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ON THE EKELAND–HOFER SYMPLECTIC CAPACITIES
OF THE REAL BIDISC

LUCA BARACCO, MARTINO FASSINA AND STEFANO PINTON

In C2 with the standard symplectic structure we consider the bidisc D2 × D2

constructed as the product of two open real discs of radius 1. We compute ex-
plicit values for the first, second and third Ekeland–Hofer symplectic capacity
of D2 × D2. We discuss some applications to questions of symplectic rigidity.

1. Introduction and main result

The first striking result about a nontrivial obstruction to the existence of a symplectic
embedding was obtained by Gromov [1985]. He proved that one can symplectically
embed a sphere into a cylinder only if the radius of the sphere is less than or equal
to the radius of the cylinder. Since this celebrated nonsqueezing theorem appeared,
many similar results of symplectic rigidity have been obtained for a variety of
domains. For instance, McDuff [2009; 2011] studied symplectic embeddings of
even-dimensional open ellipsoids into one another (see also [Hutchings 2011a;
2011b; McDuff and Schlenk 2012]), and Guth [2008] gave asymptotic results on
when a complex polydisc can be symplectically embedded into another one. A
useful tool to tackle these questions is given by global symplectic invariants for
symplectic manifolds called capacities.

A symplectic capacity is a functor c that assigns to every symplectic mani-
fold (M, ω) of dimension 2n a nonnegative (possibly infinite) number c(M, ω) that
satisfies the following conditions:

• (monotonicity) If there exists a symplectic embedding of (M1, ω1) into (M2, ω2),
then c(M1, ω1)≤ c(M2, ω2).

• (conformality) If λ > 0, then c(M, λω)= λc(M, ω).

• (local nontriviality) For the open unit ball B ⊂ R2n we have c(B, ω0) > 0.

• (nontriviality) For the open cylinder Z ={z∈Cn
: |z1|<1}we have c(Z , ω0)<∞.
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Here ω0 denotes the standard symplectic structure on R2n. The reader can
consult any standard textbook in the subject such as [McDuff and Salamon 2017,
Chapter 12] for an extensive treatment of this topic.

The first nontrivial capacity arose in Gromov’s proof of the nonsqueezing theorem,
and over the years many more such symplectic invariants have been constructed
[Ekeland and Hofer 1989; 1990; Hofer and Zehnder 1990; Floer et al. 1990; Viterbo
1992; Gutt and Hutchings 2018].

In this paper we consider the construction of Ekeland and Hofer (which is recalled
in Section 2C). For any subset of a symplectic vector space, they define an infinite
sequence cn of symplectic capacities. These quantities are notoriously difficult to
compute explicitly, and precise values appear in the literature only for very special
classes of domains, such as ellipsoids and polydiscs [Ekeland and Hofer 1990].
The main purpose of this work is to compute some of these capacities for the real
bidisc D2

× D2, which we now introduce.
In the complex space C2 with coordinates z j = x j+ iy j , j = 1, 2, endowed with

the standard symplectic structure dx1 ∧ dy1+ dx2 ∧ dy2, consider the real bidisc

(1-1) D2
× D2

:= {(z1, z2) ∈ C2
| x2

1 + x2
2 < 1, y2

1 + y2
2 < 1}.

Our main result is the following (see Theorems 4.2, 4.4 and 4.6).

Main Theorem. For the unit real bidisc D2
× D2 we have

c1(D2
× D2)= 4, c2(D2

× D2)= 3
√

3, c3(D2
× D2)= 8.

The fact that c1(D2
× D2)= 4 is known [Artstein-Avidan and Ostrover 2014].

The referee pointed out to us that the values of c2(D2
× D2) and c3(D2

× D2)

can also be obtained from the work of Ramos [2017], which uses very different
techniques than the ones developed in this paper (see Remarks 4.5 and 4.9).

The Ekeland–Hofer capacities are closely related to the existence of closed
Hamiltonian orbits. The key feature of our computation is the use of Hamiltonians
modeled on the gauge function of the domain, rather than Hamiltonians that are
quadratic at infinity, as in the original definition of Ekeland and Hofer. This same
idea already appears in [Berestycki et al. 1985] in the context of smooth domains,
and in [Fan 1992] for the case of Lipschitz domains. The different choice of
Hamiltonians does not affect the computation of the capacities, provided that no
periodic orbits of period 1 are introduced at infinity. This feature is easily achieved
by rescaling, since the closed periodic orbits of the Hamiltonians in question can
be computed explicitly. The advantage in modeling the Hamiltonians on the gauge
function is that we can then exploit the symmetries of the domain to simplify the
estimates involved in the computations of the capacities.

We remark that our strategy can be easily adapted to compute the Ekeland–Hofer
capacities of other domains. For instance, for the product of two real spheres in C3
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one just needs to repeat the same computations while taking an additional coordinate
into account.

We now point out how the results of this paper are related to recent work of Gutt
and Hutchings [2018]. They use positive S1-equivariant symplectic homology to
introduce a sequence ck of symplectic capacities for star-shaped domains in R2n.
Their capacities ck share many properties with the Ekeland–Hofer capacities, and in
particular the remarkable “product property” (see Section 5). Combining the results
of [Gutt and Hutchings 2018] with Ramos’ insight [2017] that the real bidisc is a
toric domain, one can see that the Gutt–Hutchings capacities of D2

× D2 are the
same as the Ekeland–Hofer capacities that we obtain in our Main Theorem. Our
computations therefore support the conjecture made by Gutt and Hutchings [2018]
that their capacities ck are always equal to the Ekeland–Hofer capacities.

The organization of this paper is as follows. In Section 2 we recall some back-
ground material and set the notation. In Section 3 we show how one can approximate
the bidisc D2

× D2 with a sequence of smooth convex domains. The main result
is then proved in Section 4, while in Section 5 we present some applications to
questions of symplectic embedding. It is the authors’ hope that further applications
to symplectic rigidity of these explicit values of the capacities will be found in the
future.

2. Background

2A. Basic definitions and notation. Let Cn denote the standard complex vector
space of dimension n with variables z j = x j+iy j . We endow Cn with the Euclidean
scalar product

〈z, w〉 := Re
( n∑

j=1

z jw j

)
and the standard symplectic form

ω :=
1
2i

n∑
j=1

dz j ∧ dz̄ j =

n∑
j=1

dx j ∧ dy j .

All symplectic embeddings considered in this paper will be with respect to the
standard symplectic form.

