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Zusammenfassung 
 

Die Absence-Epilepsie des Kindesalters (CAE) ist eines der am häufigsten diagnostizierten 

Krankheitsbilder in der pädiatrischen Epilespie. Das Syndrom ist mit einer deutlichen 

Symtomatologie zu Krampfanfällen und mit klaren elektroenzophalografischen (EEG) 

Merkmalen verbunden. Allerdings erweist es sich bei CAE-Patienten als schwierig, ictal und 

non-ictal generalisierte Spike-Wave-Entladungen (GSWDs) zu unterscheiden, da beide 

identisch aussehen. Die Unterscheidung dieser beiden Ereignisse ist aber wichtig, weil sie 

sich direkt auf Diagnose und Behandlungstrategien im klinischen Umfeld auswirkt. Der 

Fokus unserer Studie liegt deshalb auf einer Unterscheidung dieser Ereignisse mittels des 

EEG, sowohl bezüglich der Sensorenmessung (Sensor-level) als auch bezüglich der 

Identifikation der Aktivitätsquelle im Gehirn (Source-level). Dabei haben wir uns für das 

Oberflächen-EEG entschieden, weil dieses in der klinischen Praxis, verglichen mit MEG, 

MRI und fMRI, das am weitesten verbreitete und kostengünstigste Verfahren ist. 

Für unsere retrospektive Studie verwenden wir die Daten von zwölf Patienten, die sowohl 

ictal als auch non-ictal Entladungen aufweisen. Für alle Analysen wurde ein Frequenzbereich 

von 1-30 Hz benutzt, in dem die vier wichtigen Frequenzbänder (Delta-, Theta-, Alpha- und 

Beta-Band) enthalten sind. Auf dem Sensor-level wurden die ictal und non-ictal GSWDs 

zunächst einer Spektralanalyse unterzogen und danach die funktionelle Konnektivität (FC) 

basierend auf dem Imaginärteil der komplexen Kohärenzfunktion untersucht, um die 

spektralen Veränderungen bzw. die Änderungen im Frequenzspektrum als auch die 

Konnektivität der Kanäle besser zu verstehen. Auf Source-level konnte die Ursprungszone für 

beide Ereignisse zusammen mit den neuralen Netzen zwischen den Hirnregionen 

rekonstruiert werden. Die Quellenrekonstruktion für ictal und non-ictal Entladungen wurde 

dabei mit dem eLORETA-Algorithmus durchgeführt.Wir stellen den detailierten 

mathematischen Hintergund der Quellenrekostruktion im Gehirn mittels des EEG dar, 

erklären das zugehörige Vorwärts-und Rückwärtsproblem und präsentieren die 

mathematischen Grundlagen, auf denen der eLORETA-Algorithmus basiert. Wir zeigen, dass 

das Regularisierungsproblem von Pascual-Marqui et al. (2011) falsch aufgestellt ist, und 

geben hierzu eine korrekte Formulierung. Ferner liefern wir erstmals einen 

Korrektheitsbeweis für den eLORETA-Algorithmus, der auf unserer korrekten Formulierung 

des Regularisierungsproblems basiert. 

Die neuronalen Netze wurden für beide Ereignisse mittels FC, basierend auf dem 

Imaginäranteil der komplexen Kohärenzfunktion auf dem Source-level rekonstruiert, um 

diese Ereignisse besser unterscheiden und verstehen zu können. Interessanterweise haben wir 

auf dem Sensor-level signifikante Unterschiede im elektrischen Leistungsspektrum 

beobachtet, die belegen, dass ictal Entladungen eine höhere Leistungsdichte haben als non-

ictal Entladungen. Bedeutender noch ist, dass FC eine Desynchronisation von 

Kanalverbindungen (schwächere Konnektivität) für ictal Entladungen im Vergleich zu non-



 

 
 

ictal Entladungen zeigte. Eine faszinierende Beobachtung auf Source-level ist, dass ictal und 

non-ictal Entladungen dieselbe Quelle bzw. Ursprungszone im Gehirn aufweisen. Dabei 

haben ictal Entladungen aber eine höhere elektrische Leistung als non-ictal Entladungen. FC 

auf Source-level zeigte, dass die Konnektivität zwischen bestimmten Hirnregionen und dem 

Quellenmaximum und Thalamus stärker war für ictal Entladungen als für non-ictal 

Entladungen. 

Konnektivitätsmuster für das Delta-Frequenzband zeigen, dass Hirnregionen, die wichtig für 

Bewusstsein, Sprachverarbeitung, Zahlenverarbeitung, räumliche Orientierung, 

Erinnerungsvermögen und Visualisierung sind, eine signifikante Kohärenz mit dem 

Thalamus aufweisen. 

Mit dieser Studie zeigen wir signifikante Unterschiede zwischen ictal und non-ictal 

Entladungen sowohl auf dem Sensor-level als auch dem Source-level mittels EEG klar auf. 

Wir hoffen, dass unsere Ergebnisse in die klinische Praxis einfliessen, da sie als potentielle 

Grundlage künftiger Diagnostikforschung für CAE-Patienten dienen können.  

Die Methodik bedarf jedoch noch weiterer Auswertungen hinsichtlich ihrer Sensitivität und 

Spezifität. Für zukünftige Forschung könnte die von uns gezeigte Korrektheit des von uns 

verallgemeinerten eLORETA-Algorithmus in experimentellen Anwendungen weiter getestet 

werden. Ferner könnten bestimmte Algorithmen des maschinellen Lernens zur 

Klassifizierung entwickelt werden, die beim EEG-Monitoring von Patienten mit CAE helfen 

würden. 

 

  



 

 
 

Summary  
 

Childhood absence epilepsy (CAE) is one of the most common pediatric epilepsy syndromes 

found in children. It is associated with distinct seizure semiology and clear 

electroencephalographic (EEG) features. However, in these patients, differentiating EEG ictal 

and non-ictal generalised spikes and waves discharges (GSWDs) is difficult since these 

events have an identical appearance. The differentiation of these two events is very important 

since it has a direct effect on diagnosis and management strategies in a clinical setting.  

Therefore, in this study we focused of differentiating these two events at sensor level and 

source level using only surface EEG. We chose to use only surface EEG, since it is the most 

common and inexpensive tool used in clinical practice in comparison to MEG, MRI and 

fMRI techniques. 

In this retrospective study, the data from 12 patients having both ictal and non-ictal 

discharges was selected. For all levels of analysis, a frequency range of 1-30 Hz containing 

four important frequency bands (delta, theta, alpha and beta) was used. At sensor level, ictal 

and non-ictal GSWDs were subjected to power spectral analysis, followed by functional 

connectivity (FC) based on imaginary part of coherency, to better understand the spectral 

changes and channel connectivity at the surface respectively.  At source level, the onset zone 

for both these events was reconstructed along with the neuronal networks between brain 

regions. The source reconstruction of ictal and non-ictal discharges was done using the 

eLORETA method. We have first given a detailed mathematical background of the EEG, 

forward and inverse problem, along with the mathematical foundation for the eLORETA 

algorithm. We showed that the regularization problem posed by Pacual-Marqui et al. (2011) 

is wrong, and we gave a correct formulation. Additionally, for the first time we prove the 

correctness of the eLORETA algorithm based on the correct regularization problem. The 

neuronal networks for both these events were constructed using FC based on imaginary part 

of coherency at source level, to differentiate and understand these events better.  

Interestingly at sensor level, we found significant spectral power differences, demonstrating 

that ictal discharges have higher power compared to non-ictal discharges. More importantly 

FC depicted a desynchronization of channel connections (weaker connectivity) for ictal 

discharges compared to non-ictal discharges. At source level, a fascinating observation was 

that ictal and non-ictal discharges have the same source or onset zone in the brain. However, 

ictal discharges had a stronger source power compared to non-ictal discharges. FC at source 

level revealed that the connectivity between certain brain regions and the seeds of interest 

(source maximum and thalamus) was stronger for ictal discharges, compared to non-ictal 

discharges. Connectivity patterns for delta band revealed, brain regions important for 

consciousness, language processing, number processing, spatial cognition, memory retrieval 

and visualization to be significantly coherent with the thalamus.  



 

 
 

With this study we clearly show that there are significant differences between ictal and non-

ictal discharges at sensor and source level using EEG. This study would be a great interest to 

clinicians, since it could be the potential foundation for future diagnostics research for CAE 

patients. However, this methodology further requires evaluation regarding sensitivity and 

specificity. For future aspects, the correctness of the eLORETA algorithm proved by us could 

further be tested regarding experimental use. Further, certain machine learning algorithms 

could be developed for classification purposes, which would help in EEG monitoring of 

patients with CAE.  
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Chapter 1 

Introduction  

1.1 Epilepsy 

Epilepsy is one of the most common neurological disorders, found to affect people of all 

ages. It is a disorder characterized by recurring unprovoked seizures. A seizure is a sudden 

surge of electrical activity caused by hyper synchronic firing activity of nerve cells in the 

brain [1]. Epileptic episodes can vary in time periods ranging from being brief and 

undetectable to long periods of vigorous shaking. These episodes may lead to physical 

injuries in severe cases as well as varying degrees of social confinements. 

Around the world, 50 million people suffer from this disorder [2]. Most of the cases have an 

unknown cause with the remaining resulting from brain injury, stroke, brain tumors, 

infections in the brain and birth defects. Some cases have also been linked with known 

genetic mutations. Diagnosis is usually done by using electroencephalogram (EEG), and 

brain imaging, to look for abnormal brain waves and structural abnormality respectively [3].  

Seizures are generally classified into two categories, Focal and Generalized, based on where 

the abnormal activity in the brain begins. Focal seizures occur only in one part of the brain, 

while generalized seizures involve all areas of the brain. In 2017 the International League 

Against Epilepsy (ILAE) updated the classification for seizures [4].  

 
Figure 1.1 ILAE classification of seizures. Taken from Fisher et al, Epilepsia, 2017, 

depicting the new classification of various seizure types involved in epilepsy. 
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1.2 Childhood Absence Epilepsy 

In this study we focused on a specific syndrome called, childhood absence epilepsy (CAE), 

which falls under the classification of generalized onset, and non-motor, typical absences.   

CAE is one of the most common forms of epilepsy, accounting for 2-10% of all childhood 

epilepsies. It is an idiopathic form of epilepsy associated with staring spells (absences) as 

well as impaired consciousness. The seizures in this syndrome are characterized by multiple 

typical absences having generalized spike and wave discharges (GSWDs) of 3 Hz on the 

EEG. These GSWDs are bilateral, synchronous and symmetrical and are known to have an 

abrupt onset as well as an abrupt termination. Absences generally last for 4-10 seconds but in 

some cases may persist for a longer period. They may occur frequently per day and if treated 

properly, respond well to antiepileptic drugs. The age of onset is found to be 4-10 years with 

a peak at 5-7 years [5, 6].  

EEG is the best diagnostic test for this syndrome. Electrographically these seizure events are 

termed as „ictal‟ discharges while the time period between ictal events is termed as „interictal‟ 

region [7]. The interictal EEG of patients with CAE, frequently show GSWDs without 

impairments of consciousness, behavioural alteration, or subjective symptoms. These 

GSWDs are identical to ictal EEG patterns seen during the absence seizures. Currently there 

are no objective tools available to differentiate these two events in the EEG, and only a 

thorough direct testing of the patient during the occurrence of discharges can distinguish ictal 

vs. non ictal or rather subclinical events. Direct testing can however be very challenging, 

since these discharges and absences can be very short and subtle. Additional challenges can 

be posed by the poor compliance of young children as it requires an active participation of the 

patients. A careful differentiation of these two events is however very important in clinical 

practice, as it helps to evaluate the treatment strategies and outcomes.  

1.3 Previous studies  

Various studies have demonstrated the involvement of the thalamo-cortical circuit playing an 

important role in the pathophysiology of CAE [8–10]. Previous functional magnetic 

resonance imaging (fMRI) studies revealed that a common network of structures, including 

the anterior and posterior cortices, thalamus, caudate nuclei, cerebellum, reticular structures 

of the pons and the default mode network (DMN), play an important role in the generation 

and propagation of absences [11, 12]. In addition, EEG-fMRI studies show the activation of 

the thalamus and inactivation in the medial frontal, medial parietal, anterior and posterior 

cingulate, which are important components of the DMN. It is understood that the DMN is 

selectively impaired during absences and certain components of the DMN have an overlap 

with the consciousness system. Studies demonstrate an initial increase in DMN cortical 

regions, followed by long lasting decreases in the network. BOLD signal decreases have also 

been reported in the parietal cortex precuneus, caudate nucleus, cingulate gyrus, basal ganglia 

and posterior temporal cortices, suggesting that cortical-subcortical interactions may play a 
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role in the decreases of DMN [13]. Further approaches are required to better understand the 

neuronal networks associated with ictal GSWDs and impairment of consciousness, in contrast 

with non-ictal GSWDs.  

Since brain imaging techniques such as Positron-emission tomography (PET), Single-photon 

emission computed tomography (SPECT) and fMRI have low temporal resolution, it 

becomes difficult to use these techniques to demonstrate the dynamics of networks involved 

within absences. But, EEG and MEG methods are better-suited for the evaluation of 

connectivity, since they have excellent temporal resolution.  

Signal processing techniques involving spectral power analysis on EEG data have proven to 

give valuable information on the dynamics of a seizure at sensor level. This includes using 

specific frequency-based techniques such as wavelet and Fourier transforms (FT) [14, 15]. 

But to better understand the dynamics of seizure onset at a deeper level source analysis is 

required. However, localizing the area from where the electrical activity originates becomes 

difficult, because of the uncertainty underlying the static electromagnetic inverse problem. 

Nonetheless recent developments regarding EEG inverse solutions have significantly 

improved source localization, leading to the usage of EEG data for investigating neuronal 

networks even involving deep brain structures.  

A new approach to tackle the inverse problem is the exact low-resolution brain 

electromagnetic tomography (eLORETA) [16, 17]. This method is a non-invasive discrete, 

three-dimensional (3D) distributed, linear, weighted minimum norm inverse solution. It can 

be applied to low resolution data such as EEG data, to investigate the current source density 

in the brain. eLORETA is an improvement over the previously used methods LORETA [18] 

and the standardized version sLORETA [19]. This technique has been implemented within 

many toolboxes, and one such toolbox used for this study was the MEG and EEG Toolbox of 

Hamburg (METH). This toolbox is a collection of MATLAB functions, which can be used 

for data analysis on MEG and EEG data.  This technique has been used for source analysis in 

various studies. Besides the practical use of the eLORETA algorithm, there are serious 

mathematical issues which are of concern. 

 

Further, to get an overview of the brain interactions, functional connectivity (FC) can be 

computed from surface EEG. FC identifies brain regions that have synchronous activity, but 

it does not give the specific direction of information flow in the brain [20]. The FC can be 

computed using coherence and phase synchrony methods in the frequency domain. Focusing 

on the coherence method, this technique quantifies the synchronicity of neuronal patterns in 

the brain. This method has been widely used in various cognitive and clinical neurological 

studies in sensor space and source space using EEG [21, 22]. It has also been used in the field 

of Epileptology to study seizure onset zones [23–25].  

As EEG is a non-invasive technique, the problem of volume conduction (VC) arises. This can 

be described as a spatial spread of the electromagnetic fields, leading to the fact that multiple 
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electrodes or sensors may pick up the activity of a single brain source. This causes spurious 

connections to occur in coherence distorting functional connectivity. A robust approach to 

sensor-level and source-level connectivity estimation is achieved by using the imaginary part 

of coherency [26], which is an important technique that overcomes volume conduction 

effects of FC. 

These various techniques mentioned here were implemented in our study, focusing solely on 

using EEG data.  

1.4 Aim  

In this study we focus on identifying significant differences between ictal and non-ictal 

GSWDs in CAE patients using surface EEG. The data will be analyzed in sensor-space and 

source space, and further FC based on imaginary part of coherency will be used to understand 

the neuronal networks. This will be done using pre-ictal/non-ictal, during-ictal/non-ictal, and 

post-ictal/non-ictal time intervals, in order to better understand the dynamics of these 

GSWDs. The aims of this study are: 

 Spectral analysis and FC based on imaginary part of coherency, at sensor-space level to 

identify significant frequency bands and significant neuronal networks respectively.  

 Source analysis and FC based on imaginary part of coherency, to better understand the 

ictal/non-ictal GSWDs onset zone alongside the neuronal networks associated with 

impairment of consciousness. 

 Sound mathematical foundation of the forward and inverse problem for EEG source 

analysis, and proofs for the correctness of the eLORETA algorithm. 

1.5 Results of the Thesis  

In chapter 1 we give a brief introduction for this study. This is followed by an overview on 

the medical background regarding the CAE syndrome as well as a methodological 

background described in chapter 2. 

We continue with chapter 3. Here we give a concise mathematical formulation for the 

forward and inverse problem of EEG along with its solution, which is required for source 

reconstruction. We also give a detailed description of the eLORETA algorithm used for 

source analysis. To begin with, we have described the forward problem using the Maxwell‟s 

equations alongside the discrete form of the forward problem. We have defined and 

calculated the lead field matrix, and also given a proof for a reference independent forward 

equation. We have also given a brief description of pseudo inverses and have proved certain 

properties which would further be required for the inverse problem. 

Since, the inverse problem is an ill posed problem; it is approached using the so called 

regularisation approximation. Pascual-Marqui (2007) [17], who formulated the algorithm 

eLORETA for source reconstruction, described the inverse problem and the solution in his 
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publications unfortunately in a rudimentary way. The inverse problem in these publications 

was posed by the weighted minimum norm problem using the Tikhonov regularization 

parameter, alongside a general solution. We show that the Tikhonov regularization problem 

alongside the solution given by Pascual-Marqui et al. (2011) is false. Therefore, we formulate 

a new general Tikhonov regularization problem in detail and give solutions which are 

mathematically correct. However, for further applications we used the eLORETA algorithm 

based on the solution described by Pascual-Marqui, since in medical practice it has given 

meaningful results. 

Though, for source localization we used the eLORETA algorithm, we have also given a 

detailed mathematical foundation for this algorithm which was missing in the papers of 

Pascual Marqui (2007) [17], and Pascual Marqui et al. (2011) [16]. We have taken into 

account two critical points within the algorithm, which have not been addressed in the 

publications of Pascual-Marqui. Firstly, the positivity of the weights, and secondly, the 

termination criterion of the algorithm. Regarding the positivity of the weights being used in 

the algorithm, we have given the proof for the first time using linear algebra and the Moore-

Penrose inverse.  

The general idea of the algorithm is to compute a weight matrix in an iterative way, which at 

the beginning is the identity matrix as used in the former LORETA algorithm. Thereafter, the 

weight matrix is updated step by step so that the new weight matrix is always a diagonal 

matrix. The crucial and critical point is that in the iterations of the algorithm the new weight 

matrix is computed by inverting the old weight matrix and it is claimed that the diagonal 

entries of the matrix are all non-negative and implicitly assumed to be non-zero. In all the 

publications of Pascual-Marqui in more than 20 years (1999, 2007, 2011) [16, 17, 27]  and 

cited also by others, these unproven statements prevail. Thus the correctness of the 

eLORETA is in doubt. Based on our correct formulation of the Tikhonov regularization 

problem and its matrix solutions we show for the first time that the diagonal weight matrix 

has all strictly positive diagonal entries, which establishes the correctness of the eLORETA 

approach. The proof is heavily based on linear algebra of the Moore-Penrose inverse and the 

physical fact that the columns of the lead field matrix cannot be zero, which is an important 

and meaningful assumption in the physics of EEG.  

In chapter 4, we have described the demographic data of the subjects selected for this study 

and have given an overview of the selection process for ictal and non-ictal discharges.  

Initially for this study we analysed ictal and non-ictal discharges longer than 3 seconds, using 

time frequency analysis and descriptive statistics. A frequency range of 1-35 Hz was 

analysed. It was observed that all frequency bands (delta, theta, alpha, beta and gamma) 

demonstrated significant spectral power (p<0.05) differences, independently for both the 

groups of interest. This has been described in detail in chapter 5. However, since not all 

patients had non-ictal discharges longer than 3 seconds a comparative analysis of the two 

groups of interest could not be done. Therefore for the next steps of this study non-ictal 
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discharges, less than 3 seconds were also included, so that the dataset of all patients could be 

completed and a comparative analysis could be possible.  

Chapter 6 describes sensor level analysis using spectral analysis and functional connectivity 

to differentiate between ictal and non-ictal discharges, and also to analyse the network 

connectivity between the EEG channels. Frequency bands delta, theta, alpha and beta (1-30 

Hz) demonstrated significant spectral power difference (p<0.05) between ictal and non-ictal 

discharges. In all frequency bands it was seen that ictal discharges have a significantly higher 

power compared to non-ictal discharges. It was also seen that the time interval during-

ictal/non-ictal had higher power compare to pre- and post- time intervals.  

Functional connectivity at sensor level revealed, that all frequency bands (1-30 Hz) had 

significant (p<0.05) difference regarding channel connections. Most importantly it was 

observed that ictal discharges have a weaker connectivity between channels compared to non-

ictal discharges. A desynchronization of channel connections was seen for ictal discharges in 

delta band involving areas of the DMN.  

Following sensor level analysis, chapter 7 describes the source reconstruction of ictal and 

non-ictal discharges. Using the eLORETA method, interestingly it was seen that ictal and 

non-ictal discharges have the same source or onset zone in the brain. However, ictal 

discharges had a stronger source power compared to non-ictal discharges. Frequency bands 

delta, alpha and beta showed significant differences (p<0.05). Delta band (1-3 Hz) revealed 

two sources, a deep source in the subcortical regions of caudate and putamen right regions. 

The second source was a cortical source seen in the supplementary motor right region. The 

spread of source power was observed in the thalamus, parietal and temporal regions. 

Further, functional connectivity was done at source level to better understand the neuronal 

networks underlying ictal and non-ictal discharges. This has been described in chapter 8. 

The results showed that the coherence was stronger between the brain regions and the seeds 

of interest (source maximum and thalamus) for ictal discharges, compared to non-ictal 

discharges. With the thalamus as the seed of interest promising results were seen. For delta 

band, brain regions important for consciousness, language processing, number processing, 

spatial cognition, memory retrieval and visualization were seen to be significantly coherent 

with the thalamus. These regions of the brain were occipital mid (left), parietal inferior and 

superior (right and left), angular gyrus (left), posterior cingulum (left) and precuneus (left). 

Many of the significant regions seen also had regions of the DMN in common. 

Additionally in chapter 9 we have discussed the experimental results for sensor and source 

level. This is finally followed by chapter 10, which is the conclusion of this study. 

Our findings clearly show that there are significant differences between ictal and non-ictal 

discharges at sensor and source level, although these discharges have similar appearance on 

an EEG. Using only EEG surface data significant deep sources in the brain were observed as 

well as significant connectivity patterns. This indicates that EEG itself is a powerful tool for 
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analysing ictal and non-ictal discharges. This methodology could be implemented in the 

future for classification purposes in EEG diagnostics of patients with CAE as well as to 

develop machine learning algorithms which would assist clinicians in EEG monitoring. This 

would help in better management of patients with CAE. However, this methodology further 

requires evaluation regarding sensitivity and specificity. 
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Chapter 2 

  

Medical and Methodological Background 

2.1 Childhood Absence Epilepsy (CAE) 

2.1.1 History 

Absence seizures were first described by Poupart in 1705 and by Tissot in 1770. Following 

which in 1824 Calmeil introduced the term „absences‟ for the first time. In 1838 French 

psychiatrist Jean-Etienne Dominique Esquirol was the first to use the term “petit mal” to 

describe absence seizures, which gets its name from the French, meaning “little illness”. The 

inventor of electroencephalogram (EEG) Hans Berger also made the first EEG recording for 

an atypical absence but his results were only published in 1933 [28].  

The spike and wave complexes of absence seizures were first acknowledged by Gibbs in 

1935 [29]. While a more detailed description of the generalized spike and waves in absence 

seizures were described by Weir in 1965 [30]. In the year 1981 absence seizures were 

classified as generalized seizures by the commission on classification and terminology of the 

international league against epilepsy (ILAE) [31]. Generalized seizures indicate events 

involving both halves of the brain. Further, absence seizures were also differentiated into 

typical and atypical absences. In 1989 idiopathic epilepsies were clustered according to the 

onset age, and so typical absence seizures were further classified into childhood absence 

epilepsy, juvenile absence epilepsy and juvenile myoclonic epilepsy [32]. Recently in 2017 

the ILAE published new guidelines for the classification of seizure types and typical absence 

seizures were listed among the generalized onset, non-motor seizures [4].  

2.1.2 Epidemiology 

In children with epilepsy 10% of the seizures are typical absence seizures. The estimated 

annual incidence of CAE is reported to be in the range of 2–8 per 100,000 children under the 

age of 15–16 years. In the general population the prevalence of this syndrome is 5 to 

50/100,000 people. It is seen that girls are at a higher risk compared to boys but it has also 

been reported that there is an equal incidence in boys and girls [33, 34]. In a community 

based study done by Callenbach et al. (1998), [35] the prevalence of CAE was found to be 10 

% for children younger than 16 years. Similarly, in a community based study done by Berg et 

al. (2000) on 613 children with epilepsy aged 0 to 16 years, 12% accounted for CAE 

diagnosis [36]. Based on EEG findings, a retrospective study done on Swedish children aged 

0 to 15 found the annual prevalence of absence epilepsy to be 6.3 per 100,000. In a survey 
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done in southwest France the annual incidence of CAE was estimated to be 8 per 100,000 

[37].  

2.1.3 Clinical Features  

CAE is characterized by multiple typical absences accompanied with 3Hz GSWDs in EEG. 

Absence seizures may occur many times a day, and have an abrupt onset and termination. 

The most important feature of CAE is the severe impairment of consciousness, where there is 

a loss of awareness, with behavioural arrest and unresponsiveness. But the level of 

impairment of consciousness may differ from one seizure to another within and between 

patients. Patients are unable to recollect the seizure events taking place. Most children 

completely stop any on-going activity while others may continue the activity in an altered 

way. They may stare straight ahead with a vacant look or with a gaze drifting upwards [6, 

38]. An inclusion and exclusion criteria for CAE patients has been described below according 

to Panaytopoulos CP., (2006).  

