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Via Scarpa 16, Roma, 00181 , Italy

Monica Motta∗

Dipartimento di Matematica

Università di Padova
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Abstract. In this paper we extend the notions of sample and Euler stabiliz-

ability to a set of a control system to a wide class of systems with unbounded

controls, which includes nonlinear control-polynomial systems. In particular,
we allow discontinuous stabilizing feedbacks, which are unbounded approaching

the target. As a consequence, sampling trajectories may present a chattering

behaviour and Euler solutions have in general an impulsive character. We also
associate to the control system a cost and provide sufficient conditions, based

on the existence of a special Lyapunov function, which allow for the existence

of a stabilizing feedback that keeps the cost of all sampling and Euler solutions
starting from the same point below the same value, in a uniform way.

1. Introduction. In the last decades, the problem of the feedback stabilization of3

a nonlinear control system ẋ = f(x, u) to a point or, more in general, to a set C, has4

been the subject of intense research and the theory is now well established. In par-5

ticular, it is well know that a continuous stabilizing feedback fails to exist in general,6

and a smooth Lyapunov function, which guarantees the asymptotic controllability7

of the system, may not exist either. For these reasons, nonsmooth Lyapunov func-8

tions, discontinuous feedback laws K, and a “sample and hold” solution concept for9

ẋ = f(x,K(x)), similar to that used in differential games [13], have been introduced10

(see, e.g.[3, 1, 26, 25, 9, 27, 7, 8, 28, 14]). In particular, semiconcave Lyapunov func-11

tions have proven to be a powerful tool for the explicit construction of stabilizing12

feedback strategies [23, 24]. (For a broader overview of the topic, see review paper13

[10]). A key hypothesis in these results is that the vector field f(x,K(x)) associated14
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2 A. C. LAI AND M. MOTTA

to the stabilizing feedback K is bounded in a neighborhood of the target. In fact,1

it is usually assumed that the feedback K itself is bounded close to C.2

One of the main goals of this article is, given a (nondifferentiable) Lyapunov3

function, to construct directly a (discontinuous) stabilizing feedback K and to in-4

troduce a notion of solution to ẋ = f(x,K(x)) in the case of unbounded dynamics,5

which include, for instance, nonlinear control-polynomial systems (the precise as-6

sumptions are stated in Subsection 1.2). This necessarily leads to feedbacks which7

may be unbounded approaching the target. For example, in [2] the authors exhibit8

some applications to Lagrangian mechanics, where the system is quadratically de-9

pendent on (the derivatives of) the control and stabilization can only be achieved10

by “vibrating controls”, i. e. allowing unbounded inputs.11

More generally, since control systems are often associated with costs, we aim to12

build up feedback strategies which, besides stabilizing to a target C the system13

ẋ = f(x, u), u(t) ∈ U, (1)

also provide an upper bound for an integral cost of the form14 ∫ Tx

0

l(x(τ), u(τ)) dτ. (2)

Here the control set U is a closed, possibly unbounded subset of Rm, the target15

set C ⊆ Rn is closed with compact boundary, the Lagrangian l is ≥ 0. Tx ≤ +∞16

denotes the first exit-time of x from Rn \ C. In this case, when the dynamics are17

unbounded and the cost is “cheap” (i. e., there are no coercivity hypotheses, which18

would make the use of unbounded controls “disadvantageous”) it could be necessary19

to implement an unbounded feedback to stabilize the system and keep the cost finite,20

even if there exists a bounded stabilizing feedback. In this regard, see Example 1,21

Section 2.22

The generalization of the classical stabilizability theory is therefore twofold: be-23

sides an extension of the concepts of sampling and Euler solutions to unbounded24

dynamics, we introduce a suitable notion of associated cost and of stabilizability25

with regulated cost. Furthermore, we obtain an explicit construction of stabilizing26

feedbacks with regulated cost based upon the existence of a special Lyapunov func-27

tion, known as a Minimum Restraint function. The original notions of Sampling28

and Euler stabilizability associated to a discontinuous feedback and their relation-29

ship with the existence of a Lyapunov function can be found in [7, 8], where the30

target is zero and the dynamics are assumed to be bounded near the origin. Later,31

these results have been extended to more general targets, but always for f (and K)32

bounded close to the target (see e.g. [14] and the references therein). Minimum33

Restraint functions were first introduced in [19], where the existence of a function34

of this type was shown to guarantee global asymptotic controllability to a set, with35

regulated cost (see also [18]). The problem of defining a stabilizing feedback law36

with regulated cost through the use of a Minimum Restraint function has been37

addressed only recently in [16], just in the case of bounded data. The extension38

to unbounded dynamics is not achieved by refining the techniques already used.39

Rather, our strategy is to associate an equivalent, rescaled, problem with the start-40

ing problem, under assumptions that include and generalize those most used in the41

study of problems with unbounded data.42
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More in detail, we first assume f and l merely continuous on (Rn\C)×U . Hence,1

sampling trajectories can have a finite blow-up time and chattering phenomena may2

occur (see Subsection 2.1). As a consequence, classical Euler solutions –defined as3

uniform limits of sampling solutions– may not exist. This leads us to propose in4

Section 3 a notion of weak Euler solutions and costs, given by the pointwise limit5

of a sequence of suitably truncated sampling trajectories and costs. In support of6

the well-posedness of these definitions, we show that: (i) when they exist, classical7

Euler cost-solution pairs are weak Euler cost-solutions pairs; (ii) the sample stabiliz-8

ability with regulated cost implies the weak Euler stabilizability with regulated cost9

(see Theorem 3.4); (iii) when the system is sample stabilizable with regulated cost10

and the data meet some conditions of weak coercivity –quite usual in optimization11

problems with unbounded controls, see e.g. [20, 22, 21] and the references therein–,12

(stabilizing) weak Euler cost-solution pairs do exist (see Proposition 4, Section 3).13

Furthermore, we suppose in addition that there exists some continuous rescaling
function ν = ν(x, u) ≥ 0 such that the rescaled dynamics and Lagrangian, given by

f̄ := f/(1 + ν), l̄ := l/(1 + ν),

respectively, are bounded and uniformly continuous on (BR(C) \ C) × U , for some14

R > 0 (see hypotheses (H.1-2) below). Under this assumption, in Section 2 we15

can prove the equivalence between the sample stabilizability to the target with reg-16

ulated cost of (1)-(2) and that of the rescaled problem, where f̄ and l̄ replace f17

and l, respectively (see Theorem 2.5). This result is crucial to establish in Section18

3 sufficient conditions for sample (and therefore, weak Euler) stabilizability with19

regulated cost and to build explicit feedback strategies, by means of Minimum Re-20

straint functions for the original or for the rescaled problem (see Theorems 4.2, 4.4).21

Finally, in Theorem 4.6 we show how to implement the previous feedback construc-22

tion starting from a Lipschitz continuous (not necessarily semiconcave) Minimum23

Restraint function, when the data are Lipschitz continuous in the state variable. In24

particular, by choosing l ≡ 0 in (2), Theorems 4.4, 4.6 imply that, given a semicon-25

cave or a Lipschitz continuous Lyapunov function for the unbounded control system26

(1), respectively, we build a (possibly unbounded) stabilizing feedback.27

The introduction of f̄ and l̄ can be seen as a generalization of well-known com-28

pactification techniques usually exploited to deal with unbounded data. For in-29

stance, if ν := |(f, l)|, then (f̄ , l̄) coincides with the so-called Erdmann transform of30

(f, l), used e.g. in [18], while in case f and l are functions with a maximal u-growth31

ν̃(|u|), by choosing ν(x, u) := ν̃(|u|), we can recover the extended Lagrangian and32

dynamics considered in impulsive control (see e.g. [22, 20, 12]). The assumptions33

considered in this paper allow for a vast class of dynamics and Lagrangians, in-34

cluding those with a polynomial dependence on u1, · · · , um, |u1|, · · · , |um|, |u|, and35

compositions of polynomials with exponential and Lipschitz continuous functions.36

The paper is organized as follows. In the rest of the Introduction we provide37

some preliminary definitions and the precise assumptions. In Section 2 we introduce38

the notion of sample stabilizability with regulated cost and Example 1, and prove39

the equivalence Theorem 2.5. Section 3 is devoted to define weak Euler solutions40

and costs, derive their main properties, and discuss the concept of weak Euler41

stabilizability with regulated cost. Section 4 deals with sufficient conditions for42

sample, Euler and weak Euler stabilizability with regulated cost.43
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1.1. Notations and preliminaries. For every r ≥ 0 and Ω ⊂ Rn, we set Br(Ω) :=1

{x ∈ Rn | d(x,Ω) ≤ r}, where d is the usual Euclidean distance. When Ω = {z}2

for some z ∈ Rn, we also make use of the notation B(z, r) := Br({z}). We use Ω3

to denote the closure of Ω. For a, b ∈ R, a∨ b := max{a, b}, a∧ b := min{a, b}. For4

any F : Ω → RM we call modulus (of continuity) of F any increasing, continuous5

function ω : [0,+∞) → [0,+∞) such that ω(0) = 0, ω(r) > 0 for every r >6

0 and |F (x1) − F (x2)| ≤ ω(|x1 − x2|) for all x1, x2 ∈ Ω. We say that a map7

F : I → J , I, J real intervals, is increasing (decreasing) when it is monotone8

nondecreasing (nonincreasing). We use KL to denote the set of all continuous9

functions β : [0,+∞)× [0,+∞)→ [0,+∞) such that: (1) β(0, t) = 0 and β(·, t) is10

strictly increasing and unbounded for each t ≥ 0; (2) β(r, ·) is strictly decreasing11

for each r ≥ 0; (3) β(r, t)→ 0 as t→ +∞ for each r ≥ 0.12

Let us summarize some basic notions in nonsmooth analysis – see e.g. [4, 6, 29]13

for a thorough treatment. Let Ω ⊆ Rn be a nonempty open set.14

A continuous function F : Ω→ R is said positive definite on Ω if F (x) > 0 ∀x ∈ Ω15

and F (x) = 0 ∀x ∈ ∂Ω. The function F is called proper on Ω if the pre-image16

F−1(K) of any compact set K ⊂ [0,+∞) is compact.17

Let F : Ω→ R be a locally Lipschitz function. For every x ∈ Ω, ∂PF (x) is defined
as the proximal subdifferential of F at x: p ∈ ∂PF (x) if and only if there exist ρ,
η > 0 such that

F (y)− F (x) + ρ|y − x|2 ≥ 〈p, y − x〉 ∀y ∈ B(x, η) (⊂ Ω).

The limiting subdifferential ∂LF (x) at x, is given by

∂LF (x) :=
{

lim pi : pi ∈ ∂PF (xi), lim xi = x
}
.

