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Despite the positive impact on achievement, competition has been associated
with elevated psychophysiological activation, potentially leading to a greater risk of
cardiovascular diseases. Competitive biofeedback (BF) can be used to highlight the
effects of competition on the same physiological responses that are going to be
controlled through BF. However, it is still unknown whether competition could enhance
the effects of respiratory sinus arrhythmia (RSA)-BF training in improving cardiac vagal
control. The present study explored whether competitive RSA-BF could be more
effective than non-competitive RSA-BF in increasing RSA in executive managers, who
are at higher cardiovascular risk of being commonly exposed to highly competitive
conditions. Thirty managers leading outstanding private or public companies were
randomly assigned to either a Competition (n = 14) or a Control (n = 16) RSA-BF training
lasting five weekly sessions. Managers in the Competition group underwent the RSA-
BF in couples and each participant was requested to produce a better performance
(i.e., higher RSA) than the paired challenger. After the training, results showed that
managers in the Competition group succeeded in increasing cardiac vagal control,
as supported by the specific increase in RSA (p < 0.001), the standard deviation
of R-R wave intervals (SDNN; p < 0.001), and root mean square of the successive
differences between adjacent heartbeats (rMSSD; p < 0.001). A significant increase
in the percentage of successive normal sinus beat to beat intervals more than 50 ms
(pNN50; p = 0.023; η2

p = 0.17), low frequency (p ≤ 0.001; η2
p = 0.44), and high

frequency power (p = 0.005; η2
p = 0.25) emerged independently from the competitive

condition. Intriguingly, managers who compete showed the same reduction in resting
heart rate (HR; p = 0.003, η2

p = 0.28), systolic blood pressure (SBP; p = 0.013,
η2

p = 0.20), respiration rate (p < 0.001; η2
p = 0.46), and skin conductance level

(SCL; p = 0.001, η2
p = 0.32) as non-competitive participants. Also, the same reduction

in social anxiety (p = 0.005; η2
p = 0.25), state (p = 0.038, η2

p = 0.14) and trait
anxiety (p = 0.001, η2

p = 0.31), and depressive symptoms (p = 0.023, η2
p = 0.17)

emerged in the two groups. The present results showed that managers competing for
increasing RSA showed a greater improvement in their parasympathetic modulation
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than non-competing managers. Most importantly, competition did not lead to the
classic pattern of increased psychophysiological activation under competitive RSA-BF.
Therefore, competition could facilitate the use of self-regulation strategies, especially in
highly competitive individuals, to promote adaptive responses to psychological stress.

Keywords: competition, biofeedback, managers, respiratory sinus arrhythmia, autonomic nervous system

INTRODUCTION

Competition has been consistently referred to as a type
of social motivation, and, it has been addressed in many
fields, including sports, job-related productivity, and academic
achievement. Indeed, under challenging conditions, competition
can motivate individual behavior more than cooperation.
Certainly, competition contributes strongly to achievement-
oriented behavior (Lam et al., 2004) by enhancing both
competitor’s intrinsic motivation (Tauer and Harackiewicz,
2004), creativity (Baer et al., 2010), and by fostering the mastery
of a skill (Cooke et al., 2011). In modern work environments,
especially among high-level managers and leaders, competition
is embraced to reach a high work pace and top efficiency
(Zhu and Zhou, 2014).

On the other side of the coin, competition represents
a considerable source of social pressure, leading to
aversive emotional states (Baumeister and Showers, 1986;
Cerin et al., 2000; Martinent et al., 2012) and promoting
psychophysiological activation. Under competitive conditions,
increased psychophysiological activation, supported by large
sympathetic nervous system responses, especially involving the
cardiovascular system, have been commonly reported (Harrison
et al., 2001; van Zanten et al., 2002). Faster heart rate (HR) and
a shortening of the pre-ejection period (an index of increased
myocardial contractility), both markers of beta-adrenergic
activation and reduced parasympathetic cardiac modulation (as
measured by the root mean square of the successive differences
between adjacent heartbeats; rMSSD), have been reported
during competitive conditions independently of individuals
competitiveness trait (van Zanten et al., 2002). Nonetheless,
individuals with high competitive traits were found to show
higher blood pressure (BP) reactions and greater shortening of
the pre-ejection period during a competitive condition compared
to non-competitive individuals (Harrison et al., 2001). More
recently, Cooke et al. (2011) reported that competition elicited
cardiac beta-adrenergic activation (as measured by a shortening
of the R-wave to pulse interval), alpha-adrenergic activation of
the vasculature (as measured by decreased pulse amplitude),
and decreased total heart rate variability (HRV) as measured by
the standard deviation of R-R intervals (SDNN). Intriguingly,
the authors reported that a decrease in SDNN mediated the
improvement in endurance performance during competition
(Cooke et al., 2011). Altogether, these results suggest that
competitive conditions induce a psychophysiological activation
that seems to be supported by a cardiac parasympathetic
withdrawal co-occurring along with sympathetic activation (van
Zanten et al., 2002; Cooke et al., 2011).

Such an important psychophysiological activation during
competition, while being a powerful factor in achievement
motivation, is also a strong stimulus condition for enhancing
sympathetic arousal and triggering cardiovascular responses.
Importantly, excessive cardiovascular response (i.e., high HR
and BP increase) are related to a heightened risk of developing
cardiovascular diseases, and high competitiveness trait might be
a mechanism enhancing this relation (Glass et al., 1980; Sherwood
et al., 1989; Shahidi et al., 1991; Harrison et al., 2001; Ricarte
et al., 2001; Matsumura et al., 2011). Indeed, competitiveness is
a core feature of the “Type A behavior” pattern (also called “Type
A coronary-prone behavior”), a set of behavioral dispositions
characterized by time urgency, impatience, restlessness, hostility,
hyperalertness, and job involvement (Friedman and Rosenman,
1974) that has been associated with increased risk for
coronary heart disease (Haynes and Feinleib, 1982; Orth-
Gomer and Unden, 1990). Under competitive conditions,
individuals classified as Type A have been reported to display
larger cardiovascular responses (i.e., elevated HR and BP
reactions) to laboratory and environmental challenges (Van
Egeren et al., 1978; Dembroski et al., 1979; Glass et al.,
1980; Chida and Hamer, 2008). In the majority of the
studies focusing on the relation between competitiveness and
increased cardiovascular risk, competition has been manipulated
using psychosocial tasks, the most common being playing
a game while competing against another person to win a
prize (e.g., money). During such tasks, the participants are
induced to compete against each other (or with a stooge
opponent), while cardiovascular responses are monitored
(Adam et al., 2015).