Let � be a bounded subset of Cn with smooth boundary ∂�. We denote by T Cn

the (real) tangent bundle of Cn and by T ∂� the tangent bundle of ∂�. We write
Y ∈ T Cn to mean that Y is a local section of T Cn. Consider a smooth defining
equation ρ of ∂� such that |dρ(z)| 6= 0 for z ∈ ∂�. The characteristic vector field
of ∂� is the unique vector field X such that

ω(X, Y )= Y (ρ) for all Y ∈ T Cn.

The characteristic vector field X is tangent to ∂� and its restriction to ∂� does
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not depend on the choice of ρ. Moreover, X generates the kernel of the restricted
form ω|T ∂�.

Let J denote the standard complex structure on Cn. For all z ∈ ∂� we have
X (z)= J∇ρ(z), where ∇ρ is the Euclidean gradient of ρ. Hence an integral curve
of X on ∂� is the solution of a system

(2-1)

{
ż = J∇ρ(z),

z(0)= z0,

where z0 ∈ ∂�. These integral curves are called the characteristics of ∂�.
Of particular interest in symplectic geometry is the study of closed characteristics,

that is, the solutions to (2-1) for which there exists a time t0 > 0 such that z(t0)= z0.
Let T be the smallest such t0. The image {z(t), 0≤ t ≤ T } is called an orbit and T
the period of the orbit.

If γ : [0, T ] → ∂� is a closed characteristic, the action of γ is defined to be

A(γ ) := −1
2

∫ T

0
〈J γ̇ , γ 〉 dt.

If � is a bounded convex subset of Cn and {γi }i∈I is the set of closed characteristics
of ∂�, we can define the action spectrum of � as the set

6(�) := {|kA(γi )|, k ∈ N, i ∈ I }.

Following Ekeland and Hofer [1990], we will see how it is possible to choose some
elements of 6(�) called capacities that are symplectic invariants (see Section 2C).
We now describe how to adapt the concepts introduced above to nonsmooth domains.

Let � ⊂ Cn be a convex bounded domain and let p ∈ ∂�. We say that a unit
vector n(p) is normal at p for ∂� if

(2-2) 〈n(p), x − p〉 ≤ 0 for all x ∈�.

If p is a smooth boundary point, then n(p) is the usual exterior normal vector.
If ∂� is not smooth at p, then there could be more than one choice for a normal
vector. In this case, we let n(p) denote the set of all vectors satisfying (2-2).

Definition 2.1. Let � be a convex domain in Cn. We say that z : R→ � is a
characteristic if z(t) has right and left derivative ż±(t) for all t , and

ż±(t) ∈ Jn(z(t)).

Note that, for � smooth, this definition coincides with the definition of a charac-
teristic given before.
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2B. The action spectrum of the real bidisc. We now turn our attention to the
domain that is the main object of interest of this paper: the real bidisc D2

× D2.
Recall that D2

× D2 was defined in (1-1) as the product of two open real discs of
radius 1. The next proposition, which follows from the work of Artstein-Avidan
and Ostrover [2014], describes the closed characteristics of D2

× D2 and its action
spectrum 6(D2

× D2).

Proposition 2.2. The unitary real bidisc D2
× D2 has infinitely many closed char-

acteristics. The action spectrum is given by the set

(2-3) 6(D2
× D2)= {2n cos(θk,n) | k, n ∈ N, θk,n ∈ Jn} ∪ {2nπ | n ∈ N},

where Jn = {(2k − 1)π/2n, 1 ≤ k ≤ (n − 1)/2} if n is odd, and, if n is even,
Jn = {kπ/n, 0≤ k ≤ n/2− 1}.

Remark 2.3. The elements of 6(D2
× D2) are precisely the lengths of all closed

billiard orbits in a circle of radius 1.

Remark 2.4. Note that min6(D2
× D2) = 4. Moreover, the second smallest

element in 6(D2
× D2) is 3

√
3.

2C. Ekeland–Hofer symplectic capacities. Following [Ekeland and Hofer 1990],
we recall the definition of these symplectic capacities. We first set up the func-
tional analytical framework. For more details, see also [Ekeland and Hofer 1989,
Section II].

Let E be the Hilbert space of all functions f ∈ L2(R/Z,Cn) such that the Fourier
series

f (t)=
∑
k∈Z

fke2kπ i t, fk ∈ Cn,

satisfies ∑
k∈Z

|k|| fk |
2 <∞.

The inner product in E is defined by

( f, g) := 〈 f0, g0〉+ 2π
∑
k∈Z

|k|〈 fk, gk〉.

E is the most natural space on which the action functional A can be defined. It is
easy to see that

A( f )= π
+∞∑
k=0

k(| fk |
2
− | f−k |

2).

Note that there is a natural action T : S1
→ Aut(E) of S1

' R/Z on E given by
the phase shift

Te2π iθ f (t) := f (t + θ).
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The space E has a natural orthogonal splitting, compatible with the phase shift
action, given by

E = E−⊕ E0
⊕ E+.

Here we have defined

E− = { f ∈ E | fk = 0 for k ≥ 0},

E0
= { f ∈ E | fk = 0 for k 6= 0} = Cn,

E+ = { f ∈ E | fk = 0 for k ≤ 0}.

We denote by P+, P0 and P− the corresponding orthogonal projections.
We now need to introduce the notion of the index of a subspace. Let X be a

Hilbert space over C, and let T : S1
→ Aut(X) be a representation of S1 on the

vector space

Aut(X) := { f : X→ X | f is a linear isometry}.

A subset A⊆ X is called invariant if T (θ)(A)= A for all θ ∈ S1. Let Y be another
Hilbert space, and R : S1

→ Aut(Y ) a representation of S1 on Aut(Y ). A linear
map f : X → Y is called equivariant if f ◦ T (θ) = R(θ) ◦ f for all θ ∈ S1. Let
A⊆ X be an invariant subset. For every k ∈N, we let F(A, k) denote the collection
of functions f : A→ Ck

\ {0} such that

• f is continuous,

• there exists a positive integer n such that f (T (θ)(x)) = e2πniθ f (x) for all
θ ∈ S1 and for all x ∈ A.

We define the index of A as the quantity

(2-4) α(A) :=min{k ∈ N | F(A, k) 6=∅}.

If F(A, k)=∅ for every k ∈ N, we set α(A)=+∞. Moreover, we set α(∅)= 0.
Observe that if F is the set of fixed points of X for T, that is,

F := {x ∈ X | T (θ)(x)= x for all θ ∈ S1
},

then A∩ F 6=∅ implies α(A)=∞.
In the following paragraph we describe a pseudoindex theory in the sense of

Benci relative to E+. In our exposition we mainly follow [Benci 1982] (see also
[Ekeland and Hofer 1990]).