The proximal subdifferential ∂PF (x) may be empty at some point; nevertheless, the18

set of such points has zero measure. The limiting subdifferential ∂LF (x) instead,19

is nonempty at every point. The Clarke generalized gradient can be derived as20

co ∂LF (x) at any x.21

We will consider also the set of reachable gradients of F at x:

D∗F (x) :=
{
w ∈ Rn : w = lim

k
∇F (xk), xk ∈ DIFF (F ) \ {x}, lim

k
xk = x

}
where ∇ denotes the classical gradient operator and DIFF (F ) is the set of differ-22

entiability points of F . The set-valued map x  D∗F (x) is upper semicontinuous23

on Ω, with nonempty, compact values, and D∗F (x) is in general not convex.24

A continuous function F : Ω→ R is said to be semiconcave on Ω if there exist ρ > 0
such that

F (x) + F (x̂)− 2F

(
x+ x̂

2

)
≤ ρ|x− x̂|2,

for all x, x̂ ∈ Ω such that [x, x̂] ⊂ Ω. The constant ρ above is called a semiconcavity25

constant for F in Ω. F is said to be locally semiconcave on Ω if it semiconcave26

on every compact subset of Ω. We remind that locally semiconcave functions are27

locally Lipschitz. Actually, they are twice differentiable almost everywhere.28

When F is a locally semiconcave function, then D∗F (x) = ∂LF (x) for any x ∈ Ω.29

1.2. Assumptions. Through the whole paper, U ⊆ Rm and C ⊂ Rn are closed,30

nonempty sets and the boundary ∂C is compact. Given f : (Rn \ C)× U → Rn and31

l : (Rn \ C)× U → [0,+∞), we will consider the following sets of hypotheses:32
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(H.1) the functions f , l are continuous on (Rn \ C)× U ;1

(H.2) there exists a continuous function ν : (Rn \ C)× U → [0,+∞), that we call2

a rescaling function, such that the rescaled functions f̄ , l̄, defined by3

(f̄(x, u), l̄(x, u)) :=

(
f(x, u)

1 + ν(x, u)
,

l(x, u)

1 + ν(x, u)

)
∀(x, u) ∈ (Rn \ C)× U, (3)

are uniformly continuous on K×U for every compact subset K ⊂ Rn \ C, and4

for any R > 0 there is some M(R) > 0 such that5

|f̄(x, u)| ≤M(R), l̄(x, u) ≤M(R) ∀(x, u) ∈ (BR(C) \ C)× U. (4)

In the following, we set d(x) := d(x, C).6

2. Sample stabilizability with regulated cost. In this section we extend the7

notion of Sample stabilizability with regulated cost firstly introduced in [16, 17], to8

more general, unbounded data. Furthermore, in Theorem 2.5 we show that, if f9

and l satisfy (H.2), the original problem is sample stabilizable with regulated cost10

if and only if the rescaled problem is.11

2.1. Sampling processes. Let f , l verify (H.1).12

Definition 2.1 (Admissible process). We say that a triple (x0, x, u) is an admissible13

process (for f , l) if there exists Tx ≤ +∞ such that: the control u belongs to14

L∞loc([0, Tx), U); x : [0, Tx)→ Rn \ C is a solution of the control system15

ẋ(t) = f(x(t), u(t)), a.e. t ∈ (0, Tx), (5)

verifying, if Tx < +∞, limt→T−x d(x(t)) = 0; the cost x0 is given by16

x0(t) :=

∫ t

0

l(x(τ), u(τ)) dτ, ∀t ∈ [0, Tx). (6)

For every z ∈ Rn \ C, we call (x0, x, u) as above an admissible process from z, when17

x(0) = z.18

A partition (of [0,+∞)) is a sequence π = (tk) such that t0 = 0, tk−1 < tk19

∀k ≥ 1, and limk→+∞ tk = +∞. The value diam(π) := supk≥1(tk − tk−1) will be20

called the diameter or the sampling time of the partition π.21

We will call feedback any locally bounded function K : Rn \C → U . In particular,22

when U is unbounded we allow feedbacks K verifying lim sup
x→x̄∈∂C

|K(x)| = +∞.23

Definition 2.2 (Sampling process). Given a locally bounded feedback K : Rn\C →
U , a partition π = (tk), and a point z ∈ Rn \ C, we call π-sampling process (for f ,
l) from z, a triple (x0, x, u), where x, called the sampling trajectory, is a continuous
function defined by recursively solving

ẋ = f(x(t),K(x(tk−1))) a.e. t ∈ [tk−1, tk], (x(t) ∈ Rn \ C)
from the initial time tk−1 up to time

τk := tk−1 ∨ sup{τ ∈ [tk−1, tk] : x is defined on [tk−1, τ)},
such that x(t0) = x(0) = z. In this case, the trajectory x is defined on the right-24

open interval from time zero up to time T− := inf{τk : τk < tk}. Accordingly, for25

every k ≥ 1 and for all t ∈ [tk−1, tk) ∩ [0, T−), the sampling control is defined as26

u(t) := K(x(tk−1)) ∀t ∈ [tk−1, tk) ∩ [0, T−), k ≥ 1. (7)
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The sampling cost, x0, is given by1

x0(t) :=

∫ t

0

l(x(τ), u(τ)) dτ t ∈ [0, T−). (8)

If (x0, x, u) is an admissible process and T− = Tx < +∞, we extend x to [0,+∞)
by setting x(t) := z̄ ∀t ≥ Tx, where z̄ is a point of the set

ω(x) :=

{
lim

j→+∞
x(tj) : (tj) is increasing and lim

j→+∞
tj = Tx

}
.

If lim
t→T−x

x0(t) < +∞, we also extend x0, by setting x0(t) := lim
t→T−x

x0(t) ∀t ≥ Tx.2

By the definition of Tx, the set ω(x) is always not empty, since ∂C is compact.3

In general, ω(x) is not a singleton, unless f is bounded on a neighborhood of C,4

uniformly with respect to the control. Notice that for any admissible π-sampling5

process (x0, x, u), the trajectory x, possibly extended as above, is always defined on6

the whole interval [0,+∞).7

Definition 2.3 (Sample stabilizability with regulated cost). A locally bounded8

feedback K : Rn \ C → U is said to sample stabilize the control system ẋ = f(x, u)9

to C if there is a function β ∈ KL, that we call descent rate, satisfying the following:10

for each pair 0 < r < R there exists δ = δ(r,R) > 0, such that, for every partition11

π with diam(π) ≤ δ and for any initial state z ∈ Rn \ C such that d(z) ≤ R, any12

π-sampling process (x0, x, u) for f , l with x(0) = z is admissible and verifies:13

d(x(t)) ≤ max{β(d(z), t), r} ∀t ∈ [0,+∞). (9)

We call ẋ = f(x, u) sample stabilizable (to C) if it admits a feedback K as above.14

If moreover there exist p0 > 0 and a continuous map W : Rn \ C → [0,+∞),15

positive definite and proper in Rn \ C, such that (x0, x, u) also verifies16

x0(T̄ rx ) =

∫ T̄ rx

0

l(x(τ), u(τ)) dτ ≤ W (z)

p0
(10)

where17

T̄ rx := inf{t > 0 : d(x(τ)) ≤ r ∀τ ≥ t}, (11)

we say that (5)–(6) is sample stabilizable (to C) with (p0,W )-regulated cost. To unify18

the notation, when ẋ = f(x, u) is merely sample stabilizable, we say that (5)–(6) is19

sample stabilizable with (p0,W )-regulated cost for p0 = 0.20

Disregarding the cost, if the dynamics f is bounded on (BR(C) \ C)×U for some21

R > 0, the above notion of sample stabilizability is a slight extension of the original22

one in [7, 15], consisting of the fact that our target is not necessarily a point and23

the feedback K can be unbounded on it. However, when both feedback controls24

and resulting dynamics are unbounded in a neighborhood of the target we are far25

beyond the classical theory (see e.g. [8, 14]).26

Example 1 (A cheap control problem). This example shows how the presence of a27

cost can drastically change the choice of a stabilizing feedback. In particular, in the28

following simple problem there is a continuous and bounded stabilizing feedback,29

but in order to obtain stabilizability with regulated cost it is necessary to choose30

an unbounded feedback. We consider the scalar control system31

ẋ = f(x, u) := x2u, u ∈ R, (12)
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with target C := {0} and associated cost1 ∫ Tx

0

l(x) dt, l(x) := |x|, (13)

where Tx is as in Definition 2.1. The bounded feedback K̄(x) := −sign(x) sample
stabilizes the system. Indeed, given r, R, 0 < r < R, for every partition π of
[0,+∞), any π-sampling solution x associated to K̄ with x(0) = z 6= 0, |z| ≤ R,
satisfies

|x(t)| = |z|
|z| t+ 1

=: β(|z|, t) ∀t ∈ [0,+∞),

and it is immediate to check that β is a KL function. However, by straightforward
calculations one has∫ T̄ rx

0

|x(t)| dt = ln

(
1 +
|z| − r
r

)
=⇒ lim

r→0+

∫ T̄ rx

0

|x(t)| dt = +∞

where T̄ rx is as in (11). So K̄ does not sample stabilize the system with regulated2

cost. By similar arguments, it can be shown that there is no bounded stabilizing3

feedback that gives a regulated cost.4

Let us now consider the unbounded feedback K(x) := −1/x. Given r, R, 0 <
r < R, for every partition π := (ti) of [0,+∞) and any π-sampling trajectory of K
with x(0) = z, 0 < |z| ≤ R, we have

x(t) =
x(ti)

1 + (t− ti)
∀t ∈ [ti, ti+1].

From this, observing that, fixed ε ∈ (0, 1), there exists some δ̄ > 0 such that
eεδ ≤ 1 + δ for any δ ∈ (0, δ̄], we deduce that,

|x(t)| = |z|
(1 + t− ti)

∏i−1
k=0(1 + tk+1 − tk)

≤ |z|
eε t

=: β(|z|, t) ∀t ∈ [ti, ti+1], ∀ i ∈ N,

as soon as diam(π) ≤ δ̄. Since the right-hand side of the above inequality is a KL
function of |z| and t, then K is a sample stabilizing feedback to the origin. For the
associated cost, we get∫ T̄ rx

0

|x(t)| dt ≤
∫ +∞

0

|x(t)| dt ≤
∫ +∞

0

|z| e−ε t dt =
|z|
ε
.