Intriguingly, competition during biofeedback (BF) can be
used to highlight the effects of competition on the same
physiological response that is going to be changed (Stegagno
and Vaitl, 1979). BF is a well-known autoregulation procedure
that allows the individual to control, through feedback,
his/her own physiological functions, including the cardiovascular
functions (Obrist et al., 1975; Williamson and Blanchard,
1979; Schwartz and Andrasik, 2017). BF can be used as a
procedure to exploit competition as a motivational factor for
challenging individuals to change their physiological activity
(Stegagno and Vaitl, 1979; Stern and Elder, 1982; Shahidi
and Salmon, 1992; Palomba and Stegagno, 1993). In an
early study, a competitive BF procedure directly aimed at
controlling HR was developed: participants were required to
increase their HR to a greater extent than the challenger (in
fact an experimental manipulation). Each participant received
information on his/her HR, plus visual feedback (a red light)
indicating when and for how long his/her own HR was higher
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compared to the challenger’s HR. The competitive situation
resulted in a higher HR increase compared to the non-
competitive one. Also, the respiration rate, muscle tension, and
systolic blood pressure (SBP) increased significantly during the
competition, reflecting general physiological arousal. It could
be argued that the positive results were sustained by the
synergism between the task requests (i.e., increase HR) and the
motivational disposition induced by the competitive condition
(Stegagno and Vaitl, 1979).

Competitive BF has also been applied to obtain a
decrease in HR. Specifically, participants were rewarded
for producing a physiological directional change (i.e., HR
reduction) incompatible with the general psychophysiological
activation induced by competition. Results showed that
participants could reduce their HR under competition,
although this reduction was smaller compared to the non-
competitive one. Remarkably, respiration rate, muscle tension,
and SBP showed no modifications during the competitive
HR-BF, suggesting the idea that BF could counteract the
psychophysiological activation usually elicited by competition
(Palomba and Stegagno, 1993).

Competing to achieve deep relaxation was also tested.
Participants received an HR-BF and were told that they would
earn a monetary reward based on their ability to relax. Individuals
with high competitive traits were able to reduce their HR even
more in the competitive condition compared to not competitive
ones. When striving to excel, individuals high in competitiveness
could be more motivated to produce the expected performance,
even when the performance implies a reduction in physiological
activation, a response presumably incompatible with the
effects of competition (Shahidi and Salmon, 1992). This is
intriguing given that competitive situations are usually associated
with a greater psychophysiological activation, which, in turn,
has been consistently implicated in the risk to develop
cardiovascular diseases, such as hypertension, coronary heart
disease, heart failure, and myocardial infarction (Treiber et al.,
2003; Kupper et al., 2015).

In health settings, BF is generally employed as an intervention
to decrease psychophysiological activation, for example, through
reducing HR (Hauri, 1975; Sharpley, 1989; Huang and Luk,
2015; Brown and Bray, 2019). In the early 80s, BF to improve
respiratory sinus arrhythmia (RSA-BF), also called HRV-BF, was
developed to target specifically the parasympathetic nervous
system (Lehrer, 2013). During RSA-BF, individuals learn to
synchronize the respiratory rate with variations in HR, in
order to maximize RSA and the cardiac vagal control (Lehrer
et al., 2000; Schwartz and Andrasik, 2017). The beneficial
effects of RSA-BF have been hypothesized to be underlain
different mechanisms. First, RSA-BF is linked to an increase
in parasympathetic autonomic modulation (Lehrer and Gevirtz,
2014). It has been proposed that the mechanical effects of
slow breathing stimulate the vagal nerve both phasically and
tonically (Gerritsen and Band, 2018). Also, the synchronized
oscillation in respiratory rate and HR stimulates the baroreflex
(Vaschillo et al., 2006, 2011). Furthermore, positive effects have
been sown on the respiratory system, and specifically an increase
in gas exchange efficiency (Grossman and Taylor, 2007). More

recently, some indirect anti-inflammatory effects of RSA-BF
have been suggested (Gevirtz, 2013; Noble and Hochman, 2019;
Lehrer et al., 2020).

RSA-BF is of particular relevance given that reduced cardiac
vagal control (measured as low HRV or RSA) has been linked to
several medical (Patron et al., 2012; Zhou et al., 2016; Benichou
et al., 2018; Carvalho et al., 2018) and psychopathological
conditions (Clamor et al., 2016; Cheng et al., 2019; Koch et al.,
2019). Indeed, RSA-BF has been shown to effectively improve
cardiac vagal control and, in turn, lower anxious and depressive
symptoms (Karavidas et al., 2007; Gevirtz, 2013; Patron et al.,
2013; Goessl et al., 2017; Caldwell and Steffen, 2018) and improve
athletic performance, sleep, and quality of life (Zaccaro et al.,
2018; Lehrer et al., 2020). Furthermore, RSA-BF was found to be
effective in increasing cardiac vagal control and reducing SBP in
a group of high-status-position managers (Munafò et al., 2016).

In addition to the mechanisms previously cited, the positive
effects of RSA-BF on psychophysiological flexibility and emotions
could involve improved functional connectivity between cortical
brain areas. According to the neurovisceral integration model
(Thayer and Lane, 2000, 2009), the heart is bidirectionally
linked to areas in the prefrontal cortex through the vagus
nerve and subcortical areas included in the central autonomic
network (Benarroch, 1993, 1997). Mather and Thayer (2018)
proposed that increasing RSA through RSA-BF could promote
functional connectivity between brain regions involved in
emotion regulation, such as the medial prefrontal cortex and
the amygdala. Supporting this hypothesis, higher HRV has
been reported to correlate with higher prefrontal cortex activity
(Thayer et al., 2012; Chang et al., 2013; Patron et al., 2019), greater
functional connectivity between the medial prefrontal cortex
and the amygdala (Jennings et al., 2016) and with improved
emotional regulation and psychological health (Hansen et al.,
2003; O’Connor et al., 2007; Lane et al., 2013; Gillie et al., 2014).

