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Chronic HIV-infected children suffer from premature aging and aging-related diseases. Viral replication induces an ongoing
inflammation process, with the release of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular
patterns (DAMPs), the activation of the immune system, and the production of proinflammatory cytokines. Although combined
highly active antiretroviral therapy (ART) has significantly modified the natural course of HIV infection, normalization of T and
B cell phenotype is not completely achievable; thus, many HIV-infected children display several phenotypical alterations,
including higher percentages of activated cells, that favor an accelerated telomere attrition, and higher percentages of exhausted
and senescent cells. All these features ultimately lead to the clinical manifestations related to premature aging and comorbidities
typically observed in older general population, including non-AIDS-related malignancies. Therefore, even under effective
treatment, the premature aging process of HIV-infected children negatively impacts their quality and length of life. This review
examines the available data on the impact of HIV and ART on immune and biological senescence of HIV-infected children.

1. Introduction

The natural history of HIV infection has greatly changed
over the course of the last 20 years due the great improve-
ment of the combined highly active antiretroviral therapy
(ART). Compared to the past, life expectancy of HIV-
infected individuals on ART has drastically increased; how-
ever, ART does not eradicate the infection; therefore, HIV
will persist in infected individuals, becoming a chronic dis-
ease [1]. Although some studies suggested that, under opti-
mal treatment, life expectancy could be similar to that of
the uninfected population [2–4], other studies evidenced that
this goal has not been achieved yet, and life expectancy in
Western countries can be shortened of up to 10 years [5–8].
AIDS-related complications, among which opportunistic

infections and AIDS-defining malignancies, are reduced
compared to the past; however, HIV-infected individuals
on ART still have a higher risk of non-AIDS-related morbid-
ity and mortality, due to an increased incidence of a wide
range of illnesses associated with aging [9, 10].

Aging is a natural process that involves the loss of phys-
iological integrity with a generalized organ decline that
ultimately leads to death [11]; an aging system faces a
decreasing ability to deal with stress and increasing frailty
[12–15], inflammation [12], and age-related comorbidities,
including cardiovascular disease, neuropathy, anemia, osteo-
porosis, and liver and kidney disease [11, 16]. The persistence
of HIV, causing chronic immune activation, is likely a key
determinant of the premature senescent pathway. Indeed,
viral persistence induces activation of immune system cells,
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which undergo continuous expansion as a response to the
antigen, eventually reaching the senescent stage, when they
lose their functions [17]. A direct consequence of cellular
replication is the shortening of their telomeres, until they
reach a critical length under which the replicative capacity
of the cell is lost [18–20], fueling the cells’ premature senes-
cence and the development of those age-related diseases that
are involved the loss of the regenerative capacity of different
tissues [21]. It is nowadays well established that there is a link
between telomere shortening, cellular senescence, and aging
[22]. In addition, HIV itself can impair the activity of telome-
rase (a ribonucleoprotein enzyme complex that synthesizes
the telomeric repeats TTAGGG [23, 24]) specifically in
CD4 cells [25]. The importance of this adverse effect resides
on the fact that although telomerase is usually not expressed
in somatic cells, it can be transiently upregulated in lympho-
cytes upon cell activation [26, 27]; the impairment of this
upregulation can therefore increase the apoptotic propensity
of hematologic cells and lead to immune system dysfunction.

Currently about 38 million people are living with HIV; 2
million of them are children under 15 years of age. Although
new HIV infections among children are steadily decreasing,
still, 160000 new infections occurred in 2018, the vast major-
ity of them being mother-to-child transmission (MTCT) in
African countries [28]. The clinical complications of HIV
infection in children are more serious than those in adults
[29–32]. Indeed, they experience a poorer control of the dis-
ease, which progresses to AIDS faster [29, 33], and the acute
stage of the infection is characterized by higher levels of vire-
mia, which is controlled slower and less effectively than in
adults [33–35]. Several studies conducted in children [36–
39] suggest that possible causes of the differences mentioned
above include the very early exposure to HIV and pathogens
when the infants’ immune system is still under development,
an interaction that could also influence the evolution of their
incomplete immune system.