Therefore, the feedback K(x) = −1/x stabilizes (12)-(13) to the origin with (ε,W )-5

regulated cost, where W (x) := |x| for all x ∈ R.6

Incidentally, W (z) = |z| does not coincide with the value function of the problem,
defined for any z 6= 0 as

V (z) := inf
{(x,u) admissible, x(0)=z}

∫ Tx

0

l(x) dt,

which is identically zero, as it is not difficult to show. However, for any n ∈ N,
n ≥ 1, there exists a locally bounded sample stabilizing feedback Kn : R \ {0} → R
with (1,Wn)-regulated cost, such that limn→+∞Wn(z) = 0, for each z. This fact
could be easily proved directly, by constructing a suitable sequence of feedbacks
with this property. On the other hand, it also follows from Theorem 4.4 (see also
Theorem 4.2) below, observing that, for each n ≥ 1, the function

Wn(z) := n−1(|z| ∧ |z|n) ∀z ∈ R,
is a 1-MRF (see Definition 4.1 below) for f , l as above.7
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2.2. Sample stabilizability with regulated cost: a rescaled problem. Con-1

sider the original data f and l verifying hypotheses (H.1-2) for some rescaling2

function ν and let f̄ , l̄ be the associated rescaled functions.3

In the following, we denote by (x0, x, u) any admissible process for f , l (see4

Definition 2.1). Precisely, u ∈ L∞loc([0, Tx), U), x : [0, Tx) → Rn \ C solves the5

control system6

ẋ(t) = f(x(t), u(t)), a.e. t ∈ (0, Tx), (14)

and verifies limt→T−x d(x(t)) = 0 as soon as Tx < +∞, while the cost x0 is given by7

8

x0(t) =

∫ t

0

l(x(τ), u(τ)) dτ ∀t ∈ [0, Tx). (15)

Moreover, we introduce the rescaled control system9

y′(s) = f̄(y(s), v(s)), a.e. s ∈ (0, Sy), (16)

and the rescaled cost10

y0(s) =

∫ s

0

l̄(y(σ), v(σ)) dσ, ∀s ∈ [0, Sy), (17)

whose admissible processes will be denoted by (y0, y, v), with domain [0, Sy). In par-11

ticular, we will call (y0, y, v) an (admissible) rescaled process, y a rescaled trajectory,12

and v a rescaled control.13

In (16) we use the apex ‘‘ ′ ” to denote differentiation with respect to the new14

parameter s, in order to stress that it does not coincide, in general, with the time15

variable t, of (14). Indeed, any rescaled process is composition of a process of the16

original problem with a suitable time-scale and vice-versa, as stated in the following17

lemma. Since every L1 equivalence class contains Borel measurable representatives,18

from now on we assume without loss of generality that u and v are Borel measurable.19

Lemma 2.4. Fix z ∈ Rn \ C.20

(i) Given an admissible process (x0, x, u) from z, set

s(t) :=

∫ t

0

(1 + ν(x(τ), u(τ))) dτ ∀t ∈ [0, Tx), Sy := lim
t→T−x

s(t), t(·) := s−1(·).

Then (y0, y, v)(s) := (x0, x, u) ◦ t(s), s ∈ [0, Sy), is an admissible rescaled process21

from z.22

(ii) Vice-versa, let (y0, y, v) be an admissible rescaled process from z and set

t(s) :=

∫ s

0

(1 + ν(y(σ), v(σ))−1dσ ∀s ∈ [0, Sy), Tx := lim
s→S−y

t(s), s(·) := t−1(·).

Then (x0, x, u)(t) := (y0, y, v) ◦ s(t), t ∈ [0, Tx), is an admissible process from z.23

Proof. Claims (i), (ii) can be derived by a standard application of the chain rule,24

once observed that the inverse of an absolutely continuous real map with derivative25

> 0 almost everywhere, is absolutely continuous (see e.g. [11, Theorem 2.10.13]).26

27

In Theorem 2.5 below we establish the equivalence between the sample stabiliz-28

ability with regulated cost of the original problem and that of the rescaled problem.29
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Theorem 2.5. Assume that f , l satisfy (H.1-2). Then a locally bounded feedback1

K : Rn \ C → U sample stabilizes the original problem (14)–(15) to C with (p0,W )-2

regulated cost for some p0 ≥ 0, if and only if it sample stabilizes the rescaled problem3

(16)–(17) to C with (p0,W )-regulated cost.4

Proof. Let K be a sample stabilizing feedback with (p0,W )-regulated cost for the5

rescaled problem. Then there exists a function β ∈ KL such that for any r, R > 0,6

r < R, there is some δ̃ = δ̃(r,R) > 0 such that for every z ∈ Rn \ C with d(z) ≤ R7

and every partition π̃ = (sk) of diam(π̃) ≤ δ̃, any π̃-sampling rescaled process8

(y0, y, v), with initial datum z, is admissible and verifies9

d(y(s)) ≤ max{β(d(z), s), r} ∀s ≥ 0,

y0(s) ≤ W (z)

p0
∀s ∈ [0, S̄ry ] (if p0 > 0),

(18)

where S̄ry = inf{s ≥ 0 : d(y(σ)) ≤ r ∀σ ≥ s}. Let r′ = r′(r) > 0 verify the relation10

β(2r′, 0) = r, (19)

and let us define Ñ(r,R) ≥ 0 and M̃(r,R) ≥ 1, as11

Ñ(r,R) := sup{ν(x,K(x)) : r′(r) ≤ d(x) ≤ β(R, 0) + 2R},

M̃(r,R) := sup{|(f, l)(x,K(x))| : r′(r) ≤ d(x) ≤ β(R, 0) + 2R} ∨ 1.
(20)

Notice that, by the very definition of β, β(2r′, 0) ≥ 2r′, so that r′ ≤ r
2 . Hence12

Ñ(r,R) and M̃(r,R) are well-defined. Clearly, for every fixed R > 0, on (0, R)13

we can suppose r 7→ r′(r) strictly increasing and continuous, so that r 7→ Ñ(r,R),14

M̃(r,R), are locally bounded and decreasing (possibly diverging to +∞ as r tends15

to 0+). Hence they can be dominated by some r-continuous and strictly decreasing16

maps N(r,R) ≥ Ñ(r,R), M(r,R) ≥ M̃(r,R). We set17

δ = δ(r,R) :=
δ̃(r,R)

1 +N(r,R)
∧ 1

M(r,R)
. (21)

For every z ∈ Rn \ C with d(z) ≤ R and every partition π = (tk) of [0,+∞) with
diam(π) ≤ δ, let us consider an arbitrary π-sampling process (x0, x, u) from z for
the original problem (14)-(15). Let [0, T−) be the maximal definition interval of x
and let us define

T̂ = T̂x(r,R) := sup{t ∈ [0, T−) : r′(r) ≤ d(x(t)) ≤ β(R, 0) + 2R}.

Since d(x(0)) = d(z) ≤ R and d is positive definite and proper on Rn \ C, one has18

0 < T̂ < T−. Set19

s(t) :=

∫ t

0

(1+ν(x(τ), u(τ))) dτ ∀t ∈ [0, T−), Ŝ := s(T̂ ), S− := lim
t→T−

s(t), (22)

and let t = t(s) be the inverse map of s : [0, T−) → [0, S−). By Lemma 2.4, the20

process (y0, y, v) := (x0, x, u)◦t is (the restriction to [0, Ŝ] of) a π̃-sampling rescaled21

process with y(0) = z and diam(π̃) ≤ δ̃. Indeed, setting n̂ := sup{i ∈ N : ti ≤ T̂},22

sk := s(tk) ∀k = 0, . . . , n̂, and sk = sk−1+δ̃ for all k > n̂, then for every k = 1, . . . , n̂,23

one has24

sk − sk−1 =

∫ tk

tk−1

(1 + ν(x(τ), u(τ))) dτ ≤ (1 +N(r,R))δ(r,R) ≤ δ̃(r,R). (23)
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Therefore, any π̃-sampling extension of (y, v) (associated to K) to [0,+∞) satisfies1

(18), so that, for all t ∈ [0, T̂ ], we get2

d(x(t)) = d(y(s(t)) ≤ max{β(d(z), s(t)), r} ≤ max{β(d(z), t), r},

x0(t) = y0(s(t)) ≤ W (z)

p0
(if p0 > 0),

(24)

where the last inequality in the first expression holds true since s(t) ≥ t and the3

map t 7→ β(d(z), t) is decreasing. It remains only to show that x is a sampling4

trajectory extendable to the whole interval [0,+∞) as described in Definition 2.25

and such that6

d(x(t)) ≤ r ∀t ≥ T̂ . (25)

In fact, proven (25), we get (9) by the first relation in (24). In addition, (25) also7

implies that T̄ rx = inf{t ≥ 0 : d(x(τ)) ≤ r ∀τ ≥ t} ≤ T̂ and this, together with the8

last relation in (24), yields the cost estimate (10). By the arbitrariness of (x0, x, u),9

this concludes the proof.10

So, let us check (25). By the definition of T̂ and by (24), one has d(x(T̂ )) = r′

and T− > T̂ , where either T− = Tx or limt→T− |x(t)| = +∞. Suppose first that
d(x(t)) ≤ r for all t ∈ [0, T−). Then either T− = +∞ and (25) holds true, or
T− = Tx. In this case, x can be extended to [0,+∞) in such a way that d(x(t)) = 0
for all t ≥ Tx as in Definition 2.2 and (25) is proven. Suppose now, by contradiction,
that d(x(t)) > r for some t ∈ (0, T−). By the continuity of x and d, there exist

some t̂0, t̂1 such that T̂ < t̂0 < t̂1 < T−, and, for every t ∈ [t̂0, t̂1],

r′ < d(x(t̂0)) = 2r′ ≤ r < d(x(t̂1)) < R, d(x(t̂0)) ≤ d(x(t)) ≤ d(x(t̂1)).

Hence by (22), for all t, t̄ ∈ [t̂0, t̂1], t < t̄, such that t̄− t ≤ δ, one has

s(t̄)− s(t) ≤ (1 +N(r,R))(t̄− t) ≤ δ̃.

So, setting ŝ0 := s(t̂0), ŝ1 := s(t̂1), we can see the process

(y0, y, v)(s) := (x0, x, u)(t(s+ ŝ0)) for s ∈ [0, ŝ1 − ŝ0],

as the restriction of a π̃-sampling rescaled process with y(0) = x(t̂0) and diam(π̃) ≤
δ̃. But then (18) yields

d(x(t)) = d(y(s(t)− ŝ0)) ≤ β(d(y(0)), 0) = β(2r′, 0) = r ∀t ∈ [t̂0, t̂1],

which contradicts the hypothesis that d(x(t̂1)) > r.11

Suppose now that K is a sample stabilizing feedback to C with (p0,W )-regulated
cost for the original problem. Let β, δ = δ(r,R) for any pair r, R with 0 < r < R be
as in Definition 2.3, so that every π-sampling process (x0, x, u) with initial datum
z ∈ Rn \ C, d(z) ≤ R, and diam(π) ≤ δ, verifies

d(x(t)) ≤ max{β(d(z), t), r} ∀t ≥ 0, x0(t) ≤ W (z)

p0
∀t ∈ [0, T̄ rx ] (if p0 > 0),

where T̄ rx = inf{t ≥ 0 : d(x(τ)) ≤ r ∀τ ≥ t}. Let r′ > 0, N(r,R), and M(r,R) be12

defined as in (19), (20).13

For any π̃-sampling rescaled process (y0, y, v) with y(0) = z and diam(π̃) ≤ δ,
consider the time-scaling

t(s) :=

∫ s

0

(1 + ν(y(σ), v(σ)))−1 dσ ∀s ∈ [0, S−), T̂ := t(Ŝ), s(·) := t−1(·),
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where [0, S−) is the maximal definition interval of y and

Ŝ = Ŝy(r,R) := sup{s ∈ [0, S−) : r′(r) ≤ d(y(s)) ≤ β(R, 0) + 2R}.

