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Giorgia Callegaro †‡ Lucio Fiorin§ Andrea Pallavicini ¶
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Abstract

Quantization algorithms have been successfully adopted to option pricing in finance
thanks to the high convergence rate of the numerical approximation. In particular, very
recently, recursive marginal quantization has been proven to be a flexible and versatile tool
when applied to stochastic volatility processes. In this paper we apply for the first time
quantization techniques to the family of polynomial processes, by exploiting their peculiar
nature. We focus our analysis on the stochastic volatility Jacobi process, by presenting
two alternative quantization procedures: the first is a new discretization technique, whose
foundation lies on the polynomial structure of the underlying process and which is suitable
for vanilla option pricing, the second is based on recursive marginal quantization and it
allows for pricing of (vanilla and) exotic derivatives. We prove theoretical results to assess
the induced approximation errors, and we describe in numerical examples practical tools
for fast vanilla and exotic option pricing.

JEL classification codes: C63, G13.
AMS classification codes: 65H35, 91G20, 91G60.
Keywords: Pricing, Quantization, Polynomial Models, Stochastic Volatility, Path-Dependent
Options.

1 Introduction

Recently a new class of Markov processes, termed polynomial processes, has been introduced
to model stock prices in view of financial applications. We refer to Cuchiero et al. (2012)
and Filipovic and Larsson (2016) for an introduction and a review of the main properties of
this family of processes, which includes, e.g., the Brownian motion, the geometric Brownian
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motion, Ornstein-Uhlenbeck processes, Jacobi processes, Lévy processes and, more generally,
affine processes. The main property of polynomial processes is that conditional expectations
of polynomial functions of the process are again of polynomial type. Hereafter, we refer to
this property as the “polynomial property”. In particular, expected values of any polynomial
of the process is again a polynomial in the initial value of the process, so that moments of
all orders can be easily computed in closed form, up to a matrix exponential, even if the
characteristic function of the process may be not known.

In this paper we focus on a particular polynomial process, the Stochastic Volatility Jacobi
process (hereafter SVJ) first introduced in Ackerer et al. (2018), but our results can be
extended to any polynomial model. The SVJ model is a diffusion model for stock prices
where the log-price squared volatility follows a Jacobi process with values in some compact
interval. It includes as limiting cases the Black-Scholes model and the Heston model, so that
it can be viewed as a possible alternative to these models in practical applications of option
pricing.

The polynomial property allows to implement calibration algorithms for plain-vanilla op-
tions quoted by the market, which usually depend only on the marginal probability distribu-
tion of the underlying asset price at option expiry date. On the other hand, pricing exotic
options also requires transition probabilities because of the path-dependent feature of such
derivative products (think of time averages, continuous barriers and early redemptions). Joint
probability distributions of the process at different times can be in principle derived by ex-
ploiting the polynomial property of the model, but the computational time rapidly explodes
as the number of time observations increases. The work Filipovic et al. (2020) suggests one
possible way to deal with this issue by introducing an approximating Markov chain via a
moment matching condition. The space grid is made of the same set of points for all the
discretization times. Since in general it is impossible to construct a non-trivial Markov chain
satisfying an exact n-th moment matching, with n ≥ 4, the authors overcome this severe
restriction by relaxing the exact moment matching and by looking for an approximation of
the moments.

Working with a discrete state space clearly reduces the dimensionality of the problem and
this is also what happens here with our alternative methodology, based on quantization. It
is crucial to understand that our approach is different. More precisely, while the final target
is the same, namely discretizing a stochastic process, the way this is done is totally different:
quantization allows to optimally (in an L2-sense) approximate the stochastic process at any
time, so the output is an optimal grid which is not homogeneous with respect to time. We
deem this is crucial when pricing path-dependent options over possibly long time horizons.

Quantization is a discretization technique for random variables, called vector quantization,
and stochastic processes, known as functional quantization. The birth of quantization dates
back to the 1950s, while its application in numerical probability and mathematical finance
started in the 1990s (see e.g. Gersho and Gray (1991) and Bally et al. (2001)) and since
then it has been applied to approximate conditional expectations, to solve optimal stopping
problems, to nonlinear filtering, stochastic control, to numerically solve backward stochastic
differential equations and, more recently, McKean-Vlasov equations. For a recent and rigorous
introduction to quantization we also refer e.g. to (Montes, 2020, Chapter 1) and references
therein. When applied to random vectors, quantization provides the best, according to a
distance that is commonly measured using the Euclidean norm, possible approximation to
the original distribution via a discrete random vector taking a finite number of values. Many
numerical procedures have been studied to obtain optimal quadratic quantizers of random
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vectors even in high dimension and most of them are based on stochastic optimization al-
gorithms, see Pagès (2015), which are typically very time consuming. Very recently vector
quantization has been applied to recursively discretize stochastic processes. More precisely,
the idea is approximating the random variables coming from the Euler scheme associated to a
stochastic process, which is solution to a stochastic differential equation. Recursive marginal
quantization, or fast quantization, introduced in Pagès and Sagna (2015), represents a new
promising research field. Stationary quantizers of the stochastic process at fixed dates are
obtained in a very fast and recursive way, to the point that recursive marginal quantization
has been successfully applied to many models, starting from the classical ones and moving to
local volatility models, such as in Callegaro et al. (2015), Bormetti et al. (2018), McWalter
et al. (2018) and finally to stochastic volatility models, such as Stein and Stein, Stochastic
Alpha Beta Rho, Heston and α−hypergeometric, as done in Callegaro et al. (2016), Fiorin
et al. (2018).

In the present paper we adopt two different quantization techniques to price plain-vanilla
options and exotic derivative contracts within the SVJ model. The first technique is designed
for plain-vanilla or European options, and it is based on the direct quantization of the price
probability distribution obtained by exploiting the polynomial property. In this way we
provide an alternative approach to the algorithm proposed in Ackerer et al. (2018). The
second one is designed for exotic products, hence providing an alternative to Filipovic et al.
(2020), but it can be used also for European options, and it extends to multidimensional
models the framework of Callegaro et al. (2016), based on recursive marginal quantization.
This second procedure does not rely on the polynomial property of the model, so that we
can use it for path-dependent products without encountering dimensionality problems. Our
analysis on SVJ quantization provides both practical tools to develop fast exotic option pricing
algorithms and theoretical results to assess the approximation errors. A final Conclusion
follows.

The paper is organized as follows. In Section 2 the SVJ model is presented. An intro-
duction to quantization of random variables is given in Section 3. Two different quantization
approaches are then described: firstly, in Section 4 quantization techniques are adapted to
polynomial models, leading to new pricing formulas for plain-vanilla options, whose approxi-
mation error is discussed. Then, in Section 5 recursive marginal quantization (which does not
exploit the polynomial nature of our stochastic process) is introduced in a multidimensional
setting and it is applied to price path-dependent exotic options. Numerical results for all the
introduces algorithms, along with a discussion, are presented in Section 6.

2 The Stochastic Volatility Jacobi Model

We consider a filtered probability space (Ω,F , (Ft)t∈[0,T ],Q), where Q is a risk neutral prob-
ability measure and where the filtration (Ft)t∈[0,T ] satisfies the usual hypotheses and models
all the randomness in our model. We assume that the stock price process S follows a SVJ
model as in Ackerer et al. (2018), namely we fix 0 ≤ vmin < vmax and we define

St = eXt (1)

where the dynamics of (V,X) follows the stochastic volatility model{
dVt = κ(θ − Vt)dt+ σ

√
Q(Vt)dWt

dXt = (r − δ − Vt/2)dt+ ρ
√
Q(Vt)dWt +

√
Vt − ρ2Q(Vt)dW

⊥
t

(2)
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with X0 = x0 ∈ R, V0 = v0 ∈ [vmin, vmax] and where the interest rate r > 0, ρ ∈ [−1, 1], the
mean reversion speed is κ ≥ 0, the reversion level θ belongs to [vmin, vmax],

Q(v) :=
(v − vmin)(vmax − v)

(
√
vmax −

√
vmin)2 (3)

and where W and W⊥ are independent standard Brownian motions. Notice that, recalling
Equation (3), we have v−Q(v) ≥ 0 with equality if and only if v =

√
vminvmax and Q(v) ≥ 0

for every v ∈ [vmin, vmax], so that the square roots in Equation (2) do not create any issue.

Clearly, we may assume that Ft = FWt ∨ FW
⊥

t , t ∈ [0, T ], where FWt and FW⊥t are the
natural filtrations associated with W and W⊥ completed with negligible sets. It is known that
as special limiting cases of a SVJ model we obtain the Black-Scholes (take v0 = θ = vmax)
and the Heston model (take vmin = 0 and vmax →∞).

Remark 2.1. (Existence and Uniqueness of SVJ SDE Solution)
The name SVJ is motivated by the model being clearly a stochastic volatility one, with the
instantaneous squared volatility V having a dynamics of Jacobi type, taking values in the
interval [vmin, vmax]. Indeed, the following result holds (see (Ackerer et al., 2018, Theorem
2.1)): for any deterministic initial state (v0, x0) ∈ [vmin, vmax] × R, there exists a unique
solution (V,X) to the system (2), taking values in [vmin, vmax]×R. Furthermore, it is possible
to show that if (v0, x0) ∈ (vmin, vmax) × R, then (Vt, Xt) takes values in (vmin, vmax) × R if

and only if σ2(vmax−vmin)
(
√
vmax−

√
vmin)2

≤ 2κmin{vmax − θ, θ − vmin}.

