrogen 

Ionomycin      Sigma-Aldrich 

iQ PowerMix Reagent, multiplex qRT  Bio-Rad 

Kanamycine      Sigma-Aldrich 

Lipofectamine 2000 Reagent    Invitrogen 

Methanol      Carl Roth 

NCS (Newborn Calf Serum)    PAA Laboratories 

PageRuler Plus prestained Protein Ladder  Thermo Fisher Scientific 

Penicillin/Streptomycin    Invitrogen/GIBCO 
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Phenol/Chloroform/Isoamylalcohol   Carl Roth 

Phenylephrine     Sigma-Aldrich 

PMA (Phorbol-12-myristat-13-acetat)  Sigma-Aldrich 

Protein-Assay dye-concentrate (Bradford)  Bio-Rad 

QIAzol Lysis Reagent     Qiagen 

Sodium chloride     AppliChem 

Sodium hydroxide     AppliChem 

SDS       Serva Electrophoresis 

Spectinomycin     Sigma-Aldrich 

TEMED 99% p.a. Electrophoresis   ROTH 

Tris-Base      Carl Roth 

Tris-HCl      Carl Roth 

Triton X 100      Serva Electrophoresis 

Trypan blue      Sigma-Aldrich 

Tween 20      Sigma-Aldrich 

Vectashield HardSet Mounting Medium  Vecta-Labs 

6.3     Enzymes 

Collagenase type 2     Worthington/Cellsystems 

Complete-Proteinase Inhibitor Cocktail  Roche Diagnostics 

Desoxyribonuclease I (DNase I)   Sigma-Aldrich 

DreamTaq DNA-Polymerase (GreenTaq)  Thermo Fisher Scientific 
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LR-Clonase ™ II     Invitrogen 

Pac I       BD Biosciences Clontech 

BP-Clonase ™ II     Invitrogen 

Phusion HF DNA polymerase    Invitrogen 

Proteinase K      Invitrogen 

Trypsin-EDTA-solution    Invitrogen/GIBCO 

6.4     Antibodies 

6.4.1     Primary Antibodies 

Table 1: List of primary antibodies. IF=Immunofluorescence, WB=Western Blot, IP=Immunoprecipitation. 

Antibody anti- Species Clonality Company Description 

α-actinin Mouse mono Sigma IF (1:200) 

α-actinin Rabbit poly Abcam IF (1:400) 

α-tubulin mouse mono Sigma WB (1:8,000) 

Actin goat poly Santa Cruz Biotechnology WB (1:3,000) 

Caspase3 rabbit poly Cell Signaling Technology WB (1:1,000) 

Caspase7 rabbit poly Cell Signaling Technology WB (1:1,000) 

Cleaved Caspase3 rabbit poly Cell Signaling Technology WB (1:1,000) 

Dysbindin mouse mono Santa Cruz Biotechnology WB (1:500) 

FLAG tag mouse mono Sigma IP, WB (1:500)  

GAPDH mouse mono Sigma WB (1:20,000) 

p53 mouse mono Novus Biologicals WB (1:1,000) 

TRIM24 rabbit poly Proteintech IP, WB (1:1,000) 

TRIM32 rabbit poly Sigma IP, WB (1:500) 

ubiquitin mouse mono Millipore Upstate WB (1:1,000) 

V5 tag mouse mono Biozol IP, WB (1:500) 

XIAP rabbit poly Cell Signaling Technology WB (1:1,000) 



46 
 

6.4.2     Secondary Antibodies 

Table 2: List of secondary antibodies. IF=Immunofluorescence, WB=Western Blot, HRP= Horseradish peroxidase, 
AF=AlexaFluor®. 

Antibody anti- Species Conjugate Company Description 

mouse goat HRP SantaCruz WB 

rabbit goat HRP SantaCruz WB 

mouse goat AF488 Life Technologies IF 

mouse goat AF546 Life Technologies WB 

rabbit goat AF546 Life Technologies IF 

 

6.5     Vectors 

6.5.1     Cloning plasmids 

pDONR221     Invitrogen 

pcDNA-DEST40    Invitrogen 

pAd/CMV/V5-DEST    Invitrogen 

pcDNA3.1     Invitrogen 

6.5.2     Overexpression plasmids 

Table 3: List of overexpression plasmids. Used for overexpression of specific protein or its parts in HEK293A cells. 

# Plasmid Description 

1 Empty vector Control 

2 V5-Dysbindin  Full-length Dysbindin 

3 V5-Dys-N-term+CC N-terminus + CC domain of Dysbindin 

4 V5-Dys-CC coiled-coil domain of Dysbindin 

5 V5-Dys-Dys dom Dysbindin domain of Dysbindin 

6 V5-Dys-Dys dom+C-term Dysbindin domain + C-terminus of Dysbindin 

7 Flag-TRIM24 TRIM24 

8 Flag-TRIM32 TRIM32 
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6.5.3     Viruses 

Table 4: Adenoviral constructs. Used for the overexpression of the depicted constructs in neonatal rat ventricular 

cardiomyocytes. 

# Virus Name Description 

1 Ad-LacZ Overexpression control 

2 Ad-HA-Dys Overexpression of HA-Dysbindin 

3 Ad-Dys Overexpression of Dysbindin 

4 Ad-TRIM24 Overexpression of TRIM24 

5 Ad-TRIM32 Overexpression of TRIM32 

6 Ad-Ubi Overexpression of Ubiquitin 

7 Ad-SRF-Luc Overexpression of Firefly luciferase 

8 Ad-Renilla-Luc Overexpression of Renilla luciferase 

9 Ad-miRNeg Knockdown control 

10 Ad-miRTRIM24 Knockdown of TRIM24 

11 Ad-miRTRIM32 Knockdown of TRIM32 

     

6.6     Kits 

Block-iT™ Pol II miR RNAi Expression Vector Kit  Invitrogen 

ECL-Select detection system      GE Healthcare 

Nucleo Spin Plasmid Kit      Macherey-Nagel 

Platinum SYBR Green qPCR SuperMix    Invitrogen 

Qiagen PLUS Plasmid Midi Kit     Qiagen 

QIAquick Gel Extraction Kit      Qiagen 

Superscript III First Strand Kit     Invitrogen 

Cell Proliferation Kit I      Sigma-Aldrich 

In Situ Cell Death Detection Kit, Fluorescein (TUNEL Kit) Sigma-Aldrich 
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6.7     Buffers and solutions 

ADS-Buffer 10x 

1.16 M   NaCl 

197 mM   HEPES 

94 mM   NaH2PO4.H2O 

55.5 mM   Glucose 

53.6 mM   KCl 

8.3 mM   MgSO4, pH 7.4, sterile filtration 

RIPA lysis buffer 

50 mM   Tris-HCL 

pH 7.5    titrate with 1 M NaOH 

150 mM   NaCl 

0.5 % (w/v)   Sodium Deoxycholate 

1 % (v/v)   NP-40 

0.2 %    SDS 

Addition of Inhibitors to 1 m of lysis buffer prior to harvest: 

40 μl    25x Proteinase-Inhibitor-Cocktail 

10 μl    Phosphatase-Inhibitor 2 

10 μl    Phosphatase-Inhibitor 3 

1 μl    1 M DTT 

Running buffer, SDS-PAGE (10x) 

250 mM   Tris 

1.9 M    Glycine 
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1 % (w/v)   SDS 

PBS 

137 mM   NaCl 

2.7 mM   KCl 

4.3 mM   Na2HPO4 

1.47 mM   KH2PO4, pH 7.4, autoclaved 

Laemmli buffer (4x) 

250 mM   Tris pH 6.8 

5 % (w/v)   SDS 

40 % (v/v)   Glycerin 

0.005 % (w/v)   Bromophenole blue 

10 % (v/v)   2-Mercaptoethanol 

Collecting gel buffer 

0.5 M    Tris-HCl, pH 6.8 

TBS 

100 mM   Tris-HCl, pH 7.5 

0.9 % (w/v)   NaCl 

Transfer buffer 

20 % (v/v)   Methanol 

25 mM   Tris 

192 mM   Glycine 

0.037 % (w/v)   SDS 

Separating gel buffer 

1.5 M    Tris, pH 8.8 



50 
 

Trypsin-EDTA solution (in PBS) 

0.25 % (w/v)   Trypsin 

0.53 mM   EDTA 

6.8     Media 

LB-Medium (Luria-Bertani) 

1 % (w/v)   Tryptone 

0.5 % (w/v)   Yeast-extract 

1 %    NaCl 

Titration to pH 7.0 with NaOH 

Growth medium (NRVCM) 

DMEM with 4.5 g/l Glucose and 110 mg/l Sodium pyruvate 

10% (v/v)   FCS Gold (No FCS in media starting from 24 h of culture) 

100 µg/ml   Penicillin G 

100 μg/ml   Streptomycin 

2 mM    L-Glutamine 

Growth medium (HEK293-A) 

DMEM with 4.5 g/L Glucose and 110 mg/l sodium pyruvate 

4 % (v/v)   FCS Gold 

100 µg/ml   Penicillin G 

100 μg/ml   Streptomycin 

2 mM    L-Glutamine 

6.9     Bacteria 

E. coli DH10B, electro-competent Life-Technologies 
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7     Methods 

7.1     Microbiological methods 

7.1.1     Generation of electro-competent bacteria 

For the bacterial transformation via electroporation, bacteria are required to uptake plasmid 

from the culture media after application of high voltage. E. coli DH10B strains were 

pre-incubated overnight at 37°C at 200 rpm in 50 ml LB medium. The pre-warmed LB medium 

(1 liter) was added and culture was further incubated until an OD600 between 0.4 and 0.8 was 

obtained (~12-14 h). The culture was centrifuged at 4°C for 15 min at 11000X g to pellet down 

the bacteria. The pellet was washed twice in ice-cold, sterile ddH2O. After the second washing, 

the bacterial pellet was re-suspended in 250 ml 10% (v/v) glycerol and centrifuged. The pellet 

was further re-suspended in 1.5 ml 10% (v/v) glycerol, aliquoted (50 µl), snap frozen using liquid 

nitrogen, and stored at -80°C. Transformation efficiency was determined by transforming three 

random stocks, which were spread (1/100 of the reaction) onto a 100 μg/ml antibiotic 

containing LB-agar plate. After overnight cultivation at 37°C, the clones were counted to 

determine the transformation efficiency. 

7.1.2     Electroporation 

For electroporation, electro-competent DH10B E. coli bacteria were thawed on ice. About 

5-10 ng of DNA material (plasmid/linearized oligo) was added directly to the bacteria and the 

suspension was mixed well by pipetting up and down. The mix was transferred into a pre-chilled 

(-20°C) electroporation-cuvette (Cell projects ltd., UK) and an electric pulse at 2.5 kV, 200 Ω and 

25 μF was given. 1 ml of LB-medium was added to the electroporated bacteria and the mixture 

was transferred to a sterile reaction tube. The transformed bacteria were incubated at 37°C for 

~1 h in a thermomixer at 750 rpm. A portion of the incubated bacteria was then spread on 

LB-agar plates containing appropriate antibiotic for selection of transformed E. coli. 

7.1.3     Agar plate preparation 

LB medium was prepared by mixing LB agar powder and ddH2O (1.5% w/v). The mixture was 

autoclaved and cooled down to 55°C in a water bath. The respective antibiotics were added at 

this lower temperature to prevent the structural breakdown of antibiotics. Ampicillin was 

substituted by Carbenicillin and used at a concentration of 100 μg/ml; while, Kanamycin, and 
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Spectinomycin were added at concentrations of 50 μg/ml. The antibiotic-containing warm 

solution was cast into 10 cm Petri dishes under a sterile hood. After cooling down, the agar 

plates were stored at 4°C until the next use. 

7.1.4     Spreading of bacterial cultures 

Sterile glass beads were used for spreading of transformed bacteria onto agar plates under the 

sterile hood. The plates were shaken vigorously to allow glass beads to distribute culture evenly. 

The volume of electroporation mix to be spread was considered according to respective copy 

numbers of plasmid, typically between 100-300 μl. Agar plates with transformed bacteria were 

incubated at 37°C overnight. Individual colonies were picked with a pipette tip for colony PCR or 

culture inoculation for further experiments. 

7.1.5     The growth of the bacteria in liquid-culture 

The appropriate antibiotics were added to the LB-medium (5 ml) at the above-mentioned 

concentrations. Single bacterial colonies were picked from agar plates with a pipette tip and 

added to the medium separately and incubated overnight at 37°C, 200 rpm with horizontal 

shaking. In some cases, low volume (5 µl) of liquid bacterial culture was also inoculated in the 

LB-medium. The growth cultures were used for plasmid isolation after ~12-16 h incubation. 

7.1.6     Storage of positive clones as glycerol stocks 

The culture tubes were stored at 4°C following the plasmid harvest. After confirmation of 

positive clones by sequencing, 5 ml LB-medium was incubated in the same culture tubes along 

with the respective antibiotic. The incubated culture was centrifuged at 4200 rpm and 1:1 

amount (500 µl) of fresh media and 60% glycerol was added to the pellet. These components 

were mixed well and transferred to a new 2 ml tube with screw-top lids and stored at -80°C. 

7.1.7     Plasmid DNA extraction: Mini preparation 

The NucleoSpin® Mini-Preparation-Kit (Macherey-Nagel) was used for extraction of plasmid 

DNA from smaller E. coli DH10B cultures (5 ml). The bacterial cultures were pelleted at 4°C and 

4200 rpm for 5 min in a benchtop centrifuge. The bacterial pellet was re-suspended in 125 μl of 

buffer A1 (resuspension buffer, with RNase A added) and transferred to a 1.5 ml tube. 250 μl of 

buffer A2 (lysis buffer) was added, mixed well by inverting the tube 5-6 times and incubated at 
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RT for 5 min. The neutralization buffer (buffer A3, 300 μl) was added to stop the lysis reaction. 

The mixture was centrifuged for 7 min at 16200X g; the supernatant was loaded onto the silica-

membrane columns. Centrifugation for 30 sec at 6200X g allows the plasmid DNA to bind to the 

column, which was purified after addition of ethanol-containing washing buffer A4 (700 µl). The 

columns were dried by centrifugation at 7800X g for 2 min. Pre-warmed EB-buffer (35 μl) was 

used to elute the plasmid DNA by brief centrifugation for 1 min at 16200X g. 

7.1.8     Plasmid DNA extraction: Midi preparation 

For extraction of Plasmid DNA from higher volumes of liquid culture, Plasmid Plus Purification 

Midi-Kit (Qiagen) was used. Post incubation, bacteria were pelleted in 50 ml Falcon tubes at 4°C 

and 4200 rpm for 15 min. The pellet was resuspended in buffer P1 containing RNase A, to which 

lysis buffer P2 (2 ml each) was added and incubated at RT for 5 min. For neutralization of the 

alkaline lysis conditions, 2 ml of buffer P3 was added and the mixture was placed into a filter 

cartridge. After 10 min of incubation, a plunger was inserted into the cartridge to filter the cell 

lysate through the membrane for removal of cell debris. To the flow through, 2 ml of DNA 

binding buffer BB was added allowing plasmids to bind to membranes of the spin column after 

pressure application by a vacuum generator. The solution was then sucked through the spin 

columns by applying a pressure of ~300 millibars. Endotoxins were removed by addition of ETR 

buffer to the columns, followed by washing with ethanol-containing washing buffer PE (700 μl). 

To remove all buffer residues, the columns were centrifuged at 11000X g for 2 min. The plasmid 

DNA was eluted with pre-warmed EB-buffer (200 μl) by centrifugation at 11000X g for 1 min. 

7.1.9     Agarose gel electrophoresis 

Agarose gel electrophoresis was utilized to separate DNA fragments, based on the size of the 

fragments. Agarose powder (1% w/v) was dissolved in TAE buffer by boiling the solution in a 

microwave until the powder was dissolved completely. The solution was cooled down to ~60°C 

and 0.5 μg/ml ethidium bromide was added to the solution. The agarose solution was cast into 

the gel-chamber, a comb was inserted to create wells in the gel for the sample loading and the 

gel was allowed to polymerize at RT for ~20 min. After polymerization and solidification, the gel 

was transferred to the electrophoresis chamber containing TAE buffer. DNA-containing samples 

were loaded into the wells and samples were allowed to run by application of an electric field 
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(~100 V). Here the negatively charged DNA travels through the gel towards the anode and is 

separated based on the size of the fragments: with larger fragments traveling slower than 

smaller fragments. Finally, DNA bands were imaged with the help of UV-light that illuminated 

ethidium bromide bound DNA. 

7.1.10     DNA extraction from agarose gels 

DNA that was separated via agarose gel electrophoresis was isolated and purified from the gel. 

The QiaQuick® Gel-extraction system was used. Therefore the ethidium bromide-stained DNA in 

the gel was visualized under UV-light, cut out with a scalpel and transferred into a 1.5 ml 

reaction tube. The sample was then weighed and thrice the volume of the gel-slice, QG-buffer 

was added to the tube (e.g. 300 μl for every 0.1 g of gel). The gel slice was then incubated at 

55°C for 10 min with intermittent vortexing until the gel was dissolved completely. This solution 

was transferred into a spin-column containing a silica-membrane for DNA binding at 500 μl 

portions at a time and subsequently centrifuged at 11000X g for 1 min each. Finally, another 

500 μl of fresh QG-buffer was added to the column and centrifuged. The flow-through was 

discarded in each of the steps. The columns were then washed with 600 μl of ethanol containing 

PE buffer by centrifugation. The residual buffer was removed by centrifuging at 11000X g for 2 

min. Addition of 25 μl EB-buffer allowed for elution of the membrane-bound DNA in final 

centrifugation step. 

7.1.11     DNA and RNA concentration measurement 

DNA and RNA concentrations were determined with the NanoDrop™ photometer. Optical 

density was measured at 260 nm and 280 nm and concentrations were automatically calculated 

for DNA or RNA. Measurements were carried out in duplicates and the mean concentration was 

considered as the reliable measurement. 

7.2     Cell culture methods 

7.2.1     Culturing of immortalized HEK293A cell line  

Immortalized cryo-conserved HEK293A cells were stored in big liquid nitrogen chambers. For 

culturing, cells were thawed rapidly in a 37°C water bath and added with 1 ml pre-warmed 

growth medium. This cell solution was transferred into a T75 cell culture flask containing 8 ml of 
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warm growth medium. HEK293A cells grow in a monolayer on non-coated plastic surfaces. The 

generation time of HEK293A is 36h under optimal conditions. Cells were passaged at 70-80 % of 

confluency. Cells were dissociated from the plastic surface by addition of 2 ml Trypsin-EDTA 

solution and incubation for 1-2 min at 37 °C until single cells were visible under the microscope. 

10 ml of growth medium was added to the cell-solution to stop the trypsin activity. The cells 

were then centrifuged at 1000X g at RT for 5 min. The supernatant consisting of Trypsin and 

media was discarded and the cells were resuspended in the warm growth medium. The cells 

were counted in a Neubauer chamber and seeded in the respective culture plates or, without 

counting, seeded at a ratio of 1:10 into new T175 flasks for maintenance of the cell line. All cell 

culture operations like cell splitting and seeding were performed under sterile hood and cells 

were incubated in a 37 °C incubator with 5% CO2 until next use. 