Then t(s) ≥ s
1+N(r,R) for all s ∈ [0, Ŝ] and, arguing as in the previous step, one can1

easily conclude that y is a sampling trajectory of the rescaled system extendable to2

[0,+∞), and that (y0, y, v) verifies3

d(y(s)) ≤ max{β(d(z), t(s)), r} ≤ max

{
β

(
d(z),

s

1 +N(r,R)

)
, r

}
,

y0(s) ≤ W (z)

p0
∀s ∈ [0, S̄ry ] (if p0 > 0),

(26)

where S̄ry = inf{s ≥ 0 : d(y(σ)) ≤ r ∀σ ≥ s}. Let S(r,R) > 0 be the value of s
implicitly defined by the equation

β

(
R,

s

1 +N(r,R)

)
= r.

By the monotonicity and continuity properties of β and N , it follows that S(·, ·)
is a continuous function on {(r,R) : 0 < r < R}, such that r 7→ S(r,R) is
strictly decreasing and R 7→ S(r,R) is strictly increasing. As a consequence, if
we denote by ρ = ρ(R, s) the inverse of the map ρ 7→ S(ρ,R), it is easy to see
that ρ is a KL function. At this point, observe that, for every ρ ∈ [r,R), since
diam(π̃) ≤ δ(r,R) ≤ δ(ρ,R), the first relation in (26) implies

d(y(s)) ≤ β
(
R,

s

1 +N(ρ,R)

)
∀s ∈ [0, S(ρ,R)], d(y(s)) ≤ r ∀s > S(r,R),

which, substituting ρ = ρ(R, s), yields

d(y(s)) ≤ β
(
R,

s

1 +N(ρ(R, s), R)

)
= ρ(R, s) ∀s ≤ S(r,R),

d(y(s)) ≤ r ∀s > S(r,R).

Since d(z) ≤ R implies that δ(r,d(z)) ≥ δ(r,R), we finally obtain that, for every
π̃-process with diam(π̃) ≤ δ(r,R), one has

d(y(s)) ≤ ρ(d(z), s) ∀s ≤ S(r,d(z)), d(y(s)) ≤ r ∀s > S(r,d(z)),

which is trivially equivalent to

d(y(s)) ≤ max{ρ(d(z), s), r} ∀s ≥ 0.

Together with the second relation in (26), this concludes the proof of the sample4

stabilizability to C with (p0,W )-regulated cost of the rescaled problem.5

Remark 1. In view of the above proof, when there is stabilizability, a descent rate6

β for the rescaled problem is a descent rate also for the original problem. Instead,7

given a descent rate β for the original problem, a descent rate ρ for the rescaled8

problem is in general larger. In this case, we get an explicit construction of ρ.9



12 A. C. LAI AND M. MOTTA

3. Weak Euler stabilizability with regulated cost. In our previous results,1

the controllers are taken to be discontinuous feedbacks, so, in principle, the dynam-2

ics is discontinuous in the state variable. However, these results are stated in terms3

of sampling trajectories, which are classical solutions corresponding to piecewise4

constant controls. Therefore, the issue of defining a solution concept for discontin-5

uous differential equations has so far been neglected. In this section we address this6

question and define Euler solutions, weak Euler solutions, and the associated costs.7

Furthermore, we introduce the notions of Euler and of weak Euler stabilizability8

with regulated cost, and prove that the sample stabilizability with regulated cost9

implies both of them.10

3.1. Weak Euler solutions and costs. Let the data f , l verify assumption (H.1).11

Following [16], we define Euler trajectories and costs as locally uniform limits of12

sampling trajectories and costs.13

Definition 3.1 (Euler trajectory and cost). Given a locally bounded feedback
K : Rn \ C → U , fix z ∈ Rn \ C and let (πi) be a sequence of partitions such
that δi := diam(πi) → 0 as i → ∞. For every i, let (x0

i , xi, ui) be an admissible
πi-sampling process for the data f , l with initial condition xi(0) = z, such that xi
is defined on [0,+∞). If there exists a map X : [0,+∞)→ Rn verifying

xi → X locally uniformly in [0,+∞), (27)

we call X an Euler trajectory from z of (5). If moreover, every x0
i is defined on

[0,+∞) and there is a map X0 : [0,+∞)→ [0,+∞) verifying

x0
i → X0 locally uniformly in [0,+∞), (28)

we call X0 an Euler cost from z associated to X.14

The above notion of solution is well suited for situations where the discontinuous
dynamics associated to the feedback are bounded around the target, while it seems
too strong in the general case. Indeed, suppose that (5)–(6) is sample stabilizable
to C with (p0,W )-regulated cost for some p0 > 0. Then, fixed z, any sequence of
πi-sampling cost-trajectory pairs (x0

i , xi) with diam(πi)→ 0 is equibounded. If for
any R > 0 there is some M(R) > 0 such that

|f(x,K(x))| ≤M(R), l(x,K(x)) ≤M(R) ∀x ∈ BR(C) \ C,

the sequence (x0
i , xi) is also equi-Lipschitz continuous. Therefore, passing eventually15

to a subsequence, it converges locally uniformly by Ascoli-Arzelá Theorem and the16

existence of an Euler solution to (5) and of an associated Euler cost is guaranteed.17

When instead the data are truly unbounded, sampling trajectories may approach18

the target faster and faster and even converge to discontinuous functions. Hence19

Euler solutions defined as locally uniform limits of sampling solutions as above,20

may not exist. An analogous remark holds for the associated Euler costs. These21

considerations lead us to consider the following notions of weak Euler solution and22

weak Euler cost, inspired by the impulsive control theory (see also [17]), for which23

we are able to provide existence under weak coercivity conditions which are satisfied24

in several applications.25

Definition 3.2 (Weak Euler trajectory and cost). Let K : Rn \ C → U be a locally
bounded feedback, fix z ∈ Rn \ C, and let (πi) be a sequence of partitions such
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that δi := diam(πi)→ 0 as i→∞. For every i, let (x0
i , xi, ui) be an admissible πi-

sampling process for f , l with xi(0) = z. When there exists a map X : [0,+∞)→ Rn,
verifying, for some sequence (ri) ⊂ (0,d(z)) converging to 0:

x̃i → X pointwise in [0,+∞) (29)

where, for each i,1

Ti := T̄ rixi = inf{t > 0 : d(xi(τ)) ≤ ri ∀τ ≥ t} ≤ +∞,

x̃i(t) := xi(t ∧ Ti) ∀t ≥ 0, 1
(30)

we call X a weak Euler trajectory from z of (5). For each i, let us set2

x̃0
i (t) := x0

i (t ∧ Ti) ∀t ≥ 0. (31)

When it exists, we call weak Euler cost associated to X a map X0 : [0,+∞) →
[0,+∞), verifying

x̃0
i → X0 pointwise in [0,+∞). (32)

In short, we will say that (X0,X) a weak Euler cost-trajectory pair from z.3

Clearly, Euler solutions and costs are also weak Euler solutions and costs, re-4

spectively. Some relevant properties of weak Euler solutions and costs are stated in5

Propositions 1, 2, and 3 below.6

Given a weak Euler solution X, let us define the exit-time TX ≤ +∞ as7

TX := inf{t > 0 : X([0, t)) ⊂ Rn \ C, lim
τ→t−

d(X(τ)) = 0} ≤ +∞, (33)

(TX := +∞ if the set is empty). Notice that the function X is in general discontin-8

uous and it may happen that lim
t→+∞

d(X(t)) 6= 0 or TX < +∞ and d(X(T + ε)) = 09

for some ε > 0, but limt→T−x d(X(t)) 6= 0, despite each sampling process (x0
i , xi, ui)10

in the definition of X is admissible and verifies lim
t→+∞

d(xi(t)) = 0.11

Next result provides a uniform lower bound for the exit time TX. In particular,12

the local boundedness of the feedbacks prevents the existence of purely impulsive13

weak Euler trajectories, that jump from the initial state to the target in zero time.14

Proposition 1. Given a locally bounded feedback K : Rn \ C → U , let x be an15

admissible π-sampling trajectory of ẋ = f(x, u) from z ∈ Rn \ C associated to K.16

Then for each ε ∈ (0,d(z)), one has17

0 < T ε :=
d(z)− ε
M(ε,d(z))

≤ T εx (34)

where18

T εx := inf{t > 0 : d(x(t)) ≤ ε} (35)

and M is the function mapping the pairs (ε,R) with 0 < ε < R to19

M(ε,R) := sup{|f(x, u)| | ε ≤ d(x) ≤ R, u ∈ K(x)}. (36)

Moreover, if X is a weak Euler solution from z, then20

0 < T ε ≤ TX. (37)

1 When Tx ≤ +∞ and lim
t→T−x

d(x(t)) = 0, Ti is obviously finite. It may happen that

Ti = +∞ only in case Tx = +∞ and limt→+∞ d(x(t)) 6= 0. Obviously, t ∧ (+∞) = t.
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Proof. Fix z ∈ Rn\C and let x be an admissible π-sampling trajectory of ẋ = f(x, u)1

associated to the feedback K and verifying x(0) = z. Given ε ∈ (0,d(z)), let2

T εx := inf{t ≥ 0 : d(x(t)) ≤ ε}.3

When T εx = +∞, the lower bound (34) is trivially verified. Let T εx be finite. Then
d(x(T εx)) = ε and there is some zε ∈ ∂C such that ε = d(x(T εx)) = |x(T εx) − zε|.
Moreover, by continuity, there exists some time tεx ∈ [0, T εx), such that

d(z) = d(x(tεx)) ≥ d(x(t)) ≥ ε ∀t ∈ [tεx, T
ε
x ].

Hence T εx verifies (34), since

d(z) = d(x(tεx)) ≤ |x(tεx)− zε| ≤ |x(tεx)− x(T εx)|+ |x(T εx)− zε|
≤M(ε,d(z)) (T εx − tεx) + ε ≤M(ε,d(z))T εx + ε,

where M(ε,d(z)) is as in (36). Incidentally, M(ε,d(z)) < +∞ by the properties of4

f , d and K.5

Let X be a weak Euler solution for K with initial condition z ∈ Rn\C, determined
by a sequence (x0

i , xi, ui) of admissible πi-sampling processes from z with diam(πi) =
δi and by (ri), as in Definition 3.2. In particular, X is the pointwise limit of (x̃i),
where x̃i(t) = xi(t) for any t ≤ T̄ rixi := inf{t ≥ 0 : d(xi(τ)) ≤ ri ∀τ ≥ t}. Given
ε ∈ (0,d(z)), for any i ∈ N, set T εi := inf{t > 0 : d(xi(t)) ≤ ε}. We can assume
without loss of generality ri < ε for all i ∈ N, since ri → 0. Hence, T̄ rixi ≥ T εi and
by the previous step it follows that

T̄ rixi ≥ T
ε
i ≥ T ε =

d(z)− ε
M(ε,d(z))

.