Moments in the SVJ model are known in closed form up to a matrix exponential. Indeed,
if we write the generator G of the SVJ process, namely

Gf(v, x) = b>(v)∇f(v, x) +
1

2
Tr
(
a(v)∇2f(v, x)

)
with drift vector b(v) and the diffusion matrix a(v) given by

b(v) =

[
κ(θ − v)

r − δ − v/2

]
, a(v) =

[
σ2Q(v) ρσQ(v)
ρσQ(v) v

]
we have that G maps any polynomial of degree n onto a polynomial of degree n or less as shown
in Filipovic and Larsson (2016). As a consequence it is possible to evaluate the conditional
moments of (VT , XT ) as follows. Let Poln be the vector space of polynomials in (v, x) of
degree less than or equal to n. For any positive integer N, we term M = (N+ 2)(N+ 1)/2 the
dimension of PolN, we introduce a basis h1(v, x), . . . , hM(v, x) of polynomials of PolN, and we
denote by G the matrix representation of the linear map G restricted to PolN with respect
to this basis. Thus, from Theorem 3.1 in Filipovic and Larsson (2016) we get that for any
polynomial p ∈ PolN we have

E [p(VT , XT )|Ft] =
[
h1(Vt, Xt) . . . hM(Vt, Xt)

]
e(T−t)G~p, t ∈ [0, T ],

where ~p ∈ RM is the column coordinate representation of the polynomial p(v, x) with respect
to the basis h. In this paper we term this relationship as polynomial property.

We recall here the technical results on the closed form pricing of European options, that
we will need from now on. Let us define the weighted Lebesgue space

L2
w =

{
f measurable : ||f ||2w =

∫
R
f2(x)w(x)dx <∞

}
,
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equipped with the scalar product

〈f, g〉w =

∫
R
f(x)g(x)w(x)dx,

where w is the Gaussian weight function, i.e., the Gaussian density with mean µw and variance
σ2
w. The Hilbert space L2

w admits an orthonormal basis of generalized Hermite polynomials
Hn, n ≥ 0 (notice that the degree of Hn is equal to n), given by

Hn(x) =
1√
n!
Hn
(
x− µw
σw

)
, (4)

where Hn are the probabilist Hermite polynomials defined as

Hn(x) = (−1)ne
x2

2
dn

dxn
e−

x2

2 . (5)

If we assume that gT is the density of the log price XT , then we can define `(x) = gT (x)
w(x) .

Remark 2.2. (Assumptions on SVJ Parameters)
a) The existence and regularity of the density gT for the log price process XT is studied in
(Ackerer et al., 2018, Theorem 3.1), to which we refer. In particular, as soon as vmin > 0
and ρ2 < 1 (see also b) below), the density gT is k times continuously differentiable for any
k ∈ N>0.
b) We need ` ∈ L2

w, so that from now on, applying Corollary 3.2 in Ackerer et al. (2018), we
assume that

vmin > 0, ρ2 < 1, σ2
w >

vmaxT

2
.

c) The choice of generalized Hermite polynomials as orthonormal basis is quite natural, given
the Gaussian nature of the log price XT conditional on the knowledge of the volatility. Density
series approximation is a broad (and not new) topic and in the case of polynomial processes
we refer to (Ackerer et al., 2018, Introduction) and references therein to convince the reader
about the robustness of the use of this Gram-Charlier A decomposition for the density gT .

Our aim being pricing a European option with payoff f ∈ L2
w (notice that both Call and

Put options have payoffs belonging to L2
w), we get

E[f(XT )] =

∫
R
f(x)gT (x)dx =

∫
R
f(x)`(x)w(x)dx = 〈f, `〉w.

Since L2
w is an Hilbert space with orthonormal basis Hn defined in Equation (4), we can

rewrite the previous formula as

E[f(XT )] =
∑
n≥0

fn`n, (6)

for the Fourier coefficients
fn = 〈f,Hn〉w, (7)

and the Hermite moments

`n = 〈`,Hn〉w =

∫
R
Hn(x)`(x)w(x)dx =

∫
R
Hn(x)gT (x)dx. (8)

Notice that the last equality shows that `n is a linear combination of moments of XT ,
since Hn is a polynomial. It is then possible to compute `n in closed form, because of the
polynomial nature of the process.
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3 Essentials on Quantization

In this section we introduce optimal quadratic quantization of a random variable (also known
as vector quantization), which will be a necessary tool toward a specific discretization of a
stochastic process, known as recursive marginal quantization (henceforth RMQ). We refer to
Graf and Luschgy (2000) and Pagès (2015) for vector quantization and to Pagès and Sagna
(2015) for the first paper on RMQ1.

Optimal quadratic quantization answers the following question: is it possible (and how)
to optimally approximate, in an L2-sense, a continuous random variable X by a discrete one,
X̂, taking a finite number of values?

The interest in such a discretization X̂ is clear: expectations in the form E[h(X)] (for
sufficiently regular functions h) would be approximated by finite sums. Let us be more
precise. We consider a real valued random variable X defined on (Ω,F ,P), having probability
distribution PX and admitting a finite second order moment. A quantization grid of level
N,N ≥ 1, is a subset of R, Γ = {x1, . . . , xN} (here N will be fixed, so that for simplicity
we drop the dependence on N in the notation), of size at most N having pairwise distinct
components. A quantization function, or quantizer, is a Γ-valued Borel function q : R → Γ
and quantizing X means projecting X on Γ following the closest neighbor rule

q(X) = ProjΓ(X) :=

N∑
i=1

xi11Ci(Γ)(X) (9)

where (Ci(Γ))1≤i≤N is a Borel partition of (R,B(R)), also known as Voronoi partition, satisfy-
ing Ci(Γ) ⊂ {ξ ∈ R : |ξ − xi| = mini≤j≤N |ξ − xj |} , i = 1 . . . , N . We will use the notation

X̂Γ or X̂ (when no ambiguity is possible with respect to the grid) to denote the Voronoi
Γ-quantization of X: X̂Γ = X̂ = q(X).

The L2-error coming from such a discretization is given by

eN (X,Γ) := ‖X − q(X)‖2 = ‖ min
1≤i≤N

|X − xi|‖2

where ||X||2 :=
[
E(|X|2)

]1/2
is the usual L2-norm and the aim of optimal quadratic quantiza-

tion is finding a grid Γ, with size at most N , which minimizes the distortion function defined
below (see (Graf and Luschgy, 2000, Equation (3.4))).

Definition 3.1. Let X be a real valued random variable belonging to L2(P). The L2-distortion
function is a positive valued function defined on RN by

D : (x1, x2, . . . , xN ) 7−→ E
[

min
1≤i≤N

|X − xi|2
]

= eN (X,Γ)2. (10)

Concerning the existence and uniqueness of an optimal grid, it is possible to show, see e.g.
(Pagès, 2015, Prop. 1.1), that if X ∈ L2(P), then the distortion function D attains (at least)
one minimum Γ?. The grid Γ? and ProjΓ? are called optimal quadratic quantizers, respectively.
In the case when card(supp(PX)) ≥ N , then Γ? has pairwise distinct components. Moreover

1We also have to refer to the website: http://www.quantize.maths-fi.com, where grids of the d-
dimensional Gaussian distributions N (0; Id), for N = 1 up to 104 and for d = 1, . . . , 10 can be downloaded.

http://www.quantize.maths-fi.com
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limN→+∞ eN (X) = 0 and the convergence rate is given by the well-known Zador theorem (see
Graf and Luschgy (2000))

min
Γ, |Γ|=N

‖X − q(X)‖2 = min
Γ, |Γ|=N

eN (X,Γ) = Q2(PX)N−1 + o
(
N−1

)
(11)

where Q2(PX) is a nonnegative constant. Then, it is natural to approximate an expected
value of the form E [h(X)] in the following way:

E [h(X)] ≈ E
[
h(X̂)

]
=

N∑
i=1

h(xi)P
(
X̂ = xi

)
=

N∑
i=1

h(xi)P (X ∈ Ci(Γ)) . (12)

Moreover, as mentioned in (Graf and Luschgy, 2000, Theorem. 5.1) and originally proved in
Kieffer (1982), as soon as PX is absolutely continuous with a log-concave density, then there
exists exactly one optimal quantization grid of level N .

Remark 3.2. (Quantization vs. Monte Carlo Pricing Error)
When computing E [h(X)], where X is the value at maturity of an underlying asset and h is
a Lipschitz (payoff) function with Lipschitz constant [h]Lip, then∣∣E[h(X)]− E[h(X̂Γ)]

∣∣ ≤ [h]LipeN (X,Γ).

In particular, the error coming from pricing via quantization decays at the rate 1
N , as opposed

to the Monte Carlo error, ruled by the Central Limit Theorem, which is of order 1√
N

.