7.2.2     Cell Transfection in HEK293A cells  

The transfection procedure was started after achieving almost 80% confluency of the cells on 

the plates. Volumes of plasmid DNA intended to overexpress the particular protein, lipid 

reagent (Lipofectamine 2000) to allow entry of plasmids into mammalian cells and advanced 

DMEM media (without antibiotics and without FCS) were scaled up as per the need. An equal 

amount of media was used for the addition of plasmid DNA and Lipofectamine 2000 separately 

in reaction tubes. Separately, particular amounts of DNA and lipid reagent were added to media 

for all conditions. After incubation of media and Lipofectamine 2000 mixture for 5 min at RT, it 

was added to DNA containing media conditions. This plasmid DNA, Lipofectamine 2000 and 

media mixture was incubated for a further 20 min at RT and transferred to cell plates uniformly 

in a dropwise manner. The plates were shaken gently in round wise manner to mix up all 

ingredients uniformly and incubated further. 

7.2.3     Cryo-conservation of the HEK293A cell line 

To generate cryo-stocks of the HEK293A cells, one T175 flask was passaged as described but 

finally resuspended in media containing 20 % FBS and 10 % glycerol. Cell density was 1-2x1012 

cells/ml. 1 ml of the cell-solution was pipetted into a cryo-vial and cooled down at 1 °C per 

minute in a freezing-container to -80 °C overnight. On the next day, cells were transferred into 

liquid nitrogen for long-term storage. 
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7.2.4     Isolation of neonatal rat ventricular cardiomyocytes 

All culture plates, dishes, and flasks used for the culturing of NRVCM needed to be coated with 

collagen I to provide cell adherence on the plastic surface prior to seeding of the cells. Hence, 

collagen I stem-solution (3.1 mg/ml) was diluted to a concentration of 50 μg/ml. Dishes were 

coated with 5-10 μg/cm² collagen I solution for at least 4 h or overnight at RT. After two 

washing steps with sterile ddH2O the plates were air-dried and stored at 4 °C until usage. If not 

used, plates were stored for no longer than 7 days. 

This protocol describes the procedure for the purification and culturing of 40 rat-pup hearts 

(1-2 day old Wistar rats, Charles River). For the generation of primary cultures from neonatal rat 

left ventricles, about 40 neonatal rat pups were sacrificed per preparation. The rat pups were 

decapitated with scissors after quickly dipping in 75% ethanol solution. A small incision of 

~1-2 cm into the thorax was made to the left side of the sternum. With the application of mild 

pressure on the abdomen, the heart was pushed out, cut off and immediately placed in ice-cold 

ADS buffer. The atria were removed and only ventricles transferred into fresh ice-cold 

ADS buffer. The ventricles were minced with scissors to obtain finely chopped mass and were 

transferred into a digestive solution. This digestion solution was a mix of 0.5 mg/ml collagenase 

type 2 and 0.6 mg/ml pancreatin in ADS-buffer (containing 120 mmol/liter NaCl, 20 mmol/liter 

HEPES, 8 mmol/liter NaH2PO4, 6 mmol/liter glucose, 5 mmol/liter KCl, and 0.8 mmol/liter 

MgSO4, pH 7.4) and was sterile-filtered and heated to 37°C prior to use. Digestion also took 

place at 37°C in a water bath at 40 rpm horizontal shaking. After 20 min single cells started to 

accumulate in the supernatant, which was taken out to be processed further. To the remaining 

tissue, fresh digestion-solution was added. Similarly, five to six enzymatic digestion steps were 

performed until the tissue was digested completely. The supernatants were pipetted through a 

cell-strainer into a 50 ml reaction tube and 8 ml of newborn calf serum (NCS) were added to 

inactivate collagenase and pancreatin activity. The solution was then centrifuged at 1000X g, the 

supernatant was discarded and the cells were resuspended in 5 ml NCS and stored at 37°C in an 

incubator until further use. After four to five of these digestion steps, the supernatants were 

pooled together and in NSC resuspended cells were centrifuged, pelleted down and 

resuspended in 50 ml ADS buffer. 
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At this stage, the cell solution contains cardiomyocytes along with various cell-types found in 

the heart like fibroblasts, blood cells, and others. Therefore, it needs to be purified to isolate the 

cardiomyocytes only. The cells can be separated by their density using a percoll-gradient column 

(GE Healthcare) (Iwaki et al., 1990). A percoll stem-solution was made from 27 ml percoll and 

3 ml 10x ADS buffer. From this stem-solution, two solutions with high (13 ml of stem-solution + 

7 ml ADS buffer) and low (9 ml of stem solution + 11 ml ADS buffer) density were generated. 

First, 4 ml of the low density-solution was pipetted into a 15 ml reaction tube and high-density 

solution was added later by carefully pushing the pipette through the low-density solution and 

pipetting it to the bottom of the tube. For column-integrity, it is crucial to pipette the solution 

very slowly and avoid pipetting air-bubbles into the mixture. Addition of phenol-red dye to the 

low-density solution allowed for visualization of gradient-phase separation. Each time 500 μl of 

cell-solution was carefully pipetted onto gradient and centrifuged at 3000X g and 4°C for 30 min 

with slow acceleration and deceleration without breaks. Cells were thus separated by their 

density after three phases of the columns were visible. Cardiomyocytes travel through column 

until the phase-border between low and mid-phase and were segregated with a transfer 

pipette. Fibroblasts are less dense and do not travel as far, whereas erythrocytes pellet at the 

bottom. The cardiomyocytes were resuspended and washed twice with ADS buffer and 

centrifuged at 1000X g for 5 min. After two washing steps, cells were resuspended in growth 

medium and counted in a Neubauer Chamber with Trypan-blue staining. Cells were seeded onto 

different plates at various densities for the respective experiments as depicted in the Table 5. 

Table 5: Cell seeding density for NRVCMs. 

NRVCMs cell seeding (cells/well) 

Immunocytochemistry 12 well plates with coverslips 0.2 X 106 

RNA 6 well plates 0.8 X 106 

Protein  6 well plates 1 X 106 

  10 cm dishes 10 X 106 

Luciferase assay 12 well plates 0.35 X 106 

MTT assay 24 well plates 0.15 X 106 

  96 well plates 0.03 X 106 
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NRVCM were seeded and incubated in growth medium containing 10% FCS for the first 18h of 

culture. For all experiments with NRVCMs mentioned in this thesis, the cells were washed with 

warm PBS on the next day and were supplemented with FCS-free growth medium for the 

remaining time of culture. 

7.3     Generation of mammalian vectors 

7.3.1     Open reading frame (ORF) PCRs using target specific and attB site-specific primers 

For the cloning of ORFs (open reading frame) and micro-RNAs, the Gateway®-System that uses a 

recombination-system from the bacteriophage λ was employed to enzymatically integrate the 

genomic material into the genome of E. coli. These reactions are site-specific and reversible. For 

the amplification of the gene of interest (GOI), a thermocycler employing polymerase chain 

reaction was used. The PCR was performed using artificially generated primers specific for 

particular genes, where primers also contained partial attB1 and attB2 flanking sequences. 

Depending on the length of the construct, the annealing temperature and the GC-content of the 

primers, different DNA polymerases can be used. For the experiments shown in this thesis, the 

high fidelity Phusion DNA polymerase, a DNA-dependent DNA-polymerase with5’3’ 

polymerase and 3’5’ exonuclease activity (“proofreading”) was used to avoid mutations in the 

amplified construct. The standard-reaction mix according to the manufacturer’s manual was 

modified if needed, by varying either the salt concentration (MgSO4) or addition of DMSO for an 

increase of the primer-annealing temperature range. Typically the PCR was carried out in a 20 μl 

scale to yield amplified DNA fragments. This yields cDNA copies of the ORF of interest flanked by 

the specific parts of the attB-sequences. This reaction mixture was loaded on agarose gel for 

confirmation of product length. In a second PCR, the first PCR product was used as a template 

and amplification was carried out with primers containing the full attB1- and attB2-sequences 

using the exact same conditions as the ORF-PCR. Thus copies of the ORF of interest flanked by 

the full-length attB-sites were generated. 
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Table 6: ORF cloning primers. 

Primer name Sequence Purpose 

Dysbn_fw 5’-GCTGGCACCATGCTGGAGACCCTGCGC-3’ Full length 

Dysbindin Dysbn_rv 5’-GCTGGGTCGCCAATGTCCTGAGTTGAGTC-3’ 

Dys-coil-fw 5’-GCTGGCACCATGTCTGCCCACTGGGAGAAG-3’ 
Coiled-coil domain 

Dys-coil-rv 5’-GCTGGGTCGCCCAGCTTCAGTTGCTGGGT-3’ 

Dys-dom-fw 5’-GCTGGCACCATGCAGAAGGCCCTGGAAATG-3’ Dysbindin domain 

Dys-dom-rv 5’-GCTGGGTCGCCATCAGCAGTGTCCAGGTC-3’ 

Dysbn_fw 5’-GCTGGCACCATGCTGGAGACCCTGCGC-3’  N terminus + 

coiled-coil domain Dys-coil-rv 5’-GCTGGGTCGCCCAGCTTCAGTTGCTGGGT-3’ 

Dys-dom-fw 5’-GCTGGCACCATGCAGAAGGCCCTGGAAATG-3’ Dysbindin domain + 

C terminus Dysbn_rv 5’-GCTGGGTCGCCAATGTCCTGAGTTGAGTC-3’ 

TRIM24_gw_fw 5’-GCTGGCACCATGGAGGTGGCGGTGGAG-3’ 
TRIM24 

TRIM24_gw_rv 5’-GCTGGGTCGCCTTATTTAAGCAACTGGCG-3’ 

TRIM32_gw_fw 5’-GCTGGCACCATGGCTGCGGCTGCAGCA-3’ 
TRIM32 

TRIM32_gw_rv 5’-GCTGGGTCGCCCTAAGGGGTAGAGTATCT-3’ 

attB_gw_fw 5’-GGGGACAAGTTTGTACAAAAAAGCTGGCACC-3’ Gateway attB 

product attB_gw_rv 5’-GGGGACCACTTTGTACAAGAAAGCTGGGTCGCC-3’ 

Luc_ firefly_fw 5’GGGACAAGTTTGTACAAAAAAGCTGGCTAGTATGTCC

ATATTAGGACATCTACC-3’ 
Firefly luciferase 

Luc_ firefly_rv 5’GGGGACCACTTTGTACAAGAAAGCTGGGTTTTACCAC

ATTTGTAGAGGTTTTACTTG-3’ 

Luc_ renilla_fw 5’GGGGACAAGTTTGTACAAAAAAGCTGGCTAAATGAG

TCTTCGGACCTCG-3’ 
Renilla luciferase 

Luc_ renilla_rv 5’GGGGACCACTTTGTACAAGAAAGCTGGGTTTTACCAC

ATTTGTAGAGGTTTTACTTG-3’ 
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7.3.2     Recombination using BP and LR clonase from Gateway® technology 

The GOI is amplified via ORF-PCR from a cDNA pool of the desired species (e.g. mouse, human 

or rat tissue). These flanked constructs were then recombined into the specific donor 

(DONR221) vector with the BP Clonase II by incubating 150 ng of PCR-product along with 150 ng 

of pDONR221 vector and 1 μl of BP Clonase II in a reaction volume of 10 μl overnight at RT. This 

enzyme is able to cut out regions flanked by specific regions called attP and replace them with 

attB flanking sequences. This step allows the integration of the generated ORF sequences into 

the pDONR 221 vector. The generated flanking sites are called attL-sites (attB-insert + attP-

vector = attL vector). Similar to this step, the shuttling of the sequence of interest from pDONR 

to a destination (DEST) vector was carried out with another enzyme, the LR Clonase II. This 

enzyme catalyzes the recombination between attL and attR sites. The insert-carrying pDONR 

and the destination vector are recombined by the LR Clonase in the same way as the BP Clonase 

reaction and this reaction was used to yield destination vector constructs which contained the 

sequence of interest. The destination vectors employed for cloning of full-length V5-Dysbindin 

and V5-Dysbindin fragments were pDest40; while pcDNA3.1 was used for cloning of Flag-

TRIM32. The plasmid for Flag-tagged pDest40 TRIM24 expression vector was a generous gift 

from Dr. Barton, University of Texas, Houston. The empty vectors contained a resistance for 

specific antibodies for selection of plasmid-carrying bacteria after transformation as well as a 

ccdb-gene (suicide cassette) that is only removed when the gene of interest or micro RNA is 

recombined into the plasmid. All generated plasmid-constructs were amplified in E. coli; DNA 

was isolated and sequenced to assure insertion of correct and non-mutated sequences. 

7.3.3     Generation of artificial micro-RNA constructs using the Gateway®-compatible Block-iT 

system 

For the cloning of TRIM24 and TRIM32 microRNAs, the Block-iT RNAi-designer by Invitrogen was 

used. The gene-specific miRNAs flanked by specific sequences allow the formation of hairpin-

structures and are subsequently degraded in the mammalian cell. For the purpose, digitally 

generated oligonucleotides as top and bottom oligo strands with 3’ and 5’ overhangs were 

annealed in 10x oligo-annealing buffers and ligated into the linear pcDNA6.2-GW/miR vector 

with the help of T4 DNA ligase (1 U/μl). This insertion of annealed diploid oligo next to a 
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polymerase II promoter sequence of the vector is flanked by the attB1 site from the gateway 

system, generating an attB site flanked Pol II promoter and miRNA sequence. The newly 

generated plasmid is then transformed into E. coli DH10B bacteria and spread on Spectinomycin 

(50 μg/ml) containing agar plates. Plasmids were amplified in bacteria as described before. The 

shuttling into a donor and subsequent destination vector was carried out by BP Clonase® II and 

LR Clonase® II as described. 

Table 7: Synthetic oligo sequences for microRNA generation. 

Name Sequence Purpose 

miRTRIM24_top TGCTGTGAATTTGGTGACTGCACGGTGTTTTGGCCA

CTGACTGACACCGTGCACACCAAATTCA 

TRIM24 knockdown 

in NRVCMs 

miRTRIM24_bottom CCTGTGAATTTGGTGTGCACGGTGTCAGTCAGTGG

CCAAAACACCGTGCAGTCACCAAATTCAC 

miRTRIM32_top TGCTGACATCTTGCAGGGTAAGCTCCGTTTTGGCCA

CTGACTGACGGAGCTTACTGCAAGATGT 

TRIM32 knockdown 

in NRVCMs 

miRTRIM32_bottom CCTGACATCTTGCAGTAAGCTCCGTCAGTCAGTGGC

CAAAACGGAGCTTACCCTGCAAGATGTC 

 

7.3.4     Generation of adenoviruses for recombinant protein or miRNA expression 

The adenoviruses used for overexpression or knockdown of proteins in NRVCMs were 

generated using the ViraPower™ Adenoviral Kit. A cDNA (for overexpression) or microRNA 

peptide (for knockdown) that had been previously cloned into the pDONR 221 vector was 

shuttled into the pAd/CMV/V5-DEST Gateway vector and then PacI digested. For digestion, 

10 μg of vector-DNA was incubated with PacI enzyme (1.5 μl, 10 U/μl) and CutSmart buffer (1x) 

in a total volume of 70 μl at 37°C to obtain linear DNA. PacI restriction enzyme digested 

pAd/CMV/V5-DEST constructs were transfected into HEK293A cells to produce specific 

adenoviruses. For this purpose, HEK293A cells provide the genes encoding for the packaging of 

the adenoviruses and allow for lytic virus-production. The HEK293A cells (~70% confluent in 

6 well plates) were then transfected with 2 μg of the linear pAd/CMV/V5-DEST vector. Post 24 h 
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of transfection, cells were transferred into a T75 flask containing 12 ml of growth media. The 

cells were microscopically checked for virus production twice a day; with the addition of 3 ml 

media every 2 days. After a week, the dead cells started displaying chain-like structures in cell-

layer because of the detached cells. This showed that the virus started to lyse the cells and is 

present in the supernatant. The cells were incubated further until complete lysis occurred. This 

lysate is then stored at -80 °C until further usage. 3-5 ml of this lysate were added into 100% 

confluent HEK293A-T175 flasks for the generation of greater amounts of virus particles and 

incubated until the cells showed first signs of lytic virus production. Based on the assumption, 

that every cell has been infected by the adenoviruses from the lysate cells were harvested 

before they were detached from the flask bottom. The cells with still intact membranes and 

filled with virus particles were centrifuged; the supernatant was discarded and the pellet was 

resuspended in 1-2 ml of PBS and underwent three freeze-thaw cycles to break open the 

membranes. After centrifuging for 10 min at 12000X g and 4 °C, the supernatant was aliquoted 

into fresh PCR tubes in 20-30 μl portions. One of these aliquots was then used for the 

determination of the number of infectious viruses per μl (ifu/μl) - the virus particles titration. 

7.3.5     Virus particle titration 

Virus titration for adenoviruses was performed by staining the adenovirus-infected HEK293A 

cells with the FITC-labeled anti-Hexon antibody. HEK293A cells were seeded in 24 WPs at 3x105 

cells/well. Cells were then infected with the adenoviruses diluted at different concentrations in 

duplicates. For this purpose, various serial dilutions of 10 μl of the virus aliquot were prepared 

from 10-2 to 10-7 with ten-fold dilution in every step, resulting in 6 different dilutions. One well 

was not infected, serving as a negative control; whereas the first dilution of 10-2 served as a 

positive control and was pipetted only into one well. The remaining dilutions were pipetted 

50 μl per well for two wells each as stated. The infected cells were incubated at 37°C for 48 h. 

Post incubation, media was removed and the cells were fixed with 500 µl cold methanol for 

10 min at -20°C. After the three washing steps with PBS containing 1% BSA, the cells were 

incubated with 150 μl of the FITC-coupled anti-Hexon antibody for each well for ~1 h at 37°C in 

the dark. After three more washing steps with PBS containing 1% BSA, the number of infected 

cells was counted under the microscope. For the purpose, FITC was excited under UV-light and 
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the emitted green fluorescence was microscopically observed. Infected cells thus emitting green 

fluorescence were counted in ten randomly chosen fields of view with the 10x or 20x objectives 

for each well. The mean cells per field of view were calculated. For the 10x objective 79 ‘fields of 

view’ and for the 20x objective, 313 ‘fields of view’ can be expected to cover the whole well. 

Thus, a mean number of infected cells was then multiplied by 79 or 313 to approximate the 

total number of infected cells per well. Division of this number by the manifold of dilution and 

subsequent multiplication with the amount of virus pipetted into each well result in the 

infectious units per ml (ifu/ml) and this unit was used to maintain a constant amount of 

infectious particles between individual viruses and controls in each experiment. 

