
A Functional Programming Language with
Patterns and Copatterns

Shams A. Alkhulaif

Submitted in partial ful�lment

of the requirements for the degree of

Master of Science

Department of Computer Science

Brock University

St. Catharines, Ontario

©Shams A. Alkhulaif, 2020

Abstract

Since the emergence of coinductive data types in functional programming languages,

various languages such as Haskell and Coq tried di�erent ways in dealing with them.

Yet, none of them dealt with coinductive data types properly. In lazy languages such

as Haskell, both inductive data types and coinductive data types are gathered and

mixed in one list. Moreover, some languages such as Coq used the same constructors

that are used for inductive data types as a tool to tackle coinductive data types,

and while other languages such as Haskell did use destructors, they did not use

them properly. Coinductive data types behave di�erently than inductive data types

and therefore, it is more appropriate to deal with them di�erently. In this thesis,

we propose a new functional programming language where coinductive data types

are dealt with in a dual approach in which coinductive data types are de�ned by

observation and inductive data types are de�ned by constructors. This approach is

more appropriate in dealing with coinductive data types whose importance comes

from their role in creating a safer and more sophisticated software.

Acknowledgements

I would like to express my profound and sincere gratitude to my supervisor, Dr.

Michael Winter for his supervision, continuous and endless guidance, advice, sup-

port, motivation, encouragement from the very beginning of this research work, and

for helpful comments on the text. I am also grateful for suggesting the topic of the

thesis, reading my numerous revisions and giving me lots of valuable comments. I am

truly fortunate to have Dr. Winter as my supervisor, as his knowledge and leadership

have allowed me to draw inspiration to overcome future obstacles, and develop goals.

Without his encouragement, guidance and support from the initial to the �nal level

this thesis would not have been possible. I am indebted to him more than he knows.

I would like to thank my supervisory committee members Dr. Brian Ross and Dr.

Beatrice Ombuki-Berman, Graduate Program Director, as well as external examiner

Dr. Gunther Schmidt for their support, guidance and helpful suggestions. Their

guidance has served me well and I owe them my heartfelt appreciation.

I would like also to thank my family starting with my exceedingly generous par-

ents who encouraged my continued academic studies, my parents who supported me

from afar as much as they had previously done from close by. I would like to show

my appreciation and to thank my supportive husband for his help, encouraging, and

all the continuous support he has given me during my years of graduate studies at

Brock University. I thank him for believing in me, and for sharing my wish to reach

the goal of completing this task.

I extend my gratitude to my sponsors at Al-Jouf University as well as the The

Saudi Arabian Cultural Bureau who helped me all the way regardless of the circum-

stances I have been through.

I thank Brock University and its sta� that helped with hardware and software

support, and Kevin Bacon for the original template of this thesis.

In the end, I like to dedicate my endeavour and my thesis to my son in anticipation

and hope that one day he will do a better job than his Mom did.

Contents

1 Introduction 1

1.1 In�nite Data in Haskell . 2

1.2 In�nite Data in Dependently-Typed Languages 3

1.3 Our Approach . 7

2 Our Language 8

2.1 Lists . 8

2.2 Streams . 9

2.3 Functions . 9

2.4 Copattern Matching Vs. Pattern Matching 11

2.5 Syntax of The Grammar of Program 11

2.5.1 Backus Naur Form . 11

2.5.2 Application of Backus Naur Form in the Grammar of our Lan-

guage . 12

2.5.3 Parse tree . 16

2.6 Typing Rules . 18

2.6.1 Typing Rules . 18

2.6.2 Reduction Rules . 19

3 Implementation 21

3.1 Kinds . 22

3.1.1 Hierarchy of Kinds . 22

3.1.2 Implementation of Kinds . 23

3.2 Types . 24

3.2.1 Hierarchy of Types . 24

3.2.2 Implementation of Types . 25

3.3 Terms . 26

3.3.1 Hierarchy of Terms . 26

3.3.2 Implementation of Terms . 27

3.4 Program . 27

3.4.1 Hierarchy of Type Declaration 27

3.4.2 Hierarchy of Term Declaration 28

4 Execution 29

4.1 Execution Rules . 29

4.1.1 Method Execute . 30

4.1.2 Test Program . 32

4.1.3 Main Program . 36

4.1.4 Execution Result . 37

5 Conclusion 38

5.1 Summary . 38

5.2 Future Work . 39

Bibliography 42

List of Figures

2.1 Data Parse Tree . 16

2.2 CoData Parse Tree . 17

2.3 Typing Rules . 19

2.4 Reduction Rules . 20

3.1 Hierarchy of Kinds . 22

3.2 Hierarchy of Types . 24

3.3 Hierarchy of Terms . 26

3.4 Hierarchy of Type Declaration . 27

3.5 Hierarchy of Term Declaration . 28

4.1 Execution of Main . 36

4.2 Execution Result of The Example . 37

Chapter 1

Introduction

When dealing with recursive data types in functional programming languages we may

distinguish two main kinds, inductive and coinductive. In inductive data types, the

elements of the data type are �nitely generated which means they can be de�ned

by constructors. Constructors are basically the mechanism an inductive data type

provides to de�ne �nite data. For example, the elements of the data type List a are

�nite lists with elements from a. Any list can be constructed starting from the empty

list by adding a new head element �nitely many times. If we denote by [] : List a, the

empty list, and by cons : a→ List a→ List a, the constructor that produces a new

list from an already given list with an additional head element, then every list can

be written using the constructors [] and cons. The concept of inductive data types

or �nite data is dealt with in many functional languages such Haskell and others.

However, while inductive data types are very clearly explained and constructed in

the main implementation �elds of functional programming languages, one may notice

that the case is not the same when it comes to in�nite data or coinductive data types.

On the contrary from �nite data types as the name would indicate, elements of

coinductive data types are in�nite in nature. For example, the data type Stream a of

streams of a elements is the type of all in�nite lists with elements from a. Elements of

such a data type cannot be de�ned by constructors, i.e. they cannot be generated by

applying constructors �nitely many times. Therefore, in�nite data types are de�ned

by observation. Destructors as a dual concept to constructors provide a convenient

mechanism to de�ne in�nite data types by observation. For example, the codata

type Stream a can be de�ned by using the two destructors hd and tl, returning the

head element respectively the tail of a stream. Just as constructors de�ne data type

elements uniquely, destructors de�ne codata type elements uniquely. For example, a

stream has the number 1 as a head and a tail equal to itself is uniquely determined,

1

CHAPTER 1. INTRODUCTION 2

i.e., it is the in�nite sequence of 1's. In�nite data may play an important role in

the creation of more sophisticated and safer software. Our desire is to establish

behavioural and liveness properties by understanding in�nite data more clearly and

less vaguely.