 

Inclusion criteria: 

 (1) Age at onset between 4 and 10 years and a peak at 5 to 7 years. 

 (2) Normal neurologic state and development. 

 (3) Brief (4 to 20 seconds, exceptionally longer) and frequent (tens per day) absence 

seizures with abrupt and severe impairment (loss) of consciousness. Automatisms are 

frequent but have no significance in the diagnosis. 

 (4) EEG ictal discharges of generalized high-amplitude spike and double (maximum 

occasional 3 spikes are allowed) spike-and-slow wave complexes. They are rhythmic 

at around 3 Hz with a gradual and regular slowdown from the initial to the terminal 

phase of the discharge. Their duration varies from 4 to 20 seconds. 

Exclusion criteria: 

 (1) Early onset before the age of 3 years or late onset after 10 years. 

 (2) Other than typical absence seizures such as GTCS, or myoclonic jerks prior to or 

during the active stage of absences. 

 (3) Eyelid myoclonia, perioral myoclonia, rhythmic massive limb jerking, and single or 

arrhythmic myoclonic jerks of the head, trunk, or limbs. However, mild myoclonic 

elements of the eyes, eyebrows, and eyelids may be featured, particularly in the first 

3 seconds of the absence seizure. 

 (4) Mild or no impairment of consciousness during the 3 to 4 Hz discharges. 

 (5) Brief EEG 3 to 4 Hz spike-wave paroxysms of less than 4 seconds, multiple spikes 

(more than 3) or ictal discharge fragmentations. 

 (6) Visual (photic) and other sensory precipitation of clinical seizures. 

Table 2.1 Inclusion and exclusion criteria for CAE.  

This has been adapted from Panaytopoulos 2006 [40]. 

http://www.medlink.com/index.php/glossary/gtcs
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In many patients automatisms may be present, with severe impairment of consciousness  

[39]. They are usually observed in longer seizures or during hyperventilation. Often mild 

tonic or clonic symptoms may occur during the first second of the seizure but if marked 

eyelid, perioral, limb or trunk myoclonic jerks persist through the course of the absence 

seizures then this may lead to exclusion criteria. 

Even though absence seizures occur spontaneously, they are influenced by numerous factors 

such as anger, sorrow, surprise, embarrassment, lack of interest, release of attention, 

hypoglycaemia and hyperventilation. Hyperventilation is the most important factor for 

inducing absence seizures. This is often used for diagnostic purposes. In an untreated child if 

hyperventilation does not provoke a seizure, then the diagnosis should be questioned. In a 

study done by Hirsch et al. (1994) Hyperventilation provoked typical absence seizures in 

100% of CAE patients. Absence seizures provoked consistently by means of photic 

stimulation do not belong to CAE.  

2.1.4 Electroencephalogram Features  

Ictal EEG: EEG is the best diagnostic test for absence seizures. Ictal EEG refers to the event 

when the seizure takes place. The characteristic pattern seen on any EEG is the 3 Hz GSWDs 

which begin and end abruptly. These discharges are bilaterally synchronous and symmetrical 

[6]. 3 Hz GSWDs less than 4 seconds are not considered typical of CAE. In a study done by 

Sadlier et al. on 339 absence seizures from 47 patients, defining the many electro clinical 

features of CAE, it was seen that the average seizure duration was 9.4 seconds [41] as 

compared to 12.4 seconds [39] which was previously reported. It was observed that GSWDs 

were of regular 3 Hz with one or two spikes per wave and three or more spikes per wave was 

rare. Also hyperventilation induced absence seizures in 83% of the cases while intermittent 

photic stimulation induced 21% of the seizures. 

 

Interictal EEG: The interictal EEG refers to the period between seizures in epileptic 

patients. During this time course brief GSWDs can be observed. They occur most commonly 

during sleep. These paroxysms may also include non ictal GSWDs which do not have any 

clinical symptoms and impairment of consciousness [42]. The EEG background is normal. 

2.1.5 Pathophysiology  

Over several decades the GSWDs in absence seizures have been analysed to study the 

mechanisms underlying them. Animal models and various neuroimaging studies have 

provided useful information regarding this. 

In 1946 studies done by Jasper and Droogleever-Fortuyn showed that on electrical 

stimulation of thalamic nuclei in cats at 3 Hz produce synchronous bilateral spike and wave 

discharges on EEG [43]. Similarly in 1953 spike-and-wave discharges were recorded by 

using depth electrodes in a child with absence seizure by placing the electrodes in the 
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thalamus [44]. Interestingly studies done using the feline generalized epilepsy penicillin 

model of absence seizures and the genetic absence epilepsy rats from Strasbourg revealed 

that in order to generate synchronous bilateral spike and wave discharges the cortex and 

thalamus are required [45, 46]. This led to the concept of corticoreticular theory of 

generalized seizures. Evidently absence seizures involve bilateral cortical and subcortical 

networks which involve parts of the default mode network (DMN) [13]. There are many 

genetic animal studies as well as neuroimaging studies done that support this as well as give 

useful insight regarding the pathophysiology of absence seizures [6].  

 

In an EEG-fMRI study done on ictal and interictal GSWDs in patients with CAE identified, 

blood-oxygen-level-dependent (BOLD) signal changes in the basal ganglia-thalmocortical 

loop [47]. Ictal GSWDs were predominantly associated with thalamic activation, and a 

widespread deactivation in the cortex. Similarly, in a single photon emission tomography 

(SPECT) study with relation to the pathophysiology of absence seizures, it was seen that the 

concept of subcortical origin was supported [48].   

 

CAE is genetically determined, but the precise mode of inheritance remains unknown. It has 

been observed that a positive family history of epilepsy can be found in 15-44% of the cases 

and with regard to epilepsy in parents the occurrence is 42.6% while in siblings it is found to 

be 20.7%. In 84% of monozygotic twins, typical spike wave discharges were detected out of 

which 75% developed absence seizures [49, 50].  

 

Till now only two gene mutations with relation to CAE have been identified and most of the 

molecular genetic studies have failed to identify the precise genetic factors. Firstly, the gene 

mutation involved with the generation of spike and wave discharges is the g-aminobutyric 

acid (GABA) A and B receptors (GABRG2, GABRA1,GABRB3, GABA(B1), GABA(B2)) 

[51, 52]. And secondly, mutations in genes encoding calcium channels (CACNA1 A, 

CACNA1 H, CACNA1 G, CACNA1I, and CACNG3) may play an important role in the 

pathophysiology of CAE [33, 51].  In the Chinese Han population CACNA1 H gene seems to 

be the most susceptible while it is insufficient to cause epilepsy on its own in Caucasians 

[53]. In a subset of patients with CAE, CACNG3 as well as gene mutations in the chloride 

channels CLCN2 may have a susceptible locus [53, 54]. In some cases it has been reported 

that SLC2A1 mutations have been associated with early onset absence epilepsy. Additionally 

it has been observed that GLUT1 gene mutations are related to worse prognosis [55, 56].  

2.1.6 Neuroimaging 

For idiopathic epilepsies the neuroimaging findings are normal and therefore, if typical 

clinical patterns are present then neuroimaging is not necessary.  However to rule out 

structural abnormalities often neuroimaging tests are done for better diagnosis. Magnetic 

resonance imaging (MRI) is preferred over computed tomography (CT) scanning since it is 

more sensitive for detecting anatomical abnormalities. 
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Patients with CAE seem to develop cognitive difficulties alongside clinical symptoms. These 

cognitive difficulties mainly involve attention and executive functions [57]. Many 

neuroimaging studies have been done in this domain to better understand the cognitive 

functions. Studies show that there is a decreased activation of anterior insula of the medial 

frontal cortex leading to significant altered attention networks [6]. Also a functional magnetic 

resonance imaging (fMRI) study done on a CAE patient while doing a continuous attention 

task revealed that there was impairment in the attention network which involved the anterior 

insula/frontal operculum and medial frontal cortex [58]. 

2.1.7 Treatment 

CAE treatment characteristically involves antiepileptic drugs (AEDs) [59]. Since absence 

seizures can occur many times a day and can severely impair quality of life, specific 

prophylactic anticonvulsants are recommended. Depending on the severity of the seizures 

children with absence seizures may have to undergo treatment for many years, and in some 

cases even for life. The start of antiepileptic medication is done with extreme care since these 

drugs could also have severe side effects. The treatment is usually tailored according to 

patient conditions since certain clinical symptoms may vary from patient to patient. 

 

Drug  

  

Mechanism of Action  

 

Efficacy  

 

Reported Side 

Effects 

Ethosuximide  

 

Diminishes low-threshold (T-

type) 

calcium current in thalamic 

cells 

Complete control in 

70% of patients 

Nausea, 

headache, 

drowsiness 

 

Valproate  

 

Different mechanisms not 

completely known (raises 

brain level of g-aminobutyric 

acid and also affects sodium 

and calcium channels) 

Seizure-free from 

88% to 95% of 

patients  

 

Weight gain, 

hair loss, 

hepatitis, 

polycystic 

ovaries 

 

Lamotrigine  

 

Blockage of use-dependent 

voltage sensitive sodium 

channels 

Seizure free in 50% 

to 56% of patients 

Skin rash, 

drowsiness, 

dizziness, 

headache 

Levetiracetam Modulation of a synaptic 

vesicle protein 

Reduction of seizure 

in 50% of patients 

Dizziness, 

fatigue, 

irritability 

Table 2.2 Drugs used for CAE patients. 

This table describes the drugs most commonly used for patients with CAE. The table has been 

adapted from Matricardi et al. 2014. 
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For absence seizures there are two first line drugs approved, which are: ethosuximide (ESM) 

and valproic acid (VPA) [60]. ESM is specifically effective against absence seizures. It is 

observed that in 70% of treated patients, this drug allows complete control of the seizures 

[61]. Alternatively VPA is considered as a broad spectrum antiepileptic drug, since it targets 

absence seizures as well as generalized tonic-clonic seizures, myoclonic seizures and partial 

seizures. Studies show VPA having seizure free rates from 88% to 95% [62]. Other than 

these drugs second line AEDs such as clobazam, clonazepam and acetazolamide may also be 

used. In the past few years new broad spectrum AEDs have been introduced which include 

lamotrigine (LTG), levetiracetam (LEV), topiramate (TPM), and zonisamide (ZSM) [6]. In  

treatment of patients with this syndrome, ESM and  VPA are considered to be more effective 

drugs than LTG [63]. 

2.1.8 Prognosis 

Studies about prognosis and evolution of CAE still remain quite inconclusive since there is 

always a difference in diagnostics, inclusion exclusion criteria and follow up periods. 

Nevertheless CAE has a very good prognosis if proper strict diagnostic criteria are used. It 

has effective AED withdrawal with remission rates ranging from 56% to 84% [6, 40]. 

2.2 Sensor-space Analysis 

Neural activity in the brain has been widely studied over the past years. Neural oscillations or 

brain rhythms are rhythmic fluctuations of the brain cells. This oscillatory activity may arise 

through various mechanisms in the brain associated with a single neuron or interaction of 

neurons. EEG is one of the devices used often to study the rhythmic activity in the brain. 

These neural oscillations are described using frequency, power and phase. Frequency 

basically measures the speed of the oscillations, while power measures the amount of energy 

in a particular frequency band or it can be referred to as the squared amplitude of the 

oscillation. The phase whereas marks the position along a sine wave at any given time point. 

These characteristics can be extracted from neural oscillations using various techniques [64].  

The first step of differentiating ictal and non-ictal GSWDs required analysis at sensor level. 

Time-frequency representations of power and power spectral density were computed to 

analyze ictal and non-ictal GSWDs at sensor level. This would give a better insight into 

which frequency bands are involved during ictal and non-ictal GSWDs.  

2.2.1 Time Frequency (TF) Analysis  

TF analysis is a popular technique used to draw inferences regarding brain rhythms. It is a 

method by which a signal can be analysed in both time and frequency domain simultaneously 

using numerous time frequency representations (TFRs). It analyses a two dimensional signal.  

The computation of TFRs of power is essential to understand event related changes taking 
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place [64, 65]. This will be computed using the Fourier transform alongside a sliding 

window. 

TF analysis has been used as a measure in various fields of science to study oscillations. It 

has also been widely used in epilepsy research for seizure detection as well as for studying 

the dynamics of a seizure.  

In a study done by Cuspineda-Bravo et al. (2013) [66] on refractory frontal lobe epilepsy 

patients, TF analysis was used as a measure, to understand whether EEG source localization 

of the epileptic zone can be improved. By using TF analysis certain features could be 

identified. Their study included using the Bayesian model averaging (BMA) to compare brain 

electromagnetic tomographic (BET) images constructed in the TF domain with BET images 

constructed from only the time domain. Their study showed that TF analysis based on EEG 

data improves source localization. Tzallus et al. 2007 [67] used TF analysis and Artificial 

Neural Networks for automatic seizure detection. They applied TF analysis on EEG data and 

extracted several features for each segment of interest. These features were further used as an 

input in an artificial neural network, for classification of EEG segments containing seizures 

or not.  Sitnikova et al. (2013) [68] studied the time frequency EEG characteristics and 

dynamics of sleep spindles in absence epilepsy WAG/Rij rat models. In another study done 

by Colominas et al. (2018) [69] resting state EEG data of epileptic patients was analyzed 

using time varying time frequency complexity measures. Their study aimed to evaluate the 

improvement of patients after medication using existing and a proposed new time frequency 

entropy measures. They found that these measures could be used to monitor the treatment of 

epileptic patients. Sun et al. (2016) [70] studied the intracranial EEG in patients with 

myoclonic seizures using time frequency analysis. Other time frequency analysis studies have 

been described in various articles such as: Tenny et al (2014) [71], Celka et al. (2001) [72], 

Williams et al. (1995) [73], Blanco et al. (1997) [74]. Thus, TF analysis has been used in 

various ways to better understand the dynamics of seizures in epilepsy.  

TF analysis was implemented with an aim to investigate the power changes within frequency 

bands for ictal and non-ictal GSWDs > 3 seconds. In our work this will be done for 3 time 

intervals of interest: pre-ictal/non-ictal, during- ictal/non-ictal and post ictal/non-ictal, to 

better understand the changing dynamics of the various frequency bands. This has been 

described in chapter 5. 

2.2.2 Frequency Analysis 

Frequency domain analysis, as the name suggests deals with processes that can be localized 

in the frequency domain. These processes have advantages since they are computationally 

fast and they can give important insight regarding the dynamics of a signal. In chapter 6, a 

Fast Fourier Transform (FFT) with a sliding window will be used to analyse the dynamics of 

a seizure in CAE syndrome. The FFT is basically an algorithm that calculates the discrete 
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Fourier transform (DFT) or it‟s inverse [64]. The DFT is computed by breaking down a 

sequence of values into various frequency components.  

FFT is widely used in various applications, in the fields of Engineering, Music, Science and 

Mathematics. It is also a common method used in Epilepsy research to understand the 

changing dynamics of ictal events in EEG recordings. For example, Drinkenburg et al. (1993) 

[75], analyzed the EEG of epileptic rats using spectral analysis to study aberrant transients. 

Spectral analysis was done using a fast Fourier transform. Nuwer (1987) [76],studied EEGs 

and evoked potentials of patients with complex partial seizures using frequency analysis and 

topographic mapping, to understand whether this could help in localization of the epileptic 

focus. Sitnikova et al. (2009) [77], analyzed genetic rat models of absence epilepsy to 

investigate the EEG precursors of spike and wave discharges using power spectral analysis 

and coherence as a measure. 

At sensor level, frequency analysis was used to find the significant frequency bands and 

further to know the significant clusters of electrodes between the two groups of interest, ictal 

and non-ictal GSWDs. 

2.2.3 Fourier Transform 

The Fourier transform is the backbone for TF analysis and frequency analysis. It is an 

essential signal processing technique used for time series data analysis. A Fourier transform 

basically deconstructs a signal in the time domain into its constituent frequencies. This in 

return gives the spectrum or the power spectral density as an output [64].  

In chapter 5and 6, time-frequency representations of power and power spectral density will 

be computed using the software Fieldtrip [65], which runs via MATLAB. The Fourier 

transform is the basis of computing the spectrum.  

Before calculating the Fourier transform, the data was normalized using a Z-score 

normalization.  

Let          be the number of EEG channels being used. For each channel k, we have N 

time points         and     ,…,      ictal/non-ictal EEG signals (µV). For         ,…, 

    ), the normalization can be obtained as follows: 

    
      

  
                                                                                                                                         

Here,    is the mean of ictal/non-ictal data, and    is the standard deviation obtained from 

the interictal EEG data.  

Using the normalized EEG data, the complex discrete Fourier transform is calculated. 

For data      let    =     ,…,        
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Then the complex Fourier Transform per channel, per frequency can be given by the 

following equation: 

     

 ∑     

 

   

    (        )                                                                                                            

where, ∑       
    represents a sum over data    ,   is the imaginary unit, the frequencies are 

  =  ⁄ , where j = 1,…,30, and the time points are    , n=1,...,N 

Using Euler‟s formula, (2.2) can be rewritten as: 

    =  ∑     
 
   cos(-         +  ∑     

 
   sin(                                                                             

Here, the data      is multiplied by a cosine and sin function at frequency   at each point in 

time, which is further summed over time. Therefore, Fourier transform can be understood as 

the data   being compared to sinusoids oscillating at frequency  .  

The output of the Fourier transform is the power spectrum (P), defined as:  

                   
                                                                                                               (2.4) 

Where,     represents the auto-spectrum of channel k at a particular frequency j, and the * is 

the complex conjugation.  

The spectrum produced using Fourier transform provides a powerful method to assess ictal 

and non-ictal GSWDs or rhythmic activity in time series data. 

2.2.4 Windowing  

The windowing or tapering function is a mathematical function that is used to reduce spectral 

leakage. A sliding time window can be applied to calculate the TFRs of power. For using a 

sliding window two principles can be applied:  

1) The window has a fixed length and it is independent of frequency changes  

2) The time window decreases with increase in frequency.  

 

The power is calculated for each time window. In this study a fixed window length is used.  

Before calculating the power spectrum the data is multiplied by one or more tapers. We use 

tapers for time and frequency smoothening, so that spectral leakage is prevented. Spectral 

estimates are usually contaminated with considerable endpoint discontinuities, when 

windowing data that has significant low frequency variability. To remove these 

discontinuities one possible method is to multiply each window of the time series by a weight 
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function or a taper that goes to zero at the end points smoothly [78]. Here, the Hanning taper 

[79] is used. The Hanning taper or Hann function is named after the Austrian 

meteorologist Julius von Hann.  

 

 

 

 

 

 

 

Figure 2.1 Time and frequency smoothening. 

Adapted from Fieldtrip software tutorials. a) For a time window having a fixed length, the 

time and frequency smoothening remains fixed. b) With a decrease in frequency the time 

window decreases, leading to temporal smoothing decreases and the frequency smoothing 

increases. 

2.3 Source Analysis  

Over the past decades, electroencephalogram (EEG) is one of the most widely used 

techniques to measure neuronal oscillations in the brain. It has been widely used for clinical 

diagnosis in the field of Epileptology.  Earlier, EEG was used for visual inspection of brain 

activity only, but with technological advancement now various characteristics of the brain 

oscillations can be investigated.  

Presently many functional brain imaging techniques have been developed in order to identify 

the seizure onset zone as well as the neuronal networks. These techniques mainly involve 

Positron Emission Tomography (PET), Single Photon Emission Computer Tomography 

(SPECT) and functional Magnetic Resonance Imaging (fMRI) with or without simultaneous 

EEG recordings. Unfortunately because of low temporal resolution and limited sample sizes 

it becomes difficult to use these techniques to demonstrate the temporal follow up between 

structures involved with absence seizures. But higher temporal resolution EEG allows a 

better option for analysis. However, because of the uncertainty underlying the static 

electromagnetic inverse problem, it is a problem to localize the area from where the electrical 

activity originates. This brings about a challenge to perform deep brain source imaging. 

Nonetheless recent developments regarding EEG inverse solutions have significantly 

improved source localization, making it easier to trace the source of the neuronal activity 

using surface EEG recordings.  
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The measure of source analysis depicts analyzing the neuronal data at a deeper level, as in 

some form of intracranial activity, and to study the origin of the observed neuronal activity.  

Source analysis specifies moving from sensor space to source space, compensating for the 

spatial resolution problem consisting within EEG. Various state of the art source localization 

methods have been established over the years [80]. The methods to solve the inverse problem 

have been categorized in two groups: parametric and nonparametric methods. Some of the 

state-of-the-art nonparametric methods are: Low resolution brain electromagnetic 

tomography (LORETA), standardized low resolution brain electromagnetic tomography 

(sLORETA), exact low resolution brain electromagnetic tomography (eLORETA), Variable 

Resolution Electromagnetic Tomography (VARETA), S-MAP, ST-MAP, local 

autoregressive average (LAURA),and adaptive standardized LORETA/FOCUSS (ALF) etc.  

Among the modern parametric methods are: Multiple signal classification (MUSIC), and 

FINES. 

In this study the eLORETA method was used for source localization, since it is one of the 

most robust techniques for EEG source localization.  

For source localization two major steps are required. This involves 1) computing the forward 

model, and 2) computing the inverse model. Forward modeling deals with the estimation of 

the potential for a source that is known, and also for a known head model. While the inverse 

problem deals with estimating sources that are unknown from the measured EEG. This has 

further been described in detail in chapter 3. 

2.4 Connectivity Analysis 

To better understand the brain regions correlated with each other, during ictal and non-ictal 

GSWDs, functional connectivity (FC) was determined.  FC identifies correlated brain regions 

based on similar signal content. It does not identify the direction of information flow. FC was 

determined at sensor and source level for this study, and the imaginary part of coherency 

(iCOH) was used as a method. As mentioned earlier, with EEG the problem of volume 

conduction arises, which further cause‟s misinterpretation of brain interactions. When using 

EEG channels there is a tendency of multiple channels picking up activity of a particular 

source in the brain leading to the volume conduction problem. A method proposed by Nolte 

et al. (2004) [26], used iCOH to interpret brain interactions. They described using the iCOH 

as a superior method to overcome the volume conduction effect since the iCOH is not 

affected by it, and is not generated as an artifact of volume conduction. The assumption that 

is used is that, any potential observed at the scalp has no time lag, to the underlying source 

activity. However, the iCOH is only responsive to synchronizations of events that are time 

lagged to each other. If volume conduction does not create any time lag then, the iCOH 

becomes unaffected to any kind of artifactual self-interaction.  

To better understand iCOH, the equation of coherency is necessary. At a given frequency, 

coherency between two EEG channels is the linear relationship between the two. The 
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coherency can be estimated using the cross spectral density function. If     and      are the 

complex Fourier transforms of channels k and k’ respectively, then the cross-spectrum can be 

given as:  

                
                                                                                                       (2.5) 

Where, * is the complex conjugation 

The cross spectral density of signal k and k’ are estimated using individual auto-spectral 

density functions. Further, using the cross-spectral density equation the coherency can be 

defined as: 

      
     

                 
                                                                                                                       

while the coherence is defined as the magnitude of coherency: 

        |     |                                                                                                                 (2.7) 

Coherence and coherency are bivariate measures that simultaneously analyse only two 

signals. Apart from the magnitude and phase of coherency, the real and imaginary part of 

coherency can also be investigated:  

                                                                                                                         (2.8)  

Here,   denotes the real-part of coherency while,   depicts the imaginary-part of coherency. 

From the complex coherence equation iCOH can be directly obtained.  

Studying the brain connectivity using iCOH is useful since it is inconsistent with non-

interacting sources and it reveals a dynamical interaction. In other words, this method aims of 

eliminating any irrelevant source coherence caused by instantaneous activity, and has a 

capability to capture true source interactions at a given time lag. 

The iCOH has been used as a measure for connectivity in various fields to better understand 

the brain interactions. Sander et al. (2010) [81], studied the interactions between muscle 

control and cortical, subcortical regions in patients with movement disorders alongside 

healthy subjects. They used coherence and iCOH as a combination to study the MEG and 

electromyographic (EMG) data. The iCOH was used on a control dataset where interactions 

were known to verify the robustness of iCOH. Then the combination of coherence and iCOH 

was used to identify cortico-muscular and cortico-thalamic coupling. Dominguez et al. (2013) 

[82], used iCOH as a measure in preschool children with autism to assess cortical functional 

connectivity. Their study also presents evidence that iCOH is a good measure that provides 

features that could be used in making a classifier for autism, which can be used as a 

biomarker. In another study done by Elshahabi et al. (2015) [83], on patients with 

idiopathic/genetic generalized epilepsy using MEG data, functional network connectivity was 
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analysed. The connectivity networks were constructed using coherence and only the iCOH 

was used to represent the couplings in the brain regions. Since Nolte et al. described this 

method in 2004 [26], it has been widely used to study brain interactions. 

In chapter 8 connectivity analysis has been done at sensor and source level to better 

understand the functional connectivity between ictal and non-ictal GSWDs. 
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Chapter 3 

      

Forward and Inverse problem for EEG 
 

In this chapter we give the mathematical modelling for source analysis and describe the 

algorithms used in exact low resolution electromagnetic tomography (eLORETA). We aim 

for a mathematical concise formulation, which unfortunately in some state-of-the-art 

literature (e.g. Pascual-Marqui (1999, 2007,2011)) [16, 17, 27] is given only in a rudimentary 

way or is even wrong. We will give proofs if possible and clearly state when experimental 

algorithms without a performance or correctness proofs are used in practice. 

We start with the presentation of the forward problem for EEG based on the work of Wolters, 

Grasedyck, Hackbusch (2004) [84] and Wolters, Köstler, Möller, Härdtlein, Grasedyck and 

Hackbusch (2007) [85]. 

Our ultimate goal is to reconstruct current sources in the human brain on the basis of EEG 

measurements at the scalp. Currents caused in the brain are results of the movement of ions 

within activated regions of the cortex sheet and such currents are called primary currents. The 

primary current in the brain is modelled as a current dipole [86, 87]. 

Here is a geometric illustration of an electric dipole. 

 

Figure 3.1 Geometric illustration of an electric dipole.  dipole  ⃗⃗  , electric field E, potential 

u,  ⃗ r unit vector in  ⃗  direction. 
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The current dipole causes an Ohmic return current which flows through the brain. The EEG 

measures the potential difference from the return currents.  

The reconstruction of the dipole sources in the brain is called the inverse problem of EEG. 

