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Abstract

We study the geometry of the stratification induced by an affine hyperplane ar-
rangement H on the quotient of a complex affine space by the action of a discrete
group preserving H. We give conditions ensuring normality or normality in codi-
mension 1 of strata. We apply these results to retrieve the list of the categorical
quotients of closures of Jordan classes and of sheets in a complex simple algebraic
group G that are normal. In the simply-connected case, we show that normality of
such a quotient is equivalent to its smoothness.

Keywords: Affine hyperplane arrangement, affine reflection, affine Weyl group, Jordan
classes, simple algebraic group, categorical quotient, Luna stratification
MSC2020: 20G20; 20F55; 14N20 (Primary) 14A50 (Secondary)

1 Introduction

In [5, 4] the stratification of a semisimple Lie algebra by Jordan classes (also called decom-
position classes or packets) was introduced and studied in order to describe the sheets
for the adjoint action of a semisimple algebraic group G on its Lie algebra g. It was
shown that every sheet is the regular part in the closure of a unique Jordan class and as a
consequence, sheets could be classified in terms of combinatorial data. Closure relations
for Jordan classes were explicitly given and, for S a sheet, the topology of the orbit space
S/G and the normalisation of the categorical quotient S//G were explicitly described.
These quotients are the closures of Luna strata for g//G, as defined in [17, III.2].

Subsequently, it was proved in [15] that the orbit space S/G can be given the structure
of a geometric quotient which is isomorphic to the quotient of an affine space modulo the
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action of a finite group. Richardson in [21] has provided a criterion ensuring normality
of S//G, where S is a sheet or a Jordan class and has produced a complete list of the
normal quotients for classical Lie algebras. The list for exceptional Lie algebras was
obtained in [7] and [11] with different techniques. The same approach allowed to provide
in [21, 7, 11] the complete list of those regular Jordan classes whose closure is normal and
Cohen-Macaulay.

In the seminal paper [18], Lusztig introduced a stratification on G which is analogous
to the partition into Jordan classes and proved that topological properties of this strati-
fication (and of its quotient) encoded representation theoretic information for G and its
Weyl group. This stratification in Jordan classes for G has been crucial for the study of
sheets for the adjoint action of G on itself [8]. An analogue of Katsylo’s result [15] for
S/G, where S is a sheet in G consisting of spherical conjugacy classes was given in [9].
Other properties of quotients of sheets and of closures of Jordan classes, including the
description of the normalisation of S//G in the spirit of [4] were given in [10]. When G
is simply-connected, these quotients are the closures of Luna strata for G//G. The origin
and main motivation of this paper is to detect when they are normal.

In the Lie algebra case, Douglass and Röhrle [11] translated the normality condition in
[21] in terms of properties of subarrangements of the Weyl group hyperplane arrangement.
We bring affine hyperplane arrangements into the picture in the following way. For a
semisimple group G we consider the stratification on a Cartan subalgebra h in Lie(G)
induced by the the corresponding affine Weyl group arrangement, and the quotient h/W
of h by the action of a finite extension W of the affine Weyl group. A Jordan stratum in
G//G is shown to be (analytically) isomorphic to a stratum for the quotient stratification
on h/W . In order to provide a uniform treatment of the Lie algebra case, the simply-
connected group case and the non simply-connected group case, we put this problem into
a more general framework, allowing a wider range of choices for the acting group W ,
which will be the extension of a group WH generated by suitable affine reflections by a
finite group K. The quotients studied in [11] correspond to the case in whichWH is finite
and K is trivial. Similar questions have been addressed in [2], by considering the action
of finite complex reflections groups (with no extensions).

One of the main novelties in our approach is the analysis of these stratifications by
looking at the local geometry of strata. Around unibranch points strata are smoothly
equivalent to strata for a finite arrangement. We describe how the geometry of the
problem behaves along strata and reduce the verification of normality of a stratum X
to checking normality at a well-chosen point in each minimal stratum contained in X.
In the case of Jordan classes in semisimple groups, minimal strata correspond to the
Jordan classes consisting of one single conjugacy class, which is necessarily isolated, in
the terminology of [18]. Around such points the stratum is smoothly equivalent to the
quotient of the closure of a Jordan class in a Lie algebra with automorphisms.
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Our approach sheds light on some phenomena which could be observed in the pre-
viously cited papers. Most evidently, it explains in terms of normality in codimension
one a rigidity property of the combinatorial data associated with normal quotients that
was given in terms of equality of two families of exponents in [11, 2]. Our interpretation
is obtained by associating to each quotient a K-stable family of faces Σ(H, K, L) of a
fundamental domain for the action of WH. This set is a combinatorial counterpart for
some geometric properties, e.g., both unibranchedness and normality can be read-off from
the properties of Σ(H, K, L).

As a final output we produce the list of normal strata for any simple G. We prove
that when G is simply-connected, a stratum is normal if and only if it is smooth. The
same phenomenon occurs in the Lie algebra case [7]. For finite complex reflection groups
this was observed in [2]. The results obtained here have been applied in [1] to produce
the complete list of regular Jordan classes in G semisimple and simply-connected whose
closure is normal and Cohen-Macaulay.

The paper is structured as follows. After introducing the basics on affine hyperplane
arrangements, we introduce strata in Subsection 2.2, and underline the special case of
quotients of closures of Jordan classes in Subsection 2.4. In Section 3 we describe the
normalisation of a stratum and give a necessary and sufficient condition for a stratum to
be unibranch at a point, and a normality condition in the finite case. Then we turn to a
local study of strata, showing that around a point a stratum is smoothly equivalent to a
stratum in a quotient by a finite group, leading to necessary and sufficient conditions for a
stratum to be normal in terms of normality of suitable strata in quotients by finite groups,
Theorem 4.9. Section 5 is devoted to further necessary conditions for normality, namely
the case of strata determined by lines, and a characterisation of strata that are normal
in codimension 1. In Section 6 we introduce the sets Σ(H, K, L) and Σ(H, L) of faces of
the fundamental alcove and their induced face posets and show that their combinatorial
properties encode geometric properties of the associated strata. In Section 7 we show how
the sets Σ(H, L), corresponding to strata in quotients of a semisimple Lie algebras or of
simply-connected semisimple group can be identified with Coxeter classes and extend an
algorithm in [12] to calculate Coxeter classes to the case of infinite groups. In Section 8
we restrict to the simple, simply-connected case: we characterise strata that are normal
in codimension 1 as those for which Σ(H, K) has exacly one element and we apply the
algorithm to give a complete list of strata in G//G that are normal in codimension 1 in
Proposition 8.6. Building on [7, 11] and on Theorem 4.9 we give a complete list of normal,
equivalently smooth, strata in G//G in Theorem 8.7. The case of arbitrary simple groups
is treated in Section 9.
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2 Notation, basic definitions and motivation

2.1 Index of notation

H (admissible) affine hyperplane arrangement in E, page 5
WH group generated by the reflections with respect to affine hyperplanes in H, page 5
V (H), the direction of an affine hyperplane, page 5
τv translation along the vector v, 7 VH =

⋂
H∈H V (H), page 5

Eess, the affine space on which WH is essential, page 5
Hess, the restriction of H to Eess, page 5
A fundamental domain for the WH-action on E, page 6
K subgroup of StabAut(E)(A), page 7
WH,K = K nWH, page 7
Hl = {H ∈ H : l ∈ H}, page 8
L a flat, i.e., an intersections of affine hyperplanes in H, page 6
L̊ = L \

⋃
L′(L L

′, page 6
HL = {H ∩ L : ∅ 6= H ∩ L 6= L} induced hyperplane arrangement on L, page 6
WHL group generated by the reflections with respect to affine hyperplanes in HL, page 21
C(H) the set of chambers induced by H, page 6
P(H) the poset of chambers, page 6
F a face in P(H), page 6
|F | affine subspace generated by F , page 6
Wp stabiliser of the point p in the group W , page 7
AC, complexification of the affine or vector space A, page 7
AC, fundamental region for the WH-action on EC, page 8
X(H, K, L) :=WH,KLC/WH,K , a stratum in EC/WH,K , page 8
X(H, L) :=WHLC/WH, a stratum in EC/WH, page 8
e = exp(2πi−) : g→ Gsc, eπ = π ◦ e : g→ G, page 11
∼se, smooth equivalence, page 12
ΓH,L = StabWH(L), page 13
ΓH,K,L = StabWH,K (L), page 13
ιL : ΓH,K,L → Aut(L), the map induced by restriction to L, page 21
ΓW,L = StabWH(e(LC)), page 13
X̃(H, L) = LC/ΓH,L, page 13
X̃(H, K, L) = LC/ΓH,K,L, page 13
Ω(H, K, L)l := {wLC : w ∈ WH,K , l ∈ wLC}, page 14
WL
H := ∩l∈LCW l

H, page 16
WL
H,K := ∩l∈LCW l

H,K , page 16
KL := ∩l∈LCK

l, page 16
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UL := {l ∈ LC : W l
H,K =WL

H,K}, equation (4.4)
Y (H, K, L) =WH,KLC, page 16
Y (H, K, L)l =

⋃
w∈WH,K,
l∈wLC

wLC, page 16

Σ(H, K, L) := {wL̊ ∩ A : w ∈ WH,K , wL lies over A}, page 22

Σ(H, L) := {wL̊ ∩ A : w ∈ WH, wL lies over A}, page 22
P(Σ(H, K, L)) := {F ∈ P(HL) : F ⊂ F ′, for some F ′ ∈ Σ(H, K, L)}, page 22
P(Σ(H, L)) := {F ∈ P(HL) : F ⊂ F ′ for some F ′ ∈ Σ(H, L)}, page 22
Fl = {F ∈ Σ(H, K, L) : l ∈ F}, page 24
S, the set of Coxeter generators of WH, page 25
{N1, . . . , Nn}, nodes of the Coxeter graph of WH, page 25
{x0, . . . , xn}, vertices of a fundamental alcove, page 9
ω∨i , i = 1, . . . , n, fundamental co-weights, page 9
MF , the walls of A containing the face F , page 25
SF , the subset of S containing the reflections with respect to H ∈MF , page 25
ŜF = S \ SF , page 25
[S ′] := {S ′′ ⊂ S : wS ′ = S ′′ for some w ∈ WH}, the Coxeter class of S ′ ⊂ S, page 26
I := K/K ′ for K ′ CK, page 32
IX
′
= StabI(X(H, K ′, L)), page 32

IX
′,x := Ix ∩ IX′ for x ∈ X(H, K ′, L), page 32

2.2 Hyperplane arrangements and main question

2.2.1 Basic definitions

Let E be an Euclidean space with direction vector space V acting simply transitively
by translations on E. We denote by H a (not necessarily finite) affine hyperplane ar-
rangement in E and by WH the group generated by the reflections with respect to the
affine hyperplanes in H. We say that H is admissible if WH, equipped with the discrete
topology, acts properly on E and preserves H. In this case, H is locally finite [6, V.3.1].

We denote by V (L) ⊂ V the direction of an affine subspace L ⊂ E and we set
VH = ∩H∈HV (H) ⊂ V . The action of the group WH and H are called essential if
VH = {0}. The inclusion WH ≤ Aut(E) ' V o O(V ) followed by the natural quotient
by V gives a linear WH-action on V . Although the isomorphism Aut(E) ' V o O(V )
depends on the choice of a point, different choices induce isomorphicWH-actions, all fixing
VH pointwise. For any p ∈ E the affine subspace Eess = p+V ⊥H isWH-stable becauseWH
is generated by (affine) reflections in directions that are orthogonal to VH and we have
a WH-equivariant isomorphism Eess ' E/VH. In addition, if Hess is the arrangement
induced on Eess, then it is essential, WH ' WHess and Hess is admissible if H is so.
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The intersections of hyperplanes in H induce a stratification on E, whose parts are
called flats. For a flat L, we set L̊ := L \

⋃
L′(L L

′ and denote by HL the hyperplane
arrangement induced by H on L. In general, HL is not admissible even if H is so.

The connected components of E \
⋃
H∈HH are called the chambers of H: we denote

by C(H) the set of chambers of H and similarly C(HL) the set of chambers of HL in L.
The closure of a chamber is a convex polytope. Following [20, Definition 2.18] we set

P(H) =
⋃

L a flat in E

C(HL)

and we view it as a collection of subsets of E. Any F ∈ P(H) is called a face, |F | will
denote the support of F , i.e. the minimal affine space containing F . Each face is open in
its support and we set dimF := dim |F |. By F we usually mean the closure in E. The
set P(H) has a natural poset structure given by inclusion of closures, we shall call it the
poset of faces of H. For a given chamber C, we say that H ∈ H is a wall of C if H is the
support of a (maximal) face of C. For any subposet in P(H), a gallery is a sequence of
equidimensional faces Fi for i = 0, . . . , ` such that for every i there is a unique face F ′i of
codimension 1 contained in Fi ∩ Fi+1.

From now on we assume that H is admissible. Under this assumptionWH acts simply
transitively on C(H), [6, Théorème 1, V.3.2] and the closure of a chamber is a fundamental
domain for the action of WH, [6, Théorème 2, V.3.3]. We fix such a fundamental domain
A. If H is not essential we take A = Aess + VH, where Aess is a fundamental domain for
the action of WH on Eess ' E/VH.

By [6, V.3.7, V.3.8], if the WH-action on V is not irreducible, then V = VH ⊕
(
⊕r

j=1 V(j)), where each V(j) for j > 0 is an irreducible representation of WH, WH '∏r
i=jWH(j) where each factorWH(j) acts irreducibly on V(j) and trivially on V(j′) for j′ 6= j

and is generated by the reflections with respect to the hyperplanes in the induced, admis-
sible arrangement H(j) on E(j) = p+ V(j), for some p ∈ E. Hence, E ' VH × (

∏r
j=1E(j)).

Each WH(j) is either a finite Coxeter group or an affine Weyl group [6, V.3.9,VI.2.5].
Accordingly, the fundamental chamber decomposes as A = VH +

∏r
j=1A(j) where each

A(j) is a fundamental domain for the action of WH(j) on E(j) and it is either a simplex
or a simplicial cone. Similarly, P(H) decomposes. Two faces F = VH +

∏r
j=1 F(j) and

F ′ = VH +
∏r

j=1 F
′
(j) in P(H) are separated by a single wall if and only if there is j such

that F(j′) = F ′(j′) for every j′ 6= j and F(j) and F ′(j) are separated by a single wall in H(j).

We will say that a flat L lies over A if L = |L ∩ A|. This is the case if and only if L
is the intersection of some of the walls of A.