The last crucial point is how to obtain an optimal quantizer. It is known that the dis-
tortion function is differentiable at any N -tuple having pairwise distinct components Γ =
{x1, . . . , xN} (see (Graf and Luschgy, 2000, Lemma 4.10) or (Pagès, 2015, Prop. 1.1)), with
differential

∇D(x1, . . . , xN ) = 2

(∫
Ci(Γ)

(xi − ξ)dPX(ξ)

)
1≤i≤N

= 2
(
E
[
11X∈Ci(Γ)(xi −X)

])
1≤i≤N , (13)

so that many stochastic algorithms looking for zeros of the gradient of D have been devel-
oped. These include gradient descent and fixed point procedures and we refer to (Pagès, 2015,
Section 3) for a detailed overview. Critical points of the distortion function are called station-
ary quantizers. Optimal quantizers are stationary, but the converse is not true in general.
Of course, stationary quantizers are in general not unique. From (13), the determination of
stationary quantizers boils down to finding the solution of

E
[
11X∈Ci(Γ)X

]
− xiP (X ∈ Ci(Γ)) = 0 ∀i ∈ {1, . . . , N} (14)

known as Master Equation (it is, indeed, a system of N equations in N unknowns x1, . . . , xN ).
Moreover, when the gradient itself is differentiable, it is possible to apply the classical Newton-
Raphson procedure.

If the density of X is known, then it is possible to explicitly write the system in (14) in
closed form and to find its solution. On the other hand, when X is the asset price at maturity,
typically the density of the process is not explicitly known, except in trivial cases, and finding
stationary quantizers becomes numerically interesting.
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We conclude by sketching the ideas behind RMQ, which allows to use vector quantiza-
tion to recursively discretize a stochastic process. More precisely, Pagès and Sagna (2015)
introduced RMQ to discretize a stochastic process Y (in dimension one) by recursively work-
ing on the random variables {(Ytk)}k=0,...,M associated with the Euler-Maruyama scheme. So,
starting from a time discretization of a stochastic process on {tk}k=0,...,M , vector quantization
provides a state space discretization of every random variable Ytk . The essence of RMQ lies on
the knowledge of the conditional law of (Ytk |Ytk−1

), k = 1, . . . ,M , which allows to recursively
quantize the marginals {(Ytk)}k=0,...,M via a Newton-Raphson procedure (the gradient and
the Hessian of the distortion function are explicit).

In the following Section 5 we provide more details on RMQ applied to our multidimensional
setting.

4 Quantization of a Polynomial Process

We will now discuss how to deal with polynomial processes. In particular, we consider the SVJ
model, even if our approach is general and flexible enough to be applied to any polynomial
process. We only consider the SVJ model since it is a good representative for the class of
diffusive polynomial processes. As a first approach, in this section, we exploit the polynomial
property and we focus on the quantization of the log price process X at a fixed date. Then,
in Section 5, in order to deal with path-dependent options, we forget about the polynomial
nature of (V,X) and we extend the general framework in Callegaro et al. (2016) to discretize
the bidimensional process (V,X) at a whole set of dates via RMQ.

4.1 Exploiting the Polynomial Property

In this section we consider the problem of finding a stationary quantizer of the log price
process X at a given time T .

The main result of this section is the possibility of writing the Master equation (14) in
closed form, thanks to the polynomial nature of our processes.

Theorem 4.1. (Polynomial Process Quantization)
Consider the Master equation

E
[
(XT − xi) 11XT∈Ci(Γ)

]
= 0, i = 1, . . . , N (15)

and its i-th component

Ei(x1, . . . , xN ) := E
[
(XT − xi) 11XT∈Ci(Γ)

]
= 0 (16)

where Ci(Γ) =

[
xi−1 + xi

2
,
xi + xi+1

2

]
, C1(Γ) =

[
−∞, x1+x2

2

]
and CN (Γ) =

[
xN−1+xN

2 ,+∞
]
.

In our setting Equation (16) reads ∑
n≥0

f in`n = 0, (17)

where `n are the Hermite moments defined in (8) and where the (Fourier) coefficients f in are
given by

f in = hn

(
xi−1 + xi

2

)
− hn

(
xi + xi+1

2

)
− xi

(
ln

(
xi−1 + xi

2

)
− ln

(
xi + xi+1

2

))
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with

h0(K) = σwφ

(
K − µw
σw

)
+ µwΦ

(
µw −K
σw

)
h1(K) = σw

[
K − µw
σw

φ

(
K − µw
σw

)
+ Φ

(
K − µw
σw

)]
+ µwφ

(
K − µw
σw

)
hn(K) =

1√
n!
φ

(
K − µw
σw

)[
σwHn

(
K − µw
σw

)
+ nσwHn−2

(
K − µw
σw

)
(18)

+ µwHn−1

(
K − µw
σw

)]
, n ≥ 2,

and

l0(K) = Φ

(
K − µw
σw

)
ln(K) =

1√
n!
Hn−1

(
K − µw
σw

)
φ

(
K − µw
σw

)
, n ≥ 1, (19)

and where φ and Φ are, respectively, the density and the cumulative distribution functions of
a standard univariate Gaussian random variable.

Proof. See Appendix A.

Remark 4.2. The results of Theorem 4.1 are general, in that they can be applied to other
polynomial models, by suitably modifying the cofficients `n.

4.2 Calculation of a Stationary Quantizer

Even if Equation (16) can be written in closed form for every i = 1, . . . , N , it is impossible to
find an analytical expression for the solution to the nonlinear system, which corresponds to
the stationary quantizer. Hence, we need to solve this system numerically. As already noted
in Section 3, the literature suggests the Newton-Raphson method as the best first choice to
tackle the system of equations. The proposition below provides the Jacobian matrix to be
used in the Newton-Raphson procedure.

Proposition 4.3. Consider the system of equations (15)
E1(x1, . . . , xN ) := E

[
(XT − x1) 11XT∈C1(Γ)

]
= 0

E2(x1, . . . , xN ) := E
[
(XT − x2) 11XT∈C2(Γ)

]
= 0

...
EN (x1, . . . , xN ) := E

[
(XT − xN ) 11XT∈CN (Γ)

]
= 0.

(20)

When X is a polynomial process with Hermite moments `n, the Jacobian matrix J of the
vector function E = (E1, . . . , EN ) is tridiagonal and symmetric, and its components have the
following form:

Ji,i−1 =
1

2

(
xi − xi−1

2

)
gT

(
xi−1 + xi

2

)
i = 2, . . . , N

Ji,i = Ji,i−1 + Ji,i+1 − P (XT ∈ Ci(Γ)) i = 1, . . . , N,
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with J1,0 = JN,N+1 = 0 and where

gT (x) =
∑
n≥0

`nHn(x)w(x), (21)

P (XT ∈ Ci(Γ)) =
∑
n≥0

`n

(
ln

(
xi−1 + xi

2

)
− ln

(
xi + xi+1

2

))
, (22)

and the coefficients ln are computed in (19).

Proof. See Appendix A.

The Newton-Raphson algorithm has then the following structure: starting from an initial
guess Γ(0), the k-th iteration is

Γ(k) = Γ(k−1) − J−1
(

Γ(k−1)
)
E
(

Γ(k−1)
)

k = 1, 2, . . . (23)

where E = (E1, . . . , EN ) is defined in Proposition 4.3 and it is computed thanks to Theorem
4.1. Given a stopping criterion, the final iteration gives the stationary quantization grid Γ∗.

Let us assume now that we have found the solution Γ∗ = {x∗1, . . . , x∗N}, which is the
stationary quantization grid associated to XT . In order to compute an expected value as in
(12), we need to know the weights associated to every Voronoi cell Ci(Γ

∗), for i = 1, . . . , N .
The weights are straightforwardly given by (22).

4.3 Analysis of the Approximation Error

We focus on pricing at time 0 of a European option with payoff f . We consider, without loss
of generality, a Call option written on S having expiry T > 0 and strike price K, i.e.,

f = f(ST ) = (ST −K)+.

Of course, as mentioned before, the results in this section are also valid for Put options.
In what follows we will need the following three versions of the price:

• πf is the exact price at time 0, i.e.,

πf := EQ [e−rT (ST −K)+] = e−rT
∫
R

(ex −K)+ gT (x)dx,

where gT is the density of the log price X at time T , given by (21). This formula
contains an infinite sum, so the function gT function is not computable in closed form.

• π(M)
f is the price computed using the polynomial approximation at level M , i.e., ap-

proximating the density gT (x) with

g
(M)
T (x) =

M∑
n=0

`nHn(x)w(x), (24)

namely

π
(M)
f = e−rT

∫
R

(ex −K)+ g
(M)
T (x)dx =

M∑
n=0

`nfn,

where here the fn’s are the Fourier coefficients associated with the function f(x) =
(ex −K)+.



G. Callegaro, L. Fiorin, A. Pallavicini, Quantization Goes Polynomial 11

• π̂(M,N)
f is the price computed by approximating the log-spot price at maturity by means

of quantization on a grid with N points:

π̂
(M,N)
f = e−rT

N∑
i=1

∫
Ci(ΓX)

(exi −K)+g
(M)
T (x)dx

= e−rT
N∑
i=1

(exi −K)+P
(
X

(M)
T ∈ Ci(ΓX)

)
(25)

where ΓX = {x1, . . . , xN} is the optimal quantizer relative to X
(M)
T , the log price with

(approximate) density g
(M)
T . We denote by X̂

(M,N)
T the quantization of X

(M)
T . Notice

that we also have

π̂
(M,N)
f = e−rT

N∑
i=1

(exi −K)+ P
(
X̂

(M,N)
T = xi

)
.