Consider the group of homeomorphisms

(2-5) 0 := {h : E→ E | h = eγ
+

P++ eγ
−

P−+ P0
+ K }

such that the following conditions are satisfied:

• K is a compact equivariant operator.
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• γ+, γ− : E→ R+ map bounded sets in precompact sets and are invariant.

• There exists a constant c > 0 such that A(x) ≤ 0 or ‖x‖ > c implies that
γ+(x)= γ−(x)= 0 and K (x)= 0.

Let S := {x ∈ E | ‖x‖E = 1} and let ξ ⊆ E be an invariant subset of E . We
define the pseudoindex of ξ as

ind(ξ) := inf{α(h(ξ)∩ S ∩ E+) | h ∈ 0}.

For the basic properties of the pseudoindex we refer to [Ekeland and Hofer 1990].
In particular, the following result is often useful.

Proposition 2.5 [Ekeland and Hofer 1990, Proposition 1]. If Vk ⊆ E+ is a finite-
dimensional invariant subspace of E+of complex dimension k, ind(Vk⊕E0

⊕E−)=k.

We need to introduce one last concept before defining the symplectic capacities.
We call a smooth function H : Cn

→ (0,+∞) an admissible Hamiltonian for a
bounded domain �⊂ Cn if

• H is 0 on some open neighborhood of �,

• H(z)= c|z|2 for |z| large enough, where c > π and c /∈ Zπ .

We denote by H(�) the set of the admissible Hamiltonians for �. For j a positive
integer and H ∈H(�), we define a number cH, j ∈ (0,+∞)∪ {∞} by

cH, j := inf{supAH (ξ) | ξ ⊂ E is S1-invariant and ind(ξ)≥ j}.

Here AH : E→ R is the action functional associated to a Hamiltonian H defined
by

AH ( f ) :=A( f )−
∫ 1

0
H( f (t)) dt.

Every number cH, j is nonnegative and, if finite, is a critical value of AH [Ekeland
and Hofer 1990, page 559].

We can now define the j-th Ekeland–Hofer symplectic capacity of � as

c j (�) := inf
H∈H(�)

cH, j .

Remark 2.6. In our computation of the Ekeland–Hofer symplectic capacities, we
will not use Hamiltonians with quadratic behavior at infinity, as in the definition.
We will use instead Hamiltonians of the form H(z)= f (r(z)), where r is the gauge
function of the domain, and f is linear at infinity (see [Berestycki et al. 1985; Fan
1992]). This choice does not affect the values obtained in the computation of the
capacities, as one can easily prove by combining the following two facts:

• For Hamiltonians H1 and H2 we have

H1 ≤ H2 H⇒AH1 ≥AH2 H⇒ cH1,k ≤ cH2,k .
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• For every f linear at infinity there exists H ∈ H(�) such that f (r) ≤ H.
Similarly, for any H ∈H(�) there exists f such that H ≤ f (r).

Observe also that if we choose f so that the Hamiltonian f (r) has no periodic
solutions of period 1 at infinity, then A f (r) satisfies the Palais–Smale condition.
This implies that c f (r),k , if it is finite, is a critical value of A f (r) (see [Aebischer
et al. 1994, page 71]).

The next theorem, from [Hofer and Zehnder 1990], characterizes the first sym-
plectic capacity as the infimum of the action spectrum.

Theorem 2.7. Let � be a smoothly bounded convex domain in Cn and let α =
min6(�). Then c1(�)= α.

Note that we cannot apply Theorem 2.7 directly to the real bidisc, since its
boundary ∂(D2

×D2) is not smooth. In the next section we show how to overcome
this difficulty by appropriately approximating D2

× D2 with smooth domains.

3. Approximation with smooth domains

We start by constructing a decreasing sequence of smooth convex domains Dn

converging to D2
× D2. Let g : R→ [0,+∞) be a convex, increasing function

such that g(1)= 1 and g(s)= 0 for s < 0. Consider the following subsets of C2:

(3-1) Dn := {z ∈ C2
| g(n(x2

1 + x2
2 − 1))+ g(n(y2

1 + y2
2 − 1))≤ 1}.

The domains defined in (3-1) are smooth and convex. Moreover, they satisfy the
following properties:

• Dn ⊃ Dn+1 for all n ∈ N.

•
⋂
+∞

n=1 Dn = D2
× D2.

• For all n ∈ N, we have
1√

1+ 1
n

Dn ⊂ D2
× D2.

In particular, by the properties of the capacities, for any choice of positive integers
k and n, the following double inequality holds:

1

1+ 1
n

ck(Dn)≤ ck(D2
× D2)≤ ck(Dn).

Proposition 3.2 shows how the closed characteristics of the real bidisc D2
× D2

are approximated by the closed characteristics of the approximating domains Dn .
Before stating the result, it is convenient to give the following definition.
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Definition 3.1. For all M > 0 and ε > 0 we define

6M,ε(Dn) := (6(Dn)∩ [0,M]) \
∞⋃

k=1

[2kπ − ε, 2kπ + ε].

Here 6(Dn) denotes the action spectrum of Dn .

Proposition 3.2. Let α ∈ 6(D2
× D2) and suppose that α = A(γ ), where γ is a

nongliding closed characteristic of D2
×D2. Then there exists a sequence γn , where

each γn is a closed characteristic of Dn , such that γn converges to γ and A(γn)

converges to α. In particular, for all M > 0 and ε > 0, we have

d(6M,ε(Dn),6M,ε(D2
× D2))→ 0 for n→+∞,

where d( · , · ) is the Hausdorff distance between sets.

Proof. Note that, for every n, we can decompose the boundary ∂Dn of Dn into three
components

(3-2)
X3

n :=

{
(z1, z2) ∈ C2, x2

1 + x2
2 − 1< 0, y2

1 + y2
2 = 1+ 1

n

}
Y 3

n :=

{
(z1, z2) ∈ C2, y2

1 + y2
2 − 1< 0, x2

1 + x2
2 = 1+ 1

n

}
and

(3-3) T 3
n := ∂Dn \ (X3

n ∪ Y 3
n ).

To find the closed characteristics of Dn , we consider the system of differential
equations

(3-4)

{
ẋ =−g′(n(|y|2− 1))2ny,

ẏ = g′(n(|x |2− 1))2nx,

where x = (x1, x2), y = (y1, y2). We first note that det(x, y) = x1 y2 − x2 y1 is
constant along the solutions of (3-4). It is convenient to use polar coordinates in
the planes defined by the variables x and y, respectively. We recall the notation
already introduced in the proof of Proposition 2.2:

r1eiϕ1 := r1(cosϕ1, sinϕ1)= (x1, x2),

r2eiϕ2 := r2(cosϕ2, sinϕ2)= (y1, y2).