Remark 2.1. A flat L′ in E is always WH-conjugate to a flat L lying over A. Indeed for
any AL′ ∈ C(HL′) there is an A′ ∈ C(H) such that AL′ = A′ ∩L′. Then, there is w ∈ WH
such that wAL′ = A ∩ wL′ and L := wL′ lies over A.
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We consider the group ŴH := StabAut(E)(H). It is the normaliser of WH in Aut(E)

and preserves C(H). Then ŴH ' StabAut(E)(A)nWH, (proof as in [6, V.2.3]) and for any

subgroup W of ŴH containing WH we have WH CW and K := W/WH ≤ ŴH/WH '
StabAut(E)(A). Thus, all subgroups of ŴH containingWH are of the formWH,K = KnWH
for some K ≤ StabAut(E)(A). Whenever we writeWH,K we will always mean such a group.

Remark 2.2. If WH is essential, then StabAut(E)(A) is finite. Indeed, it permutes the
walls of A and therefore it permutes the (finitely-many) elements of the set F consisting
of minimal dimensional faces of A that are not fixed by WH. Let σ : StabAut(E)(A) →
Perm(F) be the corresponding group morphism. The elements in F are products of half
lines and points and if s ∈ ker(σ), then s must fix each of these faces pointwise because
it is an Euclidean transformation. Hence s = id and StabAut(E)(A) is finite.

If the action ofWH is not essential, then StabAut(E)(A) is never finite as it contains all
translations by vectors in VH. We will say that K is admissible if its action is obtained by
pull-back of an action on the affine space Eess ' E/VH, i.e., if it satisfies k(x+v) = kx+v
for any k ∈ K, x ∈ EC and v ∈ VH. The K-action is trivial in the direction of VH and K
is always finite in this case. From now on K is assumed to be admissible. Observe that if
WH is not irreducible, K may permute the components of E.

We end this section by a simple observation that will be needed in the sequel.

Remark 2.3. If kwp ∈ A for some p ∈ A, k ∈ K and w ∈ WH, then wp ∈ A∩WHp = {p}.
Thus, kwp = kp.

2.2.2 Complexification

For any real affine space or vector space A, we will indicate by AC its complexification.
By abuse of terminology we will also call affine reflection hyperplanes the complexification
of the affine hyperplanes in H in EC. We set HC := {HC : H ∈ H}. Note that VC acts
on EC by translations and that any point in EC can be written as x+ iy ∈ E + iV . Such
a point lies in a complexified affine hyperplane HC if and only if x ∈ H and y ∈ V (H).

The intersection of complex hyperplanes in HC induces a stratification on EC and ŴH
acts on EC stabilising HC. Let L be a flat in E. By the description of the complex affine
hyperplanes, the (complex) flat LC is the affine space containing a point in L and having
direction V (L)C. Its generic part will be denoted by L̊C. It follows that if VH = {0}, then
all 0-dimensional flats lie in E.

For any D ⊂ EC and w ∈ ŴH we shall set Dw := {x ∈ D : wx = x}. When needed,
we will denote a translation along a vector v ∈ VC by τv and for any group W acting on
a set D and any p ∈ D we shall denote by Wp the stabilizer of p in W .
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For l ∈ EC we shall denote by Hl the subarrangement of H consisting of hyperplanes
whose complexification contains l. Then, W l

H =WHl , i.e., the subgroup ofWH generated
by the reflections with respect to the hyperplanes in Hl: if l ∈ E this is [6, V.3.3], so Hl

is again admissible. If l = x + iy ∈ EC with x ∈ E and y ∈ V , then w ∈ W l
H implies

that w ∈ Wx
H and w acts linearly on V and iV fixing the direction y. In other words, W l

H
is generated by the reflections with respect to those affine hyperplanes containing x and
whose direction contains y, i.e., the hyperplanes in H whose complexification contains l.
The group W l

H is finite by [6, V.3.3 Proposition 2,V.3.6 Proposition 4].
A fundamental region AC for the complexified action of WH on EC is given by the set

of points x+ iy such that x ∈ A and y lies in the unique fundamental domain containing
A for the action of the finite group Wx

H.

2.2.3 The main problems

Let H and K be admissible and let L be a flat. We set X(H, K, L) := WH,KLC/WH,K .
If K = 1 we will write X(H, L) rather than X(H, 1, L).

This quotient is well-defined at the level of analytic varieties ([3, Satz 21, p. 186]), i.e.,
WH,K acts on the analytic variety EC and on the saturation WH,KLC and the quotient
exists: its functions are the WH,K-invariant analytic functions on WH,KLC. By local
finiteness ofH if L′ ⊂ L are strata forH, then X(H, K, L′) is closed in X(H, K, L) as every
point in X(H, K, L) has a neighbourhood such that the intersection with X(H, K, L′) is
closed. Hence the analytic variety EC/WH,K is stratified by the varieties X(H, K, L),
where L ranges among all flats for H. We will parametrise strata in Section 6.

In the present paper we shall address the following problems:

1. Provide X(H, K, L) of the structure of an affine algebraic variety.

2. Determine when X(H, K, L) is unibranch, respectively normal, respectively smooth.

Question 1 is non-trivial only whenWH is infinite. Also, when K = 1 andWH is finite the
normality and smoothness questions are answered in [21, 7, 11]. Note that when K = 1
the quotient X(H, L) is the product of the quotients corresponding to the irreducible
factors of WH. Our main goal is to answer question 1 and the normality question when
WH is an affine Weyl group and K is a natural abelian group related to WH.

Remark 2.4. If VH 6= {0} we can always reduce to the essential situation of Hess in Eess.
Indeed any flat L ⊂ E is of the form L′ + VH for a flat L′ in Eess and LC = L′C + (VH)C.
For our choice of K we have

X(H, K, L) =WH,KLC/WH,K =WH,K(L′C + (VH)C)/WH,K
' WH,KL′C/WH,K × (VH)C = X(Hess, K, L′)× (VH)C.
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2.2.4 The affine Weyl group case

Assume WH = Waff is an affine Weyl group acting essentially on E. Then, for some
point in E which we can set as an origin O, there are a root system Φ with basis ∆ =
{α1, . . . , α`}, co-root lattice Q∨ = ZΦ∨, co-weight lattice P∨ and Weyl group W =
(Waff )

O such that Waff = W n Q∨ and E = Q∨ ⊗Z R. In this situation chambers are
usually called alcoves. If Φ is irreducible then we choose as fundamental domain the
closure of the fundamental alcove A, which is the open simplex with vertices x0 := 0 and
x1 := ω∨1 /d1, . . . , x` := ω∨` /d`, where the di’s are the coefficients of the simple roots in
the expression of the highest root −α0 and the ω∨i are the fundamental co-weights. For
convenience we shall set ω∨0 := 0.

A special family of groups of the form WH,K can be obtained by taking a lattice N∨

satisfying Q∨ ⊂ N∨ ⊂ P∨. Translation by vectors in N∨ stabilises H, and W stabilises
N∨, so WH ≤ 〈WH, N∨〉 = W n N∨ ≤ ŴH, hence W n N∨ ' WH,K for K ' N∨/Q∨.
The group K acts on A as follows. Let ν ∈ N∨ and let x ∈ A. Then, x + ν ∈ E hence
there is a unique y ∈ WH(x+ ν) ∩A. We set thus ν · x = y. Even though x+ ν depends
on the choice of the representative of the coset ν + Q∨, the element y does not. This
procedure defines an action because WH normalises N∨/Q∨.

2.3 Algebraic groups notation

Until otherwise stated G will denote a complex connected reductive algebraic group with
Lie algebra g and T will be a fixed maximal torus in G with Lie algebra h, whereas W will
be the Weyl group and Xα will denote the root subgroup corresponding to the root α. If
we insist that G is semisimple and simply-connected we shall write Gsc and Tsc instead
of G and T . The conjugation and adjoint action of G on itself and g, respectively, will be
denoted by a dot. The center of a group C (a Lie algebra c, respectively) will be denoted
by Z(C) (Z(c), respectively). The identity component of H ≤ G will be indicated by H◦.

If an algebraic group H acts on a variety Y and Z ⊂ Y we denote by Zreg the set
of points in Z whose H-orbit have maximum dimension. For ψ an automorphism of a
variety Y we shall denote by Y ψ the set of points of Y which are fixed by ψ.

2.4 Main motivation: Jordan classes and sheets in G

The geometry of the stratifications induced by the decomposition of g or G into Jordan
classes is the main motivation for our study.

A Jordan class in g is an equivalence class with respect to the following equivalence
relation: x, y ∈ g, with Jordan decomposition x = xs + xn and y = ys + yn, respectively,
are equivalent if, up to G-action, xs and ys have the same centraliser c in g and the
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nilpotent orbits represented by xn and yn in c coincide, [5]. As a set, the class of x is
J(x) = G · (Z(c)reg + xn).

A Jordan class in G is is an equivalence class with respect to the following equivalence
relation: x, y ∈ G, with Jordan decomposition x = su and y = rv, respectively, are
equivalent if, up to G-action, s and r have the same connected centraliser M in G,
s ∈ Z(M)◦r, and the unipotent classes in M represented by u and v coincide. As a set,
the class of x is J(x) = G · ((Z(M)◦s)regu).

Jordan classes are finitely-many, locally closed, irreducible and smooth and the closure
of a Jordan class is a union of Jordan classes [18], [8, Proposition 4.9]. Their closures
form a stratification of G and g, respectively. We consider the categorical quotient maps
G → G//G and g → g//G. Since in both quotients the image of a G-stable subset
coincides with the image of the set of its semisimple parts, the images of the strata of the
respective Jordan stratifications form stratifications of G//G and g//G where the strata
are of the form J//G and J//G, respectively, with J and J semisimple Jordan classes, i.e.,
consisting of semisimple elements. We call them the Jordan stratifications of g//G and
G//G.

Remark 2.5. For any irreducible smooth affine G-variety X , Luna introduced a strat-
ification of X//G, [17, III.2]. According to the description in [22], Luna strata are the
irreducible components of the non-empty subsets X(H) consisting of points [x] ∈ X//G
such that the stabiliser of a point in the unique closed orbit in the fiber of [x] in X is
conjugate to a fixed reductive subgroup H of G. When X = g or G, the unique closed
orbit in the fiber of [x] is the G-orbit of the semisimple part of any lift x of [x] in X . If
X = g, then X(H) is already irreducible: it is the image of J(x) in g//G if H is the Levi
subgroup of a parabolic subgroup of G and empty otherwise. Conversely, any image of a
Jordan class is, by construction, a Luna stratum.

If X = Gsc, then the centraliser of any semisimple element is connected and, when
non-empty, X(H) is the image of Gsc · Z(H)reg in Gsc//Gsc. By [23, Proposition 7] there
exists s ∈ Z(H) such that Gsc · Z(H)reg =

⋃
z∈Z(Gsc)

z(Gsc · (sZ(H)◦)reg), hence this set
is a finite disjoint union of Jordan classes. The irreducible components of X(H) are the
images of these Jordan classes and each image of a Jordan class in Gsc//Gsc is a Luna
stratum.

If X = G is not simply-connected, then the induced Jordan stratification on G//G is
coarser than Luna’s. Indeed, centralisers of semisimple elements are not always connected
and Jordan classes might contain elements whose semisimple parts have non-conjugate
centralisers. For example, the regular semisimple Jordan class in G = PSL2(C) contains
all elements conjugate to diag(a, a−1) for any a ∈ C∗ \ {i,−i} and all elements conjugate
to diag(i,−i), and these two families of elements correspond to different Luna strata.

When WH is finite, we have the following correspondence, stemming from [11, §2].
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Proposition 2.6. Let Q∨ be the co-root lattice of g, let E = Q∨ ⊗Z R and let H be the
(finite) hyperplane arrangement of W . The stratification of EC/WH = h/W corresponds
to the Luna stratification of g//G through the Chevalley isomorphism g//G→ h/W .

Proof. Let J ⊂ g be a semisimple Jordan class. Then J ∩ h = WZ where Z is the center
of a standard Levi subalgebra c containing h and J is completely determined by J ∩ h.
Hence, Z is the intersection of the reflection hyperplanes corresponding to any choice of
simple roots of c, [11]. Any such Z gives rise to a unique Jordan class and by construction,
the closed sets J//G and WZ/W correspond through the Chevalley isomorphism. �

We describe now a similar correspondence in the case of WH = Waff = W n Q∨

infinite, affine. Let Gsc be the semisimple simply-connected group with Weyl group W
and coroot lattice Q∨ and let e = exp(2πi−) : h→ Tsc be the exponential map. Its kernel
is Q∨. This map realizes EC := h as the universal cover of Tsc and Q∨ is the fundamental
group of Tsc. Thus, the map e induces an isomorphism of analytic varieties

EC/WH = EC/Waff = EC/(Q
∨ oW ) ' (EC/Q

∨)/W ' Tsc/W.(2.1)

More generally, let Gsc → G be a central isogeny inducing the natural projection π : Tsc →
T . Then K := Ker(π) ' N∨/Q∨ for some lattice Q∨ ⊂ N∨ ⊂ P∨. Let H be the
arrangement of Waff = Q∨ oW . Then W nN∨ ' WH,K = K n (W nQ∨) is one of the
subgroups introduced in Subsection 2.2.1. The W -action on N∨ induces the trivial action
on K = N∨/Q∨ and Q∨ /WH,K , so WH,K/Q∨ ' W ×K. Therefore, the map eπ := π ◦ e
induces an isomorphism of analytic varieties

EC/WH,K ' (EC/Q
∨)/(W ×K) ' Tsc/(W ×K) ' (Tsc/K)/W ' T/W.(2.2)

Proposition 2.7. Let G, Φ, Q∨, K and Waff be as above and let H be the arrangement
of EC = h such that WH = Waff . The isomorphism of analytic varieties h/WH,K ' G//G
given by (2.2) followed by the Chevalley isomorphism identifies the stratification induced
by H and K on EC/WH,K with the Jordan stratification in G//G.

Proof. The Chevalley isomorphism T/W ' G//G is induced by the inclusion T ⊂ G and
it was shown in the proof of [10, Theorem 2] that if J = G · (Z(M)◦s)reg for s ∈ T
and M = Gs◦, then the stratum J//G is identified with W · (Z(M)◦s)/W . The possi-
ble pairs (M,Z(M)◦s) run through the set of W -conjugacy classes of pairs of the form
(Gr◦, Z(Gr◦)◦r) for some r ∈ T . Let L be a flat for H and let x ∈ L̊, so x does
not lie in any hyperplane in H not containing L. Thus, there is a subset Ψ ⊂ Φ+

such that LC = x +
⋂
α∈Ψ Kerα and β(x) ∈ Z if and only if β ∈ Ψ. Then M :=

Geπ(x)◦ = 〈T, X±α : α ∈ Ψ〉,
⋂
α∈Ψ Kerα = Z(Lie(M)) hence eπ(LC) = Z(M)◦eπ(x).