The accuracy of our methodology is studied by analyzing the (asymptotic) behavior of
the price approximation, namely

errM,N :=
∣∣∣πf − π̂(M,N)

f

∣∣∣ . (26)

We split the error in two parts that we study separately:

errM,N ≤
∣∣∣πf − π(M)

f

∣∣∣+
∣∣∣π(M)
f − π̂(M,N)

f

∣∣∣ = err
(1)
M + err

(2)
M,N , (27)

where err
(1)
M :=

∣∣∣πf − π(M)
f

∣∣∣ is the truncation error |ε(M)| (depending only on M), studied in

detail in (Ackerer et al., 2018, Section 3.2) and satisfying inequality (3.20) therein:

|ε(M)| ≤

(
||f ||2w −

M∑
n=0

f2
n

) 1
2
(
||`||2w −

M∑
n=0

`2n

) 1
2

,

whose terms, as the authors state, can be estimated by Monte Carlo simulation, while

err
(2)
M,N :=

∣∣∣π(M)
f − π̂(M,N)

f

∣∣∣ is the quantization error, on which we focus in the remaining

part of this section.

We study now err
(2)
M,N via an intermediate lemma and a theorem.

Lemma 4.4. The quantization error satisfies

err
(2)
M,N ≤

∣∣∣∣∣∣S(M)
T − Ŝ(M,N)

T

∣∣∣∣∣∣
2
,

where S
(M)
T := eX

(M)
T and Ŝ

(M,N)
T is the N -quantizer relative to S

(M)
T .

Proof. See Appendix A.
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Now we are ready to size the quantization error. As known from Zador Theorem, see

Equation (11), the distance ||S(M)
T − Ŝ(M,N)

T ||2 has an asymptotic linear decay when N goes
to infinity. A precise bound for the limit of the error is provided in the following theorem,
whose proof is inspired by the one of (Callegaro et al., 2019, Theorem 2.11). We stress here
that the recent error estimates given in (Callegaro et al., 2019, Theorem 2.11) were obtained

in a different setting and under ad hoc assumptions (the second order moment of S
(M)
T was

required to be finite and the density of S
(M)
T at 0 and at +∞ had polynomial behavior), that

can be relaxed here, thanks to the explicit form of the density h
(M)
T of S

(M)
T . A thorough

study of the error is also present in Fiorin and Schoutens (2020), in the field of conic finance.

Theorem 4.5. (Quantization Error Estimate)
In our setting, for any given M > 0, we have:

lim
N→+∞

N err
(2)
M,N ≤

∣∣∣∣∣∣h(M)
T

∣∣∣∣∣∣ 12
1
3

2
√

3
(28)

where h
(M)
T is the density of S

(M)
T = eX

(M)
T , h

(M)
T (s) =

g
(M)
T (ln(s))

s for s ∈ (0,+∞).

Proof. See Appendix A.

5 Pricing exotics: multidimensional RMQ

The quantization procedure described in the previous section, and based on the polynomial
nature of the (V,X), may encounter dimensionality problems when pricing exotic options. In
this section we propose an alternative quantization procedure, known as recursive marginal
quantization, which in the literature has been discussed for a wide class of stochastic volatility
models (see e.g. Callegaro et al. (2016) and Callegaro et al. (2018)), and we extend it to a
multidimensional setting.

The innovation behind this approach is twofold. First, the algorithm here is designed
for systems of SDEs of any dimension d, while the approach used in Callegaro et al. (2016)
and Callegaro et al. (2018) is tailored for systems of dimension 2. The presentation of this
section can be seen as a compact and robust alternative to Fiorin et al. (2018). In fact, the
algorithm developed here does not depend on pre-computed multidimensional quantization
grids, that Fiorin et al. (2018) heavily exploit. The second innovation is in the computational
cost required by the execution of the algorithm, which is reduced by a factor 5 with respect to
Callegaro et al. (2016), see Section 6. Indeed, until now the volatility process was quantized
independently, while the price process was then discretized using the information from the
approximation of the variance. In the formulation that we propose here, the vector volatility-
price process is quantized simultaneously in all its components. This allows, in the end, to
more compact formulas and to a more efficient and parsimonious numerical routine. Here,
we consider the quantization of a system of SDEs. We will present a general framework, that
we will then apply to the case of the SVJ model. Let us consider the following d-dimensional
SDE:

dXt = µ (t,Xt) dt+ Σ (t,Xt) dWt, X0 = x0. (29)
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where µ : R+ × Rd −→ Rd, Σ : R+ × Rd −→ Rd × Rq and W is a q-dimensional Brownian
motion. We suppose that µ and Σ are sufficiently regular so that to ensure existence and
uniqueness of a solution to the SDE (29).

Let us now fix a time discretization grid tk = k∆, k = 0, . . . , L, with ∆ = T
L , where T is

a given maturity, ∆ is the time step size and L is the number of discretization points of the
time grid. A general discretization scheme can be written in the following iterative form:

X̃tk+1
= A

(
tk,∆, X̃tk

)
+B

(
tk,∆, X̃tk ,∆Wtk

)
, X̃t0 = x0, (30)

where A : R+×R+×Rd −→ Rd and B : R+×R+×Rd×Rq −→ Rd depend on the discretization
scheme and ∆Wtk = 1√

∆

(
Wtk+1

−Wtk

)
is a q-dimensional Gaussian vector with mean 0

and variance-covariance matrix Iq.
Depending on the time discretization scheme in use, it is possible to know the law of

(X̃tk+1
|X̃tk), that clearly depends on A and B. In particular, in the case of the Euler-

Maruyama (or simply Euler) scheme, that we will choose, (X̃tk+1
|{X̃tk = x}),x ∈ Rd, has a

multivariate Gaussian distribution, while in the case of the Milstein scheme it has a generalized
Chi-squared distribution. For higher order schemes, the conditional distribution has to be
determined on a case by case basis.

5.1 Mathematical Foundation of the Algorithm

Henceforth we consider the Euler scheme, so that, conditioning on {X̃tk = x}, we have (recall
Equation (30))

A (tk,∆,x) = x + µ(tk,x)∆, B (tk,∆,x,∆Wtk) =
√

∆Σ(tk,x)∆Wtk , (31)

and the following lemma holds:

Lemma 5.1. For every 0 ≤ k ≤ L, conditionally on the event {X̃tk = x}, the random vector

X̃tk+1
is Gaussian:

L(X̃tk+1
|{X̃tk = x}) ∼ N

(
x + µ(tk,x)∆,∆(ΣΣT )(tk,x)

)
. (32)

In particular, if Xt =
(
X1
t , . . . , X

d
t

)
and X̃tk =

(
X̃1
tk
, . . . , X̃d

tk

)
for k = 0, . . . , L, and x =(

x1, . . . , xd
)
, we have that for every i = 1, . . . , d

L(X̃i
tk+1
|{X̃tk = x}) ∼ N (mi(tk,x), ςi(tk,x)) , (33)

where
mi(tk,x) := xi + µi(tk,x)∆

is the i-th component of the vector x + µ(tk,x) and ςi(tk,x) is the i-th diagonal element of
the (symmetric) matrix ∆ΣΣT .

It is then possible to write the distribution of X̃i
tk+1

in a closed form:

P
(
X̃i
tk+1
∈ dxik+1

)
=

∫
Rd
φmi(tk,xk),ςi(tk,xk)

(
xik+1

)
P
(
X̃tk ∈ dxk

)
, (34)



G. Callegaro, L. Fiorin, A. Pallavicini, Quantization Goes Polynomial 14

where φm,ς is the probability density function of a one dimensional Gaussian variable with
mean m and variance ς.

Let us fix a quantization grid Γi,k+1 =
{
γ1
i,k+1, . . . , γ

N
i,k+1

}
of size N relative to X̃i

tk+1
.

The distortion function associated with Γi,k+1 reads

Di,k+1 (Γi,k+1) =
N∑
j=1

∫
Cj(Γi,k+1)

(
xik+1 − γ

j
i,k+1

)2
P
(
X̃i
tk+1
∈ dxik+1

)
(35)

where (Cj (Γi,k+1))j=1,...,N is the Voronoi tessellation associated with the grid Γi,k+1.
It is now possible to write the recursive quantization algorithm. Having quantized every

i-th component of the vector X̃tk , via a grid of size N i, it is possible to approximate the
distribution in (34) as

P
(
X̃i
tk+1
∈ dxik+1

)
≈

N1∑
j1=1

· · ·
Nd∑
jd=1

φ
mi(tk,x

j1
1,k,...,x

jd
d,k),ςi(tk,x

j1
1,k,...,x

jd
d,k)

(
xik+1

)
P
(
X̃tk =

(
xj11,k, . . . , x

jd
d,k

))
,

(36)
where xj``,k corresponds to the j`-th element of the optimal quantization grid of the `-th

component of the vector X̃tk . It is immediate to see that it is possible to compute in closed

form also the distribution of the vector X̃tk+1
: indeed, we have that

P
(
X̃tk+1

∈ dxk+1

)
≈

N1∑
j1=1

· · ·
Nd∑
jd=1

φ̄
m(tk,x

j1
1,k,...,x

jd
d,k),ς(tk,x

j1
1,k,...,x

jd
d,k)

(xk+1)P
(
X̃tk =

(
xj11,k, . . . , x

jd
d,k

))
,

(37)
where φ̄ is the density function of a d-dimensional Gaussian random variable with mean

m(tk, x
j1
1,k, . . . , x

jd
d,k) =

(
xj11,k, . . . , x

jd
d,k

)
+ ∆µ

(
tk, x

j1
1,k, . . . , x

jd
d,k

)
and variance-covariance ma-

trix ς(tk, x
j1
1,k, . . . , x

jd
d,k) = ∆(ΣΣT )

(
tk, x

j1
1,k, . . . , x

jd
d,k

)
.