Thanks to the continuously increasing coverage of ART-
based prophylaxis and treatment, in 2018, MTCT incidence
was under 2%, and about 50% of HIV-infected children were
receiving ART [28]. Therefore, an increasing number of chil-
dren start ART at a very young age and will be receiving anti-
retroviral drugs for all their lifetime. ART greatly improved
their survival and the quality of life [40, 41], but on the other
hand, they now face the consequences of a lifelong chronic
condition, suffering from pathogenic mechanisms typical of
premature aging [42–46]; i.e., they show an increased risk
of age-associated comorbidities, identified as non-AIDS-
related diseases [47–49], compared to healthy individuals
[50–52]. It has been suggested that antiretroviral drugs
themselves can impact on accelerated aging, mainly due
to the inhibitory effect of nucleoside reverse transcriptase
inhibitors (NRTIs) on telomerase [53, 54]; however, more
recent studies argued that the effect of prophylaxis and
therapy is negligible compared to that of the HIV infection
itself [55, 56].

In this review, we examine the available data on how HIV
and/or ART impact on immune and biological senescence of
HIV-infected children. The impact of HIV with and without
ART is schematized in Figure 1.

2. Clinical Conditions Related to Premature
Aging of HIV-Infected Children

Despite the significant improvements due to ART introduc-
tion, the life span of HIV-infected children is not yet compara-
ble to that of uninfected ones: their premature aging exposes
them to a higher risk of acquiring and developing age-related
chronic diseases. The continued release of virions by residual
replicating virus (that persists at low levels even in the presence
of effective ART) promotes a chronic inflammatory status, in
which the release of proinflammatory cytokines favors prema-
ture cellular aging and the pathophysiological scenario typically
observed in elderly persons. This includes renal and cardiovas-
cular diseases, metabolic and endocrine alterations, cerebrovas-
cular diseases, and malignancies [42–46, 57–59]. Here, we
focus on malignancies diagnosed in HIV-infected children.

As happens for HIV-infected adults [60], HIV-infected
children show a higher frequency of malignancies compared
to the general population [45, 61–65]. In the pre-ART era,
the risk of malignancy occurrence was mainly linked to the
immunological dysfunction per se and lack of adaptive
immune response against oncogenic viruses. Kaposi sarcoma
(KS) and non-Hodgkin lymphoma (NHL), the two AIDS-
defining malignancies (ADM) most frequent in children
[61], are indeed associated with Human gammaherpesvirus
8 (HHV8) and Epstein-Barr Virus (EBV), respectively [45,
66–68]. ART introduction led to a change in the nature of
HIV-related malignancies, with a reduced incidence of
ADM (e.g., KS -87% and NHL -60% [69]) and increased inci-
dence of non-ADM (including Hodgkin’s disease, anal cancer,
oral squamous carcinoma, hepatocarcinoma, leiomyosar-
coma, and Merkel cell carcinoma [45]), especially among
immunocompromised HIV-infected children who have
received ART for a reduced period of time [61, 70]. The
decrease in the incidence of ADM may be attributable to
recovery of CD4 cells, partial restoration of immune func-
tions, and lower immune activation, induced by effective
ART. As an example, Petrara et al. [71] suggested that limit-
ing HIV replication and related microbial translocation and
immune activation may prevent superinfection with EBV
or lower EBV viremia, thus reducing the risk of EBV-
associated NHL. ART, however, can only partially revert
the increased expression of all factors leading to chronic
immune activation [72], due to the persistence of residual
viremia. Chronic immune activation, with increased cell
turnover and premature immune senescence, is indeed asso-
ciated with the increased risk of non-ADM malignancies in
HIV-infected children [17, 67, 73]. The genetic instability
conferred by accelerated telomere erosion and the hampered
immune surveillance may promote cancer development [74].
Moreover, senescent cells furtherly fuel tumor growth by
secretion of inflammatory cytokines, growth factors, and pro-
teases [75, 76], establishing a tumorigenic microenvironment.