Conversely, if (M,Z(M)◦r) is a pair corresponding to a semisimple Jordan class, then
r = eπ(x) for some x ∈ h and, taking the unique flat L such that x ∈ L̊, the above
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argument shows that eπ(LC) = Z(M)◦r. The series of identifications in (2.2) maps then
X(H, K, L) =WH,KLC/WH,K to W (Z(M)◦r)/W . �

A similar statement for G reductive could be proved, provided K is allowed to be a
discrete group containing suitable translations in the direction of vectors in VH.

The above interpretation of the stratification in EC/WH allows us to answer question
1 from Section 2.2.3.

Corollary 2.8. The stratum X = X(H, K, L) is an affine algebraic variety for any
admissible H and K and any flat L.

Proof. Since X = KX(H, L)/K and K is finite, it is enough to prove the statement for
X(H, L). By Remark 2.4 we may assume thatH is essential. Without loss of generality we
assume WH = Waff = W nQ∨, for W the Weyl group of a complex semisimple algebraic
group G and Q∨ its coroot lattice. By Proposition 2.7 we have X(H, L) ' J//G, for
some semisimple Jordan class J , hence it can be equipped with an affine algebraic variety
structure. �

Our approach to the problems we address will mainly rely on a local study and we
will make use of the following key notion from [14, 1.7].

Definition 2.9. Two pointed (algebraic or analytic) varieties (Yi, yi), for i = 1, 2 are
smoothly equivalent if there exist a pointed variety (Y, y) and two smooth maps ϕi : Y → Yi
for i = 1, 2 such that ϕi(y) = yi.

Smooth equivalence will be denoted by ∼se. Two pointed (algebraic or analytic)
varieties (Yi, yi) for i = 1, 2 satisfying dimY1 = dimY2 + d, are smoothly equivalent if
and only if (Y1, y1) and (Y2 ×Ad, (y2, 0)) are locally analytically isomorphic, [16, Remark
2.1]. In particular, if d = 0 there is a local analytic isomorphism between neighbourhoods
of y1 and y2 mapping y1 to y2. Smooth equivalence preserves the properties of being
unibranch, normal, or smooth, [13, Exposé XII, Proposition 2.1(vi), Proposition 3.1 (vii)].
Thus, question 2 from Section 2.2, for WH = Waff and K ≤ P∨/Q∨ translates into the
following question:

When is a stratum J//G unibranch, respectively normal, respectively smooth?

If K = 1 and WH is a finite Weyl group, i.e., when the strata correspond to Jordan
strata in g//G, it was shown in [7] that J//G is normal if and only if it is smooth. We
will show that for K = 1 this is always the case.

Remark 2.10. Let G ∈ {G, g}, and let S be a sheet in G, i.e., an irreducible component of
the locally closed subset G(d) consisting of the union of all the G-orbits in G of dimension
d for some d ≥ 0. By [5], [8, Propositions 5.1, 5.3], every sheet S contains a unique
dense Jordan class. It was observed in [7], [10, §4] that the collection of quotients S//G
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where S runs among all sheets in G coincides with the collection of quotients of closures
of semisimple Jordan classes. Hence, a complete list of normal or smooth strata in G//G
is also the complete list of normal or smooth quotients of closures of sheets in G.

3 The normalisation of X(H, K, L)

In this section we describe the normalisation of X(H, K, L). By abuse of notation we will
sometimes say that X(H, K, L) is normal, respectively unibranch, respectively smooth,
at l ∈ EC if it is normal, respectively unibranch, respectively smooth, at the class l in
X(H, K, L) represented by l ∈ LC. We set

ΓH,K,L = StabWH,K (L) = StabWH,K (LC), ΓH,L := StabWH(L) = StabWH(LC).(3.3)

Observe that ΓH,L preserves the components of EC if WH is not irreducible. When WH
is an affine Weyl group WH = Waff = W nQ∨ we will also need the group

ΓW,L := StabW (e(LC)).

We consider the quotients X̃(H, L) = LC/ΓH,L and X̃(H, K, L) := LC/ΓH,K,L. If WH is
finite then X̃(H, K, L) and X̃(H, L) are normal affine varieties. SinceWH is a product of
finite and affine groups, in order to show that X̃(H, L) is a normal affine variety in the
general case, it will suffice to deal with the case WH = Waff .

Lemma 3.1. Assume WH = Waff and let L be a flat. Then:

(i) The natural projection of WH onto W induces an isomorphism

ΓH,L/(Q
∨ ∩ V (L)) ' ΓW,L.

(ii) The map e induces an isomorphism from X̃(H, L) to e(LC)/ΓW,L.

(iii) X̃(H, L) is a normal algebraic variety.

Proof. (i). We consider the composition ΓH,L ⊂ WH → W . The kernel is Q∨ ∩ V (L).
Assume τσ ∈ ΓH,L ≤ Q∨ oW . Then, e(LC) = e(τσ(LC)) = e(σ(LC)) = σ(e(LC)), so
σ ∈ ΓW,L. We show surjectivity. If γ ∈ ΓW,L, then γ(LC) is a connected component of
LC + Q∨. Hence, γ(LC) = q + v + V (L) for some q ∈ Q∨ and v ∈ L, so τ−qγ ∈ ΓH,L is a
pre-image of γ.
(ii). By (i), we have X̃(H, L) ' (LC/Q

∨ ∩ V (L))/(ΓH,L/Q
∨ ∩ V (L)) ' e(LC)/ΓW,L.

(iii) follows from (ii) because e(LC) is a smooth algebraic variety and ΓW,L is finite. �
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For L a flat and l ∈ LC we set

Ω(H, K, L)l := {wLC : w ∈ WH,K , l ∈ wLC} .

Since H is locally finite, the above set is finite. In addition, if L′ ⊂ L is the unique flat
such that l ∈ L̊′C, then Ω(H, K, L)l = Ω(H, K, L)l′ for any l′ ∈ L̊′C.

Lemma 3.2. Let l ∈ LC. There is a natural bijection between (WH,K l ∩ LC)/ΓH,K,L and
Ω(H, K, L)l/W l

H,K.

Proof. The map assigning to wl ∈ WH,K l∩LC theW l
H,K-orbitW l

H,Kw
−1LC in Ω(H, K, L)l

is surjective on Ω(H, K, L)l/W l
H,K by construction. In addition, w1l and w2l are mapped

to the same W l
H,K-orbit if and only if ωw−1

1 LC = w−1
2 LC for some ω ∈ W l

H,K , i.e., if and
only if w2l = w2ωl ∈ ΓH,K,Lw1l. The defined map induces the desired bijection. �

Proposition 3.3. The quotient X̃(H, K, L) is the normalisation of X(H, K, L).

Proof. Assume first K = 1. By Remark 2.4 we can reduce to the case that WH acts
essentially andWH is either a finite Coxeter group or an affine Weyl group. IfWH is a finite
Weyl group the statement is [4, Korollar 6.4 (b)]. If WH is finite, then the composition
of the closed embedding LC → WHLC with the quotient map WHLC → WHLC/WH is
a surjective finite morphism and it factors through X̃(H, L). We prove that the (finite)
induced morphism X̃(H, L)→ X(H, L) is generically injective. If l = x+ iy ∈ LC and x
lies in a chamber C ofHL, then the only hyperplanes ofH containing l are those containing
LC. If for such an l we have wl ∈ LC for some w ∈ WH, then w−1LC ⊂

⋂
H∈H
l∈H

H = LC,

hence w−1LC = LC, so WHl ∩ LC = ΓH,Ll. Thus, the morphism is generically bijective
and it is the normalisation map. If WH is an affine Weyl group, the result is obtained
combining Proposition 2.7, and Lemma 3.1 (b) with [10, Theorem 2].

Let now K be arbitrary. The composition ΓH,K,L → WH,K → WH,K/WH = K has
kernel ΓH,L, hence ΓH,K,L/ΓH,L is finite and X̃(H, K, L) is the quotient of the normal
algebraic variety X̃(H, L) by the action of this finite group, thus it is normal. The
composition of the normalisation map X̃(H, L) → X(H, L) with the closed embedding
X(H, L)→ KX(H, L) and the quotient map KX(H, L)→ KX(H, L)/K = X(H, K, L)
is a finite surjective morphism factoring through X̃(H, K, L). The previous argument
shows that the induced map X̃(H, K, L)→ X(H, K, L) is generically injective whence it
is the normalisation map. �

Corollary 3.4. The following three conditions on l ∈ LC and X(H, K, L) are equivalent:

(i) The variety X(H, K, L) is unibranch at l;

(ii) WH,K l ∩ LC = ΓH,K,Ll;
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(iii) Ω(H, K, L)l = {wLC : w ∈ W l
H,K}.

Proof. The equivalence of (i) and (ii) follows from Proposition 3.3. The equivalence
between (ii) and (iii) is a consequence of Lemma 3.2. �

The following proposition is the analogue of [21, Theorem A], which corresponds to
the case K = 1, WH = W , a finite Weyl group. When WH is an affine Weyl group, a
similar statement follows combining Proposition 2.7, Lemma 3.1 (ii) and [10, Theorem 2
(b)].

Proposition 3.5. Assume WH is finite. The variety X = X(H, K, L) is normal if and
only if the map

C[EC]WH,K → C[LC]ΓH,K,L

induced from the natural restriction map is surjective.

Proof. We consider the composition of the normalisation map X̃(H, K, L) → X with
the closed immersion X → EC/WH,K and the corresponding maps of algebras of regular
functions. Then X is normal if and only if X̃(H, K, L)→ X is an isomorphism, which is
equivalent to surjectivity of the algebra map C[WH,KLC]WH,K → C[LC]ΓH,K,L whence to
surjectivity of the restriction map C[EC]WH,K → C[LC]ΓH,K,L by diagram chasing. �

4 Local geometry of strata

In this section we begin a local study of strata X(H, K, L) around the class l, for l ∈ LC.
We will show that normality and smoothness of a stratum can be checked in special

points in the minimal strata contained in X(H, K, L). In order to do so, we will study
the hyperplane arrangements Hl for l ∈ L. Since Hl is admissible, W l

H permutes simply
transitively the chambers in C(Hl). In addition, if A′ ∈ C(H) and l ∈ A′, then A′ ⊂ C
for a unique C ∈ C(Hl).

Lemma 4.1. Let l = x + iy ∈ AC. Then, W l
H,K = K l nW l

H. Hence Wz
H,K is finite for

any z ∈ EC.

Proof. We need to prove ⊆. Assume first that l ∈ A ⊂ E. Let kw ∈ W l
H,K with k ∈ K

and w ∈ WH. Remark 2.3 gives l = kwl = kl whence k ∈ K l and w ∈ W l
H. Thus,

W l
H,K = K l nW l

H.

Assume now l = x + iy for x ∈ A and y ∈ V . Since WH,K preserves E, we have
W l
H,K ⊂ Wx

H,K ' Kx nWx
H, with Wx

H = WHx . Observe that, fixing x as an origin of E
and identifying E with V , the action of KxnWx

H on V is linear, soW l
H,K = (KxnWx

H)y.
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If x ∈ A, thenWx
H =W l

H = 1 andW l
H,K = K l and we are done. If, instead, x ∈ A\A,

then y lies in the unique fundamental domain D for the action ofWx
H with A ⊂ D. Since

Kx preserves C(Hx) and A, it preserves D. Remark 2.3 applied to y, D and the group
Kx nWx

H gives (Kx nWx
H)y = K l nW l

H. Finally, Wz
H,K is WH-conjugate to W l

H,K for

some l ∈ AC, hence it is finite because K l and W l
H are so. �

For any flat L we consider the groups:

WL
H := ∩l∈LCW l

H, WL
H,K := ∩l∈LCW l

H,K , KL := ∩l∈LCK
l

and the subset

UL := {l ∈ LC : W l
H,K =WL

H,K}.(4.4)

By construction UL is the set of points in LC with minimum stabiliser in WH,K .

Lemma 4.2. Let L be a flat in E. The subset UL is a non-empty open subset of LC
contained in L̊C and having non-empty intersection with E. In addition, if L lies over A,
then WL

H,K = KL nWL
H and UL ∩ A 6= ∅.

Proof. Assume first that L lies over A. Observe that LC ∩ AC generates LC as an affine
space, hence

WL
H = ∩l∈LC∩AC

W l
H, WL

H,K = ∩l∈LC∩AC
W l
H,K , KL = ∩l∈LC∩AC

K l.

Clearly, KLnWL
H ≤ WL

H,K . On the other hand, if kw ∈ WL
H,K with k ∈ K and w ∈ WH,

then k ∈ K l and w ∈ W l
H for any l ∈ AC ∩ LC by Lemma 4.1, i.e., WL

H,K = KL nWL
H.

By construction we have WL
H,K ≤ W l

H,K for any l ∈ LC and equality holds if and only if

WL
H =W l

H and KL = K l. The first condition holds if and only if l lies in L̊C. The second
one holds if and only if l ∈ U1 = LC \

⋃
k∈K\KL LkC. Thus, UL is the non-empty open set

L̊C ∩ U1. Also, L̊ is open in L and D =
⋃
k∈K\KL Lk is a proper closed subset in L and

∅ 6= L̊ ∩ (L \D) ⊂ UL. So, UL ∩ E 6= ∅ and A ∩D 6= ∅ by dimensional reasons.
Assume now that L does not lie over A. By Remark 2.1 there always is w ∈ WH such

that wL lies over A and we have UL = w−1(UwL). �

For l ∈ LC, we set:

(4.5) Y (H, K, L) =WH,KLC, Y (H, K, L)l =
⋃

w∈WH,K
l∈wLC

wLC.