Having computed all these elements, it is possible to obtain the (approximate) distortion
function (35), its gradient and its Hessian function and to implement the Newton-Raphson
algorithm as in Callegaro et al. (2015) and Callegaro et al. (2016).

5.2 Recursive Quantization of the SVJ Model

We focus now on the application of the arguments in Section 5.1 to the specific model consid-
ered. We consider the Euler scheme of the price S, instead of the log price X, since quantizing
S instead of X is crucial if we want to be in the setting of Section 4.3 devoted to the study of
the numerical error of our procedure. Using the notation of the previous section, Xt = (Vt, St)

and X̃tk =
(
Ṽtk , S̃tk

)
, and the Euler scheme reads

(
Ṽtk+1

S̃tk+1

)
=

(
Ṽtk
S̃tk

)
+

(
κ
(
θ − Ṽtk

)
∆

(r − δ) ∆

)
+
√

∆

 σ

√
Q
(
Ṽtk

)
0

ρS̃tk

√
Q
(
Ṽtk

)
S̃tk

√
Ṽtk − ρ2Q

(
Ṽtk

)
(∆W 1

k

∆W 2
k

)
.

(38)
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We have then that

P
(
Ṽtk+1

∈ dvk+1

)
=

∫
R

∫
R
φm1(tk,vk,sk),ς1(tk,vk,sk) (vk+1)P

(
Ṽtk ∈ dvk, S̃tk ∈ dsk

)
, (39)

where m1(tk, vk, sk) = vk +κ (θ − vk) ∆ = m1(tk, vk) and ς1(tk, vk, sk) = σ2Q(vk) = ς1(tk, vk).
In the case of the price process

P
(
S̃tk+1

∈ dsk+1

)
=

∫
R

∫
R
φm2(tk,vk,sk),ς2(tk,vk,sk) (sk+1)P

(
Ṽtk ∈ dvk, S̃tk ∈ dsk

)
, (40)

where m2(tk, vk, sk) = sk + (r − δ) ∆ and ς2(tk, vk, sk) = (sk)
2 vk. Moreover, we notice that,

since m1 and ς1 do not depend on sk, we can simplify (39):

P
(
Ṽtk+1

∈ dvk+1

)
=

∫
R
φm1(tk,vk),ς1(tk,vk) (vk+1)P

(
Ṽtk ∈ dvk

)
. (41)

This allows to use the technique developed in Pagès and Sagna (2015) and Callegaro et al.
(2015) for the quantization of the variance process, which is one dimensional and it can be
discretized independently of S. On the other hand, of course, the quantization grids for S
will depend on the ones for V .

We now give an idea on how it is possible to recursively obtain the quantization grids
Γ1,k =: ΓV,k and Γ2,k =: ΓS,k, k = 1, . . . , L. We suppose that the cardinality of the grids is
fixed: |Γ1,k| = NV and |Γ2,k| = NS , for every k. Moreover, we recall that the quantization
grids at time t0 = 0, ΓV,0 and ΓS,0, are vectors whose components correspond, respectively,
with v0 and S0.

Let us assume now that we have computed the optimal grids for the variance and the price

process, namely ΓV,k =
{
v1
k, . . . , v

NV
k

}
for the variance process and ΓS,k =

{
s1
k, . . . , s

NS
k

}
for

the price process, up to time tk and that we want to obtain ΓV,k+1 and ΓS,k+1. To do this,
we look for the zeros of the gradient of the distortion function (35) when the probability (37)
takes the form

P
(
Ṽtk+1

∈ dvk+1, S̃tk+1
∈ dsk+1

)
≈

NV∑
i=1

NS∑
j=1

φ̄
m(tk,v

i
k,s

j
k),ς(tk,v

i
k,s

j
k)

(vk+1, sk+1)P
(
Ṽtk = vik, S̃tk = sjk

)
,

(42)
where φ̄ is the density of a bivariate Gaussian with mean

m(tk, v
i
k, s

j
k) =

(
vik + κ

(
θ − vik

)
∆

sjk + (r − δ) ∆

)
and variance

ς(tk, v
i
k, s

j
k) = ∆

(
σ2Q(vik) ρσsjkQ(vik)

ρσsjkQ(vik)
(
sjk

)2
vik

)
.

Remark 5.2. (Calculation of Transition Probabilities)
As a byproduct of recursive quantization, we instantaneously get for free also the transition

probabilities. Indeed, from (42) we immediately have the transition densities

P
(
Ṽtk+1

∈ dvk+1, S̃tk+1
∈ dsk+1|Ṽtk = vik, S̃tk = sjk

)
≈ φ̄

m(tk,v
i
k,s

j
k),ς(tk,v

i
k,s

j
k)

(vk+1, sk+1),

for i = 1, . . . , NV and j = 1, . . . , NS.
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6 Numerical Results

In this section we present numerical results on pricing of European and Bermudan options.
Polynomial quantization is only used to price vanilla options, while recursive marginal quan-
tization, allowing for an immediate approximation of the transition probabilities, is exploited
to price both European and Bermudan derivatives. It is noteworthy that the pricing of vanilla
and exotic options still represents a challenge from a numerical point of view when the di-
mension of the process considered is strictly greater than one. Numerical results have been
obtained in Matlab 9.2, with a CPU 2.7 GHz and 4 Gb memory computer.

Remark 6.1. (Barrier and Asian options)
If interested in different types of path dependent options, such as barrier or Asian, we refer
the reader to the methodology developed in Bormetti et al. (2018), where, on top of a grid for
the underlying process at every intermediate date (together with transition probabilities from
one time step to another) a backward Monte Carlo procedure is applied to price barrier, Asian
and auto-callable options.

We choose the following values for the mean and the standard deviation of the Gaussian
weight function w (also recall Remark 2.2), which are the same as in Ackerer et al. (2018):

σw =

√
vmaxT

2
+ 10−4, µw = E [XT ]

and in all the numerical examples we will consider the parameters in Table 1:

κ = 1.7 θ = 0.06 σ = 0.5 ρ = −0.5

V0 = 0.1 vmin = 10−2 vmax = 1 r = 0.04

δ = 0 S0 = 100 T = 1 M = 100

Table 1: Parameters of the SVJ model.

6.1 The choice of M

Before showing our results, we discuss the choice of M . This is crucial, since it is known

that the density g
(M)
T introduced in Equation (24) it is not guaranteed to be non-negative

(see e.g. Figure 3 in the v2 ArXiV version of Ackerer et al. (2018)). In the literature this
is a well-known issue and it is due to the polynomial nature of the terms involved in the
Gram Charlier expansion of the density. While conditions on the expansion coefficients which
ensure positivity of the density have been found in the case when the series is truncated at
the fourth order moment (see e.g. Jondeau and Rockinger (1999)), no results are known, to
our knowledge, in the general case. Various tests and alternative approaches and expansions
have been proposed and we cite, among them, Rompolis and Tzavalis (2007), León et al.
(2009), Nı́guez and Perote (2012), Chateau and Dufresne (2017) and Schlogl (2013).

Investigating this problem in details is out of the scope of the paper, since changing the
series expansion would lead to a brand new contribution, so in this subsection we motivate our
choice of M , based on an analysis of the produced vanilla prices. We proceed by computing
the prices of call options for different strikes via a Monte Carlo simulation with 2 · 106 paths



G. Callegaro, L. Fiorin, A. Pallavicini, Quantization Goes Polynomial 17

Strike CI lower bound MC price CI upper bound

80 25.8761 25.8984 25.9207
85 22.1012 22.1224 22.1436
90 18.5964 18.6164 18.6364
95 15.3991 15.4178 15.4364
100 12.5398 12.5570 12.5742
105 10.0396 10.0552 10.0709
110 7.9047 7.9188 7.9329
115 6.1252 6.1379 6.1505
120 4.6775 4.6886 4.6998

Table 2: Monte Carlo prices and 95% confidence interval of Call options obtained with 2 · 106

simulations and antithetic variates.

and antithetic variates. In Table 2 we show numerical results along with a 95% confidence
interval for Monte Carlo prices.

In order to choose M , we then evaluate Call options via the procedure introduced in
Ackerer et al. (2018), for the same strike values in Table 2 and for different values of M and
we check for which values of M the obtained price belongs to the 95% Monte Carlo confidence
interval in Table 2 for every strike. Results are presented in Table 3 and they show that a
safe choice is M ≥ 90. In the following, we choose the more conservative value of M = 100.
Notice that this choice is in line with Ackerer et al. (2018), where they also truncate the
series and study the pricing performance with respect to it.