We can now rewrite the system (3-4) as

(3-5)

{
(ṙ1+ ir1ϕ̇1)eiϕ1 =−g′(n(r2

2 − 1))2nr2eiϕ2,

(ṙ2+ ir2ϕ̇2)eiϕ2 = g′(n(r2
1 − 1))2nr1eiϕ1,
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from which we obtain the two systems

(3-6)


r1ϕ̇1 = g′(n(r2

2 − 1))2nr2 sin(ϕ1−ϕ2),

r2ϕ̇2 = g′(n(r2
1 − 1))2nr2 sin(ϕ1−ϕ2),

r1r2 sin(ϕ1−ϕ2)= det(x, y)= const

and

(3-7)


r1ṙ1 =−g′(n(r2

2 − 1))2nr3,

r2ṙ2 = g′(n(r2
1 − 1)2nr3,

ṙ3 = 2n(g′(n(r2
1 − 1))r2

1 − g′(n(r2
2 − 1))r2

2 ).

Here r3 := x · y = x1 y1+ x2 y2 = r1r2 cos(ϕ1−ϕ2).
Clearly the characteristics in Dn are straight segments when they lie on X3

n or Y 3
n .

We now want to understand the behavior of the characteristics at their intersections
with T 3

n . Let us consider the Cauchy problem (3-4) with initial data x(0)= (1, 0)
and y(0)=

√
1+ 1/n(cos θ0, sin θ0) for θ0 ∈ (0, π/2). The corresponding solution

of (3-4) enters X3
n (this can be seen by inspection of (3-7), since r3(0) > 0 implies

that r1 is decreasing and r2 is constant). Reasoning as in Proposition 2.2, we see
that the solution reaches the point

(x1, x2)= (cos(π + 2θ0), sin(π + 2θ0)), (y1, y2)=

√
1+ 1

n (cos θ0, sin θ0).

The solution then enters T 3
n at a time t0. From (3-7) we see that r3(t0) < 0,

r1 increases and r2 decreases. Let T > 0 be the smallest positive real number
such that ṙ3(t0 + T ) = 0. By symmetry, we see that r1(t) = r2(2T + 2t0 − t),
r2(t) = r1(2T + 2t0 − t) and r3(t) = r3(2T + 2t0 − t). In particular, this tells us
that the solution eventually leaves T 3

n . By the third equation in (3-6), the angle
between x(t0+2T ) and y(t0+2T ) is the same as the angle between x(t0) and y(t0)
but ϕ1(t0) 6= ϕ1(t0 + 2T ). We want to compute 1ϕ := ϕ1(t0 + 2T )− ϕ1(t0) =
ϕ2(t0+ 2T )−ϕ2(t0). By (3-6),

(3-8)

1ϕ =

∫ 2T

0

g′(n(r2
2 − 1))2nr2

r1
2 sin(ϕ1−ϕ2) dt

=

∫ 2T

0

g′(n(r2
2 − 1))2n

r2
1

√
1+ 1

n sin θ0 dt.

Since r3 = x · y = r1r2 cos(ϕ1−ϕ2), (3-7) implies

(3-9)
(ṙ2

1 )=−g′(n(r2
2 − 1))2nr1r2 cos(ϕ1−ϕ2)

=−g′(n(r2
2 − 1))2n

√
r2

1r2
2 −

(
1+ 1

n

)
sin2 θ0.
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Using (3-9) inside (3-8) we obtain

(3-10) 1ϕ =−

∫ 1+ 1
n

1

√
1+ 1

n sin(θ0)

r2
1

√
r2

1r2
2 −

(
1+ 1

n

)
sin2(θ0)

d(r2
1 ).

It follows from

g(n(r2
1 − 1))+ g(n(r2

2 − 1))= 1

that

(3-11) r2
2 = 1+

g−1(1− g(n(r2
1 − 1)))

n
.

Plugging (3-11) into (3-10) we obtain

(3-12) 1ϕ =−

∫ 1+ 1
n

1

√
1+ 1

n sin θ0

u
√

u(1+ g−1(1− g(n(u− 1)))/n)− (1+ 1
n ) sin2 θ0

du.

From (3-12) we see that 1ϕ is small for θ0 < π/2 and n large. Following the
same reasoning as in Proposition 2.2 we can see that after 2m straight sides the
characteristic hits the point

P2m =

(
(−1)mei(2m(θ+1ϕ)), (−1)m

√
1+ 1

n ei((2m+1)θ+2m1ϕ)
)
.

The characteristic is closed if and only if

(3-13)

{
θ +1ϕ = kπ

m for k = 0, . . . , m
2 − 1 if m is even,

θ +1ϕ = 2k−1
2m π for k = 1, . . . , m−1

2 if m is odd.

Since 1ϕ depends continuously on θ0 and is small if n is large, then the equations
in (3-13) are solvable. In particular, if θk,m ∈ Jm (see Proposition 2.2), for n big
enough there exists θ close to θk,m such that (3-13) is satisfied. The corresponding
characteristics of Dn and D2

× D2 are close to each other and their actions are also
close. Note that there could also be some characteristics that are entirely contained
in T 3

n . These characteristics are left out by the description above. If n is large, they
are close to the gliding trajectories of the bidisc D2

×D2 and their actions are close
to a multiple of 2π . �

4. The Ekeland–Hofer symplectic capacities of the real bidisc

In this section we compute the symplectic capacities of the real bidisc D2
× D2.

The following result will be the main tool for our computations.
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Proposition 4.1. Let � be a smooth convex domain in Cn containing 0, and let r
be its gauge function. For all c > 0, let 9c : E→ R be the functional

(4-1) 9c(ζ ) :=A(ζ )− c
∫ 1

0
r(ζ(t)) dt.

If W ⊂ E is an invariant subset of pseudoindex at least k such that 9c|W ≤ 0, then
ck(�)≤ c.

Proof. Let ε > 0 and choose a smooth function fε : [0,∞)→ [0,∞) such that

(4-2) fε(s)=
{

0 if s ≤ 1,
(c+ ε)s if s is large.

Moreover, we require that 0≤ f ′ε(s)≤ c+ 2ε for all s, and that f ′ε(s) ∈6(�) only
for finitely many numbers s1, . . . , sm , which we can assume to be arbitrarily close
to 1. Let f ′ε(s j )= α j ∈ 6(�) and define H fε(z) := fε(r(z)). The periodic orbits
of ż = J∇H fε(z) of period 1 are obtained by scaling. Namely, they are the curves
√s jγ j (α j t), where γ j is the closed characteristic in ∂� such that A(γ j )= α j . The
corresponding critical values of AH fε

are

(4-3) AH fε
(
√

s jγ j (α j t))= s jα j − fε(s j ).