Since K preserves H, the set Y (H, K, L)l depends only on the flat L′ such that l ∈ L̊′.
The finite group W l

H,K acts on Y (H, K, L) and on Y (H, K, L)l.
We recall a basic result.
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Lemma 4.3. ([3, Anhang zu K. 7, Satz 21] Let W be a discrete group acting properly
discontinuously on an analytic variety Y an and let Xan be the quotient of Y an by W. If
x̃ ∈ Y an is mapped to x in Xan through the canonical quotient map and H is the stabilizer
of x̃ in W, then there exists a small enough H-stable neighbourhood U of x̃ in Y an such
that U/H can be identified with a neighbourhood of x in Xan. �

Proposition 4.4. Let L be a flat, let l ∈ LC and let l be the class of l. Then,(
X(H, K, L), l

)
∼se

(
Y (H, K, L)l/W l

H,K , l
)

(4.6)

Proof. By Lemma 4.3 with Xan = X(H, K, L), x̃ = l, Y an = Y (H, K, L) we have(
X(H, K, L), l

)
∼se

(
U/W l

H,K , l
)

(4.7)

where U is aW l
H,K-invariant open neighbourhood of l in Y (H, K, L). Let A be an analytic

open neighbourhood of l in EC whose closure is compact. By local finiteness of H, the
intersection Y (H, K, L)∩A is a finite union of translates of LC and A∩Y (H, K, L)l is the
union of all irreducible components containing l in the analytic variety A ∩ Y (H, K, L).
Possibly reducing A and invoking the finiteness result in Lemma 4.1 we can make sure
that A is W l

H,K-stable and that Y (H, K, L) ∩ A = Y (H, K, L)l ∩ A. Therefore(
U/W l

H,K , l
)
∼se

(
(U ∩ A)/W l

H,K , l
)
∼se

(
Y (H, K, L)l/W l

H,K , l
)

concluding the proof. �

If l ∈ AC ∩ LC, then WH,K ' K l oWHl , with Hl admissible. If C is the unique
chamber for Hl containing A, then C is a fundamental domain for the action of WHl and
K l preserves C. In general if Hl is not essential, K l is not necessarily admissible for Hl.
However, if l ∈ UL′ for some flat L′, then for any H ∈ H we have H ⊃ L′ if and only if
H ∈ Hl, so VHl =

⋂
H⊃L′ V (H) = V (L′) and K l = KL′ is admissible because it cannot

contain translations in the direction of VHl . In this case W l
H,KLC/W l

H,K = X(Hl, K
l, L)

with Hl a finite arrangement. We call it the finite counterpart of X(H, K, L) at l.

Corollary 4.5. Let L′ ⊂ L be flats, let l ∈ UL′∩AC and l be its class in X = X(H, K, L).
Then X is unibranch at l if and only if

(
X, l

)
∼se

(
X(Hl, K

l, L), l
)
.

Proof. If X is unibranch at l then Proposition 4.4 and Corollary 3.4 give the desired
equivalence. Conversely, if

(
X, l

)
∼se

(
W l
H,KLC/W l

H,K , l
)
, then X is unibranch at l

because the normalisation map X̃(Hl, K
l, L)→ X(Hl, K

l, L) is bijective at l. �

Next Proposition will show that in order to check unibranchedness or normality of
X(H, K, L) at points in a flat L′C ⊂ LC, it will be enough to check it at one point in UL′ .
It will allow us to reduce the verification of normality to suitable points in A.
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Proposition 4.6. Let L′ ⊂ L be flats for H and let X = X(H, L,K). Then:

(i)
(
X, l

)
∼se

(
X, l′

)
for any l, l′ ∈ UL′.

(ii) If X is unibranch, respectively normal, at some l ∈ UL′, then it is again so at all

l′ ∈ L̊′C.

Proof. Statement (i) follows from Proposition 4.4 because Y (H, K, L)l = Y (H, K, L)l′
and W l

H,K = W l′
H,K and l and l′ differ by a translation in V (L)C which commutes with

the W l
H,K-action. We prove (ii). Up to replacing l and LC by a point and a flat in their

respective WH-orbits, we may assume that l ∈ AC ∩UL′ and that L′ lies over A. Assume
first that X is unibranch at l. Then, for every l′ ∈ L̊′C we have

Ω(H, K, L)l′ = Ω(H, K, L)l = {wLC : w ∈ W l
H,K}

= {wLC : w ∈ WL′

H,K} ⊆ {wLC : w ∈ W l′

H,K} ⊆ Ω(H, K, L)l′

where we applied Corollary 3.4 (iii) and Lemma 4.2. Thus, we have equality everywhere
and X is unibranch at l′.

Assume now that X is normal at l ∈ AC ∩ UL′ and let l′ ∈ L̊′C. We claim that
WL′
H,K CW l′

H,K . Indeed, if kw ∈ W l′
H,K , then kwL′C = L′C because L′C is the only flat

containing l′ in its generic part. Therefore for any k′w′ ∈ WL′
H,K and any l′′ ∈ L′C we

have kwk′w′((kw)−1l′′) = kw(kw)−1l′′ = l′′. The quotient H = W l′
H,K/WL′

H,K is finite
by Lemma 4.1. By the above discussion X is unibranch at l′ and Proposition 4.4 gives(
X, l′

)
∼se

(
Y (H, K, L)l′/W l′

H,K , l
′
)

=
(
Y (H, K, L)l/W l′

H,K , l
′
)

=
(
X(Hl, K

l, L)/H, l′
)
.

Hence it is enough to show that X(Hl, K
l, L) is normal at l′. This is the case because

Corollary 4.5 gives
(
X, l

)
∼se

(
X(Hl, K

l, L), l
)
∼se

(
X(Hl, K

l, L), l′
)
, where the second

equivalence is induced by the translation along l′ − l ∈ V (L)C which commutes with the
W l
H,K-action and maps a neighbourhood of l in L̊′ to a neighbourhood of l′ therein. �

Corollary 4.7. The variety X = X(H, K, L) is normal if and only if it is normal at all
points in all strata X(H, K, L′) with L′ ⊂ L of minimal dimension.

Proof. If X is not normal at some point in L̊′C ⊂ LC, by Proposition 4.6 (ii) it is not
normal at any point in UL′ . As the non-normality locus is closed, X is not normal at any
point inWH,KUL′/WH,K = X(H, K, L′). If, instead X is normal at all points in L̊′C ⊂ LC,
then the non-normality locus may intersect X(H, K, L′) only at points in strictly lower
dimensional strata X(H, K, L′′) for L′′ ( L′. Hence, if non-empty, the non-normality
locus must contain some minimal stratum contained in X. �

Remark 4.8. (i) The proof of Corollary 4.7 applied to L′ = L shows that X(H, K, L)
is always normal, hence unibranch, at every point in L̊C.
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(ii) If L′ ⊂ L is minimal, then L̊′C = L′C because there are no flats contained in L′ and
V (L′) = VH. Also, if k ∈ K fixes l ∈ L′C, then it fixes L′C = l+ V (L′)C so KL′ = K l

and UL′ = L′. By Proposition 4.6, normality or unibranchedness at points in a
minimal stratum X(H, K, L′) ⊂ X(H, K, L) are thus guaranteed by normality or
unibranchedness at a real point in L′ or even in L′∩A if L′ is chosen in itsWH,K-orbit
so that this intersection is non-empty.

(iii) If H is essential, then minimal strata contained in X(H, K, L) correspond to 0-
dimensional flats, which are all real. Each point therein has a representative in A.
By Remark 2.4 one can always reduce to this case.

(iv) If H is finite, then it contains a unique minimal stratum L′ and for l ∈ UL′ the finite
counterpart X(Hl, K

l, L) is normal if and only if it is normal at l.

Combining the results obtained so far we get the following characterisation of normality
of a stratum.

Theorem 4.9. A stratum X = X(H, K, L) in EC/WH,K is normal if and only if the
following two conditions hold:

(i) X is unibranch at a point in every minimal stratum it contains.

(ii) For any minimal stratum X(H, K, L′) ⊂ X there is l ∈ WH,KL′ ∩ A such that
X(Hl, K

l, L) is normal.

Proof. By Corollary 4.7 and Remark 4.8 the stratum X is normal if and only if it is
normal at a point l in each minimal stratum, with representative l ∈ A.

If X is normal, then condition (i) holds. By Remark 4.8, Corollary 4.5 applies at all
such l, hence we have normality of X(Hl, K

l, L) for any (or for an) l in each minimal
stratum.

Conversely, if condition (i) holds, then X is unibranch at all points in every minimal
stratum it contains by Remark 4.8 and

(
X, l

)
∼se

(
X(Hl, K

l, L), l
)

for all l in a minimal
stratum by Corollary 4.5. If in addition condition (ii) holds, then X is normal at all such
l. We conclude by using Corollary 4.7. �

5 Necessary conditions for normality of strata

In this Section we will provide necessary conditions to verify normality of a stratum in
special cases.
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5.1 The case dimLC = 1 and H finite

In this subsection H is finite. Since H is admissible, the chambers are finitely many,
hence WH is a finite Coxeter group and by [6, V.3.6 Proposition 4] it fixes a point p ∈
∩H∈HH ⊂ E and contains no translation. Taking p as an origin we identify EC with VC
and similarly a flat LC with its direction V (LC).

Assume dimLC = 1. Then, either L = p + VH = EWH , or else VH = {0} and
EWHC = {p} ⊂ LC. In the first case LC is contained in all fundamental domains for
the WH-action and it is fixed pointwise by any admissible K, so WH,K = ΓH,K,L and
L = EWH,K . In the latter case, p is the only point contained in any fundamental domain
for WH and it is therefore fixed by K.

The following Proposition generalises a result in [7] which corresponds to the case
K = 1, WH = W .

Proposition 5.1. Assume H is finite. If dimLC = 1, then X(H, K, L) is normal if and
only if ΓH,K,L acts non-trivially on LC.

Proof. The restriction map from Proposition 3.5 preserves the grading of the polynomial
algebras C[EC] and C[LC] and of their invariant subalgebras. If ΓH,K,L acts trivially on
LC then C[LC]ΓH,K,L = C[LC] has terms in degree 1, whereas C[EC]WH , and, a fortiori,
C[EC]KnWH , have no components in degree 1. Thus the restriction map is never surjective.

If ΓH,K,L acts non-trivially on LC, then VH,C is necessarily trivial. Also, ΓH,K,L acts
on V (LC) by orthogonal transformations preserving the fixed point p, so it must act on
V (LC) ' C as −1. Hence, C[LC]ΓH,K,L ' C[V (L)C]ΓH,K,L ' C[t2]. The inner product on
VC is a non-trivial WH,K-invariant 2-form, with non-trivial restriction to V (L)C, so the
map is surjective. �

5.2 Normality in codimension 1

Here H is again arbitrary, admissible. We recall that a variety is normal in codimension 1
(unibranch in codimension 1, respectively) if its non-normality locus (non-unibranchedness
locus, respectively) has codimension greater than 1. In this section we will provide a nec-
essary and sufficient condition for normality of X = X(H, K, L) in codimension 1.

Observe that if L′ = L∩H is a hyperplane in HL, thenWH,KUL′/WH,K has codimen-
sion 1 in X. Hence, if X is normal, respectively unibranch in codimension 1, then Proposi-
tion 4.6 implies that X is normal, respectively unibranch at all points inWH,KUL′/WH,K ,

whence at all points in WH,KL̊′C/WH,K . Conversely, if X is normal, respectively uni-
branch, at some point l′ ∈ UL′ for every flat L′ = L ∩H, with H ∈ H and H 6⊃ L, then
it is normal, respectively unibranch, in codimension 1.
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Let ΓH,K,L be as in (3.3), let ιL : ΓH,K,L → Aut(L) be induced by restriction to L
and let WHL be the subgroup of Aut(L) generated by the reflections with respect to the
hyperplanes in HL.

Lemma 5.2. Let X = X(H, K, L) be a stratum and let l ∈ UL′ ∩A for some hyperplane
L′ in HL. Then the finite counterpart X(Hl, K

l, L) of X at l is normal if and only if the
reflection in L with respect to the hyperplane L′ lies in ιL(ΓH,K,L).

Proof. By Remark 2.4 applied to the finite counterpart X(Hl, K
l, L) of X at l,(

X(Hl, K
l, L), l

)
∼se

(
X(Hess

l , K l, L/V (L′)), l
)

where dim(L/V (L′)) = 1. Since Hl is finite, by Proposition 5.1 we have normality at l,
whence everywhere by Remark 4.8, if and only if StabWl

H,K
(LC/V (L′C)) acts non-trivially

on LC/V (L′C). Any w ∈ StabWl
H,K

(LC/V (L′C)) fixes L′C pointwise because l ∈ UL′ . Also,

StabWl
H,K

(LC/V (L′C)) ≤ ΓH,K,L so ιL(w) is a non-trivial Euclidean transformation fixing

L′ pointwise, i.e., the reflection with respect to L′. Thus the action is non-trivial if and
only if the reflection with respect to L′ lies in ιL(ΓH,K,L). �

Proposition 5.3. The stratum X = X(H, K, L) is normal in codimension 1 if and only
if the following two conditions hold:

(i) X is unibranch in codimension 1;

(ii) WHL ≤ ιL(ΓH,K,L).

Proof. We choose L to lie over A. If X is normal in codimension 1, then (i) holds. Observe
that A∩ L̊ lies in C(HL) and thatWHL is generated by the reflections with respect to the
walls of A ∩ L, i.e., the hyperplanes L′ in HL lying over A. Hence, in order to prove (ii)
it is enough to show that ιL(ΓH,K,L) contains the reflections with respect to all such L′.
Let L′ be one of these and let l ∈ UL′ ∩A. By assumption X is normal at l. By Corollary
4.5, the stratum X(Hl, K

l, L) is normal at l. By Lemma 5.2, the reflection with respect
to L′ lies in ιL(ΓH,K,L).

Conversely, assume conditions (i) and (ii) hold. By Proposition 4.6 it is enough to
show that X is normal at a point l in UL′ for each L′ of codimension 1 in L. Since ΓH,K,L
stabilises HL, condition (ii) ensure that WHL is admissible, so ΓH,K,L acts transitively on
C(HL) preserving faces. Thus we can replace L′ by a ΓH,K,L-translate lying over A and
take l ∈ UL′ ∩ A. By (i) and Corollary 4.5, normality at l is equivalent to normality of
X(Hl, K

l, L), which in turn follows from Lemma 5.2 and (ii). �

Remark 5.4. Assume that condition (ii) from Proposition 5.3 holds.
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(i) Since ΓH,K,L stabilizes L and H, it stabilizes HL and so does WHL , hence HL is
admissible and WHL acts transitively on C(HL).

(ii) If L lies overA, thenA∩L̊ lies in C(HL) andAL = A∩L is a fundamental domain for
theWHL-action. A standard argument shows that ιL(ΓH,K,L) = StabιL(ΓH,K,L)(AL)n
WHL and StabιL(ΓH,K,L)(AL) = ιL(StabK(AL)). If K = 1 this gives ιL(ΓH,L) =WHL .

6 The posets P(Σ(H, L)) and P(Σ(H, K, L))

In this section we associate to each stratum X(H, K, L) ⊆ EC/WH,K some subposets of
P(H) whose combinatorial properties encode geometric properties of X(H, K, L) such as
being normal in codimension 1 and being unibranch.

Lemma 6.1. Let L be a flat for H. The subsets WH,KL ∩ A and WHL ∩ A are unions
of closures of faces of dimension dimL.