Strike M = 20 M = 30 M = 40 M = 50 M = 60 M = 70 M = 80 M = 90 M = 100

80 25.7122 25.7899 25.8457 25.8759 25.8906 25.8970 25.8992 25.8995 25.8991
85 22.0032 22.0213 22.0586 22.0857 22.1023 22.1119 22.1171 22.1198 22.1211
90 18.6058 18.5559 18.5642 18.5794 18.5919 18.6006 18.6064 18.6101 18.6125
95 15.5373 15.4222 15.3976 15.3958 15.3996 15.4040 15.4078 15.4107 15.4129
100 12.8039 12.6355 12.5806 12.5612 12.5546 12.5528 12.5529 12.5536 12.5544
105 10.4018 10.1979 10.1207 10.0870 10.0712 10.0634 10.0595 10.0576 10.0566
110 8.3189 8.1007 8.0121 7.9703 7.9487 7.9369 7.9301 7.9261 7.9237
115 6.5370 6.3259 6.2381 6.1954 6.1726 6.1597 6.1520 6.1473 6.1442
120 5.0336 4.8491 4.7734 4.7370 4.7176 4.7066 4.7001 4.6961 4.6934

Table 3: Pricing of Call options via the methodology in Ackerer et al. (2018), for different
strikes and different values of M .

The truncation error err
(1)
M = ε(M), introduced in (27), takes into account the impact of

the truncation level M on the pricing of options. We study in Figure 1 the rate of convergence
of this error, i.e., we perform a Log-Log regression assuming that ε(M) ∼M−αM . Indeed,
Figure 1 shows the value of αM via a Log-Log regression of the relative error for different
truncation levels M , when pricing a book of European Call options. The dispersion in the
regression study is not negligible, and this is due to the characteristics of the payoff, as the
strike of the options impacts the convergence rate. Nevertheless, the figure shows that the
truncation error has a linear behaviour as a function of the truncation level M .
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Figure 1: Log-Log regression of the relative error between the benchmark price and the price
obtained via the methodology in Ackerer et al. (2018), as presented in Table 3. The x-axis
corresponds to the values of the truncation level M , for M > 20. The fit has been performed
for M > 20. The slope αM of the Log-Log regression line is 3.9740.

The quantization error err
(2)
M,N , introduced in (27), is dependent on both the quantization

size N and the truncation level M . We assume that err
(2)
M,N ∼ CMN−αN . According to (28),

αN = 1 when N → ∞. Figure 2 shows the value of αN via a Log-Log regression of the
relative error when pricing an ATM European Call option for M ∈ {70, 80, 90}. The slope
levels αN are in line with the convergence rate of Theorem 4.5.

Moreover, the regression shows that αN is independent of the choice of the truncation
level M , while only the intercept takes different values. In particular, the figure shows that,
when implementing polynomial quantization, the choice of the quantization size N is almost
independent of the choice of the truncation level M .
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Figure 2: Log-Log regression of the relative error between the benchmark price and the price
obtained via polynomial quantization of a European ATM Call option for the SVJ model
with parameters as in Table 1, and for the truncation level M ∈ {70, 80, 90}. The x-axis
corresponds to the values of the quantization size N . The fit has been performed for N > 20.
The slopes αN of the Log-Log regression lines are, respectively, {1.3270, 1.2870, 1.4811}.

6.2 Polynomial Quantization

We use the technique developed in Section 4.1, and we compute the quantization grid as-
sociated to the log price process at time T , i.e. we approximate XT using an optimal grid
Γ∗ = {x∗1, . . . , x∗N}. The price of a Call option with maturity T and strike K is then approxi-
mated as

e−rTE
[(
eXT −K

)+] ≈ e−rT N∑
i=1

(
ex
∗
i −K

)+
P (XT ∈ Ci(Γ∗)) ,

where Ci(Γ
∗) =

[
x∗i−1+x∗i

2 ,
x∗i+x∗i+1

2

]
and the weights are given by (22). The results in Table

4 show that the quantization technique is accurate, when compared with the benchmark
price, given by Ackerer et al. (2018). Moreover, the computational cost is comparable to
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the execution time declared in Ackerer et al. (2018) ((see Figure 4)): computing Hermite
moments requires the same time declared therein, getting the quantization grids costs 0.94
seconds and the price computation is immediate, so that the total computational times are
equivalent.

Strike Benchmark price Quantization price Relative error (%)

K = 80 25.8991 25.8646 0.1332
K = 85 22.1211 22.0980 0.1044
K = 90 18.6125 18.5866 0.1391
K = 95 15.4129 15.3648 0.3121
K = 100 12.5544 12.4710 0.6643
K = 105 10.0566 10.0165 0.3987
K = 110 7.9237 7.9066 0.2158
K = 115 6.1442 6.1093 0.5680
K = 120 4.6934 4.6626 0.6562

Table 4: Pricing comparison between the benchmark price and the price obtained via polyno-
mial quantization of a European Call option for the SVJ model with parameters as in Table
1. The quantization grids have size N = 20.

6.3 Recursive Quantization

We use the methodology implemented in Section 5.2. Note that we do not exploit the fact that
S is the exponential of a polynomial process, but we construct the optimal quantizers starting
from the Euler scheme (38). We then compute, at every time step tk, for k = 1, . . . , L, such
that tL = T , the quantization of the price process S at time tk, that we call Ŝtk . In order to
price a European call option with strike K and maturity T we need only Γ∗S,L = {sL1 , . . . , sLN},
the optimal quantization grid associated to ŜT , and we have the following approximation:

e−rTE
[(
eXT −K

)+] ≈ NS∑
j=1

(
sjL −K

)+
P
(
ŜT = sjL

)
,

where the weights are computed using (40). The results in Table 5 show that recursive quan-
tization is efficient when compared to the benchmark methodology by Ackerer et al. (2018)
and that it is a good alternative to polynomial quantization (see Table 4). Moreover, recursive
quantization does not require the computation of Hermite moments, so the computational
cost here is only relative to the computation of the quantization grids (recall, nevertheless,
that here we have to both discretize the volatility and the price process), which corresponds
to 2.24 seconds, with NS = 20, NV = 10 and L = 12 (so, a total of 360 points).

6.4 Bermudan Options

The advantage of the Recursive Marginal quantization algorithm developed in Section 5.1 is
the possibility to price path dependent options, since we approximate the process at every
time step of the Euler scheme, and the transition densities are given directly by the algorithm,
as shown in (42). This motivates us to show an application of this methodology to the
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Strike Benchmark price Quantization price Relative error (%)

K = 80 25.8991 25.9082 0.0351
K = 85 22.1211 22.1462 0.1135
K = 90 18.6125 18.6430 0.1639
K = 95 15.4129 15.4395 0.1726
K = 100 12.5544 12.5677 0.1059
K = 105 10.0566 10.0789 0.2217
K = 110 7.9237 7.9508 0.3420
K = 115 6.1442 6.1692 0.4069
K = 120 4.6934 4.7106 0.3665

Table 5: Pricing comparison between the benchmark price and the price obtained via recursive
quantization of a European Call option for the SVJ model with parameters as in Table 1.
The quantization grids have size NS = 20, NV = 10 for every time step, and L = 12.

pricing of Bermudan options. Pricing such options can be done via a backward procedure
on the multinomial tree obtained via quantization, as presented e.g. in (Bally et al., 2005,
Proposition 2.1). As a first benchmark used for comparison we consider the Longstaff Schwarz
algorithm, as done also in Filipovic et al. (2020) when dealing with American Put options in
a Jacobi exchange rate model. The results in Table 6 show the accuracy of our methodology.
The computational cost behind the pricing of Bermudan Options using recursive quantization
is the one required by the computation of the quantization grids (which do not depend on the
derivative’s strike), that is the same declared in Section 6.3 (2.24 seconds), and the Bermudan
backward algorithm, that, due to the size of the grids in our example, is instantaneous.

Strike Benchmark price Quantization price Relative error (%)

K = 80 3.0410 2.9984 1.3997
K = 85 4.1040 4.1077 0.0899
K = 90 5.4579 5.5012 0.7931
K = 95 7.1493 7.2222 1.0199
K = 100 9.2192 9.3151 1.0404
K = 105 11.6984 11.8285 1.1120
K = 110 14.6035 14.7564 1.0470
K = 115 17.9352 18.0969 0.9015
K = 120 21.6788 21.8295 0.6951

Table 6: Benchmark price (Longstaff Schwartz) and the price obtained via recursive quan-
tization of a Bermudan Put option for the SVJ model with parameters as in Table 1. The
quantization grids have size NS = 20, NV = 10 for every time step, and L = 12.

For completeness we also compare our Bermudan option prices with those in (Cui et al.,
2018, Section 5.2.1), the benchmark there being still Longstaff Schwartz. In Table 7 we list
the parameters used therein, which we also consider here for comparison. The computational
time declared by our competitors for seven strikes is 4.7 seconds with Matlab 8.5 on a personal
computer with an i7-6700 CPU @3.40 GHz. This is analogous to the time required by RMQ
to obtain all the prices below.
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κ = 3 θ = 0.13 σ = 0.4 ρ = −0.2

V0 = 0.13 vmin = 10−2 vmax = 0.25 r = 0.02

δ = 0 S0 = 10 T = 0.5

Table 7: Parameters of the SVJ model in Cui et al. (2018).