1.1 In�nite Data in Haskell

The concept of in�nite data being dually di�erent from �nite data has been miss-

ing in many languages that tried to deal with in�nite data types; which had led to

treating in�nite data types in an improper way. The lack of this understanding was

a major reason why some of these languages dealt with in�nite data in an ad-hoc

manner. For instance, in some lazy languages such as Haskell, there is only one

kind of lists which includes both �nite and in�nite lists, i.e. it is the combination

of lists and streams. In other words, Haskell does not have in�nite data types in a

separate form and so it includes them in list data type. Functions with a parameter

of a data type are usually de�ned by pattern matching. A pattern is a term con-

structed from variables and constructors, i.e., a term that describes how the element

was constructed. Haskell provides top-level pattern matching as implicit program

construction, i.e., pattern matching can be used, for each parameter of a function, by

providing separate de�nitions for each pattern. Consider the example:

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:l) = (fx):(map f l)

The �rst line de�nes the type of the new function map. Please note that lower

case letters denote type variables in Haskell which are implicitly quanti�ed. Therefore,

the map is a polymorphic function that takes two parameters. The �rst parameter

is a function mapping elements from a to elements of b (a− > b), and the second

parameter is a list with elements from a ([a]). Finally map returns a list of elements

from b ([b]). The following two lines de�ne the function by pattern matching on its

second parameter. The second line de�nes map in the case that the list is the empty

list ([]), and the third line de�nes map in the case that the list is constructed using

cons (:).

CHAPTER 1. INTRODUCTION 3

In Haskell, it is easy to de�ne functions that compute the same result as destructors

of the corresponding codata type. For example, the destructors hd and tl of streams

can be implemented in Haskell as [3]:

hd :: [a] -> a

hd (x:_) = x

tl :: [a] -> [a]

tl (_:l) = l

In this syntax, the �rst part (the head) is meant to extract the �rst element of

an in�nite list, and the second part (the tail) is to extract the elements after the

head. In other words, the head would take the �rst element in a non-empty list,

while the tail takes everything else but the head. Please note that hd and tl are only

partially de�ned. They are not de�ned for the empty list, i.e., a de�ning statement

for the constructor [] is missing in both de�nitions. Furthermore, hd and tl are just

regular functions and cannot be used in pattern matching. A dual concept to pattern

matching is not available in Haskell.

1.2 In�nite Data in Dependently-Typed Languages

In other dependently-typed languages such as Coq or Agda, dealing with in�nite data

is not any better. While the proof assistant Coq, for instance, does have coinductive

types, it uses constructors to de�ne in�nite data. In Coq, coinductive streams are

de�ned as follows:

CoInductive Stream A :=

| Cons : A -> Stream A -> Stream A.

Please note that coinductive type in Coq represents in�nite elements that are not

�nitely generated by constructors but still uses constructors to de�ne them. As an

example we have the following two de�nitions of the stream 0,0,0,... and 1,1,1,... in

Coq [1]:

CoFixpoint zeroes : Stream nat := Cons nat 0 zeroes.

CoFixpoint ones : Stream nat := Cons nat 1 ones.

Similarly to Haskell, functions have to be de�ned using pattern matching. As an

example, consider the following de�nition of map for streams. Please note that Coq

CHAPTER 1. INTRODUCTION 4

does not provide implicit top-level pattern matching. Instead it uses an explicit match

statement. The destructors hd and tl can be de�ned analogously to Haskell. However,

in Coq these functions are total since the stream coinductive type does not have a

constructor for the empty list [1].

CoFixpoint map {A B} (f: A -> B) (s : Stream A) : Stream B :=

match s with

| Cons _ h t => Cons _ (f h) (map f t)

end.

In Coq, it is possible to de�ne the (dependent) type of proofs that two given

streams are equal. Since streams are coinductive, this type has to be coinductive as

well. The type de�nes two streams to be equal if the heads and the tails are equal

[1].

CoInductive stream_eq {A} : Stream A -> Stream A -> Prop :=

| Stream_eq : forall x1 x2 t1 t2, x1 = x2 ->

stream_eq t1 t2 -> stream_eq (Cons _ x1 t1) (Cons _ x2 t2).

Now, we can prove that the two streams ones and map S zeroes are equal. Please note

that proving a property in Coq is just de�ning a function of the appropriate type.

The Coq language just provides suitable tactics implementing a proof language, or

system, creating the required function.

CHAPTER 1. INTRODUCTION 5

Lemma Test1 : stream_eq (map S zeroes) ones.

Proof.

cofix Hyp.

assumption.

Qed.

Lemma Test2 : stream_eq (map S zeroes) ones.

Proof.

(*cofix Hyp.

assumption.*)

cofix Hyp.

replace ones with

((fun s => match s with Cons _ n s' => Cons _ n s' end) ones)

by (destruct ones; trivial); simpl.

replace (map S zeroes) with

((fun s => match s with Cons _ n s' => Cons _ n s' end)

(map S zeroes)) by (destruct (map S zeroes); trivial); simpl.

constructor.

trivial.

assumption.

Qed.

What we want to do is to show that ones and map S zeroes (S is successor) are

equal. The Co�x is the dual of induction. However, after doing Co�x, the hypothesis

and the goal are equal and after using the assumption, the system says that there is

nothing left to show. Also, closing the proof with Qed does not work which is due to

the fact that the hypothesis is about the tails of the two streams which happen to be

the same as the whole streams. So, using the assumption is not correct. Therefore,

in order to get it right we have to "unfold" ones and map S zeroes �rst so that both

terms start with a constructor. This is necessary since the conclusion of Stream_eq

requires the two streams to be in that form. This "unfolding" can only be done by

a trick (as shown above) Then we can use the constructor Stream_eq and �nish. If

streams would be de�ned by destructors, then Stream_eq would become:

Stream_eq : forall s1 s2, hd s1

= hd s2 -> stream_eq (tl sq) (tl s2) -> stream_eq s1 s2.

CHAPTER 1. INTRODUCTION 6

Here, there is no need to "unfold" the two streams since the conclusion of Stream_eq

does not require the terms to be in a speci�c form. Moreover, "in the Calculus of

(Co)Inductive Constructions, the core theory underlying Coq, coinduction is broken,

since computation does not preserve types". [4, 9, 15]. In Agda for instance, one

can never mix inductive and coinductive types in a compositional way according to

Abel and colleagues. In other words, while encoding the property "in�nitely often"

from temporal logic is possible, its dual "eventually forever" is not possible. The

common fact of all these languages is simply that none of them seems to be dealing

with in�nite data or coinductive data types in the best way possible.

CHAPTER 1. INTRODUCTION 7

1.3 Our Approach

In our language, we want to avoid all problems indicated above when dealing with

�nite and in�nite data. The �rst major problem to be treated is the problem of mixing

�nite and in�nite data types. As their properties are di�erent, they both should

have been di�erently de�ned and treated. Therefore, this problem must be �xed by

separating them from each other. The other major problem is that constructors are

always used to de�ne in�nite data when observation is what should have been used

to de�ne it instead of giving its value directly. Therefore, in our language:

• We will have �nite and in�nite data types separated. This way will assure us a

more proper way of de�ning them.

• Since we separated them from each other, �nite elements of data types will be

de�ned by constructors using pattern matching and in�nite elements of codata

types will be de�ned by destructors (destructors) using copattern matching.

Chapter 2

Our Language

As a functional programming language, our language will have both �nite and in�nite

data. The main di�erence to other functional programming languages is the treat-

ment of in�nite data. Therefore, when dealing with �nite data, our language will not

look very di�erent from Haskell. This way we can focus more on the creation of a

language that deals best with coinductive data types.