3. Premature Immune Senescence

The main target of HIV virus is immune cells, in particular
CD4 lymphocytes, monocytes, and macrophages [77]. HIV
infection leads indeed to a severe depletion of CD4 cells
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and a progressive loss of function of the innate and adaptive
immune system [78]. Despite ART effectiveness, residual
HIV infection still has consequences on the immune pheno-
type of the host: HIV-driven immune senescence is indeed
one of the leading contributors to the premature aging dis-
played by HIV patients [79, 80]. A senescent immune system,
characterized by the accumulation of functionally impaired
differentiated immune cells, compromises the immune
response [81], hampering the ability to react to novel antigen
challenges and contributing to frailty [82].

One of the main peculiar features of the children immune
system, compared to that of the adults, is their much higher
thymic output [23] that constitutes an advantage over adults
in the context of HIV infection. On the other hand, the

immune system of children exposed to HIV has not yet fully
developed when they meet the virus, therefore, leaving them
unable to mount an efficient immune response; therefore, the
consequences of HIV in this case are more complex and the
disease has a faster progression [29]. Moreover, children are
exposed to the virus from an early age, in most cases from
birth: despite the benefits of an effective therapy, the lifelong
exposure to the virus and to the drugs promotes a chronic
activation of the immune system, contributing to its prema-
ture aging. The main alterations on the immune phenotype
of HIV-infected children are described in detail below.

3.1. T Cell Compartment. Many alterations in the CD4 and
CD8 cell subsets have been reported for all HIV-infected
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Figure 1: Schematic representation of the impact of HIV without (left side, red) and with (right side, blue) ART. HIV infects primarily CD4
cells, and without ART, there is a severe CD4 cell depletion. Microbial translocation from the damaged mucosa, releasing PAMPs (bacterial
LPS, 16S rDNA, and CpG DNA) and DAMPs (mtDNA, HMGB1 protein, and defensins), stimulates the production of proinflammatory
cytokines (IL-1, IL-6, IL-10, INF-α, and TNF-α) that promote the activation/inflammatory status, a critical hallmark of HIV infection.
Immunodeficiency leads to AIDS-related diseases, including AIDS-defining malignancies. With ART, a small fraction of the virus escapes
control and establishes the residual reservoir, which promotes a state of chronic low-grade inflammation/activation, where T and B cell
phenotype is altered, with increased expression of senescence markers. Accelerated telomere shortening promotes premature aging and
may induce genetic instability. This scenario leads to the development of aging-related illnesses, including non-AIDS-defining malignancies.
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individuals and in particular for children and infants [83–
86]. The main alteration in the immune phenotype is the
inversion of the CD4/CD8 ratio, which is considered a hall-
mark of disease progression: whereas a normal CD4/CD8
ratio is above 1, untreated individuals with HIV undergo
CD4 depletion, which results in a CD4/CD8 ratio below 1.
Several children and adults on ART, despite reaching viro-
logical suppression, may not recover to a normal CD4/CD8
ratio, an effect attributable both to incomplete recovery of
CD4 and to the increase of CD8 cells due to persistent
immune activation. About 66% of HIV-infected children,
however, succeed to recover to a normal CD4/CD8 ratio
[87], a percentage higher than the one observed in adults
[88]; the 33% of children who do not recover are usually
older and/or have started ART later. This difference in the
ability to restore a normal CD4/CD8 ratio has been partially
explained with the increased expansion of T regulatory
(Treg) cells of children compared to adults and by the better
proliferative capacity of their HIV-specific T cells [89]. Con-
versely, a study [90] showed that defective recovery of the
CD4/CD8 ratio is instead associated to increased levels of
activated, senescent and effector memory T cells, with
decreased naive T cells. Overall, the whole CD4 and CD8 T
cell populations are affected by HIV, even in individuals on
effective ART [59].