As ε→ 0, these critical values tend to α j , and each of them is less than c. Note that

AH fε
(ζ )=9c(ζ )+

∫ 1

0
[cr(ζ(t))− fε(r(ζ(t)))] dt

≤9c(ζ )+

∫ 1

0
[C − εr(ζ(t))] dt ≤9c(ζ )+ D

for some constants C and D. Recalling that 9|W ≤ 0, then

(4-4) AH fε
|W ≤ C

for some new constant C . Equation (4-4) implies cH fε ,k <∞. Since there are no
periodic orbits at infinity of period 1, then AH fε

satisfies the Palais–Smale condition
and therefore cH fε ,k is a critical value of AH fε

. Hence cH fε ,k ≤ c by (4-3). Since
ck(�)≤ cH fε ,k , the conclusion follows. �

In the next theorem we compute the first Ekeland–Hofer capacity of the real
bidisc. A different proof of the same result appears in [Artstein-Avidan and Ostrover
2014].

Theorem 4.2. For the unit real bidisc D2
× D2 we have c1(D2

× D2)= 4.

Proof. Recall that 4=min6(D2
×D2) (Remark 2.4). Proposition 3.2 then implies

the existence of a sequence of closed characteristics γn⊂ ∂Dn with αn :=A(γn)→4.
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By Theorem 2.7 we have

(4-5) lim
n→+∞

c1(Dn)= 4.

Now observe, from the construction of the Dn , that

1√
1+ 1

n

Dn ⊂ D2
× D2

⊂ Dn.

The basic properties of the capacities then yield the double inequality

1

1+ 1
n

c1(Dn)≤ c1(D2
× D2)≤ c1(Dn),

from which we can conclude that c1(D2
× D2)= 4 by applying (4-5). �

For the next theorem we need the following simple lemma.

Lemma 4.3. Let f (t) =
∑

k∈Z fke2kπ i t be an L1-convergent series. Then, for
every integer n, ∫ 1

0
| f (t)| dt ≥ | fn|.

Proof. For every n we have∫ 1

0

∣∣∣∣∑
k∈Z

fke2kπ i t
∣∣∣∣ dt =

∫ 1

0

∣∣∣∣e2nπ i t
∑
k∈Z

fke2(k−n)π i t
∣∣∣∣dt

≥

∣∣∣∣∫ 1

0

∑
k∈Z

fk+ne2kπ i t dt
∣∣∣∣= | fn|. �

Theorem 4.4. For the real bidisc D2
× D2 we have c2(D2

× D2)= 3
√

3.

Proof. Let W be the following invariant subset of E :

W :=
{
(α, β)e2π i t

+ γ ([α : β])

(
α
α3

|α|3
, β

α3

|α|3

)
e4π i t

∣∣∣∣ α, β ∈ C

}
⊕ E0

⊕ E−,

where γ : P1
C
→ R is a nonnegative continuous function which is nonzero only in a

neighborhood of the two points [1 : i] and [1 : −i]. We will specify later how γ is
chosen. We now prove that W has pseudoindex 2. First note that

W∩S∩E+={
(α,β)e2π i t

+γ ([α :β])

(
α
α3

|α|3
,β

α3

|α|3

)
e4π i t

∣∣∣∣α,β∈C, (|α|2+|β|2)(1+γ 2)=1
}
,

and therefore W ∩ S ∩ E+ has index 2. Assume now by contradiction that there
exists h ∈ 0 such that F := h(W )∩ E+∩ S has index strictly smaller than 2. Then,
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by the properties of the index, there exists an open neighborhood of U of F in E
such that α(U ) = α(F). Let Ek = { f ∈ E | f j = 0 for | j | > k} and denote by
Qk : E→ Ek the corresponding orthogonal projection. We claim, for k large, that

(4-6) Qk(h(W ∩ Ek))∩ S ∩ E+ ⊂U.

Assume by contradiction that (4-6) is false. Then there exists a sequence of functions
fk ∈ Ek ∩W such that Qk(h( fk)) ∈ E+ ∩ S and Qk(h( fk)) /∈ U. Recalling the
structure of the homeomorphism h (see (2-5)), we have

(4-7)

{
f 0
k + eγ

−( fk) f −k + (P
−
+ P0)Qk K ( fk)= 0,

‖eγ
+( fk) f +k + P+Qk K ( fk)‖ = 1.

Note that fk must be a bounded sequence, otherwise we have K ( fk)= 0, which
together with (4-7) implies ‖ f +k ‖= 1 and f 0

k = f −k = 0, thus giving a contradiction.
We can therefore assume that K ( fk) and γ±( fk) converge. Hence, by (4-7), the
sequences f −k and f 0

k also converge. Furthermore, the sequence f +k converges
as well, since it lies in a finite-dimensional space. We therefore have that fk

converges to some element f∞ ∈W with h( f∞) ∈ E+ ∩ S and h( f∞) /∈U, which
is a contradiction.

In order to apply [Fadell et al. 1982, Proposition 3.3] as done in [Ekeland and
Hofer 1990, page 558], we consider the following “truncated” set: for M > 0 let

WM :=

{
(α,β)e2π i t

+χ

(
|α|2+|β|2+‖ f 0

+ f −‖2

M

)
γ ([α :β])

×

(
α
α3

|α|3
,β

α3

|α|3

)
e4π i t
+ f 0
+ f −

∣∣∣∣α,β ∈C, f 0
∈ E0, f − ∈ E−

}
,

where χ is a smooth function such that χ(t) = 1 for t < 1 and χ(t) = 0 for
t > 3

2 . Note that WM coincides with W inside the ball of radius M in E and that
h(WM)∩ E+ ∩ S = h(W )∩ E+ ∩ S. Consider now the equivariant map

(4-8) φ :C2
⊕E0
⊕(E−∩Ek)→WM ,

φ(α,β, f 0, f −k )=χ
(
|α|2+|β|2+‖ f 0

+ f −‖2

M

)
γ ([α :β])

(
α
α3

|α|3
,β

α3

|α|3

)
e4π i t

+(α,β)e2π i t
+ f 0
+ f −k .

By [Fadell et al. 1982, Proposition 3.3] applied to the map Qkh(φ), we obtain

α(Qk(WM)∩ E+ ∩ S)≥ 2.

The conclusion that ind(W )= 2 is achieved by taking M large enough.
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Now, let r be the gauge function of D2
× D2 and 9c : E → R the functional

defined in (4-1):

9c(ζ ) :=A(ζ )− c
∫ 1

0
r(ζ(t)) dt.