For this purpose the computation of the field potential in the head induced by dipoles is 

necessary. This is the forward problem. The forward problem is derived from the Maxwell 

equations. We first briefly state the Maxwell equations in this context.  

3.1 The Maxwell equations 

For the convenience of readers with less mathematical background we introduce the 

differential operators div, curl and grad. 

Since we are working in   , let  D ⊆    be the domain of a function f,  

f: D   , and we assume that the partial derivatives of f exists. Let                  

The gradient of  f  is the vector 

                 (
     

   
  
     

   
 
     

   
 )                                                                         

  is the Nabla-operator and   is just another notion of the gradient. 

Let          be a vector field with                where          are partially 

differentiable functions, i=1, 2, 3. 

The divergence div of   is the vector field,  

          
      

   
 

      

   
  

      

   
                                                                                

Let         be a vector field with               and partially differentiable functions 

      
      i=1, 2, 3. For      the curl operator is defined by  

           (
      

   
   

      

   
 
      

   
   

      

   
  
      

   
  

      

   
 )                         

so curl      is a vector field in     

Finally, for a function        , the Laplace operator   of k is defined by 

        
      

   
 

 
      

   
 

 
      

   
 

        

where      and f  is supposed to be 2-times partially differentiable.  
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A suggestive way to understand div and curl is the notion of vector analysis. For        , 

the standard inner product is  

〈   〉                                                                                                                      

where              and              . 

We will use both forms   and 〈   〉 of the inner product notation. 

We may write 

    (
 

   
  

 

   
 

 

   
 *                                                                                                                            

So, “abusing” the inner product notation (3.4), for the above mentioned function       

   we get  

           
   

   
 

   

   
  

   

   
                                                                                                    

                                                                                                                 

Further, for two vectors                       ,                , the cross product is 

defined as 

                                                                                               (3.7) 

so 

        

 

With (3.5) and (3.7) we can write curl in compact form as 

                                                                                                                               (3.8) 

With the notion of grad and curl in vector analysis, it is straightforward to verify 

              = 0                                                                                                        (3.9) 
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We are now ready to state the Maxwell equations for the human brain under the global 

assumption that the sources of electric activity in the brain are electric dipoles. 

Let E be the electric field in the brain, D the electric displacement,   the electric free charge 

density,   the electric permeability and j the electric current density. Let μ be the magnetic 

permeability, H the magnetic field and B the magnetic induction. We assume that μ is 

constant over the brain volume and equal to the permeability of vacuum. The essential 

modelling step for the brain is the assumption that the brain tissue behaves as an electrolyte.  

This gives the (brain) material couplings 

      and                                                                                                              (3.10) 

The Maxwell equations are 

                                                                                                                                  (3.11) 

                                                                                                                                  (3.12) 

                                                                                                                                  (3.13) 

                                                                                                                                  (3.14) 

Since we assume that the electric field is caused by a dipole, it is induced by a scalar 

potential       , and we have 

                                                                                                                              (3.15) 

3.2 The forward problem  

As said, the current has two components, the primary current, say    and the return currents 

    The return currents are dependent in a non-linear way on the conductivity   of the 

material, which is a     tensor and the electric field E, coupled by  

                                                                                                                               (3.16) 

(in our context   is just a     matrix). 

   is the current caused by movements of ions in the activated region of the brain. 

By Plonsy and Heppner (1967) [88], j decomposes as a sum 

                                                                                                                                (3.17) 

We seek an equation coupling j and the potential u. Let us assume that Ω ⊆    is the head 

domain. 
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Proposition 3.1:                                   in Ω                                              (3.18) 

Proof:  Since div curl = 0 (by straightforward calculation or taking this as a well-known fact 

from vector analysis), we have 

0 =               

   =                                                                                                                             by (3.13) 

   =                                                                                                                   by (3.17) 

   =   (                 )                                                                                  (div is linear) 

   =   (                       )                                                                              by (3.15) 

Hence, since       

                                                                                                                    in Ω.                                                                                                                                                            

                                                                                                                                                                        

The boundary conditions are: 

a) we have a reference electrode with a given potential 

 

      0                                                                                                                  (3.19) 

and 

b) the homogeneous von Neumann condition 

 

              on the domain boundary                                                   (3.20) 

 

holds, where n is the unit surface normal vector. 

Summarising, the boundary problem is 

 

                               in Ω 

                                         on                                                                        (3.21) 

                                  

 

Definition 3.2: The forward problem of EEG is given by (3.21), where the primary current    

and the conductivity matrix   is known, and we are looking for the unknown potential u. 
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If   is the identity matrix,   (
   
   
   

+, and using the fact div grad =    (3.21) becomes 

the Poisson problem  

                                 in Ω 

                              on                                                                                   (3.22) 

                     

Such a modelling is used by Gulrajani (1998) [89].                       

3.3 The discrete form of the forward problem 

The forward problem (3.21) is solved in literature in a numerical way [84]. We link the 

forward problem (3.21) with the geometry of the EEG data measured. Let N be the number of 

electrodes at the scalp, and let n be the number of voxel positions with the primary source. In 

our applications N = 31 and n = 5003. 

Let V be a M-dimensional vector space, M an integer, with standard finite element basis 

          

Finite element (FE) techniques applied to (3.21) with basis         lead to a system of 

linear equations. 

                                                                                                                                     (3.22) 

where      is the unknown potential vector,      is the current density vector, and most 

importantly,        is the stiffness or geometry matrix, where 

 

    ∫ 
 

                                                                                                                         

 

for all        . 

 

By the ellipticity of the bilinear form in the integral (3.23), G is symmetric and positive 

definite (Wolters et al. 2004) [84], so      exists. 

Equation (3.22) gives 

                                                                                                                                   (3.24)                               

Different algorithms, boundary element method (BEM) or FE have been used to solve (3.22).  
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The problem is the efficient computation of the inverse     of G, which is a notorious hard 

problem in numerical linear algebra.  

Wolters et al. (2004) [84] gave, to the best of our knowledge the most efficient algorithms for 

solving (3.22) and the inverse problem. We will come to this point in the next sections.  

Since the EEG setup we are using is associated best with the different LORETA solvers [18], 

we will describe the underlying approach being aware that it might not be computationally 

the fastest. Our purpose to distinguish between ictal and non-ictal events, both at sensor as 

well as source level, and to draw medical relevant consequences, the eLORETA algorithm is 

sufficient. Of course, in further work the algorithms of Wolters et. al.(2004) [84] should be 

involved and studied in practical applications, too.  

Let us proceed to the definition and calculation of the lead field matrix. 

3.4 Lead field matrix and corresponding forward problem 

Let N be the number of EEG electrodes with one of them as the reference electrode. Let ν   be 

the number of sources, each modelled as a dipole in      This is understood as three 

orthogonal unit dipoles of a specific source. Since each of these dipoles at a specific source 

influences the electric field and the potential, we consider all of them and say that n=3ν 

voxels are influencing the electric field. 

In Wolters et al. (2004) [84] it is shown that a matrix       , the so called restriction 

matrix, can be computed so that 

                                                                                                                                   (3.25) 

where u is the potential and   is the potential vector with components of u at the N 

electrodes.   is the so called scalp potential. Since,        in (3.21), we demand the 

property that the index         representing the reference electrode fulfils          

 

The lead field basis      is according to Wolters et al. (2004) [84] defined as the product of 

R and the inverse of the geometry matrix G, so  

                                                                                                                      (3.26) 

Using      and the solution of the forward problem u, Wolters et. al (2004) [84] compute a 

matrix        and a vector     such that  

                                                                                                                                      (3.27) 
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The matrix 

                                                                                                                         (3.28) 

is the lead field matrix for the EEG problem.  

K satisfies the equation 

                                                                                                                                     

(3.29) 

which is often referenced as the forward problem (Pascual-Marqui 1999) [27]. 

The equation (3.29) holds, because 

   ⏟
      

         ⏟
      

         ⏟
      

       

 ⏟
      

    ⏟
      

    

With the solution of the forward problem the lead field matrix K is computed. On this basis 

we will later consider the inverse problem. 

3.5 Noise by the reference electrode 

Noise at the reference electrode induces noise at the non-reference electrodes. According to 

Yao et al. (2019) [90] , the potential    is disturbed by a noise vector     , so we have 

     instead of                                                                                                              (3.30) 

In Yao et.al (2019) a method for noise correction is explained with a non-stochastic matrix, 

the so called centering matrix. Its effect is in averaging out the noise and in this way to 

calibrate a noise-free forward problem. 

The solution of the forward problem under noise is called the reference electrode problem. 

In the special case     ,     a constant and      the constant 1 vector, the centring 

matrix has a simple form and a noise-free reformation of the forward problem can be 

achieved.  

According to (3.29) and (3.30) the forward problem with noise is 

                                                                                                                             (3.31) 

Let,      
   

   
. H is the average reference operator, better known in statistics as the 

centering matrix.  
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We give a proof that the forward solution is independent of the reference electrode. 

Proposition 3.3: Let          be the identity matrix and H =    
   

   
, as above. Then 

(i) H1 = 0 

(ii) H      

Proof: (i) By definition of H, 

H =  (

  
 

 
                

 

                     
 

 

 , , 

where all non-diagonal entries are  
 

 
 . Hence 

H1 =  

(

  
 

  
 

 
   

   

 
   

 
        

                 

  
 

 
   

   

 
 )

  
 

 = 0 

(ii) The identity in (i) leads immediately to (ii), when we let H act on equation (3.31).      

                                                                                                                                                                        

This justifies the assumption that if the lead field as well as the EEG measurements is average 

reference transformed, by (ii) the additive constant c vanishes. 

Thus, by setting 

                                                                                                                                (3.32) 

and 

                                                                                                                                 (3.33) 

the reference independent forward equation (2.4) can be rewritten as 

                                                                                                                                   (3.34) 

This equation is later used to compute the unknown current density J, and since (3.34) holds 

for any c, and J is independent of c, (3.34) indeed leads to the correct J. 
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3.6 The Moore-Penrose Pseudoinverse 

If we consider the forward problem w.r.t the N electrodes and n voxels, (3.29) has the form  

    , 

with         the lead field matrix,       the current density vector at the n voxels and 

      the electrode potential. Algorithms implemented in the eLORETA software 

(Pascual-Marqui, (2007, 2011)) [16, 17]  seek for a solution of the inverse problem in this 

particular form. Since K is neither symmetric, nor non-singular in general, the Moore-

Penrose pseudoinverse matrix involving products of K is used. Thus, we give a brief 

introduction to such pseudoinverses and prove properties needed later. We start with basics in 

linear algebra.  

Let          be a matrix  (   )     
     

 . 

Its transpose    is the matrix    (   )     
     

 . 

Thus the rows of   are the columns of   . 

         is called symmetric, if     . 

Let 〈   〉 be the standard inner product in   . Note that for any matrix         for all 

        it holds that 〈    〉  〈     〉                                                                         (3.35) 

A symmetric matrix is called positive definite resp. positive semidefinite, if  

〈    〉    for all          , 

resp. 〈    〉    for all      , 

A positive definite matrix is non-singular, while a positive semidefinite matrix is not 

necessarily. All eigenvalues of a positive definite matrix respectively positive semidefinite 

matrix are positive resp. non-negative and the converse is true, too. 

For a positive semidefinite matrix  , the spectral theorem shows the existence of a square 

root      of   in the following way. A matrix         is said to be orthogonal, if 

          ,                                                                                                                (3.36) 

        the identity matrix. For a positive semidefinite matrix   its n orthogonal 

eigenvectors         form the orthogonal matrix                    and with the n 

eigenvalues         of   the diagonal matrix D is defined as 
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   (
              

 
             

+. 

This allows the decomposition  

                                                                                                                                (3.37) 

The square root      of   then is 

                                                                                                                             (3.38) 

where 

      (
√                 

 

             √  

). 

since           , (3.37) implies 

                                                 

                                                                                                                                (3.39) 

which is also viewed as a defining property of the square root of    

One can check the positive (semi-) definitness of a matrix by calculating its eigenvalues. But 

there is a much simpler criterion, which takes recourse only to the entries of the matrix. 

Lemma 3.4:  Let            (   )       
  be a symmetric matrix.   is positive 

(semi)definite, if   is (weak) diagonal dominant, that is  

∑|   |  

 

    
   

                     

Further, we have some simple properties of sums and products of positive (semi-) definite 

vertices. 

Proposition 3.5: Let           symmetric matrices. 

(i) Let   and   be positive semidefinite. Then the sum     is positive semidefinite 

and if at least one of   and   is positive definite the sum is also positive semidefinite. 

(ii)    is symmetric, if and only if    and  B commutes i.e.      . 
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Proof: (i) Let      \{0}. Then 

〈        〉   〈    〉⏟    
  
    

 〈    〉⏟  
  
    

, 

And all statements follow from this decomposition by case distinctions. 

(ii)              , so 

 

          if and only if      .           

                                                                                                                                                     

 

We are ready to define the Moore-Penrose pseudoinverse, briefly called MP inverse, see 

(Magnus and Neudecker (1988), chapter 3, section 5) [91]. 

Definition 3.6 (Moore-Penrose inverse) Let        . A matrix         is the Moore-

Penrose inverse of  , if 

                                                                                                                        (3.40) 

                                                                                                                        (3.41) 

                                                                                                                      (3.42) 

                                                                                                                      (3.43) 

X is denoted by   . 

Theorem 3.7 (Magnus and Neudecker (1988),chapter 2, section 5, Theorem 4 and 5) [91]. 

(i) For each  ,    exists and is unique. 

(ii) If         has rank r, there are semi-orthogonal matrices S, T and a positive 

definite matrix        , such that 

            and                                                                        (3.44) 

(iii)  If   is non-singular, then        

(iv)                                                                                                             (3.45) 

(v)                                                                                                          (3.46) 

(vi)                                                                                                (3.47) 

(vii)      
           

                                                                          (3.48) 

(viii)             
           

                                                             (3.49) 

We will use the following facts. Statement (iii) in Proposition 3.8 is new, while the others are 

easily delivered from Theorem 3.7. 

resp

. 
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Proposition 3.8 Let         be a symmetric matrix. Then 

(i)    is symmetric.  

(ii) If   is positive semidefinite, then    is also positive semidefinite.  

(iii) If        then     , so Ker   ⊆      . 

Proof:  

(i)               . 

(ii) Let      . Then 

    〈     〉  ⏟
      

〈        〉   〈           〉                                                                                  

                     = 〈        〉                                                          by (i)    is symmetric. 

                     = 〈    〉                                                                               with        

                        0                                                         because   is positive semidefinite. 

(iii) Let       such that      , so          

Then, by (3.44)             

                             

hence 

                      

and by multiplying with      we get        

Again with (3.44) 

    (   
 
   *

 

      
 
       

But   is symmetric, so            hence       . 

                                                                                                                                         

  

An important fact used later for matrices appearing in the discrete inverse problem for EEG is 

positive definiteness of the MP inverse: 

 

Theorem 3.9 Let         be a positive definite matrix. Then    is positive definite. 

 

Proof: A short proof using eigenvalues is the following.     is positive definite, because the 

eigenvalues of     are      ,   an eigenvalue of  . But        and we are done.  

Another proof using the defining property of positive definiteness is via Proposition 3.6. 

By Proposition 3.6,  Ker   ⊆ Ker   = {0}, so 

Ker     {0}. For any      \{0} we have 
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〈     〉  ⏟
    

〈        〉  〈   
      〉 

                ⏟
    

〈        〉                                                                                              (3.50) 

Since                          and the last inequality (3.50) is strict by the 

positive definiteness of   . 

                                                                                                                                                     

We are now prepared to prove certain properties of matrices appearing in the EEG inverse 

problem. 

3.7 Regularized inverse solutions  

Consider the inverse problem (3.34) 

 

    , 

where the noisy solution    of the forward problem and the lead field matrix   are given. 

The task is to find  . Since we are confronted with a noisy solution, (3.34) is an ill-posed 

problem. Such problems are treated through an approximation by some well-posed problems. 

This approach is called regularization and is formulated as follows (see Grech, Cassar et 

al.2008) [80]. 

We wish to find a best-approximate solution       of      such that noisy data       

is approximated by the noise-less data      with ‖    ‖   , where      The  

minimization problem is 

   
 

‖     ‖
 
                                                                                                                           

 

where         and     is a regularization parameter. In Tikhonov regularization, 

     ‖ ‖   The different regularization methods are discussed in (Grech et.al (2008)) [80]. 

In the general low resolution electric tomography (LORETA) [18], Pascual-Marqui et.al 

(2011) [16] claim that in (3.51) the functional L has the following form 

 

   
 

‖    ‖       ⏟  
      

                                                                                                                     

where        is a positive definite matrix, and 

a general solution of (3.52) is 
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                    Φ,                                                                                     

(3.53) 

where H is the centering matrix from section 3.5 and     is the (Tikhonov) regularization 

parameter (see Pascual-Marqui et al. (2011)) [16]. 

We show in the following that the statement (3.53) is false, further, in view of the eLORETA 

anticipated solution for  , already the proposition of the Tikhonov regularization problem 

(3.52) is false, as well. 

Let us start with a general Tikhonov regularization problem, or in the context of linear 

algebra, the generalized least square minimization problem  

   
       

‖    ‖  〈    〉                                                                                                                   

where                     

We may assume that   is positive semidefinite. 

Let   

      ‖    ‖  〈    〉                                                                                           (3.55) 

             〈         〉  〈    〉 

                                                                                                        (3.56) 

The minimum   in (3.55) must satisfy 

                                                                                                                                  (3.57) 

Now  

                    , 

                                                                                                                    (3.58) 

So (3.57) and (3.58)  give 

                                                                                                                        (3.59) 

If           exists, 

                                                                                                                      (3.60) 

is the unique solution. In general, when           does not exist a theorem of M. James 

(1978) [92] gives a characterization of the set of all solutions of the least square problem, 

with generalized inverses, for example the Moore-Penrose inverse. 
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Theorem 3.10:  

              , where       is an arbitrary vector, are all solutions of the 

problem       

We apply Theorem 3.10 to (3.59) and get the following solution: 

Corollary 3.11:  

              [                 ]   

where      is an arbitrary vector represents the entire set of solutions of (3.54). 

A special solution for     is 

                                                                                                                       (3.61) 

Corollary 3.12: A special solution for (3.52) is  

                                                                                                                   (3.62) 

Proof: this follows immediately from Corollary 3.11. 

                                                                                                                                                     

 

We see that the solution (3.53) proposed by Pascual-Marqui (2007, 2011)  [16, 17] is not of 

the form (3.62), in particular, (3.62) has no matrix H in it. Therefore, (3.53) is not a solution 

of (3.52). 

To achieve a solution of the form (3.53), we must consider the following least square 

approximation problem with a diagonal positive definite matrix  . 

   
 

‖         ‖
 
                                                                                                                 

We can consider (3.63) as a weighted inverse problem. 

Corollary 3.13: A solution of (3.63) is 

                                                                                                         (3.64) 

In fact, for     the identity matrix, (3.63) is just the Tikhonov regularization problem, 

used in the sLORETA algorithm. The matrix       tries to adjust the electric potential 

associated with  , namely   , even better to the noisy solution  . This, of course, is a 

heuristic approach. 

If we consider the following minimization problem instead of (3.63)  
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‖       ‖                                                                                                                     

then 

Corollary 3.14:  A solution of (3.65) is 

                                                                                                          (3.66) 

In fact, (3.66) is close to the claim (3.53). 

However, Corollary 3.13 and 3.14 tells us that either we apply the weight matrix     or 

     , leading to (3.64) or (3.66), but in no case (3.53) in form of  

                                                                                                             (3.67) 

is possible. In order to fully compare (3.64) and (3.66) with (3.53), we must shift       

from the right in (3.64) resp. (3.66) to the front of the formula. This can be proved as in 

Grech et al. (2008), at least if   (
       

 
         

+, and   is the identity matrix   in      and 

           exists: 

Theorem 3.15: (Grech et al. (2008), Appendix, page 30) [80]. 

                                                                                                         (3.68) 

In view of Theorem 3.15, we may take a weight matrix  ,   being a positive definite 

diagonal matrix, in the following way. The formulas below are heuristically justified 

solutions of the different weighted Tikhonov regularization problems for EEG: 

                                                                                                             (3.69) 

or 

                                                                                                            (3.70) 

or 

                                                                                                             (3.71) 

(3.70) and (3.71) are mathematically correct, but the Pascual-Marqui formula (3.69) must be 

considered as an unproved heuristical approach only. Since this approach in practice is giving 

meaningful results, we take (3.69) for further discussion as a hypothesis being aware that it is 

certainly not the correct solution of the weighted Tikhonov regularization problem. We 

proceed to the eLORETA algorithm. 
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3.8 The eLORETA algorithm 

Let us present the eLORETA algorithm based on (3.53) along with its serious mathematical 

issues.  

The family of algorithms, where   (
       

 
        

+ is the identity matrix, is known as the 

sLORETA method (Pascual-Marqui, 2002) [19].  Pascual-Marqui argues that the “non-

weighted minimum norm has very bad localization properties, misplacing deep sources to the 

surface. The reason is because this solution is a harmonic function that attains its extreme 

values at the boundary of the solution space” (Pascual-Marqui et. al (2011), page 3771) [16].    

He thus devised a new algorithm known as eLORETA, which computes the matrix      not 

the identity matrix, in an iterative way. Since we apply the eLORETA algorithm for source 

localization in our applications, let us review the mathematical foundation in more detail, 

which is missing in the papers of Pascual-Marqui (2007) [17], and Pascual-Marqui et. al 

(2011) [16], e.g. the proof of positivity of the weights         in order to define      

(
  

           
 

            
  

+. This is a major deficit of the papers of Pascual-Marqui (2007) [17], Pascual-

Marqui et. al (2011) [16]. 

We will prove this in our work for the first time. In fact the proof is non-trivial heavily using 

linear algebra of MP inverses.    

Let    be the i-th column of the lead field matrix,          The eLORETA algorithm 

computes the diagonal weighted matrix in an iterative way. We give a generalization, which 

covers also the correct mathematical form of the inverse solution (3.71).  

A central question is how to choose the weight matrix    Let                

                   is a     matrix. Let      be the     matrix defined by  

                   

In Baysian statistics      is considered as a generalized i.e. weighted covariance matrix. The 

optimal weight matrix is found by the following matrix minimization problem 

   
 

‖      ‖                                                                                                                                      

This is the minimization problem as in Pascual-Marqui (2007) [17], section 7.2. A general 

reference for an overview to the weighted covariance matrix is the paper of Grech et. 

al.(2008) [80]. 

Pascual-Marqui (2007) [17] claims that the optimal solution to (3.72) satisfies the non-linear 

system of equations 
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     ,                                                                                                                     (3.73) 

         leading  to weights 

       
     

                                                                                                                   (3.74) 

A proof has not been given by him. 

In view of the correct inverse solutions in (3.70) and (3.71), we will work with weights of the 

form  

    [  
       ]

    ,                  , and                                              (3.75) 

For    ,  this is (3.73). in future work it should be proved that (3.75) indeed solves problem 

(3.72). For the sake of our work we take this as an heuristical approach justified by 

experimental evidence.  

We are ready to formulate our generalized version of the eLORETA algorithm.  

Algorithm eLORETA (s) weights: 

0. Parameter           fixed. 

1. Initialization:     (
       

 
          

+,       for all          

2. Compute the Moore-Penrose inverse                  

 

3.                      

 

   [  
    ]

    

 

4. Go to step 2 and iterate until a termination criterion is reached. 

                                                                                                                                               

Note that for     we have the Pascual Marqui matrix (3.69)      and the original 

eLORETA algorithm, and for     the correct inverse solution matrix (3.71). 

We remind the reader about the dimension of the matrices: H is a     matrix,        is 

a     matrix, so   is also a      matrix. 

There are two critical points with this algorithm: 

a) Is      for all         in each iteration, because this is needed to build the 

inverse matrix. 

     (
  

        
 

            
  

+ 
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b) What is a termination criterion? 

Problem a) is not addressed in the eLORETA publications of Pascual-Marqui, (2007) [17], 

and Pascual-Marqui et. al (2011) [16] at all. This is indeed a major drawback and questions 

the correctness of the algorithm. For problem b) it is stated that “until convergence i.e. stop 

when the change in weight matrix is sufficiently small” (Pascual-Marqui et.al (2011), page 

3774) [16], but no convergence proof is given. 

In practice, zero weights have not been produced by the eLORETA software in our 

applications. In the following, we will give the first proof of this empirically known fact.  

However, we must consider the second problem b) as an open problem. In practice 

eLORETA is producing good source localizations which we found valid by benchmark 

studies.  

Our main theorem is: 

Theorem 3.16:  In any iteration of the algorithm eLORETA (s)-weights, the matrix 

   (
        

 
         

+ is a positive definite diagonal matrix, so      for all          

Proof:   By definition, 

 

   [  
    ]

     with                    ,           

Let us first consider the matrix H,   (   )       
 

By Lemma (3.4), H is positive semidefinite, if 

∑|   |  

 

    
   

                     

Now      
 

 
  for     and       

 

 
 . So 

∑|   |  

 

    
   

   

 
   

 

 
                       

thus H is positive semidefinite.  

We proceed by induction of the number of iterations. At the start of the induction,   is the 

identity matrix, so 



 

55 
 

   (
       

 
          

+      , and    
    ,  for all          is well defined. 

Assume that at iteration l,      is a well-defined matrix. This is true at the start as said. To 

enter the next iteration, we must update the weights        , and show      for all 

         

       is a positive semidefinite     matrix, because for any      we have 

〈         〉  〈          〉                                                                                (3.76) 

since   is positive definite. We cannot show that        is positive definite: if we 

consider any         , so        then (3.76) is true, even if     . 

But, since        as observed is positive semidefinite, H is positive semidefinite and using  

   , by Proposition 3.5,             is positive semidefinite, by Proposition 3.8, 

               is positive semidefinite. 

Therefore, 

  
     〈      〉     and 

   [  
    ]

    is well defined, for all          

Claim 0:      for all          

Assume for a moment that      for some            

Then   
     

so, 

    
    

     〈      〉                                                                                           (3.77) 

Since C is positive semidefinite, C has a symmetric square root matrix B with        , 

and (3.77) gives 

  〈      〉  〈       〉 

     〈        〉  ⏟
           

〈       〉 

     ‖   ‖
 , so ‖   ‖     

hence        and           , 

which shows           By Proposition 3.8, 
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                       ⊆                  

So, 

                                                                                          (3.78) 

We claim: 

                                                                                                                                  (3.79) 

We give a proof combining mathematical arguments and a fact from the physics of EEG 

scalp measurements. 