Hence, for every t ∈ [0, Tε],
2 d(x̃i(t)) = d(xi(t)) ≥ ε and passing to the limit as6

i→ +∞ we get d(X(t)) ≥ ε. As a consequence, we can conclude that TX ≥ T ε.7

8

The sequence (ri) plays a key role in Definition 3.2. In particular, when, for9

some i, the time Ti is finite, the truncated functions x̃0
i , x̃i, differently from x0

i10

and xi, cannot have a chattering behaviour. However, the restriction to the interval11

[0, TX) of a weak Euler cost-trajectory pair (X0,X) associated to a sampling sequence12

(x0
i , xi, ui) does not depend on the choice of the sequence (ri). Precisely, we have:13

Proposition 2. Given a locally bounded feedback K : Rn \ C → U , let (X0,X) be14

a weak Euler cost-trajectory pair with initial condition z ∈ Rn \ C. Let (x0
i , xi, ui),15

(δi), and (ri) determine (X0,X), as in Definition 3.2. Then the following properties16

hold true.17

(i) Setting18

T̄ := lim inf
i→+∞

Ti (Ti as in (30)), (38)

we have that 0 < TX ≤ T̄ ≤ +∞, and19

(X0,X)(t) = lim
i→+∞

(x̃0
i , x̃i)(t) = lim

i→+∞
(x0
i , xi)(t) ∀t ∈ [0, T̄ ). (39)

(ii) Let (r̂i) ⊂ (0,d(z)) be any sequence converging to zero and such that r̂i ≥ ri20

for all i ∈ N. Define, for each i ∈ N,21

T̂i := T̄ r̂ixi = inf{t > 0 : d(xi(τ)) ≤ r̂i ∀τ ≥ t}, T̂ := lim inf
i→+∞

T̂i. (40)

2If Tε = +∞, we obviously mean t ∈ [0,+∞).



OPTIMAL STABILIZABILITY WITH UNBOUNDED DATA 15

Then TX ≤ T̂ (≤ T̄ ) and the sequence (x̂0
i , x̂i), where (x̂0

i , x̂i)(t) := (x0
i , xi)(t∧

T̂i) for all t ≥ 0 and i ∈ N, verifies

lim
i→+∞

(x̂0
i , x̂i)(t) = (X0,X)(t) ∀t ∈ [0, T̂ ).

Proof of Proposition 2. (i) By Proposition 1 it follows that, given an arbitrary
ε ∈ (0,d(z)) one has T̄ ≥ T ε > 0. For every t ∈ [0, T̄ ), it is clear that t < Ti for all
i large enough. Hence (x̃0

i , x̃i)(t) = (x0
i , xi)(t) for such i and the definitions (29),

(32) imply that

lim
i→+∞

(x0
i , xi)(t) = (X0,X)(t) ∀t ∈ [0, T̄ ).

If T̄ = +∞, the proof is concluded. If instead T̄ < +∞, it remains to show
that TX ≤ T̄ . To this aim, let us consider a subsequence k 7→ ik such that T̄ =
limk→+∞ Tik . For every ε1 > 0, Tik < T̄ + ε1 for all k large enough, so that
d(x̃ik(T̄ + ε1)) = d(xik(Tik)) = rik for such k. Hence, we get

d(X(T̄ + ε1)) ≤ |X(T̄ + ε1)− x̃ik(T̄ + ε1)|+ d(x̃ik(T̄ + ε1))→ 0 as k →∞.

By the arbitrariness of ε1 > 0, this implies that TX ≤ T̄ , so concluding the proof.1

(ii) By the hypothesis that r̂i ≥ ri, it follows that T̂i ≤ Ti ∀i ∈ N. Hence T̂ ≤ T̄ .

The facts that T̂ > 0 and

lim
i→+∞

(x̂0
i , x̂i)(t) = lim

i→+∞
(x0
i , xi)(t) = (X0,X)(t) ∀t ∈ [0, T̂ ),

can be proved arguing as in the previous step. It remains to show that TX ≤ T̂ . If
T̂ = T̄ , the thesis follows by (i). Suppose now T̂ < T̄ . Let k 7→ ik be a subsequence

such that limk→+∞ T̂ik = T̂ . For every ε1 > 0 such that T̂ < T̂ + ε1 < T̄ ,

by the definition of T̄ one has T̂ + ε1 ≤ Tik for all k large enough. Therefore,

(x̃0
ik
, x̃ik)(T̂ + ε1) = (x0

ik
, xik)(T̂ + ε1) for such k, and

d(X(T̂ + ε1)) ≤ |X(T̂ + ε1)− x̃ik(T̂ + ε1)|+ d(x̃ik(T̂ + ε1)

= |X(T̂ + ε1)− x̃ik(T̂ + ε1)|+ d(xik(T̂ + ε1)).

Since T̂ik ≤ T̂ + ε1 as soon as k is large enough, d(xik(T̂ + ε1)) ≤ r̂ik for such k.2

Taking the limit as k → +∞ one derives that d(X(T̂ + ε1)) = 0 for every ε1 > 0.3

Therefore, TX ≤ T̂ and the proof is concluded.4

If the target is a singleton, the definition of weak Euler solution X does not5

depend at all on the sequence (ri) and can be simplified as follows.6

Proposition 3. Assume that the target C is reduced to a point. Let K : Rn \C → U
be a locally bounded feedback and let z ∈ Rn \ C be given. Then a function X is a
weak Euler solution of (5) from z if and only if there exists a sequence (xi, ui) of
admissible πi-sampling processes of (5) from z such that diam(πi)→ 0 as i→ +∞,
and verifying

xi → X pointwise in [0,+∞). (41)

Proof. Let C = {z̄}. The proof consists in showing that, given a sequence (xi, ui)
of admissible πi-sampling processes of (5) from z such that δi := diam(πi) → 0 as
i→ +∞, and any sequence (ri) ⊂ (0,d(z)) converging to zero, there exists the limit

X(t) := lim
i→+∞

xi(t) ∀t ∈ [0,+∞),
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if and only if there exists the limit

X1(t) := lim
i→+∞

x̃i(t) ∀t ∈ [0,+∞),

where x̃i(t) := xi(t ∧ Ti) and Ti is as in (30). Moreover, X ≡ X1.1

If Ti = +∞, one has x̃i = xi trivially. For each i ∈ N with Ti < +∞, by
definition, x̃i(t) = xi(t) for all t ∈ [0, Ti], x̃i(t) = xi(Ti) for all t ≥ Ti, and
d(xi(Ti)) = |xi(Ti) − z̄| = ri. Moreover, d(xi(t)) = |xi(t) − z̄| ≤ ri for all t ≥ Ti.
Then, for every t > Ti, one has

|xi(t)− x̃i(t)| = |xi(t)− xi(Ti)| ≤ |xi(t)− z̄|+ |z̄ − xi(Ti)| ≤ 2ri.

Therefore, for every t ≥ 0, (xi(t)) converges if and only if (x̃i(t)) converges and2

lim
i→+∞

x̃i(t) = lim
i→+∞

xi(t).3

Definition 3.3 (Euler and weak Euler stabilizability with regulated cost). A locally4

bounded feedback K : Rn \ C → U is said to Euler [resp., weak Euler] stabilize5

ẋ = f(x, u) to C if there is a function β ∈ KL such that, for each z ∈ Rn \ C, every6

Euler [resp., weak Euler] trajectory X of (5) from z verifies7

d(X(t)) ≤ β(d(z), t) ∀t ∈ [0,+∞). (42)

If moreover there exist p0 > 0 and a continuous map W : Rn \ C → [0,+∞)8

which is positive definite and proper in Rn \ C, such that, for any X as above, every9

Euler [resp. weak Euler] cost X0 associated to X verifies10

X0(t) ≤ W (z)

p0
∀t ∈ [0, TX), (43)

where TX is as in (33), we call (5)–(6) Euler [resp., weak Euler] stabilizable to C11

with (p0,W )-regulated cost. When ẋ = f(x, u) is merely Euler [resp., weak Euler]12

stabilizable to C, we also say that (5)–(6) is Euler [resp., weak Euler] stabilizable to13

C with (p0,W )-regulated cost for p0 = 0.14

Remark 2. Since any Euler cost-solution pair for (5)–(6) is a weak Euler cost-15

solution pair, the weak Euler stabilizability with regulated cost implies the Euler16

stabilizability with regulated cost.17

3.2. Sample and weak Euler stabilizability with regulated cost. Sample18

stabilizability to C with (p0,W )-regulated cost implies Euler and weak Euler stabi-19

lizability to C with (p0,W )-regulated cost.20

Theorem 3.4. Assume that f , l verify assumption (H.1). If a locally bounded21

feedback K : Rn \ C → U sample stabilizes (5)–(6) to C with (p0,W )-regulated22

cost for some p0 ≥ 0, then K Euler and weak Euler stabilizes (5)–(6) to C with23

(p0,W )-regulated cost and with the same descent rate.24

Proof. In view of Remark 2, it is sufficient to show that the sample stabilizability25

with regulated cost implies the weak Euler stabilizability with regulated cost.26

Preliminarily, let us reformulate the notion of sample stabilizability with regu-
lated cost. Let β, δ = δ(r,R) for 0 < r < R, be as in Definition 2.3. Since we can
assume without loss of generality that

r 7→ δ(r,R)
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is a continuous, strictly increasing map, that verifies limr→0+ δ(r,R) = 0 and1

δ(R) := limr→R− δ(r,R) < +∞, we can define the inverse map2

δ 7→ r(δ) ∀δ ∈ [0, δ(R)]. (44)

This function is continuous, strictly increasing and verifies r(0) = 0. As a conse-3

quence, by the sample stabilizability to C of (5)-(6) with (p0,W )-regulated cost,4

for each δ ∈ (0, δ(R)), for every partition π with diam(π) = δ, and for every π-5

sampling process (x0, x, u) with x(0) = z, d(z) = R, one has x defined in [0,+∞)6

and verifying:7

d(x(t)) ≤ max{β(d(z), t), r(δ)} ∀t ≥ 0, (45)

and, if p0 > 0,8

x0(T̄ r(δ)x ) =

∫ T̄ r(δ)x

0

l(x(τ), u(τ)) dτ ≤ W (z)

p0
, (46)

where T̄
r(δ)
x = inf{t > 0 : d(x(τ)) ≤ r(δ) ∀τ ≥ t}, as in (11).9

Given z ∈ Rn \ C, let (X0,X) be an arbitrary weak Euler cost-solution pair
associated to the sampling stabilizing feedback K and with initial condition X(0) =
z. By definition, there are a sequence of partitions (πi) such that δi := diam(πi)→ 0
as i → +∞, a sequence of admissible πi-sampling processes (x0

i , xi, ui) for (5)-(6)
with xi(0) = z for each i, and a vanishing sequence (ri) ⊂ (0,d(z)), such that

lim
i→+∞

(x̃0
i , x̃i)(t) = (X0,X)(t) ∀t ∈ [0,+∞),

where (x̃0
i , x̃i) is the sequence of truncated functions introduced in Definition 3.2,

namely,

(x̃0
i , x̃i)(t) = (x0

i , xi)(t ∧ T̄ rixi ), T̄ rixi = inf{t > 0 : d(xi(τ)) ≤ ri ∀τ ≥ t}.

