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LESSONS FOR THE CLINICAL NEPHROLOGIST

Two unusual cases of Gitelman’s syndrome with a complex 
inheritance: how the phenotype can help interpret the genotype: 
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Case 1

A 4-year-old female was referred to our hospital in 2014 
for an episode of gastroenteritis and abdominal pain. Bio-
chemical tests revealed Salmonella group B infection, and 
hypokalemia (2 mmol/L). Renal function was normal, as 
were other blood parameters. The child recovered with no 
complications, but hypokalemia and hypochloremia per-
sisted (2.4 mmol/L and 95 mmol/L, respectively, at dis-
charge) despite treatment with K supplements (10 mmol 
three times daily). One month later, the patient was read-
mitted to the Pediatric Unit for abdominal pain and cramps. 
Blood tests showed hypokalemia (2.0 mmol/L), hypomagne-
semia (0.55 mmol/L), hypocalciuria (2.0 mmol/24 h), and 
renin–angiotensin–aldosterone system (RAAS) activation 
(renin 49.6 mIU/L, aldosterone 740 pmol/L), metabolic alka-
losis, normal renal function, and no proteinuria. Blood pres-
sure was normal to low. The patient was given K (27 mmol/L 
four times daily, oral suspension) and Mg (325 mg twice 

daily). Gitelman’s syndrome (GS) was suspected due to the 
patient’s biochemical (severe hypokalemia, hypomagne-
semia and hypocalciuria), hormonal (RAAS activation, 
normo-/hypotension) and clinical (more oriented therapy 
based on the severe hypokalemia and mild hypomagne-
semia) characteristics, despite the presence of features more 
often associated with Bartter’s syndrome (BS) (the severe 
clinical phenotype, unusual appearance at an early age and 
hypochloremia with mild hypomagnesemia).

Multi‐gene panel testing was part of the routine diag-
nostic procedures and was used for mutational screening 
of BS and GS genes revealing a compound heterozygosity 
for two known GS-causing mutations in the SLC12A3 gene 
(RefSeq NM_000339.2): the frameshift c.20_21delCA, 
p.(Thr7fs) variant (ClinVar ID 817609) and the c.473G>A 
p.(Arg158Gln) missense variant (ClinVar ID 64,769) [1], 
thus confirming the clinical diagnosis of GS. The diagnostic 
workflow detected another missense variant, c.1070T>C, 
p.(Met357Thr), in the KCNJ1 gene (RefSeq NM_000220.4) 
encoding ROMK, the pore-forming subunit of the kidney’s 
main potassium-secreting channel, found to be associated 
with severe forms of BS (BS type 2) [2, 3]. The variants 
were inherited from her parents (Fig. 1).

Case 2

A 44-year-old male came to our observation with persis-
tent hypokalemia. Biochemical analyses showed hypoka-
lemia (2.3  mmol/L), hypomagnesemia (0.4  mmol/L), 
hypocalciuria (1.7  mmol/L), moderately increased 
creatinine (110  μmol/L), eGFR 68  ml/min, no pro-
teinuria, normal urinalysis, modest metabolic alkalosis 
(HCO3− 29 mmol/L), RAAS activation (renin 50 mIU/L, 
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aldosterone 845 pmol/L), normotension (122/72 mmHg), 
and normal urinary electrolytes. At 10 years of age he had 
reportedly been diagnosed with incomplete renal tubular 
acidosis with potassium wasting (of which we unfortu-
nately have no medical record). He reported no nephro-
lithiasis or episodes of renal colic, and no renal stones 
appeared on imaging. The patient was treated with K and 
Mg supplements (40 mmol/day and 360 mg/day, respec-
tively). Despite the unusually modest metabolic alkalosis 
and moderately impaired renal function, the biochemi-
cal, hormonal and clinical findings suggested GS, so the 
patient was screened for GS and BS gene mutations. Clini-
cal exome sequencing revealed two novel variants in the 
SLC12A3 gene—a missense c.992C>T, p.(Pro331Leu), 
and a frameshift c.2682delG, p.(Lys894fs)—classified 
respectively as ‘likely pathogenic’ and ‘pathogenic’ 
according to the ACMG guidelines [Supplementary 
Information], prompting a molecular diagnosis of GS. 
Another very rare (gnomAD Minor Allele Frequency 
(MAF) 0.0007) missense c.733G>A, p.(Val245Met) 
(rs148170067) variant was also identified in the SLC4A1 
gene (RefSeq NM_000342) encoding the chloride-bicar-
bonate anion exchanger 1 (AE1), the pathogenic variants 
of which cause autosomal dominant or recessive distal 
tubular acidosis (dRTA) (OMIM # 179800, #611590).