Assume that (3.79) is not true:             

To shorten the notation let‟s say                 Then 

      

(

 
 

  
 

 
                

 

                     
 

 

 

)

 
 

(
  

 
  

+ 

 

(

 
 
 
 
(  

 

 
*    

 

 
     

 

 
                        

 
 

 
   (  

 

 
*      

 

 
                        

                    

        
 

 
     

 

 
     (  

 

 
*  )

 
 
 
 

 

Therefore, 

   
 

 
          

for all           This is a system of linear equations, and in fact, it has a very simple 

solution, namely       for all              so all components of    are the same! We 

can see this as follows. Let             and    . Then, as    
 

 
          for all 

           we have 

              ∑   ∑  
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                        for all    . 

This means, all electrode field components are the same, which is not the case in EEG, and 

also completely unrealistic from a physics point of view. Thus                                                                                                                                   

From (3.78) we get 

    
              

       

     〈           〉⏟          
   

  〈      〉⏟      
   

                                                                                 (3.80) 

We show now that     and    , leading to the contradiction 

         so                                                                                                        (3.81) 

In fact,    , and     is sufficient for this contradiction. 

Claim 1:    . 

Proof of Claim 1: Since H is positive semidefinite, its square root matrix         exists. 

Thus 

  〈      〉  〈       〉 

     〈       〉  ‖   ‖
   

The assumption     gives ‖   ‖
   , so       . 

Thus 

          , enforcing          , which is a contradiction to (3.79). 

Claim 2:    . 

Proof of Claim 2: Since         is positive semidefinite, its square root   exists,  

so           . 

Now 

  〈       〉  〈       〉 

     ‖   ‖
   

The assumption     implies ‖   ‖
      so      , 
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So 

                                                                                                                          (3.82) 

By (3.60),             so 

  〈           〉  〈      
      〉                                                                     (3.83) 

Since     is positive definite, (3.83) can hold if and only if  

                                                                                                                                  (3.84) 

Let us compute     . The columns of   are the rows of     So 

  ⏟
      

     

(

 
 

     

 
     

 
     )

 
 

 

(

 
 

     

 
‖  ‖

 

 
     )

 
 

, 

hence ‖  ‖
   , so       

This is absurd, because the i-th column of the lead field matrix is certainly not the zero 

vector, since the i-th source is generating a non-zero electric field, of course. 

Therefore,     and we have produced the contradiction in (3.81), concluding the proof of 

the theorem. 

                                                                                                                             

3.9 Scalp potential from a point source 

In this section we show that under the special assumption of the electrode potential Φ being 

generated by a single source             the current density has a local maximum. Let 

          be arbitrary, but now fixed. The electric activity of source   is captured by the 

 th coloumn     of the lead field matrix  . 

We make the following assumption: 

                                                                                                                                  (3.85)  

with some       (3.85) says that only the source   is generating the scalp potential     

We shorten the notation by fixing an arbitrary column    of  ,         and setting 

                  and                   

where    is as in (3.85). 
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Further, we define for      

         〈    〉   〈    〉 ,                                                                                          (3.86) 

with                 as in (3.75) for    , also reflecting the correct inverse 

solution (3.70). 

We show now that the i-th current density squared is exactly the function value        

Lemma 3.17 Then with   and   defined as above,        
 . 

Proof:  

By (3.70)  

     
 
                    

Remember, that in the algorithm eLORETA(s),    was defined as 

   [  
    ]

    [  
    ] 

So 

     
 
 
    

          

      [  
    ]

      
       

 ⏟
       

 [  
    ]

      
    . 

Therefore  

  
     [  

    ]
      

     
  

          〈      〉
  〈      〉

  

                                                                        

                                                                                                                                                     

Let       be the gradient of   w.r.t.    The first lemma states that the gradient of   vanishes 

in      

Lemma 3.18             

Proof:   

We first compute   
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      (
     

   
    

     

   
 )   

So, let us choose           arbitrary, but now fixed and consider  
     

   
. 

Let    (   )       
 ,        〈    〉   and         〈    〉      and   are quadratic forms 

in  . 

By product rule  

     

   
    *

     

   
           

     

   
+                                                                                    

Now, 

     

   
  

 

   
[(∑      

 

     

  )

  

] 

               
 

   
(∑      

 

     

  )  (∑      

 

     

  )

  

 

              *∑   

 

   

   ∑   

 

   

  +  〈    〉   

      ⏟
           

   ∑   

 

   

   〈    〉   

                 〈     〉  〈    〉                                                                                            (3.88) 

where    is the l-th row vector of    

Further, as above 

     

   
  

 

   
[(∑      

 

     

  )

 

] 

               
 

   
(∑      

 

     

  )  (∑      

 

     

  )
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               (∑   

 

   

  )  〈    〉  

                〈     〉  〈    〉                                                                                                 (3.89)       

(3.88) and (3.89) substituted in (3.87) give 

     

   
  [  〈     〉〈    〉  〈    〉   〈    〉   〈     〉〈    〉] 

                * 
〈     〉〈    〉 

〈    〉 
 

〈     〉〈    〉

〈    〉
+                                                                            

Thus 

     

   
    * 

〈     〉〈    〉 

〈    〉 
 

〈     〉〈    〉

〈    〉
+ 

                 [ 〈     〉  〈     〉⏟          
  

] 

               . 

Since   was arbitrary, 
     

   
   for all            hence 

       (
     

   
    

     

   
 )     

                                                                                                                                                     

The next theorem is the main result of this section. 

Theorem 3.19 Let   and   be as in (3.86). 

(i)   has a global maximum in    

(ii) For a point source        as in (3.85),      the current density in square,   
 , has 

a global maximum for        

Proof: 

 

(i) Since   is positive semidefinite, there exists a orthogonal basis (OB)         of    

with respect to  , i.e. 

〈      〉    for all                                                                                            (3.91) 
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We can assume that  〈    〉    and         (after normalizing    if required). Let  

 ⊆     an arbitrary neighbourhood of     and let           has an expansion w.r.t. 

the basis         as  

   ∑       

 

   

 

With suitable coefficients         in R. Now 

       〈    〉  〈    〉  

   ⟨∑       ∑       

 

   

 

 

   

⟩

  

  ⟨∑         

 

   

⟩

 

 

   ( ∑∑     

 

   

 

   

〈      〉)

  

  
 〈    〉  

           ⏟
       

  ( ∑  
 

 

   

〈      〉+
⏟            

   
 〈    〉

  

   
 〈    〉  

       
 〈    〉      

 〈    〉  

   
  

 〈    〉 

  
 〈    〉

 

   〈    〉 

       

So           for all       thus (i) holds. 

(ii) By Lemma 3.17, for               ,         
   The statement immediately 

follows from the first part (i). 

                                                                                                                                         

From Lemma 3.18 and Theorem 3.19, 

Corollary 3.20: The function         
  has exactly 1 global maximum and no other local 

maxima. 
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Chapter 4  

       
Materials and EEG pre-processing  

4.1 Subjects   

All patients for this study were recruited from the North German Epilepsy center for children 

and adolescents in Schwentinental Raisdorf, Germany. The patient data was retrospectively 

collected and analyzed. The data received from the hospital was completely anonymized. 

This study was approved by the Ethics Committee of the Faculty of Medicine, University of 

Kiel, Germany (Number D 456/19).  

Patients Gender 
Age of 

onset  

(years) 

Age at 

EEG  

(years) 

Seizures 

still ± 

Seizures in 

Family 

Normal 

Cognitive 

Development 

Anti-Epileptic 

Drugs 

P1 M 6 6 - 

Febrile, 

afebrile, 

GTCs 

Yes ESM 

P2 M 9 9 - - Yes LTG 

P3 M 5 5 -2012 - Yes LTG 

P4 M 7 12 -2018 - Yes LTG 

P5 M 6 6 -2018 - Yes 
ESM, LTG, 

VPA 

P6 F 4 6   Yes LTG, ESM 

P7 M 4 8 -2017 - Yes ESM, VPA 

P8 F 6 7 - - Yes ESM 

P9 M 5 10 - - Yes LTG 

P10 F 10 13 - - Yes LTG 

P11 F 4 7 - No data 
Mild learning 

difficulties 
ESM, VPA 

P12 F 7 9 - Migraine Yes 
ESM, LTG, 

VPA 

Table 4.1 Demographic data of all subjects.  

(+ present, - not present), EEG electroencephalography, ESM ethosuximid, VPA valproic 

acid, LTG lamotrigine,  
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Since the data was anonymized, the patients were given numbers to identify them. 26 patients 

with a clear diagnosis of CAE were selected for this study. The diagnosis was made based on 

the 2017 International League against Epilepsy (ILAE) classification for epilepsies [4].  The 

selected patients were further checked by viewing their EEG recordings to make sure they 

fulfill the criteria of our study. Firstly, the ictal and non-ictal discharges were classified based 

on the timely and reliable testing of patients during EEG recordings by experienced 

technicians. The level of consciousness during the GSWDs were tested by asking direct short 

questions (e.g. what is your name? where are you? etc.) during the first few seconds of the 

event. Also, any disruption in activities such as counting or reading was noted via video 

recordings. Only those segments were selected for the analyses where the level of 

consciousness was successfully and reliably evaluated. A second criterion of selection was 

that the patients should have both ictal and non-ictal GSWDs present. Those patients that did 

not fulfill these criteria were excluded from the study. 

Following this, 205 EEG recordings from these patients were analyzed and 12 patients were 

selected. For reference the patients were given numbers (P1…P12). These 12 patients had 

both ictal and non-ictal GSWDs in 111 EEGs. In the cohort of 12 patients, 7 were males and 

6 were females with a mean age of 7.3 ± 1.5 years. All patients had a normal cognitive 

development except P11 who had mild learning difficulties. P1 was the only patient with 

family history seizures. As of 2019 all the selected patients are seizure free.   

4.2 EEG Recordings 

The EEGs files consisted of sleep and wakeful state recordings of the patients. But for this 

study only awake state recordings were included.  

 

Figure4. 1 Electrode layout 

This is based on the 10/20 standard system. 
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The recordings were performed using the 10/20 standard system (EEG recording system: 

Neurofile; IT-med, Bad Homburg, Germany) with additional electrodes which were FC1, 

FC2, FC5, FC6, CP1, CP2, CP5, CP6, FT9, FT10, TP9, TP10 and ECG.  

The reference was located between Fz and Cz. The sampling rate was 512 Hz and the 

Impedance was kept below 10 kOhms. The EEG was recorded from 31 scalp sites for all 

patients. In some EEG recordings two additional lateral electrodes F9 and F10 were used in 

patients P1, P2, P3, P4, P5, P7, P9, P11,P12. 

4.3 EEG preprocessing  

For this study we chose to analyze 3 Hz ictal and non-ictal GSWDs in CAE patients. All the 

EEG files were converted offline using the software Cartool. The file formats were changed 

to brain vision format (.eeg) since this format can be read easily by other software‟s. The data 

was visually inspected using the software BESA Research 7.0 (https://www.besa.de/). BESA 

is a comprehensive software package for signal processing of EEG and MEG data. It is user 

friendly, versatile and contains various tools and scripts for preprocessing raw data as well as 

for source analysis. Using this software, high pass and low pass filters were applied for 

artifact removal (high pass filter- 0.5 Hz low pass filter- 35 Hz). A total number of 111 EEG 

recordings from the 12 patients were visually analyzed to mark ictal and non-ictal GSWDs. 

BESA software was further used to cut the regions of interest for further analysis. 

4.3.1 Selection of the Time intervals  

For this study ictal and non-ictal GSWDs were analyzed at three time periods: pre- ictal/non-

ictal, during- ictal/non-ictal, post- ictal/non-ictal. For pre- and post- ictal/non-ictal, 3 second 

time periods were taken, while for during- ictal/non-ictal the entire length of the discharge 

was taken. For a part of the sensor level analysis we also chose to analyze 10 seconds pre- 

and post- ictal/non-ictal. 

 

 

 

 

 

 

Figure4. 2 Time intervals of interest   

The entire duration of ictal/non-ictal discharges were selected. For pre- and post-ictal/non-

ictal intervals the duration of 3 seconds was selected. 

https://www.besa.de/
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4.3.2 Selection of ictal GSWDs 

Seizures in CAE are usually 3 Hz, consisting of GSWDs such as that seen in Figure. 3.4. 

During the course of the seizure the patients have staring spells alongside severe impaired 

consciousness, which resumes soon after the discharge ends.  

 

For further analysis seizure segments or ictal GSWDs were selected based on the following 

criteria: 

 

 Clinically defined CAE characteristics  

 Tested for impairment of consciousness. 

 Ictal discharges longer than 3 seconds and less than 30 seconds  

 Spontaneous seizures and provoked seizures by hyperventilation 

Following this, 46 ictal GSWDs were selected from the 12 patients. In table 3.2, the number 

of seizures per patient with the duration of the discharges can be found.  

4.3.3 Selection of non-ictal GSWDs 

Non-ictal GSWDs in CAE are similar to ictal GSWDs on the EEG with 3 Hz discharges, but 

they show no clinical symptoms of a seizure and most importantly have no impairment of 

consciousness. (Fig 3.5)  

 

These non-ictal GSWDs are shorter than ictal GSWDs. These segments were selected based 

on the following criteria: 

 

 Patients were tested for impairment of consciousness by asking simple questions 

during the EEG recordings,  

 No clinical symptoms of an absence seizure 

 Non tested paroxysms excluded 

 Length of discharge should be longer than 1 second  

Based on the selection criteria 42 non-ictal GSWDs were selected, for which the duration has 

been depicted in Table 3.2.  

For a specific part of the sensor level analysis only those non-ictal GSWDs were taken which 

were longer than 3 seconds. There were only 23 non-ictal GSWDs longer than 3 seconds and 

out of 12 patients only 4 (P7, P8, P10, P11) had these.  

The mean duration of ictal discharges was 8.4 seconds (SD 3.4) and was significantly (p 

<0.001) longer than the mean duration (4.1 seconds, SD 2.4) of non-ictal discharges. 
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Figure 4. 3 EEG ictal GSWDs. 

3 Hz ictal discharges during an EEG recording. Patient has clinical symptoms with severe 

impairment of consciousness. 

 

 

Figure 4. 4 EEG Non-ictal GSWDs.  

Non-ictal discharges of 3 Hz during an EEG recording. Patient is aware during the entire 

paroxysm. 
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Table 4.2 The durations of ictal and non-ictal. 

 

 

 

 

 

 

 

 

 

 

Patients Number of 

ictal GSWDs 

 ictal GSWDs 

duration 

(seconds) 

Number of 

non-ictal 

GSWDs 

Non-ictal GSWDs 

duration (seconds) 

P1 2 9-11.7 2 1-1.3 

P2 2 12-13.8 6 1.2-3.3 

P3 1 8.9 2 1.2-3.4 

P4 2 9-12.8 1 1.3 

P5 3 12-18.8 1 5 

P6 1 3.5 4 2.2-8.8 

P7 1 5.1 3 3.5-8.3 

P8 6 5-15.7 1 1.2 

P9 1 5.1 14 3-8.6 

P10 4 6.5-9 5 2-12.6 

P11 11 4-6.8 1 2.3 

P12 11 4-10.9 2 2.9-3.4 
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Chapter 5  

 

Sensor-level time frequency analysis 
 

In this chapter time frequency analysis was used as a measure to analyse ictal and non-ictal 

GSWDs > 3 seconds. This was implemented to better understand the spectral power changes 

within frequency bands ranging from 1-30 Hz. Descriptive statistics was applied to analyse 

the various frequency bands in ictal and non-ictal GSWDs.  

5.1 Methods 

5.1.1 Selection of ictal and non-ictal GSWDs > 3 seconds 

All 12 patients mentioned in the materials section (chapter3) were included in this part of the 

study. All 12 patients had ictal GSWDs, however only 4 patients had non-ictal GSWDs>3 

seconds. Ictal GSWDs were selected based on the criteria mentioned in chapter 3. While non-

ictal GSWDs were selected based on the following criteria: 1) patients were tested for 

impairment of consciousness 2) no clinical symptoms of absence seizures 3) the duration of 

discharges being 3 or more seconds. Following this 44 ictal GSWDs and 23 non-ictal 

GSWDs were selected. The TFA was done for the entire duration of ictal and non-ictal 

GSWDs. 

Patients Number of 

ictal GSWDs 

duration 

(seconds) 

Number of 

non-ictal 

GSWDs>3 

seconds 

duration 

(seconds) 

P1 2 9-11.7 - - 

P2 2 12-13.8 - - 

P3  1 8.9 - - 

P4 2 9-12.8 - - 

P5 3 12-26.3 - - 

P6 1 3.5 3 3-8.8 

P7 1 5.1 3 6-8.3 

P8 5 5-15.7 - - 

P9 1 5.1 14 3-8.6 

P10 4 9 3 6-12.6 

P11 11 4-6.8 - - 

P12 11 4-10.9 - - 

Table 5.1 Depiction of number of ictal and non-ictal GSWDs> 3 seconds. 
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5.1.2 Time intervals of interest 

For time frequency analysis the time intervals selected for ictal and non-ictal GSWDs were as 

follows: pre-ictal/non-ictal (10 seconds), during-ictal/ non-ictal (entire event), and post-

ictal/non-ictal (10 seconds). 

 

 

 

 

 

 

 

Figure 5.1 Time intervals. 

Demonstration of the time intervals of interest. 

5.1.3 Pre-processing 

Pre-processing refers to reading of the data, segmenting the data, temporal filtering and also 

re-referencing. This was done based on the pipeline implemented in the Fieldtrip toolbox [65] 

(http://fieldtriptoolbox.org). The toolbox carries out a series of calls to specific functions, 

which analyse the data conceptually. A configuration (cfg) is always used as an input for 

these functions. This contains all information regarding the dataset filenames, trials and pre-

processing options. The basic pre-processing step can be achieved by the call to the function 

ft_preprocessing.The specific segments of interest were firstly imported from the BESA 

software in the .edf format. For the pre-processing function firstly the dataset was loaded. 

After which the channel number was specified so that all or selected channels can be read. 

The pre-processing options for the channels selected include various filters, where various 

specifications can be applied such as: filter type, filter range, filter direction, filter window 

type etc. Also channel labels were specified based on the labels in the original EEG 

recording. The specifications for pre-processing used for this data, and run through 

MATLAB have been given below. 

 

 

 

 

%%Pre-processing code as used in Fieldtrip software 

cfg = []; 

cfg.dataset = 'C:\Analysis\CAE\Patients CAE\P6-M.S\seizure\sz1.edf'; 

cfg.channel= [1:31]; 

cfg.bpfilter = 'yes'; 

cfg.bpfreq = [0.53 70]; 

cfg.bpfilttype = 'but'; 

cfg.bpfiltdir = 'twopass'; 

cfg.bpfiltwintype = 'hann'; 

cfg.dftfilter = 'yes'; 

cfg.dtffreq = [50]; 

data1 = ft_preprocessing(cfg); 

data1.label = {'Fp1', 'Fp2', 'F7', 'F3', 'Fz', 'F4', 'F8', 'FC5', 'FC1', 

'FC2', 'FC6', 'FT9', 'T7',  'C3', 'Cz', 'C4', 'T8', 'FT10', 'CP5', 'CP1', 

'CP2', 'CP6', 'TP9', 'P7', 'P3', 'Pz', 'P4', 'P8', 'TP10', 'O1', 'O2'}; 

data1.hdr.label = {'Fp1', 'Fp2', 'F7', 'F3', 'Fz', 'F4', 'F8', 'FC5', 

http://fieldtriptoolbox.org/
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5.1.4 Artifact Removal 

For artifact removal the method of independent component analysis (ICA) was implemented. 

For this, the software EEGLAB (https://sccn.ucsd.edu/eeglab/index.php) was used, which is 

also a toolbox working on the basis of MATLAB. The EEG data is usually contaminated with 

signals such as muscle artifacts, ocular artifacts, loose electrode connections and high 

amplitude events. It is important to correct these artifacts since they may distort results. ICA 

is a method which allows isolation and subtraction of statistically independent source activity 

as linear combinations of electrodes. In EEGLAB users can select various ICA algorithms for 

ICA decompositions. The algorithm runica is one of the default algorithms of this toolbox, 

and was used for this study to remove artifacts. This algorithm selects components which 

have a super gaussian activity distribution.  

 

In this study the pre-processed data was firstly imported to EEGLAB. Then the layout of the 

electrodes based on the number was also loaded. The data was then subjected to the ICA 

algorithm (runica), which gave an output of independent components, based on the number 

of electrodes. Following the EEGLAB guide as well as a practical guide published by 

Chaumon et al. 2015 [93], certain components containing artifacts were removed. 

Subsequently the data was saved and exported back to Fieldtrip for further analysis.  

 

The toolbox offers various options for visualizing the results. The independent components 

(ICs) can be viewed as topographical plots (Figure 4.2). Each of these topographical plots can 

further be viewed independently, as they include information regarding the activity of the 

power spectrum (Figure 4.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 2 ICA topographical plots. 

Two dimensional topographical plots of the ICs. 

https://sccn.ucsd.edu/eeglab/index.php


 

72 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 ICA plot properties. 

Examples of ICs depicting power spectrum activity. IC28 shows the presence of a muscle 

artifact, which would be removed and IC5 depicts a component without any presence of 

artifacts.  

5.1.5 Normalization  

After artifact correction the data was normalized. Normalization is important before further 

steps of analysis, since the scales of measure for each patient differ drastically. Therefore to 

bring all the data to a standardized scale it is essential that normalization be done. For this 

study Z-score normalization was used. Once the data was loaded and read, the mean was 

subtracted firstly. Then the largest standard deviation was found over all selected segments 

and further, these segments were then divided by the largest standard deviation value. Once 

this was done, the datasets were saved.  

5.1.6 Time Frequency (TF) Analysis  

In Fieldtrip (http://fieldtriptoolbox.org) the function ft_freqanalysis performs frequency and 

time frequency analysis. This requires the input of various measures. Firstly for the 

configuration, the method „mtmconvol‟ was chosen, which implements multitaper TF 

analysis based on multiplication in the frequency domain. Secondly the taper was chosen as 

the „Hanning‟ window. For the output „power-spectra‟ was chosen as an option. Following 

this the frequency of interest was specified as 0.5 to 35 Hz, covering all the ranges up to 

lower gamma frequency range, so that we can visualize the dominant frequency. Also, the 

time of interest was specified based on the segment of interest being analysed.  

 

Visualization of the results was done using topographical plots as well as single plots of the 

channels. The topographical plots depict the changes in power underlying the data. The 

http://fieldtriptoolbox.org/
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function ft_topoplotTFR is used to obtain topographical plots while, ft_singleplotTFR is used 

for obtaining single plots of various electrodes. TF analysis was done for all time intervals of 

interest, for both ictal and non-ictal GSWDs>3 seconds.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.4 Time frequency analysis. 

Time frequency representations of power for visualization. a) Topographical plot b) single 

plot. 

 

5.1.7 Extraction of frequency band power 

Following the TFA, per subject the various frequency values per channel were extracted. This 

involved extracting power spectral values of frequency bands: delta (0.5-4 Hz), theta (4-7 

Hz), Alpha (8-13 Hz), Beta (13-30 Hz) and lower gamma (30-35 Hz).  

5.1.8 Statistical analysis  

Statistical analysis was done using the software SPSS (https://www.ibm.com/id-

en/products/spss-statistics) [94]. This is a software package which includes various statistical 

tests which can be used easily and interactively. The two groups of interest, ictal and non-

%% Time-frequency analysis code as used in Fieldtrip software 

cfg = []; 

cfg.output = 'pow'; 

cfg.method = 'mtmconvol'; 

cfg.taper = 'hanning'; 

cfg.foi = 0.5:0.01:35;                             %0.5 to 35 

cfg.t_ftimwin = ones (length(cfg.foi),1).*0.05;    %lenght of 

time window is 0.5 sec 

cfg.toi = 0:0.01:10; 

freq_pre1 = ft_freqanalysis (cfg, datapre1); 

https://www.ibm.com/id-en/products/spss-statistics
https://www.ibm.com/id-en/products/spss-statistics
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ictal GSWDs > 3s were analysed by statistical tests separately and not compared with each 

other since not all patients had non-ictal GSWDs. 

 

A repeated measure one way ANOVA [95] including descriptive statistics was applied to 

measure the 5 frequency bands (delta, theta, alpha, beta, gamma), extracted from TFA results 

of ictal and non-ictal GSWDs >3s. This test was used since there were and the subjects being 

tested were same in all. This test is used for related groups or within subject analysis. It 

measures the mean of three or more groups for comparison, where the subjects are same in 

each group.  

 

The null hypothesis (H0) for this measure states that the means are equal and this can be 

shown as follows: 

 

H0: µ1 = µ2 = µ3 = … = µk 

 

Where, 

 µ = population mean  

 k = number of related groups 

 

Additionally, the alternative hypothesis (HA) would be that the related population means are 

not equal, i.e.: 

HA: at least two means are significantly different 

 

A repeated measure ANOVA only tells if there is a significant difference between the means, 

but does not give where the difference lies. For this test certain relevant assumptions are 

made which have been described below. 

 

Assumptions:   

1. Independent observations 

2. Multivariate normal distribution: test variables in the population follow this, but if the 

sample size is >=25 then this assumption is not required. 

3. Sphericity: the population variances of the differences between all combinations of 

related groups must be equal. This is usually tested using the Mauchly‟s test.  

 

Firstly the values extracted per frequency band per subject were averaged. Then, a one way 

repeated measure ANOVA was run on the five frequency bands. This test was used to 

analyse the five frequency bands separately in the two groups of interest, to know if there is a 

significant difference in the means. This was done for all time points of interest.  

 

In SPSS, the repeated measure one way ANOVA, gives an output of descriptive statistics, 

multivariate tests, Mauchley‟s test for sphericity, and tests for within subject effects and tests 

for between subjects effect.  
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5.2 Results 

5.2.1 During-ictal GSWDs  

a) Descriptive statistics 

On applying the repeated measure one way ANOVA test, descriptive statistics revealed the 

mean and standard deviation of the averaged power spectral values for all frequency bands. 