In Table 8 we show, for seven different strikes: the Longstaff-Schwartz benchmark price,
our RMQ price, the price proposed by Cui et al. (2018) obtained via a continuous-time Markov
chain approximation and the two absolute errors.

Strike Benchmark (L.-S.) RMQ price Cui et al. price Abs err RMQ Abs err Cui et al.

K = 8.5 0.3527 0.3603 0.3522 0.0076 0.0005
K = 9 0.5125 0.5209 0.5139 0.0084 0.0014
K = 9.5 0.7157 0.7213 0.7163 0.0056 0.0006
K = 10 0.9591 0.9624 0.9599 0.0033 0.0008
K = 10.5 1.2407 1.2430 1.2435 0.0023 0.0028
K = 11 1.5625 1.5620 1.5643 0.0005 0.0018
K = 11.5 1.9163 1.9156 1.9189 0.0007 0.0026

Table 8: Benchmark price (Longstaff-Schwartz) provided in Cui et al. (2018), the price ob-
tained via RMQ quantization, the price in Cui et al. (2018) and the absolute errors for a
Bermudan Put option for the SVJ model with parameters as in Table 7. The quantization
grids have size NS = 40, NV = 10 for every time step, and L = 12.

The results in Table 8 confirm (recall Table 6) the effectiveness of RMQ when pricing
path-dependent options in the SJV model.

7 Conclusion

In this paper we presented how to efficiently apply quantization techniques to polynomial
processes. In particular, we focused on the SVJ model, but our results can be extended to
any polynomial model. Our analysis on SVJ quantization provided numerical tools to develop
fast exotic option pricing algorithms. We presented two approaches. Firstly, we exploited the
polynomial property, and we provided new theoretical results to study the approximation
errors. As a result we obtained ad-hoc pricing tools for polynomial models and we provided
numerical examples to assess their goodness with respect to the existing literature. Secondly,
we applied RMQ to polynomial processes, by viewing them as a particular class of stochastic
volatility processes. This allowed us to price exotic options and numerical examples for
Bermudan options were given. Our conclusion is that quantization is a powerful discretization
procedure, with respect to precision and speed, whose paradigm can be easily used in the field
of polynomial processes. Moreover, when looking at the family of quantization procedures
with pricing in view, recursive marginal quantization is undoubtedly the most powerful, given
its flexibility and effectiveness.



G. Callegaro, L. Fiorin, A. Pallavicini, Quantization Goes Polynomial 23

A Proofs of the Main Results

We here provide the proofs of the main results obtained in the paper.

A.1 Proof of Theorem 4.1

Proof. First of all notice that, for every i = 1, . . . , N , the expectation in (15) can be rewritten
as E[f i(XT )], with f i(y) := (y − xi) 11

y∈
[
xi−1+xi

2
,
xi+xi+1

2

]. In order to exploit the polynomial

nature of our setting and to use the result in Equation (6), we need f i to be in L2
w. We have

||f i||2w =

∫
R

(
f i(y)

)2
w(y)dy ≤

∫
R

(y − xi)2w(y)dy

=

∫
R
y2 w(y) dy − 2xi

∫
R
y w(y) dy + x2

i

∫
R
w(y)dy

= σ2
w + µ2

w − 2xiµw + x2
i

which is finite for every i = 1, . . . , N .
We want to compute the expected value in (16). Using the polynomial property in (6),

we now rewrite it in the form of (17), where (recalling Equation (7))

f in =

∫
R

(y − xi) 11
y∈

[
xi−1+xi

2
,
xi+xi+1

2

]Hn(y)w(y)dy

=

∫
R
y11[xi−1+xi

2
,
xi+xi+1

2

](y)Hn(y)w(y)dy︸ ︷︷ ︸
ain

−xi
∫
R

11[xi−1+xi
2

,
xi+xi+1

2

](y)Hn(y)w(y)dy︸ ︷︷ ︸
bin

We focus first on the computation of ain. Let us define

hn(K) =

∫
R
y11[K,∞](y)Hn(y)w(y)dy,

then ain = hn

(
xi−1+xi

2

)
− hn

(
xi+xi+1

2

)
. When n = 0 we have, integrating by parts, that

h0(K) =

∫
R
y11[K,∞](y)w(y)dy

= σwφ

(
K − µw
σw

)
+ µwΦ

(
µw −K
σw

)
.

When n ≥ 1 we have that

hn(K) =

∫ ∞
K

yHn(y)w(y)dy

=
1√
n!

∫ ∞
K

yHn
(
y − µw
σw

)
1

σw
φ

(
y − µw
σw

)
dy

=
1√
n!

∫ ∞
K−µw
σw

(σwz + µw)Hn (z)φ (z) dz

=
σw√
n!

∫ ∞
K−µw
σw

zHn (z)φ (z) dz +
µw√
n!

∫ ∞
K−µw
σw

Hn (z)φ (z) dz.
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We exploit the recursive relation between the Hermite polynomials for n ≥ 1, : zHn(z) =
Hn+1(z) + nHn−1(z), in order to get

hn(K) =
σw√
n!

∫ ∞
K−µw
σw

Hn+1 (z)φ (z) dz +
nσw√
n!

∫ ∞
K−µw
σw

Hn−1 (z)φ (z) dz +
µw√
n!

∫ ∞
K−µw
σw

Hn (z)φ (z) dz.

The case n = 1 can be obtained directly using integration by parts, while for n ≥ 1 we
exploit the relation

∫∞
x Hn (z)φ (z) dz = Hn−1 (x)φ (x) , so to have the result for hn(K). The

bin coefficients can be computed similarly. In fact, if we define

ln(K) =

∫
R

11[K,∞](y)Hn(y)w(y)dy,

then bin = ln

(
xi−1+xi

2

)
− ln

(
xi+xi+1

2

)
. The case when n = 0 is trivial, instead when n ≥ 1

we have that

ln(K) =

∫ ∞
K

Hn(y)w(y)dy

=
1√
n!

∫ ∞
K
Hn
(
y − µw
σw

)
1

σw
φ

(
y − µw
σw

)
dy

=
1√
n!

∫ ∞
K−µw
σw

Hn (z)φ (z) dz

=
1√
n!
Hn−1

(
K − µw
σw

)
φ

(
K − µw
σw

)
.

A.2 Proof of Proposition 4.3

Proof. Remember that gT is the density of XT . We can then rewrite Ei(x1, . . . , xN ) as

Ei(x1, . . . , xN ) =

∫ xi+xi+1
2

xi−1+xi
2

ygT (y)dy − xi
∫ xi+xi+1

2

xi−1+xi
2

gT (y)dy.

This shows that Ei depends only on xi−1, xi and xi+1, so that the Jacobian matrix J is
tridiagonal. Moreover the lower diagonal has components:

Ji,i−1 =
∂Ei
∂xi−1

(xi−1, xi, xi+1) = −1

2

xi−1 + xi
2

gT

(
xi−1 + xi

2

)
+

1

2
xigT

(
xi−1 + xi

2

)
=

1

2

(
xi − xi−1

2

)
gT

(
xi−1 + xi

2

)
and the upper diagonal reads:

Ji,i+1 =
∂Ei
∂xi+1

(xi−1, xi, xi+1) =
1

2

xi + xi+1

2
gT

(
xi + xi+1

2

)
− 1

2
xigT

(
xi + xi+1

2

)
=

1

2

(
xi+1 − xi

2

)
gT

(
xi + xi+1

2

)
.
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We can deduce immediately that Ji,i−1 = Ji−1,i, so that J is also symmetric. Finally the
diagonal has components:

Ji,i =
∂Ei
∂xi

(xi−1, xi, xi+1) =
1

2

xi + xi+1

2
gT

(
xi + xi+1

2

)
− 1

2

xi + xi+1

2
gT

(
xi + xi+1

2

)
− 1

2
xi

(
gT

(
xi + xi+1

2

)
− gT

(
xi−1 + xi

2

))
−
∫ xi+xi+1

2

xi−1+xi
2

gT (y)dy

= Ji,i−1 + Ji,i+1 −
∫ xi+xi+1

2

xi−1+xi
2

gT (y)dy,

and the integral in the last equality is exactly the weight of the i-th Voronoi cell. The
expression for the density in (21) comes from the following fact: the pricing of a derivative
with payoff f is, recall Equation (6),

E [f(XT )] =
∑
n≥0

fn`n

=
∑
n≥0

∫
R
f(y)Hn(y)w(y)dy `n

=

∫
R
f(y)

∑
n≥0

Hn(y)`nw(y)dy,

where the fact that we can change the order of the infinite sum and the integral is proved in
Ackerer et al. (2018). Since the price of the derivative can be seen also as∫

R
f(y)gT (y)dy,

(21) follows. Finally, the expression for P (XT ∈ Ci(Γ)) comes immediately from the proof of
Theorem 4.1.