We recall that

r(z1, z2)=
|z1|

2
+ |z2|

2

2
+
|Re(z2

1+ z2
2)|

2
.

We will prove that 9c|W < 0 for c = 4
√

2.
Let v = (ζ1, ζ2) ∈W. Then

v = v1e2π i t
+ v2e4π i t

+

+∞∑
k=0

w−ke−2kπ i t ,

where v1 = (α, β) and v2 = γα
3/|α|3(α, β) for some α, β ∈ C. We have

(4-9) 9c(v)=
(
π −

c
2

)
|v1|

2
+

(
2π − c

2

)
|v2|

2
−

+∞∑
k=1

kπ |w−k |
2

−
c
2

+∞∑
k=0

|w−k |
2
−

c
2

∫ 1

0

∣∣∣∣Re(ζ 2
1 (t)+ ζ

2
2 (t))

∣∣∣∣ dt.

To estimate the integral on the right side of (4-9) we compute the Fourier coefficients
of order 4 and 6 of Re

(
ζ 2

1 (t)+ ζ
2
2 (t)

)
. We denote them respectively by I4 and I6.

2I4 = v
2
1 + 2(v2 ·w0)+ (w−1)2+ 2(w−2 ·w0)+ 2(w−3 ·v1)+ 2(w−4 ·v2),(4-10)

2I6 = 2(v2 ·v1)+ 2(w−1 ·w−2)+ 2(w0 ·w−3)+ 2(v1 ·w−4)+ 2(v2 ·w−5).(4-11)

By Lemma 4.3 applied to I6 and (4-11) we get

(4-12)
∫ 1

0

∣∣∣∣Re
(
ζ 2

1 (t)+ ζ
2
2 (t)

)∣∣∣∣ dt

≥ |I6| ≥ |v2 · v1| − |w−1 ·w−2| − |w0 ·w−3| − |v1 ·w−4| − |v2 ·w−5|.

Since all the functionals on the right side of (4-12), which we are going to estimate,
are homogeneous, it is not restrictive to assume that |α|2+ |β|2 = 1. In particular,
|v2 · v1| = |γ |. Applying the Cauchy–Schwarz inequality we obtain the estimates

(4-13) |w−1 ·w−2| ≤
1
2(|w−1|

2
+ |w−2|

2) and |w0 ·w−3| ≤
1
2(|w0|

2
+ |w−3|

2).

For the terms |v1 ·w−4| and |v2 ·w−5| we give small and large constants to obtain

(4-14)

2|v1 ·w−4| ≤

c
2 + 4π

c
4
|w−4|

2
+

c
4

c
2 + 4π

,

2|v2 ·w−5| ≤

c
2 + 5π

c
4
|w−5|

2
+

c
4

c
2 + 5π

γ 2,
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where we have used that |v1| = 1 and |v2|
2
= γ 2. Combining the estimate for the

integral in (4-12) with (4-13) and (4-14) and plugging into (4-9), we see that

(4-15) 9c(v) <

(
π −

c
2
−

c
2
γ +

( c
4

)2

c
2 + 4π

)
+

(
2π − c

2
+

( c
4

)2

c
2 + 5π

)
γ 2
+ · · · ,

where the dots stand for negative terms that arise after absorbing the terms that
involvew−4 andw−5 on the right side of (4-14) with the terms

(
−4π− c

2

)
|w−4|

2 and(
−5π − c

2

)
|w−5|

2 on the right side of (4-9). The right side of (4-15) is negative if

(4-16)

(
2π − c

2
+

( c
4

)2

c
2 + 5π

)
γ 2
−

c
2
γ +

(
π −

c
2
+

( c
4

)2

c
2 + 4π

)
< 0.

For c = 4
√

2 the inequality in (4-16) is satisfied by the solutions to

0.44− 2.82γ + 3.56γ 2 < 0.

In particular, 9c(v) < 0 for

(4-17) 0.22≤ γ ≤ 0.58.

Using I4 in place of I6, we get that

(4-18)
∫ 1

0

∣∣Re
(
ζ 2

1 (t)+ζ
2
2 (t)

)∣∣dt

≥ |I4| ≥ |α
2
+β2
|−|v2·w0|−|w0·w−2|−|v1·w−3|−|v2·w−4|−

|w−1|
2

2
.

We first estimate

(4-19)

2|v2 ·w0| ≤

3
4 c+ 4π
c
2 + 2π

|w0|
2
+

c
2 + 2π

3
4 c+ 4π

γ 2,

2|w0 ·w−2| ≤

c
2 + 2π

c
4
|w−2|

2
+

c
4

c
2 + 2π

|w0|
2,

2|v1 ·w−3| ≤

c
2 + 3π

c
4
|w−3|

2
+

c
4

c
2 + 3π

,

2|v2 ·w−4| ≤

c
2 + 4π

c
4
|w−4|

2
+

c
4

c
2 + 4π

γ 2.

We have used again that |v1|
2
= 1 and |v2|

2
= γ 2. Combining (4-19) with (4-18)

and replacing inside (4-9) we obtain

9c(v)≤

(
π−

c
2
−

c
4
|α2
+β2
|+

( c
4

)2

c
2+3π

)
+

(
2π− c

2
+

c
4

(
c
2+2π

3
4 c+4π

+

c
4

c
2+4π

))
γ 2
+·· ·
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Once again, the dots indicate negative terms which come after absorption with the
negative terms involving |wk |

2 for k = 0,−2,−3,−4. Hence 9c(v) < 0 if

(4-20)

(
π−

c
2
+
( c

4)
2

c
2+3π

)
−

c
4
|α2
+β2
|+

(
2π− c

2
+

c
4

(
c
2+2π

3
4 c+4π

)
+

c
4

c
2+4π

)
γ 2<0.

For c = 4
√

2, the inequality (4-20) is satisfied by the solutions to

(4-21) 0.477− 1.41|α2
+β2
| + 4.352γ 2 < 0.

Letting γ0 = 0.23 by (4-17) and solving the corresponding equation to (4-21), we
can define δ0 := (0.47+ 4.22 · 0.232)/1.41= 0.496. We then choose a continuous
function γ such that 0≤ γ ≤ γ0 and

(4-22) γ ([α : β])=

{
γ0 if |α2

+β2
|< δ0 = 0.502,

0 if |α2
+β2
|> 0.6.

With this choice, we conclude that 9c|W < 0. The conclusion remain valid even
if we choose a constant c slightly smaller than 4

√
2.

Now let Dn be the approximating sets for D2
×D2 constructed in Proposition 3.2.