This helps us understand certain patterns in the data.  

It was observed that the mean of delta frequency was highest (mean=0.42, SD=0.126) 

compared to the others. Followed by theta frequency (mean=0.39, SD 0.118), then alpha 

frequency (mean=0.30, SD=0.094), then beta frequency (mean=0.11, SD= 0.042), and lastly 

lower gamma frequency (mean=0.01, SD=0.013).  These have been depicted in tables 4. 

 

Table 5.2 Descriptive statistics for during-ictal GSWDs interval.  

b) Mauchly’s Test for sphericity 

Following this, the Mauchley‟s test for sphericity was checked to see, if the data meets the 

assumption. The null hypothesis for this test is that the variances of the differences are equal. 

Therefore if this test shows statistical significance (p < .05) then the null hypothesis can be 

rejected and the alternative hypothesis that the variances of the differences are not equal gets 

accepted.  

 

Table 5.3 Mauchly’s test of sphericity for during-ictal interval. 

The values marked in green are of importance. 
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In this study the assumption of sphericity was not met, as the p-value was less than .05. This 

can be represented using the values of Chi-Square, degrees of freedom and p-value as given 

below:  

The Mauchley‟s test of sphericity:  χ2 (9) = 925.291, p = .000 

c) Test of within subject effects 

This test gives the main ANOVA results depicting level of significance. The results for ictal 

GSWDs are demonstrated in Table 6. Since the test for sphericity was not met, the correction 

test Greenhouse-Geisser is accepted, which relies on estimating the sphericity. The degree of 

freedom (df), F-ratio (F), and the significance level (Sig) are important to understand the 

results. 

Table 5.4 Tests for within subject effects for during-ictal interval. 

Here we focus on the Greenhouse-Geisser test, the values marked in green are of importance. 

 

Based on the Greenhouse-Geisser correction test, repeated measure ANOVA showed that the 

p-value is less than 0.05, hence the null hypothesis is rejected. Therefore, there is a 

significant difference between the means of the frequencies measured in ictal GSWDs.  

The results show that: df=1.010, error df = 43.419, F-ratio = 519.467, p = 0.000 

This can be reported as: F (1.010, 43.419) = 519.467, p<0.05 
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d) Plot 

To visualize the data, SPSS gives an output based on estimated marginal means. The 

frequency is plotted on the X axis while the estimated marginal means are shown on the Y 

axis. 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 5.5 Estimated marginal means for during-ictal interval.  

4.2.2 Pre-ictal GSWDs 

a) Descriptive statistics 

Descriptive statistics for the pre-ictal time interval showed that the mean of delta frequency 

was highest (mean=0.027, SD=0.022) compared to the others. Followed by theta frequency 

(mean=0.025, SD=0.020), then alpha frequency (mean=0.019, SD=0.015), then beta 

frequency (mean=0.007, SD=0.005), and lastly lower gamma frequency (mean=0.0008, 

SD=0.0004).   

 
Table 5.5 Descriptive statistics for pre-ictal interval. 

 

Descriptive Statistics 

 Mean Std. Deviation N 

delta .027368124257318 .022679480045505 44 

theta .025309631411739 .020867270320216 44 

alpha .019608152698974 .015885301881579 44 

beta .007046180914299 .005277879041365 44 

gamma .000803885981625 .000435857907978 44 
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b) Mauchley’s test for sphericity 

For the pre-ictal interval the Mauchley‟s test for sphericity showed that the assumption of 

sphericity was not met (p-value < 0.05). 

The Mauchley‟s test of sphericity:  χ2 (9) = 1654.958, p = .000 

 
Table 5.6 Mauchley’s test of sphericity for pre-ictal interval. 

 

c) Test of within subject effects 

As mentioned before this test gives the main ANOVA results depicting the level of 

significance. Since the test for sphericity was not met for the pre-ictal interval, the correction 

test Greenhouse-Geisser was used.  

 
Table 5.7 Tests of within subject effects for pre-ictal interval. 

Repeated measure ANOVA based on the Greenhouse-Geisser correction test, showed that the 

p-value is less than 0.05, which in return rejects the null hypothesis. Hence, there is a 

significant difference between the means of the frequencies measured in the pre-ictal 

GSWDs interval. 

For this test: df=1.000, error df = 43.021, F-ratio =61.898, p = 0.000   

This can be represented as: F (1.000, 43.021) = 61.898, p<0.05 
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d) Plot 

The estimated marginal means of the pre-ictal interval have been demonstrated in the plot 

below. On X axis the frequency has been demonstrated while on the Y axis the estimated 

marginal means are given. 

 

 

 

 

 

 

 

 

 

Figure 5.6 Estimated marginal means for pre-ictal interval. 

5.2.3 Post-ictal GSWDs 

a) Descriptive statistics 

Descriptive statistics for the post-ictal time interval also showed a similar trend like during-

ictal and pre-ictal intervals. Delta frequency had the highest mean (mean=0.042, SD=0.053), 

followed by theta frequency (mean=0.039, SD=0.049), then alpha frequency (mean=0.030, 

SD=0.037), then beta frequency (mean=0.010, SD=0.012), and lastly lower gamma 

frequency (mean=0.001, SD=0.001).   

 
Table 5.8 Descriptive statistics for post-ictal interval. 
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b) Mauchley’s test for sphericity 

For the post-ictal interval the Mauchley‟s test for sphericity also showed that the assumption 

of sphericity was not met (p-value < 0.05). 

The Mauchley‟s test of sphericity:  χ2 (9) =1936.451, p = .000 

 

 
Table 5.9 Mauchley’s test of sphericity for post-ictal interval. 

c) Test of within subject effects 

Following the test of sphericity, the test of within subject effects was investigated. Here also 

the correction test Greenhouse-Geisser was used, because the test of sphericity was not met.  

The Greenhouse-Geisser correction test showed that the p-value is less than 0.05, which in 

return rejects the null hypothesis. Hence, there is a significant difference between the means 

of the frequencies measured in the interval of post-ictal GSWDs.  

For this test: df=1.000, error df = 43.014, F-ratio = 28.064, p = 0.000 

This can be represented as: 

F (1.000, 43.014) = 28.064, p<0.05 

 
Table 5.10 Tests of within subject effects for post-ictal interval. 
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d) Plot 

For the post-ictal interval, the estimated marginal means have been demonstrated in the plot 

below. The estimated marginal mean values are low for all frequency bands. Delta band has 

the highest mean value while gamma band has the lowest. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Estimated marginal means for post-ictal interval. 

5.2.4 During-non-ictal GSWDs>3s  

a) Descriptive statistics 

 

Similar to the results of ictal GSWDs, the repeated measure one way ANOVA test gave 

descriptive statistics with the mean and standard deviation for all frequency bands. The 

sample size was 23 for all bands. 

 

 

 

 

 

 

 

Table 5.11 Descriptive statistics for during-non-ictal GSWDs > 3 seconds. 
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It was seen that for non-ictal GSWDs, a similar trend like the icatal GSWDs was seen 

regarding the mean values. Delta frequency was highest (mean=0.38, SD=0.17), followed by 

theta frequency (mean=0.35, SD 0.16), then alpha frequency (mean=0.27, SD=0.12), then 

beta frequency (mean=0.10, SD= 0.04), and lastly lower gamma frequency (mean=0.01, 

SD=0.006).  

b) Mauchly’s Test for sphericity 

In the case of non-ictal GSWDs, the Mauchley‟s test for sphericity demonstrated significance 

since the p-value was 0.000. Therefore the null hypothesis was rejected and the alternative 

hypothesis was accepted being, that the variances of the differences are not equal. 

Table 5.12 Mauchly’s test of sphericity for durin-non-ictal GSWDs > 3 seconds. 

The assumption of sphericity was not met for non-ictal GSWDs, and these results can be 

reported as follows:   χ2 (9) = 528.595, p = .000 

c) Test of within subject effects 

Similar to ictal GSWDs results, since the test for sphericity was not met, the correction test 

Greenhouse-Geisser is evaluated to understand the main results of the repeated measure one 

way ANOVA. The degree of freedom (df), F-ratio (F), and the significance level (Sig) are 

essential to interpret the results. 

Table 5. 13 Tests for within subject effects for during-non-ictal GSWDs > 3 seconds.  

Here we focus on the Greenhouse-Geisser test, the values marked in green are of importance. 
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As seen above in Table 9, the Greenhouse-Geisser correction test, revealed that the p-value is 

.000 i.e. p<0.05, therefore the null hypothesis gets rejected. Hence, there is a significant 

difference between the mean values of the five frequency bands measured in non-ictal 

GSWDs.  

The results demonstrate: df=1.001, error df = 22.011, F-ratio = 114.696, p = 0.000 

This can be reported as: F (1.001, 22.011) = 114.696, p<0.05 

d) Plot 

For visualization of the dataset, as described before in the case of ictal GSWDs, an output 

based on estimated marginal means is given by SPSS. The frequency is plotted on the X axis 

while the estimated marginal means are shown on the Y axis.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 Estimated marginal means for during-non-ictal interval. 

5.2.5 Pre-non-ictal GSWDs>3s  

a) Descriptive statistics 

Similar to the results so far, descriptive statistics for the pre interval, in non-ictal GSWDs 

showed that delta frequency had the highest mean (mean=0.029, SD=0.022), followed by 

theta frequency (mean=0.027, SD=0.020), then alpha frequency (mean=0.021, SD=0.015), 

then beta frequency (mean=0.007, SD=0.005), and lastly lower gamma frequency 

(mean=0.001, SD=0.0006). The sample size for pre-interval for all frequency bands was 19. 
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Table 5.14 Descriptive statistics for pre-non-ictal GSWDs > 3 seconds. 

b) Mauchley’s test for sphericity 

For the pre-non-ictal interval the Mauchley‟s test for sphericity also showed that the 

assumption of sphericity was not met (p-value < 0.05). 

The Mauchley‟s test of sphericity:  χ2 (9) = 628.623, p = .000 

 
Table 5.15 Mauchley’s test of sphericity for pre-non-ictal GSWDs > 3 seconds. 

c) Test of within subject effects 

 
Table 5.16 Tests of within-subject effects for pre-non-ictal GSWDs > 3 seconds.  
Here we focus on the Greenhouse-Geisser test, the values marked in green are of importance. 
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Since the test for sphericity was not met in this case the Greenhouse-Geisser correction test 

was accepted. The Greenhouse-Geisser correction test showed that the p-value is less than 

0.05, which in return rejects the null hypothesis. Hence, there is a significant difference 

between the means of the frequencies measured in the interval of post-ictal GSWDs.  

For this test: df=1.000, error df = 18.007, F-ratio = 32.489, p = 0.000 

This can be represented as: F (1.000, 18.007) = 32.489, p<0.05 

d) Plot 

For the pre-non-ictal interval, the estimated marginal means have been demonstrated in the 

plot below. Delta band has the highest estimated marginal mean while gamma band has the 

lowest. 

 
 

Figure 5.9 Estimated marginal means for pre-non-ictal interval. 

5.2.6 Post-non-ictal GSWDs>3s  

a) Descriptive statistics 

For post-non-ictal interval also delta frequency had the highest mean (mean=0.046, 

SD=0.040), followed by theta frequency (mean=0.043, SD=0.037), then alpha frequency 

(mean=0.033, SD=0.028), then beta frequency (mean=0.011, SD=0.010), and lastly lower 

gamma frequency (mean=0.001, SD=0.001).  The sample size for all frequency bands in the 

post-interval was 21. 
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Table 5.17 Descriptive statistics for post-non-ictal GSWDs > 3 seconds. 

b) Mauchley’s test for sphericity 

For the post-non-ictal interval the Mauchley‟s test for sphericity also showed that the 

assumption of sphericity was not met (p-value < 0.05). 

The Mauchley‟s test of sphericity:  χ2 (9) =815.277, p = .000 

 
Table 5. 18 Mauchley’s test of sphericity for post-non-ictal GSWDs > 3 seconds. 

c) Test of within subject effects 

 
Table 5.19 Tests of within-subject effects for post-non-ictal GSWDs > 3 seconds.  
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Similar to the above results, the Greenhouse-Geisser correction test showed that the p-value 

is less than 0.05, which in return rejects the null hypothesis. Hence, there is a significant 

difference between the means of the frequencies measured in the interval of post-ictal 

GSWDs. For this test: df=1.000, error df = 20.004, F-ratio = 27.983, p = 0.000 

This can be represented as: 

F (1.000, 20.004) = 27.983, p<0.05 

d) Plot 

For the post-non-ictal interval, the estimated marginal means have been demonstrated in the 

plot below. The estimated marginal mean values are low for all frequency bands. 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 Estimated marginal means of post-non-ictal interval. 
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Chapter 6   

 
Sensor-level Spectral analysis and Functional 

connectivity 
 

In this chapter spectral analysis and functional connectivity (FC) was done for ictal and non-

ictal GSWDs at sensor level. Spectral analysis was done to observe the significant power 

spectral changes in frequency bands, while FC was computed between the channels to better 

understand the surface networks between ictal and non-ictal GSWDs. The theoretical 

background regarding the techniques being used in this chapter has been described in detail in 

chapter 2. The results of this chapter have been submitted for publication to the journal 

Epilepsy Research [96].  

6.1 Methods 

6.1.1 Subjects  

Subjects selected for this part of the sensor level study have been described in detail in 

chapter 3. The ictal and non-ictal GSWDs were selected from 12 patients and were further 

subjected to analysis.  

6.1.2 Pre-processing  

The pre-processing of the data for frequency analysis also involved using the Fieldtrip 

software (http://fieldtriptoolbox.org). The raw EEG data was firstly band-pass filtered 

between the range of 0.1 Hz and 31 Hz. Band pass filtering helps remove unwanted 

frequencies from the data. Following this, independent component analysis (ICA) was used to 

suppress eye-blinks and eye-movement artefacts. The function for ICA in Fieldtrip is 

ft_componentanalysis. This was computed using the method ‘runica’. This method 

implements decomposing the EEG data into its components, which can be further visualized 

as topographical plots. The components containing artifacts can then be removed from the 

dataset [97]. 

Once artifact removal was completed, the EEG channels were re-referenced to the common 

average reference (CAR) [98]. In EEG, the issue of referencing exists. During recordings any 

activity present in the reference electrode, gets reflected in all other electrodes. Therefore any 

noise in the reference electrode will show up in all other electrodes. Thus, choosing a 

reference carefully is important. CAR is a technique that is reference free, and is not affected 

http://fieldtriptoolbox.org/
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by the issue that arises from an actual physical reference. In this method, the potential at 

every electrode is computed with respect to the average of all electrodes.  

 

Further, the data was normalized to bring the dataset to a standardized measure, as mentioned 

in chapter 2 in equation (2.1). After normalization, the selected regions of interest were 

divided into 1 second long segments. This was done so that quantification of oscillations 

becomes easier.  

6.1.3 Frequency analysis  

Frequency analysis was conducted for the 1 second long segments by using a FFT with a 

Hanning window. The Fourier transform has been described in chapter 2, equation (2.2). This 

was done using the software Fieldtrip. This method was applied on the frequency range from 

1-30 Hz and the window function was applied in steps of 1 Hz. This in return calculates the 

power spectrum (equation 2.4). These various specifications can be given as an input in 

Fieldtrip. The function that computes the frequency analysis is the ft_freqanalysis, and the 

configuration used for the method was mtmfft. Following this the power values were averaged 

through the segments for every subject for both group‟s ictal and non-ictal GSWDs.  

6.1.4 Functional Connectivity (FC) 

For FC based on the imaginary part of coherency (iCOH) at sensor level, the Fieldtrip 

toolbox was used. Firstly, using the function ft_freqanalysis, the complex Fourier spectrum 

was obtained. This spectrum consists of a matrix having Nchannelsxfrequencies (31x30). 

Secondly, using the function ft_connectivityanalysis the connectivity between EEG channels 

was computed. The input for this function consisted of the method, which was based on 

coherence (cfg.method = ‘coh’), and the complex configuration which would compute the 

absolute value of imaginary part of coherency (cfg.complex = ‘absimag’). The imaginary part 

of coherency has been described in chapter 2, equation (2.19). The output of this function 

consists of a three dimensional matrix of Nchannels x Nchannels x frequencies (31x31x30).  

Further, the iCOH value for each frequency band was averaged.  

6.1.5 Statistical analysis  

The EEG data was analysed using a 2-way repeated measurement ANOVA, based on cluster 

permutation and non-parametric statistics as implemented in the FieldTrip toolbox. To avoid 

the condition that the data should have a normal distribution, a non-parametric approach via 

cluster-based Monte Carlo resampling is used to evaluate the ANOVA test [99, 100]. A 

cluster based approach was used to solve the multiple comparison problems.  

Prior to the calculation of the significance probability, a cluster-based test statistic needs to be 

computed. Firstly a F-value is calculated for each of the sample points. This F-value is 

combined in a cluster if its value exceeds a threshold value of 0.05. After clusters are created, 

the within-cluster F-values are added to create a cluster-level statistic for each cluster. Finally 
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the maximum of the cluster-level statistics is chosen as the cluster-based test-statistic. This 

procedure was repeated for 2000 permuted data. After that, significance probability was 

estimated as a proportion between the numbers of cases with a larger test statistic than the 

observed one to the number of permutations. A p-value below 0.05 was considered 

significant. 

A two-way repeated measurement ANOVA with two within-subjects factors (group x time) 

was performed for different frequency bands (delta 1-3 Hz, theta 4-7 Hz, alpha 8-12 Hz, beta 

13-30 Hz) by averaging the respective power spectra in each frequency band. The "group" 

factor included two types of abnormal activity, ictal (α1) and non-ictal (α2) GSWDs. The 

"time" factor was analysed for three different time intervals: pre- ictal/non-ictal (α3), during- 

ictal/non-ictal (α4) and post- ictal/non-ictal (α5). Firstly the time factor was analysed (Table 

6.1), followed by the group effect (Table 6.2). Finally the interaction of the two factors was 

analysed (Table 6.3).  

 
Table 6.1 Time effect.  

 
Table 6.2 Group effect.  

 
Table 6.3 Interaction effect (group x time). 

 

The function ft_freqstatistics was used alongside a configuration implementing the two-way 

repeated measurement ANOVA (cfg.statistic = depAnova2way). The method for calculating 
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significant probabilities was specified to Monte-Carlo, a non-parametric permutation test 

(cfg.method = ‘montecarlo’).  

Further, a post-hoc test was performed for significant ANOVA results which have more than 

one pair of comparisons (time or interaction effects). The statistic function used for this 

computes a dependent sample T-statistic (cfg.statistic= ft_statfun_depsamplesT). For FC 

results, a two-way repeated measurement ANOVA was done per channel (31 times), 

corresponding to all other channels. 

6.1.6 Visualization 

For visualization Fieldtrip toolbox was used. Visualization of the spectral analysis and 

functional connectivity results were done using topographical plots. The electrode clusters 

showing significant activity have been marked by (x) or (*). The function ft_topoplotER was 

used to visualize frequency analysis results. The power differences have also been 

demonstrated graphically in the form of bar plots. For FC the function ft_plot_lay was used. 

The connectivity between the channels was depicted using different colours. The colour of 

the connectivity lines demonstrated the significant difference of iCOH for every condition. 

The colour red depicted stronger connectivity while blue depicted weaker connectivity 

between the channels.  

6.2 Results 

6.2.1 Spectral Analysis results 

On applying a two factor (group x time) ANOVA on the dataset, it was revealed that for the 

main effect of time, all frequency bands over all channels showed significance. While for the 

main effect of group, except for theta band all frequency bands showed significance. The 

interaction between group and time factors also revealed significance for delta, alpha and beta 

band but not for theta band.  

Post-hoc test for main effect of time revealed that the during-ictal/non-ictal interval has 

higher power compared to pre- and post- ictal/non-ictal intervals in all frequency bands 

(Fig.1b). Post- ictal/non-ictal interval showed significant higher power compared to pre- 

ictal/non-ictal interval for delta and theta bands. The main effect of group for delta, alpha and 

beta band showed that ictal GSWDs had higher power compared to non-ictal GSWDs. These 

significant differences were observed in fronto-central, centro-parietal and temporal regions 

for delta band (electrodes: FC2, Cz, C4, CP1, CP2, Pz, T4, TP10). For alpha band significant 

differences were widespread in frontal, fronto-central, centro-parietal and temporal regions 

(electrodes: Fp1, F3, Fz, FC5, FC1, FCz Cz, C4, CP2, Pz FT10, TP9, TP10). For beta band 

these significant differences were localized mostly in centro-parietal, temporal and occipital 

regions (electrodes: Cz, CP1, CP5, CPz, CP6, Pz, P4, FT10, T4, TP9, TP10, O2). For 

interaction effect, post-hoc tests were performed for delta, alpha and beta bands. The power 
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changes in delta band from pre-ictal state to during-ictal state were higher compared to the 

corresponding changes in non-ictal states. These differences were localized primarily in the 

central region (electrodes: FC2, Cz, C4, CP2). For alpha and beta frequency bands also the 

transition periods of ictal GSWDs had higher power compared to the non-ictal GSWDs. The 

power changes in alpha band were localized in the frontal, frontal-central, temporal regions 

(electrodes: F3, Fz, FC5, FC1, FC2, T3, Cz, C4, TP9) and for beta band in the fronto-parietal, 

centro-parietal, temporal and parietal regions (electrodes: FP1, FP2, F7, FT10, CP1, CP2, 

CP6, TP10, T4, Pz, P4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.4 Spectral analysis p-values for two way ANOVA test. 
 

 
Table 6.5 Spectral analysis p-values for Post hoc comparisons. (- no significance) 

Frequency bands Factor p value 

Delta 

(1-3 Hz) 

time 

group 

time x group 

0.0009 

0.01 

0.04 

Theta 

(4-7 Hz) 

time 

group 

time x group 

0.0009 

no clusters 

no clusters 

Alpha 

(8-12 Hz) 

time 

group 

time x group 

0.0009 

0.02 

0.01 

Beta 

(13-30 Hz) 

time 

group 

time x group 

0.0009 

0.02 

0.006 
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2a) Two way ANOVA results demonstrated significant differences in delta, 

alpha and beta bands. 2b) Post-hoc test revealed that for all significant 

frequency bands, ictal GSWDs had higher power compared to non-ictal 

GSWDs. The electrodes showing significance have been marked by x in the 

spectral plots, and in the graphical plots the significant power differences can 

be seen between ictal and non-ictal GSWDs. 

Figure 6.2 Spectral analysis-group effect 
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6.2.2 Functional Connectivity results 

Two way repeated measure ANOVA (group x time) demonstrated a significant difference for 

the time effect over all frequency bands. It was seen that there was an increase in 

synchronization between all channels as the frequency oncreased. In other words alpha and 

beta bands had higher channel synchronization compared to delta and theta bands. Further, 

there was no main effect of group seen for all frequency bands. Interaction effect showed 

siginificant differences for all frequency bands.  

Following ANOVA test results post hoc tests revealed for the main effect of time that during-

ictal/non-ictal interval has higher iCOH compared to pre- and post- ictal/non-ictal intervals in 

all frequency bands. Post-ictal/non-ictal intervals didn‟t show any significant difference of 

iCOH when compared to the pre- ictal/non-ictal intervals for delta, theta and beta frequency 

bands. Only alpha band showed weak iCOH, when post- ictal/non-ictal and pre- ictal/non-

ictal intervals were compared. 

 

Figure 6.4 Functional connectivity-time effect.  

a) Two way ANOVA revealed significant differences for all frequency bands. b) Post-hoc test 

revealed that the during-ictal/ non-ictal interval had stronger connectivity for all frequency 

bands compared to pre- and post- ictal /non-ictal intervals.  
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For interaction effect, most of the significant results were found for changes in ictal/non-ictal 

intervals compared to pre- and post-intervals for all bands. Post-hoc test revealed that the 

transition of connectivity from pre-ictal to during-ictal and from during-ictal to post-ictal was 

significantly weaker in all bands, compared to the non-ictal transition periods. For delta band 

(1-3 Hz) connectivity differences were observed in frontal-temporal, frontal-central, and 

central-parietal regions. There was a desynchronization of channels seen in delta band 

involving the regions of the default mode network (DMN). While, differences in connectivity 

for theta, alpha and beta bands were long range, linking the right and left hemispheres of the 

brain. Only delta band showed a weak connectivity difference for post- and pre-ictal/non-ictal 

intervals.  

 

Figure 6.5 Functional connectivity-interaction effect.  

a) Two way ANOVA showed a significant interaction effect for all frequency bands. b) Post-

hoc test results depicting weaker connectivity for ictal transition periods for all frequency 

bands.  

 

 



 

98 
 

Frequency band 

 

Interaction effect 

conditions 

Fuunctional 

hubs 

Channel 

connections 

Delta band ictal vs. non-ical (during-

pre) 

T6 CP5, T5 

 ictal vs. non-ical (post-

during) 

Fp1 T3, TP9 

  FC5 Fz, FC1,FC2,O2 

  T3 O1,O2 

  Cz CP5,T5, Pz, P4, T6 

  P3 Cz, CP2 

Theta band ictal vs. non-ical (during-

pre) 

No significance  

 ictal vs. non-ical (post-

during) 

FP2 F4,TP10 

  F4 FP2, F8 

  C4 TP9, T5 

Alpha band ictal vs. non-ical (during-

pre) 

T4 F3, T3, TP9 

  F3 FT10, T4 

  FC5 FC1, FC2 

 ictal vs. non-ical (post-

during) 

P4 F8, FC6 

 

Beta band ictal vs. non-ical (during-

pre) 

T3 O2, Pz, TP10 

  TP9 O2, TP10 

  O2 TP9, T3, FT9 

  TP10 TP9, T3 

 ictal vs. non-ical 

(post-during) 

TP9 FT9, T3, TP9 

Table 6.6 Functional hubs and there significant connections for all channels.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.7 Functional connectivity p-values for two way ANOVA test. 

Frequency bands Factor p value 

Delta 

(1-3 Hz) 

time 

group 

time x group 

p<0.04 

- 

p<0.04 

Theta 

(4-7 Hz) 

time 

group 

time x group 

 p<0.03 

- 

p<0.05 

Alpha 

(8-12 Hz) 

time 

group 

time x group 

p<0.02 

- 

p<0.04 

Beta 

(13-30 Hz) 

time 

group 

time x group 

p<0.0005 

- 

p<0.04 
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Table 6.8 Functional connectivity p-values for post-hoc comparisons. 