Proof. By construction the two sets are unions of faces of A. The proof for WH,K will
suffice. If F = wL ∩ A for w ∈ WH,K , then F ⊂ C for some C ∈ C(HwL). For some
σ ∈ WH we have σC ⊂ A and σ fixes F pointwise by Remark 2.3. Hence, F ⊂ σC ∩A ⊂
σwL ∩ A and dim |σC| = dimσwL = dimL. �

We consider the sets Σ(H, K, L) and Σ(H, L) of maximal faces contained inWH,KL∩A
and WHL ∩ A, respectively. It follows from the proof of Lemma 6.1 that

Σ(H, K, L) := {wL̊ ∩ A : w ∈ WH,K , wL lies over A},
Σ(H, L) := {wL̊ ∩ A : w ∈ WH, wL lies over A}.

Since K stabilises A, the set Σ(H, K, L) is K-stable and equals KΣ(H, L). It also
uniquely determines X(H, K, L), so the collection of sets of this form parametrises strata
in EC/WH,K . The proof of Lemma 6.1 shows that any real point in X(H, K, L) is repre-
sented by a point in the closure of some face in Σ(H, K, L). In particular, by Remark 4.8
minimal strata are represented by points in minimal dimensional faces in the closure of a
face in Σ(H, K, L). For this reason, it is important to consider the induced subposets of
P(H), consisting of faces contained in WH,KL ∩ A and WHL ∩ A, respectively.

P(Σ(H, K, L)) := {F ∈ P(HL) : F ⊂ F ′, for some F ′ ∈ Σ(H, K, L)},
P(Σ(H, L)) := {F ∈ P(HL) : F ⊂ F ′ for some F ′ ∈ Σ(H, L)}.

In order to verify normality and unibranchedness of X(H, K, L) it is enough to verify
it at a point in all minimal dimensional faces in P(Σ(H, K, L)). If K acts transitively on
Σ(H, K, L) it is enough to verify unibranchedness and normality at the minimal dimen-
sional faces contained in the closure of one face in Σ(H, K, L).
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Lemma 6.2. Let L be a flat. There is a dimension-preserving surjective poset map
fΣ : P(HL)→ P(Σ(H, L)) induced from a piecewise-linear surjective map L→ A.

Proof. We consider the piecewise-linear map f : L → A associating to each l ∈ L the
unique p ∈ A∩WHl. All points lying in the same face F in P(HL) are mapped to points
in a face contained in A of the same dimension as F . In particular, any chamber of L is
mapped to a unique face of Σ(H, L). By construction, f preserves inclusion of closures,
inducing the sought poset map fΣ. If F is a face in Σ(H, L), then |F | = wL for some
w ∈ WH and wL lies over A. Moreover, w−1F ∈ HL so the points in F lie in the image
of f whence fΣ is surjective. �

Corollary 6.3. For any two distinct elements F , F ′ in Σ(H, L) there exists a gallery
beginning at F and ending at F ′.

Proof. Observe that F, F ′ are maximal faces in P(Σ(H, L)). Since fΣ is surjective and
dimension preserving, there exist maximal faces C, C ′ in P(HL) such that fΣ(C) = F ,
fΣ(C ′) = F ′. Since L \

⋃
F∈P(HL)
codimLF≥2

F is path connected, any path from a point in C to

one in C ′ determines a gallery of maximal faces C0 = C, . . . , Cr = C ′ in P(HL). The
required gallery is obtained applying fΣ to this sequence and removing possible repetitions
occurring for those i such that fΣ(Ci) = fΣ(Ci+1). �

Remark 6.4. (i) Let C1 6= C2 be adjacent maximal faces in P(HL). Assume fΣ(C1) =
fΣ(C2) and let w1, w2 ∈ WH such that w1C1 = w2C2 = fΣ(C1) ⊂ A. Then,
w−1

2 w1 ∈ ΓH,L and w1l = w2l for every l ∈ C1 ∩ C2. Therefore, the Euclidean map
ιL(w−1

2 w1) is necessarily the reflection with respect to the wall in HL separating C1

and C2.

(ii) Let Ci for i = 0, . . . , m form a gallery G of maximal faces in P(HL) and let wi ∈
WH be such that wiCi = Fi ⊂ A for every i. There is always a gallery G ′ of
maximal faces C ′i in P(HL) for i = 0, . . .m′ with m′ ≤ m satisfying fΣ(C0) =
fΣ(C ′0), fΣ(Cm) = fΣ(C ′m′) and fΣ(C ′i) 6= fΣ(C ′i+1) for every i. Indeed, if j is the
minimum index for which fΣ(Cj) = fΣ(Cj+1), we can replace G by the shorter
gallery C0, . . . , Cj = w−1

j+1wjCj+1, w
−1
j+1wjCj+2, . . . , w

−1
j+1wjCm. Then fΣ(C0) = F0

and fΣ(w−1
j+1wjCm) = Fm. Iterating this procedure gives G ′.

Lemma 6.5. Let L lie over A. If WHL ≤ ιL(ΓH,K,L), then for any two faces F1, F2 in
Σ(H, L) there is k ∈ K such that kF1 = F2. In particular, if X(H, K, L) is normal in
codimension 1, then K acts transitively on Σ(H, K, L).
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Proof. Assume WHL ≤ ιL(ΓH,K,L) and let F1, F2 in Σ(H, L). For i = 1, 2 let Ci ∈ P(HL)
be such that fΣ(Ci) = Fi and let wi ∈ WH be such that wiCi = Fi. By Remark 5.4
the group ιL(ΓH,K,L) acts transitively on the set of maximal faces in P(HL), so there is
kw ∈ KnWH such that kwC1 = C2. Then, kww−1

1 F1 = w−1
2 F2 and k(k−1w2kww

−1
1 )F1 =

F2 ∈ A. Remark 2.3 applies and kF1 = F2. Last statement follows from Proposition 5.3
because Σ(H, K, L) = KΣ(H, L). �

The following Lemma shows how to describe Ω(H, K, L)l for l ∈ A in terms of faces
in Σ(H, K, L). For l ∈ L ∩ A we set

Fl = {F ∈ Σ(H, K, L) : l ∈ F}

Lemma 6.6. For L a flat lying over A and l ∈ L ∩ A there holds

Ω(H, K, L)l = {w|F |C : w ∈ W l
H, F ∈ Fl}.

Proof. By construction we have the inclusion ⊇. We prove ⊆. Let w ∈ WH,K such that
l ∈ wL ⊂ wLC and let C ∈ C(HwL) with l ∈ C. By [6, V.3.3, Remarque 1] there is
σ ∈ WH such that σC ⊂ A. Since l, σl ∈ A, we have σ ∈ W l

H. In addition,

l ∈ σwL = σ|C| = |σC| ⊆ |(σwL) ∩ A| ⊆ σwL.

Hence σwL lies over A so F ′ := A ∩ σwL̊ lies in Fl and wLC = σ−1|F ′|C. �

We aim at giving a characterisation of unibranchedness and normality in codimension
1 in terms of the K-action on P(Σ(H, K, L)).

Lemma 6.7. Let L′ ⊂ L be flats lying over A, with F = L̊ ∩ A and F ′ = L̊′ ∩ A. If

(6.8) {F ′′ ∈ Σ(H, K, L) : F ′ ⊂ F ′′} is a single KL′-orbit,

then, X(H, K, L) is unibranch at all points in L̊′C.

Proof. By Proposition 4.6 it is enough to show that if (6.8) holds, then X(H, K, L) is
unibranch at some l ∈ F ′ ∩UL′ . Since L′ is the minimal flat containing l, if F ′′ ∈ Fl then
F ′′ ⊃ L̊′ ∩ A = F ′. Hence Lemma 6.6 and (6.8) give

Ω(H, K, L)l = {wk|F |C : w ∈ W l
H, k ∈ K l}

where we have used that K l = KL′ . We conclude by Corollary 3.4. �

Lemma 6.8. Let L′ ⊂ L be flats lying over A. Assume WHL ≤ ιL(ΓH,K,L). Then,

X(H, K, L) is unibranch at L̊′C if and only if condition (6.8) holds for F ′ = L̊′ ∩ A.
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Proof. We prove the converse of Lemma 6.7. Assume X(H, K, L) is unibranch at l ∈
UL′ ∩ A and let F ′′ ∈ Σ(H, K, L) be such that F ′ ⊂ F ′′. Then L′′ := |F ′′| = σL for some
σ = w−1k−1 ∈ WH,K . By Corollary 3.4 we may take k ∈ K l = KL′ and w ∈ W l

H =WL′
H,K .

Now kwF ′′ and F lie in C(HL) so by Remark 5.4 (i), there exists k1w1 ∈ ι−1
L (WHL) such

that k1w1kwF
′′ = F .

Remark 2.3 applied to A gives k1w1kwF
′′ = k1kF

′′ = F and k1w1x = k1x, and k1kx =
k1w1kwx = k1w1x for any x ∈ F ′. The same argument applied to the fundamental domain
F for the action of WHL gives k1w1x = x for x ∈ F ′ ⊂ F . Hence, k1kx = k1w1x = x and
k1k ∈ KL′ giving (6.8). �

Proposition 6.9. Let L be a flat lying over A and let F = L̊ ∩ A. Then X(H, K, L)
is normal in codimension 1 if and only if (6.8) holds for every L′ ⊂ L of codimension 1
lying over A.

Proof. If X(H, K, L) is normal in codimension 1, then Proposition 5.3 and Lemma 6.8
give WHL ≤ ιL(ΓH,K,L) and (6.8) holds for every L′ ∈ HL lying over A.

Conversely, assume that (6.8) holds for every L′ ∈ HL lying overA. We prove condition
(ii) of Proposition 5.3. It is enough to prove that all reflections with respect to a wall of the
chamber F in HL lie in the image of ιL. Let L′ = H ∩L be such a wall, let C ∈ C(HL) be
the chamber adjacent to F on the other side of L′, and let F ′ = L̊′∩A. Then F1 := fΣ(C)
is a chamber lying in Σ(H, L) ⊂ Σ(H, K, L) containing F ′ in its closure, so F1 = wC for
some w ∈ WH with w ∈ WL′

H by Remark 2.3. If F1 = F , then the reflection with respect
to the wall H ∩ L lies in ιL(ΓH,L) by Remark 6.4. If F1 6= F , there is k ∈ KL′ such that
kwC = F . Then kw ∈ ιL(ΓH,K,L), it fixes L′ pointwise, so it is the sought reflection.

We prove condition (i) of Proposition 5.3. For those L′ ∈ HL lying over A this
follows from Lemma 6.7. For those L′ ∈ HL not lying over A, it is enough to prove
unibranchedness at a real element l ∈ UL′ . Let C ∈ P(HL) with l ∈ C. Then, there is
w ∈ ιL(ΓH,K,L) such that wl ∈ wC ⊂ A, so wL′ lies over A and X(H, K, L) is normal at
the class l = wl. �

7 Coxeter classes

In this section we show how to compute Σ(H, L) in terms of subsets of the set S of Coxeter
generators of WH given by the reflections with respect to the walls of some component
A(j) of A. We identify S with the set of nodes {N1, . . . , Nn} of the Coxeter graph ofWH.

Let F ∈ P(H) such that F ⊂ A. We associate to F the subset SF of S consisting of
the reflections with respect to the walls of A containing F . The corresponding set of walls
is denoted by MF . By construction, |F | =

⋂
H∈MF

H. We also set ŜF := S \ SF . The
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parabolic subgroup WSF ≤ WH generated by the reflections in SF is W |F |H , the pointwise
stabiliser of |F |.

If WH is not irreducible, then F =
∏r

i=1 F(i) is a product of faces corresponding to
each component of E and the subset SF is compatible with this decomposition. The sets
SF run through all subsets of S that do not contain a whole affine component, i.e., subsets
for which WSF is finite.

Since K acts on the faces of P(H) contained in A, it acts on the collection of walls
of the form MF for some F ∈ Σ(H, K, L) and thus on the corresponding collection of
subsets of S of the form SF .

Observe that K does not necessarily preserve components of E and S. Also, if 1 6=
w ∈ WH, then w does not preserve the set of walls of A. However, if for some wall H
the hyperplane wH is again a wall of A, then we say that the image of the corresponding
node through w lies in S and it is the node associated to wH. Following [12], for a subset
SF ⊂ S we define the Coxeter class of S ′ as the subset

[SF ] := {S ′ ⊂ S : wSF = S ′ for some w ∈ WH}.

Proposition 7.1. Let L be a flat lying over A with AL = L̊ ∩ A in Σ(H, L). The
assignment F 7→ SF sets a bijection between Σ(H, L) and the Coxeter class [SAL ].

Proof. If F ′ ∈ Σ(H, L), then L′ := |F ′| = wL for some w ∈ WH. Conjugation by w maps
WL
H = WSAL

to WL′
H = WSF ′

. We claim that there is σ ∈ WH mapping SAL to SF ′ . For
WH finite this is [12, Corollary 2.1.13]. In the same spirit, if WH is infinite, conjugation
by the minimal length representative σ ∈ WSF ′

wWSAL
maps length 1 elements of WSAL

to length 1 elements of WSF ′
, [6, Chap. IV, Exercise §1 n. 3]. Hence, the assignment

F ′ 7→ SF ′ = σSAL has image in [SAL ]. By construction, the map is injective. Let σ ∈ WH
with σSAL ⊂ S. Then, for L′ := |σSAL| = σL and F ′ := L̊′ ∩ A in Σ(H, L), we have
σSAL = SF ′ giving surjectivity. �

Corollary 7.2. Strata in EC/WH are in bijection with Coxeter classes of subsets S ′ ⊂ S
generating finite parabolic subgroups of WH. Strata in EC/WH,K are in bijection with sets
of the form KZ where Z is a Coxeter class as above.

We produce an algorithm to compute Σ(H, L), and therefore Σ(H, K, L) = KΣ(H, L)
starting from an element therein.

Proposition 7.3. Let L be a stratum lying over A and let F ∈ Σ(H, L). A face F ′ lies
in Σ(H, L) if and only if there exists a gallery {Fi ∈ Σ(H, L), 0 ≤ i ≤ m} with F0 = F ,
Fm = F ′ and such that SFi is mapped to SFi+1

by the longest element in the finite group
〈WSFi

,WSFi+1
〉 ∩ WH(j), where j is the unique index on which the components Fi(j) and

Fi+1(j) differ.
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Proof. If such a gallery exists, then F ′ is a face in Σ(H, L) by Proposition 7.1.
Let F ′ ∈ Σ(H, L) and let C, C ′ be faces in P(HL) such that fΣ(C) = F , fΣ(C ′) = F ′.