7.4     Interaction studies 

7.4.1     Co-immunoprecipitation in HEK293A cells 

HEK293A cells were maintained in DMEM containing 4% FCS, 2 mM L-glutamine, and 

Penicillin/Streptomycin. Dysbindin was cloned with the C-terminal V5 tag, whereas both TRIM24 

and TRIM32 were cloned with the N-terminal FLAG tag in mammalian expression plasmids. For 

establishing interaction between dysbindin and TRIM proteins, HEK293A cells (2.5 x 106/dish) 

were co-transfected with 10 µg of TRIM expression plasmids with or without dysbindin (10 µg) 

using Lipofectamine 2000 (Life Technologies, Inc.). Empty vector pcDNA3.1 was used as a 

negative control. 48 h after transfection with an intermittent media change at 24 h intervals, 

cells were washed and harvested with warm PBS, pelleted down, and resuspended in RIPA 

buffer (50mM Tris, 150mM NaCl, 1% Nonidet P-40, 0.5% sodium deoxycholate, and 0.2% SDS) 

supplemented with phosphatase and protease inhibitor mixtures (Complete; Roche Applied 

Science) as needed. Cells were subsequently lysed by three successive freeze-thaw cycles 

followed by centrifugation at 18000X g at 4°C for 20 min. The supernatant containing cellular 

proteins was used for immunoprecipitation using anti-V5 or anti-FLAG affinity gels in two 

separate setups following the manufacturer’s guidelines. In brief, 1 mg of protein in a total 

volume of 1 ml of lysis buffer was mixed with 50 µl of equilibrated beads, and V5- and FLAG-

tagged proteins were then allowed to bind to the respective antibody on the beads for ~4 h at 

4°C atop a rotating shaker. Protein lysate was removed carefully after centrifugation at 8000X g, 

and magnetic beads were washed 4-5 times with lysis buffer. Precipitated proteins from the 
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beads were eluted with 50 µl of Laemmli sample buffer. 10 µl of this eluted protein was 

immunoblotted with SDS-PAGE followed by transfer to nitrocellulose membranes and 

developing with anti-Flag-tag (MBL International Corporation, #M185-11) or anti-V5-tag (MBL 

international corporation, #M167-11) antibodies for checking two-way interactions between 

Dysbindin and TRIMs. All the co-IP experiments were performed twice. A similar methodology 

was also performed to check the interaction between Flag-TRIM24 and various V5-tagged 

Dysbindin fragments namely, N-terminal + coiled-coil domain, coiled-coil domain, Dysbindin 

domain, and C-terminal + Dysbindin domain. Here, IP was carried out using anti-V5-tagged 

magnetic beads (MBL International Corporation, #M167-11) and immunoblotting was 

performed using nitrocellulose membranes against Flag-tag-antibody (Sigma-Aldrich, #F1804) to 

establish the domain-specific interaction between dysbindin and TRIM24. 

7.4.2     Co-immunoprecipitation in NRVCMs 

Cultured NRVCMs (6 x 106/dish) were co-infected with adenoviruses for HA-tagged dysbindin 

(Ad-HA-dysbindin, 50 ifu), TRIM24 (Ad-TRIM24, 100 ifu), and TRIM32 (Ad-TRIM32, 100 ifu) in 

several setups in DMEM containing 2 mM penicillin/streptomycin and L-glutamine but lacking 

FCS. Adenovirus expressing β-galactosidase (Ad-LacZ) was used as a negative control as well as 

adenovirus quantity filler for all the co-IP experiments. 72 h after infection with intermittent 

media change after the first 24 h, cells were washed with PBS and scraped using cell scraper and 

RIPA cell lysis buffer (50 mM Tris, 150 mM NaCl, 1% Nonidet P-40, 0.5% sodium deoxycholate, 

and 0.2% SDS) supplemented with phosphatase and protease inhibitor mixture (Complete; 

Roche Applied Science). Cardiomyocytes were lysed by three cycles of freeze and thaw, and 

debris was removed by centrifugation at 18000X g for 20 min. Protein containing supernatant 

was used for the immunoprecipitation using 50 µl anti-HA tagged antibody beads (MBL 

International Corporation, #M132-11) following the manufacturer’s guidelines. In brief, 1 mg of 

protein in a total volume of 1 ml of RIPA lysis buffer was applied to 50 µl of equilibrated beads, 

and HA-tagged proteins were allowed to bind to the anti-HA antibody on the beads for ~4 h at 

4°C atop a rotating shaker. Protein lysate was removed carefully after centrifugation at 8200X g, 

to remove flow-through and beads were subsequently washed thrice with lysis buffer to remove 

unbound-protein impurities. Precipitated proteins from the beads were released by boiling at 
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95°C for 5 min with 50 µl of Laemmli buffer. 10-15 µl from eluted protein was immunoblotted 

with SDS-PAGE followed by transfer to nitrocellulose membranes and incubation with various 

antibodies, including anti-TRIM24, anti-TRIM32, anti-Dysbindin, anti-HA, etc. All co-IP 

experiments were performed twice to confirm the interaction between specific proteins. 

7.4.3     Co-localization in NRVCMs: Confocal immunofluorescence microscopy 

Co-localization studies for Dysbindin with TRIM24 and TRIM32 were carried out in NRVCMs. 

Cells were seeded in a 12-well plate on collagen-coated coverslips. Following the adenovirus 

infection and incubation phase, NRVCMs were fixed with 4% paraformaldehyde for 10 min at 

RT, permeabilized, and blocked with 0.1% Triton X-100 in 2.5% BSA in PBS for 1 h at RT. Cells 

were then incubated for ~2 h with various primary antibodies using the following dilutions: 

monoclonal mouse anti-dysbindin (1:100; Santa Cruz Biotechnology), monoclonal mouse 

anti-α-actinin (Z-disc specific, 1:200; Sigma), polyclonal rabbit anti-α-actinin (Z-disc specific, 

1:400; Abcam), polyclonal rabbit anti-TRIM24 (1:200; Acris), and polyclonal rabbit anti-TRIM32 

(1:200, Sigma) for co-localization. Respective secondary antibodies conjugated to either Alexa 

Fluor-488 (AF488, green, Thermo Fisher Scientific) or Alexa Fluor-546 (AF546, red, Thermo 

Fisher Scientific) were incubated for ~2 h, all at a dilution of 1:200 in 2.5% BSA in PBS, along with 

nuclear stain DAPI (1:500). FluorPreserve reagent (Merck Millipore) was used as a mounting 

medium to preserve the fluorescence, as well as to fix coverslips on glass slides. Images were 

taken with a Zeiss LSM800 laser-scanning confocal microscope with a Plan-Apochromat X40/1.4 

oil differential interference contrast (UV)-visible IR objective at room temperature. The image 

pixel size was set to optimal for individual acquisitions. The pinhole was adjusted to 1 airy unit 

or less for each individual laser line. AF546 and DAPI channels were acquired via GaAsP-Pmt 

detectors and AF488 channel with a Multialkali-Pmt detector with gain settings between 600 

and 700 V. The laser power for excitation ranged from 0.2 to 0.8%. Cropped regions from the 

overviews are not digital magnifications of the areas but separately acquired images. 

7.4.4     Co-localization in NRVCMs: Analysis 

The co-localization analyses were carried out using the Zeiss co-localization method using ZEN-

blue software package. Individual cells from three different overview images were taken into 

account for the measurement to maintain the integrity of co-localization coefficient calculation. 
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For setting the scatter plot boundaries and to automatically identify the threshold value to be 

used to identify background values, we utilized the method of Coste et al. which was 

automatically implemented by the software. To assess the particular fraction of a protein that 

co-localizes with another protein, we utilized the Mander’s colocalization coefficients (MCC), 

which are metrics that are widely used in biological microscopy analyses and have been 

implemented in all biological image analysis software packages. MCC measures co-occurrence 

independent of signal proportionality and ranges from 0 to 1, where an MCC of 0 represents 0% 

and of 1 represents 100% colocalization of the respective dyes. 

7.5     Animal experiments 

7.5.1     Transverse Aortic Constriction (TAC) 

Sham (control) and TAC operations were performed in 8-weeks old Charles River C57BL/6 mice. 

For the purpose, mice were anesthetized by using isoflurane 4% (v/v) per mask and then orally 

intubated with a 20-gauge tube and ventilated (Harvard Apparatus) at 120 breaths per min 

(0.2 ml tidal volume). The aortic constriction was accomplished via a lateral thoracotomy 

through the second intercostal space. A suture (Prolene 6-0) was placed around the transverse 

aorta between the brachiocephalic and left carotid artery. The suture was ligated against a 

27-gauge needle and the needle was removed leaving discrete stenosis. The chest was finally 

sutured with the pneumothorax evacuated. Sham-operated animals underwent the exact same 

procedure except for the suture ligation. Cardiac function was examined by echocardiography, 

and the animals were killed 2 weeks post-operation to extract the heart for downstream 

analysis of RNA and proteins. All the animal experiments were approved and performed as per 

the guidelines of the local ethical committee (Ministerium für Energiewende, Landwirtschaft, 

Umwelt und Ländliche Räume Schleswig-Holstein). 

7.5.2     Phenylephrine osmotic pump implantation 

This was another attempt to generate cardiac hypertrophy related phenotype in mice, other 

than TAC, and induces biochemical hypertrophy. To stimulate hypertrophy in mice, osmotic 

mini-pumps filled with the α-adrenergic agonist phenylephrine (PE, 25 g/kg body weight/min) 

prepared in PBS with 1 mg/ml L-ascorbate (Sigma) were implanted subcutaneously in 8-weeks 

old WT C57BL/6 mice. Control group in this study received the vehicle L-ascorbate in saline PBS 
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in the exact same amount. 2 weeks post-implantation of osmotic pumps, cardiac function was 

examined via echocardiography and the animals were subsequently sacrificed to extract the 

heart and lung, for phenotypic measurements and for RNA and protein related analysis. 

7.6     Cellular assays 

7.6.1     SRF reporter gene assay 

All SRF reporter gene (SRF-RE) assays shown in this study were performed in NRVCMs. Cells 

were infected with several combinations of adenoviruses expressing Dysbindin (50 ifu), TRIM24 

(100 ifu), TRIM32 (100 ifu), and LacZ (as control or a filler virus to maintain equal count of 

viruses) along with adenovirus for ad-SRF-RE-luciferase (20 ifu) carrying a firefly luciferase and 

ad-Renilla-luciferase (5 ifu) carrying Renilla luciferase (for internal normalization of the 

measurements). For TRIM24 and TRIM32 knockdown experiments, NRVCMs were transfected 

with ad-miRTRIM24 and ad-miRTRIM32 where ds-mimic microRNA (ad-miRNeg) was used as 

control or filler in addition to adenovirus infection. After 72 h incubation period with 

intermittent media change after first 24 h post-infection, cells were washed twice with warm 

PBS and passive lysis buffer (PLB, Promega, 5X, and diluted using ddH2O) was added to each 

well. Plates were then stored in -80°C to induce cellular lysis in the presence of PLB for 15 min. 

After subsequent thawing at RT for 20 more min on a shaker, 20 µl of the sample from each well 

was transferred to opaque 96 well plates to allow analysis using a photometer. Experiments 

were performed using a dual-luciferase reporter assay kit (Promega), according to the 

manufacturer’s guidelines. Chemiluminescence was measured photometrically with an Infinite 

M200 PRO system (Tecan, Life Science). All the experiments were performed in quadruplicates 

or sextuplicates, repeated three times, analyzed and plotted relative to respective control. 

7.6.2     MTT assay for cell viability in NRVCMs 

NRVCMs (0.15 x 106 cells/well) cultured in 24-well plates were infected 24 h after the seeding 

with respective adenoviruses and incubated for additional 72 h with a media change after the 

first 24 hours of infection. MTT labeling reagent (cell proliferation kit, MTT I, Roche Applied 

Science) was added at 10% concentration of total DMEM to each well. Plates were incubated for 

4 h in a humidified atmosphere (37 °C, 5% CO2). After this incubation phase, MTT solubilization 

solution (cell proliferation kit, MTT I, Roche Applied Science) was added to each well with a 
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quantity of 10 times the initially added MTT labeling reagent volume and incubated overnight 

under the conditions mentioned above. After complete solubilization of purple formazan 

crystals, spectrophotometric absorbance was measured using a microplate reader on an Infinite 

M200 PRO System (Tecan, Life Science). The percentage of viable cells was plotted relative to 

control. Samples were then compared by Student’s t-test. All the experiments were performed 

in sextuplicates or octuplicates and repeated three times. 

7.7     Immunofluorescence studies 

7.7.1     Immunofluorescence microscopy 

Microscopic visualization based cellular experiments requiring the assistance of fluorescent 

stainings like cell size measurement, TUNEL, cleaved caspase-3 (CC3), and Propidium iodide (PI) 

staining were studied in NRVCMs by immunofluorescence microscopy. Cell preparation and 

seeding were performed as described above. Monoclonal mouse anti-α-actinin (1:200; Sigma) 

antibody was used for cell size measurements, whereas polyclonal rabbit anti-CC3 (1:400, Cell 

Signaling Technology) antibody was used for activated caspase-3 staining. Respective secondary 

antibodies conjugated to either Alexa Fluor-488 or Alexa Fluor-546 (Thermo Fisher Scientific) 

were incubated for 2 h at a dilution of 1:200 in 2.5% BSA in PBS along with the nuclei specific 

stain DAPI. TUNEL and PI stainings were performed as described in this section. FluorPreserve 

reagent (Merck Millipore) was used as a mounting medium. Fluorescence micrographs were 

taken with Keyence microscope BZ 9000, at 10x objective (Plan Apochromat, NA: 0.45) with the 

help of BZ-II viewer (Keyence, version 2.1) using a built-in camera at room temperature. Images 

were processed and analyzed by BZ-II Analyzer (Keyence, version 2.1) as detailed below. 

7.7.2     Cell surface area measurement using BZ-9000 microscope 

After staining NRVCMs with cardiomyocyte-specific α-actinin antibody and nuclear stain DAPI, 

immunofluorescence pictures were taken using the Keyence BZ-9000 microscope. For each 

coverslip with fluorescence-stained cells, 10 pictures were taken at 10X magnification 

(objective: CFI Plan Apochromat λ X10; Nikon) with BZ-II Viewer (version 2.1). Images were 

further processed and analyzed using the BZ-II Analyzer (version 2.1), where cell size was 

measured using ‘Hybrid Cell Count’ software module (Keyence) with the fluorescence intensity 

single-extraction mode. First, fluorescence intensity thresholds were set for a reference picture 
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thereafter, α-actinin (cardiomyocyte-specific, to avoid any impurities with fibroblasts) whole-

cell staining was set as the target area, and the DAPI-stained nuclei were then extracted from 

each target area to determine the number of nuclei per target area and were set as a condition 

picture. Then ‘Macro Cell Count’ was performed, applying the settings from the reference 

condition picture to each micrograph in the experiments. Results were manually filtered using a 

macro for the following filtering criteria: (a) 150 µm2 < target area in micrometers squared 

< 2,500 µm2 (size filter); (b) extraction from target area = 1 (filter for number of nuclei); and (c) 

area ratio 1 < 30% (cell surface to nucleus ratio filter). Statistical analysis was performed using 

GraphPad Prism (version 5). Equal distributions of the data were tested by the Shapiro-Wilk test.  

7.7.3     TUNEL assay 

NRVCMs were seeded in a 12-well plate on collagen-coated coverslips. Following the adenovirus 

infection and 72-h incubation phase, NRVCMs were fixed with 4% paraformaldehyde for 10 min 

and permeabilized/blocked with PBS containing 2.5% BSA and 0.1% Triton X-100 for 1 h at RT. 

An enzyme mixture was prepared by adding TUNEL mix into labeling solution at 1:10 ratio (In 

situ-Cell death detection kit, Roche Applied Science). The positive control was treated with 

DNase enzyme for 10 min, as TUNEL employs cleaved DNA as a marker of apoptosis; while the 

enzyme mixture for negative control lacked TUNEL mix. All coverslips were incubated at 37 °C 

for 1 h along with positive and negative controls in their respective enzyme mixtures. Nuclear 

staining was performed with DAPI for 15 min after incubation phase followed by three washing 

steps with PBS. Coverslips were mounted on glass slides with the aid of Fluor-Preserve reagent 

(Merck Millipore). Acquisition of fluorescent micrographs was performed as described earlier 

for cell size imaging. Images were further processed and analyzed using the BZ-II Analyzer 

(version 2.1). Processing was executed using ‘Hybrid Cell Count’ software module (Keyence) 

with the fluorescence intensity single extraction mode. First, fluorescence intensity thresholds 

were set for a reference picture. Thereafter, DAPI nuclear staining was set as the target stain, 

and the TUNEL-stained nuclei were then extracted from each target nuclei to determine the 

number of TUNEL/DAPI-stained nuclei per coverslip. Then, ‘Macro Cell Count’ was performed, 

applying the settings from the reference picture to overlay images from each set of 
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experiments. Statistical analyses were performed using GraphPad Prism (version 5), and 

samples were compared by Student’s t-test.  

7.7.4     Cleaved Caspase3 staining 

NRVCMs seeding and infection were performed as described under “Immunofluorescence 

microscopy”. Post-incubation, cells were fixed on coverslips with cold methanol at -20 °C for 

10 min and stained using an antibody specific for a cleaved fragment of Caspase3 (1:400, Cell 

Signaling Technology; Alexa Fluor-546, 1:200, Thermo Fisher Scientific), where DAPI served as a 

nuclear stain. Coverslips were mounted using Fluor-Preserve reagent (Merck Millipore) and 

fluorescent micrographs were taken at 10X objective as explained above. Images were then 

analyzed with the BZ-II analyzer separately for DAPI and cleaved Caspase3 by keeping off the 

extraction mode. The total number of nuclei was counted using ‘Hybrid Cell Count’ protocol and 

plotted by taking the percentage of cleaved Caspase3-positive nuclei over DAPI-stained nuclei 

for individual coverslips. All these experiments were repeated twice in triplicates. The samples 

were then compared via Student’s t-test. 

7.7.5     Propidium Iodide (PI) staining 

NRVCMs seeding and infection were performed as described under “Immunofluorescence 

microscopy”. After 72 h incubation, coverslips were washed twice with warm PBS. PI (1 mg/ml) 

diluted in PBS at 1:2000 was added to coverslips (500 µl/well) at RT for 10 min. This was 

followed by two times washing and fixation of cells on coverslips with methanol for 10 min at 

20°C. Post fixation, cells were blocked and permeabilized with BSA (2.5%) in PBS + TritonX-100 

(0.1%). Nuclear stain DAPI (diluted in BSA-PBS 1:500) was added and the coverslips were 

incubated at RT for 15 more min. After three times washing, the coverslips were transferred on 

glass slides using Fluor preserve mounting medium (Merck Millipore). Acquiring fluorescent 

micrographs and analysis was exactly similar as described above for cleaved Caspase3. 

7.8     Molecular biology methods 

7.8.1     RNA isolation and qRT-PCR 

Total RNA was isolated from NRVCMs, mouse heart (and other tissues), or human heart samples 

using TRIzol lysis reagent (QIAzol; Qiagen) following the manufacturer’s instructions. 1 µg of 
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DNA-free total RNA was transcribed into cDNA using the first strand cDNA synthesis kit 

(SuperScript III; Life Technologies, Inc.). For qRT-PCR, the EXPRESS SYBR GreenER reagent (Life 

Technologies, Inc.) was used in a real-time PCR system (CFX96; Bio-Rad). Rpl32 or 18S ribosomal 

RNA genes were used as internal standards for normalization of reverse transcription. All 

experiments with NRVCMs were performed in triplicate/sextuplicate and repeated two times. 