Discussion

Bartter’s syndrome (OMIM #s: type 1, 60678; type 2, 
241200; type 3, 607364; type 4a, 602522; type 4b, 613090; 
type 5, 300971) and Gitelman’s syndrome (OMIM # 
263800) are autosomal recessive tubulopathies character-
ized by hypokalemia, metabolic alkalosis, activation of 
the renin–angiotensin–aldosterone system, high levels of 
angiotensin II (Ang II), but normo- or hypotension, and 
blunted Ang II cardiovascular effects. GS also involves 
hypomagnesemia and hypocalciuria [2, 3]. These syndromes 
are caused by biallelic pathogenic variants in genes encod-
ing proteins involved in renal electrolyte homeostasis: the 
KCNJ1, SLC12A1, CLCNKB, BSND, CLCNKA + CLCNKB, 
MAGED2 genes for BS; and the SLC12A3 gene for GS [2]. 
The three main clinical variants are: classic BS; neonatal 
BS; and GS. Defects in genes affecting transport channels in 
Henle’s ascending loop cause classic and neonatal BS, while 
in GS the defect occurs in transport channels of the distal 
convoluted tubule. GS is less severe than BS.

The two patients herein described presented unusual 
GS phenotypes that were difficult to interpret clinically 
and to treat because variants were detected not only in the 
SLC12A3 gene, but also in other genes involved in BS and 
distal tubulopathies.

What is the clinical significance of the missense 
variant in the KCNJ1 gene in case 1?

The Human Genome Mutation database (HGMD ID 
CM960893) reports the KCNJ1 variant as a cause of BS 
because it was first described as a heterozygous mutation 
in a BS patient [4]. The same variant was later found in 
compound heterozygosity in a child with benign BS type 
2 [5]. The frequency of this variant was recently esti-
mated to be < 1% (rare variant), but around 1% in the non-
Finnish European population (gnomAD MAF 0.01155) 
(rs59172778), and 19 homozygotes have been identified. 
Furthermore, in vitro studies by Schwalbe et al. [6] have 
also raised doubts about its functional significance. These 
two latter pieces of information indeed suggest excluding 
this variant as pathogenic, as previously proposed.

Could the KCNJ1 gene be a modifier gene?

With the introduction of next-generation sequencing in 
the diagnostic workflow, we have been discovering more 
patients with complex inheritance, thus allowing us a greater 
understanding of how complex interactions between allelic 
and locus heterogeneity may affect disease phenotypes, 
particularly when dealing with genes working in associated 

Fig. 1   Complex inheritance in Gitelman’s syndrome. Pedigrees show-
ing inheritance of pathogenic variants in Case 1 and Case 2
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pathways, as are BS and GS genes. More and more examples 
of hereditary disorders with oligogenic inheritance (patho-
genic variants in more than one gene) have been described 
[Supplementary Reference 1]. From these studies, it appears 
evident that no genetic variant acts alone, i.e. some other 
variants (genetic modifiers) may lessen or worsen the dis-
ease, resulting in the variability of phenotypic outcomes. 
The unusual severity of GS phenotype encountered in our 
patient led us to hypothesize that the missense variant can 
act as a genetic modifier by exacerbating the severity of the 
disease and by inducing BS-like clinical manifestations.