Since δi → 0, we can assume without loss of generality that δi < δ(d(z)) for all i.10

Hence, by the previous step it follows that, for every i,11

d(xi(t)) ≤ max{β(d(z), t), r(δi)} ∀t ≥ 0 (47)

and, if p0 > 0,12

x0
i (t) ≤

W (z)

p0
∀t ∈ [0, T̄ r(δi)xi ]. (48)

Since x̃i(t) = xi(t) for all t ∈ [0, T̄ rixi ] and d(x̃i(t)) = ri for all t ≥ T̄ rixi , (47) implies

d(x̃i(t)) ≤ max{β(d(z), t), r(δi), ri} ∀t ≥ 0,

and, passing to the limit as i→ +∞, we get13

d(X(t)) ≤ β(d(z), t) ∀t ∈ [0,+∞), (49)

because ri and r(δi) tend to 0. By the arbitrariness of the Euler solution X, this14

proves that the feedback K weak Euler stabilizes (5) to C, with the same descent15

rate β of the sample stabilizability.16

Suppose p0 > 0. To conclude the proof, it remains to show that17

lim
t→T−

X

X0(t) ≤ W (z)

p0
, (50)
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where TX = inf{t ≥ 0 : limτ→t− d(X(τ)) = 0} > 0 by Proposition 1. To this aim,1

for each i, let us define r̂i := max{ri, r(δi)}, so that r̂i ≥ ri and limi→+∞ r̂i = 0. In2

view of Lemma 2, (ii) we have that3

TX ≤ T̂ := lim inf
i→+∞

T̂i, T̂i := inf{t > 0 : d(xi(τ)) ≤ r̂i ∀τ ≥ t}. (51)

Fix t ∈ [0, TX). By (51), T̂i > t for all i sufficiently large. Moreover, one has4

T̂i ≤ T̄ δ(ri)xi , since r̂i ≥ r(δi). This together with (48) implies that5

X0(t) = lim
i→+∞

x0
i (t) ≤

W (z)

p0
∀t ∈ [0, TX). (52)

Taking the limit as t→ T−X we get finally (50).6

The weak coercivity hypothesis (HC) below, is sufficient to guarantee that,7

when (5)–(6) is sample stabilizable to C with (p0,W )-regulated cost, the set of the8

corresponding weak Euler cost-solution pairs is nonempty.9

(HC) For some R̄ > 0, there exist C1 ≥ 0 and C2 > 0 such that f , l verify

l(x, u) ≥ C2|f(x, u)| − C1 ∀(x, u) ∈ (BR̄(C) \ C)× U.

Notice that control-polynomial dynamics and running costs of the form

f(x, u) := f0(x) +
∑d
i=1

(∑
α∈NM , α1+···+αM=i u

α1
1 · · ·u

αM
M fα1,...,αM (x)

)
,

l(x, u) ≥ l0(x) + l1(x)|u|+ · · ·+ ld̄(x)|u|d̄,

where the maps f0, fα1,...,αM , li are continuous in Rn and li ≥ 0, verify hypothesis10

(HC) as soon as d̄ ≥ d and ld̄(x) ≥ C > 0 in BR̄(C) \ C, for some C > 0.11

Proposition 4. Let f , l verify hypotheses (H.1), (HC), and let K : Rn \C → U be12

a locally bounded feedback that sample stabilizes (5)-(6) to C with (p0,W )-regulated13

cost, for some p0 > 0. Then for any z ∈ Rn \ C there exists at least one weak Euler14

cost-solution pair (X0,X) of (5)-(6) from z associated to the feedback K.15

Proof. As already observed in the proof of Theorem 3.4, by the sample stabilizability16

to C of (5)-(6) with (p0,W )-regulated cost, it follows that there exist a KL-function17

β and, for every R > 0, a continuous, strictly increasing map δ 7→ r(δ) ∈ [0, R]18

for all δ ∈ [0, δ(R)] with r(0) = 0 (see (44)), such that, for each δ ∈ (0, δ(R)), for19

every partition π with diam(π) = δ, and for every π-sampling process (x0, x, u) with20

x(0) = z, d(z) = R, x is defined in [0,+∞) and (x0, x, u) verifies (45), (46). In21

particular, given z ∈ Rn \ C, for any sequence (δi) converging to 0 small enough,22

for each i, there exists at least one admissible πi-sampling process (x0
i , xi, ui) with23

xi(0) = z, diam(πi) = δi, x defined on [0,+∞), and it verifies:24

d(xi(t)) ≤ max{β(d(z), t), r(δi)} ∀t ≥ 0, (53)

25

x0
i (T̄

r(δi)
xi ) =

∫ T̄
r(δi)
xi

0

l(xi(t), ui(t)) dt ≤
W (z)

p0
. (54)

By Proposition 1, given an arbitrary ε ∈ (0,d(z)), for each i, one has26

T̄ r(δi)xi ≥ T ε > 0, (55)
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where T ε is as in (34). Let us set ri := r(δi) and Ti := T̄
r(δi)
xi . Taking a subsequence

if necessary, we can assume that there exists

T̄ := lim
i→+∞

Ti ≤ +∞,

where T̄ ≥ T ε > 0 by (55). We set1

(x̃0
i , x̃i)(t) := (x0

i , xi)(t ∧ Ti) ∀t ≥ 0. (56)

Assume first d(z) ≤ R̄1, where β(R̄1, 0) = R̄ and R̄ is as in hypothesis (HC).2

Hence, R̄1 ≤ R̄ by the properties of β, and (53), (54), and (HC) imply that, for3

every i ∈ N, one has4

d(xi(t)) ≤ R̄ ∀t ≥ 0, (57)

and

x̃0
i (t) =

∫ t

0

| ˙̃x0
i (τ)| dτ =

∫ t∧Ti

0

l(xi(τ), ui(τ)) dτ ≤ W (z)

p0
∀t ≥ 0,∫ t

0

| ˙̃xi(τ)| dt =

∫ t∧Ti

0

|f(xi(τ), ui(τ))| dτ ≤ W (z)

C2 p0
+
C1

C2
(t ∧ Ti) ∀t ≥ 0.

Moreover, by (57) and the compactness of ∂C, it follows that there is some M > 05

such that |x̃i(t)| ≤ M for all t ≥ 0 and for every i. Hence the sequence (x̃0
i , x̃i)6

is equibounded and has equibounded total variation on [0, t] for every t > 0, so7

that Helly’s Selection Theorem (see [5, Theorem 15.1]) implies that there exist a8

subsequence, which we still denote (x̃0
i , x̃i), and a bounded map (X0,X) : [0,+∞)→9

[0,+∞)× Rn with locally bounded total variation, such that10

lim
i→+∞

(x̃0
i , x̃i)(t) = (X0,X)(t) ∀t ≥ 0. (58)

In view of Definition 3.2, (X0,X) is weak Euler cost-solution pair.11

If instead d(z) > R̄1, for every i ∈ N, we set

T̂ R̄1
i := inf{t ≥ 0 : d(xi(t)) ≤ R̄1}, T̂ R̄1 := inf{t ≥ 0 : β(d(z), t) ≤ R̄1},

where 0 < T̂ R̄1
i ≤ T̂ R̄1 . Since r(δi)→ 0 as i→ +∞, one has T̂ R̄1

i ≤ Ti for all i large

enough. For such i, d(x̃i(t)) = d(xi(t)) ≥ R̄1 for all t ≤ T̂ R̄1
i , and

d(x̃i(t)) = d(xi(t)) ≤ β(R̄1, t− T̂ R̄1
i ) ≤ β(R̄1, 0) = R̄ ∀t ∈ [T̂ R̄1

i , Ti],

by the definition of R̄1 and the properties of β. Hence, (HC) yields that∫ t

0

| ˙̃xi(t)| dt =

∫ t∧T̂ R̄1
i

0

|f(xi(t), ui(t))| dt+

∫ t∧Ti

t∧T̂ R̄1
i

|f(xi(t), ui(t))| dt

≤ M̄ T̂ R̄1 +
W (z)

C2 p0
+
C1

C2
(t ∧ Ti) ∀t ≥ 0,

where M̄ := sup{|f(x, u)| | R̄1 ≤ d(x) ≤ β(d(z), 0), u ∈ K(x)}. From now on, the12

proof proceeds as in the case d(z) ≤ R̄1 and we omit it.13

Remark 3. From the previous proof we can deduce that the statement of Propo-14

sition 4 remains valid even if (HC) is replaced by any condition that implies the15

equiboundedness of the total variation of the sequence (x̃i) of the stabilizing sam-16

pling trajectories, on any interval [0, t], t > 0.17
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4. Sufficient stabilizability conditions in optimal control. In this section we1

provide sufficient conditions for the sample, Euler, and weak Euler stabilizability2

with regulated cost of the original problem (14)-(15). Such conditions rely on the3

existence of a p0-Minimum Restraint function.4

4.1. Main results. Given arbitrary functions f , l verifying (H.1), we introduce5

the Hamiltonian Hf ,l : (Rn \ C)× R× Rn → [−∞,+∞), given by6

H(x, p0, p) := inf
u∈U
{〈p , f(x, u)〉+ p0 l(x, u)} . (59)

Notice that, because of the unboundedness of the data, H may be discontinuous7

and also equal to −∞ at some points. Following [16, 17], we define a p0-Minimum8

Restraint function as follows.9

Definition 4.1 (p0-Minimum Restraint Function). Let W : Rn \ C → [0,+∞) be10

a continuous function, and let us assume that W is locally semiconcave, positive11

definite, and proper on Rn \ C. We say that W is a p0-Minimum Restraint function12

– in short, p0-MRF – for some p0 ≥ 0 for f , l, if there exists some continuous,13

strictly increasing function γ : (0,+∞) → (0,+∞), that we call a decrease rate,14

verifying the following decrease condition:15

Hf ,l(x, p0, D
∗W (x)) ≤ −γ(W (x)) ∀x ∈ Rn \ C. 3 (60)

Remark 4. Given f , l, a p0-MRF W with p0 = 0 is simply a Control Lyapunov16

function, in short CLF, for the control system ẋ = f(x, u). If p0 > 0, W is still a17

CLF, since l ≥ 0, but condition (60) now includes, for instance, also Petrov-type18

controllability conditions for the minimum time problem, where l = 1. However,19

on the one hand, unlike the existence of a CLF, the existence of a p0-MRF gives20

cost information. On the other hand, since l may be zero on an arbitrary set, it21

is not possible to reformulate the present problem as a minimum time problem for22

the rescaled dynamics f/l. For more details on the notion of p0-MRF and examples23

we refer to [19, 18, 16].24

The existence of a p0-MRF W̄ for the rescaled data f̄ , l̄, guarantees the sample25

stabilizability to C with (p0, W̄ )-regulated cost of the original problem:26

Theorem 4.2. Given f , l verifying (H.1-2), let W̄ be a p0-MRF with p0 ≥ 0 for the27

rescaled functions f̄ , l̄. Then there exists a locally bounded feedback K : Rn \C → U28

that sample stabilizes the original problem (14)–(15) to C with (p0, W̄ )-regulated29

cost.30

Proof. In view of hypotheses (H.1-2), the rescaled functions f̄ , l̄, satisfy the regu-31

larity and boundedness assumptions that make [16, Theorem 1.1] applicable. Hence32

there exists a locally bounded feedback strategy K : Rn \ C → U that sample stabi-33

lizes to C the rescaled problem (16)–(17) with (p0, W̄ )-regulated cost. The claim on34

the sample stabilizability to C with (p0, W̄ )-regulated cost of (14)–(15) now follows35

straightforwardly from the equivalence Theorem 2.5.36

It is not difficult to show that any p0-MRF for the rescaled problem is a p0-MRF37

for the original problem. Instead, a p0-MRF W for f , l may not be a p0-MRF for38

f̄ , l̄, but in view of Theorem 4.3 below we can always build an associated p0-MRF39