7.8.1.1     RNA extraction from cultured cells 

Total RNA was isolated from cultured cells using QIAzol lysis reagent. After incubation period 

media was removed from the cells and two washes were given with PBS. Then 1 ml of TRIZOL 

was added to each well, cells were flushed with the help of a pipette and the cell mass was 

collected into 1.5 ml reaction tubes. Chloroform (200 μl) was added to each tube by vigorous 

shaking and incubation at RT for 2 min to induce phase separation where DNA, protein and RNA 

get separated in the lower phenol/chloroform phase, in the interface, and in the upper aqueous 

phase respectively. The reaction was then centrifuged at 12000X g for 15 min in a 4°C cooling 

centrifuge to separate the phenolic and the aqueous phase. The supernatant was transferred 

carefully to new RNase and DNase free reaction tube, without disturbing the interphase or 

lower phase. 500 μl isopropanol was added to the supernatant to chelate salts and induce RNA 

precipitation, followed by shaking by inverting tubes, incubation at RT for 5 min and 

centrifugation at 12000X g for 10 min. The supernatant was discarded and 1 ml 75% ethanol 

was added to concentrate the pellet by desalting of RNA and centrifuged further at 14000X g for 

5 min. Finally, the supernatant was discarded carefully and the RNA containing pellet was air 

dried by keeping tubes upside down for ~10 min at RT. To elute RNA along with getting rid of 

any DNA impurity, following components of DNase I mix were added to the tubes.  

Table 8: Re-suspension mix for RNA isolation with DNase I enzyme. 

# Particulars Amount per sample 

1 DNase I 1.5 μl 

2 DNase buffer 2 μl 

3 Water 16.5 μl 
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The tubes were flicked well to mix DNase I solution to RNA pellets and were incubated at 

300 rpm for 30 min in a thermomixer at 30°C to allow proper mixing.  DNase I enzyme was heat 

inactivated by first heating tubes at 70°C for 10 min and then snap cooling on ice for 5 min. The 

samples were stored at -80°C until further use. 

7.8.1.2     RNA extraction from the heart and other tissue samples 

For isolating total RNA from mouse hearts or other organs, the tissue had to be broken down 

beforehand, which was achieved by using the Precellys24 homogenizer. The tissues were placed 

in 2 ml tight capped tubes and 1 ml QIAzol lysis solution was added along with big (2.8 mm) and 

small (1.4 mm) ceramic beads and placed in the homogenizer. The homogenizer program used 

was dependent on the size of the tissue, either 2 x 20 s at speed 5000 or 2 x 15 s at speed 6500 

until complete dissociation of the tissue. The dissociated tissue lysate was then centrifuged at 

12000X g for 20 min and the supernatant containing nucleic acids was transferred into a fresh 

1.5 ml reaction tube. The RNA-extraction was carried out as described for cell-culture based 

RNA extraction above. 

7.8.1.3     cDNA synthesis from RNA 

For cDNA synthesis, 1 µg of RNA was used as starting material using the Superscript III first 

strand cDNA synthesis kit, where ddH2O was added to make up the volume to 12 µl in 500 μl 

PCR tubes. A RNA-dependent DNA polymerase master mix of 8 µl, containing a mixture of 

following ingredients was added to all PCR tubes.  

Table 9: Contents for cDNA synthesis master mix. 

# Particulars Amount per tube 

1 Random hexamer primer (250 ng) 0.5 μl 

2 dNTPs (10 mM) 1 μl 

3 First strand RT buffer (5X) 4 μl 

4 DTT (0.1 mM)  1 μl 

5 RNase out enzyme 1 μl 

6 Superscript III RT 0.5 μl 
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The tubes were spun down in a table top centrifuge and the PCR reaction was started in a 

thermocycler with the following protocol: 

Table 10: cDNA synthesis conditions. 

Step Temp. Time Purpose 

1 25°C 10 min Primer binding 

2 50°C 60 min Enzyme activation, DNA synthesis 

3 70°C 15 min Enzyme inhibition 

4 4°C ∞ Cooling down, only after the last cycle 

After synthesis, cDNA samples were diluted to achieve a final concentration of 5ng/µl to 

facilitate their use in real-time PCR analysis and were stored at -20°C until further use. 

7.8.1.4     Quantitative real-time PCR 

For the real-time quantification of gene copies, the Platinum SYBR Green qPCR SuperMix-UDG 

(Thermo Fisher Scientific) was used. SYBR Green binds to the novel amplified DNA and thus 

emits a signal proportional to the amount of cDNA in the reaction. The SYBR Green dye is 

excited with a laser and its emission is detected and measured by the PCR-cycler. For this 

purpose, 18 μl of a master mix for each sample was prepared, containing 10 μl Platinum SYBR 

Green qPCR Supermix, 0.5 μl of forward + reverse primer (10 μM each) and 7.5 μl of DNase-free 

H2O. First, 2 μl of cDNA (10 ng) was added into the wells of the real-time PCR plate, followed by 

the SYBR Green master mix. After sealing the plate with adhesive foil, the samples were spun 

down and a polymerase chain reaction was started in the qRT-PCR cycler. The protocol for PCR 

reaction is given in Table 11.  

Table 11: Quantitative real-time PCR protocol 

Step Temp. Time Purpose Repeats 

1 95°C 3 min Initial denaturation - 

2 95°C 15 sec Denaturation  

39 
3 60°C 45 sec Primer annealing and extension 



74 
 

In the common step for annealing and extension, the fluorophore is excited and the emission is 

recorded by thermocycler. Specifically designed synthetic primers were employed for 

quantification of particular genes; while Rpl32 or 18S ribosome was used as an internal 

normalization control (Frank et al., 2008). Samples were prepared in triplicates/sextuplicates 

and real-time measurement was carried out in duplicates for each sample. For the 

quantification, the principle of threshold-cycling was utilized where the threshold is the first 

value that is significantly higher than the background. 

Table 12: Quantitative real-time PCR primers. 

Name Sequence Purpose 

mr_dys_rt-F 5’-CGCATCCTCATACCTGCTAAGT-3’ Mouse, Rat 

Dysbindin mr_dys_rt-R 5’-GCAGGATTTCACCGGG-3’ 

hs_trim24_rt-F 5’-AGCCTAGCTCAATTACGGCTC-3’ 
Human TRIM24 

hs_trim24_rt-R 5’-GCGGTTGCTGATGAGAGATGG-3’ 

mmu_trim24_rt-F 5’-GCCACCCAAGTTGGAGTCAT-3’ 
Mouse TRIM24 

mmu_trim24_rt-R 5’-GGAACTTCAGTGGTGTCCTTC-3’ 

rno_trim24_rt-F 5’-AAACCCTAGAATGCAGGGGC-3’ 
Rat TRIM24 

rno_trim24_rt-R 5’-CTGGTCCATTGGGCTTAGGG-3’ 

hs_trim32_rt-F 5’-CAGCCCCAGTGGCATTGATA-3’ 
Human TRIM32 

hs_trim32_rt-R 5’-TCAGTCACACCAATCAGCCC-3’ 

mr_trim32_rt-F 5’-AAGTGTTCAACCGCAAAGGC-3’ Mouse, Rat 

TRIM32 mr_trim32_rt-R 5’-AGTGAGATTGGGCAAGTCGG-3’ 

 

7.8.2     Protein isolation and Western blotting 

7.8.2.1     Protein extraction from tissue samples 

To harvest protein from whole mouse hearts and other organs, the tissue was broken down 

using the Precellys 24 homogenizer. The tissue was placed in reaction tubes consisting 1ml RIPA 

lysis buffer (50mM Tris, 150mM NaCl, 1% Nonidet P-40, 0.5% sodium deoxycholate, and 

0.2% SDS) and big (2.8 mm) and small (1.4 mm) ceramic beads were added and placed in the 
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Precellys. The homogenization program used depended on the size of the tissue and was either 

2 x 20 s at speed 5000 or 2 x 15 s at speed 6500. The dissolved tissue was then centrifuged at 

12000X g for 20 min and the supernatant was transferred into a fresh 1.5 ml reaction tube. The 

protein concentration was measured by the DC™-Protein concentration measurement assay. 

7.8.2.2     Protein extraction from cultured cells 

Post-incubation, NRVCMs were washed twice with ice-cold PBS prior to addition of the RIPA 

lysis buffer containing protease and phosphatase inhibitor cocktails. Plates containing both cells 

and lysis buffer were then frozen in a -80°C freezer for half an hour to accelerate membrane 

lysis. After thawing on ice, the cells were scraped off with a cell scraper and transferred into a 

reaction tube. NRVCMs were further lysed by 3 freeze-thaw cycles from -80 °C freezing to on-ice 

thawing. The cell lysate was then centrifuged at 18000X g for 20 min and the supernatant was 

carefully transferred to a fresh reaction tube without disturbing the pelleted cell-debris. The 

protein concentration was measured by the DC™-Protein concentration measurement assay. 

7.8.2.3     Protein concentration measurement using DC protein-assay kit 

For determination of the protein concentration from the cell lysate as mentioned above, the DC 

Protein assay kit (Bio-Rad) was used. To analyze the concentration of a given protein sample, a 

standard curve with known protein concentration had to be generated. The stock-solution of 2 

mg/ml BSA (w/v) dissolved in the respective lysis buffer was serially diluted five times to obtain 

standard dilutions from 2 mg/ml to 0.0625 mg/ml in 20 μl of lysis buffer. The cellular protein 

mix was also diluted using the same lysis buffer so that its concentration fits into the range of 2 

mg/ml to 0.0625 mg/ml. The stock dilutions and protein dilutions were pipetted into a 96 well 

plate in triplicates that allowed for measurement of the OD at 750 nm using a photometer 

TECAN M2000 pro. The proteins were added in quantity of 5 μl to each well, followed by 

addition of 25 μl of solution A’ (mixture of solution A and solution S) and 200 μl of solution B. 

After gentle mixing and an incubation of 15 min at RT, the samples were measured 

photometrically and by linear regression of the standards, the protein concentration in the 

samples was measured against the standard BSA. 
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7.8.2.4     Protein loading and immunoblotting 

NRVCMs were lysed by two to three freeze-thaw cycles in RIPA lysis buffer containing 

phosphatase inhibitor II, phosphatase inhibitor III, and protease inhibitor mixture (Roche 

Applied Science). Cell debris was removed by centrifugation, and protein concentration was 

determined photometrically by DC protein quantification assay method (Bio-Rad). Protein 

samples were resolved by SDS-PAGE, transferred to a nitrocellulose membrane, and 

immunoblotted with the target-specific primary antibodies. The overnight application of 

primary antibodies was followed by incubation with a suitable HRP-coupled secondary antibody 

(1:10,000; Santa Cruz Biotechnology) or fluorescent antibody Alexa Fluor 546. Finally, 

visualization was achieved using a chemiluminescence kit (GE Healthcare) and was detected 

with an imaging system (FluorChem Q; Biozym). Quantitative densitometry was performed 

using ImageJ version 1.46 software (National Institutes of Health). 

 

7.8.2.5     SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

To separate proteins according to their molecular weight, the sodium-dodecyl-sulfate (SDS) 

polyacrylamide gel electrophoresis (PAGE) system was used. SDS is a molecule that 

stoichiometrically binds to protein chains by masking the protein’s charges and creating an 

overall negative charge. This allows the proteins to travel in the same direction along an 

electrical field and get separated as per the molecular weight. For this purpose, an appropriate 

gel-casting-cassette was set up and filled up to 80% of total height with separating gel 

containing ~10 % polyacrylamide. Separating gel consisted of separating gel buffer and a 37.5:1 

acrylamide: bisacrylamide solution along with water, while TEMED and APS (10%) were added 

to induce the polymerization. The mixture was vortexed and after pouring the solution in the 

cassette, it was immediately filled up with isopropanol on top of the separating gel to remove 

any air bubbles formed after mixing all ingredients by vortexing. After 15-20 min, the 

isopropanol was discarded and the collecting gel containing 4% polyacrylamide was poured on 

top of the separating gel. A comb, creating 10/15 pockets was inserted into the collecting gel. 

After polymerization, the gel-chamber was set up and the combs removed. The pockets were 

then flushed with running buffer and samples consisting of proteins, water, and Lämmli loading 

dye was loaded into the gel pockets. Alongside the samples, a pre-stained protein ladder was 
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also loaded, which acted as a marker of the molecular weights for proteins. An electrical field 

was applied at a constant voltage of 120 V and the proteins were allowed to separate until the 

loading dye from the samples reached the bottom of the gel-cassette. 

 

7.8.2.6     Transfer of proteins to nitrocellulose membranes 

To transfer the proteins from the polyacrylamide gel to a nitrocellulose membrane, a tank-

transfer blotting chamber was used. The SDS-gel with separated proteins embedded into it was 

carefully taken out of the cassette and set up in the so-called “blotting sandwich”. The setup 

from bottom to top was: a sponge, three cellulose filter papers, the SDS-gel containing the 

separated proteins, a nitrocellulose membrane (pore size 0.2 µm), three cellulose filter papers, 

and another sponge fixed together in a cassette. The sandwich was set up in the transfer buffer 

after carefully removing air-bubbles to ensure high quality of transfer of the proteins along the 

membrane surface. The blotting sandwich-containing cassettes were then placed in the 

blotting-tanks that were filled up with transfer-buffer and cooled by the addition of -20°C cold 

ice-packs inside the tank. An electrical field was then applied at constant 4000 mA for 90 min. 

The transfer was visualized after blotting by assessing the transfer of the pre-stained protein 

ladder that ran alongside the samples and was visible on the white nitrocellulose membrane. 

The membrane containing the size-separated proteins was then placed in 5% (w/v) dry-milk 

powder solved in TBS-T buffer and thus blocked for 1-2 h. In this step, the unspecific protein 

binding sites of the membrane are saturated with the proteins of the milk powder. 

 

7.8.2.7     Detection of specific proteins on a nitrocellulose membrane 

The blocking of unspecific protein binding sites on the membrane was followed by incubation in 

the primary protein/tag specific antibody. Therefore, the appropriate antibody that binds to the 

protein of interest's epitope was diluted in 5% (w/v) dry-milk in TBS-T as stated in Table 1. The 

membrane was then placed in a 50 ml falcon tube, with the protein transferred-side facing the 

inside of the tube. ~5 ml of the diluted antibody + milk solution was pipetted into the tube. The 

membrane was incubated in the primary antibody solution overnight at 4°C on a roller. Post 

incubation, the membranes were washed three times for 10 min in TBS-T buffer and incubated 

with the secondary antibody, coupled to a horseradish-peroxidase (HRP) as stated in Table 2 for 
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2-3 h at RT. After washing the membrane thrice for 10 min in TBS-T at RT again, the membranes 

were developed using the Enhanced-chemiluminescence (ECL) system. ECL visualization method 

uses solutions of diacyl-hydrazine luminol and peroxide to obtain chemiluminescence 

specifically at those sites on the membrane, where the HRP-coupled secondary antibody is 

bound to the protein of interest through the primary antibody. The HRP catalyzes the oxidation 

of the luminol in the presence of hydrogen-peroxide resulting in chemiluminescence that can be 

detected with the help of a camera. Therefore the luminol-peroxide solutions were mixed in 1:1 

ratio, pipetted onto the membrane and incubated for ~3 min in the dark. The membrane was 

then placed into the detection chamber of the Gel doc. The emitted chemiluminescence was 

detected using FluorChem Q software and proteins were densitometrically quantified using the 

ImageJ software. 

7.9     Human DCH and HCM heart samples 

The left ventricular myocardial tissue samples were acquired from explanted hearts of XX 

patients (HCM, n = 4; DCM, n = 10; NF, n = 7) with end-stage heart failure (New York Heart 

Association heart failure classification IV) undergoing heart transplantation. All procedures 

involving human volunteers were performed in compliance with the ethical committee of the 

medical school of the Georg-August-University, Göttingen, Germany. The explanted hearts were 

acquired directly in the operating room during surgical procedures and immediately placed in 

pre-cooled cardioplegic solution (in mmol/liter: NaCl 110, KCl 16, MgCl2 16, NaHCO3 16, CaCl2 

1.2, glucose 11). Myocardial samples were frozen in liquid nitrogen and stored at -80°C 

immediately after excision. Further, they were utilized to perform Western blot and RT-qPCR 

analysis as described above. 

7.10     Statistical analyses 

All results are shown as the mean ± S.E. for all experiments unless stated otherwise. Statistical 

analyses of the data were performed using the two-tailed Student’s t-test. When necessary, 

two-way analysis of variance (ANOVA) followed by Student-Newman-Keuls post hoc tests was 

applied. p values of less than 0.05 were considered statistically significant, p < 0.05; **, p < 0.01; 

***, p < 0.001; ns, non-significant. 
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8     Results 

8.1     TRIM24 and TRIM32 are putative cardiac interaction partners of Dysbindin 

SRF is one of the founding members of the MADS-box family of transcription factors. This family 

of transcription factors regulates expression of various genes by binding to their specific 

promoter sequence known as CarG box (Shore and Sharrocks, 1995); (Miano, 2010); (Kuwahara 

and Nakao, 2011). By virtue of CarG box binding, SRF modulates the expression of a major 

subset of cardiac-specific genes both during embryonic development and cardiac pathogenesis 

with increased fetal cardiac gene expression; while its deletion leads to lethal cardiac defects 

(Zhang et al., 2001a; Zhang et al., 2001b); (Parlakian et al., 2004); (Miano et al., 2004). In one of 

the previous papers from our lab, it has been established that Dysbindin, a well-known 

schizophrenia susceptibility protein, is also a robust inducer of RhoA-SRF-mediated cardiac 

hypertrophy (Rangrez et al., 2013). 