Despite the positive effects of RSA-BF on cardiac vagal
control, no study, to date, has applied competition to RSA-BF
to examine whether competing to increase RSA could boost the
motivation, leading to a greater reduction in psychophysiological
activation. It could be argued that BF aiming at competing to
increase RSA could improve parasympathetic modulation on
the heart to a greater extent than non-competitive RSA-BF.
This, in turn, could counteract the psychophysiological activation
usually linked to competition. In the present study, managers
in highly competitive job contexts and characterized by high
competitiveness traits were randomly assigned to five sessions
of competitive or non-competitive RSA-BF training. Participants
in the competition group underwent BF in couples and were
requested to achieve a better RSA than their competitors, while
participants in the non-competition group were asked to enhance
their RSA as much as they could. First, it was hypothesized that
participants in the competition group would be able to enhance
their RSA (i.e., increase cardiac vagal control) to a greater extent
than participants in the non-competition (control) condition.
Second, it was hypothesized that competing to improve RSA
would counteract the psychophysiological activation usually
linked to competition, leading to a reduction of HR, SBP, and skin
conductance level (SCL).
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MATERIALS AND METHODS

Participants
The present study enrolled 30 managers from private (banking
group, manufacturing industries, and media) and public (health
service, education system, local government, and military)
companies in the northeastern region of Italy. A power
analysis was conducted to determine the sample size for
repeated measure of analysis of variance (ANOVA) with
an effect size F = 0.30, a correlation among repeated
measures of r = 0.62 and a power = 0.95. Participants were
recruited through advertisements in the newsletter of the
association of the General Confederation of Italian Industry
(Confindustria) and voluntarily participated in this study.
Participants were in charge either of the whole company
(manager) or departments in organization managing (middle
manager), subject to a highly competitive work environment.
Part of the sample from a previously published report
(Munafò et al., 2016) was included in the present study.
All participants were males, aged 35–67 years (mean ± SD
age = 49.30 ± 8.15), with a high-level education (mean ± SD
education years = 17.60 ± 2.50), and they were all actively
employed, with no precedent heart problems or other chronic
mental or neurological diseases. None of the participants
were taking medications influencing HR (e.g., beta-blockers),
tranquilizers, or antidepressants.

Participants were instructed about the study procedure and
gave written informed consent. After the assessment evaluation,
they were randomly assigned to the Competition (n = 14) or
Non-Competition (Control; n = 16) group. The study was carried
out in accordance with the Declaration of Helsinki, and the
study protocol was approved by the Ethical Committee of the
Psychology section of the University of Padova (prot. No. 1159).

Measurements and Apparatus
A semi-structured interview was conducted to collect
sociodemographic (age and education) and health behavior
data, including weight, height, physical activity, sleep, family
history of hypertension, and cardiovascular diseases as well as
medication intake (including medications influencing cardiac
activity and psychotropic drugs).

The Jenkins Activity Survey (JAS; Jenkins et al., 1979) was
administered to assess competitiveness traits. The JAS is a self-
report measure containing 54 items investigating the way of
responding to situations that should elicit Type A behavior in the
susceptible individual (e.g., having to wait in long lines or to work
with a slow partner). The JAS has four major components: Type
A scale, factor S (speed impatience), factor J (job involvement),
and factor H (hard-driving and competitive).

The Social Interaction Anxiety Scale (SIAS; Mattick and
Clarke, 1998) was administered to assess the fear of general
social interaction. The SIAS is a self-report questionnaire that
includes 20 items describing the typical cognitive, affective, or
behavioral reaction to different situations requiring interaction
with other persons (one or more). Each item is rated on a scale
from 0 to 4, which indicates to what extent the statements reflect

the respondent characteristics. Total scores range from 0 to 80,
higher scores reflect higher levels of social interactional anxiety.

The State and Trait Anxiety Inventory (STAI Y1 and STAI
Y2) (Spielberger et al., 1983; Pedrabissi and Santinello, 1989)
was administered to assess self-reported state (Y1) and trait (Y2)
anxiety symptoms. The scores range between 20 and 80; higher
scores represent higher long-lasting and persistent anxiety.

The Center for Epidemiological Study of Depression scale
(CES-D) (Radloff, 1977; Fava, 1982) is a 20-item self-report
questionnaire designed to measure the presence of common
symptoms of depression over the previous week. Each item is
rated on a four-point Likert scale and scores range from 0 to 60,
higher scores indicating greater depressive symptoms.

Physiological Measures
Blood volume pulse (BVP) was recorded by a
photoplethysmographic detection sensor (BVP-Flex/Pro)
attached to the right ring finger. Photoplethysmography (PPG)
is a more convenient and less invasive alternative to the gold
standard electrocardiogram. Several studies have reported that
HRV indexes calculated from PPG signal and gold standard
electrocardiographic recording are highly correlated (Lu et al.,
2008, 2009; Gil et al., 2010; Jeyhani et al., 2015; Pinheiro et al.,
2016; Menghini et al., 2019). PPG recordings have satisfactory
accuracy in healthy individuals (Pinheiro et al., 2016) during
resting conditions in the absence of motion (Schäfer and Vagedes,
2013; Menghini et al., 2019).

After recording the raw BVP, the signal was visually inspected
and corrected for movement artifacts, and ectopic beats were
detected and eliminated. Then to obtain the interbeat intervals
(IBIs) series, heartbeats were automatically identified by an
algorithm based on the detection of the point of maximum
deviation in the BVP signal. Then IBIs series were exported in the
Kubios-HRV 2.0 (Kuopio, Finland) software where an additional
artifacts correction was run applying a piecewise cubic spline
interpolation method that generates missing or corrupted values
into the IBIs series.

Respiration rate was recorded employing a respiration belt
with strain gauges/tube filled with conduction fluid (Respiration-
Flex/Pro sensor) worn around the participant’s abdomen. The
software calculated the respiration rate from differences in
the abdomen expansion in the raw signal waveform. The
specific respiration range for each participant was calculated
(i.e., maximum respiration rate minus minimum respiration
rate, expressed in cycles/min), and converted in Hz (i.e., from
cycles/min to cycles/s).

RSA was calculated through HRV analysis. Specifically, HRV
is the physiological variation in the intervals between heartbeats,
and most importantly, some indexes of HRV [e.g., rMSSD and
the power in the high-frequency (HF) band)] have been shown
to be reliable measures of the modulation of the parasympathetic
branch of the autonomic nervous system on the heart in response
to both internal and external challenges. In line with current
recommendations (Laborde et al., 2017), the most common
time- and frequency-domain HRV indexes were calculated and
analyzed. Specifically, SDNN was calculated, which displays the
cyclic components responsible for the total HRV. rMSSD was
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also computed, which is highly sensitive to the fluctuation of
high-frequency HRV and is considered an index of vagal control
on the heart. Moreover, rMSSD has been shown as relatively
independent of respiration rate influences (Hill et al., 2009).
The percentage of successive normal sinus beat to beat intervals
more than 50 ms (pNN50) was computed, as it indicates cardiac
vagal control (Berntson et al., 1993; Malik et al., 1996; Hill
et al., 2009; Laborde et al., 2017). In the frequency domain,
the power spectrum in the very low-frequency (VLF; from 0 to
0.04 Hz), in the low-frequency (LF; from 0.04 to 0.15 Hz), and
in the high-frequency band (HF; 0.15–0.40 Hz) were obtained
and logarithmically transformed to normalize their distribution
(Malik et al., 1996).