 

 

 

 

 

 

 

 

 

 

 

 

Post hoc comparisons 

Conditions Delta 

P values 

Theta 

P values 

Alpha 

 P values 

Beta 

P values 

Effect of Time  

during vs. pre 

during vs. post 

post vs. pre 

0.02 

0.02 

- 

0.02 

0.02 

- 

0.02 

0.02 

- 

0.004 

0.003 

- 

Effect of Group  

ictal vs. nonictal 

 

- - - - 

Interaction effect  

ictal vs.non-ictal 

(during-pre) 

ictal vs non-ictal 

(during-post) 

ictal vs non-ictal 

(post-pre) 

0.01 

 

0.02 

 

- 

- 

 

0.02 

 

- 

0.02 

 

0.02 

 

- 

0.02 

 

0.01 

 

- 
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Chapter 7                         
 

Source Localization 

7.1 Methods 

For source reconstruction as mentioned before the forward and inverse problems need to be 

solved. In this study source localization was performed using the algorithms included in the 

METH toolbox (https://www.nitrc.org/projects/meth/) and Fieldtrip software.  

7.1.1 Forward calculation 

For the head model, or volume conductor, a standard head model associated with a standard 

MRI was selected from the Fieldtrip toolbox. A standard MRI was selected since the subjects 

did not have any individual MRI scans. The standard MRI selected that was the 

single_subj_T.nii. The standard MRI already contains the segmented MRI consisting of the 

scalp, skull and brain. This segmentation into 3 compartments is done using the boundary 

element method (BEM). The lead field matrix (LFM) is calculated in the METH toolbox as a 

result of the previously mentioned numerical solution of the forward problem in chapter 3. 

For a detailed description of the forward problem the review article by Hallez et al. (2007) 

[101] can be referred.  

For the forward calculations firstly using the METH toolbox structural calculations were 

done. This does not include the EEG data but has the information regarding the volume 

conductor and channel positions. This toolbox combines all the structural information into a 

particular structure termed as „sa‟. The „sa‟ structure contains information regarding three 

grid options: coarse, medium and fine. The function mk_sa_eeg was used to calculate the „sa‟ 

structure for EEG data. This only required the input of the sensor positions in the Montreal 

Neurological Institute (MNI) coordinates. This function was used to calculate the lead field 

matrix for all grid options. Following this, for the source model grid_medium was selected, 

since this was the most appropriate grid for the data under consideration. The grid_medium 

has 5003 points, with 7.5 mm distance of neighboring nodes. Each point or node in the grid 

acts as a dipole with three directions x, y and z. 

7.1.2 Inverse calculation 

Firstly, for the inverse calculation, a spatial filter was constructed. The function 

mk_filt_eloreta was used to calculate this according to the eLORETA method. Spatial filters 

are important to increase the signal to noise ratio. This filter was constructed for each voxel 

as well as for all three orthogonal dipole directions. It can be calculated using the lead field 

https://www.nitrc.org/projects/meth/
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alone and without the EEG data. The filter for a given voxel is an Mx3 matrix of M sensors. 

The 3-dimensional filter can be constructed using the input MxLxP lead field tensors. Where, 

M is the number of sensors (31 sensors), L is the number of voxels (5003 voxels) and P is the 

direction of dipoles (3). 

Secondly, the cross-spectrum was calculated for sensor-space using the function 

data2cs_event. The input data or the raw data is an NxM matrix consisting of N time points 

and M channels. This was calculated for 1 second long segments. The cross-spectra were 

estimated for frequency from 1 to 30 Hz with 1 Hz step. The output is M x M x frequency 

bins for each segment. The resulting spectra were averaged over segments and frequency 

ranges (delta, theta, alpha, and beta). 

Following this, the 3-dimensional filter alongside the cross-spectral matrix in sensor space 

was used to determine the source direction for each voxel, based on the one that maximizes 

the power for the voxel. This was done using the function getdipdir. This calculates the 

dipole orientation that maximizes the power. The output for this function is the power at each 

voxel, the dipole direction for each voxel and a 1-dimensional filter at each voxel. This gives 

the source for the sensor-space activity.  

7.1.3 Statistics 

Following inverse calculations the data was converted back to the Fieldtrip software format, 

as the statistical analysis was done using Fieldtrip. For statistics a two way repeated measure 

ANOVA based on cluster permutation was implemented. This has been described in detail in 

chapter 5. The function ft_sourcestatistics was used for this. The configuration for this 

function included the parameter for the data such as „pow‟, which is the power spectrum 

(cfg.parameter = ‘pow’), the method „Monte-carlo‟, which is a non-parametric permutation 

test (cfg.method = ‘montecarlo’), and a cluster correction to overcome the multiple 

comparison problem (cfg.correctm = ‘cluster’). The configuration also included a statistic 

parameter to implement a two way ANOVA in the code (cfg.statistic = depAnova2way). For 

ANOVA results that depicted significance, and had more than one pair of comparisons such 

as time and interaction effect, a post-hoc test was done (cfg.statistic = 

ft_statfun_depsamplesT). Using this method, the source activity for ictal and non-ictal 

GSWDs could be statistically differentiated.  

7.1.3 Visualization 

For visualization of two way ANOVA results, the fieldtrip toolbox was used. Before 

visualization, firstly, the data was interpolated using the function ft_sourceinterpolate. This 

function interpolates the results of the source activity and statistical maps onto the voxels. 

Firstly the statistic results alongside the anatomical MRI were interpolated. The method in 

fieldtrip that was used to run this function was termed as „nearest‟. Secondly, the source 

activity alongside the anatomical MRI and a mask from statistics was used for interpolation. 
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The mask from statistics is the significant p-value that is generated (p < 0.05). Since the 

anatomical MRI data is volumetric in nature, the output is also a volume structure. To further 

visualize these results the function ft_sourceplot was used. The configuration for this function 

includes the method, which can be „slice‟ or „ortho‟, the mask parameter, which is taken 

based on the statistics output and an atlas parameter for labeling. For anatomical labeling the 

Automated Anatomical Labeling (AAL) atlas was used [102]. Using this function the data 

was visualized in two ways, 1) as 2D axial slices of the brain on which the functional data is 

plotted and 2) as three slices containing three orthogonal directions (axial, sagittal and 

coronal). 

7.2 Results 

7.2.1 Delta band 

 For delta band, two-way repeated measure ANOVA (group x time) depicted a significant 

effect of time, significant effect of group as well as a significant interaction effect.  

Post-hoc test for main effect of time revealed that during-ictal/non-ictal interval had a 

stronger source power compared to pre- and post-ictal/non-ictal intervals. The significant 

source maximum for during vs. pre interval was observed in the rectus right (R),left (L) 

region. While for the during vs. post interval also, the source maximum was observed in the 

rectus R,L, and caudate L region. 

 
Figure 7.1 Delta band time effect.  

a) Two way ANOVA results depicting the F-value b) Post-hoc test results for conditions 

during vs. pre interval and during vs. post interval, indicating the source maximum. 
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Figure 7.2 Delta band group effect.  

a) Two way ANOVA results depicting the F-value b) Post-hoc test results for the condition 

ictal vs. non-ictal, indicating the source maximum. 

 

 
Figure 7. 3 Delta band interaction effect.  

a) Two way ANOVA results depicting the F-value b) Post-hoc test results for the conditions 

ictal vs. non-ictal (during-pre) and ictal vs. non-ictal (during-post), indicating the source 

maximum. 
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For the effect of group it was seen that the source power for ictal GSWDs was stronger 

compared to non-ictal GSWDs. The source maximum, for the significant difference between 

ictal vs. non-ictal group was seen in the Rectus R, with neighbouring sources being in the 

caudate L, frontal medial orbital R, and the cingulum anterior L region.  

Further, post hoc tests for interaction effect depicted, that the source power transition from 

pre interval to during interval and from during interval to post interval is stronger for ictal 

GSWDs is stronger compared to the transition periods of non-ictal GSWDs. The source 

maximum for the significant difference of during-pre (ictal/non-ictal) was observed in 

caudate R, and putamen R region, while, the source maximum for the significant difference 

of post-during (ictal/non-ictal), was seen in the supplementary motor R, region. 

7.2.2 Theta Band 

For theta band two-way repeated measure ANOVA, only demonstrated a significant effect of 

time. A significant group effect and interaction effect was not found. Post hoc tests for the 

main effect of time depicted that during-ictal/non-ictal interval had a stronger source power 

compared to pre- and post-ictal/non-ictal intervals. The significant source maximum for 

during vs. pre interval and for during vs. post interval was observed in the rectus R,L region. 

While neighbouring sources were found in the frontal mid orbital R, frontal inferior triangular 

part R, and frontal inferior orb R, region. 

 

 

Figure 7.4 Theta band time effect.  

a) Two way ANOVA results depicting the F-value b) Post-hoc test results for conditions 

during vs. pre interval and during vs. post interval, indicating the source maximum. 
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7.2.3 Alpha band 

 Two-way repeated measure ANOVA (group x time) for alpha band, depicted a significant 

effect of time, significant effect of group and a significant interaction effect.  

Post-hoc test for main effect of time revealed that during-ictal/non-ictal interval for alpha 

band frequency had a stronger source power compared to pre- and post-ictal/non-ictal 

intervals. The significant source maximum for during vs. pre interval and during vs. post 

interval was observed in the rectus R,L region. The neighbouring sources were found in the 

regions of frontal mid orbital R, frontal inferior triangular part R, and frontal inferior orbital 

R. 

 
Figure 7.5 Alpha band time effect. 

a) Two way ANOVA results depicting the F-value b) Post-hoc test results for conditions 

during vs. pre interval and during vs. post interval, indicating the source maximum. 

 

For the effect of group it was seen that the source power for ictal GSWDs was stronger 

compared to non-ictal GSWDs. The source maximum, for the significant difference between 

ictal vs. non-ictal group was seen in frontal inferior orbital L region. 

Post hoc tests for interaction effect revealed, that the source power transition from pre 

interval to during interval and from during interval to post interval was stronger for ictal 

GSWDs is stronger compared to the transition periods of non-ictal GSWDs. The source 

maximum for the significant difference of during-pre (ictal/non-ictal) and post-during 

(ictal/non-ictal) was observed in frontal inferior orbital L region. 
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Figure 7.6 Alpha band group effect. a) Two way ANOVA results depicting the F-value b) 

Post-hoc test results for the condition ictal vs. non-ictal, indicating the source maximum. 

 

 

Figure 7.7 Alpha band interaction effect.  

a) Two way ANOVA results depicting the F-value b) Post-hoc test results for the conditions 

ictal vs. non-ictal (during-pre) and ictal vs. non-ictal (during-post), indicating the source 

maximum. 
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7.2.4 Beta band 

 Two-way repeated measure ANOVA for beta band depicted a significant effect of time, 

significant effect of group and a significant interaction effect. 

Post-hoc test for main effect of time revealed that during-ictal/non-ictal interval for beta band 

frequency had a stronger source power compared to pre- and post-ictal/non-ictal intervals. 

The significant source maximum for during vs. pre interval and during vs. post interval was 

observed in the frontal orbital R, region. 

 
Figure 7.8 Beta band time effect.  

a) Two way ANOVA results depicting the F-value b) Post-hoc test results for conditions 

during vs. pre interval and during vs. post interval, indicating the source maximum. 

 

For the effect of group it was seen that the source power for ictal GSWDs was stronger 

compared to non-ictal GSWDs. The source maximum, for the significant difference between 

ictal vs. non-ictal group was seen in frontal superior medial R, region. 

Post hoc tests for interaction effect revealed, that the source power transition from pre 

interval to during interval and from during interval to post interval was stronger for ictal 

GSWDs is stronger compared to the transition periods of non-ictal GSWDs. The source 

maximum for the significant difference of during-pre (ictal/non-ictal) and post-during 

(ictal/non-ictal) was again observed in frontal superior medial R region. 

In the tables 7.1 and 7.2 the p-values generated for source analysis and the brain regions 

depicting the source maximum have been described for all frequency bands. 
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Figure 7.9 Beta band group effect.  

a) Two way ANOVA results depicting the F-value b) Post-hoc test results for the condition 

ictal vs. non-ictal, indicating the source maximum. 

 
Figure 7.10 Beta band interaction effect. 

 a) Two way ANOVA results depicting the F-value b) Post-hoc test results for the conditions 

ictal vs. non-ictal (during-pre) and ictal vs. non-ictal (during-post), indicating the source 

maximum. 
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Conditions Frequency Bands 

 Delta Theta Alpha Beta 

Effect of time  

during vs. pre 0.001 0.001 0.001 0.001 

during vs. post 0.001 0.001 0.001 0.001 

     

Effect of group  

ictal vs. non-ictal 0.002 No significance 0.01 0.04 

     

Interaction effect  

ictal vs. non-ictal 

(during-pre) 

0.01 No significance 0.005 0.01 

ictal vs. non-ictal 

(during-post) 

0.04 No significance 0.008 0.01 

Table 7.1 Source analysis p-values for all frequency bands and conditions. 

Frequency bands Conditions Source maximum 

Delta Band Effect of time  

 during vs. pre Rectus R,L 

 during vs. post Rectus R,L, Caudate L 

 Effect of group  

 ictal vs. non-ictal Rectus R 

 Interaction effect  

 ictal vs. non-ictal (during-pre) Caudate R, Putamen R 

 ictal vs. non-ictal (during-post) Supplementary Motor area R 

Theta Band Effect of time  

 during vs. pre Rectus R,L 

 during vs. post Rectus R,L 

 Effect of group No significance 

 Interaction effect No significance 

Alpha Band Effect of time  

 during vs. pre Rectus R,L 

 during vs. post Rectus R,L 

 Effect of group  

 ictal vs. non-ictal Frontal inferior orb L 

 Interaction effect  

 ictal vs. non-ictal (during-pre) Frontal inferior orb L 

 ictal vs. non-ictal (during-post) Frontal inferior orb L 

Beta Band Effect of time  

 during vs. pre Frontal orb R 

 during vs. post Frontal orb R 

 Effect of group  

 ictal vs. non-ictal Frontal superior medial R 

 Interaction effect  

 ictal vs. non-ictal (during-pre) Frontal superior medial R 

 ictal vs. non-ictal (during-post) Frontal superior medial R 

Table 7.2 Brain regions showing the source maximum.  
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Chapter 8       

 
Source-level Functional Connectivity  
 

In the current chapter functional connectivity based on imaginary part of coherency (iCOH) 

was implemented to analyse the neuronal networks in ictal and non-ictal GSWDs. Functional 

connectivity was mapped out based on the seed or node of interest being the source 

maximum achieved from source localization in chapter 7 and the thalamus.  

8.1 Methods 

8.1.1 Selecting the seed 

The seed or point of interest was selected based on the interaction effect results obtained from 

source localization (chapter 7). The first seed was based on the source maximum from the 

interaction effect, as a result of a two way repeated measure ANOVA test (group x time). 

This was done because the interaction effect is the most important result of source analysis. A 

second seed of interest was selected as the thalamus, since literature describes it as an 

important area involved during seizure onset and propagation.  

A second seed of interest was also used as it was presumed that the source maximum was 

shifted due to being a deep source. Therefore, the distance between the source maximum and 

thalamus were also calculated for all frequency bands (Table 8.1). This distance was 

calculated based on the following formula:  

  √                           

Where,  

           = coordinates of first point 

           = coordinates of second point 

The source maximum MNI (Montreal Neurological Institute) coordinates for all frequency 

bands are given in tables 8.1, and for thalamus the MNI coordinate selected was: [0, -0.75, 

0.75] cm.  

Connectivity analysis was done for Delta, alpha and beta band. Theta band was excluded 

since this frequency band did not show any interaction effect for source localization. Delta 

band was the only frequency band that revealed two source maximums. Hence, both source 

maximum points were selected as a seed for connectivity analysis for this band. For seed 

selection of the source maximum and thalamus the MNI coordinates were used. 
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Table 8.1 Selection of the seed from the source maximum. 

For all frequency bands and their interaction effect conditions, the MNI coordinates have 

been given alongside the source maximum power values and the information if the source is 

deep. This table also includes information on the distance between the source maximum and 

thalamus in centimetres and the number of seeds selected for each frequency band. Theta 

band was excluded due to no significant interaction effect. 

8.1.2 Calculation of the imaginary part of coherency (iCOH) 

For the calculation of the iCoh the METH toolbox (https://www.nitrc.org/projects/meth/) was 

used. Firstly, the 1-dimensional filter obtained from the function getdipdir, used previously 

for source localization in chapter 7, was used to calculate the cross-spectra at source level. 

This was obtained using the following formula: 

A1
T 

x cross-spectrum x A1
            

Where, A1 is the 1 dimensional filter and the cross spectrum here comes from sensor level.  

Secondly, the function cs2coh was used to calculate the coherence from the cross-spectrum at 

source level. The output of this function is a coherency matrix (MxM) consisting of the real 

and imaginary part of the coherency at source level. Following this the matrix is used to 

Selecting the seed 

Frequency 

Conditions 

for 

Interaction 

effect 

MNI coordinates 

(cm) 

Deep 

Source 

Source 

max. 

power 

value 

Distance 

from 

thalamus 

(cm) 

Number 

of seeds 

selected 

from 

source 

max. 

x y z 

Delta 

band  

(1-3 Hz) 

During-pre 1.5 1.5 -0.75 Yes 59.4675 3.0923 2 

 During-post 0.75 -0.75 6.75 No 35.7757 6.0467  

Theta 

band 

 (4-7 Hz) 

- - - - - - - - 

Alpha 

band  

(8-12 Hz) 

During-pre -5.25 3 -0.75 No 5.4374 6.6238 1 

 During-post -5.25 3 -0.75 No 5.2433 6.6238  

Beta band 

(13-30 

Hz) 

During-pre 1.5 7.5 0.75 No 3.1282 8.3853 1 

 During-post 1.5 7.5 0.75 No 3.1722 8.3853  

https://www.nitrc.org/projects/meth/
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extract the coherency value corresponding to the selected seed. From this the absolute value 

of iCoh is taken.  

8.1.3 Statistics 

The Fieldtrip toolbox (Oostenveld et al. 2011) was used for statistical analysis. Similar to 

source localization statistical analysis mentioned in chapter 7, for connectivity analysis also 

the two repeated measure ANOVA was used. Details regarding this test have been mentioned 

in chapter 6. The function ft_sourcestatistics was used for this, and the configurations used 

for this function were similar to those mentioned in chapter 7. Also, for this function a 

statistic parameter (cfg.statistic = depAnova2way) was used to implement a two way 

ANOVA into the code. For significant ANOVA results post hoc test were done further. 

8.1.4 Visualization 

The Fieldtrip toolbox was again used for visualizing the results. The procedure was similar to 

that mentioned in chapter 6. The function ft_sourceplot was used to visualize these results. 

Using this function the iCOH results were visualized in 2D axial slices of the brain and also 

in orthogonal slices of the brain containing three directions (axial, sagittal and coronal). 

Further, the Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al. 2002) was 

used for anatomical labeling. 

8.2 Results 

FC based on iCOH was applied to two scenarios at source level. Firstly, when the seed or 

point of interest was the source maximum and secondly when the seed was the thalamus. For 

further statistical analysis a two way repeated measure ANOVA was used for analyses. 

Results regarding both these cases have been further described. 

8.2.1 Seed as source maximum 

a) Delta band 

Delta band revealed two source maximums. For the first source maximum, which was a deep 

source, a two way repeated measure ANOVA (group x time) depicted a significant effect of 

time and significant effect of group. But, there was no significant interaction effect revealed.  

Post-hoc test for main effect of time revealed that during-ictal/non-ictal interval had stronger 

coherence compared to pre- and post-ictal/non-ictal intervals. The maximum coherence 

difference for pre- to during-ictal/non-ictal time interval was observed in the occipital middle 

R region, while for the time intervals during- to post-ictal/non-ictal also, it was seen in the 

cingulum posterior R, and precuneus region (Figure 8.1). 
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Figure 8.1 Functional connectivity for source maximum-delta band time effect.  

a) two way ANOVA results demonstrating the F-value distribution. b) post-hoc test results for 

time effect conditions, depicting the coherent brain regions in correlation to the source 

maximum. 

 
Figure 8.2 Functional connectivity for source maximum-delta band group effect.   

a) two way ANOVA results depicting the regions of significance and F-value distribution. b) 

post-hoc test results depicting the coherence difference for ictal vs. non-ictal GSWDs. 
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Post hoc test for the effect of group revealed that ictal GSWDs had a stronger coherence 

compared to non-ictal GSWDs. The maximum coherence difference was observed in the 

supramarginal R region (Figure 8.2). 

For the second source maximum which was a surface source, two-way ANOVA only 

revealed a significant effect of time. Further, post hoc test revealed similar to before, that 

during-ictal/non-ictal interval had stronger coherence compared to pre- and post-ictal/non-

ictal intervals. The maximum coherence difference for pre- to during-ictal/non-ictal interval 

and during- to post-ictal/non-ictal interval were observed in the temporal middle L region. 

(Figure 8.3). 

 

Figure 8.3 Functional connectivity for second source maximum-delta band time effect  

a) two way ANOVA results demonstrating the F-value distribution. b) post-hoc test results for 

time effect conditions, during vs. pre interval and during vs. post interval, depicting the 

coherent brain regions in correlation to the source maximum. 

b) Theta band 

For theta band FC analysis for source maximum was not done since, there was no significant 

interaction effect revealed as previously mentioned in chapter 7. Therefore, the seed for 

coherence analysis could not be taken. 

c) Alpha band 

For alpha band one source maximum was revealed. A two way ANOVA test revealed a 

significant effect of time but no significant effect of group. Moreover, a significant 

interaction effect was seen.   
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Figure 8.4 Functional connectivity for source maximum-alpha band time effect 

a) Two way ANOVA test results b) post-hoc test results for conditions during vs. pre time 

interval and during vs. post time interval. 

 

 
Figure 8.5 Functional connectivity for source maximum-alpha band interaction effect. 

a) Two way ANOVA results depicting regions of significance in the brain based on F-value 

distribution. b) post-hoc test results depicting coherent regions in the brain for the condition 

ictal vs. non-ictal (during-post).  
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Post hoc test for the main effect of time demonstrated stronger and widespread coherence for 

during-ictal/non-ictal interval. The pre- and post-ictal/non-ictal intervals had a weaker 

coherence in comparison. These significant differences were seen to be widespread in all 

brain regions. The maximum coherence difference for the time interval pre- to during-

ictal/non-ictal and during- to post-ictal/non-ictal was seen in precuneus L region (Figure 8.4). 

For interaction effect it was seen that there was no significance for the condition ictal/non-

ictal (during-pre). However for the condition ictal/non-ictal (during-post) it was seen that the 

coherence was stronger for ictal transition periods from during interval to post interval, 

compared to the transition periods of non-ictal discharges. The maximum coherence 

difference for this condition was observed in the caudate R and putamen R region (Figure 

8.5). 

d) Beta band 

Beta band also revealed a significant effect of time for a two way ANOVA test. But there was 

no significant effect of group or interaction effect found.  

 
Figure 8.6 Functional connectivity for source maximum-beta band time effect 

a) Two way ANOVA test results b) post-hoc test results for conditions during vs. pre time 

interval and during vs. post time interval, demonstrating coherent regions in the brain, in 

correlation to the source maximum. 

 

Post hoc test for the main effect of time revealed that coherence was stronger for during-

ictal/non-ictal interval compared to pre- and post-ictal/non-ictal GSWDs. The coherence was 

seen to be widespread, in all brain regions except the prefrontal cortex region. The maximum 
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coherence difference for the time interval pre- to during-ictal/non-ictal was seen in precuneus 

R, cingulum posterior R region. While for the time interval during- to post-ictal/non-ictal it 

was seen in the cuneus R and precuneus R region (Figure 8.6). 

Seed-Source maximum 

Conditions Frequency Bands 

 Delta Theta Alpha Beta 

 Source 

max.1 

Source 

max.2 

Source 

max.1 

Source 

max.1 

Source 

max.1 

Effect of time      

during vs. pre 0.001 0.001 - 0.001 0.001 

during vs. post 0.001 0.001 - 0.001 0.001 

Effect of group      

ictal vs. non-ictal 0.03 - - No 

Significance 

No 

Significance 

Interaction 

effect 

     

ictal vs. non-ictal 

(during-pre) 

No 

Significance 

No 

Significance 

- No 

Significance 

No 

Significance 

ictal vs. non-ictal 

(during-post) 

No 

Significance 

No 

Significance 

- No 

Significance 

No 

Significance 

Table 8.2 Functional connectivity p-values for source maximum as the seed.  

8.2.2 Seed as Thalamus 

a) Delta band 

Two way ANOVA test demonstrated that there was a significant main effect of time and 

group when the seed was as the thalamus. For delta band there was a significant interaction 

effect was found. 

Post hoc tests revealed for the main effect of time that during-ictal/non-ictal time interval had 

a stronger coherence compared to the pre- and post-ictal/non-ictal time intervals. The 

significant difference in coherence was seen in the pre-frontal cortex, parietal R, L, and 

occipital R, L brain regions. The maximum coherence difference for the time effect was seen 

in the cingulum posterior R, precuneus R for pre- to during-ictal/non-ictal interval and for 

during- to post-ictal/non-ictal interval (Figure8.7).  

The main effect of group revealed ictal GSWDs had stronger coherence compared to non-

ictal GSWDs. The significant difference in coherence could be observed in parietal R, region 

of the brain. The maximum coherence difference was seen in the supramarginal R, and 

angular R region (Figure 8.8).  
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Figure 8.7 Functional connectivity for thalamus-delta band time effect 

a) Two way ANOVA test results b) post-hoc test results for conditions during vs. pre time 

interval and during vs. post time interval, demonstrating coherent regions in the brain, in 

correlation to the thalamus as the seed. 