By Remark 6.4 (ii), there is a gallery C0 = C, . . . , Cm = C ′ of maximal faces in P(HL)
such that Fi := fΣ(Ci) 6= fΣ(Ci+1) =: Fi+1. Let Hi =

⋂
H∈MFi

∪MFi+1
H be the unique wall

separating Fi and Fi+1, let Li = |Fi| and let wi ∈ WH be such that wiCi = Fi, so wiL = Li.
Then, for σi := wi+1w

−1
i we have σiLi = Li+1 and, since σi(Hi ∩ A) ⊂ A, the element σi

acts as the identity on Hi. Hence, σi lies in the group generated by the reflections with
respect to all hyperplanes containing Hi, i.e., 〈WSFi

,WSFi+1
〉. By construction, σi(SFi) =

SFi+1
. Our procedure shows that wi and wi+1 can be chosen in the componentWH(j), hence

so does σi. We claim that the parabolic subgroup 〈WSFi
,WSFi+1

〉 ∩WH(j) of WH is finite.
Indeed, it could be infinite only if the Coxeter graph ofWH(j) were the underlying graph of
an extended Dynkin diagram of a simple Lie algebra, and 〈WSFi

,WSFi+1
〉∩WH(j) =WH(j).

If this were the case, the j-th component Fi(j) of the face Fi would be a point, and
likewise for F(j) and for the component of L in E(j). By definition of Σ(H, L), we would
have Fi(j) = F(j) = Fi+1(j), a contradiction. We apply thus [12, Proposition 2.3.2 (i)] to
〈WSFi

,WSFi+1
〉 ∩WH(j) to see that σi can be chosen to be the longest element therein. �

Remark 7.4. If WH is finite, Propositions 7.1 and 7.3 give [12, Theorem 2.3.3] in force
of [12, Proposition 2.3.2 (i)].

Proposition 7.3 indicates a procedure to compute Σ(H, L).

Corollary 7.5. Algorithm F in [12, Section 2.3] can be applied to compute Σ(H, L) from
F ∈ Σ(H, L) also when WH has affine components.

Proof. It is enough to verify this forWH irreducible. If F is a point, then Σ(H, L) = {F}.
If F is not a point, we use Proposition 7.3 instead of [12, Theorem 2.3.3]. For every
node Nj in ŜF we apply to SF the longest element w0,j of the parabolic subgroup of WH
generated by the reflections corresponding to Nj and SF . If SF 6= w0,iSF ⊂ S, then
w0,jSF = SFj for some Fj ∈ Σ(H, L) and we add it to Σ(H, L), otherwise we do not
add faces to Σ(H, L). This way we get a new set of elements in Σ(H, L). Iterating the
procedure to all subsets S ′ constructed this way and all nodes in Ŝ ′, we obtain the full
set Σ(H, L). �

8 Normality for K = 1

In this section K = 1, so UL = L̊C for any flat L and the geometry of a stratum is constant
onWHL̊C/WH. Remark 4.8 guarantees that up to smooth equivalence, strata are products
of strata corresponding to the irreducible factors ofWH and they are normal, respectively
unibranch, respectively smooth if and only if each factor is so. Normality and smoothness
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whenWH is finite has been dealt with in [21, 7, 11]. Thus, it remains to consider the case
of WH essential, irreducible and affine.

The following result was firstly observed in [7] for WH finite as a consequence of
Chevalley-Shephard-Todd’s theorem.

Corollary 8.1. A stratum X = X(H, L) is smooth if and only if it is normal.

Proof. Smoothness implies normality so we only need to prove the converse. It is enough
to prove it forWH essential and irreducible. If X is normal, then it is normal at all points
in minimal, i.e., 0-dimensional strata by Corollary 4.7. Each of these is represented by
an l in A so Corollary 4.5 gives (X, l) ∼se (X(Hl, L), l). The right hand side is a normal
stratum for a finite reflection group, so it is smooth by [7, Theorem 3.1]. Hence, the
singular locus of X does not contain 0-dimensional strata. However, in our situation
UL′ = L̊′C for every flat L′ ⊂ L. By Proposition 4.6 the singular locus, if non-trivial,
would contain 0-dimensional strata because it is closed. Hence, X is smooth. �

Lemma 8.2. Let L be flat lying over A. If #Σ(H, L) ≤ 2, then X(H, L) is unibranch.

Proof. Lemma 6.1 and Proposition 4.6 (i) imply that it is enough to verify unibranched-
ness at points in the closure of faces in Σ(H, L). If #Σ(H, L) = 1, then (6.8) is trivially
satisfied, so the statement follows from Lemma 6.7. Assume now Σ(H, L) = {F0, F1},
with F0 ⊂ L and let F ′ be the face contained in F0 ∩ F1, whose existence is guaranteed
by Corollary 6.3. We will prove unibranchedness at l ∈ F0 ∪ F1 using Lemma 6.6 and
Corollary 3.4. If |Fl| = 1, then this is immediate. If Fl = {F0, F1}, then l ∈ F ′. By
Remark 6.4 (ii), there is a gallery Ci, for i = 1, 2 of chambers in L such that C0 = F0 and
fΣ(C1) = F1, so F1 = σC1 for some σ ∈ WH fixing F ′ pointwise. By Lemma 6.6

Ω(H, 1, L)l = {w|F0|C : w ∈ W l
H} ∪ {wσ|C1|C : w ∈ W l

H}.

Since L = |F0| = |C1|, the statement follows from Corollary 3.4. �

Next Lemma translates normality in codimension 1 and unibranchedness into state-
ments concerning Σ(H, L).

Lemma 8.3. Let L be a flat for H. The following statements are equivalent

(i) ιL(ΓH,L) =WHL.

(ii) Σ(H, L) has a unique element.

(iii) X(H, L) is normal in codimension 1.
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Proof. Condition (i) implies (ii) by Lemma 6.5. On the other hand, if (ii) holds, then
X(H, L) is normal in codimension 1 by Proposition 6.9. Finally, (iii) implies (i) by
Proposition 5.3 and Remark 5.4 (ii). �

Remark 8.4. When WH is finite, the property of X(H, L) being normal in codimension
1 is equivalent to SF being self-opposed in the terminology of [12, 2.3.5], see also Corollary
7.5. It is also equivalent to the equality of exponents in [11, Theorem 2.1].

Remark 8.5. If a Levi subgroup L of a parabolic subgroup of G supports a cuspidal
local system as in [18, 2.4], the results in [18, §9.2] show that the quotient WZ(l)/W , for
l = Lie(L), is normal in codimension 1 [18, §9.2]. A list of such L is to be found in loc.
cit. or in [19, §2.13]. Such quotients are also normal, although they do not exhaust the
list of normal strata in g//G.

8.1 List of normal Jordan strata in Gsc//Gsc

In this Section WH ' Waff is irreducible and acts essentially on E, i.e., we are studying
strata in G//G for G = Gsc simple and simply-connected. Here A is the fundamental
alcove and the Coxeter graph of WH is the underlying graph of the extended Dynkin
diagram of W . A face F ⊂ A is the simplex generated by the vertices corresponding to
the nodes in ŜF .

We will provide an answer to the normality problem for Jordan strata in G//G and we
collect here how some of the objects we studied are translated into this language. Let L be
a stratum lying over A and let J//G be the stratum corresponding to X(H, L) through the
identification in Proposition 2.7. If F ∈ Σ(H, L), then SF corresponds to the (positive
and negative) root subgroups generating with T the centraliser of a representative of
the semisimple Jordan class J in G. Minimal strata contained in J//G ' X(H, L) are
quotients of closures of those Jordan classes contained in J and consisting of a unique
semisimple class. We recall that the semisimple classes that are themselves Jordan classes
in G are precisely those with semisimple connected centraliser, i.e., the isolated semisimple
classes, [18, Definition 2.6]. For any l ∈ A∩L, the finite counterpart X(Hl, L) is a stratum
for a finite reflection groupWHl . Through the identification in Proposition 2.6, and fixing
l as an origin of EC, we see that X(Hl, L) corresponds to the Jordan stratum X for cg(e(l))
given by We(l)V (L)C/We(l), where We(l) is the Weyl group of cg(e(l)). If l lies in a minimal
stratum, then e(l) is isolated and cg(e(l)) is a semisimple Lie algebra.

We produce first the list of strata that are normal in codimension 1.

Proposition 8.6. Let X = X(H, L) be a stratum in EC/Waff and let F be a maximal
face in Σ(H, L). Then X is normal in codimension 1 if and only if SF = ∅, or #SF = #∆
or it is as follows:

29



An : of type dAh with n+ 1 = d(h+ 1), h ≥ 1, d ≥ 2;

Bn : of type Dm0 + dAh + Bn0 with n = m0 + n0 + d(h + 1) and either m0 ≥ 2, n0 ≥ 0,
h ≥ 0, or else m0 = 0, n0 ≥ 0, h = 0 or odd;

Cn : of type Cm0 + Cn0 + dAh with m0, n0, h ≥ 0, n = m0 + n0 + d(h+ 1);

Dn : of type Dm0 + Dn0 + dAh with n = m0 + n0 + d(h + 1) and either m0, n0 ≥ 2 and
h ≥ 0, or else m0n0 = 0 and h = 0 or odd;

E6 : of type A5 (there are three such subsets), D4, 4A1, 2A2 (there are three such subsets);

E7 : of type E6, D6 (there are two such subsets), D5 + A1 (there are two such subsets),
D4 + 2A1, 2A3, 3A2, A3 + 3A1 (there are two such subsets), D4 +A1 (there are two
such subsets), 5A1, the two subsets of type A5 containing N2, D4, the subset of type
4A1 which is stable under the automorphism of ∆̃, {N0, N2, N3} and {N2, N5, N7};

E8 : ∆̃ \ {N1, N3}, ∆̃ \ {N1, N3, N6}, ∆̃ \ {N4, N6, N8}, {N2, N5, N7, N0} or of type D7,
E7, D6 +A1, 2A3 +A1, 3A2 +A1, D5 + 2A1, D4 +A3, D6, E6, D4 + 2A1, 3A2, D4;

F4 : of type A3, A1 +B2, 2A1 + Ã1, B3, C3, 2A1, B2, Ã2;

G2 : of type Ã1.

If SF is in this list, then X is also unibranch.

Proof. If SF = ∅, then X = T/W , whereas if #SF = #∆, then X is a point and there is
nothing to prove. For the remaining cases, we know from Lemma 8.3 that X is normal in
codimension 1 if and only if #Σ(H, L) = 1, i.e., if and only if [SF ] = {SF}. By Corollary
7.5 from which we adopt notation, this happens if and only if for every j ∈ ŜF we have
w0jSF = SF . By inspection we obtain the given list. �

We are ready to produce the full list of normal strata which by Corollary 8.1 is equiv-
alent to the list of smooth strata.

Theorem 8.7. Let X = X(H, L) be a stratum in EC/Waff and let F be a maximal face
in Σ(H, L). If Φ is classical, then X is normal if and only if it is normal in codimension
1. If Φ is exceptional, then X is normal if and only if SF = ∅, or #SF = #∆, or it is as
follows:

E6 : of type A5 (there are three such subsets), 4A1, 2A2 (there are three such subsets);
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E7 : of type E6, D6 (there are two such subsets), D5 + A1 (there are two such subsets),
D4 + 2A1, 2A3, 3A2, A3 + 3A1 (there are two such subsets), 5A1, the two subsets of
type A5 containing N2, the subset of type 4A1 which is stable under the automorphism
of ∆̃, {N0, N2, N3} and {N2, N5, N7};

E8 : ∆̃ \ {N1, N3}, ∆̃ \ {N1, N3, N6}, ∆̃ \ {N4, N6, N8}, {N2, N5, N7, N0} or of type D7,
E7, D6 + A1, 2A3 + A1, 3A2 + A1, D5 + 2A1, D4 + A3, 3A2;

F4 : of type A3, A1 +B2, 2A1 + Ã1, B3, C3, 2A1, Ã2;

G2 : of type Ã1.

Proof. We only need to consider the strata listed in Proposition 8.6. If SF = ∅, then
X = T/W , whereas if #SF = #∆, then X is a point and there is nothing to prove.
If #SF = #∆ − 1 then dimL = 1 so X is normal because it is normal in codimension
1. In the remaining cases, we observe that X is unibranch by Lemma 8.3. Lemma
6.1 and Proposition 4.6 imply that normality should be verified at points in F . Here
Corollary 4.5 applies and by Theorem 4.9 it is enough to check normality of X(Hl, L) for
l ranging in the set of vertices of F , i.e., in the set of nodes in ŜF . Let Nl be the node
corresponding to vertex l. The stabiliser W l

H is generated by the reflections with respect
to all hyperplanes containing l, i.e., by the reflections corresponding to all nodes but Nl.
Its Coxeter graph is thus obtained from the Coxeter graph of WH by removing Nl. The
Coxeter class corresponding to Σ(Hl, L) contains the unique subset SFl = SF by locality
of the algorithm in Corollary 7.5. Also, SFl is obtained by removing Nl from the graph
in SF . The parametrization in terms of subsets of the Coxeter graph coincides with the
one used in [7, 11, 21]. In other words, X(Hl, L) is normal if and only if the subset SF
occurs in [11, Tables I, II] for the Coxeter group whose generating system is obtained by
removing the node Nl from S. The required list is obtained by checking this property for
all nodes in ŜF . �

9 The general case

In this Section we give some criteria to analyse the case of general K and provide some
key examples of strata for K 6= 1. These results will be applied in Section 9.3 to obtain
the complete list of normal strata for the Jordan stratification in G//G for any simple G.

9.1 Relative criteria

In this Section we provide criteria for unibranchedness and for normality ofX = X(H, K, L)
in terms of X ′ = X(H, K ′, L) for K ′ CK two admissible subgroups. These criteria will
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be applied in Section 9 to the special case of WH an irreducible affine Weyl group and
K, K ′ subgroups of P∨/Q∨, i.e., for Jordan strata in isogenous groups.

If K ′ C K are as above, then I := K/K ′ acts on EC/WH,K′ . Let π : EC/WH,K′ →
EC/WH,K be the canonical projection. Clearly, π−1(X) = IX ′ and X ' IX ′/I.

Let IX
′

be the stabilizer of X ′ in I and, for x ∈ X ′, let IX
′,x := IX

′ ∩ Ix. By abuse of
notation we will indicate points in a quotient by a representative.

Lemma 9.1. Let X = X(H, K, L) and X ′ = X(H, K ′, L) with K ′ CK and I = K/K ′.

(i) The stratum X is unibranch at the point x if and only if IxX ′/Ix is unibranch at x
and (IxX ′, x) ∼se (π−1(X), x).