Since BF training was specifically focused on slow breathing
and RSA, which is a cardiorespiratory phenomenon characterized
by inter-beat intervals fluctuations occurring in phase with
respiration (Grossman and Taylor, 2007), RSA was also
computed. RSA is specifically considered to display the rhythmic
increase and decrease of cardiac vagal efferent effects upon
the sinoatrial node that are linked to respiratory frequency
(Eckberg, 2003; Yasuma and Hayano, 2004; Laborde et al.,
2018). Since RSA is modulated by physiological mechanisms
that comprehend the interaction between cardiac and respiratory
responses (Grossman, 1983), respiration can confound the
relation between cardiac vagal control and RSA (Gevirtz and
Lehrer, 2003; Grossman and Taylor, 2007). Therefore, to acquire a
more reliable measure of cardiac vagal control, RSA was obtained,
controlling for the respiration rate of each participant. RSA was
calculated as the power spectrum of the IBIs series occurring
within the specific respiration rate range for each participant.
Specifically, a Fast Fourier Transformation was applied to the
variation of IBIs occurring within the specific respiration rate
range for each participant (Aysin and Aysin, 2006; Grossman and
Taylor, 2007). RSA values were expressed in ms2.

SBP and diastolic blood pressure (DBP) were recorded on the
left arm. Three readings were taken at rest after adaptation to the
laboratory at intervals of 1 min, and averaged, according to the
recommendations for BP measurement of the American Heart
Association (Pickering et al., 2005).

SCL was recorded employing two Ag/AgCl surface electrodes
applied on the first and middle fingers of the right hand (Skin
conductance-Flex/Pro sensor) (Fowles et al., 1981). The probe
signal was constant voltage (0.5 V), and no conductive paste
was applied on the skin. SCL, which is a measure of tonic
electrodermal activity, has been widely used as an index of
sympathetic nervous system activation that also reflects the
level of psychophysiological activation (Boucsein, 2012; Boucsein
et al., 2012). Specifically, the SCL signal recorded was visually
examined for the occurrence of artifacts and non-specific skin
conductance responses and manually corrected. Then, SCL was
computed as the mean of SCL measurements across the non-
artifactual recording.

BVP, respiration, and SCL were continuously recorded using a
FlexComp InfinitiTM encoder, which is a computerized recording
system approved by the US Food and Drug Administration
and visualized through the BioGraph Infiniti software (Thought
Technology Ltd., Montreal, QC, Canada). Data were processed

via a 14-bit analog-to-digital converter with a sampling rate of
256 Hz (bandwidth DC – 64Hz) and stored for analysis in a
personal computer (DELL VOSTRO notebook, Intel CoreTM 2).
SBP and DBP were recorded by a validated automatic wrist device
(NAIS EW272, Matsushita Electrics Works Italia S.r.l.).

Assessment
All managers underwent the same assessment protocol before
the first RSA-BF session (i.e., pre-training) and approximately
2 weeks after the end of the fifth RSA-BF session (i.e., post-
training), in a laboratory purposely set up at participant’s
worksite. Before each session, participants were asked to
abstain from alcohol, caffeinated beverages, and smoking for
the 3 h preceding psychophysiological recordings. Self-report
questionnaires (SIAS, STAI Y1, STAI Y2, and CES-D) were
administered individually by a trained psychologist blind to
the participant’s group assignment (Competition or Control
group). Then, participants were invited to sit on a comfortable
armchair, in a quiet, dimly lit room at a constant temperature
(about 21◦C). No support for the legs was employed to
avoid the possible confounding effect of body position on
cardiac activity. Before starting the physiological assessment,
all the participants were informed of the sensors attached
and the respective physiological measures being monitored
(i.e., BVP, respiration rate, SCL, and BP). BVP signal was
then analyzed to calculate HRV and RSA indexes. After the
sensors’ placement and adaptation to the laboratory (10 min),
SBP and DBP were measured. Then the recording of BVP,
respiration, and SCL was carried on over 4 min at rest,
and SBP and DBP were measured again at the end of the
physiological recording. To note, all the physiological measures
analyzed and included in the study were recorded in resting
conditions during the pre-training assessment (before the
first RSA-BF session) and the post-training assessment (about
2 weeks after the fifth RSA-BF session). Participants were
asked to breathe normally. After the pre-training assessment,
participants were randomly assigned to either the Competition
or the Control group.

Training
The training consisted of five weekly sessions, each lasting about
40 min, performed in the same laboratory of assessment. All
participants were asked to abstain from alcohol, caffeinated
beverages, and smoking for the 3 h preceding each BF session.
RSA-BF was aimed at increasing RSA and, therefore, at opposing
autonomic dysregulation, especially vagal inhibition associated
with stress (Lehrer et al., 2000). Before starting the first RSA-
BF session, all the managers were informed about the feedback
system, and they were told that augmenting the amplitude of
HR changes in phase with breathing would increase RSA. Then,
instructions similar to those proposed in Lehrer’s et al. protocol
(2000) were given to all participants. Specifically, they were
told to try to breathe in phase with their HR, such that when
the HR accelerate, they had to start inhaling, and when the
HR decelerate, they had to exhale. Also, they were instructed
to breathe so that their abdomen expanded during inhalation
and contracted during exhalation and, more importantly, to
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breathe out slower than they breathed in. Finally, they were
asked to breathe in through their nose and breathe out through
pursed lips. After the sensors’ placement, the BF session started
with a resting period of 3 min followed by two 6 min BF
trials, spaced out by 1 min at rest. The BF session ended with
3 min at rest. Feedback was provided to all participants using
the same instruments used for psychophysiological assessment,
on a 15-inch PC display positioned in front of them at a
distance of 50 cm. RSA feedback consisted of an HR beat-
to-beat tachogram (i.e., beats/min) superimposed over the
abdominal respiration signal on the same axis. Participants were
required to synchronize HR and abdominal respiration until
the two signals covaried in phase, thus leading to the maximal
amplitude of RSA. The online moving feedback display (the
graph representing the tachogram and abdominal respiration
curves) was updated at successive 30 s periods. During each RSA-
BF session, participants were reminded not to breathe too deeply
to avoid hyperventilation. No pacing stimulus was provided
during the training sessions.

Participants in the Competition group underwent the RSA-
BF training in couples [paired for age, body mass index (BMI),
and physical activity level) and were requested to have a better
performance compared to the paired challenger (i.e., increase
RSA more than the competitor). Participants in the Competition
group were presented two stepped bars increasing from left to
right: one bar represented their own performance and the other
reflected the competitor’s one (see Figure 1). Each step increase
on the bar corresponded to 10 s RSA above the mean level
of RSA as recorded during the baseline (i.e., during the first
3 min at rest). Participants competing to increase RSA were
asked to increase the number of steps displayed on the bar more
than the competitor.