 

 
Figure 8.8 Functional connectivity for thalamus-delta band group effect. 

a) two way ANOVA results depicting the regions of significance and F-value distribution.  

b) post-hoc test results depicting the coherence difference for ictal vs. non-ictal GSWDs. 
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Interaction effect demonstrated that the ictal transition periods from pre- to during- and from 

during- to post- intervals the coherence was stronger compared to the transition periods of 

non-ictal GSWDs. These significant differences were observed in the parietal R,L and 

occipital mid L, region. The maximum coherence difference for ictal/non-ictal (during-pre) 

and ictal/non-ictal (during-post) transition periods was seen in the occipital middle L, region 

(Figure 8.9). 

 

 
Figure 8.9 Functional connectivity for thalamus-delta band interaction effect 

a) two way ANOVA results depicting F-value distribution. b) post-hoc test results depicting 

coherent regions in the brain for the conditions ictal vs. non-ictal (during-pre) and ictal vs. 

non-ictal (during-post). 

b) Theta band  

Two way ANOVA test for theta band, depicted a significant effect of time and no significant 

effect of group or interaction effect. 

Post hoc tests for theta band further demonstrated for the effect of time that, the during-

ictal/non-ictal interval had stronger coherence compared to the time intervals pre- and post- 

ictal/non-ictal. These differences were widespread in the frontal-central, parietal R,L, 

occipital R,L region and the maximum coherence difference could be observed in the 

precuneus R region for the interval of pre- to during- ictal/non-ictal and in the cingulum 

middle L, cingulum posterior L, precuneus L regions for during- to post-ictal/non-ictal 

interval (Figure 8.10).  
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Figure 8.10 Functional connectivity for thalamus-theta band time effect. 

a) Two way ANOVA test results b) post-hoc test results for conditions during vs. pre time 

interval and during vs. post time interval, for the thalamus as the seed. 

 

c) Alpha band 

For alpha band two way ANOVA showed a significant effect of time but there was no 

significant group effect seen. Further, there was a significant interaction effect seen. 

Post hoc test for the main effect of time showed that the during ictal/non-ictal interval had a 

stronger coherence compared to pre- and post- ictal/non-ictal time intervals. The coherence 

was seen to be widespread in the brain regions except for the mid central region. The 

maximum coherence difference could be observed in angular R region for time interval pre- 

to during-ictal/non-ictal and for the time intervals during- to post-ictal/non-ictal it could be 

observed in the parietal inferior R, angular R, supramarginal R regions (Figure 8.11).  

For the interaction effect post hoc test revealed that the coherence for ictal transition periods 

from pre- to during- and from during- to post- intervals was stronger compared to the 

transition periods of non-ictal GSWDs. The maximum coherence difference for the condition 

ictal/non-ictal (during-pre) was seen in the postcentral R, parietal inferior R region. While for 

the condition ictal/non-ictal (during-post) the maximum coherence was seen in the parietal 

inferior R, and parietal superior R region (Figure 8.12). 
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Figure 8.11 Functional connectivity for thalamus-alpha band time effect. 

a) Two way ANOVA test results b) post-hoc test results for conditions during vs. pre time 

interval and during vs. post time interval, for the thalamus as the seed. 
 

 
Figure 8.12 Functional connectivity for thalamus-alpha band interaction effect. 

a) two way ANOVA results depicting regions of significance in the brain based on F-value 

distribution. b) post-hoc test results depicting coherent regions in the brain for the conditions 

ictal vs. non-ictal (during-pre) and ictal vs. non-ictal (during-post). 
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d) Beta band 

Two way ANOVA test for beta band frequency revealed a significant effect of time and no 

significant effect of group. There was also no significant interaction effect seen. Post hoc test 

for the main effect of time demonstrated similar results to other frequency bands. The during-

ictal/non-ictal time interval had stronger coherence compared to pre- and post-ictal/non-ictal 

time intervals. The maximum coherence difference for the time interval pre- to during-

ictal/non-ictal was observed in the angular R region. For the during- to post-ictal/non-ictal 

interval the maximum coherence difference was observed in the parietal inferior R, angular 

R, supramarginal R regions (Figure 8.13). 

 
Figure 8.13 Functional connectivity for thalamus-beta band time effect. 

a) Two way ANOVA test results b) post-hoc test results for conditions during vs. pre time 

interval and during vs. post time interval, demonstrating coherent regions in the brain. 
 

Seed-Thalamus 

Conditions Frequency Bands 

 Delta Theta Alpha Beta 

Effect of time  

during vs. pre 0.001 0.001 0.001 0.001 

during vs. post 0.001 0.001 0.001 0.001 

Effect of group  

ictal vs. non-ictal 0.02 - - - 

Interaction effect  

ictal vs. non-ictal (during-pre) 0.006 - 0.01 - 

ictal vs. non-ictal (during-post) 0.04 - 0.003 - 

Table 8.3 Functional connectivity p-values for the seed as thalamus. 
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8.2.3 Comparison of coherence  

For all frequency bands the significant coherence maximum was compared based on the seed 

of interest, to better understand the presumed shift of the source maximum.  

a) Delta band 

On comparing the coherence maximum difference with the seed being the source maximum 

or the thalamus, it was seen that there were differences in interaction effect. With the seed as 

source maximum interaction effect did not show any significant difference.   

 

Time effect and group effect for both seeds of interest showed similar results. The group 

effect results were similar for all cases. The regions having maximum coherence difference 

have been mentioned below in table 8.7, for all statistical conditions.  

 

 

Frequency 

band  

Effect of time Seed-source 

maximum 

Seed-Thalamus 

 

Delta Band during vs. pre S.m.1-Occipital Mid R
 

S.m.2-Temporal Mid L
 

Cingulum Post R, 

Precuneus R 

 during vs. post S.m.1-Cingulum Post 

R, Precuneus R  

S.m.2-Temporal Mid L
 

Cingulum Post R, 

Precuneus R 

 Effect of group   

 ictal vs. non-ictal S.m.1-  SupraMarginal 

R 

S.m.2- No Significance 

SupraMarginal R, 

Angular R 

 Interaction effect   

 ictal vs. non-ictal  

(during-pre) 

S.m.1, S.m.2-No 

significance 

Occipital Mid L 

 ictal vs. non-ictal  

(during-post) 

S.m.1, S.m.2-No 

significance 

Occipital Mid L 

Table 8.4 Delta band-Comparison of brain regions showing maximum coherence. 

b) Theta band 

For theta band, there was no coherence analysis done for source maximum. There was no 

significant effect of group or interaction effect seen in both cases. Only a significant time 

effect was seen for both seeds of interest.  
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Frequency 

band 

Conditions Seed-Thalamus 

 

Theta Band Effect of time  

 during vs. pre Precuneus R 

 during vs. post Cingulum Mid L, 

Cingulum Post L, 

Precuneus L 

 Effect of group No significance 

 Interaction effect No significance 

Table 8. 5 Theta band-Comparison of brain regions showing maximum coherence. 

c) Alpha Band 

For alpha band, time effect and interaction effect depicted different coherence maximum 

brain regions. With the seed of interest being the source maximum and the thalamus there 

was no significant group effect seen in both cases.  

 

Frequency band 

 

Conditions Seed-source 

maximum 

Seed-Thalamus 

Alpha Band Effect of time   

 during vs. pre Precuneus L Angular R 

 during vs. post Precuneus L Temporal Sup L 

 Effect of group   

 ictal vs. non-ictal No Significance No significance 

 Interaction effect   

 ictal vs. non-ictal 

(during-pre) 

No Significance Postcentral R, 

Parietal Inf R 

 ictal vs. non-ictal 

(during-post) 

Caudate R, Putamen R Parietal Inf R, 

Parietal Sup R 

Table 8.6 Alpha band-Comparison of brain regions showing maximum coherence. 

d) Beta band 

On comparing the coherence maximum for both seeds of interest, it was observed that only a 

significant time effect was present. The brain regions showing maximum coherence 

difference were different from each other for both seeds of interest. Furthermore, there was 

no significant group or interaction effect seen.  
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Frequency band 

 

Conditions Seed-source 

maximum 

Seed-Thalamus 

Beta Band Effect of time   

 during vs. pre Precuneus R, 

Cingulum post R 

Angular R 

 during vs. post Cuneus R, Precuneus R Parietal Inf R, 

Angular R, Supra 

Marginal R 

 Effect of group   

 ictal vs. non-ictal No significance No significance 

 Interaction effect   

 ictal vs. non-ictal 

(during-pre) 

No significance No significance 

 ictal vs. non-ictal 

(during-post) 

No significance No significance 

Table 8.7 Beta band-Comparison of brain regions showing maximum coherence. 
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Chapter 9  

 

Discussion for experimental results  
 

In the current study, spectral analysis and functional connectivity were used to differentiate 

ictal and non-ictal GSWDs at sensor and source level. This study was based on using surface 

EEG and analysing three time windows of pre-, during- and post- ictal and non-ictal GSWDs 

respectively. This multi-frequency study was done with an application to assist clinicians on a 

daily basis for EEG monitoring. 

9.1 Sensor level  

Initially in this study, non-ictal discharges longer than 3 seconds were selected for analysis. 

But since not all patients had these discharges, ictal and non-ictal GSWDs were assessed 

separately. Time frequency analysis alongside statistical testing of ictal and non-ictal 

discharges (with duration longer than 3 seconds) revealed significant spectral power 

differences for frequency bands delta, theta, alpha, beta and gamma (1-35 Hz). These 

significant differences were observed independently for both groups of interest. However 

since the dataset was not fit for comparing ictal and non-ictal discharges, for all further 

analysis non-ictal discharges less than 3 seconds were included in the dataset. On doing so 

the dataset was complete for comparing ictal and non-ictal discharges, which was used in all 

further analysis at sensor and source level.  

Ictal and non-ictal GSWDs in CAE have a similar EEG appearance of synchronous, 

symmetrical GSWDs. In previous studies it has been well established that the GSWDs are of 

3 Hz [6, 103]. Using power spectral analysis on surface-EEG data, this study revealed 

statistically significant differences between ictal and non-ictal GSWDs at frequencies 1-3 Hz 

(Delta), 8-13 Hz (Alpha) and 14-30 Hz (Beta). However, no significant interaction effect was 

found for frequencies 4-7 Hz (theta band). The implication of this finding is unclear. But it is 

well known that theta oscillations are associated with memory and emotional regulation in 

humans. Also, theta frequency is dominant in the EEGs of lower mammals, while for humans 

alpha frequency dominates [104].  

It has been reported in previous EEG, EEG-fMRI and MEG studies that the frontal cortex 

plays an important role in the propagation of ictal GSWDs [10, 105–107]. In a study done by 

Kim et al (2011) [15], spectral power of 1-4 Hz frequency was analysed during absences in 

CAE using computational EEG. Their findings strongly suggest that absences may have focal 

features, even though ictal discharges on visual review by epileptologists appear to be 

broadly distributed. For delta band our study revealed significant activity of electrodes 
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localized in the frontal-central region, while for alpha and beta bands frontal, frontal-central, 

central-parietal, and temporal clusters of activity were observed. These findings seem to be in 

line with the above mentioned studies. Based on this we can presume that these electrode 

localizations may correlate with the cortical and subcortical regions involved in the 

pathogenesis of ictal and non-ictal GSWDs.  

 

Also, we observed that the transition of spectral power from pre-ictal to during-ictal and from 

during-ictal to post-ictal was higher, compared to the transition periods of non-ictal GSWDs. 

This was seen for all the significant frequency bands: delta, alpha, and beta. These transition 

period differences between pre-during-post-ictal/non-ictal could play an important role in the 

development of seizure detection algorithms. Further, statistically significant spectral analysis 

results in this study show that this technique itself could be implemented as a way to 

differentiate between ictal and non-ictal GSWDs. 

 

To get a deeper understanding of the brain regions that are in synchrony with each other, 

network analysis is essential. In our study, FC based on imaginary part of coherency revealed 

significant differences for delta, theta, alpha and beta bands over all time points, with an 

increase in channel synchronization in the following order: 1-3 Hz < 4-7 Hz < 8-12 Hz < 13-

30 Hz.  

Previous studies show that the cortico-thalamic network plays an important part in the 

generation and propagation 3Hz GSWDs present in absences [9, 10, 106, 108]. In a study 

done by Miao et al. (2019) [9] regarding the cortico-thalamic connectivity in CAE using 

MEG, it was seen that at 1-7 Hz inhibitory connections were seen in patients with the 

thalamo-parietal/ocipital (F-T-P/0) network. In another resting state fMRI study, CAE 

patients had marked differences compared to controls in whole brain FC and had decreased 

connectivity in the thalamus and basal ganglia alongside increased connectivity in the medial 

occipital cortex [12]. Various studies have reported a decrease in activity in certain brain 

regions during absences, several of which coincide with the DMN [11, 109]. Also, thalamo-

cortical activation and suspension of the default state have been shown in generalized 

epileptic discharges in an EEG-fMRI study [24]. Furthermore, resting state functional 

network analysis studies have shown abnormalities in the dorsal attention network (DAN), 

salience network (SN) and default mode network (DMN), suggesting that it might contribute 

to impairment of consciousness and cognitive deficits in CAE patients [110, 111].   

 

In this study it was observed that ictal transition periods, from pre-ictal to during-ictal and 

from during-ictal to post-ictal had a significantly weaker connectivity compared to non-ictal 

transition periods for all significant frequency bands. FC showed a desynchronization of 

channels taking place during ictal GSWDs in frontal-temporal, frontal-central, central-

parietal regions, involving areas of the default mode network (DMN) for delta band (1-3 Hz).  

It is presumed that this desynchronization leading to a weaker connectivity between regions 

may be a cause for severe impairment of consciousness during ictal GSWDs. While, in non-

ictal GSWDs the connectivity between regions is slightly more pronounced, therefore there is 
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no impairment of consciousness. For differences in connectivity in theta, alpha and beta band, 

long range connections were observed linking the right and left hemispheres of the brain, 

which may relate to widespread network propagation. 

9.2 Source level  

In this study the inverse problem regarding source localization was solved using the 

eLORETA method. This method has been widely used for EEG source reconstruction in 

various fields of study [112–116]. For instance in the study done by Adebimpe et al. (2016) 

[116] on EEG resting state data of patients with benign epilepsy with centro-temporal spikes, 

source reconstruction was done using eLORETA method. In patients with schizophrenia-like 

psychosis of epilepsy (SLPE), Canuet et al. (2011) [114] analysed resting state EEG data 

using eLORETA, for source localization and functional connectivity. In a study done on 

Alzheimer‟s disease, Hata et al. (2016) [113] assessed functional connectivity using EEG 

data of patients. Using eLORETA the current source density and lagged phase 

synchronization was analysed.  

Source reconstruction of ictal and non-ictal discharges using eLORETA method in this study 

revealed that ictal and non-ictal discharges had the same source in the brain for all frequency 

bands, but non-ictal discharges had a weaker source power compared to ictal discharges. 

Delta band (1-3 Hz) was the only frequency band where two sources were localized for 

interaction effect, a subcortical source and a surface source. The source maximum was 

localized in the subcortical regions of caudate R and putamen R alongside a surface source in 

the supplementary motor region of the brain. The spread of source power was seen in 

thalamus, dorsolateral prefrontal cortex, parietal and temporal regions. For group and time 

effect the significant source maximum was seen in the orbitofrontal cortex of the brain. For 

alpha (8-12 Hz) and beta band (13-30 Hz) the source maximum was seen in the frontal 

inferior orbital R, L and Frontal superior medial R, L and orbitofrontal regions. Similar to 

sensor level results theta band (4-7 Hz) again did not show any significant interaction effect.  

 

In a previous study absence seizures in 5 patients were analysed using EEG data, and source 

analysis revealed mesial frontal and orbital frontal cortex sources for spike and wave activity 

[108]. Furthermore, in a study done by Wu et al. (2017) on 14 patients with CAE using MEG 

data, source analysis revealed localizations in frontal cortex and parieto-occipito-temporal 

junction (POT) in frequency bands 1–4 Hz, 4–8 Hz, 8–12 Hz, 12–30 Hz and 30–80 Hz. 

Similarly, Miao et al. (2019) [9] showed significant ictal sources obtained from MEG data, in 

the frontal and parietal cortex at 1-7 Hz and 8-30 Hz frequency bands, in CAE patients. In 

another MEG study, Tenny et al (2013) [117] observed that focal cortico-thalamic sources in 

the brain are involved during ictal generalized absence seizures. Based on these studies we 

can see that results from this study depicted similar results but we presume that the source 

was shifted due to the accuracy of the method for localizing deep sources and low number of 

channels.  
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In a study done by Moeller et al. (2008) [11] on drug naive children with absence epilepsy, 

using EEG-fMRI it was seen that BOLD signal decreases in the thalamus were present 

alongside decreases in the parietal region, frontal cortex, precuneus and the caudate nucleus. 

Absence seizure studies using EEG-fMRI have previously shown negative blood oxygen 

level dependent (BOLD) changes in parietal source localization [10, 12, 118]. Various other 

studies have also depicted thalamic activation in absence seizures [119]. Therefore for FC 

analysis using iCOH, the source maximum and the thalamus was used as a seed of interest.  

 

FC at source level was done to better understand the neuronal networks during ictal and non-

ictal GSWDs. The iCOH was mapped based on the source maximum and the thalamus being 

the nodes of interest and their correlation to the whole brain. FC results depicted that in ictal 

GSWDs, the coherence between the source maximum and whole brain was stronger 

compared to the coherence of non-ictal GSWDs. However, for source maximum as the node 

of interest there was no significant interaction effect seen for delta, theta and beta band. Only 

alpha band depicted a significant interaction effect for the transition period from during-

ictal/non-ictal to post-ictal/non-ictal interval.  

 

The coherence between thalamus and the whole brain done for ictal and non-ictal GSWDs 

also showed that ictal GSWDs have a stronger coherence to brain regions compared to non-

ictal GSWDs. Though absence seizures are classified as generalized seizures, recent studies 

have suggested a more selective bilateral cortical and subcortical network to be involved [38, 

119]. Tenny et al. (2018) investigated the pre-treatment ictal connectivity in CAE patients in 

an EEG-fMRI and MEG study, and observed strong connections in the thalamus and 

posterior brain regions including the parietal, posterior cingulate, angular gyrus, precuneus 

and occipital regions for delta frequency. With thalamus as the node of interest delta 

frequency band showed the significant coherence maximum with the Occipital mid L region 

in the brain, with a spread of coherence in the Parietal, Temporal and Occipital region. These 

regions were mainly the Parietal inferior and superior L, Angular L, Precuneus L, Cingulum 

posterior L and supramarginal L regions, associated with functions such as language 

processing, consciousness, visualization. FC results in this study at source level can be seen 

to be in line with the above mentioned studies assessing networks in CAE. 

 

Based on the results of this study, it can be presumed that the thalamus is the node of interest 

in absence seizure propagation and it forms a network involving regions of the brain 

important to the consciousness system and the DMN network. Although thalamus has a 

strong coherence to these particular brain regions at source level, a weaker connectivity was 

observed at the sensor level between the channels, suggesting a disconnection between these 

regions between each other for ictal discharges. In non-ictal discharges the coherence at 

source level between the thalamus and other brain regions was weaker, while at sensor level 

the connectivity was stronger between channels. This leads to the understanding that for non-

ictal discharges the complex neuronal network involved during absence seizures does not get 
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activated strongly, therefore the patients do not lose consciousness during these events and 

are able to respond unlike ictal discharges. The connectivity between coherent regions needs 

to be further investigated to corroborate these presumptions.   

The entire analysis was based on normalized data. Though, there is still a debate whether the 

data should be normalized or not, source analysis and FC were done for non-normalized data 

too, for which the results can be found in Appendix A and B.  

 

Several limitations of the present study should be considered. First, due to the relatively low 

spatial resolution of EEG, localizations of significant electrodes might show the activity of 

multiple sources. Second, in this study the number of subjects as well as the number ictal and 

non-ictal GSWDs analysed were small. In order to validate our findings it would be 

important that the sample size be larger. Third, deep source localization can be difficult to 

mark the exact seizure onset zone, therefore other methods could be used to validate whether 

the source is shifted. Also, the time periods of interest before and after the ictal/non-ictal 

GSWDs could be increased to better understand the transition period. Lastly, it is important 

to note that other techniques such as directionality analysis are required in order to improve 

FC at sensor, and source space level.  

 

These findings suggest that using spectral analysis and FC at sensor level, EEG data alone 

could provide useful information regarding differences between ictal and non-ictal GSWDs 

in CAE. Further source analysis and FC gave insight regarding seizure onset zone and brain 

regions involved during ictal and non-ictal discharges. As a result, this quick methodology 

could be implemented for assistance in diagnostics of CAE patients as well as to develop 

machine learning algorithms for facilitating EEG monitoring. 
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Chapter 10                 

 

Conclusion 
 

The current study was done on Childhood absence epilepsy in order to differentiate ictal and 

non-ictal GSWDs using surface EEG data. It demonstrated significant differences at sensor 

and source level for delta, alpha and beta frequency bands.  

10.1 Sensor Level 

At sensor level, it was revealed that delta, alpha, and beta band had significant spectral power 

differences between ictal and non-ictal GSWDs. In these frequency bands ictal GSWDs had 

significantly higher power compared to non-ictal GSWDs. Secondly, regarding time 

intervals, it was seen that the during-ictal/non-ictal interval had significantly higher power 

compared to pre- and post- intervals of these discharges. The transition of ictal discharges 

from pre-to during and from during to post interval had significantly stronger spectral power 

compared to non-ictal discharges.  

Functional connectivity at sensor level using imaginary part of coherence as a measure 

showed that all frequency bands (delta, theta, alpha, and beta) showed significant time and 

interaction effect. For transition periods of ictal discharges it was seen that all frequency 

bands revealed a weaker connectivity compared to non-ictal transition periods (pre to during 

and during to post).  For delta band a desynchronization of channels during ictal GSWDs 

involving areas of the default mode network (DMN) was seen. The functional hubs with 

connections were seen in channels Fp1, FC5, T3, Cz, and P3. Channel Cz showed maximum 

connections to other channels. Further, differences in connectivity in theta, alpha and beta 

band were long range, linking the right and left hemispheres of the brain 

10.2 Source Level 

Firstly we have given a detailed mathematical foundation for the EEG forward and inverse 

problem. We have also addressed the mathematical issues concerning the eLORETA 

algorithm. Accordingly we have formulated the correct solutions regarding the algorithm 

which further requires testing in an experimental setting. 

Source analysis using the eLORETA method demonstrated that ictal and non-ictal GSWDs 

have the same source. Secondly, ictal discharges have a stronger source power compared to 

non-ictal discharges. Delta, alpha and beta bands showed significant differences. For delta 

band transition periods (pre to during and during to post) source localization revealed two 
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sources in the subcortical and the cortical region of the brain, while for the significant group 

effect the localization was found in frontal basal region (gyrus rectus). The spread of source 

power was seen in the thalamus, parietal and temporal regions. For alpha and beta band the 

frontal basal and frontal superior and inferior regions were localized.  

The source was presumed to be shifted since the accuracy of interpolating surface EEG data 

to its particular source with less number of channels is difficult.  

Further, functional connectivity after source analysis revealed that the coherence between the 

source maximum and various regions of the brain was stronger in ictal discharges compared 

to non-ictal discharges. All frequency bands showed a significant time effect, and only delta 

band showed a significant group effect. For interaction effect significant functional 

connectivity results were only seen in alpha frequency band.   

Functional connectivity done between the thalamus and various regions of the brain gave 

more promising results. It was seen that the functional connectivity was stronger for ictal 

GSWDs compared to non-ictal GSWDs. For delta band, the coherence of thalamus was seen 

with brain regions important for consciousness, language processing, number processing, 

spatial cognition, memory retrieval and visualization. These regions were occipital mid (left), 

parietal inferior and superior (right and left), angular gyrus (left), posterior cingulum (left) 

and precuneus (left). Also, some of these regions were similar to those found in the DMN. 

This study shows clearly that EEG is a powerful tool to assess ictal and non-ictal discharges. 

There are clear differences at sensor and source level between ictal and non-ictal GSWDs 

even though they have the same pattern on an EEG. Seeing the coherence patterns, it can be 

inferred that the complex neuronal network involved in ictal discharges gets more strongly 

activated compared to non-ictal discharges.  

Based on FC results it can be presumed that even though various brain regions were seen to 

be strongly coherent with the thalamus, these regions may be disconnected with each other 

for ictal discharges, and therefore at sensor level a weaker connectivity between channels was 

seen i.e. a desynchronization between channels was seen. This presumptions needs to be 

further investigated.     

Differentiating icatl and non-ictal discharges at sensor and source level could potentially be 

the foundation for future clinical research which would help facilitate clinicians in diagnosis 

and better management of CAE patients. This methedology has to be evaluated concerning 

sensitivity and specificity.Future work regarding this study will be based on building an 

automated classifier to distinguish between ictal and non-ictal GSWDs using various 

differences found in this study, to aid in EEG monitoring.  
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Appendix A 

A.1 Source analysis for non-normalized data 

A.1.1 Seed selection  

Non-Normalized data 

Frequency Conditions 

for 

Interaction 

effect 

MNI coordinates 

(cm) 

Deep 

Source 

Source 

max. 

power 

value 

Distance 

from 

thalamus 

(cm) 

Number 

of seeds 

selected 

from 

source 

max. 

x y z 

Delta band 

(1-3 Hz) 

During-pre 0 2.25 -3.75 Yes 3.5756e

+04 

5.4083 1 

 During-post 0 2.25 -3.75 Yes 3.5296e

+04 

5.4083  

Theta band 

(4-7 Hz) 
- - - - - - - - 

Alpha band 

(8-12 Hz) 

During-pre 0 0.75 -3 Yes 2605.7 4.0389 1 

 During-post 0 0.75 -3 Yes 2536 4.0839  

Beta band 

(13-30 Hz) 

During-pre 0 3.75 -0.75 Yes 1110.6 4.7434 1 

 During-post 0 3.75 -0.75 Yes 1126.3 5.4601  

Table A.1: Non-Normalized data. For all frequency bands, information regarding the MNI 

coordinates, the source maximum power value, the distance between thalamus and source 

maximum, source depth, and the number of seeds selected based on source maximum has 

been given. This information has been given for each interaction effect condition. Theta band 

was excluded due to no significant interaction effect. 

A.1.2 Source localization results 

a) Delta band 

 For delta band two-way repeated measure ANOVA (group x time) depicted a significant 

effect of time, significant effect of group as well as a significant interaction effect. Post-hoc 

test for main effect of time revealed that during-ictal/non-ictal interval had a stronger source 

power compared to pre- and post-ictal/non-ictal intervals. The significant source maximum 

for during vs. pre interval and during vs. post interval was observed in the Rectus R,L region. 