2.1 Lists

As indicated above, dealing with �nite data will not be very di�erent from the way

languages like Haskell deal with it. For example, in our language, lists are de�ned as

follows:

data List a {

empty : List a;

cons : a -> List a -> List a;

}

In Haskell, the list is de�ned as follows:

data [a] =

[]

| (:) a [a]

It is worth mentioning that the list data type in Haskell is actually implemented in-

ternally without an explicit de�nition in Haskell itself for e�ciency reasons. However,

the internal implementation is equivalent to the one given above.

8

CHAPTER 2. OUR LANGUAGE 9

In both languages, the de�nition starts with the keyword data. Then, the name of

the new data type and its potential parameters are listed, i.e., List a, [a] respectfully.

This is followed by the constructors for the new data type. The only di�erence here

is that in Haskell we do not need to mention the return type of the constructors. For

example, the constructor [] in Haskell takes no parameters (constant) and is of type

[a] by de�nition. Similarly, the in�x constructor : takes parameters of type a and

[a] and returns [a] by de�nition. In our language, we have decided that the full type

of every constructor has to be provided with the requirement that its return type is

equal to the type that we are currently de�ning.

2.2 Streams

When it comes to coinductive types with in�nite data, our language would di�er

from other languages that tried to deal with in�nite data. As mentioned before,

many existing languages use constructors for in�nite data as well. In our language,

destructors are used to de�ne in�nite data which cannot be de�ned by constructors.

In other words, they will not be constructed from the empty set, rather, they will be

de�ned by how they behave. For example, if we look at the head of an in�nite list

that we have, we will get an element while we also can look at the remaining list of

the tail. This is the way in�nite objects are described. In one word, observation. In

our language, we de�ne streams as follows:

codata Stream a {

hd : Stream a -> a;

tl : Stream a -> Stream a;

}

As shown in the de�nition, in�nite data (codata) is dealt with as another data

type with a di�erent mechanism to de�ne it (destructors).

2.3 Functions

After data and codata types are de�ned, the next type of data to be de�ned is

Functions. Functions are the kinds of data that allow us to work on the data types

we have. In his book The Haskell School of Expression, Hudak wonders "what should

the type of a function be?" before he de�nes it as "It seems that it should at least

convey the fact that a function takes values of one type ... as input and returns values

CHAPTER 2. OUR LANGUAGE 10

of (possibly) some other type ... as output"[13]. This de�nition explains the type

of functions and what it basically does. In our language, data and codata types are

separated, and the mechanisms used to de�ne �nite and in�nite data (constructors

and destructors) are not the same. Considering that, just as constructors cannot be

used for �nite and in�nite data, functions that deal with �nite data cannot be the

same as those dealing with codata types. Therefore, functions as well will be de�ned

in accordance to the data or codata type.

Let us take a map function for instance. In our language, the map function for lists

is de�ned as follows:

map : forall a b, (a -> b) -> List a -> List b;

map = fun (f : a -> b) (l : List a) =>

match l with

empty => empty;

cons x l1 => cons (f x) (map f l1);

end

end;

This map is used with �nite lists as it is dealing with empty lists. It permits us

to compensate for the missing eliminations for positive types [4]. This will not work

properly when dealing with streams as it is using Pattern Matching which is about

mapping elements of a list to elements of another. In streams where data is in�nite

this will not work.

In this de�nition, the map is de�ned for empty lists, which makes it not e�ective for

streams. Therefore, we de�ned what we call mapS as follows:

mapS : forall a b, (a -> b) -> Stream a -> Stream b;

mapS = fun (f : a -> b) (s : Stream a) =>

comatch as Stream b by

hd _ => f (hd s);

tl _ => mapS f (tl s);

end

end;

The function mapS uses what we call Copattern Matching which is more about

heads and tails than it is about individual elements. Instead of compensating for

the missing eliminations for positive types, Copatterns are compensating for the

missing introductions for negative types.

CHAPTER 2. OUR LANGUAGE 11

2.4 Copattern Matching Vs. Pattern Matching

Upon dealing with data, patterns appear in many areas such as lambda abstractions,

function de�nitions, pattern bindings, list comprehensions, do expressions, and case

expressions [17]. Yet, as we proposed a dual approach in dealing with �nite and

in�nite data types, it is important to deal with them dually as well as matching their

patterns and copatterns. When dealing with �nite data, pattern matching, which

is comparing an observed pattern with an expected pattern to determine whether

they match or not, is to be used [29]. This concept of pattern matching is used

by languages, such as Haskell, in a proper way. However, when it comes to in�nite

data types, there is no dual tool such as pattern matching being used as mentioned

earlier. Therefore, we used copattern matching which was proposed by Abel et al.

where instead of values being matched against patterns, evaluation contexts are being

matched against copatterns [4]. According to Abel et al., copatterns may be regarded

as a de�nition scheme for in�nite data types where it could be seen as experiments

on blackbox in�nite objects such as functions and streams [4]. Pairing a copattern

with its de�ning outcome is what is known as a covering observation, and a �nite set

of those observations is what de�nes in�nite objects [4]

2.5 Syntax of The Grammar of Program

2.5.1 Backus Naur Form

Backus Naur Form is a notation of the scheme of syntactic de�nition of ALGOL 60

which was proposed by John Backus in 1959 [21]. This proposed scheme made clear

distinctions between Syntax and Semantics which were two of the semiotics proposed

by Charles Morris in his book Signs, Language, and Behavior [21, 20]. BNF grammar

also does agree with the Context-free Grammar of Noam Chomsky [21]. Moreover,

according to The Computer Science and Communications Dictionary Backus Naur

form is "A metalanguage used to specify or describe the syntax of a language in which

each unique symbol represents a single set of symbol strings. Common abbreviation

BNF."[30, 16]. Therefore, we chose to use BNF to describe the grammar of our

language as it is used to describe a language using a context free grammar.

CHAPTER 2. OUR LANGUAGE 12

Table 2.1: Notational Conventions

Macro name Description

<Syntax> Nonterminal is denoted by surrounding symbol with <>
Syntax Terminal is unadorned symbol
| Alternation is denoted by | (choice)

‘Syntax' Use as is
::= Replacement is denoted by ::= (the production)

(Syntax) For grouping, for a list (must pick one)

While the right hand side (rhs) of the production is the sequence of terminal and non-

terminal symbols to the right of the ::=, the left hand side (lhs) of the production is

the non-terminal symbol to the left of the ::=. Since it is a context free grammar, it

is de�ned by a set of productions where the lhs is to be replaced by the rhs anywhere

lhs exists despite the context. This is what makes it context free [7].

2.5.2 Application of Backus Naur Form in the Grammar of

our Language

In this section, we use BNF to describe the syntax of the grammar of our language as

it is used to describe a language using a context free grammar. And before showing

the syntax, we presented some notational conventions that are used for presenting

the syntax in Table 2.1.