(ii) If (i) holds, then X is normal at x if and only if X ′/IX
′,x is normal at x and the

canonical map X ′/IX
′,x → X is a local analytic isomorphism around x.

Proof. (i) Let Yx be the union of the irreducible components of IX ′ containing x. There
is a small enough I-stable analytic neighbourhood Ux of x such that Yx∩Ux = IX ′∩
Ux. Combining with Lemma 4.3, we obtain (X, x) = (IX ′/I, x) ∼se (Yx/I

x, x).
Since IxX ′/Ix is an irreducible component of Yx/I

x, the latter is unibranch if and
only if IxX ′/Ix = Yx/I

x is unibranch at x, whence also IxX ′ ∩ Ux = IX ′ ∩ Ux.

(ii) By the proof of (i) normality of X at x is equivalent to normality of IxX ′/Ix at
x. The map f : X ′/IX

′,x → IxX ′/Ix induced by the inclusion of X ′ in IxX ′ is a
finite birational morphism, hence the source and the target varieties have the same
normalisation. So, the target is normal at x if and only if the source is normal at x
and f is an isomorphism at x.

�

We will mainly use the following special case.

Corollary 9.2. If IX
′,x = 1, then X(H, K, L) is normal at x if and only if it is unibranch

at x, X(H, K ′, L) is normal at x, and (X(H, K, L), x) ∼se (X(H, K ′, L), x). In the special
case of Ix = 1, the first two conditions suffice.

9.2 Some examples

In this subsection H is essential and finite, so WH fixes a point which we set as an origin
O. Hence the Euclidean space E is identified with its vector space of translations V .

Example 9.3. Let WH = W be the Weyl group of type Dn and A be the fundamental
chamber. It is a simplicial cone with vertex 0 generated by the half-lines R≥0ω

∨
i for i ≤ n.

Let K be generated by the orthogonal transformation k fixing ω∨i for i ≤ n − 2 and
interchanging ω∨n−1 and ω∨n . Then, WH,K is again a finite reflection group WHB for the
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central hyperplane arragement HB obtained by adding to H the hyperplane containing
every ω∨i for i 6= n − 1 and ω′n−1 = ω∨n−1 + ω∨n . It is the Weyl group of type Bn and
its fundamental chamber AB is the simplicial cone generated by the half-lines R≥0ω

∨
i for

i 6= n− 1 and R≥0ω
′
n−1.

A flat L for H lying over A lies also over AB provided that if F = L̊∩A has R≥0ω
∨
n−1

as generating line, then it also has R≥0ω
∨
n as generating line. In terms of nodes, it means

that if Nn−1 ∈ ŜF , then Nn ∈ ŜF . So if L lies over A, at least one flat among L and kL
lies over AB and A.

If L lies over A and AB, then we have equality of strata X(H, K, L) = X(HB, L).
In this situation, let F = L̊C ∩ A, F ′ = L̊C ∩ AB. If F is generated by lines with

indices 6= n− 1, then F ′ = F . If F has R≥0ω
∨
n−1 and R≥0ω

∨
n as generating lines, then F ′

has R≥0ω
∨
n and R≥0ω

′
n−1 as generating lines. In both cases, SF and SF ′ contain the nodes

corresponding to the same index set.
By [21, Proposition 8.2.1] the normal strata in EC/WH,K are those for which either

SF = ∅, or SF = ∆, or it is of type Dm0 + dAh with n = m0 + n0 + d(h + 1), h ≥ 0,
m0 ≥ 0.

Example 9.4. Let WH '
∏t

j=1WH(j)
with WH(j)

' WH(i)
for any j, i act on E =∏t

j=1E(j) and let K = 〈k〉 ' Z/tZ act permuting components of E cyclically. Assume

that L = L(1) ×
∏t

j=2{pj} has trivial component on E(j) for j 6= 1. Then,

C[EC]WH,K '
(
⊗tj=1C[E(j)]

WH(j)

)K
' C[E(1)]

WH(1) ,

ΓH,K,L = ΓH,L = ΓH(1),L(1)
×

(
t∏

j=2

WH(j)

)
,

C[LC]ΓH,K,L ' C[L(1),C]
ΓH(1),L(1) .

and by Proposition 3.5 X(H, K, L) is normal if and only if X(H(1), L(1)) is so.

9.3 Simple groups

In this Section we deal with Jordan strata in simple groups, i.e., WH = Waff = W nQ∨

is irreducible and K ≤ P∨/Q∨. Here A is the fundamental alcove.
Observe that if a stratum X(H, K, L) is normal then there is F ∈ Σ(H, L) such that

Σ(H, K, L) = {kF : k ∈ K} by Lemma 6.5. Also, Proposition 5.3 and Lemma 6.8 imply
that (6.8) holds for any L′ ⊂ L lying over A. These combinatorial conditions can be
verified by looking at the action of K on the set of vertices of A or, equivalently, on the
corresponding set of nodes in S. A vertex xj lies in the closure of a face in Σ(H, K, L)

if and only if Nj ∈ ŜF . In particular, if a vertex xj ∈ F has trivial stabiliser in K,
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taking L′ = {xj} in (6.8) together with Σ(H, K, L) = {kF : k ∈ K} gives the necessary
condition for normality of X(H, K, L):

(9.9) If Kxj = 1 and Nj ∈ ŜF ∩ kŜF for some k ∈ K =⇒ kŜF = ŜF .

When K is small we also have the following necessary condition.

Lemma 9.5. Assume #K = 2 and let X = X(H, K, L) be the stratum corresponding to
SF ⊂ S. If X is normal, then either X(H, L) is normal in codimension 1 or else ŜF has
exactly one vertex that is not fixed by K and X(H, L) is unibranch.

Proof. If X is normal, then either Σ(H, L) = {F}, and Lemma 8.3 applies, or else
Σ(H, L) = Σ(H, K, L) = {F, kF}, where k is the non-trivial element in K. In this
case, X(H, L) is unibranch by Lemma 8.2. Also, Corollary 6.3 shows that the faces F
and kF must be separated by a wall, so ŜF ∩ kŜF contains all nodes of ŜF but 1. By
(9.9), all such nodes are fixed by K. �

The following special case can be treated directly.

Lemma 9.6. Let X = X(H, K, L) be a stratum and let F ∈ Σ(H, K, L) be such that
kF = F for any k ∈ K. Then

(i) If X is normal in codimension 1, then X is unibranch.

(ii) X is normal in codimension 1 if and only if X(H, L) is normal in codimension 1.

(iii) If X(H, L) is normal then X is normal.

(iv) If W is classical, then X(H, L) is normal if and only if X is normal.

Proof. (i) If X is normal in codimension 1, then Lemma 6.5 gives Σ(H, K, L) = {F} =
Σ(H, F ). Hence, (6.8) holds for every flat L′ lying over A, so Lemmata 6.1 and 6.7 imply
that X is unibranch.

(ii) Assume X is normal in codimension 1. By Lemma 6.5 we necessarily have
Σ(H, K, L) = {F} = Σ(H, F ), so X(H, L) in normal in codimension 1 by Lemma 8.3.
Conversely, if X(H, L) is normal in codimension 1, then Σ(H, K, L) = KΣ(H, L) = {F}.
Hence, (6.8) holds for every flat L′ lying over A, so Proposition 6.9 implies that X is
normal in codimension 1.

(iii) If X(H, L) is normal, then X = KX(H, L)/K = X(H, L)/K is normal.
(iv) One direction is (iii). The other follows from (ii) because for classical W normality

of and normality in codimension 1 coincide for X(H, L), by Theorem 8.7. �

We will deal with each irreducible root system and non-trivial choice of K ≤ P∨/Q∨

separately. We recall that numbering of simple reflections and nodes in the Coxeter graph
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of WH are as in [6]. We will constantly make use of the identification in Proposition 2.7.
Recall that Remark 4.8, Theorem 4.9 and Lemma 6.1 imply that it is enough to verify
normality at all vertices of faces in Σ(H, K, L).

9.3.1 Type An

In this case P∨/Q∨ permutes cyclically the nodes in S, whence K l = 1 for any vertex l
of A and any choice of K. We set K = 〈k〉.

Proposition 9.7. Let G be a group of type An. A stratum X = X(H, K, L) in the Jordan
stratification of G//G is normal if and only if the stratum X(H, L) in SLn+1//SLn+1 is
so.

Proof. If X is normal, then X(H, L) is normal at each vertex xj of any face in Σ(H, K)
by Corollary 9.2, so X(H, L) is normal.

If X(H, L) is normal, then Σ(H, L) = {F} by Proposition 6.9. Using the list of normal
strata in Theorem 8.7 we verify that in type An there holds either ŜkF = kŜF = ŜF or
else ŜkF ∩ ŜF = ∅, i.e., either kF = F or else kF ∩ F = ∅. In the first case Lemma 9.6
applies. In the second case, Σ(H, K, L) = {kF : k ∈ K} and X is unibranch at all
vertices of faces in Σ(H, K, L) by Lemma 6.6. Corollary 9.2 gives normality of X. �

9.3.2 Type Bn for n ≥ 3

Here K = P∨/Q∨ ' Z/2Z, corresponding to G = SO2n+1. The non-trivial element k ∈ K
acts on the vertices of A interchanging the vertices x0 = 0 and x1 = ω∨1 , fixing their
middle point x′1 = 1

2
ω∨1 and xj for j = 2, . . . , n. In this case, WH,K = (Q∨ oW ) oK is

again a reflection group. It is the group WHC for the affine hyperplane arrangement HC

obtained by adding to H all WH-translates of the affine hyperplane H ′ passing through
x′1 and xj for j = 2, . . . , n. In other words, it is the affine Weyl group of type Cn.

The fundamental alcove AC for WH,K has vertices x0, x′1, and xj for j ≥ 2 and its
walls are H ′ and the walls of A except from the hyperplane H containing the vertices xj
for j = 1, . . . , n, i.e., the wall corresponding to the node labeled by 0. We denote by S ′

the set of reflections with respect to these walls and we identify it with the set of nodes
in the Coxeter graph of WHC .

Lemma 9.8. Let L be a flat for H and let X = X(H, K, L). Then

(i) There is always a WH,K-conjugate of L lying over A and AC.

(ii) Assume L lies over A and AC and let F = L̊ ∩ A, F ′ = L̊ ∩ AC. Then X is
isomorphic to the stratum in EC/WHC indexed by the subset SF ′ of S ′ consisting of
the nodes with same indices as SF .
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Proof. (i) We may always assume that L lies over A. Since L is also a flat for HC , there
is w ∈ WHC = WH,K such that wL lies over AC . Since AC ⊂ A, by Remark 2.3 there is
k ∈ K such that wL = kL, hence wL lies over A and AC .

(ii) Observe that a flat L lying over A lies also over AC unless x0 6∈ F and x1 ∈ F .
Therefore, if L lies over A and AC and x1 6∈ F , then F = F ′. If x1 ∈ F , then x0 ∈ F so
x′1 ∈ F and the vertices of F ′ are obtained from the vertices of F by replacing x1 by x′1.
Hence the indices involved in SF and SF ′ coincide. �

Proposition 9.9. Let X = X(H, K, L) be a stratum in the Jordan stratification of
SO2n+1//SO2n+1 corresponding to the subset SF of the Coxeter graph of WH. Then X
is normal if and only if SF = ∅, or #SF = #∆ or it is of type Dm0 + dAh + Bn0 with
n = m0 + n0 + d(h + 1) and either m0 ≥ 1, n0 ≥ 0, h ≥ 0, or else n0 = 0, m0 ≥ 0 and
h ≥ 0. In particular, a stratum is normal if and only if it is smooth.

Proof. This is obtained applying Lemma 9.8 to Theorem 8.7. Last statement holds be-
cause of the identification with strata in EC/WHC . �

Comparing with Theorem 8.7 we see that there are strataX(H, L) in Spin2n+1//Spin2n+1

that are not normal even if the corresponding strata X(H, K, L) in SO2n+1//SO2n+1 are
so.

9.3.3 Type Cn for n ≥ 2

Here K = P∨/Q∨ ' Z/2Z, corresponding to G = PSp2n. The non-trivial element k ∈ K
on A interchanges the vertices xj and xn−j in A for j = 0, . . . , n. If n = 2m is even, then
kxm = xm, whereas if n is odd, Kx = 1 for every vertex of A.

Proposition 9.10. Let X = X(H, K, L) be the stratum in the Jordan stratification of
PSp2n//PSp2n corresponding to the Coxeter class [SF ]. Then X is normal if and only if
X(H, L) is normal and (9.9) holds.

Proof. If kŜF = ŜF , then if either X or X(H, L) is normal (9.9) automatically holds
and the statement follows from Lemma 9.6. We assume for the rest of the proof that
kŜF 6= ŜF . If X is normal, then (9.9) holds. Since there is at most one node in ŜF that
is fixed by K, Lemma 9.5 shows that the only possibility for X(H, L) not being normal
could be for #ŜF ≤ 2 with possible equality only for n = 2m and xm ∈ F . However, in
this situation X(H, L) is always normal by Theorem 8.7.

Conversely, assume that X(H, L) is normal and (9.9) holds. Then Lemma 6.7 gives
unibranchedness at all vertices of F and kF . By Corollary 9.2 the stratum X is normal
at all vertices of F and kF with trivial stabiliser. This concludes the discussion for n odd.
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Assume now n = 2m and xm ∈ F . By Corollary 4.5 it is enough to prove normality of
the finite counterpart X(Hxm , K, L) at xm.

The finite counterpart X(Hxm , L) of X(H, L) at xm is a Jordan stratum for the
semisimple Lie algebra of type Cm × Cm. By inspection we see that, up to K-action,
the subsets SF from Proposition 8.6 satisfying condition (9.9) and not containing Nm

necessarily contain all nodes with indices ≥ m, so X(Hxm , L) ' X(Hxm(1), L(1)) × {p}
where X(Hxm(1), L(1)) is a normal stratum for the finite Coxeter group of type Cm and
K interchanges the two components of h. We are in the situation of Example 9.4, so
X(Hxm , K, L) is normal. �

9.3.4 Type Dn for n ≥ 4

If n is odd, P∨/Q∨ ' Z/4Z ' 〈σ〉 where the action of σ on the vertices of A is given by
x0 7→ xn 7→ x1 7→ xn−1 7→ x0 and xj 7→ xn−j for 2 ≤ j ≤ n− 2.
If n is even, P∨/Q∨ ' Z/2Z × Z/2Z ' 〈τ1〉 × 〈τ2〉, where the action of τ1 is given by
x0 7→ x1 7→ x0, xn 7→ xn−1 7→ xn and xj 7→ xj for 2 ≤ j ≤ n − 2 and the action of τ2 is
given by xj 7→ xn−j for 0 ≤ j ≤ n.