Participants in the Control group were also trained in
couples, but they had no competitive feedback: one stepped bar
increasing from left to right was displayed on the screen to
represent feedback for participant’s performance. Participants in
the Control group were asked to increase the stepped bar as
much as they could.

Data Reduction and Analysis
Data reduction and analyses were performed on questionnaire
scores (SIAS, STAI Y1, STAI Y2, and CES-D) and physiological
signals (i.e., RSA, HR, SDNN, rMSSD, pNN50, VLF, LF, HF, SBP,
and DBP, respiration rate, and SCL) recorded over a 4 min period
at rest during pre- (i.e., before the first RSA-BF session) and
post-training (about 2 weeks after the end of the fifth RSA-BF
session) sessions.

Whether a variable resulted not normally distributed from
the Shapiro-Wilk test, a log transformation was applied for
data normalization. For this reason, pre- and post-training
RSA and SCL were log-transformed. The mean respiration
rate was calculated over 4 min at rest during pre- and post-
training assessment sessions. SBP and DPB were separately
averaged across the three recordings during pre- and post-
training sessions.

Student’s t-tests for independent groups were performed to
compare age, education, BMI, sleep time, and scores on JAS

FIGURE 1 | (A) Schematic representation of one session of competition
biofeedback. On the screens (duration 30 s) are representations of abdominal
breathing (black line) and heart rate tachogram (gray line). Also, two bars were
included on the screen to represent feedback for the subject’s (“YOU”) and
competitor’s (“COMPETITOR”) performance. The participant was asked to
synchronize heart rate with abdominal breathing better than his/her
competitor. (B) Schematic representation of one session of Control
Biofeedback. On the screen (duration 30 s) are representations of abdominal
breathing (black line) and heart rate tachogram (gray line). Also, one bar was
included on the screen to represent feedback for the subject’s performance.
The participant was asked to synchronize heart rate with abdominal breathing
as much as he/she could.

scales in the two groups (Competition and Control). χ2s were
calculated to test differences between groups in sleep disorders,
smoking, physical activity, family history of hypertension, and
cardiovascular disease.

A series of repeated measure ANOVA, with Group
(Competition and Control) as a between-subjects factor,
and Time (pre- and post-training), as a within-subjects
factor were performed on questionnaires scores (SIAS, STAI
Y1, STAI Y2, and CES-D) and all physiological measures
(RSA, HR, SDNN, rMSSD, pNN50, VLF, LF, HF, SBP, DBP,
respiration rate, and SCL). Moreover, to evaluate whether
the modification in RSA after RSA-BF training was clinically
relevant, percent improvement index was calculated with the
following formula [(log(RSA)post-training – log(RSA)pre-
training)/log(RSA) pre-training ∗100] (Blanchard and Andrasik,
1987). Then a Mann-Whitney U-test was run to compare
the RSA percent improvement index in the two groups
(Competition and Control). Partial eta-squared (ηp

2) was
reported as a measure of the effect size. Significant interactions
(p < 0.05) were followed by Tukey post hoc comparisons to
identify specific differences. All analyses were performed using

Frontiers in Neuroscience | www.frontiersin.org 6 August 2020 | Volume 14 | Article 855

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00855 August 29, 2020 Time: 10:35 # 7

Patron et al. Competitive RSA-Biofeedback in Managers

Jamovi version 0.9 (Şahin and Aybek, 2019). A p < 0.05 was
considered statistically significant.

RESULTS

Sociodemographic and Health Behavior
Data
Student’s t-tests for independent groups and chi-square analyses
revealed no group differences for age, education, BMI, family
history of hypertension, cardiovascular disease, physical activity,
reported sleep time, sleep disorders, and competitiveness traits
(JAS scores; all p’s > 0.296; see Table 1).

Questionnaires Scores
Repeated measures ANOVAs on questionnaires scores revealed a
significant reduction in fear of social interaction, state and trait
anxiety, and depressive symptoms from pre- to post-training in
both groups, as shown by the significant Time main effects [SIAS:
F(1, 28) = 9.13; p = 0.005; η2

p = 0.25; STAI Y1: F(1, 28) = 4.73;
p = 0.038; η2

p = 0.14; STAI Y2: F(1, 28) = 12.41; p = 0.001;
η2

p = 0.31; CES-D: F(1, 28) = 5.82; p = 0.023; η2
p = 0.17; see

Tables 2, 3]. No significant main Group effect nor Group × Time
interaction emerged for these measures (all p’s > 0.136).

Physiological Data
The ANOVA on RSA at rest showed a Group × Time interaction
[F(1, 27) = 8.78; p = 0.006; η2

p = 0.24; see Tables 2, 3 and
Figure 2A). Post hoc comparisons yielded a significant RSA
increase from pre- to post-training in the Competition group
(p < 0.001), whereas in the Control group pre- to post-training
comparison did not reach significance (p = 0.066). Post-training
comparison between the Competition and Control group was
not significant (p = 0.479). A significant main effect of Time
emerged [F(1, 27) = 42.47; p < 0.001.; η2

p = 0.60], revealing

TABLE 1 | Sociodemographic characteristics, health behaviors, and JAS scores
of participants assigned to Competition and Control groups.

Participants’ characteristics Competition
(n = 14)

Control
(n = 16)

p

Age (year) 48.86 (7.12) 49.69 (9.17) 0.786

Education (years) 17.50 (2.59) 17.69 (2.50) 0.842

BMI (Kg/m2) 26.26 (2.88) 26.73 (3.72) 0.706

Physical activity
(none/occasional/regular)

3 (21)/7 (50)/4 (29) 5 (31)/4 (25)/7
(44)

0.366

Sleep time (hours) 6.82 (0.54) 6.78 (0.98) 0.893

Sleep disorders (N, %) 7 (50) 11 (69) 0.296

Family history of hypertension (N, %) 6 (43) 7 (44) 0.961

Family history of cardiovascular
disease (N, %)

7 (50) 9 (56) 0.732

JAS – Speed Impatience 216.86 (80.12) 243.63 (60.54) 0.307

JAS – Job Involvement 260.79 (29.97) 252.06 (29.24) 0.427

JAS – Hard-driving and Competitive 128.21 (32.68) 127.44 (35.83) 0.951

Data are M (SD) of continuous and N of categorical variables. BMI, Body Mass
Index; JAS, Jenkins Activity Survey.