Program Grammar

〈Program〉 ::= 〈Declaration〉
| 〈Declaration〉〈Program〉

Declaration Grammar

〈Declaration〉 ::= 〈TypeDeclaration〉
| 〈TermDeclaration〉

CHAPTER 2. OUR LANGUAGE 13

Type Declaration Grammar

〈TypeDeclaration〉 ::= 〈TypeData〉
| 〈TypeCoData〉

〈TypeData〉 ::= `data' 〈Name〉 〈ListTypeVariable〉 `{' 〈ListConstructor〉
`}'

〈TypeCoData〉 ::= `codata' 〈Name〉 〈ListTypeVariable〉 `{' 〈ListDestructor〉
`}'

〈ListTypeVariable〉 ::= 〈Empty〉
| 〈TypeVariable〉 〈ListTypeVariable〉

〈ListConstructor〉 ::= 〈Empty〉
| 〈ConstructorDe�nition〉 〈ListConstructor〉

〈ListDestructor〉 ::= 〈Empty〉
| 〈DestructorDe�nition〉 〈ListDestructor〉

〈ConstructorDe�nition〉 ::= 〈Name〉 `:' 〈TypeBody〉 `;'

〈DestructorDe�nition〉 ::= 〈Name〉 `:' 〈TypeBody〉 `;'

〈Empty〉 ::= nil

〈Name〉 ::= String

Type Grammar

〈Type〉 ::= 〈TypeBody〉
| 〈TypePolymorphic〉

〈TypeBody〉 ::= 〈TypeVariable〉
| 〈TypeFunction〉
| 〈TypeDe�ned〉
| 〈TypeApply〉

CHAPTER 2. OUR LANGUAGE 14

〈TypePolymorphic〉 ::= `forall' 〈ListTypeVariable〉`,' 〈TypeBody〉

〈TypeVariable〉 ::= 〈Identi�er〉

〈TypeFunction〉 ::= 〈TypeBody〉 `->' 〈TypeBody〉

〈TypeDe�ned〉 ::= 〈Identi�er〉

〈TypeApply〉 ::= 〈TypeBody〉 ` ' 〈TypeBody〉

〈Identi�er〉 ::= 〈Letter〉
| 〈Letter〉〈Identi�er〉
| 〈Identi�er〉〈Digit〉
| 〈Name〉

〈Letter〉 ::= a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r |
s | t | u | v | w | x | y | z | A | B | C | D | E | F | G | H |
I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W |
X | Y | Z

〈Digit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Term Declaration Grammar

〈TermDeclaration〉 ::= 〈Name〉 `:' 〈Type〉`;'
〈Name〉 `=' 〈Term〉`;'

Term Grammar

〈Term〉 ::= 〈TermVariable〉
| 〈TermFunction〉
| 〈TermDe�ned〉
| 〈TermMatch〉
| 〈TermCoMatch〉
| 〈TermApply〉

CHAPTER 2. OUR LANGUAGE 15

〈TermVariable〉 ::= `('〈Identi�er〉`:'〈Type〉`)'

〈TermFunction〉 ::= `fun' 〈ListTermVariable〉 `=>' 〈Term〉 `end'

〈TermDe�ned〉 ::= 〈Identi�er〉

〈TermMatch〉 ::= `match' 〈Identi�er〉 `with'
〈ListCase〉
`end'

〈TermCoMatch〉 ::= `comatch as' 〈TypeBody〉 `by'
〈ListCoCase〉
`end'

〈TermApply〉 ::= 〈Term〉 ` ' 〈Term〉
| `('〈Term〉 ` ' 〈Term〉`)'

〈Case〉 ::= 〈Constructor〉 `=>' 〈Term〉 `;'

〈CoCase〉 ::= 〈Destructor〉 `_'` =>' 〈Term〉`;'

〈ListCase〉 ::= 〈Case〉
| 〈Case〉 〈ListCase〉

〈ListCoCase〉 ::= 〈CoCase〉
| 〈CoCase〉 〈ListCoCase〉

〈Constructor〉 ::= 〈Name〉

〈Destructor〉 ::= 〈Name〉

〈ListTermVariable〉 ::= 〈Empty〉
| 〈TermVariable〉 〈ListTermVariable〉

CHAPTER 2. OUR LANGUAGE 16

2.5.3 Parse tree

"A parse tree is a tree-based notation for describing the way a sentence could be built

from a grammar"[7]. An example of a context free grammar using BNF for data type

declaration is the following syntax tree:

〈Program〉

〈Declaration〉

〈Type-Declaration〉

〈Type-Data-Declaration〉

data 〈Name〉

List

〈List-Type-Variables〉

〈Type-Variable〉

〈Identi�er〉

〈Letter〉

a

{ 〈List-Constructors〉

〈Constructor-De�nition〉

〈Name〉

empty

: 〈Type〉

〈Type-Apply〉

〈Type-De�ned〉

〈Identi�er〉

〈Name〉

List

〈Type-Variable〉

〈Identi�er〉

〈Letter〉

a

;

〈List-Constructors〉

〈Constructor-De�nition〉

〈Name〉

cons

: 〈Type〉

〈Type-Function〉

〈Type〉

〈Type-Variable〉

〈Identi�er〉

〈Letter〉

a

−> 〈Type〉

〈Type-Function〉

〈Type〉

〈Type-Apply〉

〈Type-De�ned〉

〈Identi�er〉

〈Name〉

List

〈Type-Variable〉

〈Identi�er〉

〈Letter〉

a

−> 〈Type〉

〈Type-Apply〉

〈Type-De�ned〉

〈Identi�er〉

〈Name〉

List

〈Type-Variable〉

〈Identi�er〉

〈Letter〉

a

;

}

Figure 2.1: Data Parse Tree

This data type declaration in this example is the result of the parsing tree above:

data List a {

empty : List a;

cons : a -> List a -> List a;

}

CHAPTER 2. OUR LANGUAGE 17

Another example of a context free grammar using BNF for codata type declaration

is the following syntax tree:

〈Program〉

〈Declaration〉

〈Type-Declaration〉

〈Type-CoData-Declaration〉

codata 〈Name〉

Stream

〈List-Type-Variables〉

〈Type-Variable〉

〈Identi�er〉

〈Letter〉

a

{ 〈List-Destructors〉

〈Destructor-De�nition〉

〈Name〉

hd

: 〈Type〉

〈Type-Function〉

〈Type〉

〈Type-Apply〉

〈Type-De�ned〉

〈Identi�er〉

〈Name〉

Stream

〈Type-Variable〉

〈Identi�er〉

〈Letter〉

a

−> 〈Type〉

〈Type-Variable〉

〈Identi�er〉

〈Letter〉

a

;

〈List-Destructors〉

〈Destructor-De�nition〉

〈Name〉

tl

: 〈Type〉

〈Type-Function〉

〈Type〉

〈Type-Apply〉

〈Type-De�ned〉

〈Identi�er〉

〈 Name〉

Stream

〈Type-Variable〉

〈Identi�er〉

〈Letter〉

a

−> 〈Type〉

〈Type-Apply〉

〈Type-De�ned〉

〈Identi�er〉

〈Name〉

Stream

〈Type-Variable〉

〈Identi�er〉

〈Letter〉

a

;

}

Figure 2.2: CoData Parse Tree

This codata type declaration in this example is the result of the parsing tree above:

codata Stream a {

hd : Stream a -> a;

tl : Stream a -> Stream a;

}

Generally, parse trees and their derivations have one main di�erence. This di�er-

ence is that the parse tree, or syntax tree, does not state the order in which some of

the derivations are derived [7]. However, in what is called leftmost derivation, where

the left most non-terminal is always replaced �rst [7], that di�erence between parse

trees and their derivations appears to be non-existent.