In search of new cardiac-specific binding partners of Dysbindin and thus, further players in 

SRF-mediated hypertrophic signaling, a yeast two-hybrid (Y2H) screening was performed using 

Dysbindin as bait against human cardiac cDNA library as the prey. The Y2H assay is a genetic 

system wherein the interaction between two proteins is detected through the reconstitution of 

a transcription factor and the subsequent activation of reporter genes under the control of this 

transcription factor (Fields and Song, 1989). This Y2H screening with Dysbindin as bait revealed 

various well-known hypertrophic genes like MYH6, MYH7, NPPA, and RhoA as potential 

partners. Interestingly, TRIM24, a tripartite motif-containing family E3 ubiquitin ligase, was also 

identified as one of the potential interaction partners of Dysbindin (Table 13). In the literature 

TRIM32, which is another TRIM E3 ligase has earlier been reported to interact with Dysbindin in 

skeletal muscle cells through its coiled-coil domain (Locke et al., 2009). This established link with 

another TRIM family member prompted us to characterize the cardiac role of TRIM24, as well as 

to confirm the Dysbindin-TRIM32 cardiac interaction, and link it to Dysbindin and further RhoA-

SRF mediated hypertrophic signaling. 
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Table 13: List of putative Dysbindin-binding partners. The proteins are arranged alphabetically, identified through 
a yeast two-hybrid screen performed using human Dysbindin as bait against human cardiac cDNA library. 
(Borlepawar et al., 2017, © the American Society for Biochemistry and Molecular Biology) 

Prey Description Gene ID 

ALDOA Aldolase A, fructose-bisphosphate 226 

ANKRD2 Ankyrin repeat domain 2 26287 

APPL1 Adaptor protein, phosphotyrosine interaction, PH domain, and 

leucine zipper containing 1 

26060 

ATP5B ATP synthase, H+-transporting, mitochondrial F1 complex, β-

polypeptide 

506 

CTDNEP1 CTDNEP1 CTD nuclear envelope phosphatase 1 23399 

CYB5R3 Cytochrome b5 reductase 3 1727 

EIF2B4 Eukaryotic translation initiation factor 2B, subunit 4δa, 67 kDa 8890 

HADHB Hydroxyacyl-coA dehydrogenase/3-ketoacyl-coA thiolase/enoyl-

coA hydratase (trifunctional protein), β subunit  

3032 

 

LIMA1 LIM domain and actin binding 1 51474 

MYH6 Myosin, heavy chain 6, cardiac muscle, α 4624 

MYH7 Myosin, heavy chain 7, cardiac muscle, β 4625 

NDUFB8 NADH dehydrogenase (ubiquinone) 1β subcomplex subunit 8, 

mitochondrial precursor 

4714 

NLRP1 NLR family, pyrin domain containing 1 22861 

NMNAT1 Nicotinamide mononucleotide adenylyltransferase1 (EC 2.7.7.1) 

(NMN adenylyltransferase 1) 

64802 

NPPA Natriuretic peptide precursor A 4878 

OPTN Optineurin 10133 

PES1 Pescadillo homolog 1, containing BRCT domain 23481 

RARG Retinoic acid receptor, γ 5916 

RHOA ras homolog gene family, member A 387 

SHMT1 Serine hydroxymethyltransferase 1 (soluble) 6470 

SNRPN Small nuclear ribonucleoprotein polypeptide N 6638 
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SNURF SNURF SNRPN upstream reading frame 8926 

TNNT2 Troponin T type 2 (cardiac) 7139 

TRIM24 Tripartite motif-containing protein 24 (TIF1-α, RNF82) 8805 

 

8.2     TRIM24 and TRIM32 exhibit endogenous cardiac expression  

Subsequently, for establishing the rationale of TRIM24 being a cardiac binding partner of 

Dysbindin, it was vital to observe if TRIM24 is endogenously present in the heart. With previous 

reports of TRIM32 being an interaction partner of Dysbindin in skeletal muscle, we studied both 

Dysbindin-TRIM24 interaction with Dysbindin-TRIM32 interaction, to elucidate the cardiac role 

of both these TRIMs together in regard with Dysbindin. Interestingly, the tissue distribution 

patterns of TRIM24 and TRIM32 in wild-type C57BL/6 mice showed ubiquitous expression with a 

significant cardiac presence at mRNA level; further strengthening the possibility of a cardiac role 

(Figure 8A). However, at the protein level, TRIM24 was maximally expressed in skeletal muscle, 

whereas TRIM32 was predominantly expressed in the brain (Figure 8B). Additionally, both the 

TRIMs showed significant expression levels in the heart tissue. 

 

Figure 8: TRIM24 and TRIM32 are endogenously present in mouse heart. Mice used for multi-tissue expression 
monitoring were wild-type C57BL/6 mice. (A) Relative expression of TRIM24 and TRIM32 mRNA levels in different 
mouse organs, determined by qRT-PCR and normalized to expression in the heart (N=4). (B) Representative 
immunoblots indicating the tissue distribution of TRIM24 and TRIM32 in protein mixture isolated from various 
mouse organs. Sk. muscle, skeletal muscle. (Modified from: Borlepawar et al., 2017, © the American Society for 
Biochemistry and Molecular Biology) 
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8.3     TRIM24 and TRIM32 are differentially expressed after biochemical and 

biomechanical stress 

We then analyzed the expression of TRIM24/32 in mouse models of cardiac hypertrophy 

induced either by biomechanical stress due to transverse aortic constriction (TAC) or by 

controlled infusion of the α-adrenergic agonist phenylephrine (PE) to determine the 

(patho)-physiological relevance, if any, of these TRIMs. Sham-operated and mice infused only 

with phosphate buffered saline (PBS) served as the respective control groups. At the protein 

level, TRIM24 was significantly up-regulated in PE-treated mice (Figure 9A-B), but its expression 

remained unchanged in TAC-operated mice (Figure 9D-E). However, TRIM24 transcript levels 

were unaffected in both of the mouse models (Figure 9C, 9F). TRIM32 also displayed no change 

in the mRNA levels (Figure 9C, 9F), but its expression at the protein level was significantly 

reduced in both hypertrophic models (Figure 9A, 9B, 9D, and 9E). This differential expression 

suggested a possible involvement of TRIM24 and TRIM32 in cardiac (patho)-physiology.  

 

Figure 9: TRIM24 and TRIM32 are differentially regulated in biochemical and biomechanical stress in mouse 
heart. (A) Protein expression of TRIM24 and TRIM32 in control (PBS) and phenylephrine (PE)-treated mice. Osmotic 
mini-pumps filled with PE (25 µg/kg body weight/min) prepared in PBS with 1 mg/ml L-ascorbate (Sigma) were 
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implanted subcutaneously in 8-week-old wild-type C57BL/6 mice and were housed for 2 weeks. Control mice 
received vehicle L-ascorbate in PBS. Post-2-week implantation, proteins isolated from the hearts of these mice 
were immunoblotted against respective TRIM antiserum. n = 5. Respective densitometry analysis is shown in (B), 
with GAPDH as an endogenous control. (C) Quantitative real-time PCR was performed with mRNA to identify the 
transcript levels of TRIM24 and TRIM32 in PE-treated mice, compared with the control mice group. (D) Protein 
expression of TRIM24 and TRIM32 in TAC or sham-operated mice. 8-Week-old wild-type C57BL/6 mice were 
subjected to TAC operations, and heart samples were used for protein isolation 2 weeks post-operation. Protein 
samples were again immunoblotted against respective TRIM antiserum. n = 6. Respective densitometry analysis is 
shown in (E) with GAPDH as an endogenous control. (F) Transcript levels of TRIM24 and TRIM32 were determined 
with mRNA by qRT-PCR in sham versus TAC-operated mouse hearts. Statistical significance was determined using 
two-tailed Student’s t-test. Error bars show mean ± S.E. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, non-significant. 
Cont, control; PE, phenylephrine; TAC, transverse aortic constriction. (Modified from: Borlepawar et al., 2017, © 
the American Society for Biochemistry and Molecular Biology) 

8.4     TRIM24 and TRIM32 are differentially expressed in human cardiomyopathies 

In the next step, we asked whether protein levels of TRIM24 and TRIM32 are altered in human 

patients suffering from hypertrophic or dilated cardiomyopathy (HCM/DCM). Similar to the 

effects observed in hypertrophic mice, TRIM24 displayed a striking increase in both HCM and 

DCM heart tissues, whereas TRIM32 again showed a significant reduction in protein levels 

compared with samples of non-failing (NF) heart (Figure 10 A, 10B, 10D and 10E). Thus, the 

consistent dysregulation of the TRIM24/32 expression in hypertrophic datasets obtained from 

animal models and human patients indicated the relevance of both TRIMs in the pathogenesis 

of cardiac hypertrophy and cardiomyopathy. This prompted us to further investigate their 

functional characteristics in vitro. 
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Figure 10: TRIM24 and TRIM32 are differentially regulated in human dilated and hypertrophic cardiomyopathies. 
(A) Protein expression of TRIM24 and TRIM32 in non-failing (NF, n = 7) and hypertrophic cardiomyopathy (HCM, n = 
4)-affected human hearts. (B) Densitometric analysis was performed for respective immunoblots from A, with 
GAPDH as an endogenous loading control. (C) Quantitative real-time PCR was performed to identify the transcript 
levels of TRIM24 and TRIM32 in NF versus HCM patients. (D) Protein expression of TRIM24 and TRIM32 in non-
failing (NF, n = 7) and dilated cardiomyopathy (DCM, n = 10) affected human hearts. (E) Densitometric analysis was 
performed for respective immunoblots from D, with tubulin as an endogenous loading control. (F) Quantitative 
real-time PCR was performed to identify the transcript levels of TRIM24 and TRIM32 in NF versus DCM patients. 
Statistical significance was determined using two-tailed Student’s t-test. Error bars show mean ± S.E. *, p < 0.05; **, 
p < 0.01; ***, p < 0.001; ns, non-significant. Cont, control; PE, phenylephrine; TAC, transverse aortic constriction. 
(Modified from: Borlepawar et al., 2017, © the American Society for Biochemistry and Molecular Biology) 

8.5     TRIM24 and TRIM32 interact with Dysbindin in HEK293A cells 

Protein-protein interactions define the modulation of protein functions and thus the biological 

activity of proteins. Such interactions can be predicted using biological and genetic methods like 

protein probing, the two-hybrid system, phage display, isolation of extragenic suppressors, 

synthetic mutants, and unlinked non-complementing mutants, etc. The predictions can be 

confirmed with the help of various biochemical methods like protein affinity chromatography, 

affinity blotting, co-immunoprecipitation and cross-linking (Phizicky and Fields, 1995). 

Co-immunoprecipitation (co-IP) is a frequently used biochemical technique to identify 

physiologically relevant protein-protein interactions by using target protein-specific antibodies. 
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Specific antibodies indirectly capture proteins that are bound to a specific target protein from a 

protein lysate. These protein complexes can then be analyzed using western blotting to identify 

new binding partners of the target protein.  

For establishing interactions between Dysbindin and TRIM24/32, mammalian overexpression 

vectors were generated using Gateway cloning technology. Dysbindin was cloned into pDest40 

with C-terminal V5 tag and TRIM24/32 were cloned into pcDNA3.1 with N-terminal Flag-tag. 

Subsequently, TRIM24 was co-transfected using Lipofectamine2000 with or without 

V5-Dysbindin in HEK293A cells. A co-IP was performed using Flag-tagged (for TRIM24) 

monoclonal antibody beads, where proteins having an affinity for TRIM24 can be pulled down. A 

western blot was performed using this pulled down protein mixture and was developed against 

V5 (for Dysbindin) antibody (Figure 12A). This showed successful pulldown of Dysbindin by 

TRIM24. To confirm this interaction via reversal of strategy, Dysbindin was coexpressed with or 

without Flag-TRIM24. Proteins were pulled using V5 tagged monoclonal antibody beads and 

immunoblotted against Flag antibody (Figure 12B). This two-way co-IP confirmed Dysbindin-

TRIM24 interaction. A similar strategy was applied to confirm the interaction between 

V5-Dysbindin and Flag-TRIM32 (Figure 12C-D). Together, the potential interaction of these two 

TRIM family member proteins with Dysbindin was verified by co-IP in HEK293A cells, where, 

Dysbindin was successfully pulled down with TRIM24/32 and vice versa. 
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Figure 11: TRIM24 and TRIM32 are interaction partners of Dysbindin. HEK293A cells were co-transfected with 
V5-tagged Dysbindin and FLAG-tagged TRIM24 or TRIM32. Empty vector co-transfected with Dysbindin, TRIM24, or 
TRIM32 was used as a filler plasmid. Input immunoblots against V5 antibody show expression of V5-Dysbindin, 
while immunoblots against Flag antibody show expression of the respective Flag-TRIM protein. 
Immunoprecipitation was performed using anti-V5 or FLAG tag cross-linked magnetic beads. Precipitated proteins 
were immunoblotted with respective antibodies. Dysbindin was found to be co-precipitated with TRIM24 (A) and 
vice versa (B). Similarly, TRIM32 and Dysbindin pulled down each other (C and D, respectively), although no 
interaction was seen in control IP (lane 1 in each blot), confirming the interaction between Dysbindin and 
TRIM24/32. IP, immunoprecipitation; WB, western blot; vector, empty vector control; Dys, Dysbindin. (Modified 
from: Borlepawar et al., 2017, © the American Society for Biochemistry and Molecular Biology) 

8.6     Dysbindin interacts with TRIM24 via its coiled-coil domain 

Dysbindin is known to bind with other proteins through its coiled-coil domain. Most notably, it 

binds with various dystrobrevins in muscles and brain via this domain (Benson et al., 2001). To 

validate if the interaction between Dysbindin and TRIM24 is assisted by coiled-coil domain too, 
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we fragmented Dysbindin into four segments and cloned them into pDest40 with C-terminal V5-

tag via gateway cloning technology. These segments were N-terminal + coiled-coil domain, 

coiled-coil domain, Dysbindin domain and C-terminal + Dysbindin domain (Figure 13A). All 

Dysbindin fragments were co-transfected with or without Flag-TRIM24 with full-length 

Dysbindin serving as a positive control in HEK293A cells. The protein lysate was pulled using V5-

tagged monoclonal antibody beads and immunoblotted against anti-Flag antibody to seek out 

domain specific binding of Dysbindin with TRIM24. Anti-Flag immunoblot after IP did 

successfully pull Flag-TRIM24 by Dysbindin full length, N-terminal + coiled-coil domain and 

coiled-coil domain segments (Figure 13B) confirming that the coiled-coil domain is a sufficient 

and necessary domain for the Dysbindin-TRIM24 interaction. 

 

Figure 12: Dysbindin interacts with TRIM24 through the coiled-coil domain. (A) Schematic diagram representing 
different domain fragments of Dysbindin, to check the domain-specific interaction of TRIM24 with Dysbindin. (B) 
Co-IP of TRIM24 and various Dysbindin fragments. HEK293A cells were co-transfected with plasmids encoding 
V5-tagged Dysbindin fragments and Flag-tagged TRIM24 as depicted in the figure. Input immunoblot against V5 
antibody show expression of V5-Dysbindin fragments, while immunoblotting against Flag antibody show expression 
of Flag-TRIM24. Immuno-precipitation was performed using anti-V5-tagged magnetic beads. Empty vector was 
used as a negative control. Precipitated proteins were immunoblotted with Flag-antiserum. TRIM24 was co-
precipitated with Dysbindin full-length protein along with N-terminal + Coiled-coil and Coiled-coil domain 
containing fragments of Dysbindin, suggesting the Coiled-coil domain of Dysbindin is sufficient for interaction with 
TRIM24. IP, immunoprecipitation; WB, western blot; vector, Dys, Dysbindin. (Modified from: Borlepawar et al., 
2017, © the American Society for Biochemistry and Molecular Biology) 
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8.7     Validation of vector expression efficiency in cardiomyocytes 

The differential cardiac regulation of TRIM24 and TRIM32 in various hypertrophic and 

cardiomyopathy mouse & human samples presented a strong case for the functional 

characterization of TRIM proteins in the heart. For this purpose, we generated various 

adenoviral expression vectors to induce altered expression of these proteins in the presence or 

absence of Dysbindin. The major emphasis was on establishing the interaction between 

Dysbindin and TRIM24/32 proteins, and further characterization of hypertrophic parameters 

like cell size measurement and SRF-signaling. 

8.7.1     Dysbindin, TRIM24 and TRIM32 overexpression in cardiomyocytes via adenoviruses 

For overexpression of Dysbindin, TRIM24, and TRIM32 in cardiomyocytes adenoviral vectors 

were generated from mouse/human cDNA via gene targeted gateway cloning as stated in 

methods part of this thesis. The optimum overexpression at the protein level was observed for 

Dysbindin with 50 ifu (Figure 14A-B), while both TRIM24/32 were added at 100 ifu (Figure 

14C-F) concentration throughout this work, unless and otherwise mentioned, to induce a 

prominent effect on Dysbindin.  

 

Figure 13: Validation for the efficiency of adenoviral overexpression vectors. (A) Dysbindin with densitometry 
analysis (B), (C) TRIM24 with densitometry analysis (D) and (E) TRIM32 with densitometry analysis (F). Statistical 
significance was determined using two-tailed Student’s t-test. Error bars show mean ± S.E. *, p < 0.05; **, p < 0.01; 
***, p < 0.001; ns, non-significant. Dys, Dysbindin; T24, TRIM24; T32, TRIM32; OE, overexpression. 
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8.7.2     Dysbindin, TRIM24 and TRIM32 knockdown in cardiomyocytes via siRNA and 

microRNAs 

Knockdown of Dysbindin in NRVCMs was achieved using a siRNA mixture specific for rat 

Dysbindin from Santa Cruz Biotechnology (#sc-106988). According to user guidelines, a specific 

dose of siDysbindin was established that lead to a ~70-80 % knockdown of endogenous 

Dysbindin (Figure 15A-B). For knockdown of TRIM proteins adenoviruses consisting of synthetic 

micro-RNAs specific for rat TRIM24 (miRTRIM24) and TRIM32 (miRTRIM32) were developed 

using Block-it microRNA synthesis kit and gateway cloning strategy, as stated in methods part. A 

knockdown of ~90% for TRIM24 (Figure 15C-D) and ~60% for TRIM32 (Figure 15E-F) was 

achieved with the help of microRNA-containing adenoviruses (200 ifu). Equal ifu concentrations 

were maintained for respective TRIMs in all prospective experiments of this thesis. 

 

Figure 14: Validation for knock-down of native Dysbindin, TRIM24, and TRIM32 in NRVCMs. (A) Dysbindin by 
siRNA with densitometry analysis (B), (C) TRIM24 by miRNA with densitometry analysis (D) and (E) TRIM32 by 
miRNA with densitometry analysis (F) at the protein level. Statistical significance was determined using two-tailed 
Student’s t-test. Error bars show mean ± S.E. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, non-significant. siRNA, 
small interfering RNA; miR, microRNA; neg, negative; Dys, Dysbindin; T24, TRIM24; T32, TRIM32; KD, knockdown. 

8.8     Dysbindin interacts with TRIM24 and TRIM32 in cardiomyocytes 

Our next aim was to validate Dysbindin interaction with TRIM24 and TRIM32 in cardiomyocytes. 

Neonatal rat ventricular cardiomyocytes (NRVCMs) were infected with the adenoviruses 

expressing HA-Dysbindin (50 ifu), TRIM24 (100 ifu) and TRIM32 (100 ifu) in various combinations 
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for TRIM24/32. Co-IP was performed using NRVCM protein lysate with anti-HA magnetic beads 

(Dysbindin) to pulldown proteins interacting with Dysbindin and samples containing pulled 

down proteins were separately immunoblotted against anti-TRIM24/32 antibodies. Distinct 

immunoblots after co-IP did successfully display HA-Dysbindin interacting with both TRIM24 

(Figure 16A) and TRIM32 (Figure 16B). 