TABLE 2 | Psychophysiological and psychological indexes from pre- to
post-training in participants who underwent competition RSA-BF and controls.

Variable Pre-training Post-training

SIAS

Competition 19.07 (8.69) 16.00 (7.75)

Control 14.06 (8.39) 12.38 (7.11)

STAI Y1

Competition 36.07 (6.57) 33.07 (7.21)

Control 33.00 (4.89) 30.25 (8.38)

STAI Y2

Competition 34.93 (5.64) 32.64 (4.63)

Control 37.56 (8.02) 34.50 (7.56)

CES-D

Competition 9.14 (3.74) 7.14 (2.32)

Control 11.19 (5.14) 8.69 (5.59)

RSA (log[ms2])

Competition 1.90 (0.63) 2.87 (0.75)

Control 2.15 (0.70) 2.51 (0.58)

HR (bpm)

Competition 71.09 (10.20) 65.84 (8.61)

Control 73.22 (11.74) 67.07 (8.26)

SDNN (ms)

Competition 30.06 (17.21) 55.98 (25.73)

Control 28.55 (20.46) 39.18 (25.46)

rMSSD (ms)

Competition 25.29 (16.46) 49.31 (23.12)

Control 24.38 (20.25) 31.94 (21.59)

pNN50

Competition 6.89 (9.23) 13.07 (12.00)

Control 5.45 (12.62) 7.15 (12.69)

VLF (log[ms2])

Competition 3.48 (0.93) 4.31 (0.97)

Control 3.16 (1.25) 3.54 (1.77)

LF (log[ms2])

Competition 5.95 (0.95) 7.20 (1.30)

Control 5.63 (1.40) 6.22 (1.60)

HF (log[ms2])

Competition 4.92 (1.20) 5.97 (1.29)

Control 4.99 (1.29) 5.28 (1.24)

SBP (mmHg)

Competition 125.18 (11.21) 123.14 (14.93)

Control 130.66 (14.06) 121.44 (9.07)

DBP (mmHg)

Competition 79.32 (8.37) 79.54 (9.02)

Control 82.75 (9.11) 80.59 (7.83)

Respiration rate (breath/min)

Competition 15.60 (2.99) 11.28 (4.15)

Control 13.93 (2.64) 12.01 (3.64)

SCL (log[µMho])

Competition 0.41 (0.24) 0.36 (0.18)

Control 0.43 (0.17) 0.27 (0.13)

Data are M (SD). SIAS, Social Interaction Anxiety Scale; STAI Y1, State and Trait
Anxiety Inventory form Y1; STAI Y2, State and Trait Anxiety Inventory form Y2;
CES-D, Center for Epidemiological Study of Depression scale; RSA, respiratory
sinus arrhythmia; HR, heart rate; SDNN, standard deviation of normal sinus beat
to beat intervals; rMSSD, root mean square of the successive differences between
adjacent heartbeats; pNN50, percentage of successive normal sinus beat to beat
intervals more than 50 ms; VLF, power in the very low frequency; LF, power in the
low frequency; HF, power in the high frequency; SBP, systolic blood pressure; DBP,
diastolic blood pressure; SCL, skin conductance level.
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TABLE 3 | Results of ANOVAs on questionnaires scores and physiological data from pre- to post-training in participants in the competition and control groups.

Time main effects Group main effects Time × Group interactions

Variable F(1, 27) P η2
p F(1, 27) p η2

p F(1, 27) p η2
p

SIAS 9.13 0.005 0.25 2.35 0.136 0.08 0.77 0.387 0.03

STAY1 4.73 0.038 0.14 1.89 0.180 0.06 0.01 0.925 0.001

STAI Y2 12.41 0.001 0.31 0.93 0.344 0.03 0.26 0.613 0.01

CES-D 5.82 0.023 0.17 1.79 0.192 0.06 0.07 0.791 0.001

RSA (log[ms2]) 42.47 < 0.001 0.60 0.05 0.822 0.001 8.78 0.006 0.24

HR (bpm) 10.91 0.003 0.28 0.28 0.599 0.01 0.07 0.796 0.002

SDNN (ms) 37.82 < 0.001 0.19 1.42 0.244 0.05 6.62 0.016 0.19

rMSSD (ms) 28.23 < 0.001 0.50 1.76 0.196 0.06 7.67 0.010 0.22

pNN50 5.75 0.023 0.17 0.85 0.365 0.03 1.86 0.184 0.06

VLF (log[ms2]) 3.92 0.058 0.12 2.28 0.142 0.08 0.51 0.481 0.02

LF (log[ms2]) 22.31 < 0.001 0.44 2.07 0.161 0.07 2.85 0.103 0.09

HF (log[ms2]) 9.50 0.005 0.25 0.60 0.444 0.02 3.05 0.092 0.10

SBP (mmHg) 7.08 0.013 0.20 0.22 0.645 0.01 2.88 0.101 0.09

DBP (mmHg) 0.27 0.605 0.01 0.78 0.384 0.03 0.41 0.528 0.01

Respiration rate(breath/min) 24.38 < 0.001 0.47 0.19 0.664 0.01 3.62 0.067 0.11

SCL (log[µMho]) 13.24 0.001 0.32 0.39 0.540 0.01 3.16 0.086 0.10

SIAS, Social Interaction Anxiety Scale; STAI Y2, State and Trait Anxiety Inventory form Y2; CES-D, Center for Epidemiological Study of Depression scale; RSA, respiratory
sinus arrhythmia; HR, heart rate; SDNN, standard deviation of normal sinus beat to beat intervals; rMSSD, root mean square of the successive differences between
adjacent heartbeats; pNN50, percentage of successive normal sinus beat to beat intervals more than 50 ms; VLF, power in the very low frequency; LF, power in the low
frequency; HF, power in the high frequency; SBP, systolic blood pressure; DBP, diastolic blood pressure; SCL, skin conductance level.

higher resting RSA during post-training assessment compared
to pre-training. No significant main effect of Group emerged
(p = 0.822)1.

The Mann-Whitney U test on percent improvement index
revealed that managers in the Competition group after RSA-BF
had a greater percent improvement index (57%), than the Control
group (27%) (Mann-Whitney U = 51.00; p = 0.010).

The ANOVA on SDNN revealed a significant Group × Time
interaction [F(1, 27) = 6.62; p = 0.016; η2

p = 0.19; see Tables 2, 3
and Figure 2B). Tukey post hoc comparisons displayed a
significant SDNN increase from pre- to post-training in the
Competition group (p < 0.001), whereas the comparison between
pre- and post-training in the Control group did not reach
statistical significance (p = 0.064). Post-training comparison
between the Competition and Control group was not significant
(p = 0.194). Main Time effect yielded a significant increase in
SDNN from pre- to post-training [F(1, 28) = 37.82; p ≤ 0.001;
η2

p = 0.19]. No significant main effect of Group emerged
(p = 0.244).