CHAPTER 2. OUR LANGUAGE 18

2.6 Typing Rules

The typing rules are based on a context Γ. Such a context is a list of declarations of

the form x : A where x is a variable and A is a type. If x : A is in Γ, it is assumed

that x has type A. All typing rules are based on such a Γ.

A typing judgement has the form Γ ` t : A where Γ is a context, t is a term, and

A is a type. It states that under the assumptions in Γ, i.e., that the variables have

the type as listed, the term t has type A. We present the typing rules in the form:

A1 · · ·An

C

where A1 ,. . . , An and C are typing judgements. The rule says that if we already

derived the judgements A1, . . . , An, then we may conclude the judgement C . Please

note that in the special case n = 0 , i.e., the number of judgements above the line is 0 ,

the rule simply says that a certain term always has the given type in the given context.

Please note that while some typing rules such as TypeFunction and TypeApply may

exist in other languages [22, 23], TypeCoData is particularly written for our language.

2.6.1 Typing Rules

To de�ne the typing rules we assume that D is a data type of kind ?→ · · · → ?︸ ︷︷ ︸
n+1 times

taking

n parameters, and:

consi : forall A1 · · ·An , B1 → · · · → Bm → D A1 · · ·An is a constructor of D ,

and that C is a codata type of kind ?→ · · · → ?︸ ︷︷ ︸
n+1 times

taking n parameters and

destri : forall A1 · · ·An : C A1 · · ·An → D is a destructor of C .

CHAPTER 2. OUR LANGUAGE 19

The typing rules of our language are as follows:

Γ1, x : A, Γ2 ` x : A (TypeVariable Rule)

Γ ` f : A→ B Γ ` t : A

Γ ` f t : B
(TypeApply Rule)

Γ, x : A ` t : B

Γ ` fun x : A => t end : A→ B
(TypeFunction Rule)

Γ ` t : D A1 · · ·An Γ, x1 : B1 , · · · , xm : Bm ` ti : C

Γ ` match t with

consi x1 · · · xm => ti

end : C (TypeData Rule)

Γ ` ti : Di

Γ ` comatch as C A1 · · · An by

destri _ => ti

end : C A1 · · ·An (TypeCoData Rule)

Figure 2.3: Typing Rules

2.6.2 Reduction Rules

As usually we denote by t [t ′/x] the substitution of the term t ′ for every free occur-

rence of x in t . Please note that this may require to rename bounded variables in t

in order to avoid binding free variable in t ′ during substitution.

Reduction rules are the mechanism for executing a functional program. The reduc-

tion rules include the regular β-reduction and two rules related to matching and co-

matching. Informally, a program reduces if a constructor (destructor) meets a match

(comatch) statement. The rules are as follows:

CHAPTER 2. OUR LANGUAGE 20

fun x : A => t end t ′ → t [t ′/x] (β Rule)

match (consi t1 · · · tm) with

...

consi : x1 · · · xm => t

end −→ t [t1/x1 · · · tm/xm] (match Rule)

destri (comatch as A by

...

destri : _ => t

end) −→ t (comatch Rule)

Figure 2.4: Reduction Rules

Chapter 3

Implementation

The parsing and interpretation of our language was done using JPARSEC as a parser

[2]. JPARSEC is "Java library initially developed to implement a complete set of

algorithms to compute ephemerides" that was meant to improve scienti�c research

[28]. As an object oriented language, Java is relatively fast, cross-platform and cross-

architecture language. the abstraction in Java, where simple or complex programs

are implemented and kept easy to maintain and scale, is o�ered at a high level. These

features of Java were the reason why the developer of JPARSEC has chosen it to be

the language of his project [28]. Moreover, Java has a rich type system and �exible

subclass mechanism and is without primitive types [19]. This helps Java avoid having

problems such as those with higher-order interpretation of matching, particularly in

the context of bounded quanti�cation that pure object-oriented languages with prim-

itive types have [19].

In our language, there are three main hierarchies for Kinds, Types, and Terms that

are implemented using Composite Design Pattern. According to Riehle, the Composite

Design Pattern is a design pattern which is an "abstraction from a concrete recurring

solution that solves a problem in a certain context", that "can be best explained as the

composition of further atomic or composite patterns."[24]. Constituting patterns that

are integrating with one another in order to achieve a high level of cooperation and

collaboration is what gives Composite Design Pattern its identity that distinguishes

it as more than just a sum of some patterns [24].

21

CHAPTER 3. IMPLEMENTATION 22

3.1 Kinds

3.1.1 Hierarchy of Kinds

Figure 3.1: Hierarchy of Kinds

As di�erent values and terms can be of di�erent types, the types of these values and

terms have a type, called Kind, as well. For instance, Bool and Int are two di�erent

types that have their own values and terms such as True and False of type Bool. The

type itself is a plain type and has kind ?, i.e., the kind ? indicates that the entity in

question is a type. If we consider the list data type from the previous chapter, then

List Bool is also a type, and, hence, has kind ?. On the other hand List itself is not

a type. It is a type constructor, i.e., a function that maps types to types. Therefore,

List has kind ?→ ?. Unlike types, Kinds cannot appear on the surface syntax as they

are to be inferred by the compiler [5]. There are only two Kinds of types, KindType

and KindFunction. KindType is denoted as a ? and includes basic types such as

Bool, Int, and Char. Each one of these types is of Kind ?. KindFunction, on the

other hand, is more complicated. It can be where we have a function that takes a

type and returns a type. KindFunction can also be taking two arguments of types of

CHAPTER 3. IMPLEMENTATION 23

KindType and returning a type of KindType. An example of that would be Pair of

kind ?→ ?→ ?.

data pair a b = pair a b

Therefore, kinds are relatively easy when de�ned and here is the de�nition of

Kind:

κ ::= ? | κ → κ

3.1.2 Implementation of Kinds

Similar to the implementation of other syntactical components of our language, kinds

are implemented using the composite design pattern [10]. We start our description

with the abstract class Kind. Kind here is an abstract class, which means it does

not have a body. This superclass is considered a parent to the other subclasses

-its children- which will provide it with the body. Kind has two subclasses Kind-

Type and KindFunction, which we explained earlier, as well as two methods which

are toStringPrec(int) and toString(). Starting with the methods, the �rst method,

toStringPrec(int), which is de�ned in Kind and implemented in its subclasses in order

to convert an element of the class Kind into a string. The parameter prec is used

to model precedences of the operations and place brackets accordingly. It returns an

object of a string which is representing the precise integer.

Implementation:

public abstract String toStringPrec(int prec);

The second method, toString(), is implemented in Kind by calling toStringPrec(0).

It returns a toStringPrec(0).

Implementation:

public String toString()

Another method, equals(Object), is implemented in the obvious way for all kinds. It

returns true if object and Kind are equal.