Note that

(4-23)
Dn√
1+ 1

n

⊆ D2
× D2

⊆ Dn.

The first inclusion in (4-23) implies

(4-24)
rn

1+ 1
n

≥ r,

where rn is the gauge function of the set Dn . For each n, let 9n
c be defined as

9n
c (ζ ) :=A(ζ )− c

∫ 1

0

rn(ζ(t))

1+ 1
n

dt, ζ ∈ E .

By (4-24), we have 9n
c ≤9c ≤ 0. Propositions 4.1 and 3.2 then imply

lim
n→+∞

c2(Dn)

1+ 1
n

= 3
√

3.

This is because 6(Dn ∩ [0, 4
√

2− ε] = {αn
1 , α

n
2 } for ε > 0 and n large, where αn

1
and αn

2 are two sequences converging to 4 and 3
√

3, respectively (Proposition 3.2).
Together with the fact that c2(Dn)/(1+ 1

n ) < 4
√

2 we have that either c2(Dn)= α
n
1

or c2(Dn) = α
n
2 . It cannot be c2(Dn) = α

n
1 = c1(Dn), otherwise the set of charac-

teristics of Dn of action αn
1 would have index 2, and this is not the case. Hence

c2(Dn)= α
n
2 → 3

√
3, and this gives the conclusion. �
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Remark 4.5. One can deduce that c2(D2
× D2)= 3

√
3 from the work of Ramos

[2017]. Let E(a, b) denote the ellipsoid

(4-25) E(a, b)=
{
(z1, z2) ∈ C2

∣∣∣∣ π( |z1|
2

a
+
|z2|

2

b

)
≤ 1

}
.

It follows from [Ramos 2017, Corollary 9] that E(4−ε, 4+δ) embeds symplectically
into the bidisc D2

× D2 for some ε, δ > 0. Hence

4+ δ ≤ c2(D2
× D2)≤ 3

√
3.

Since 3
√

3 is the only number in the spectrum 6(D2
× D2) with this property, we

conclude that c2(D2
× D2)= 3

√
3.

Theorem 4.6. For the unit real bidisc D2
× D2 we have c3(D2

× D2)= 8.

Proof. Let W be the subspace of E defined by

W := E−⊕ E0
⊕〈(e2π i t , 0), (0, e2π i t), (e4π i t , 0)〉.

By [Ekeland and Hofer 1990, Proposition 1] the pseudoindex of W is equal to 3.
We now prove that for some constant c we have9c|W ≤0, where9c is the functional
defined in (4-1). For an element (ζ1, ζ2)= (αe2π i t

+γ e4π i t , βe2π i t)+w−+w0
∈W,

with α, β, γ ∈ C, w−∈E−, w0
∈E0, we have

(4-26) 9c((αe2π i t
+ γ e4π i t , βe2π i t)+w−+w0)

=A(ζ )− c
∫ 1

0
r(ζ(t)) dt

=−
c
2
(|α|2+ |β|2+ |γ |2)−‖w−‖E −

c
2
‖w0
+w−‖2L2

−
c
2

∫ 1

0
|Re(ζ 2

1 (t)+ ζ
2
2 (t))| dt +π(|α|2+ |β|2+ 2|γ |2).

To give an estimate of the last integral in (4-26), we compute the coefficient I8 of
e8π i t in the Fourier expansion of Re(ζ 2

1 (t)+ ζ
2
2 (t)):

I8 = γ
2
+ 2(α, β) ·w−5 + 2(γ, 0) ·w−6 + 2w0 ·w−4 + 2w−1 ·w

−

3 +w
−

2 ·w
−

2 .

We want to find a constant c such that

(4-27) π(|α|2+ |β|2+ 2|γ |2)

−
c
2
(|α|2+ |β|2+ |γ |2)−‖w−‖E −

c
2
‖w0
+w−‖2L2 −

c
4
|I8|< 0.

Applying the Cauchy–Schwarz inequality, we get

|I8| ≥ |γ |
2
− a1|w

−

5 |
2
−

1
a1
|(α, β)|2− a2|w

−

6 |
2
−

1
a2
|γ |2

−|w0
|
2
− |w−4 |

2
− |w−1 |

2
− |w−3 |

2
− |w−2 |

2.
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Choosing a1 such that c
4a1=

c
2+5π and a2 such that c

4a2=
c
2+6π , (4-27) becomes

(4-28) (|α|2+ |β|2)
(
π −

c
2
−

( c
4

)2

c
2 + 5π

)
+ |γ |2

(
2π − c

2
−

c
4
+

( c
4

)2

c
2 + 6π

)
+ · · · ,

where the dots indicate other negative terms not involving α, β or γ . The expression
in (4-28) is negative if

(4-29)


π −

c
2
−

( c
4

)2

c
2 + 5π

< 0,

2π − c
2
−

c
4
+

( c
4

)2

c
2 + 6π

< 0.

Solving the system (4-29), we obtain

c > 4π

√
109− 7

5
.

Considering the approximating domains Dn and reasoning as in the last part of the
proof of Theorem 4.4, we conclude that

(4-30) c3(D2
× D2) < 4π

√
109− 7

5
.

Moreover, Proposition 4.8 implies

(4-31) c3(D2
× D2) > c3(B

2)= 2π.

Looking at the spectrum 6(D2
× D2) computed in Proposition 2.2, we see that

(4-30) and (4-31) imply c3(D2
× D2)= 8. �

Note that in the proof of Theorem 4.6 we have used the fact that the capacity c3

of the real bidisc is strictly greater than the corresponding capacity for the unit
ball B2. This inequality is proved below in Proposition 4.8 for every capacity ck .
The proof relies on the following lemma.

Lemma 4.7. Let D1 ⊂ D2 be two convex smooth subdomains of Cn such that for
some k we have ck(D1) = ck(D2) =: c. Assume also that c is isolated in 6(D1)

and 6(D2). Then there exists a closed characteristic γ ⊂ ∂D1 ∩ ∂D2 such that
A(γ )= c.

Proof. Let r1 and r2 be the gauge functions of D1 and D2, respectively. Let f be
an increasing positive function such that

(4-32) f (s)=

{
0 if s ≤ 1,

Cs if s is large,

and f ′(s0)= c only for one s0 > 1. We will specify later how s0 and C are chosen.
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Let H f
i := f ◦ ri for i = 1, 2. Note that

(4-33) ck(D1)= inf
H1
{ck

H1
} = inf

H2
{ck

H2
} = ck(D2),

where each infimum is taken over all possible admissible Hamiltonians Hi for Di .
Equation (4-33) together with the fact that c is isolated in the spectra 6(D1) and
6(D2) implies that, choosing a function f with C sufficiently large, we obtain

ck
H f

1
= ck

H f
2
.