What is the clinical significance of the missense 
variant in the SLC4A1 gene in case 2?

The dRTA clinical phenotype varies considerably among 
patients, but typically includes chronic metabolic acidosis, 
hypokalemia, abnormally alkaline urine, nephrocalcino-
sis, and nephrolithiasis [7]. The clinical signs of dominant 
dRTA (ddRTA) are generally milder than those of the auto-
somal recessive type, and the disease presents later on. The 
SLC4A1 missense variant we identified was judged deleteri-
ous using in silico tools but had never been associated with 
dRTA before. As for the inheritance of the three variants, 
the SLC12A3 frameshift was inherited from the mother. The 
father could not undergo genetic testing because he had died 
of myocardial infarction at 58 years of age, and no clinical 
data were available regarding any renal disease. We therefore 
cannot say whether the SLC4A1 variant was inherited from 
the father or is de novo. It is, instead, likely that the second 
SLC12A3 variant was inherited from the father (Fig. 1).

Some questions could be raised about the pathogenic sig-
nificance of the rare SLC4A1 variant. It is not located at the 
COOH-terminus of the protein, or in the integral membrane 
domains where most of the mutations causing ddRTA have 
been detected so far—although a mutation in the AE1 N-ter-
minal H1 domain (p.Arg388Cys) was recently described in 
ddRTA [8, 9]. Since the highly-conserved portion of the 
SLC4A1 gene across species begins at the Phe379 residue 
[9], the variant we detected (being located at the Val245 resi-
due) seems less likely to cause ddRTA. Indeed, according 
to the ACMG guidelines the variant could be classified as 
a variant of uncertain significance. The patient’s phenotype 
could help interpret these genotype data.

Is the patient’s phenotype a blend of autosomal 
recessive GS and autosomal ddRTA?

Finding variants in two different genes responsible for two 
different monogenic disorders raises questions on how to 
interpret the phenotype. Unlike digenic inheritance, in 
which pathogenic variations at two specific loci contribute 
to the manifestation of a single disease [Supplementary 

Reference 2], dual (or multiple) molecular diagnoses com-
bine separate diagnoses of more than one independently-
segregating genetic locus [Supplementary Reference 3], 
and the phenotypic complexity of the latter can present a 
challenge to the physician.

The blending of two distinct disease phenotypes in 
a single patient may suggest an apparently new clinical 
entity. Alternatively, molecular diagnoses with two over-
lapping disease phenotypes may be interpreted as the phe-
notypic expansion of a single disease.

Our patient’s medical history (he was clinically diag-
nosed with incomplete hypokalemic dRTA at 10 years of 
age) supports the hypothesis of a dual molecular diagnosis 
and hence of a blended phenotype.

Since dRTA shares some features with GS, the patient’s 
phenotype might also be interpreted as an expansion of the 
GS phenotype. The patient’s juvenile expression of dRTA 
and his less marked metabolic alkalosis associated with 
an unusual CKD in adulthood may support this second 
hypothesis suggesting that the SLC4A1 variant is probably 
hypomorphic. By acting as a genetic modifier rather than 
a disease-causing variant, it lent the patient’s phenotype 
some unusual clinical features.

Did genetic diagnosis change the clinical 
management of these patients?

The complex inheritance of the two cases we have 
described as provided by the genetic analysis, although 
not requiring a substantial change of the usual pharmaco-
logical approach to GS which is based on K and Mg sup-
plements, did however lead to some changes in the clinical 
management, in particular for the Case 1 patient. As men-
tioned above, she presented with a more severe phenotype, 
which required higher doses of K and MG supplementa-
tion than usual and stricter clinical follow-up with more 
frequent visits. No further measures were instead adopted 
for the Case 2 patient. Both patients are currently in good 
condition and continue their follow-up every 6 months.
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