Implementation:

public boolean equals(Object obj)

CHAPTER 3. IMPLEMENTATION 24

3.2 Types

3.2.1 Hierarchy of Types

Figure 3.2: Hierarchy of Types

CHAPTER 3. IMPLEMENTATION 25

Similar to kinds, types include values, expressions, and/or terms. The type of these

values is called Type. Although this concept looks similar to the one in Kind, there

are still some major di�erences between the two. The �rst di�erence is the fact that

Types can appear on the surface syntax as they are to be inferred by the compiler [5].

Types include simple types such as Nat, Bool, and Char. They also include poly-

morphic types which are the types of values and terms that can come formed in two

or more ways [12]. In functional programming languages, data types can sometimes

be created by the user. Yet, there would be some built-in data types like the ones

mentioned earlier. In our language, there are six types of types as shown in Figure

3.2. They are TypeVariable, TypeFunction, TypeDe�ned, TypeBody, TypePolymor-

phic, and TypeApply.

TypeVariable for instance, is all the types that are considered universally quanti�ed

[18]. As explained earlier, polymorphic can be written in several ways, yet they are

either parametric or constrained. Being parametric simply means it can work for any

type as it is not using information that are speci�ed to a type or a set of types, and

being constrained means to be bounded to the set of types that have instances of its

typeclasses [6]. For TypeFunction, a function in its simplest forms is when it takes

values of one type and returns values of same or other types, and a TypeFunction is

a function that can be as simple as that or even more complex yet the main concept

remains the same [14].

3.2.2 Implementation of Types

When implementing the class Type, there are many methods as shown in Figure

3.2. However, two of them are worthy of explaining here which are Uni�cation

and Substitution. As for Uni�cation, in general, "Uni�cation tries to identify

two symbolic expressions by replacing certain sub-expressions (variables) by other

expressions"[26]. In other words, these expressions can unify a uni�er (substitution

of terms for variables) that makes them equal [8]. Although this is a general state-

ment about uni�cation, it is not so di�erent from what it is doing in our language.

Uni�cation in our language computes themost general uni�er (mgu) of two types

by using John A. Robinson's algorithm [25]. In types, the method Uni�cation, or

as it is written in the Hierarchy of Types (Figure 3.2) unify, gets two variables to be

the same. On the other hand, Substitution is "a mapping from variables to terms

which is almost everywhere equal to the identity"[26]. In our language, substitution

CHAPTER 3. IMPLEMENTATION 26

methods are in both Types and Terms. they constantly changes expressions that they

are applied to, and can be the way as which solutions of Uni�cation are denoted.

In other words, they replace a free type or a free term variable by a given type or

term respectfully.

3.3 Terms

3.3.1 Hierarchy of Terms

Figure 3.3: Hierarchy of Terms

Similar to the way kinds consist of types, types do consist of terms. Therefore, terms

could be regarded as the blocks of types. In functional programming, terms may

sometimes be used interchangeably with expressions, and although it may depend

on the meaning a programmer has of terms, they are quite di�erent. According

to Granström, the word term can be de�ned as an expression taken together with its

meaning [11]. Terms and expressions also can be either simple or complex, depending

on their parts. Also, terms can be built from function symbols as well as variable

symbols [26]. There can be expressions that have multiple meanings and these are

called Polymorphic expressions [11]. When describing the hierarchy of terms in our

CHAPTER 3. IMPLEMENTATION 27

language, there are six types of terms: TermVariable, TermFunction, TermDe�ned,

TermMatch, TermCoMatch and TermApply.

3.3.2 Implementation of Terms

Similar to types, when terms are implemented, they have many methods as shown

in Figure 3.3. There are three of these methods that are of higher importance:

toString(), toStringPrec(int), and substitute (String, Term): Term.

toStringPrec(int), is de�ned in Term and implemented in its subclasses in order to

convert an element of the class Term. The second method, toString(), is implemented

in Term by calling toStringPrec(0), returns a toStringPrec(0).

3.4 Program

3.4.1 Hierarchy of Type Declaration

Figure 3.4: Hierarchy of Type Declaration

CHAPTER 3. IMPLEMENTATION 28

As we are dually treating data and codata, we have two subclasses under Type-

Declaration and can be seen in Figure 3.4. Its subclasses consist of TypeData and

TypeCoData. While the subclass TypeData provides getConstructors() to access the

constructors of this data type, the subclass TypeCoData provides getDestructors() to

access the destructors of this data type. This is, of course, because data is de�ned by

constructors and codata is de�ned by destructors.

3.4.2 Hierarchy of Term Declaration

Figure 3.5: Hierarchy of Term Declaration

In term declaration, the hierarchy of Term Declaration has three subclasses as shown

in Figure 3.5, which are TermConstructor, TermDestructor and TermProgDe�ned.

As for TermProgDe�ned, it is the implementation of Term and is basically the main

program.

Chapter 4

Execution

After the language is constructed, comes the time of execution of the program. In

this chapter, we focus on the method execute in Terms. This method �nds reductions

(left hand side of a reduction rule) and replaces it by the right hand side. This

is done recursively until no reduction rule can be applied. The main program will

automatically execute the term main de�ned in a user de�ned program. After the

execution is done, the results will be given.

4.1 Execution Rules

When executing, the program uses reduction rules (or execution rules) recursively

until no reduction can be found. Being recursively applied would make it hard to

detect the order in which the execution takes place. However, going over the reduction

rules shown in Figure 2.4 should clarify the steps in which the program performs the

reductions. Starting with the β rule,

fun x : A => t end t ′ → t [t ′/x]

if a function is applied to an argument, then one simply takes the body of the func-

tion and executes it. In this rule, the left side, until the end, will be applied to the

parameter. However, one would get the body where the variable by a parameter is

placed. This computes its left side to the right hand side.

29

CHAPTER 4. EXECUTION 30

If it is a match, in which case this rule will be used is:

match (consi t1 · · · tm) with

...

consi : x1 · · · xm => t

end −→ t [t1/x1 · · · tm/xm]

and the term being matched is a term that starts with a constructor, then the cor-

responding line is taken out of the match statement and placed in the concrete pa-

rameter ta all the way to tm for the variables. Again, the left side will be constantly

replaced with the right hand side until no reductions are possible.

If it is a comatch, in which case this rule will be used is:

destri (comatch as A by

...

destri : _ => t

end) −→ t

and instead of starting with a constructor we start with a destructor that is applied

to comatch, then the corresponding line will be taken from the comatch and placed

in the variable. Therefore, a while loop runs everything within its block, which is

de�ned by curly braces, as long as the conditional test is true. When the conditional

test is false, the while loop code block will not run, and execution will move down

to the code immediately after the loop block. These executions will recursively be

applied.

4.1.1 Method Execute

For terms, we execute using method execute. Here is execute method in Term:

public abstract Term execute();

The method execute has a type Term, has no parameters, has no body of the method,

and is simply an abstract which is di�erent than other methods of term. TermVari-

able, TermDe�ned, TermCoMatch and TermFunction for instance have no param-

CHAPTER 4. EXECUTION 31

eters, and they return a Term in accordance to the initial term. Other terms are

TermMatch and TermApply.