The ANOVA on rMSSD showed a significant Group × Time
interaction [F(1, 27) = 7.67; p = 0.010; η2

p = 0.22; see Tables 2, 3
and Figure 2C]. Post hoc comparisons yielded a significant

1A repeated measure analysis of covariance (ANCOVA) on RSA controlling for
change from pre- to post-training in respiration rate as a covariate was computed.
Results showed a significant Group × Time interaction [F(1, 27) = 4.46; p = 0.044;
η2

p = 0.14]. Post hoc comparisons yielded a significant RSA increase from pre-
to post-training in both the Competition group (p < 0.001) and the Control group
(p = 0.003). Post-training comparison between the Competition and Control group
was not significant (p = 0.958). A significant main effect of Time emerged [F(1,
27) = 10.42; p = 0.003; η2

p = 0.28], revealing higher resting RSA during post-
training assessment compared to pre-training. No significant main effect of Group
emerged (p = 0.776).

rMSSD increase from pre- to post-training in the Competition
group (p < 0.001), whereas the comparison between pre- and
post-training in the Control group was not significant (p = 0.267).
Post-training comparison between the Competition and Control
group was not significant (p = 0.113). Main Time effect yielded
a significant increase in rMSSD from pre- to post-training [F(1,
28) = 28.23; p ≤ 0.001; η2

p = 0.50]. No significant main effect of
Group emerged (p = 0.196).

Also, a significant Time main effect emerged showing an
increase in pNN50, LF and HF [pNN50: F(1, 28) = 5.75; p = 0.023;
η2

p = 0.17; see Figure 2D; LF: F(1, 28) = 22.31; p = 0.001;
η2

p = 0.44; see Figure 2E; HF: F(1, 28) = 9.50; p = 0.005; η2
p = 0.25;

see Tables 2, 3 and Figure 2F).
A significant reduction in HR, SBP, respiration rate, and SCL

occurred from pre- to post-training for both groups, as shown by
the significant Time main effects [HR: F(1, 28) = 10.91; p = 0.003;
η2

p = 0.28; see Figure 2G; SBP: F(1, 28) = 7.08; p = 0.013;
η2

p = 0.20; see Figure 2H; respiration rate: F(1, 28) = 24.38;
p < 0.001; η2

p = 0.47;, see Figure 2I; SCL: F(1, 28) = 13.24;
p = 0.001; η2

p = 0.32;, see Tables 2, 3 and Figure 2J]. No other
significant effects emerged (all p’s > 0.058; see Figures 2K,L).

DISCUSSION

The present study examined whether managers characterized
by high competitiveness traits who were asked to compete to
enhance their own cardiac vagal control through BF would
achieve a greater improvement in RSA in comparison to
managers undergoing a traditional (non-competitive) RSA-
BF. Moreover, competing to improve RSA was expected to
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FIGURE 2 | (A) RSA in the Competition and Control group from pre-to post-training. (B) SDNN in the Competition and Control group from pre-to post-training. (C)
rMSSD in the Competition and Control group from pre-to post-training. (D) pNN50 from pre- to post-training. (E) LF from pre- to post-training. (F) HF from pre- to
post-training. (G) HR from pre- to post-training. (H) SBP from pre- to post-training. (I) Respiration rate from pre- to post-training. (J) SCL from pre- to post-training.
(K) VLF from preto post-training. (L) DBP from pre- to post-training. Error bars represent the standard error of the mean. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001. RSA,
respiratory sinus arrhythmia; SDNN, standard deviation of normal sinus beat to beat intervals; rMSSD, root mean square successive difference of normal sinus beat
to beat intervals; pNN50, percentage of successive normal sinus beat to beat intervals more than 50 ms; LF, power in the low frequency; HF, power in the high
frequency; HR, heart rate; SBP, systolic blood pressure; SCL, skin conductance level; VLF, power in the very low frequency; DBP, diastolic blood pressure.

counteract the psychophysiological activation commonly linked
to competition, leading to a reduction in HR, SBP, and SCL.

One major result of the present study was that managers
in the Competition group significantly increased RSA from
pre- to post-training. Importantly, managers in the Competition
group specifically showed a consistent increase in indexes
reflecting total HRV (i.e., SDNN) and greater cardiac vagal
control (i.e., RSA and rMSSD). Additionally, to evaluate whether
the modification in RSA after RSA-BF training was clinically
relevant, percent improvement index was calculated. According
to Blanchard and Andrasik (1987), a percent improvement index
is clinically relevant when higher than 50%. In the present study,
RSA percent improvement was clinically relevant only in the

Competition group (57%), whereas the Control group showed
a significantly lower RSA percent improvement (27%). Taken
together these results support the idea that competitive BF was
effective in improving cardiac vagal control to a greater extent
than traditional non-competitive RSA-BF. This supports the idea
that competition could have increased participants’ motivation
for success. Specifically, the feedback may become more relevant
for the participants when they can use it in a competitive situation
to achieve better results.

Intriguingly, the literature commonly reports the link
between competition and excessive sympathetic activation (i.e.,
increased pre-ejection period) and general psychophysiological
activation (i.e., increased HR and BP) (Harrison et al., 2001;
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van Zanten et al., 2002). In contrast, the present results suggest a
different perspective, showing that competition can be associated
with an increase in parasympathetic cardiac modulation
(i.e., higher RSA and rMSSD). In line with the idea that
managers competing to improve cardiac vagal control were
able to counteract the psychophysiological activation commonly
associated with competition, managers in the competition
group showed, after the training, a reduction in resting HR,
SBP, and SCL comparable to that found in managers who
did not compete. A previous study showed that competition
was effective in improving performance during autoregulation,
especially when the physiological modification requested by BF
was compatible with the competition condition (i.e., accelerating
HR) (Stegagno and Vaitl, 1979). In that case, a synergy
between the physiological modification (i.e., to increase HR)
and competition emerged together with a generalization of
the effect to other cardiovascular responses possibly linked to
increased psychophysiological activation (i.e., increased BP). On
the contrary, when the direction of the physiological modification
requested is incompatible with competition activation (e.g.,
compete to reduce the physiological activation), a mutual
inhibition is expected between competition and autocontrol.
However, results from previous studies suggest that it is
possible for individuals to control an activating situation (i.e.,
competition) that is incompatible with the task requested by the
feedback (i.e., physiological deactivation) (Shahidi and Salmon,
1992; Palomba and Stegagno, 1993).