W̄ ≥W for the rescaled problem.40

3This means that Hf ,l(x, p0, p) ≤ −γ(W (x)) for every p ∈ D∗W (x).
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Preliminarily, let us show that a p0-MRF for f , l provides a locally bounded1

feedback satisfying the decrease condition. This is a direct consequence of the2

following, more general result.3

Proposition 5. Assume that f , l satisfy (H.1). Let W : Rn \ C → [0,+∞) be
a continuous function, which is locally Lipschitz continuous, proper and positive
definite on Rn \ C and verifies the decrease condition

Hf ,l(x, p0, ∂LW (x)) < −γ(W (x)) ∀x ∈ Rn \ C,
for some p0 ≥ 0 and some continuous, strictly increasing function γ : (0,+∞) →4

(0,+∞). Then there exist a strictly increasing continuous map γ̃ : (0,+∞) →5

(0,+∞), γ̃ ≤ γ, and a continuous function N : (0,+∞)→ (0,+∞) such that6

min
U∩B(0,N(W (x)))

{〈∂LW (x), f(x, u)〉+ p0 l(x, u)} < −γ̃(W (x)) ∀x ∈ Rn \ C. (61)

Furthermore, for any selection p(x) ∈ ∂LW (x), x ∈ Rn \ C, there exists a locally
bounded feedback K : Rn \ C → U verifying for all x ∈ Rn \ C,

|K(x)| ≤ N(W (x))

and7

〈p(x), f(x,K(x))〉+ p0 l(x,K(x)) < −γ̃(W (x)). (62)

The main results of this section rely on:8

Theorem 4.3. Assume that f , l satisfy (H.1-2). Let W : Rn \ C → [0,+∞) be
a continuous function, which is locally Lipschitz continuous, proper and positive
definite on Rn \ C and verifies for some p0 ≥ 0 the decrease condition

Hf,l(x, p0, ∂LW (x)) ≤ −γ(W (x)) ∀x ∈ Rn \ C,
where γ : (0,+∞)→ (0,+∞) is a continuous, strictly increasing function.9

Then for any R > 0 there exist a continuous function W̄R : Rn \ C → [0,+∞)10

and a continuous, strictly increasing function γR : (0,+∞)→ (0,+∞) enjoying the11

following properties.12

(i) The function W̄R : Rn \ C → [0,+∞) is locally Lipschitz continuous, proper13

and positive definite on Rn \ C, W̄R ≥ W , and W̄R(x) = W (x) for all x ∈14

BR(C) \ C. In addition, when W is locally semiconcave on Rn \ C or locally15

Lipschitz continuous on Rn \ C, so is W̄R. One has γR ≤ γ.16

(ii) W̄R and γR verify the decrease condition17

Hf̄ ,l̄(x, p0, ∂LW̄R(x)) ≤ −γR(W̄R(x)) ∀x ∈ Rn \ C. (63)

(iii) Given a selection p(x) ∈ ∂LW (x) for any x ∈ Rn \ C and a locally bounded18

feedback K : Rn \ C → U as in Proposition 5, the (unique) selection p̄(x) ∈19

∂LW̄R(x) associated to p(x) verifies20

〈p̄(x), f̄(x,K(x))〉+ p0 l̄(x,K(x)) ≤ −γR(W̄R(x)) ∀x ∈ Rn \ C. (64)

As a consequence of Proposition 5 and Theorem 4.3, that will be proved in21

Subsection 4.2, the existence of a p0-MRF W for the original problem still implies22

sample stabilizability to C with (p0,W )-regulated cost. Precisely, we have:23

Theorem 4.4. Assume that f , l verify hypotheses (H.1-2) and let W be a p0-MRF24

with p0 ≥ 0 for such f , l. Then there exists a locally bounded feedback K : Rn\C → U25

that sample, Euler and weak Euler stabilizes the original problem (14)–(15) to C with26

(p0,W )-regulated cost.27



22 A. C. LAI AND M. MOTTA

Proof. We only need to prove that, given W as above, (14)–(15) is sample stabiliz-1

able to C with (p0,W )-regulated cost, because then the rest of the statement follows2

from Theorem 3.4.3

To this end, fix an arbitrary R1 > 0 and consider W̄ := W̄R1
, γR1

and a feedback4

K as in Theorem 4.3. In particular, W̄ is locally semiconcave as W , so that for every5

x ∈ Rn \ C, the limiting subdifferential ∂LW̄ (x) coincides with the set of reachable6

gradients D∗W̄ (x) at x. Therefore, W̄ is a p0-MRF for the rescaled problem (16)–7

(17), with dynamics f̄ and lagrangian l̄, and by Theorem 4.2 it follows that K is8

a locally bounded feedback which sample stabilizes (14)–(15) to C, with (p0, W̄ )-9

regulated cost. If p0 = 0, this concludes the proof. Otherwise, observe that until now10

we have shown that there exists some function β ∈ KL such that, given 0 < r < R,11

there is some δ = δ(r,R) > 0 such that for any z ∈ Rn \ C with d(z) ≤ R, any12

π-sampling process (x0, x, u) with diam(π) ≤ δ and x(0) = z verifies13

d(x(t)) ≤ max{β(d(z), t), r} ∀t > 0, (65)

and x0(t) ≤ W̄ (z)/p0 for all t ∈ [0, T̄ rx ] (T̄ rx as in (11)). Since W̄ is in general larger14

than W , it remains to show that we have in fact15

x0(t) ≤ W (z)

p0
∀t ∈ [0, T̄ rx ]. (66)

By Theorem 4.3, there is a map W̄2R which is a p0-MRF for f̄ , l̄ by the previous16

arguments, and verifies W̄2R ≡ W on B2R(C). Hence there exist some (β2R ∈ KL17

and) δ2R = δ2R(r,R) > 0 such that all π-sampling process (x0, x, u) with diam(π) ≤18

δ̃(r,R) := δ2R(r,R) ∧ δ(r,R) and x(0) = z verify in particular (65), but also have19

x0(t) ≤ W̄2R(z)/p0 for all t ∈ [0, T̄ rx ]. The last inequality yields (66), because20

W̄2R(z) = W (z) for every z ∈ Rn \ C with d(z) ≤ R.21

Whenever the rescaled functions f̄(·, u), l̄(·, u) are locally Lipschitz continuous in22

Rn \ C uniformly w.r.t. u, sample stabilizability can be achieved under milder reg-23

ularity assumptions on the p0-MRFs. In particular, the semiconcavity requirement24

in the definition of a p0-MRF can be replaced by local Lipschitz continuity.25

Definition 4.5 (Lipschitz continuous p0-Minimum Restraint Function). We call
Lipschitz continuous p0-Minimum Restraint Function, p0 ≥ 0, for f , l satisfying
hypothesis (H.1), any function W : Rn \ C → [0,+∞) which is locally Lipschitz

continuous on Rn \ C, positive definite, and proper on Rn \ C, and verifies the
decrease condition

H(x, p0, ∂LW (x)) < −γ(W (x)) ∀x ∈ Rn \ C,
for some continuous, strictly increasing function γ : (0,+∞)→ (0,+∞).26

We consider the following strengthened version of hypotheses (H.1-2):27

(HL) The data f , l satisfy (H.1-2). Moreover, the rescaled functions f̄ , l̄ can be28

continuously extended to ∂C ×U and for every compact set K ⊂ Rn \ C there exists29

L > 0 such that30

|f̄(x1, u)−f̄(x2, u)|+|̄l(x1, u)−l̄(x2, u)| ≤ L|x1−x2| ∀(x1, u), (x2, u) ∈ K×U. (67)

31

In this setting, the existence of a Lipschitz continuous p0-MRF W for the rescaled32

problem or for the original problem, still guarantees sample stabilizability to C with33

(p0/2,W )-regulated cost.34
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Theorem 4.6. Assume that f , l satisfy (HL) and let W be a Lipschitz continuous1

p0-MRF with p0 ≥ 0, either for the rescaled data f̄ , l̄, or for f , l. Then there exists2

a locally bounded feedback K : Rn \ C → U that sample, Euler, and weak Euler3

stabilizes the original problem (14)–(15) to C with (p0/2,W )-regulated cost.4

Proof. Suppose first that W is a Lipschitz continuous p0-MRF for f̄ , l̄. In view of5

hypothesis (HL), the rescaled problem satisfies the assumptions of [16, Theorem6

4.3]. This implies the existence of a (locally semiconcave) p0

2 -MRF W1 ≤ W for7

f̄ , l̄, which by [16, Theorem 1.1] yields the existence of a locally bounded feed-8

back K : Rn \ C → U that sample stabilizes to C the rescaled problem (16)–(17)9

with (p0/2,W )-regulated cost. Therefore, K sample stabilizes to C with (p0/2,W )-10

regulated cost also the original problem (14)–(15), in view of Theorem 2.5.11

If instead W is a Lipschitz continuous p0-MRF for f , l, let us fix R1 > 0. By12

Theorem 4.3 there exists a Lipschitz continuous p0-MRF W̄R1
≥ W for f̄ , l̄, and13

it verifies W̄R1
≡ W on BR1

(C). Then the existence of a locally bounded feedback14

K : Rn \ C → U that sample stabilizes to C the original problem (14)–(15) with15

(p0/2, W̄R1)-regulated cost, can obtained as in the previous case. The fact that the16

cost is actually (p0/2,W )-regulated, can be proven arguing as in the last part of17

the proof of Theorem 4.4.18

In both cases, the Euler and weak Euler stabilizability with the same regulated cost19

then follows by Theorem 3.4.20

In the case of control-affine data, the previous results extend the sufficient condi-21

tions for sample stabilizability with regulated cost introduced in [17], which require22

the existence of a MRF for the rescaled problem.23

4.2. Proofs of Proposition 5 and of Theorem 4.3.24

Proof of Proposition 5. Let {µk}k∈Z ⊂ (0,+∞) be a bi-infinite, strictly increasing
sequence such that µk → 0 as k → −∞ and µk → +∞ as k → +∞. Since γ is
strictly increasing, by (60) one has for all k ∈ Z

H(x, p0, ∂LW (x)) < −γ(W (x)) ≤ −γ(µk) ∀x ∈W−1([µk,+∞)).

In particular, for all x̄ ∈W−1([µk,+∞)) and p̄ ∈ ∂LW (x̄), there exists ū ∈ U such25

that26

〈f(x̄, ū), p̄〉+ p0 l(x̄, ū) < −γ(µk). (68)

Fix k ∈ Z and define

Γk := {(x, p) | x ∈W−1([µk, µk+1]), p ∈ ∂LW (x)}.