When TermMatch matches a Term and this Term is equal to TermApply, the right

parameter of TermApply will be added to a list, then TermMatch will get the left

parameter of TermApply. This loop will continue running as long as the conditional

test is true. Afterwards, if the conditional test is false, execution will move to the code

that comes after the loop. If TermMatch matches a Term and this Term is equal to

TermDe�ned, and if implementation of TermDeclaration is equal to TermConstructor,

then Term will get a list name of TermDeclaration, and will do a substitution for a

list of TermVariable in a continuously for a loop until the conditional test is false.

It will return the result of the execution of the Term if all the conditions are met,

otherwise it will return a Term.

When a TermApply left is equal to TermDe�ned it will execute the implementation

of TermDe�ned. If that is not the case, it will execute the TermApply on the left.

If the result of the execution is equal to a TermFunction, will execute the right

parameter of TermApply of TermFunction. Else, when the result of the execution

is equal to a TermDe�ned, the implementation of the result of the execution, which

is a TermDe�ned, is equal to TermDestructor, and the running of the TermApply

on the right is equal to TermCoMatch, then the running of applying destructor to

the TermCoMatch results. Else, it will result a new TermApply with the result of

the running of TermApply as a right parameter and the result of the execution of

TermApply left as a left parameter.

If the result of the execution and TermDe�ned are not equal or if the implemen-

tation of the result of the execution which is a TermDe�ned and TermDestructor are

not equal, the result will be a new TermApply with two parameters: the result of the

execution of TermApply left as a left parameter and execution of TermApply on the

right as a right parameter.

At the end of execution it should return a Term.

The main program of our language, which is a subclass of TermDeclaration, is

called TermProgDe�ned as shown in Figure (3.5). It has one parameter implemen-

tation of type Term, two constructor methods, and three other methods. The �rst

constructor method is TermProgDe�ned(String, Type) with two parameters that have

types String and Type which it got from TermDeclaration. The second constructor

method is a TermProgDe�ned(String, Type, Term) method with three parameters

CHAPTER 4. EXECUTION 32

that have types String, Type, and Term. The second constructor method got its �rst

two parameters from TermDeclaration while it produces the third itself. For the other

methods, the �rst method is called setImplementation(Term) with one parameter of

type Term. This method returns nothing. Another method it has is a getImplemen-

tation() method with no parameters. This method always returns a Term. The last

method, is called show(). It does not have any parameters, and always returns a

String.

4.1.2 Test Program

Here is the test program �le that was executed which contains TypeDeclaration and

TermDeclaration, and Functions :

data nat {

zero : nat;

succ : nat -> nat;

}

five : nat;

five = succ (succ (succ (succ (succ zero))));

data List a {

empty : List a;

cons : a -> List a -> List a;

}

map : forall a b, (a -> b) -> List a -> List b;

map = fun (f : a -> b) (l : List a) =>

match l with

empty => empty;

cons x l1 => cons (f x) (map f l1);

end

end;

CHAPTER 4. EXECUTION 33

codata Stream a {

hd : Stream a -> a;

tl : Stream a -> Stream a;

}

mapS : forall a b, (a -> b) -> Stream a -> Stream b;

mapS = fun (f : a -> b) (s : Stream a) =>

comatch as Stream b by

hd _ => f (hd s);

tl _ => mapS f (tl s);

end

end;

get : forall a, nat -> Stream a -> List a;

get = fun (n : nat) (s : Stream a) =>

match n with

zero => empty;

succ m => cons (hd s) (get m (tl s));

end

end;

zeroes : Stream nat;

zeroes = comatch as Stream nat by

hd _ => zero;

tl _ => zeroes;

end;

main : List nat;

main = get five (mapS succ zeroes);

In this �le we write a DataDeclaration of Nat, DataDeclaration of List a, and a

CoDataDeclaration of Stream a. Also we write a TermDeclaration and function de�-

nitions for the three declarations. Every declaration in the example has constructors

or destructors as the case in CoDataDeclaration. Every constructor has a Type. Also,

every destructor in codata declaration has a Type, so head has a Type Stream a → a,

and tail has a Type Stream a → Stream a which is a TypeFunction.

CHAPTER 4. EXECUTION 34

data nat {

zero : nat;

succ : nat -> nat;

}

data List a {

empty : List a;

cons : a -> List a -> List a;

}

codata Stream a {

hd : Stream a -> a;

tl : Stream a -> Stream a;

}

Also we write a TermDeclaration for the three declarations, we write:

five : nat;

five = succ (succ (succ (succ (succ zero))));

zeroes : Stream nat;

zeroes = comatch as Stream nat by

hd _ => zero;

tl _ => zeroes;

end;

main : List nat;

main = get five (mapS succ zeroes);

CHAPTER 4. EXECUTION 35

And for the function de�nitions, we write:

map : forall a b, (a -> b) -> List a -> List b;

map = fun (f : a -> b) (l : List a) =>

match l with

empty => empty;

cons x l1 => cons (f x) (map f l1);

end

end;

mapS : forall a b, (a -> b) -> Stream a -> Stream b;

mapS = fun (f : a -> b) (s : Stream a) =>

comatch as Stream b by

hd _ => f (hd s);

tl _ => mapS f (tl s);

end

end;

get : forall a, nat -> Stream a -> List a;

get = fun (n : nat) (s : Stream a) =>

match n with

zero => empty;

succ m => cons (hd s) (get m (tl s));

end

end;

Term of program has two lines. The �rst line is: a name with the Type of the

program. The second line is: the name =, and then a Term as shown below:

five : nat;

five = succ (succ (succ (succ (succ zero))));

After codata is de�ned, the next step is to de�ne a function:

CHAPTER 4. EXECUTION 36

mapS : forall a b, (a -> b) -> Stream a -> Stream b;

mapS = fun (f : a -> b) (s : Stream a) =>

comatch as Stream b by

hd _ => f (hd s);

tl _ => mapS f (tl s);

end

end;

Function mapS will return a stream destructed by applying a function (the �rst

argument) to all items in a stream passed as (the second argument).

4.1.3 Main Program

In the main class, the program will be run using the main method as shown in Figure

4.1.

Figure 4.1: Execution of Main

CHAPTER 4. EXECUTION 37

4.1.4 Execution Result

When the program is run, the result of the example as shown below:

Figure 4.2: Execution Result of The Example

The program shows Types, Kinds, Terms, Constructors and Destructors with

their types, Functions, and the execution results as shown in Figure 4.2. In Figure

4.2, Type of data List can be seen �rst, then Kind of List, and the Constructors. For

codata. It is almost the same order starting with codata Stream, Type, Kind, and

Destructors. With Nat, it is the same as data List. after it shows the functions, it

lastly shows the execution results as below:

1 Execution result: cons (succ zero) (cons (succ zero) (cons (succ

zero) (cons (succ zero) (cons (succ zero) empty))))↪→

Chapter 5

Conclusion

5.1 Summary

In conclusion, while constructors can be used to de�ne �nite elements of data types

when dealing with inductive data types, they cannot be used to de�ne in�nite elements

of data types in coinductive data types. In addition, although functional programming

languages such as Haskell do understand the need of using destructors to de�ne in�nite

data types, they do not use it dually with constructors. Moreover, in dependently-

typed languages such as Coq, constructors are what is being used to deal with in�nite

data types. In other words, there is no language that dealt with coinductive data types

in a proper manner.