 

Figure 15: TRIM24 and TRIM32 are cardiac interaction partners of Dysbindin. We also performed co-IP by 
overexpressing HA-tagged Dysbindin in NRVCMs and precipitated using anti-HA tag cross-linked magnetic beads. 
Precipitated proteins were immunoblotted with TRIM24 (A) and TRIM32 (B) antiserum and the interaction 
between Dysbindin and TRIM24 or TRIM32 was further validated. Vertical black lines in the blots indicate that the 
intervening lanes have been spliced out. IP, immunoprecipitation; WB, western blot; vector, empty vector control; 
Dys, Dysbindin. (Modified from: Borlepawar et al., 2017, © the American Society for Biochemistry and Molecular 
Biology) 

8.9     Dysbindin localizes with TRIM24 and TRIM32 in cardiomyocytes 

To facilitate interaction with each other, it is essential for the proteins to be present in close 

proximity or in a similar subcellular compartment. Immunostaining of proteins with the help of 

specific antibodies against them gives an idea of their (co)localization in the cell. Subcellular 

localization of both TRIMs and their co-localization with Dysbindin were thus determined by 

high-resolution confocal imaging in NRVCMs by co-immunostaining Dysbindin with either 

TRIM24- or TRIM32-specific antibodies. Similar to Dysbindin, endogenous TRIM24 was found to 

be predominantly located in the nuclear and perinuclear region (Figure 17A, upper panel). On 

the one hand, endogenous TRIM32 was localized throughout the cell, but on the other hand, it 

was concentrated in the perinuclear region (Figure 17A, lower panel). Robust Mander’s 
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colocalization coefficients (MCC) were measured for endogenous TRIM proteins after they 

co-localize with Dysbindin (~ 93% co-localization, Figure 17A) in NRVCMs. Furthermore, 

co-immunostaining of Dysbindin, TRIM24, or TRIM32 with α-actinin indicated that these 

proteins only partially co-localize with sarcomeric α-actinin (Figure 17B), asserting their strong 

cytoplasmic and nuclear presence. 

 

Figure 16: Dysbindin co-localizes with TRIM24 and TRIM32 in NRVCMs. (A) Confocal micrographs representing the 
co-immunostaining of endogenous Dysbindin with either TRIM24 (upper lane) or TRIM32 (lower lane). (B) 
Co-immunostaining of native Dysbindin (upper panel), TRIM24 (middle panel), or TRIM32 (lower panel) with 
α-actinin. Nuclei were stained with DAPI, and images were captured with a Zeiss LSM800 laser-scanning 
microscope. Scatter plots show the analysis of co-localization as described under “Experimental Procedures.” White 
rectangles represent cropped areas for detailed re-acquisition. MCC = Mander’s colocalization coefficient. Scale bar 
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(shown with a white line) represents 20 µm. (Modified from: Borlepawar et al., 2017, © the American Society for 
Biochemistry and Molecular Biology) 

8.10     Expression of TRIM24 and TRIM32 discordantly affects cellular levels of 

Dysbindin 

TRIM24 and TRIM32 are members of the TRIM protein superfamily, mainly consisting of E3 

ubiquitin ligases. They contain a Ring finger domain, which is responsible for the transfer of 

ubiquitin moiety to the target protein. This transfer of ubiquitin is responsible for post-

translational ubiquitination of cellular proteins deciding their functional fate, most notably 

being degraded by the 26s proteasome (Ozato et al., 2008). TRIM24 and TRIM32 were 

expressed in NRVCMs with or without Dysbindin to conclude the fate of its endogenous or 

overexpressed cellular presence. As expected, the presence of TRIM32 robustly downregulated 

levels of cellular Dysbindin (Figure 18A-D), while adenovirus-mediated knockdown of TRIM32 

using synthetic microRNA resulted in un-altered Dysbindin levels (Figure 18E-F). Interestingly, 

cellular levels of Dysbindin remained unaffected by either overexpression or knockdown of 

TRIM24 (Figure 18A-F). The differential fate of Dysbindin levels in NRVCMs after expression of 

TRIM24/32 instigated contradictory effects of these TRIM proteins on Dysbindin suggesting that 

TRIM32, but not TRIM24, potentially acts as an E3 ubiquitin ligase of Dysbindin in 

cardiomyocytes. 
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Figure 17: TRIM24 and TRIM32 have an antagonistic effect on Dysbindin protein levels in NRVCMs. Effect of 
adenovirus-mediated overexpression of TRIM24 (Ad-TRIM24, 100 ifu), and TRIM32 (Ad-TRIM32, 100 ifu) on 
endogenous (A) or overexpressed (B) (Ad-Dysbindin, 50 ifu) Dysbindin protein level indicates that TRIM24 does not, 
whereas TRIM32 does actively degrade Dysbindin; respective densitometry data are presented as graphs in (C) and 
(D). (E) Infection with synthetic microRNAs targeting either TRIM24 or TRIM32 did not alter Dysbindin protein levels 
(densitometry in F). n = 3. Statistical significance was determined using two-tailed Student’s t-test. Error bars show 
mean ± S.E. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, non-significant. D and Dys, Dysbindin; T24, TRIM24; T32, 
TRIM32; miR, microRNA; neg, negative. (Modified from: Borlepawar et al., 2017, © the American Society for 
Biochemistry and Molecular Biology) 

8.11     TRIM24 and TRIM32 affect cellular levels of Dysbindin via ubiquitination 

E3 ubiquitin ligases degrade their substrate proteins via UPS. To find if TRIM24/32 exerted 

effects on Dysbindin via UPS, NRVCMs were infected with several combinations of 

Ad-Dysbindin, Ad-TRIM24, Ad-TRIM32 viruses, and Ad-Ubiquitin (to accelerate ubiquitination) in 

the presence or absence of MG132 (a proteasomal inhibitor). Along these lines, primarily 

polyubiquitination of Dysbindin was confirmed in the presence of higher levels of ubiquitin 

(Figure 19A-B). We then analyzed the effect of proteasomal inhibitor MG132 on the E3 ubiquitin 

ligation and ubiquitination activity of TRIM24/32. The presence of TRIM24 significantly reduced 
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even the endogenous ubiquitin-mediated Dysbindin degradation, evident in Figure 19C-D, 

whereas, MG132 treatment completely abrogated the Dysbindin degradation by ubiquitin, 

indicating that the Dysbindin degradation is UPS-dependent. Similarly, MG132 treatment 

absolutely abrogated the Dysbindin degradation by TRIM32 irrespective of the ubiquitin 

presence (Figure 19F-G). Notably, overexpression of TRIM32 robustly increased ubiquitination 

of the proteins, whereas TRIM24 exhibited opposite effects (Figure 19E, 19H). Altogether, these 

data strongly show that TRIM32 acts as an UPS-dependent E3 ubiquitin ligase for Dysbindin, 

whereas TRIM24 exhibits a protective role. 

 

Figure 18: Dysbindin protein levels are regulated by TRIM24 and TRIM32 via ubiquitination. (A) Overexpression of 
ubiquitin in the presence of Dysbindin led to polyubiquitination of Dysbindin as confirmed by the appearance of 
high molecular weight bands in lanes 4–6 (ubiquitin overexpression is shown in B). (C) Effect of ubiquitin and UPS 
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inhibitor MG132 on Dysbindin protein levels when co-expressed with TRIM24; respective densitometry analysis 
presented in the graph (D) clearly shows that TRIM24 partially restricted Dysbindin degradation due to ubiquitin, 
whereas MG132 completely prevented Dysbindin degradation suggesting a direct involvement of the UPS system. 
(E) Ubiquitin immunoblot also indicates that the presence of TRIM24 reduces ubiquitin-driven polyubiquitination. 
Similarly, the presence of MG132 also attenuated the Dysbindin degradation due to TRIM32 (F and G); 
nevertheless, in contrast to TRIM24, TRIM32 accelerated the polyubiquitination of cardiomyocyte proteins when 
co-expressed with ubiquitin (H). Statistical significance was determined using two-tailed Student’s t-test. Error bars 
show mean ± S.E. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, non-significant. D and Dys, Dysbindin; T24, TRIM24; 
T32, TRIM32; U and Ubi, ubiquitin. (Modified from: Borlepawar et al., 2017, © the American Society for 
Biochemistry and Molecular Biology) 

8.12     TRIM24 and TRIM32 have a differential effect on SRF signaling 

Dysbindin has previously been identified as a robust inducer of hypertrophic Rho-dependent 

SRF signaling in NRVCMs (Rangrez et al., 2013). To explore the potential effects of both TRIMs 

on Rho-dependent SRF signaling pathway, TRIM24/32 were overexpressed in the absence or 

presence of Dysbindin in NRVCMs and activation of SRF signaling was assessed using the SRF 

response element (SRF-RE)-driven firefly luciferase activity with LacZ as a control. Interestingly, 

by virtue of Dysbindin protective role, TRIM24 exhibited activation of SRF signaling. 

Furthermore, TRIM24, when co-expressed with Dysbindin displayed an additive effect on the 

robust activation of SRF signaling by Dysbindin (Figure 20A). To the contrary, by virtue of its 

degrading role, overexpressed TRIM32 did not show a significant effect on SRF signaling 

compared with control; notwithstanding, it also strongly diminished the induction of SRF 

signaling by Dysbindin (Figure 20B). Correspondingly, knockdown of TRIM24 using a TRIM24-

specific synthetic microRNA resulted in reduced SRF activation, but no significant difference was 

observed when this knockdown was followed by Dysbindin overexpression, compared with the 

overexpression of Dysbindin alone (Figure 20C). Although knockdown of endogenous TRIM32 

resulted in a significant increase of SRF-luciferase activity in the presence of Dysbindin, no 

significant effect of TRIM32 knockdown was observed in the absence of Dysbindin (Figure 20D). 

Thus, opposite effects on Rho-dependent SRF signaling suggested differential effects of 

TRIM24/32 on also on functional aspects of cellular Dysbindin activity. 
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Figure 19: TRIM24 and TRIM32 antagonistically regulate SRF activity in NRVCMs. Effect of TRIM24 (A) and TRIM32 
(B) on Dysbindin-mediated luciferase activity determined by SRF-RE firefly luciferase reporter assay in NRVCMs. 
Adenoviruses expressing Dysbindin (Ad-Dysbindin, 50 ifu), TRIM24 (Ad-TRIM24, 100 ifu), TRIM32 (Ad-TRIM32, 100 
ifu), SRF-RE reporter-based firefly luciferase (Ad-SRF-luc, 20 ifu), and Renilla luciferase (Ad-Renilla-luc, 5 ifu, control) 
were used for infection in NRVCMs. Adenovirus expressing -galactosidase (Ad-LacZ) was used as a control or to 
maintain the equal quantity of virus used for infection. Data shown are means of three independent experiments, n 
= 6. Synthetic microRNAs specific for TRIM24 (miRT24) (C) or TRIM32 (miRT32) (D) was used for knockdown of 
endogenous TRIMs in NRVCMs to determine its effect on Dysbindin-mediated SRF signaling by luciferase assay. 
Synthetic microRNA not targeting any transcript (miRNeg) was used as a negative control. Data shown are means of 
two independent experiments performed in sextuplicate. Statistical significance was determined using two-tailed 
Student’s t-test. Error bars show mean ± S.E. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, non-significant. Dys, 
Dysbindin; T24, TRIM24; T32, TRIM32; miRT24, microRNA-TRIM24; miRT32, microRNA-TRIM32. (Modified from: 
Borlepawar et al., 2017, © the American Society for Biochemistry and Molecular Biology) 

8.13     TRIM24 and TRIM32 inversely affect cell surface area in cardiomyocytes 

To investigate the (patho-) physiological role of TRIM24/32 expression, we performed 

comparative analyses of the effects of Dysbindin, TRIM24, and TRIM32 on the growth and 

hypertrophy of NRVCMs. The pro-hypertrophic effect of Dysbindin expression was evident as 

expected, where TRIM24 expression also exerted a similar effect resulting in increased cell 
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surface area (Figure 21A-B). In contrast, TRIM32 markedly reduced cell size when compared 

with cardiomyocytes expressing Dysbindin or TRIM24 by virtue of abrogation of Dysbindin levels 

and its pro-hypertrophic effects (Figure 21A-B). 

 

Figure 20: TRIM32 adversely affects cell surface area in cardiomyocytes. (A) Representative images for cell-size 
analysis after overexpression of particular proteins. NRVCMs were cultured on coverslips in triplicates, infected 
with adenovirus expressing LacZ (Ad-LacZ, control), Dysbindin (Ad-Dysbindin, 50 ifu), TRIM24 (Ad-TRIM24, 100 ifu), 
and TRIM32 (Ad-TRIM32, 100 ifu) for 72 h, and immunostained with α-actinin which is specific for sarcoplasmic 
z-disc. Nuclei were stained with DAPI. Cell size analysis was performed on images taken with a Keyence 
fluorescence microscope. (B) Cell surface area of the respective datasets was measured from randomly selected 
cells from three independent coverslips using ‘Macro Cell Count’ analyzer from BZ-II software. The experiment was 
repeated three times in triplicates. Data shown are means of two independent experiments performed in 
sextuplicates with ≥ 500 cells per condition. Scale bar (shown with a white line) represents 100 µm. Statistical 
significance was determined using two-tailed Student’s t-test. Error bars show mean ± S.E. *, p < 0.05; **, p < 0.01; 
***, p < 0.001; ns, non-significant. Dys, Dysbindin. (Modified from: Borlepawar et al., 2017, © the American Society 
for Biochemistry and Molecular Biology) 

8.14     TRIM24 protects Dysbindin from TRIM32-mediated degradation and further 

promotes cardiomyocyte hypertrophy  

Finally, we asked whether TRIM24 exhibits the potential to protect Dysbindin degradation and 

downstream signaling via inhibition of TRIM32-mediated Dysbindin degradation. Therefore, we 

repeated analysis of the pro-hypertrophic markers like cell surface area measurements, SRF 

signaling assays, and assessment of Dysbindin protein levels in a set of experimental conditions 

where Dysbindin was co-expressed with both TRIM24 and TRIM32 simultaneously in NRVCMs. 

Both TRIM24 and TRIM32 displayed consistency with their already seen effects in combination 
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with Dysbindin. Intriguingly, the anti-hypertrophic effects of TRIM32 were significantly blunted 

by the presence of TRIM24, resulting in larger cell size and increased SRF-signaling activity 

(Figure 22A-C). Moreover, in the presence of TRIM24, the potent effect of TRIM32 on Dysbindin 

degradation at the protein level is strongly abrogated (Figure 22D-E). Thus, possibly via 

competitive binding, TRIM24 effectively counteracted TRIM32-driven Dysbindin dysregulation 

with subsequent functional effects on cardiomyocyte growth and SRF signaling. 

 

Figure 21: TRIM24 protects Dysbindin from TRIM32-mediated degradation. (A) Representative images for cell-size 
analysis. NRVCMs were cultured on coverslips in triplicate, infected with adenovirus expressing Dysbindin 
(Ad-Dysbindin, 50 ifu), TRIM24 (Ad-TRIM24, 100 ifu), TRIM32 (Ad-TRIM32, 100 ifu), and Ad-LacZ, as a filler 
adenovirus, for 72 h, and immunostained with α-actinin. Nuclei were stained with DAPI. Images were taken with a 
Keyence fluorescence microscope. (B) Cell surface area of the respective datasets was measured from randomly 
selected cells from three independent coverslips using ‘Macro Cell Count’ analyzer from BZ-II software. The 
experiment was repeated three times in triplicates. (C) Effect of TRIM24 and TRIM32 in different combinations with 
Dysbindin on SRF luciferase activity determined by SRF-RE firefly luciferase reporter assay in NRVCMs. 
Adenoviruses expressing Dysbindin (Ad-Dysbindin, 50 ifu), TRIM24 (Ad-TRIM24, 100 ifu), TRIM32 (Ad-TRIM32, 100 
ifu), SRF-RE reporter-based firefly luciferase (Ad-SRF-luc, 20 ifu), and Renilla luciferase (Ad-Renilla, 5 ifu, control) 
were used for infection in NRVCMs. Data shown are means of three independent experiments performed in 
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sextuplicate. (D) Immunoblot showing Dysbindin expression in protein isolated from NRVCMs overexpressing 
Dysbindin in combination with TRIM24 and/or TRIM32; its densitometry analysis is depicted by a bar graph in (E). 
Statistical significance was determined using two-tailed Student’s t-test. Error bars show mean ± S.E. *, p < 0.05; **, 
p < 0.01; ***, p < 0.001; ns, non-significant. Dys, Dysbindin; T24, TRIM24; T32, TRIM32. (Modified from: Borlepawar 
et al., 2017, © the American Society for Biochemistry and Molecular Biology) 

8.15     TRIM32 expression adversely affects cell viability  

Whenever an experiment with cell surface area was conducted in the current thesis, to our 

surprise, the total cell number of cultured NRVCMs was remarkably reduced in the presence of 

overexpressed TRIM32 (Figure 23A-B). This prompted us to further investigate the potential 

causes of this reduced cell number effect by TRIM32. Of note, Dysbindin has previously been 

shown to play a supportive role in cell viability and proliferation in neurons (Nihonmatsu-Kikuchi 

et al., 2011); (Wang et al., 2014). Thus, we hypothesized that these growth supporting effects 

are suppressed by TRIM32 via Dysbindin degradation. To determine cellular viability, we 

performed MTT assays for cell viability in neonatal cardiomyocytes with an adenovirus-

mediated expression of Dysbindin, TRIM24, and TRIM32. Cardiomyocyte survival indeed showed 

an inverse relation with the expression of TRIM32 but no effect was observed with Dysbindin or 

TRIM24 expression (Figure 23A), suggesting TRIM32 negatively affects cell viability independent 

of the anti-hypertrophic role. To confirm this negative effect of TRIM32 on cell viability and 

possibly induced cell death, we performed ‘Terminal deoxynucleotidyl transferase dUTP nick 

end labeling’ (TUNEL) assay which integrates labeled dNTPs along the fragmented DNA, one of 

the hallmarks of programmed cell death. The detrimental effect of TRIM32 on cell survival was 

consistent with TUNEL staining, with the percentage of apoptotic cells significantly surging up, 

when compared with the control cells expressing β-galactosidase. The number of TUNEL stained 

cells significantly went down with Dysbindin expression and remained unchanged with TRIM24 

(Figure 23B-C). This data indicates that TRIM32 is a strong modulator of cell viability and 

apoptosis in NRVCMs, independent of Dysbindin. 
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Figure 22: TRIM32 negatively affects cellular viability. (A) MTT assay for cell viability. Cultured NRVCMs were 
infected with adenovirus expressing Dysbindin (Ad-Dysbindin, 50 ifu), TRIM24 (Ad-TRIM24, 100 ifu), TRIM32 
(Ad-TRIM32, 100 ifu) in serum-free media for 72 h. Adenovirus expressing-galactosidase (Ad-LacZ) was used as a 
control. After the incubation period, MTT-labeling reagent was added, and cells were incubated for 4 h in a 
humidified atmosphere. Subsequently, cells were subjected to overnight incubation with solubilization solution. 
Spectrophotometric absorbance was measured using a Tecan ELISA reader. Data shown are means of three 
independent experiments performed in sextuplicates. (C) Representative images for TUNEL and cleaved caspase-3 
staining in NRVCMs. After adenovirus infection for 72 h, as mentioned above, NRVCMs underwent TUNEL staining. 
DAPI was used as a nuclear stain for total nuclei. Respective analysis for the percentage of TUNEL-positive (B) was 
performed with images taken from Keyence microscope. Nuclei count was performed with ‘Macro Cell Count’ 
analyzer. Data shown are means of two independent experiments performed in sextuplicates with >500 cells per 
condition. Scale bar (shown with a white line) represents 100 µm. Statistical significance was determined using 
two-tailed Student’s t-test. Error bars show mean ± S.E. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, non-significant. 
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Dys, Dysbindin. (Modified from: Borlepawar et al., 2017, © the American Society for Biochemistry and Molecular 
Biology) 

8.16     TRIM32 expression induces apoptosis in NRVCMs 

Apoptosis, the well-known controlled cell death process is a vital phenomenon in multicellular 

organisms. A tightly controlled apoptosis is the basic need of organisms where exaggerated 

growth can be terminated avoiding malignant growth resulting in cancers, while uncontrolled 

and exaggerated apoptosis can be pathological to the organism.  A specific group of cysteine 

proteases named caspases is the main mediator of apoptosis. Caspases are activated after they 

undergo cleavage for initiation and execution of apoptosis in mammals. Caspase 2, 8, 9 and 10 

are known to be initiators; whereas caspase 3, 6 and 7 are known as executioner caspases.  