Notice that the properties of W –in particular, the properness of W and the upper
semicontinuity of the set-valued map x ∂LW (x)– imply that Γk is a compact set.
Then the map hk : [0,+∞)→ R given by

hk(N) := max
(x,p)∈Γk

min
U∩B(0,N)

{〈f(x, u), p〉+ p0 l(x, u)}

is well defined.27

Step 1. Given any k ∈ Z, we show that there exists a sufficiently large Nk28

satisfying29

hk(N) < −γ(µk) ∀N ≥ Nk. (69)
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Indeed, let {N j} be a positive, strictly increasing, diverging sequence of real num-
bers. Consider a sequence {(xj , pj)} ⊂ Γk such that

(xj , pj) ∈ argmax
(x,p)∈Γk

{
min

U∩B(0,Nj)
{〈f(x, u), p〉+ p0 l(x, u)}

}
∀j ∈ N,

so that

hk(N j) = min
U∩B(0,Nj)

{〈f(xj , u), pj〉+ p0 l(xj , u)}.

Since Γk is compact, then, by passing to a subsequence if necessary, (xj , pj) con-
verges to some (x̄, p̄) ∈ Γk as j →∞. Choose ū like in (68). By the continuity of f
and l there exists a sufficiently large J such that NJ > |ū| and

〈f(xJ , ū), pJ〉+ p0 l(xJ , ū) < −γ(µk).

Since by construction hk is decreasing, then for all N ≥ NJ

hk(N) ≤ hk(NJ) = min
U∩B(0,NJ )

{〈f(xJ , u), pJ〉+ p0 l(xJ , u)}

≤ 〈f(xJ , ū), pJ〉+ p0 l(xJ , ū) < −γ(µk).

Therefore, setting Nk := NJ we have (69).1

Step 2. Let γ̃ : (0,+∞)→ (0,+∞) be a strictly increasing, continuous map such
that, for every k ∈ Z,

γ̃(µ) ≤ γ(µk) ∀µ ∈ [µk, µk+1]

(for instance, γ̃ can be obtained by the linear interpolation of the point set2

{(µk+1, γ(µk))}k∈Z). Let N : (0,+∞) → (0,+∞) be a continuous approximation3

from above of the piecewise constant function N̄(µ) := Nk for all µ ∈ [µk, µk+1),4

k ∈ Z. With this choice of N and γ̃, by (69) it follows that relation (61) is verified.5

Step 3. Fixed a selection p(x) ∈ ∂LW (x) for every x ∈ Rn\C, consider a function
K : Rn \ C → U such that

K(x) ∈ argmin
U∩B(0,N(W (x)))

{〈f(x, u), p(x)〉+ p0 l(x, u)} ∀x ∈ Rn \ C.

Then |K(x)| ≤ N(W (x)) and by (61) one has

〈f(x,K(x)), p(x)〉+ p0 l(x,K(x)) < −γ̃(W (x)) ∀x ∈ Rn \ C.

Furthermore, for any compact set K ⊂ Rn \ C, let µmin := min
x∈K

W (x) and µmax :=6

max
x∈K

W (x). Set NK := max
µ∈[µmin,µmax]

N(µ). Therefore K(x) ∈ U ∩ B(0, NK) for all7

x ∈ K, so proving that K is a locally bounded feedback.8

Remark 5. Given any σ > 0, one can assume without loss of generality the function
N in Proposition 5 decreasing in (0, σ]. It suffices, for instance, to replace N with
a continuous approximation from above of the map

Ñσ(µ) :=

{
max

r∈[µ,2σ]
N(r) µ ∈ (0, 2σ],

N(µ) µ > 2σ,

which is clearly decreasing on (0, σ].9
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Proof of Theorem 4.3. Let us prove (i). Given W as in the statement of Theorem
4.3, fix R > 0 and let σ = σ(R) := inf {σ > 0 : {z : W (z) ≤ σ} ⊇ BR(C)}, so that
when d(x) ≤ R one has W (x) ≤ σ. Fix an arbitrary σ̄ > 2σ. Let γ̃, N and K be
as in Proposition 5 for f and l, and let us assume N decreasing on (0, σ̄], as it is
possible thanks to Remark 5. Let ν0 : (0,+∞)→ [0,+∞) be given by

ν0(µ) :=


max

(x,u)∈W−1([µ,σ̄])×(U∩B(0,N(µ))
{ν(x, u)} µ ∈ (0, σ̄],

max
(x,u)∈W−1({µ})×(U∩B(0,N(µ))

{ν(x, u)} µ > σ̄.

The function ν0 is well defined and locally bounded, because W is proper and1

ν, N are continuous. Moreover, ν0 is decreasing on (0, σ̄]. Let ν1 be a smooth2

approximation from above of ν0, decreasing on (0, 2σ] – like N . Then3

ν1(W (x)) ≥ ν(x, u) ∀x ∈ Rn \ C, u ∈ U ∩B(0, N(W (x))). (70)

Consider a nonnegative, smooth map ν̄ = ν̄R : [0,+∞)→ [0,+∞) such that ν̄ ≡ 04

in [0, σ] and ν̄ := ν1 in [2σ,+∞).5

We set6

ξR(µ) := µ+

∫ µ

0

ν̄(r) dr ∀µ ∈ [0,+∞), W̄R := ξR ◦W,

γ̃R(µ) :=

{
γ̃

1+ν1
◦ ξ−1

R (µ) µ ∈ (0, 2σ],

γ̃ ◦ ξ−1
R (µ) µ > 2σ.

(71)

The function ξR is the identity in [0, σ] and ξR(µ) ≥ µ in (σ,+∞), so that W̄R ≥W7

in the whole set Rn\C and W̄R ≡W on W−1([0, σ]). Hence, in particular, W̄R(x) =8

W (x) when d(x) ≤ R. Moreover, W̄R is locally Lipschitz continuous, proper and9

positive definite on Rn \C; it is also locally Lipschitz continuous on Rn \ C or, by [4,10

Proposition 2.1.12], locally semiconcave on Rn \ C, when W is. By the properties11

of ξR, the decrease rate γ̃R : (0,+∞)→ (0,+∞) is well defined, strictly increasing,12

continuous except at point 2σ and γ̃R ≤ γ̃. Since γ̃ ≤ γ by Proposition 5, then13

there exists a positive, strictly increasing, smooth approximation from below γR of14

γ̃R such that γR ≤ γ: this concludes the proof of statement (i).15

In order to prove (ii), namely that W̄R, γR verify the decrease condition (63), we16

make use of the following result:17

Lemma 4.7. Let Ω ⊂ Rn be an open subset and let W : Ω→ (0,+∞) be a locally18

Lipschitz continuous function. If ξ : (0,+∞)→ (0,+∞) is a strictly increasing, C2
19

function with ξ′ > 0, then for every x ∈ Ω one has20

∂L(ξ ◦W )(x) = ξ′(W (x))∂LW (x). (72)

Proof. Let us show that, given x ∈ Ω,21

∂P (ξ ◦W )(x) = ξ′(W (x))∂PW (x). (73)

Then it immediately follows the thesis (72).22

Let us begin by showing that ∂P (ξ◦W )(x) ⊆ ξ′(W (x))∂PW (x). Let p ∈ ∂PW (x).
Then there exist a neighborhood of x and some ρ̄ > 0 and ε̄ > 0, such that

W (y)−W (x) + ρ̄|y − x|2 ≥ 〈p, y − x〉 ∀y ∈ B(x, ε̄).

Since ξ ∈ C2(0,+∞), by the Taylor expansion of ξ at µ = W (x), for any µ̃ in some

neighbourhood of µ, one has ξ(µ̃)−ξ(µ) = ξ′(µ)(µ̃−µ)+ ξ′′(µ)
2 |µ̃−µ|2 +o(|µ̃−µ|2).
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For the local Lipschitz continuity of W , possibily reducing ε̄, for every y ∈ B(x, ε̄),
one has

ξ(W (y))− ξ(W (x))

= ξ′(W (x))(W (y)−W (x)) + ξ′′(W (x))
2 |W (y)−W (x)|2 + o(|W (y)−W (x)|2).

Since ξ′ > 0, for every p ∈ ∂PW (x) we derive that

ξ(W (y))− ξ(W (x)) ≥ ξ′(W (x))
[
〈p, y − x〉 − ρ̄|y − x|2

]
+ L2

W

ξ′′(W (x)) ∧ 0

2
|y − x|2 + o(|y − x|2),

where LW > 0 denotes the (local) Lipschitz constant of W . Hence

ξ(W (y))− ξ(W (x)) + ρ |y − x|2 ≥ 〈ξ′(W (x)) p, y − x〉,

as soon as ρ > 0 verifies ρ ≥
[
ξ′(W (x))ρ̄− L2

W
ξ′′(W (x))∧0

2 + o(|y−x|2)
|y−x|2

]
, so that p̄ :=1

ξ′(W (x)) p ∈ ξ′(W (x))∂PW (x) and the inclusion ξ′(W (x))∂PW (x) ⊆ ∂P (ξ ◦W )(x)2

is proved.3

The assumption ξ′ > 0 implies that the inverse function ξ−1 is strictly increasing4

and C2, as ξ. Hence the opposite inclusion ∂P (ξ ◦W )(x) ⊆ ξ′(W (x))∂PW (x), can5

be obtained by applying the previous arguments to ξ ◦W and ξ−1 in place of W6

and ξ, respectively. This yields the equality (73) and the proof of the lemma is7

concluded.8

By Lemma 4.7, for every x ∈ Rn \ C we have ∂LW̄R(x) = (1 + ν̄(W (x))∂LW (x),9

so that given an arbitrary p̄ ∈ ∂LW̄R(x), there exists some p ∈ ∂LW (x) such that10

p̄ = (1 + ν̄(W (x)) p. (74)

Let ū ∈ U ∩B(0, N(W (x)) satisfy

〈f(x, ū), p〉+ p0 l(x, ū) = min
U∩B(0,N(W (x)))

{〈f(x, u), p〉+ p0 l(x, u)}.

By (61), (70), (71), and (74), when x ∈W−1((0, 2σ]) one has 〈f(x, ū), p〉 < 0 and11

Hf̄ ,l̄(x, p0, p̄) ≤ 〈f̄(x, ū), p̄〉+ p0 l̄(x, ū) = (1 + ν̄(W (x)) 〈f̄(x, ū), p〉+ p0 l̄(x, ū)

=
1

1 + ν(x, ū)
[(1 + ν̄(W (x)) 〈f(x, ū), p〉+ p0 l(x, ū)]

< − γ̃(W (x))

1 + ν(x, ū)
≤ −γR(W̄R(x)).

If otherwise x ∈ W−1((2σ,+∞)), then ν̄(W (x)) = ν1(W (x)) and, recalling that
〈f(x, ū), p〉 < 0 and p0 l(x, ū) ≥ 0, we get by (70)

Hf̄ ,l̄(x, p0, p̄) ≤ 〈f̄(x, ū), p̄〉+ p0 l̄(x, ū)

= (1 + ν1(W (x)) 〈f̄(x, ū), p〉+ p0 l̄(x, ū)

≤ 1 + ν1(W (x))

1 + ν(x, ū)
[〈f(x, ū), p〉+ p0 l(x, ū)]

< −γ̃(W (x)) ≤ −γR(W̄R(x)),

and this implies the validity of (ii).12

The proof of statement (iii) follows by the arguments above, by simply replacing13

ū with K(x), where K is a feedback as in Proposition 5.14
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