The present results suggest that both competitive and non-
competitive conditions were associated with increased HRV
indexes (i.e., higher pNN50, LF, and HF from pre- to post-
training) and lower psychophysiological activation (i.e., lower
HR, SBP, and SCL from pre- to post-training). These findings
are consistent with a previous study reporting the positive
effects of RSA-BF in enhancing cardiac vagal control in highly
competitive managers (Munafò et al., 2016). Also, the present
results are in line with previous studies reporting reduced overall
physiological arousal after RSA-BF training (Gevirtz and Lehrer,
2003; Wheat and Larkin, 2010). These results also suggest the
possible contribution of RSA-BF to reducing the harmful effects
of cardiovascular activation (Lehrer et al., 1997; Sherlin et al.,
2009). This is noteworthy given that epidemiological studies in
the general population have consistently shown that elevated
levels of resting HR and SBP (even if not clinically relevant)
are associated with increased risk for cardiovascular mortality
(Kannel, 1996; Palatini et al., 2006; Reil and Böhm, 2007; Gu et al.,
2008; Palatini, 2009).

Managers in a highly competitive job context and
characterized by high competitiveness due to the elevated
levels of involvement, competition, and responsibility have
been shown to have a higher risk of cardiovascular disease
(Kivimäki et al., 2002; Belkic et al., 2004; Backé et al., 2012). To
decrease cardiovascular risk by reducing physiological arousal,
occupational stress, and job strain, a wide variety of interventions
including stress-management, relaxation, meditation techniques,
and diaphragmatic deep breathing have been suggested (Lazarus
and Folkman, 1984; Ivancevich et al., 1990; Giga et al., 2003).
Whereas outcome evaluation of these interventions relied mainly

on self-reporting measures (Kushnir et al., 1998) – with no
objective measurement of the effectiveness in the reduction
of psychophysiological activation – in the present study,
physiological measures have been specifically targeted. From the
present results, it could be argued that competing to increase
RSA allowed participants to enhance their cardiac vagal control
(i.e., RSA and rMSSD) to a greater extent than participants in the
non-competition group. This, in turn, might have contributed in
counteracting the psychophysiological cardiovascular activation
usually found during competition, which have been proposed as
one of the factors increasing cardiovascular risk.

An improvement in RSA has been linked to greater
physiological flexibility and adaptive regulation to environmental
challenges, as well as to psychological well-being, including
anxiety and depressive symptoms reduction (Karavidas et al.,
2007; Patron et al., 2013; Goessl et al., 2017; Caldwell and Steffen,
2018). The present study showed that managers competing to
increase RSA reported a reduction in social anxiety, state and
trait anxiety, and depressive symptoms corresponding to the
reduction showed by managers undergoing traditional RSA-BF.
This is in line with previous studies showing the effectiveness
of RSA-BF in reducing anxiety symptoms and improving mood
and psychological health (Karavidas et al., 2007; Gevirtz, 2013;
Patron et al., 2013; Goessl et al., 2017; Caldwell and Steffen, 2018;
Zaccaro et al., 2018; Lehrer et al., 2020). Recently it has been
suggested that increasing RSA through RSA-BF could promote
functional connectivity between certain brain regions involved
in emotion regulation (Mather and Thayer, 2018). Future studies
are warranted to verify whether the positive effects on mood and
emotion regulation after RSA-BF are associated with greater brain
functional connectivity.

It should be considered that in the present study participants
were specifically recruited for their exposition to a competitive
environment and their high competitiveness traits. The
literature reports that individual high in trait competitiveness
is characterized by more pronounced physiological activation
to challenges (Harrison et al., 2001). Since highly competitive
individuals strive to excel (e.g., Stern and Elder, 1982; Shahidi
and Salmon, 1992), competitiveness could be manipulated
as a motivational factor to enhance the performance, even
when a reduction in physiological activation is demanded.
Moreover, it has been reported that stronger motivation and
better performances are observed only under appropriate
competition conditions (Stanne et al., 1999). Indeed, the
competition must be appropriately balanced (e.g., avoiding an
excessive emphasis on winning, unequal participants matching),
and participants should be able to estimate their progress relative
to their opponent. In the present study, great attention was
directed on setting an appropriate competition condition: the
BF protocol created a fair challenging competition, providing
each participant with a realistic and equal chance of winning;
competitors were paired based on their age, BMI, and physical
activity levels; the rules were clear and straightforward. Finally,
participants could constantly assess their progress, relative to
their opponent, through the feedback. It could be argued that
individuals characterized by high competitiveness traits might
take the most advantage from competition to motivate better
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self-regulation. Future studies are warranted to investigate
whether competitiveness traits modulate the effectiveness of
competitive BF in increasing cardiac vagal control.

The current findings should be interpreted considering some
possible methodological limitations. First, this study used a
relatively small sample size; therefore, the results need to be
replicated to fully understand the effects of competition BF
in the acquisition of autonomic regulation in individuals with
high levels of competitiveness. Nonetheless, the sample was
determined through a power analysis based on previous studies
on RSA-BF using the same protocol (Patron et al., 2013; Munafò
et al., 2016). Second, although the current study showed that
RSA is modifiable through competitive BF in a short time
frame, the long-term effects of competitive RSA-BF were not
assessed. Future research is warranted to replicate and extend
the present findings by conducting long-term follow-up studies
to demonstrate first the longevity of the improvements in RSA
and whether the positive effects of RSA-BF could be linked to
reduced cardiovascular risk. Third, although the present study
focused on the effects of RSA-BF on cardiac vagal control,
and secondly on the effects of RSA-BF on psychophysiological
activation as measured by HR, SBP, and SCL, no specific
index of the sympathetic nervous system influence on the heart
was included. Future studies including measures of cardiac
sympathetic nervous system influence and specific measures of
cardiac output are warranted to directly compare the possible
effects of RSA-BF on both the parasympathetic and sympathetic
cardiac influence.

To summarize, managers competing to improve their cardiac
vagal control showed a greater increase in RSA and rMSSD
than managers in the non-competitive condition. Despite
competition have been consistently associated with increased
psychophysiological activation, the present results yield that
managers competing for improving their cardiac vagal control
(by increasing RSA) were able to reduce psychophysiological
activation (i.e., lower HR, SBP, and SCL) and decrease anxiety
and depressive symptoms to the same extent as managers in
a non-competitive condition. In conclusion, the present study

suggests that individuals with high competitiveness traits may
benefit from competitive conditions during BF to increase
cardiac vagal control. In turn, increased cardiac vagal control
may counteract the psychophysiological activation linked to
competition possibly leading to better autonomic regulation and
psychophysiological well-being.
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