To further investigate the induction of apoptosis by TRIM32, NRVCMs were immunostained with 

the anti-cleaved-caspase 3 antibody. Caspase 3 being a nuclear protein, NRVCMs were stained 

along with other nuclei specific stain DAPI. The cleaved-caspase 3 vs. an overall number of 

nuclei allowed calculation of the percentage of apoptotic cells. TRIM32 showed a significant 

surge in supposedly caspase 3 mediated apoptosis after overexpression into cardiomyocytes, 

(Figure 24A-B). Magnified insets in the lower panel in Figure 24A display activation of caspase 3.  

To further strengthen these results, NRVCMs were stained with Propidium iodide (PI), a DNA 

intercalating stain that is excluded from membrane permeability in viable cells, thus commonly 

used to identify dead cells in a population. Again, the detrimental effect of TRIM32 on cell 

survival was consistent with PI staining, with the percentage of dead cells surging up by 10% 

when compared with the control cells expressing -galactosidase (Figure 24C-D), implying 

induction of apoptosis and consequent cell death in NRVCMs. Unlike TUNEL-positive cells, which 

were reduced when Dysbindin was overexpressed compared with the LacZ (control) cell group 

(Figure 24B-C), cleaved caspase-3 or PI positive cells remained unchanged (Figure 24B, 24D). 

Notably, however, TRIM24 overexpression alone did not have any effect on apoptosis or cell 

death at all (Figure 24B, 24D). These data indicate that TRIM32 is a strong modulator of cell 

viability and apoptosis in NRVCMs. 
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Figure 23: TRIM32 induces apoptosis and cell death in NRVCMs. (A) representative images and (B) analysis for 
cleaved caspase-3 staining in NRVCMs. (C) representative images and (D) analysis for PI staining in NRVCMs. After 
adenovirus infection for 72 h, as mentioned above, NRVCMs underwent immunostaining with cleaved caspase-3/PI. 
DAPI was used as a nuclear stain for total nuclei. Respective analysis for percentage of cleaved caspase-3-
positive/PI was performed with images taken from Keyence fluorescence microscope. Nuclei count was performed 
with ‘Macro Cell Count’ analyzer for both DAPI and cleaved-caspase3/PI separately. Data shown are means of two 
independent experiments performed in sextuplicates with > 500 cells per condition. Statistical significance was 
determined using two-tailed Students t-test. Error bars show mean ± SEM. *, p < 0.05; ***, p < 0.001; ns, non-
significant. Scale bar (shown with a white line) represents 100 µm. Dys, Dysbindin; Cc3, cleaved-caspase3; PI, 
propidium iodide. (Modified from: Borlepawar et al., 2017, © the American Society for Biochemistry and Molecular 
Biology) 
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8.17     TRIM32 induces apoptosis via regulation of Caspases 

The next step was to ascertain the underlying mechanism of how exactly TRIM32 induces 

apoptosis in neonatal cardiomyocytes. To investigate whether TRIM32 induces apoptosis via 

mediators of apoptosis, caspases, we examined the effect of Dysbindin, TRIM24 and the TRIM32 

expression on activation of specific executioner caspases by immunoblotting. As anticipated 

because of previously performed immunostaining, TRIM32 overexpression in NRVCMs exhibited 

a compelling appearance of cleaved fragments around 18 kDa for caspase-3 (Figure 25A-B). A 

similar effect was observed with the activation of another important executioner caspase, 

caspase-7 (Figure 25C-D) compared with the respective control groups. In a bid to find more 

players in the activation of apoptosis by TRIM32, we looked out for interaction partners of 

caspase-3. In the literature, it was found that caspase3 is a known negative regulator of X-linked 

inhibitor of apoptosis (XIAP) (Hornle et al., 2011) and also exerts a positive influence on tumor 

protein53 (p53) expression (Hattangadi et al., 2004), a well-known carcinogenic marker that 

induces apoptosis in cancer cells. Moreover, XIAP is also suggested as a direct target of TRIM32, 

where TRIM32 ubiquitinated XIAP for degradation via UPS (Ryu et al., 2011). In line with these 

findings, TRIM32 expression was found to significantly downregulate XIAP protein levels (Figure 

25E-F) in cardiomyocytes.  Both TRIM24/32 have an established link with p53 in various other 

cell types in cancer-related studies (Allton et al., 2009); (Liu et al., 2014); (Jain et al., 2014). We 

found a significant reduction and a dramatic increase in p53 levels in the presence of Dysbindin 

and TRIM32, respectively (Figure 25G-H). Even though, TRIM24 is now an established 

interaction partner of p53 and studied as a clinical marker in various cancer-related studies, it 

had no effect on alteration of p53 in cardiomyocytes, suggesting only a tissue specific and not a 

general interaction between these two. Overall, these findings indicate that TRIM32 robustly 

activates apoptosis in NRVCMs via activation of apoptosis modulators like caspases and p53, 

and inhibition of apoptosis inhibitor like XIAP. 
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Figure 24: TRIM32 induces apoptosis in cardiomyocytes via cleavage and activation of caspases. (A) and (C) 
immunoblots showing expression of apoptosis execution markers, caspase-3, and caspase-7, with their cleaved 
fragments (~18 kDa), respectively, in NRVCMs infected with adenovirus overexpressing Dysbindin (Ad-Dysbindin), 
TRIM24 (Ad-TRIM24), and TRIM32 (Ad-TRIM32). (B) and (D) densitometric analysis for caspase-3 and caspase-7 
cleaved fragments performed against their respective un-cleaved fragments as a control. n = 3. (E) Immunoblot 
showing the expression of cellular apoptotic inhibitor protein XIAP and its densitometry analysis is presented in a 
bar graph (F) with GAPDH as a loading control. (G) Immunoblot showing the expression of cellular apoptotic 
inducer in cancerous cells, p53, and its densitometry analysis is presented in a bar graph (H) with GAPDH as a 
loading control. Statistical significance was determined using two-tailed Student’s t-test. Error bars show mean ± 
S.E. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, non-significant. Cont, control; PE, phenylephrine; TAC, transverse 
aortic constriction. Casp3, caspase-3; Casp7, caspase-7; Dys, Dysbindin; p53, tumor protein 53; XIAP, an X-linked 
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inhibitor of apoptosis. (Modified from: Borlepawar et al., 2017, © the American Society for Biochemistry and 
Molecular Biology) 

9     Discussion 

The heart is a crucial organ pumping blood throughout the body of an organism by synchronous 

contraction and relaxation of the cardiac muscle. Homeostasis of the cardiac tissue and 

individual cells is necessary for normal heart function. Fine tuning of the cardiac muscle is 

maintained by numerous signal transduction pathways that mediate customary physiological 

functions and compensate for pathological injuries. The multifaceted process of cardiac 

pathophysiology constantly remains a top research field worldwide due to the high and steadily 

rising mortality associated with cardiovascular diseases according to WHO-CVDs data. Several 

intrinsic and extrinsic stimuli like physical stress, pressure overload, hypertension, etc. disturb 

cardiac homeostasis and affect signaling pathways causing disease phenotypes such as 

hypertrophy, cardiomyopathy, and subsequent heart failure. The unique characteristic of 

cardiomyocytes is that they are terminally differentiated in the embryo itself, and only grow in 

size by lateral hypertrophy postnatally. Hypertrophy is thus an inherent response to acute wall 

tension caused by various biochemical stresses in cardiomyocytes. At the molecular level, 

several signaling pathways and interacting networks have been implicated to the heart’s 

molecular response to physiological and/or pathological biomechanical stressors (Frey and 

Olson, 2003); (Vega et al., 2003).  

Various hypertrophic pathways mediated by Calcineurin (CnA-NFAT), glycogen synthase kinase 

(GSK)3β, mitogen-activated protein (MAP) kinases, RhoA-SRF etc. have been well established 

through series of in vitro and in vivo studies and are highly correlated with human patients of 

cardiac hypertrophy and cardiomyopathy (Molkentin et al., 1998; Wilkins et al., 2004). CnA-

NFAT signaling is found to be associated with other important hypertrophic pathways, such as 

signal transduction controlled by GSK3β and MAPK (Vega et al., 2003). The RhoA-SRF mediated 

hypertrophic signaling pathway is crucial in this context. Rho family of small GTPase proteins, 

consisting of Rho, Rac, and Cdc42 subfamilies, regulates the sarcomere organization in 

cardiomyocytes, changes in which are hallmarks of hypertrophy (Hoshijima et al., 1998). These 

GTPase effectors are present upstream of a major cardiac signaling molecule, the serum 
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response factor (SRF) (Seeger et al., 2010). Through the activation of SRF, RhoA can induce the 

hypertrophic response in the heart. Recent discoveries related to RhoA-SRF axis have 

established Dysbindin, a schizophrenia core protein to be a strong inducer of cardiac 

hypertrophy in vitro, by virtue of direct interactions with hypertrophic proteins like RhoA and 

Myozap. In parallel, Dysbindin was also found to stimulate MEK1-ERK signaling independent of 

RhoA-SRF axis, activating hypertrophic and fetal gene programs that result in cardiac 

hypertrophy (Rangrez et al., 2013). 

9.1     TRIM24 and TRIM32 are differentially regulated in cardiac hypertrophy and 

cardiomyopathy 

TRIM24 was originally identified as transcriptional intermediary factor-1α (TIF-1α), a ligand-

dependent co-repressor of retinoic acid receptor-α (Le Douarin et al., 1997), and has been 

reported to express aberrantly in human breast cancers correlating with poor patient survival 

(Thenot et al., 1997). TRIM32 is a ubiquitously expressed E3 ubiquitin ligase that is localized to 

the Z-line of skeletal muscle and has been shown to target desmin, actin, myosin, c-myc, 

NDRG2, etc. in addition to Dysbindin (Locke et al., 2009); (Kudryashova et al., 2005); (Cohen et 

al., 2012); (Mokhonova et al., 2015). TRIM32 is necessary for muscle regeneration by the 

process of myoblast proliferation and differentiation (Locke et al., 2009); (Kudryashova et al., 

2005; Kudryashova et al., 2009); (Shieh et al., 2011); (Nicklas et al., 2012) and has also been 

associated with skeletal muscle atrophy (Cohen et al., 2012). Discovery of TRIM24 as one of the 

putative cardiac interaction partners of Dysbindin by Y2H assay (Table 13), and a potent 

endogenous presence in the heart (Figure 8B), prompted us for its cardiac-specific functional 

analysis.  On the other hand, TRIM32 was incorporated in our experimental setup due to its 

established interaction with Dysbindin in the skeletal muscle (Locke et al., 2009).  

To study the effects of TRIM24 and TRIM32 on cardiac functions of Dysbindin, first, we 

examined their expression levels in several models of cardiac hypertrophy. The differential 

upregulation of TRIM24 post PE infusion (Figure 9A-B), in cardiomyopathy patients of DCM 

(Figure 10A-B) and HCM (Figure 10D-E), suggested a hypertrophy-supporting role; whereas, 

unchanged levels after TAC prompted the role to be more specific towards certain types of 

cardiomyopathies. On the other hand, TRIM32 was significantly downregulated in all of the 
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mentioned hypertrophic conditions, suggesting a more general dysregulation of TRIM32 in 

pathological hypertrophy (Figure 9A, 9D, 10A, 10D).  Interestingly, an inconsistent low molecular 

weight protein band was observed right below the expected TRIM32 band in the mouse hearts, 

which was highly up-regulated after TAC (Figure 9D). We hypothesize that this additional band 

represents a yet uncharacterized TRIM32 isoform that gets up-regulated in hypertrophic stress.  

Collectively, the significant cardiac presence of TRIM24 and TRIM32 coupled with potent 

dysregulation in various cardiac disease conditions suggested the need for their functional 

characterization in the heart. 

9.2     TRIM24 and TRIM32 interact with cardiac Dysbindin 

To establish the possible Dysbindin-TRIM24/32 interaction, several co-IPs were performed in 

HEK293A cells using V5-Dysbindin, Flag-TRIM24, and Flag-TRIM32. In separate setups, TRIM24 

and Dysbindin successfully pulled each other (Figure 11A-B), confirming an affinity towards each 

other. Expectedly, in line with skeletal muscle interaction, TRIM32 and Dysbindin were also 

confirmed to be interacting (Figure 11C-D). Dysbindin has been suggested to bind TRIM32 

through its coiled-coil domain, as in the case of dystrobrevins interaction (Locke et al., 2009). To 

verify if the CC domain is a minimum necessary domain responsible for Dysbindin-TRIM24 

interaction as well, Dysbindin expressing gene was segmented into four V5-fragments (Figure 

12A). Various Co-IPs performed after co-expression of Dysbindin fragments with TRIM24 

displayed that N-terminal+coiled-coil domain, coiled-coil domain, and full-length Dysbindin 

were able to pulldown TRIM24. Immunoprecipitation of TRIM24 in all three fragments 

containing the CC domain (Figure 12B) provides clear evidence that Dysbindin’s CC domain is a 

minimal necessary domain responsible for Dysbindin-TRIM24 interaction. 

After confirmation of Dysbindin interactions with TRIM24/32 into HEK293A cells, we 

reciprocated the interaction establishment in NRVCMs, as these are primarily targeted cells in 

this thesis. For phenotypic characterization of suggested interactions in NRVCMs, 

adenovirus-mediated overexpression (Figure 13A-F) and si/miRNA mediated knockdown (Figure 

14A-F) of Dysbindin, TRIM24, and TRIM32 were verified. Localization of proteins in close vicinity 

of each other or in the same cellular compartment provides higher chances of interaction. 
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Antibodies specific for these proteins disclosed a high percentage of co-localization of Dysbindin 

with TRIM24 and TRIM32. TRIM24, a transcriptional intermediary factor, expectedly displayed a 

strong expression around the nucleus. By virtue of ubiquitous cellular presence, Dysbindin 

exhibited robust co-localization with perinuclear TRIM24 and cytoplasmic TRIM32 (Figure 16A). 

Justified by potent co-localization in cardiomyocytes and in the same lines of HEK Co-IPs, 

HA-Dysbindin successfully pulled TRIM24 and TRIM32 in NRVCMs as well, confirming the 

interaction (Figure 15A-B).  

Taken together, the data from various IPs and localization experiments confirmed the 

interaction of Dysbindin with TRIM24 and TRIM32 in the heart. 

9.3     TRIM32 but not TRIM24 targets Dysbindin for UPS-mediated degradation  

The characterization of Dysbindin in regard with a physiological role in the brain and its 

association with the psychiatric disorder schizophrenia is well proven by a series of research 

studies in vitro, in animal models, and in humans (Mullin et al., 2015); (Ghiani and Dell'Angelica, 

2011). However, there was hardly an explanation about the putative role and regulation of this 

highly conserved and ubiquitously expressed protein in other cell types. Previously, our group 

has illustrated the cardiac role of Dysbindin as a pro-hypertrophic, SRF-signaling activator 

protein in NRVCMs (Rangrez et al., 2013). To further disclose the molecular functions of 

Dysbindin in combination with its binding partners that potentially affect Dysbindin-associated 

hypertrophic pathways, a Y2H screen was performed, which presented TRIM24 as a potential 

binding partner, in addition to RhoA and others (Table 13). Another protein from the same 

family, TRIM32, had previously been reported as an E3 ubiquitin ligase of Dysbindin, targeting 

its UPS-mediated degradation in skeletal muscle cells.  

On the basis of structural similarity between TRIM24 and TRIM32, with their famed roles in UPS 

targeted the degradation of various substrate proteins, we expected that both the proteins 

would display similar effects on Dysbindin levels, i.e. down regulating it. The overexpression of 

TRIM24 and TRIM32 in cardiomyocytes, however, displayed a completely different fate for 

endogenous Dysbindin. While TRIM32, targeted it for degradation, TRIM24 had no effect 

whatsoever on cellular Dysbindin levels (Figure 17A-D). On the contrary, microRNA-mediated 
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knockdown of TRIM24 and TRIM32 projected unaltered Dysbindin levels. It should also be noted 

that although TRIM24 and TRIM32 share similar N-terminal RBCC domains, they carry distinct 

C-terminal motifs and are categorized into different subgroups (in subgroup VI and VII, resp., 

Figure 7) (Ozato et al., 2008); (Borlepawar et al., 2018). It is therefore not surprising if two 

TRIMs exhibit contrasting effects in the same tissue for a given substrate, in this case, Dysbindin.  

In the next steps to uncover the UPS dependency of TRIM24/32-mediated regulation, Dysbindin 

was overexpressed with various combinations of TRIM24/32, UPS-modulator ubiquitin and 

UPS-inhibitor drug MG132. Co-expression of Dysbindin with ubiquitin suggested overall higher 

ubiquitination of proteins in NRVCMs, including Dysbindin (Figure 18A-B). The expression of 

TRIM24 along with ubiquitin increased cellular Dysbindin levels (Figure 18C-D), suggesting 

TRIM24 to be more protective of Dysbindin rather than degrading it. On the contrary, TRIM32 

stimulated very low levels of Dysbindin, which were further diminished by the addition of 

ubiquitin (Figure 18F-G). The addition of MG132, the UPS-inhibitor drug, however, completely 

abrogated the degradation, where Dysbindin levels were noted to be ~60 times higher 

compared to TRIM32 affected levels (Figure 18C-D, 18F-G).  

The above experiments collectively indicate that perinuclear TRIM24 does not, but cytoplasmic 

TRIM32 targets Dysbindin for UPS-mediated degradation in the heart.  