Let us consider the case in which K = 〈ξ〉 is the group of order 2 with ξ = τ1 when n is
even and ξ = σ2 when n is odd. The stratification in EC/WH,K is the Jordan stratification
in SO2n//SO2n.

Proposition 9.11. Let X = X(H, K, L) be the stratum in the Jordan stratification of
SO2n//SO2n corresponding to the Coxeter class [SF ]. Then X is normal if and only if one
of the following two conditions hold:

(i) X(H, L) is normal;

(ii) SF is of type Dm0 + dAh with n = m0 + d(h+ 1), m0 ≥ 2 and h is even.

Proof. If ξSF = SF , then (ii) cannot occur and Lemma 9.6 gives equivalence of normality
of X with (i). We suppose from the rest of the proof that ξSF 6= SF . If X is normal,
then Lemma 9.5 implies that either X(H, L) is normal and Σ(H, K, L) = {F, ξF}, or else
#ŜF ∩ {N0, N1, Nn−1, Nn} = 1 and Σ(H, L) = Σ(H, K, L) = {F, ξF}. In this case, the
algorithm in Corollary 7.5 shows that SF is necessarily as in (ii).

Conversely, assume that either (i) or (ii) hold. Then, Σ(H, K, L) = {F, ξF} and
X(H, K, L) is unibranch at all vertices of F and ξF by Lemma 6.7 and X(H, L) is
unibranch by Lemma 8.2. Thus, X(H, L) is normal at the vertex of F with trivial stabiliser
in case (ii) by Corollary 4.5 and [21, 8.3.1], whence Corollary 9.2 gives normality at all
vertices of F and ξF with trivial stabiliser. By Corollary 4.5 it remains to prove that
X(Hxj , K, L) is normal for every xj ∈ F with 2 ≤ j ≤ n− 2.
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These are strata for a finite Coxeter group of type Dj ×Dn−j. If SF has a component
of type Dm0 for m0 ≥ 2, then X(Hxj , K, L) ' X(Hxj(1), K, L(1)) × X(Hxj(2), K, L(2))
where K acts trivially on L(1). Thus X(Hxj(1), K, L(1)) = X(Hxj(1), L(1)) is normal by
[21, 8.3.1], whereas X(Hxj(2), K, L(2)) is isomorphic to a normal stratum for a Coxeter
group of type Bn−j in virtue of Example 9.3. If, instead, SF is of type dAh, we consider
the extension K̃ = 〈K, ξ′〉 of K where ξ′ is the involution of A interchanging x0 and x1

and fixing all other veritces. Then, X(Hxj , K̃, L) =
(
〈ξ′〉X(Hxj , K, L)

)
/〈ξ′〉 is normal in

virtue of Example 9.3, so X(Hxj , K, L) is normal by Corollary 9.2 applied to K C K̃. �

Let us now consider K = 〈τ2〉 for n = 2m even, so K fixes only the vertex xm. The
stratification in EC/WH,K is the Jordan stratification in HSpin2n//HSpin2n.

Proposition 9.12. Let X = X(H, K, L) be the stratum in the Jordan stratification of
HSpin2n//HSpin2n corresponding to the Coxeter class [SF ]. Then X is normal if and only
if the stratum X(H, L) in Spin2n//Spin2n is normal and (9.9) holds.

Proof. If τ2SF = SF , Lemma 9.6 (iv) shows that X(H, L) is normal if and only if X is so
and if this is the case, (9.9) automatically holds. We assume for the rest of the proof that
τ2SF 6= SF and that X is not a point, i.e., #ŜF ≥ 2.

If X is normal, then (9.9) holds and Lemma 9.5 shows that either X(H, L) is normal,
or else #ŜF = 2 and SF is of type Dm + Am−1 with m odd. However, the latter case is
ruled out because Corollary 7.5 would yield #Σ(H, K, L) ≥ 4 contradicting Lemma 6.5.

Assume now X(H, L) is normal and (9.9) holds. Then Σ(H, K, L) = {F, kF} and
Lemma 6.7 guarantees unibranchedness at all vertices of F and kF . Normality of X
at all vertices but xm follows from Corollary 9.2. We focus on xm. Observe that if
Nm ∈ ŜF and SF 6= kSF with SF of type dAh, then it does not satisfy (9.9). If it is
of type Dm0 + Dn0 + dAh, for m0 > n0 ≥ 0 as in Proposition 8.6, then (9.9) forces
m0 = m > n0 ≥ 0. Hence, X(Hxm , L) has two factors one of which is trivial whereas
the other is normal, and K interchanges the two factors. Thus, X is normal at xm as in
Example 9.4. �

Finally, we consider the group K = P∨/Q∨. The stratification in EC/WH,K is the
Jordan stratification in PSO2n//PSO2n. We write η for either σ or τ2 and ξ for either σ2

or τ1. Recall that τ2 fixes only xm and that Kxj = 1 holds only for j ∈ {0, 1, n− 1, n}.

Proposition 9.13. Let X = X(H, K, L) be the stratum in the Jordan stratification of
PSO2n//PSO2n corresponding to the Coxeter class [SF ]. Then X is normal if and only if
the following two conditions hold:

(i) {kŜF : k ∈ Kxj} = {kŜF1 : SF1 ∈ [SF ], k ∈ K, Nj ∈ ŜF1} for every node Nj ∈ ŜF ;

(ii) either X(H, L) is normal or else SF is of type Dm0 + dAh with n = m0 + d(h+ 1),
m0 ≥ 2 and h is even.
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Proof. Observe that (i) is the combinatorial translation of (6.8) when F ′ is a vertex of F .
If {kF : k ∈ K} = {F}, then SF cannot be of type Dm0 + dAh. By Lemma 9.6

(iv) normality of X(H, L) is equivalent to normality of X. If this is the case (6.8) holds
whence (i) holds. We assume for the rest of the proof that #{kF : k ∈ K} > 1 and that
#ŜF ≥ 2, so X is not a point. We set B := ŜF ∩ {N0, N1, Nn−1, Nn}.

Assume first that X is normal. By Lemma 6.8, condition (i) holds and (9.9) forces
#B 6= 3.

If #B = 0, then ξSF = SF , so Σ(H, L) ⊆ Σ(H, K, L) = {F, ηF}. Thus, either
#Σ(H, L) = 1 and X(H, L) is normal by Lemma 8.3 and Theorem 8.7, or #Σ(H, L) = 2.
In this case Corollary 6.3 implies that ŜF and ηŜF differ only by a vertex. Combined
with (i) this is possible only if #ŜF = 2, n = 2m is even, and Nm ∈ ŜF . In this situation
X(H, L) is always normal, so #Σ(H, L) = 2 cannot occur.

If #B = 1, we set B = {Nj}. By assumption X(Hxj
, Kxj , L) = X(Hxj

, L) is normal

and [21, 8.3.1] forces SF to be is of type Dm0 + dAh with n = m0 + d(h + 1), m0 ≥ 2,
which gives (ii).

If #B = 4, then X(Hxj , K
xj , L) = X(Hxj , L) is normal for j ∈ {0, 1, n − 1, n} but

this contradicts [21, 8.3.1] unless SF = ∅. In this case X(H, L) is normal.
Finally, assume #B = 2. If B = {N0, N1}, then X(Hx0 , K

x0 , L) = X(Hx0 , L) is
normal, and [21, 8.3.1] forces SF to be of type Dm0 so X(H, L) is normal.

The case B = {Nn−1, Nn} is dealt with in the same way. If B = {Ni, Nj} with i ≤ 1

and j ≥ n − 1, then X(Hxi
, Kxi , L) = X(Hxi

, L) and [21, 8.3.1] forces SF to be of type
dAh with h odd, so X(H, L) is normal.

Conversely, assume that (i) and (ii) hold. In all cases #Σ(H, L) ≤ 2, so X(H, L) is
unibranch and Σ(H, K, L) = {kF : k ∈ K}. Condition (i) and Lemma 6.7 give thus
unibranchedness of X at all vertices of faces in Σ(H, K, L), i.e., at all minimal strata in
X. It is also straightforward to verify that X(H, L) is normal at all vertices with trivial
stabiliser. By Corollary 9.2 the stratum X is normal at such points. It remains to prove
normality of X(Hxj , K

xj , L) for every j such that xj ∈ F and 2 ≤ j ≤ n−2. The vertices

of kF for any k ∈ K are dealt with in a similar way.
If n is odd or n = 2m and j 6= m, then Kxj = 〈ξ〉, so X(Hxj , K

xj , L) is also the finite
counterpart at xj of the stratum corresponding to SF in SO2n//SO2n, which is normal by
Proposition 9.11.

We finally look at xm for n = 2m. Here, Kxm = K = 〈η〉 × 〈ξ〉.
If SF is of type Dm0 × dAh × Dn0 with m0 ≥ n0 ≥ 0, m0 ≥ 2, then (i) applied to

vertices not fixed by η forces m0 ≥ m. So if Nm ∈ ŜF then m = m0 and X(Hxm , L) is a
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stratum for a finite Coxeter group of type Dm ×Dm with trivial first component. Hence,

X(Hxm , K, L) = K
(
{p} ×X(Hxm,(2), L(2))

)
/K

' 〈η〉
((
{p} × 〈ξ〉X(Hxm,(2), L(2))

)
/〈ξ〉

)
/〈η〉

' 〈η〉 ({p} ×X(Hxm , 〈ξ〉, L)) /〈η〉 ' 〈η〉 ({p} ×X(HB, L)) /〈η〉.

The latter is normal by Example 9.3, from which we adopt notation, and Example 9.4.
Finally, if SF is of type dAh with h odd and n = d(h+ 1), then, up to replacing ξ by

ηξ and taking a graph automorphism of PSO2n, we may always assume that ηSF = SF ,
so X(Hxm , K, L) ' X(Hxm , 〈ξ〉, L)/〈η〉 which is normal by Proposition 9.11. �

9.3.5 Type E6 and E7

For type E6 we only have the possibility K = P∨/Q∨ ' Z/3Z ' 〈θ〉 where the action of
θ on the vertices of A is given by x1 7→ x6 7→ x0 7→ x1 and x3 7→ x5 7→ x2 7→ x3. The
stratification in EC/WH,K corresponds to the Jordan stratification in E6,ad//E6,ad.

Proposition 9.14. Let X = X(H, K, L) be a stratum in the Jordan stratification of
E6,ad//E6,ad corresponding to the Coxeter class [SF ]. Then X is normal if and only if
X(H, L) is normal.

Proof. Assume first θSF = SF . If X(H, L) is normal, then X is normal by Lemma 9.6 (iii).
Conversely, if X is normal, then X(H, L) is normal in codimension 1, so by Proposition
8.6 and Theorem 8.7 either X(H, L) is normal or else SF is of type D4. The latter is
ruled out because (X(H, K, L), x1) ∼se (X(Hx1 , K

x1 , L), x1) = (X(Hx1 , L), x1) which is
not normal by [7, 11]. Also, the case of a point is immediate. We assume for the rest of
the proof that θSF 6= SF and that #ŜF ≥ 2.

Assume X is normal. We verify by inspection that (9.9) forces SF to be of type A5,
2A2, A4 + A1, or A2 + 2A1, 2A2 + A1.

In the first two cases X(H, L) is normal. The remaining cases cannot occur: indeed,
the algorithm in Corollary 7.5 shows that #Σ(H, K, L) ≥ 6, contradicting Lemma 6.5.

Assume now that X(H, L) is normal. Then, SF is either of type A5 or 2A2. Observe
that (9.9) always holds. If SF is of type A5, then dimX = 1 and it is normal in codimen-
sion 1 by Proposition 6.9, hence it is normal. Let SF be of type 2A2. Lemma 6.7 gives
unibranchedness of X at all vertices of faces in Σ(H, K, L) = {F, θF, θ2F}. Corollary 9.2
implies that X is normal at all xj ∈ θiF for j 6= 4 and i ≤ 3. We finally apply Example
9.4 to deduce normality of X(Hx4 , K

x4 , L). �

For type E7 we have K = P∨/Q∨ ' Z/2Z ' 〈k〉 where k fixes the vertices x2 and x4

and acts on the remaining ones by x0 7→ x7 7→ x0, x1 7→ x6 7→ x1, and x3 7→ x5 7→ x3.
The stratification in EC/WH,K corresponds to the Jordan stratification in E7,ad//E7,ad.
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Proposition 9.15. Let X = X(H, K, L) be a stratum in the Jordan stratification of
E7,ad//E7,ad corresponding to the Coxeter class [SF ]. Then X is normal if and only if SF
satisfies one of the following conditions

(i) it occurs in the list of Theorem 8.7 but it is not of type D4 + A1 nor 3A1;

(ii) it is of type A6 or of type A5 + A1 and does not contain N2.

Proof. Observe that SF satisfies condition (i) if and only if X(H, L) is normal and (9.9)
holds. Assume first kSF = SF so (ii) does not occur. If X(H, L) is normal, then X
is normal by Lemma 9.6 (iii) and (9.9) trivially holds, so we have (i). Conversely, if X
is normal, then (9.9) holds and Lemma 9.6 (ii) guarantees that X(H, L) is normal in
codimension 1. Therefore, either SF is as in (i) or it is of type D4. This case can be
excluded as we did for type E6. Assume for the rest of the proof that SF 6= kSF and that
#ŜF ≥ 2.

If X is normal, by Lemma 9.5 either X(H, L) is normal in codimension 1 or else
X(H, L) is unibranch and ŜF contains at most three nodes, and at most one different
from N2 and N4. However, (9.9) necessarily holds and under this assumption all strata
X(H, L) that are normal in codimension 1 are normal, see Proposition 8.6 and Theorem
8.7, so we fall in (i). Assume that ŜF contains at most three nodes, at most one different
from N2 and N4 and that (9.9) holds. By inspection, wee see that SF is either as in (i)
or (ii), or else it is of type A3 + A2 + A1, A2 + A4, A3 + A2 or A3 + 2A1. Corollary 7.5
applied to these 4 cases would yield #Σ(H, K, L) > 2, contradicting Lemma 6.5.

Conversely, assume first SF is as in (ii). Then X is 1-dimensional, with #Σ(H, K, L) ≤
2 and satisfies the hypotheses of Proposition 6.9, so it is normal. The same argument gives
normality for the strata X for which X(H, L) is 1-dimensional and satisfies (i). There
is only one case left satisfying (i) and kSF 6= SF , namely SF of type A5 containing N2.
Condition (9.9) ensures unibranchedness of X at all minimal strata. Since all nodes in
ŜF have trivial stabiliser, normality of X follows from Corollary 9.2. �
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