A.3 Proof of Lemma 4.4

Proof. First of all remember that

err
(2)
M,N =

∣∣∣∣∣e−rT
∫
R

(ex −K)+ g
(M)
T (x)dx− e−rT

N∑
i=1

∫
Ci(ΓX)

(exi −K)+g
(M)
T (x)dx

∣∣∣∣∣ .
By introducing s := ex (notice that the payoff (s−K)+ is Lipschitz with respect to s and
this will be crucial), we have

err
(2)
M,N = e−rT

∣∣∣∣∣
∫ ∞

0
(s−K)+ g

(M)
T (ln s)

s
ds−

N∑
i=1

∫
Ci(ΓS)

(si −K)+ g
(M)
T (ln s)

s
ds

∣∣∣∣∣
where S

(M)
T is a random variable with density h

(M)
T (s) :=

g
(M)
T (ln(s))

s for s ∈ (0,+∞) and where

ΓS = {s1, . . . , sN} is an N -quantizer for S
(M)
T . We denote by Ŝ

(M,N)
T the quantization of S

(M)
T

on ΓS . We have

P
(
Ŝ

(M,N)
T = si

)
=

∫
Ci(ΓS)

h
(M)
T (s)ds.
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Thus, working on the error err
(2)
M,N corresponds to estimating the error coming from pricing

a European Call option on S
(M)
T via quantization. Now, for every Lipschitz function f with

Lipschitz constant [f ]Lip, we have the following result:

err
(2)
M,N =

∣∣∣E [f (S(M)
T

)
− f

(
Ŝ

(M,N)
T

)]∣∣∣
≤ [f ]Lip

∣∣∣∣∣∣S(M)
T − Ŝ(M,N)

T

∣∣∣∣∣∣
1

≤ [f ]Lip

∣∣∣∣∣∣S(M)
T − Ŝ(M,N)

T

∣∣∣∣∣∣
2
,

where

||S(M)
T − Ŝ(M,N)

T ||r =

(
N∑
i=1

∫
Ci(ΓS)

|s− si|r h(M)
T (s)ds

) 1
r

is the Lr distance between the random variable with density h
(M)
T and its quantization with

N points. The Lipschitz constant for the payoff of a Call option is equal to one, and we have
the result.

A.4 Proof of Theorem 4.5

Proof. It is worth noticing that in this polynomial setting, by definition (recall Equation

(24)), the density g
(M)
T (s), s ∈ (0,+∞), behaves like sMe−

s2

2 , so that h
(M)
T (s) behaves like

(ln s)M e−
(ln s)2

2
1
s =: h̃

(M)
T (s) at 0 and at infinity.

The proof of Callegaro et al. (2019, Theorem 2.11) consists of five steps, from zero to four.
We now adapt it to our setting and in the case of quadratic quantization, namely in the case
when p in the cited paper is equal to 2. The first three steps remain the same, so we briefly
sketch them.

Step 0

We have to prove that ||h(M)
T || 1

p+1
= ||h(M)

T || 1
3
< +∞. We hence study the convergence at 0

and at +∞ of the integral of
(
h̃

(M)
T

) 1
3
. In the rest of the proof, without loss of generality, we

will assume that M is a multiple of 3, so that computations will be explicit. If we denote by
M := M

3 , then, a primitive function is

∫ (
h̃

(M)
T (s)

) 1
3
ds = βM Erf

(
−2 + ln s√

6

)
+

M∑
n=1

αn s
2
3 e−

1
6

ln2 s (ln s)M−n =: H̃M
T (s),

where Erf is the error function, defined as Erf(s) = 2
π

∫ s
0 e
−t2dt, and the coefficients αn, n =

1, . . . ,M and βM can be explicitly computed, e.g. using a symbolic programming language
as Mathematica. Given that

lim
s→+∞

H̃M
T (s) = βM

and
lim
s→0

H̃M
T (s) = −βM

we obtain the finiteness of ||h(M)
T || 1

3
.
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Step 1

Here it can be shown the following estimation for the distortion function D, defined in (10),

associated to S
(M)
T and calculated in a generic grid Γ = {s1, . . . , sN}:

D(s1, . . . , sN ) ≤
∫ s1

0
(s1 − y)2h

(M)
T (s)ds+

N−1∑
i=1

h
(M)
T (ξi) + h

(M)
T (ξi+1)

3

(
si+1 − si

2

)3

+

∫ +∞

sN

(y − sN )2h
(M)
T (s)ds,

for some ξ1, . . . , ξN ∈ R.

Step 2

There exists a grid Γ = {s1, . . . , sN}, and ζ1, . . . , ζN−1, with ζi ∈ [si, si+1], such that∫ s̄i

0

(
h

(M)
T (s)

) 1
3
ds =

∫ +∞

s̄N

(
h

(M)
T (s)

) 1
3
ds =

1

2N
||h(M)

T ||
1
3
1
3

,

and

(si+1 − si)2 =
||h(M)

T ||
2
3
1
3(

h
(M)
T (ζi)

) 2
3
N2

.

Step 3

We provide the following bound for the quantization error:

∣∣∣∣∣∣S(M)
T − Ŝ(M,N)

T

∣∣∣∣∣∣2
2
≤

∣∣∣∣∣∣h(M)
T

∣∣∣∣∣∣ 23
1
3

24N2

N−1∑
i=1

h
(M)
T (ξ̄i) + h

(M)
T (ξ̄i+1)(

h
(M)
T (ζi)

) 2
3

(s̄i+1 − s̄i)

+

∫ s̄1

0
(s̄1 − s)2h

(M)
T (s)ds+

∫ +∞

s̄N

(s− s̄N )2h
(M)
T (s)ds

Step 4

In Step 2 we have proved that

1

N2
=

4

||h(M)
T ||

2
3
1
3

(∫ s̄i

0

(
h

(M)
T (s)

) 1
3
ds

)2

=
4

||h(M)
T ||

2
3
1
3

(∫ +∞

s̄N

(
h

(M)
T (s)

) 1
3
ds

)2

,

So in order to prove that, when N →∞,

∫ s̄1

0
(s̄1−s)2h

(M)
T (s)ds and

∫ +∞

s̄N

(s− s̄N )2h
(M)
T (s)ds

are o

(
1

N2

)
, we just need to prove that

lim
y→+∞

∫ +∞

y
(s− y)2 h

(M)
T (s)ds(∫ +∞

y

(
h

(M)
T (s)

) 1
3
ds

)2 = 0
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and that

lim
y→0

∫ y

0
(s− y)2 h

(M)
T (s)ds(∫ y

0

(
h

(M)
T (s)

) 1
3
ds

)2 = 0.

Since, both at 0 and at infinity, h
(M)
T ∼ h̃(M)

T , we can equivalently prove that

lim
y→+∞

∫ +∞

y
s2 h̃

(M)
T (s)ds− 2y

∫ +∞

y
s h̃

(M)
T (s)ds+ y2

∫ +∞

y
h̃

(M)
T (s)ds(∫ +∞

y

(
h̃

(M)
T (s)

) 1
3
ds

)2 = 0

and that

lim
y→0

∫ y

0
s2 h̃

(M)
T (s)ds− 2y

∫ y

0
s h̃

(M)
T (s)dz + y2

∫ y

0
h̃

(M)
T (s)ds(∫ y

0

(
h̃

(M)
T (s)

) 1
3
ds

)2 = 0.

Up to a constant, we have that, for ` = 0, 1, 2,∫
s`h̃

(M)
T (s)ds = β`,MErf

(
−`+ ln s√

2

)
+

M−1∑
n=0

α`,ne
− 1

2
(ln s)2s` (ln s)n =: H̃

(M)
`,T (s),

where, as before, Erf is the error function and α`,n and β`,M can be computed, for ` =

0, 1, 2, with Mathematica in closed form. Please note that limy→+∞ H̃
(M)
`,T (y) = β`,M and

limy→0 H̃
(M)
`,T (y) = −β`,M , for ` = 0, 1, 2. We have then that

lim
y→+∞

∫ +∞

y
s2h̃

(M)
T (s)dz − 2y

∫ +∞

y
sh̃

(M)
T (s)ds+ y2

∫ +∞

y
h̃

(M)
T (s)ds(∫ +∞

y

(
h̃

(M)
T (s)

) 1
3
ds

)2 =

lim
y→+∞

β2,M − H̃(M)
2,T (y)− 2y

(
β1,M − H̃(M)

1,T (y)
)

+ y2
(
β0,M − H̃(M)

0,T (y)
)

(
βM − H̃(M)

T (y)
)2 = 0,

and, in a similar way,

lim
y→0

∫ y

0
s2h̃

(M)
T (s)ds− 2y

∫ y

0
sh̃

(M)
T (s)ds+ y2

∫ y

0
h̃

(M)
T (s)ds(∫ y

0

(
h̃

(M)
T (s)

) 1
3
ds

)2 =

lim
y→0

H̃
(M)
2,T (y) + β2,M − 2y

(
H̃

(M)
1,T (y) + β1,M

)
+ y2

(
H̃

(M)
0,T (y) + β0,M

)
(
H̃

(M)
T (y) + βM

)2 = 0.
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Since
N−1∑
i=1

h
(M)
T (ξ̄i) + h

(M)
T (ξ̄i+1)(

h
(M)
T (ζi)

) 2
3

(s̄i+1 − s̄i)→ 2||h(M)
T ||

1
3
1
3

,

when N → +∞, we derive that

lim
N→+∞

N2||S(M)
T − Ŝ(M,N)

T ||22 ≤
1

12
||h(M)

T || 1
3
,

and thanks to Lemma 4.4 we conclude.
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