Let AH f
i

be the corresponding Hamiltonian actions. Since D1 ⊂ D2, then r1 ≥ r2

and AH f
1
≤AH f

2
. Let

Wε = {ζ ∈ E |AH f
2
(ζ )≤ ck

H f
2
+ ε}.

Wε is a closed equivariant set of pseudoindex at least k. We have

ck
H f

1
≤ sup
ζ∈Wε

{AH f
1
(ζ )} ≤ sup

ζ∈Wε

{AH f
2
(ζ )} = ck

H f
2
+ ε.

We now claim that there exist two sequences εn→ 0 and ζn ∈Wεn such that

∇EAH f
1
(ζn)→ 0 and AH f

1
(ζn)→ ck

H f
1
.

Indeed, assume that this is not true. Then there exist ε0 > 0 and δ0 > 0 such that for
ε≤ε0 and for all ζ ∈Wε such that |AH f

1
(ζ )− ck

H f
1
| ≤ ε0 we have‖∇AH f

1
(ζ )‖E > δ0.

Following [Ekeland and Hofer 1990, Lemma 1] and [Ekeland and Hofer 1989,
Proposition 2], we denote by 8t the flow at the time t in E of the vector field
−∇AH f

1
with a suitable cut-off. Choosing ε small enough we have, for t > ε/δ2

0 ,
that

sup
ζ∈8t (Wε)

AH f
1
(ζ ) < ck

H f
1
,

which gives a contradiction.
We have thus proved that there exists a subsequence of ζn converging in E to ζ0,

which is a critical point for AH f
1

and such that AH f
1
(ζ0)= ck

H f
1

. If the image of ζ0 is
not in ∂D1∩∂D2, then r1(ζ0(t))≥ r2(ζ0(t)) and the inequality is strict in some open
interval. This implies that AH f

2
(ζ0) > ck

H f
2

and in turn AH f
2
(ζn) > ck

H f
2
+ ε for some

ε > 0 not depending on n, but this is in contradiction with the definition of Wεn . �

Proposition 4.8. For the real bidisc D2
× D2 and the unit ball B2 in C2, we have

ck(D2
× D2) > ck(B

2) for every positive integer k.

Proof. Since the unit ball B2 centered at 0 is contained in D2
× D2 we have, for

any k, that ck(D2
× D2) ≥ ck(B

2). Choose a smooth domain W containing B2

and contained in D2
× D2 with a discrete action spectrum and having the same
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intersection at the boundary with D2
× D2 and B2. If ck(D2

× D2) = ck(B
2) for

some k, then Lemma 4.7 implies that there exists a characteristic contained in

∂W ∩B2
= ∂(D2

× D2)∩B2

= {(x1, x2) ∈ C2
| x2

1 + x2
2 = 1} ∪ {(iy1, iy2) ∈ C2

| y2
1 + y2

2 = 1}.

Since there are no characteristics in the intersection of the boundaries, then we must
have ck(D2

× D2) > ck(B
2). �

Remark 4.9. Let B(a)= E(a, a), that is, B(a) is the Euclidean ball of radius
√

a/π .
It follows from [Ramos 2017] that the real bidisc D2

× D2 can be symplectically
embedded into the ellipsoid E(4, 3

√
3) and that the ball B(4) can be symplectically

embedded into D2
× D2. This implies that c3(D2

× D2) = 8. Proposition 4.8
can also be obtained from [Ramos 2017]. Indeed, B2

= B(π) has strictly smaller
Ekeland–Hofer capacities than B(4), which embeds into D2

× D2.

5. Applications

We now exploit our computations of the capacities of D2
×D2 to prove some results

of symplectic rigidity. First recall that the complex bidisc 12
⊂ C2 is defined by

12
:= {(z1, z2) ∈ C2

| x2
1 + y2

1 < 1, x2
2 + y2

2 < 1}.

Sukhov and Tumanov [2012] applied techniques from classical complex analysis
to prove that there exists no symplectic embedding of D2

× D2 into 12. Using
symplectic capacities we can easily show that no symplectic embedding is possible
in the other direction.

Corollary 5.1. There is no symplectic embedding of 12 into D2
× D2.

Proof. Assume by contradiction that there is such an embedding

ψ :12
→ D2

× D2.

By the extension after restriction principle, for any ε > 0 there exists a symplectic
map with compact support ψε : C2

→ C2 such that ψε|12
1−ε
= ψ |12

1−ε
. Therefore,

3π(1− ε)2 = c3(1
2
1−ε)= c3(ψε(1

2
1−ε))≤ c3(D2

× D2)= 8,

which gives a contradiction. �

Note that the proof of Corollary 5.1 implies that the complex bidisc cannot be
embedded even in a slightly larger real bidisc.

Remark 5.2. Corollary 5.1 can also be obtained without using the Ekeland–Hofer
capacities. By [Ramos 2017], the bidisc D2

× D2 is a concave toric domain. One
can then apply [Gutt and Hutchings 2018, Theorem 1.18] to conclude that the cube
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capacity c� of D2
× D2 is equal to 2. By the very definition of the cube capacity

[Gutt and Hutchings 2018, Definition 1.17], Corollary 5.1 follows.

To prove the next rigidity result we need to recall a product property of the
Ekeland–Hofer capacities: if A ⊂ Cn and B ⊂ Cm, then

ck(A× B)= min
i+ j=k
{ci (A)+ c j (B)}.

Here we use the convention that the zero-th capacity is equal to 0, that is, c0(A)=
c0(B)= 0. We denote by 1R the standard complex disc of radius R.

Corollary 5.3. The product D2
× D2

×1R is not symplectomorphic to 12
×1R

for R >
√

3
√

3/2π .

Proof. The case R ≥ 1 is known [Wong 2018, Theorem 4.1], hence let R < 1. We
have

c2(1
2
×1R)= 2πR2.

On the other hand,

c2(D2
× D2

×1R)=min{3
√

3, 4+πR2, 2πR2
}.

The two capacities are different if R >
√

3
√

3/2π . �

Remark 5.4. The bound in Corollary 5.3 can be improved to
√

2/π using Ekeland–
Hofer symplectic capacities of higher order. More precisely, one has to show, for
each positive integer n, that c2n−1(D2

×D2)= 4n. This can be achieved by arguing
in a similar way as in Theorem 4.6, where we computed the value of c3(D2

× D2).
Vinicius Gripp Barros Ramos has informed the authors that the bound

√
2/π can

also be obtained using the results in [Gutt and Hutchings 2018].
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