Therefore, we proposed, in this thesis, a language where �nite and in�nite data

types are dealt with separately in a dual approach in which �nite elements of data

types are de�ned using constructors and in�nite elements of data types are de�ned

using observation. This approach is most appropriate as it takes into consideration

the nature of the two data types (�nite and in�nite) and deals with them accordingly.

We then de�ned the language and presented its grammar using BNF, after which we

presented the implementation and execution of the program.

38

CHAPTER 5. CONCLUSION 39

5.2 Future Work

For future work, we hope to see programming language environments that are safer

and more convenient for programmers. This would be a very important inspiration for

programmers to be more creative and productive than they are in a non-convenient

and non-safe environments.

In terms of libraries in programming languages, we hope to see more libraries

developed in the future with additional syntactic shorthands that make program-

ming more convenient for the programmer such as putting nested matches and/or

comatches in just one construction.

Bibliography

[1] Coq the coq proof assistant. https://coq.inria.fr/library/index.html. Ac-

cessed: 2020-03-23.

[2] Github jparsec. https://github.com/jparsec/jparsec. Accessed: 2018-08-29.

[3] Haskell a gentle introduction to haskell version 98. https://www.haskell.org/

tutorial/index.html. Accessed: 2020-03-23.

[4] Abel A., Pientka B., Thibodeau D., and Setzer A. Copatterns programming

in�nite structures by observation. ACM SIGPLAN Notices, 48(1):27�38, 2013.

[5] M. Adriaan, F. Piessens, and M. Odersky. Generics of a higher kind. In Pro-

ceedings of the 23rd ACM SIGPLAN conference on Object-oriented programming

systems languages and applications, Oct 2008.

[6] Christopher. Allen and Julie Moronuki. Haskell programming from �rst princi-

ples. Gumroad (ebook), 2017.

[7] Heckendorn R. B. A practical tutorial on context free grammars. 2015. http:

//marvin.cs.uidaho.edu/Handouts/grammar.pdf.

[8] Kees Doets. From logic to logic programming. Mit Press, 1994.

[9] Carlos Eduardo Gimenéz Enez. Un Calcul de Constructions In�nies et son ap-

plication a la véri�cation de systemes communicants. PhD thesis, Ecole Normale

Superieure de Lyon, 1996.

[10] E. Gamma. Design Patterns: Elements of Reusable Object-Oriented Software.

Addison Wesley, Boston, MA, 1995.

[11] Johan Georg Granström. Treatise on intuitionistic type theory, volume 22.

Springer Science & Business Media, 2011.

40

https://coq.inria.fr/library/index.html
https://github.com/jparsec/jparsec
https://www.haskell.org/tutorial/index.html
https://www.haskell.org/tutorial/index.html
http://marvin.cs.uidaho.edu/Handouts/grammar.pdf
http://marvin.cs.uidaho.edu/Handouts/grammar.pdf

BIBLIOGRAPHY 41

[12] Daume H. Yet another haskell tutorial. School of Computing University of Utah,

2004. https://www.cs.utah.edu/-hal/htut/tutorial.pdf.

[13] Paul Hudak. The Haskell school of expression: learning functional programming

through multimedia. Cambridge University Press, New York, USA, 2000.

[14] Paul Hudak and Donya Quick. The Haskell School of Music: From signals to

Symphonies. Cambridge University Press, 2014.

[15] INRIA. The Coq Proof Assistant Reference Manual, 2010.

[16] Earley J. An e�cient context-free parsing algorithm. Communications of the

ACM, 13(2):94�102, 1970. https://dl.acm.org/doi/pdf/10.1145/362007.

362035.

[17] Simon Peyton Jones. Haskell 98 language and libraries: the revised report. Cam-

bridge University Press, 2003.

[18] Simon Marlow et al. Haskell 2010 language report. Available on: https://www.

haskell. org/onlinereport/haskell2010, 2010.

[19] Winter Michael. On problems in polymorphic object-oriented languages with self

types and matching. Fundamenta Informaticae, 71(4):477�491, 2006.

[20] C. Morris. Signs, language and behavior. Prentice-Hall, 1946.

[21] Lucas P. On the formalization of programming languages: Early history and main

approaches. The Vienna Development Method: The Meta-Language, pages 1�23,

1978. https://link.springer.com/content/pdf/10.1007/3-540-08766-4_

8.pdf.

[22] B.C. Pierce. Advanced Topics in Types and Programming Languages. The MIT

Press. MIT Press, 2005.

[23] Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 1st

edition, 2002.

[24] Dirk Riehle. Composite design patterns. In Proceedings of the 12th ACM SIG-

PLAN conference on Object-oriented programming, systems, languages, and ap-

plications, pages 218�228, 1997.

[25] John Alan Robinson. A machine-oriented logic based on the resolution principle.

Journal of the ACM (JACM), 12(1):23�41, 1965.

https://www.cs.utah.edu/-hal/htut/tutorial.pdf
https://dl.acm.org/doi/pdf/10.1145/362007.362035
https://dl.acm.org/doi/pdf/10.1145/362007.362035
https://link.springer.com/content/pdf/10.1007/3-540-08766-4_8.pdf
https://link.springer.com/content/pdf/10.1007/3-540-08766-4_8.pdf

BIBLIOGRAPHY 42

[26] F. Baader-W. Snyder. Uni�cation theory. Handbook of automated reason-

ing, pages 447�533, 2001. http://www.cs.bu.edu/~snyder/publications/

UnifChapter.pdf.

[27] Simon Thompson. Haskell the craft of functional programming. Addison-Wesley,

Reading, Massachusetts, 2011.

[28] Alonso-Albi TomáS. Jparsec: a java package for astronomy with twelve years of

development and use. arXiv preprint arXiv:1806.03088, 2018. https://arxiv.

org/pdf/1806.03088.pdf.

[29] Hak Tony. and Jan Dul. Pattern matching. 2009.

[30] Martin H. Weik. Backus Naur form, pages 99�99. Springer US, Boston, MA,

2001.

http://www.cs.bu.edu/~snyder/publications/UnifChapter.pdf
http://www.cs.bu.edu/~snyder/publications/UnifChapter.pdf
https://arxiv.org/pdf/1806.03088.pdf
https://arxiv.org/pdf/1806.03088.pdf

	Introduction
	Infinite Data in Haskell
	Infinite Data in Dependently-Typed Languages
	Our Approach

	Our Language
	Lists
	Streams
	Functions
	Copattern Matching Vs. Pattern Matching
	Syntax of The Grammar of Program
	Backus Naur Form
	Application of Backus Naur Form in the Grammar of our Language
	Parse tree

	Typing Rules
	Typing Rules
	Reduction Rules

	Implementation
	Kinds
	Hierarchy of Kinds
	Implementation of Kinds

	Types
	Hierarchy of Types
	Implementation of Types

	Terms
	Hierarchy of Terms
	Implementation of Terms

	Program
	Hierarchy of Type Declaration
	Hierarchy of Term Declaration

	Execution
	Execution Rules
	Method Execute
	Test Program
	Main Program
	Execution Result

	Conclusion
	Summary
	Future Work

	Bibliography