For the effect of group it was seen that the source power for ictal GSWDs was stronger 

compared to non-ictal GSWDs. The source maximum, for the significant difference between 

ictal vs. non-ictal group was also seen in the Rectus R. Further, post hoc tests for interaction 

effect depicted, that the source power transition from pre interval to during interval and from 

during interval to post interval is stronger for ictal GSWDs is stronger compared to the 

transition periods of non-ictal GSWDs. The source maximum for the significant difference of 
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during-pre (ictal/non-ictal) and post-during (ictal/non-ictal) was observed in the Rectus 

region again. Neighbouring sources were seen in the regions of Frontal superior R, Frontal 

Inferior orb R, Para-hippocampal R,L, Olfactory L, and Frontal medial orb R. 

Figure A.1: Delta band time effect for non-normalized data. a) Two way ANOVA results 

depicting the F-value b) Post-hoc test results for conditions during vs. pre interval and 

during vs. post interval, indicating the source maximum. 

 

 
Figure A.2: Delta band group effect. a) Two way ANOVA results depicting the F-value b) 

Post-hoc test results for the condition ictal vs. non-ictal, indicating the source maximum 
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Figure A.3: Delta band interaction effect for non-normalized data. a) Two way ANOVA 

results depicting the F-value b) Post-hoc test results for the conditions ictal vs. non-ictal 

(during-pre) and ictal vs. non-ictal (during-post), indicating the source maximum. 

b) Theta Band 

For theta band two-way repeated measure ANOVA, only demonstrated a significant effect of 

time. A significant group effect and interaction effect was not found.  

Figure A.4: Theta band time effect for non-normalized data. a) Two way ANOVA results 

depicting the F-value b) Post-hoc test results for conditions during vs. pre interval and 

during vs. post interval, indicating the source maximum. 
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Post hoc tests for the main effect of time depicted that during-ictal/non-ictal interval had a 

stronger source power compared to pre- and post-ictal/non-ictal intervals. The significant 

source maximum for during vs. pre interval and for during vs. post interval was observed in 

the Rectus R,L region. Whereas, neighbouring sources were found in the Frontal superior orb 

R, Frontal Inferior orb R, region. 

c) Alpha band 

Two-way repeated measure ANOVA, depicted a significant effect of time, significant effect 

of group and a significant interaction effect.  

Post-hoc test for main effect of time revealed that during-ictal/non-ictal interval for alpha 

band frequency had a stronger source power compared to pre- and post-ictal/non-ictal 

intervals. The significant source maximum for during vs. pre interval and during vs. post 

interval was observed in the Rectus R,L region. The neighbouring sources were found in the 

regions of Frontal mid orb R, Frontal Inferior tri R, and Frontal Inferior orb R, L.For the 

effect of group it was seen that the source power for ictal GSWDs was stronger compared to 

non-ictal GSWDs. The source maximum, for the significant difference between ictal vs. non-

ictal group was seen in the Rectus, with neighbouring source maximum points being in 

Frontal inferior orb L, Temporal pole superior L, Amygdala L, R, Caudate R, region.  

 

Figure A.5: Alpha band time effect for non-normalized data. a) Two way ANOVA results 

depicting the F-value b) Post-hoc test results for conditions during vs. pre interval and 

during vs. post interval, indicating the source maximum. 

 

Post hoc tests for interaction effect revealed that the source power transition from pre interval 

to during interval, and from during interval to post interval was stronger for ictal GSWDs is 

stronger, compared to the transition periods of non-ictal GSWDs. The source maximum for 

the significant difference of during-pre (ictal/non-ictal) and post-during (ictal/non-ictal) was 
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observed in the Rectus R,L, followed by neighbouring sources in the Frontal inferior orb L, 

Insula L, Temporal pole superior L, Hippocampus L, Amygdala L, Para-hippocampal L 

region. 

Figure A1.6: Alpha band group effect for non-normalized data. a) Two way ANOVA results 

depicting the F-value b) Post-hoc test results for the condition ictal vs. non-ictal, indicating 

the source maximum. 

 

Figure A.7: Alpha band interaction effect for non-normalized data. a) Two way ANOVA 

results depicting the F-value b) Post-hoc test results for the conditions ictal vs. non-ictal 

(during-pre) and ictal vs. non-ictal (during-post), indicating the source maximum. 
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d) Beta band 

Two-way repeated measure ANOVA for beta band depicted a significant effect of time, 

significant effect of group and a significant interaction effect.  

Post-hoc test for main effect of time revealed that during-ictal/non-ictal interval for beta band 

frequency had a stronger source power compared to pre- and post-ictal/non-ictal intervals. 

The significant source maximum for during vs. pre interval and during vs. post interval was 

observed in the Frontal superior medial R, region. 

For the effect of group it was seen that the source power for ictal GSWDs was stronger 

compared to non-ictal GSWDs. The source maximum, for the significant difference between 

ictal vs. non-ictal group was seen in Frontal superior medial R, and Cingulum anterior R, 

region. 

Post hoc tests for interaction effect revealed, that the source power transition from pre 

interval to during interval and from during interval to post interval wass stronger for ictal 

GSWDs is stronger compared to the transition periods of non-ictal GSWDs. The source 

maximum for the significant difference of during-pre (ictal/non-ictal) was in the Frontal 

medial orb L, R, and Cingulum anterior region. For post-during (ictal/non-ictal), the source 

maximum was seen in Frontal medial orb L, R region. 

 

 

Figure A.8: Beta band time effect for non-normalized data. a) Two way ANOVA results 

depicting the F-value b) Post-hoc test results for conditions during vs. pre interval and 

during vs. post interval, indicating the source maximum. 
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Figure A.9: Beta band group effect for non-normalized data. a) Two way ANOVA results 

depicting the F-value b) Post-hoc test results for the condition ictal vs. non-ictal, indicating 

the source maximum. 

 

Figure A.10: Beta band interaction effect for non-normalized data. a) Two way ANOVA 

results depicting the F-value b) Post-hoc test results for the conditions ictal vs. non-ictal 

(during-pre) and ictal vs. non-ictal (during-post), indicating the source maximum. 
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Conditions Frequency Bands 

 Delta Theta Alpha Beta 

Effect of time  

during vs. pre 0.001 0.001 0.001 0.001 

during vs. post 0.001 0.001 0.001 0.001 

     

Effect of group  

ictal vs. non-ictal 0.002 No significance 0.001 0.01 

     

Interaction 

effect 

 

ictal vs. non-ictal 

(during-pre) 

0.002 No significance 0.002 0.01 

ictal vs. non-ictal 

(during-post) 

0.006 No significance 0.001 0.005 

Table A.2: Depiction of p-values for all frequency bands and for each condition, done for 

non-normalized data. 

A.1.3  Comparison of source analysis for normalized data vs. non-

normalized data 

On comparing the source maximum obtained from normalized data and non-normalized data 

it was seen that the results were similar. For both cases, delta, alpha and beta band showed a 

significant time, group, and interaction effect. While theta band only showed the effect of 

time for normalized and non-normalized data. 

Delta band source maximums differed in both cases. For normalized data delta band had two 

source maximums, a deep source and a surface source. The comparison of source maximum 

has been given below.  

Frequency bands Conditions Normalized data 

source maximum 

Non-normalized data 

source maximum 

Delta Band Effect of time   

 during vs. pre Rectus R,L Rectus R,L 

 during vs. post Rectus R,L, Caudate L Rectus R,L 

 Effect of group   

 ictal vs. non-ictal Rectus R Rectus R 

 Interaction effect   

 ictal vs. non-ictal 

(during-pre) 

Caudate R, Putamen R Rectus R,L 

 ictal vs. non-ictal 

(during-post) 

Supplementary Motor 

area R 

Rectus R,L 

Theta Band Effect of time   

 during vs. pre Rectus R,L Rectus R,L 

 during vs. post Rectus R,L Rectus R,L 

 Effect of group No significance No significance 
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 Interaction effect No significance No significance 

Alpha Band Effect of time   

 during vs. pre Rectus R,L Rectus R,L 

 during vs. post Rectus R,L Rectus R,L 

 Effect of group   

 ictal vs. non-ictal Frontal inferior orb L Rectus R,L 

 Interaction effect   

 ictal vs. non-ictal 

(during-pre) 

Frontal inferior orb L Rectus R,L 

 ictal vs. non-ictal 

(during-post) 

Frontal inferior orb L Rectus R,L 

Beta Band Effect of time   

 during vs. pre Frontal orb R Frontal superior 

medial R 

 during vs. post Frontal orb R Frontal superior 

medial R 

 Effect of group   

 ictal vs. non-ictal Frontal superior 

medial R 

Frontal superior 

medial R, Cingulum 

anterior R 

 Interaction effect   

 ictal vs. non-ictal 

(during-pre) 

Frontal superior 

medial R 

Frontal medial orb L, 

R, and Cingulum 

anterior 

 ictal vs. non-ictal 

(during-post) 

Frontal superior 

medial R 

Frontal medial orb L, 

R 

Table A.3: Comparison of the source maximum region for normalized data vs. non-

normalized data. For all frequency bands and conditions the source maximum has been 

given. 
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Appendix B 

B.1 Functional connectivity for non-normalized data 

B.1.1 Seed as source maximum 

a) Delta band 

For non-normalized data, delta band revealed one source maximum. A two way repeated 

measure ANOVA (group x time) depicted a significant effect of time and significant 

interaction effect. But, there was no significant effect of group.  

Post-hoc test for main effect of time revealed that during-ictal/non-ictal interval had stronger 

coherence compared to pre- and post-ictal/non-ictal intervals. The maximum coherence 

difference for pre- to during-ictal/non-ictal time interval was observed in the Occipital Mid R 

region, while for the time intervals during- to post-ical/non-ictal also, it was seen in the 

Cingulum Mid L, Cingulum Post L, Precuneus L region. Post hoc test for the interaction 

effect revealed that the ictal transition periods had a stronger coherence compared to non-ictal 

transition periods. The maximum coherence difference for the condition ictal/non-ictal 

(during-pre) was seen in the Temporal Sup L, Temporal Mid L region. While for the 

condition ictal/non-ictal (during-post) it was seen in the Rolandic Oper L, Temporal Sup L 

region. 

 

 
Figure B.1: Delta band time effect for non-normalized data and for the seed as source 

maximum. a) Two way ANOVA test results b) post-hoc test results for conditions during vs. 

pre time interval and during vs. post time interval. 
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Figure B.2: Delta band interaction effect for non-normalized data and for the seed as source 

maximum. a) two way ANOVA results depicting regions of significance in the brain based on 

F-value distribution. b) post-hoc test results depicting coherent regions in the brain for the 

conditions ictal vs. non-ictal (during-pre) and ictal vs. non-ictal (during-post). 

 

b) Theta band 

For theta band as before, FC was not done considering the fact there was no significant 

source maximum found for the interaction effect as previously mentioned in chapter 6. 

Therefore, the seed for coherence analysis could not be taken. 

c) Alpha band 

A two way ANOVA test revealed a significant effect of time, significant effect of group and 

a significant interaction effect for alpha band.  

Post hoc test for the main effect of time revealed stronger coherence for during-ictal/non-ictal 

interval. The pre- and post-ictal/non-ictal intervals had a weaker coherence in comparison. 

These significant differences were seen to be widespread in all brain regions except the 

central region. The maximum coherence difference for the time interval pre- to during-

ictal/non-ictal was seen in the Frontal Sup Medial L region and for the during- to post-

ictal/non-ictal interval it was seen in the Cerebellum Crus2 R region. For the main effect of 

group, the maximum coherence was seen in the Precuneus L region for alpha band. It was 

seen that ictal GSWDs had a stronger coherence compared to non-ictal GSWDs. In addition, 

interaction effect demonstrated that the ictal transition periods from pre to during and during 

to post had a stronger coherence compared to non-ictal transition periods. For the condition 

ictal/non-ictal (during-pre) the maximum coherence was observed in the Cuneus R, 

Precuneus R region. While for the condition ictal/non-ictal (during-post) it was seen in the 

Frontal Sup L, Frontal Sup Medial L region. 
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Figure B.3: Alpha band time effect for non-normalized data and seed as source maximum. a) 

Two way ANOVA test results b) post-hoc test results for conditions during vs. pre time 

interval and during vs. post time interval. 

 

 

 
Figure B.4: Alpha band group effect for non-normalized data and seed as source maximum. 

a) two way ANOVA results depicting the regions of significance based on the F-value 

distribution. b) post-hoc test results depicting the coherence difference for ictal vs. non-ictal 

GSWDs. 
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Figure 1.5: a) two way ANOVA results b) post-hoc test results depicting coherent regions in 

the brain for the conditions ictal vs. non-ictal (during-pre) and ictal vs. non-ictal (during-

post). 

 

d) Beta band 

 A two way ANOVA test revealed a significant effect of time but no significant effect of 

group or interaction effect for beta band.  

Figure B.6:  Beta band time effect for non-normalized data and seed as source maximum. a) 

Two way ANOVA test results b) post-hoc test results for conditions during vs. pre time 

interval and during vs. post time interval. 
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Post hoc test for the main effect of time revealed that coherence was stronger for during-

ictal/non-ictal interval compared to pre- and post-ictal/non-ictal GSWDs. The maximum 

coherence difference for the time interval pre- to during-ictal/non-ictal and the interval 

during- to post-ictal/non-ictal it was seen in the Cerebellum Crus2 R region. 

 

Non-normalized data                                                                      

Seed- Source maximum 

Conditions Frequency Bands 

 Delta Theta Alpha Beta 

 Source max.1 Source max.1 Source max.1 Source max.1 

Effect of time  

during vs. pre 0.001 - 0.001 0.001 

during vs. post 0.001 - 0.001 0.001 

     

Effect of group  

ictal vs. non-ictal No significance - 0.3 No 

significance 

     

Interaction 

effect 

 

ictal vs. non-ictal 

(during-pre) 

0.03 - 0.005 No 

significance 

ictal vs. non-ictal 

(during-post) 

0.01 - 0.003 No 

significance 

Table B.1: P-values for all frequency bands and for all statistical conditions. Delta, alpha 

and beta band showed a significant effect of time. Only alpha band depicted a significant 

group effect. For interaction effect delta and alpha band both demonstrated significance. 

B.1.2 Seed as Thalamus 

a) Delta band 

For delta band a two way ANOVA test revealed a significant main effect of time and group 

as well as a significant interaction effect.  

Post hoc tests revealed for the main effect of time that during-ictal/non-ictal time interval had 

a stronger coherence compared to the pre- and post-ictal/non-ictal time intervals. The 

significant difference in coherence was seen in the pre-frontal cortex, mid central and parietal 

R, L, brain regions. The maximum coherence difference for the time effect was seen in the 

Postcentral L, Parietal Sup L for pre- to during-ictal/non-ictal interval and for during- to post-

ictal/non-ictal interval it was seen in the Precuneus R, Cingulum Mid R,L, Parietal Inferior L, 

Occipital mid L, Angular L regions. The main effect of group revealed ictal GSWDs had 

stronger coherence compared to non-ictal GSWDs. The maximum coherence difference was 

seen in the supramarginal R region. For interaction effect it was seen that the ictal transition 

periods from pre- to during- and from during- to post- intervals had stronger coherence 

compared to the transition periods of non-ictal GSWDs. The maximum coherence difference 

for the condition ictal/non-ictal (during-pre), was observed in the supramarginal R, Rolandic 
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Oper R regions. While for the condition ictal/non-ictal (post-during) it was seen in the 

Temporal Inferior L, Cerebellum Crus1 L region. 

 
Figure B.7: Delta band time effect for non-normalized data and seed as thalamus. a) Two 

way ANOVA test results b) post-hoc test results for conditions during vs. pre time interval 

and during vs. post time interval. 

 

 

Figure B.8: Delta band group effect for non-normalized and seed as the thalamus. a) two 

way ANOVA results depicting the regions of significance based on the F-value distribution. 

b) post-hoc test results depicting the coherence difference for ictal vs. non-ictal GSWDs. 
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Figure B.9: Delta band interaction effect for non-normalized data and for the seed as 

thalamus. a) two way ANOVA results depicting regions of significance in the brain based on 

F-value distribution. b) post-hoc test results depicting coherent regions in the brain for the 

conditions ictal vs. non-ictal (during-pre) and ictal vs. non-ictal (during-post). 

 

b) Theta band: For theta band a two way ANOVA test showed a significant effect of time 

however no significant effect of group or significant interaction effect.  

 

Figure B.10: Theta band group effect for non-normalized and seed as the thalamus. a) two 

way ANOVA results depicting the regions of significance based on the F-value distribution. 

b) post-hoc test results depicting the coherence difference for ictal vs. non-ictal GSWDs. 
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Post hoc tests for theta band further demonstrated for the effect of time that, the during-

ictal/non-ictal interval had stronger coherence compared to the time intervals pre- and post- 

ictal/non-ictal. These differences were widespread in the frontal-central, parietal R,L, 

occipital R,L region and the maximum coherence difference could be observed in the 

Angular R, Parietal Inf R, Precuneus R, L regions for the interval of pre- to during- ictal/non-

ictal and in the Precuneus L region for during- to post-ictal/non-ictal interval.  

c) Alpha band 

For alpha band two way ANOVA showed a significant effect of time but there was no 

significant group effect seen. Further, there was a significant interaction effect seen. 

Post hoc test for the main effect of time showed that the during ictal/non-ictal interval had a 

stronger coherence compared to pre- and post- ictal/non-ictal time intervals. The maximum 

coherence difference could be observed in rolandic operculum R, supramarginal R, and 

Temporal Sup R regions for time interval pre- to during-ictal/non-ictal and for the time 

intervals during- to post-ictal/non-ictal it could be observed in the postcentral R, Parietal Sup 

R regions. For the interaction effect post hoc test revealed that the coherence for ictal 

transition periods from pre- to during- and from during- to post- intervals was stronger 

compared to the transition periods of non-ictal GSWDs. The maximum coherence difference 

for the condition ictal/non-ictal (during-pre) was seen in the Sup Motor Area L, region. While 

for the condition ictal/non-ictal (during-post) the maximum coherence was seen in the Frontal 

Sup Medial L region. 

 
Figure B.11: Alpha band group effect for non-normalized and seed as the thalamus. a) two 

way ANOVA results depicting the regions of significance based on the F-value distribution. 

b) post-hoc test results depicting the coherence difference for ictal vs. non-ictal GSWDs. 
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Figure B.12: Alpha band interaction effect for non-normalized data and for the seed as 

thalamus. a) two way ANOVA results depicting regions of significance in the brain based on 

F-value distribution. b) post-hoc test results depicting coherent regions in the brain for the 

conditions ictal vs. non-ictal (during-pre) and ictal vs. non-ictal (during-post). 

 

d) Beta band: Two way ANOVA test for beta band frequency revealed a significant effect of 

time. However, no significant effect of group or significant interaction effect was seen.  

 
Figure B.13: Beta band group effect for non-normalized and seed as the thalamus. a) two 

way ANOVA results depicting the regions of significance based on the F-value distribution. 

b) post-hoc test results depicting the coherence difference for ictal vs. non-ictal GSWDs. 
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Post hoc test for the main effect of time demonstrated that during-ictal/non-ictal time interval 

had stronger coherence compared to pre- and post-ictal/non-ictal time intervals.  The 

maximum coherence difference for the time interval pre- to during-ictal/non-ictal was 

observed in the Angular R region. For the during- to post-ictal/non-ictal interval the 

maximum coherence difference was observed in the Occipital Mid L, Angular L regions. 

Non-normalized data  

Seed- Thalamus 

Conditions Frequency Bands 

 Delta Theta Alpha Beta 

Effect of time  

during vs. pre 0.001 0.001 0.001 0.001 

during vs. post 0.001 0.001 0.001 0.001 

Effect of group  

ictal vs. non-ictal 0.02 - - - 

Interaction effect  

ictal vs. non-ictal 

(during-pre) 

0.01 - 0.02 - 

ictal vs. non-ictal 

(during-post) 

0.01 - 0.01 - 

Table B.2: P-values for all frequency bands and for all statistical conditions. All frequency 

bands showed a significant effect of time. Only delta band depicted a significant group effect. 

For interaction effect delta and alpha band both demonstrated significance. 

B.1.3 Comparison of normalized and non-normalized datasets 

 

Frequency 

band 

Conditions Non-Normalized data 

  Seed-source 

maximum 

Seed-Thalamus 

Delta Band Effect of time   

 during vs. pre Occipital Mid R Postcentral L, 

Parietal Sup L 

 during vs. post Cingulum Mid L, 

Cingulum Post L, 

Precuneus L 

Precuneus R, 

Cingulum Mid R,L, 

Pareital Inf L, 

Occipital mid L, 

Angular L 

 Effect of group   

 ictal vs. non-ictal No Significance Supramarginal R 

 Interaction effect   

 ictal vs. non-ictal  

(during-pre) 

Temporal Sup L, 

Temporal Mid L 

Supramarginal R, 

Rolandic Oper R 

 ictal vs. non-ictal  

(during-post) 

Rolandic Oper L, 

Temporal Sup L 

Temporal Inf L, 

Cerebellum Crus1 

L 
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  Normalized data  Non-normalized 

data 

  Seed-Thalamus Seed- Thalamus 

Theta Band Effect of time   

 during vs. pre Precuneus R Angular R, Parietal 

Inf R, Precuneus R, 

L 

 during vs. post Cingulum Mid L, 

Cingulum Post L, 

Precuneus L 

Precuneus L 

 Effect of group No significance No significance 

 Interaction effect No significance No significance 

    

  Non-normalized data Non-normalized 

data 

  Seed-source 

maximum 

Seed- Thalamus 

Alpha Band Effect of time   

 during vs. pre Frontal Sup Medial L Rolandic Oper R, 

SupraMarginal R, 

Temporal Sup R 

 during vs. post Cerebellum Crus2 R Postcentral R, 

Parietal Sup R 

 Effect of group   

 ictal vs. non-ictal Precuneus L No significance 

 Interaction effect   

 ictal vs. non-ictal 

(during-pre) 

Cuneus R, Precuneus R 

 

Sup Motor Area L, 

 ictal vs. non-ictal 

(during-post) 

Frontal Sup L, Frontal 

Sup Medial L 

Frontal Sup Medial 

L 

    

  Non-normalized data Non-normalized 

data 

  Seed-source 

maximum 

Seed- Thalamus 

Beta Band Effect of time   

 during vs. pre Cerebellum Crus2 R Angular R 

 during vs. post Cerebellum Crus2 R Occipital Mid L, 

Angular L 

 Effect of group   

 ictal vs. non-ictal No significance No significance 

 Interaction effect   

 ictal vs. non-ictal 

(during-pre) 

No significance No significance 

 ictal vs. non-ictal 

(during-post) 

No significance No significance 
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Appendix C 
 

Time frequency analysis for ictal and non-ictal discharges longer than 3 seconds, allows us to 

see the power distribution in the form of topographical plots. Here, the time frequency power 

distributions for ictal and non-ictal discharges have been depicted along with the plots for 

pre- and post- intervals. Red distribution marks higher power while blue colour marks weaker 

power distribution. 

C.1 Time frequency topographical plots for ictal GSWDs 

 

Patients 

Number 

of ictal 

GSWDs 

Topographical plots for ictal GSWDs 

P1 2 

 

 

 

 

 

 

 

 

 

P2 2 

 

 
 

 

 

P3 

 

 

1 
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P4 

 

 

2 

 

 
 

P5 3 

 

 

P6 1 

 

 

P7 1 
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P8 5 

 

 

 
 

P9 1 

 

 
 

P10 4 
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P11 11 

 

 

 
 

P12 11 
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C.2 Time frequency topographical plots for pre-ictal GSWDs 

Patients 

No. of 

pre-ictal 

GSWDs 

Topographical plots for pre-ictal GSWDs 

P1 2 

 

 
 

P2 1 

 

 

 

 

 

 

 

 

P3 1 
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P4 2 

 

 
 

P5 4 

 

 

 
 

 

 

 

 

P6 

 

 

 

 

 

 

 

1 

 

 

 

 

 

 

 

 

 

P7 1 
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P8 5 

 

 

 
 

P9 1 

 

 
 

P10 4 
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P12 10 
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C.3 Time frequency topographical plots for post-ictal GSWDs 

 

 

 

Patients 

Number 

of post-

ictal 

GSWDs 

Topographical plots for post-ictal GSWDs 

P1 2 

 

 
 

P2 2 
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P3 

 

 

 

 

 

1 

 

 
 

P4 2 

 

 
 

P5 4 

 

 
 

P6 1 
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P7 1 

 

 
 

P8 5 

 

 
 

P9 1 

 

 
 

P10 3 
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P11 11 

 

 

 

P12 11 
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C.4 Time frequency topographical plots for non-ictal GSWDs. 

 

Patients 

No. of 

non-ictal 

GSWDs 

Topographical plots for non-ictal GSWDs 

P6 3 

 

 
 

P7 3 
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P9 14 

 

 

 

 

 

P10 3 
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C.5 Time frequency topographical plots for pre-non-ictal GSWDs 

Patients 

No. of 

pre- 

non-ictal 

GSWDs 

Topographical plots for pre-non-ictal GSWDs 

P6 3 

 

 
 

P7 2 

 

 
 

P9 14 
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P10 2 

 

 
 

 

C.6 Time frequency topographical plots for post non-ictal 

GSWDs 

Patients 

No. of 

post 

non-ictal 

GSWDs 

Topographical plots for post non-ictal GSWDs 

P6 3 

 

 
 

P7 3 
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P9 14 

 

 

 

 

 
 

P10 3 

 

 
 

 



 

182 
 

 Declaration  
 

I declare that: 

  

 Apart from my supervisor‟s guidance - the content and design of the thesis is all my own 

work and only using the sources listed in the thesis.  

 I have not submitted the thesis either partially or wholly as part of a doctoral examination 

procedure to another examining body and neither it has been published or submitted for 

publication.  

 The thesis has been prepared subject to the Rules of Good Scientific Practice of the 

German Research Foundation.  

 No academic degree has ever been withdrawn for me.  

  

 

Ami Kumar 

(Kiel, 2020) 