9.4     TRIM24 is additive, whereas TRIM32 is inhibitory for SRF signaling 

After examining the differential effects of TRIM24 and TRIM32 on Dysbindin levels in 

cardiomyocytes, the prime objective was to determine their role in SRF signaling, hypertrophic 

pathway induced by Dysbindin (Rangrez et al., 2013). TRIM24 activated SRF signaling, owing to 

its protective interaction with Dysbindin (Figure 19A); while its knockdown had no effect (Figure 

19C), suggesting TRIM24 to be synergistic, but not necessary for SRF signaling. TRIM32 had no 

effect on basal SRF signaling, but strongly abrogated Dysbindin mediated activation (Figure 

19B); whereas its knockdown did not inhibit Dysbindin mediated activation (Figure 19D), 

strongly indicating an inhibitory role through regulation of Dysbindin. The effects of TRIM24/32 

on SRF signaling, as anticipated remained vastly dissimilar, suggesting a differential effect of 

TRIM24 and TRIM32 expression on Dysbindin-mediated SRF signaling.  
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The SRF signaling data, reported by dysregulation of SRF-reporter element further provides 

insight to the underlying molecular mechanism of hypertrophic SRF signaling, where TRIM24 

promoted while TRIM32 restricted the pro-hypertrophic signaling via Dysbindin. 

9.5     TRIM24 protects Dysbindin from TRIM32-mediated degradation 

Through mapping and Co-IP experiments, the CC domain of Dysbindin was identified to be the 

minimal domain required for its interaction with TRIM24 (Figure 12A-B). Interestingly, the same 

CC domain is responsible for Dysbindin-TRIM32 interaction (Locke et al., 2009). Here, we 

expected TRIM24 to inhibit the degradative effects of TRIM32 at the protein level, possibly 

through competitive binding; after TRIM24 presence was found to have a protective effect on 

Dysbindin. The co-expression of both TRIM proteins with Dysbindin restored the cellular 

Dysbindin levels, i.e. even in the presence of TRIM32 (Figure 21D-E); suggesting that TRIM24 

eventually protects Dysbindin from degradation via TRIM32. By virtue of either protection or 

degradation, the yin and yang function of TRIM24 and TRIM32 also regulates the 

pro-hypertrophic and SRF-activating effects of Dysbindin. TRIM24 not only protected Dysbindin 

levels but also its cardiac functions, which were observable after pro-hypertrophic analysis like 

higher cell surface area (Figure 21A-B) and elevated SRF signaling (Figure 21C).  

The current study not only ascertains the interaction between Dysbindin-TRIM24/32, but it also 

provides mechanistic insight into the rare instances of proteins from the same family regulating 

a common substrate in a completely opposite manner, furthermore affecting downstream 

effects of the particular interaction.  

9.6     TRIM32 affects cellular viability and induces apoptosis in cardiomyocytes 

In this thesis, TRIM32 overexpression always resulted in distorted cellular architecture with an 

overall reduction in number of cells (Figure 20A, 21A). The reduction in total cell number was 

surprising, considering an equal cell seeding. TRIM family, known for selective proteolysis, has 

also been reported to play a role in the regulation of cell cycle and differentiation (Watanabe 

and Hatakemaya, 2017); directing a possibility of TRIM32 having an adverse effect on cell 

viability. On the other hand, Dysbindin had been proven to play a role in the proliferation of 

neurons (Nihonmatsu-Kikuchi et al., 2011) (Wang et al., 2014); providing a hypothesis that the 
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growth supplementary role of Dysbindin being affected by TRIM32. Analysis of cellular viability 

displayed a negative co-relation between TRIM32 and number of viable cells (Figure 22A). On 

the other hand, Dysbindin and TRIM24 had no effect whatsoever; suggesting detrimental effects 

of TRIM32 to be independent of reduction of cellular Dysbindin levels. The TUNEL assay for 

apoptosis consistently supported it, where the percentage of apoptotic cells increased with the 

introduction of TRIM32 (by ~ 10%, Figure 23B-C), suggesting it to be an apoptotic inducer. This 

induction was further confirmed when various immunostaining displayed an elevated 

percentage of cleaved-caspase3 (CC3) stained nuclei, a hallmark of apoptosis (Figure 23A-B); 

and Propidium iodide (PI) stained nuclei, a hallmark of cell death (Figure 23C-D) after TRIM32 

overexpression, establishing it as an apoptotic inducer of cardiomyocytes. 

Caspases are the initiators and executors of cellular apoptosis, who undergo cleavage after the 

induction of programmed cell death by stimuli like infections, nutrition depletion to carry out 

cellular apoptosis. Caspase-3, -7 and -9 are involved in the execution of the apoptosis.  In 

various observations previously, TRIM32 has been found to play dual roles: its deficiency lead to 

increased proliferation and reduced apoptosis in neurons (Hillje et al., 2015); while, up-

regulation promoted tumorigenesis in cancerous cells (Liu et al., 2014). In cardiomyocytes, 

however, TRIM32 induced cleavage of both Caspase-3 and -7, suggesting activation of the 

apoptosis (Figure 24A-D).  Activation of caspase3 is well-known to lead inactivation of X-linked 

inhibitor of apoptosis (XIAP) and subsequent activation of p53 in order to perform programmed 

cell death (Hattangadi et al., 2004); (Hornle et al., 2011). Eponymously XIAP regulates apoptosis 

by inhibiting caspase-3 and -7 in healthy cells (Takahashi et al., 1998); (Scott et al., 2005). 

Notably, both XIAP and p53 are ubiquitination targets of TRIM32 (Ryu et al., 2011); (Liu et al., 

2014). Through overexpression and knockdown experiments, Ryu et al. demonstrated TRIM32 

to sensitize HEK293T cells to TNFα-induced apoptosis, where it co-localizes and interacts with 

XIAP after TNFα-induction, through CC and NHL domains, with RING domain carrying proteolysis 

in a tumor suppressive mechanism (Ryu et al., 2011). Similar proteolytic interaction was 

confirmed in NRVCMs as well; where TRIM32 downregulated cellular XIAP levels, promoting 

apoptosis (Figure 24E-F). TRIM32 is known to be upregulated in tumorigenesis to negatively 

regulate tumor suppressor p53 (Liu et al., 2014); however, in this study, TRIM32 overexpression 
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rather resulted in strong upregulation of p53 (Figure 24G, 25H), suggesting a tissue-specific 

mechanism.  

Recently, Chen et al. reported TRIM32 to inhibit cardiac hypertrophy by targeting hypertrophic 

AKT signaling, further implying it to be a possible therapeutic agent. After the current study, we 

speculate that the observed downregulation of TRIM32 in DCM/HCM is perhaps required for the 

development of pathological hypertrophy. It will thus be interesting to study this question in 

vivo, e.g. by restoring the downregulated TRIM32 levels after PE, TAC, DCM, and HCM; and 

subsequently assessing whether hypertrophy/heart failure still occurs. Nevertheless, the parallel 

effects of TRIM32 on cell survival can obscure the data, with the possibility of TRIM32 

promoting heart failure due to increased cell death even if hypertrophy is inhibited. Answering 

this question is imperative before considering TRIM32 as a therapeutic agent in pathological 

cardiac hypertrophy (Chen et al., 2016). 

Taken together, activation of p53, caspase-3/-7 and simultaneous inhibition of XIAP strongly 

contribute to the robust induction of apoptosis in NRVCMs by TRIM32 overexpression. 

9.7     Molecular mechanism of cardiac hypertrophy and apoptosis regulated by 

TRIM24/32 

The post-translational regulation of Dysbindin in cardiomyocytes through its interaction 

partners TRIM24 and TRIM32 can be established as a novel mechanism of hypertrophic 

signaling after taking all results in the current thesis together. The study further implies TRIM32 

to be a strong inducer of apoptosis in cardiomyocytes via concordant activation of apoptotic 

inducers like p53 and caspase-3/-7 and downregulation of inhibitor XIAP. Findings from this 

study and the known cardiac functions of Dysbindin from earlier work can be summarized in a 

model cartoon here (Figure 25). 
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Figure 25: Pictorial representation of the effects of TRIM24/32 on Dysbindin levels and its downstream signaling 
in cardiomyocytes. Dysbindin activates SRF signaling through direct interaction with Myozap and RhoA, 
consequently leading to induction of SRF-responsive genes and hypertrophy. Based on the data from this study, we 
propose that TRIM24 protects Dysbindin and promotes Dysbindin-mediated hypertrophy and SRF signaling, 
whereas TRIM32 by virtue of Dysbindin degradation inhibits hypertrophy and SRF signaling. TRIM32 also induces 
apoptosis via activation of p53, caspase-3/-7, and inhibition of XIAP in Cardiomyocytes. (Borlepawar et al., 2017, © 
the American Society for Biochemistry and Molecular Biology) 

In summary, this thesis is the first report to show a cardiac role for TRIM24 in general and a 

protective role in respect to Dysbindin degradation in particular. Moreover, the divergent 

effects of two TRIM proteins on a common substrate provide a novel pathway of post-

translational regulation of Dysbindin. The association of Dysbindin/TRIM24/TRIM32 with SRF 

signaling makes this interaction interesting in the context of cardiac hypertrophy and 

cardiovascular diseases. The potent apoptotic effects of TRIM32 on NRVCMs are notable and 

might have wider implications in cardiac disease states that need to be thoroughly studied. 

Finally, the differential expressions of both TRIM24/32 in mouse models of biomechanical (PE) 

and biochemical (TAC) hypertrophy along with DCM and HCM suggest a direct involvement of 

these TRIMs in cardiac pathophysiology, which needs more attention to decipher the underlying 

maladaptive mechanisms. In broader terms, this study provides an initial characterization of two 
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members of the famed TRIM family of E3-ubiquitin ligases expressed in the heart that is useful 

for further in vivo and pathophysiological relevance. 

9.8     Expression data suggest the involvement of additional TRIMs in heart function 

Given the complexity of the cardiac function involving multiple molecular pathways and 

processes, only a few of the TRIMs have been shown to have a cardiac role before this thesis 

(three MuRFs, TRIM8, and TRIM72). In search of prospective studies, we hypothesized more 

TRIM family members to be mediating important cardiac functions. Using human Affymetrix 

data publicly available with Genevestigator (https://genevestigator.com/gv/), we traced down 

the expression of all TRIMs in various heart compartments. Several of the yet uncharacterized 

TRIMs were found to be significantly expressed in the heart, such as TRIM18, TRIM22, TRIM42, 

TRIM49, TRIM67, TRIM69, and TRIM73 (Figure 26), suggesting a wide possibility of cardio-

specific studies regarding TRIM family of proteins. The expression of all TRIMs present in 

myocardium under cardiac disease settings like heart failure, cardiomyopathies, myocardial 

infarction, and atrial fibrillation was additionally determined to deduce the possible differential 

expression in the disease conditions. Interestingly, in addition to known cardiac TRIMs, several 

other TRIMs were found to be differentially regulated in these disease conditions, suggesting 

wider involvement of the tripartite protein family in cardiac pathogenesis (Figure 27).  

 

Figure 26: Expression of TRIM proteins in various heart compartments. Affymetrix data analysis indicates 
significant expression of various TRIMs in the heart and its sub-compartments (Borlepawar et al., 2018, Copyright 
© Elsevier). 

The majority of the TRIMs which were found significantly expressed in the heart were also part 

of the specifically dysregulated TRIMs in cardiac disease conditions mentioned above. Although 

these bioinformatic findings need further in vitro/in vivo experimental validations; overall, these 

data highlight the potential of elaborated cardiac specific research for TRIMs in disease context 

(Figure 27). 
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Figure 27: Expression of TRIM proteins in various cardiovascular diseases. Affymetrix data analysis indicates that 
several TRIM proteins are found to be differentially expressed in the heart under disease conditions like atrial 
fibrillation, cardiomyopathies, heart failure, and myocardial infarction (Borlepawar et al., 2018, Copyright © 
Elsevier). 

9.9     Concluding remarks and wider prospectives 

With ever-increasing studies targeting novel pathways and pathophysiology that harmfully 

affect cellular protein turnover, the toll of cardiovascular diseases remains high. PQC comprising 

protein degradation via autophagy and the UPS is essential in the cardiac context. Various 

perturbations in the tightly regulated PQC pathways give rise to several maladaptive diseases in 

humans like neurodegenerative Parkinson’s and Alzheimer’s, various cancerous growths, 

inflammatory Crohn´s disease, muscle related skeletal myopathies, and most important in the 

context of this thesis: various heart diseases including cardiac hypertrophy and heart failure. 

Several inherited cardiomyopathies are also associated with disruption of autophagy and/or 

increasing pathological protein aggregation, such as mutations in the sarcomeric Z-disc proteins 

BAG3 or desmin and its chaperone αB-crystallin, lead to proteotoxicity and dilated 

cardiomyopathy. Interestingly, several anti-cancer drugs such as tyrosine kinase inhibitors (e.g. 
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imatinib), anthracyclines (e.g. doxorubicin) or proteasome inhibitors (e.g. bortezomib) impair 

the UPS or autophagy, thereby indirectly causing artificial cardiomyopathy. Cardiac 

proteinopathy, a novel and more common disease condition found to cause cardiomyocyte 

decay, is largely neglected with the absence of effective therapies against it. Thus, there is an 

urgent need to develop innovative therapeutic approaches for curing cardiomyopathies and 

heart failure in the context of proteinopathies, where differentially regulated TRIMs can be 

employed as therapeutic agents. Thus, modulation of E3 ligases in the heart presents great 

potential as an alternative and target-directed therapeutic strategy. For example, an unbiased 

high-throughput screen by Jeff Robbin's lab has recently identified several potential E3 ligases 

like TRIM7, TRIM9, TRIM32, TRIM34a, and TRIM50 to accelerate or attenuate the formation of 

protein aggregates in cardiomyocytes (McLendon et al., 2017). Here TRIM32 specifically, can be 

expected to attenuate the aggregate formation via its capability of targeting aggregate-

containing cardiac cells for an apoptosis- as studied in this thesis; or inhibiting hypertrophy- as 

suggested by (Chen et al., 2016) after examining the degree of apoptosis induction.  

The downregulation of TRIM8 or TRIM21 has been proven to be beneficial for heart 

reconditioning after pressure overload and muscle deterioration and suggested as potential 

therapeutic approaches against pathological hypertrophy and heart failure. TRIM24, however, 

presents a different case, as it is additive to SRF-hypertrophy via its Dysbindin protection ability, 

but without having a robust hypertrophic effect itself. But, the transcriptional intermediary role 

of TRIM24, being capable of interactions with multiple transcription factors, suggests a need of 

its further characterization in the heart, and thus should be studied in vivo for any possible 

usage in clinical application. Moreover, it is also important to understand that E3 ligases 

selectively ubiquitinate distinct target proteins via numerous target binding domains. This very 

fact can be therapeutically exploited (i) to activate or supplement an E3- ligase that can 

selectively degrade a misfolded or unfolded protein of interest to reduce or dissolve protein 

aggregates formed, and (ii) to activate or inhibit downstream signaling pathways or cellular 

processes, in order to improve cardiac function in heart disease conditions. 
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10     Abbreviations 

°C   Grad Celsius 

λ   Lambda 

Ad   Adenovirus 

ADS   Digestive buffer with collagenase and pancreatin 

AF   Alexa Fluor®- fluorescent dye 

AHA   American Heart Association 

AngII  Angiotensin II 

APS   Ammonium persulfate 

bp   Base pair 

BSA   Bovine Serum Albumin 

Ca2+   Calcium 

cDNA   Complementary DNA 

CMV   Cytomegalovirus 

Co-IP     Co-Immunoprecipitation  

CVDs  Cardiovascular diseases 

DAPI   4′,6-Diamidin-2-phenylindol 

DCM   Dilated Cardiomyopathy 

ddH2O   Double distilled water 

DEPC   Diethyl pyrocarbonate 

DMEM  Dulbecco´s Modified Eagle Medium 
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DMSO   Dimethyl sulfoxide 

DNA   Deoxyribonucleic acid 

dNTP   Deoxyribonucleoside tri phosphate 

DTT   Dithiothreitol 

E. coli   Escherichia coli 

ECL   Enhanced Chemiluminescence 

EF   Ejections fraction 

FCS   Fetal Calf Serum 

Fig    Figure  

FITC   Fluorescein Isothiocyanate 

g   Gramm 

GAPDH  Glyceraldehyde-3-phosphate-Dehydrogenase  

h   Hour 

HDAC   Histone-deacetylase  

HCM   Hypertrophic cardiomyopathy 

HW   Heart weight 

HRP   Horseradish Peroxidase 

hs   homo sapiens 

HSF  Heat shock factors 

HSPs  Heat shock proteins 

IF   Immunofluorescence 
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ifu   Infectious units  

IR  Ischemia-Reperfusion 

kb   Kilo base pair 

kDa   Kilo Dalton 

KEGG  Kyoto Encyclopedia of Genes and Genomes 

KO   Knockout 

l   Liter 

LacZ   Gene, coding for the enzyme ß-Galactosidase  

LB-Medium  Luria-Bertani Medium 

LV   left ventricle 

M   Molar 

MAPK   Mitogen Activated Protein Kinase 

MgCl2   Magnesium chloride 

miRNeg  micro-RNA control 

min   minute 

miRNA  micro-RNA 

mm   mus musculus 

ml   Milliliter 

mRNA  Messenger RNA 

MuRFs  Muscle ring fingers 

MW   Molecular weight 
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NaCl   Sodium chloride  

NCS   Newborn Calf Serum 

NFAT   Nuclear Factor of Activated T-cells 

nppa   Natriuretic Peptide type A 

nppb   Natriuretic Peptide type B 

nm   Nanometer 

NRVCMs  Neonatal Rat Ventricular cardiomyocytes 

OD   Optical density 

ORF   Open Reading Frame 

PBS   Phosphate Buffered Saline 

PCR   Polymerase Chain Reaction 

PE   Phenylephrine 

PFA   Paraformaldehyde 

pH   Negative logarithm of the hydronium ion concentration  

PQC  Protein quality control 

PVDF   Polyvinyl difluoride 

qPCR   Quantitative Real-Time PCR 

Rcan1-4  Regulator of Calcineurin1-4 

RCM  Restrictive cardiomyopathy 

RNA   Ribonucleic acid 

RNAi   RNA Interference 
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rn  rattus norvegicus 

rpm   Revolutions per minute 

RT   Room temperature 

S  Seconds 

SDS   Sodiumdodecylsulfate 

SEM   Standard error of the mean 

siRNA   small interfering RNA 

SRF   Serum response factor 

SRF-RE  Serum Response Factor Response Element 

TAC   transverse aortic constriction 

TAE   Tris-Acetate-EDTA Puffer 

TBST   Tris-Buffered Saline Tween 20 

TEMED  N,N,N',N'-Tetramethylethylendiamine 

TF  Transcription factor 

TG   Transgenic 

TRIM  Tripartite motif containing 

Tris   tris(hydroxymethyl)aminomethane 

Triton X-100  Polyethylene glycol p-(1,1,3,3-tetramethylbutyl)-phenyl ether 

U   Units 

UPS  Ubiquitin Proteasome System 

UV   Ultraviolet 
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v/v   Volume/Volume 

w/v   Weight/Volume 

WB   Western Blot 

WHO  World Health Organization 

WT   Wild type 

X g   Centrifugal force 
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