Naïve T cells undergo a drastic reduction due to thymus
involution [91] and to frequent stimulation and expansion
of preexisting populations of antigen-specific T cells in the
struggle to regenerate the T cell pool [81]. Several studies
[84, 92–94] pointed out, indeed, a loss of naïve CD4 and
CD8 (CD45RA+CCR7+) cells both in adults and in children;
at the same time, a decrease of central memory in favor to the
effector memory (CD45RA-CCR7-), with the expansion of
CD27-, marker of effector type T cells [95], was detected.
Another study [36] compared HIV-infected, HIV-exposed
uninfected (HEU), and HIV-unexposed uninfected (HUU)
infants, showing that, over the first year of life, CD8 naïve,
memory, effector, terminally differentiated, and senescent T
cells were significantly altered in HIV-infected infants com-
pared to the other two groups; in particular, CD8 naïve
cells were significantly lower, while CD8 effector memory,
terminally differentiated (CD45RA+CCR7-), and senescent
(CD28-CD57+) cells were significantly higher. A study on 57
perinatally HIV-infected adolescents [39] showed increased
levels of senescence and proliferation (Ki67+) markers in the
memory CD4 cell subset, compared to healthy subjects; their
effector memory cells were also positive for activation marker
HLA-DR. A recent study [56] compared 71 HIV-infected
children below 5 years of age to HEU and HUU cohorts,
observing an accelerated senescence of both their CD4
and CD8 cell compartments, with significantly higher per-
centages of activated (CD38+HLA-DR+) and exhausted
(programmed cell death, PD-1+) CD4 cells and of activated,
senescent, and exhausted CD8 cells; interestingly, the expo-
sure to ART prophylaxis of HEU children did not nega-
tively affect their immune phenotype.

Other studies confirmed that HIV-infected children dis-
play higher percentages of exhausted T cells, which often fail
to recover despite treatment [96, 97]; PD-1 expression, the

principal marker of HIV-related cell exhaustion, has indeed
been proposed as a disease progression marker [97].
Recently, additional immune checkpoint inhibitors (ICIs),
including CTLA-4, TIM3, LAG3, TIGIT, 2B4, and CD160,
were identified; they were found to coexpress especially in
viremic progressors, furtherly inhibiting T cell function
[98]. In spite of the promising potential of ICIs as progres-
sion markers, exploring their expression in HIV-infected
children is still an open field of research.

Treg (CD4+CD25+CD127-FoxP3+) cells limit excessive
or inappropriate immune activation against antigens, and
in particular, they prevent responsiveness to self-antigens
[99–101]. In the HIV-infection context, different studies
highlight two opposite effects of Tregs; they are suggested
not only to decrease excessive immune activation [102–104]
but, on the other hand, also to suppress HIV-specific
immune response [105–108]. A study on 6-14-year-old
HIV-infected children [109] showed that viremia signifi-
cantly correlates with the percentage of Tregs; higher per-
centage of Tregs is also associated with higher immune
activation and higher HIV-DNA levels, suggesting that the
regulatory function of this subset does not suffice to limit
immune activation.

T follicular helper (Tfh) cells are specialized CD4 cell
subset whose signaling function allows the generation of
long-lived B cells during the immune response. Indeed,
they are considered a biomarker of vaccine response. The
equilibrium between their different subsets (i.e., Th1, Th2,
and Th17) and their function is perturbed during HIV
infection, even under virological control, resulting in an
impaired response to vaccination. In particular, in HIV-
infected children, a negative response to vaccination has
been associated with Tfh cells coexpressing multiple acti-
vation markers [110, 111].

Increased immune senescent phenotype in HIV-infected
children has been pointed out by many studies [38, 112, 113].
Moreover, the persistent immune activation and exhaustion,
together with alterations of memory T cells, may also have an
impact on the efficacy of childhood vaccination and have
been linked to poor response to vaccines and higher risk to
acquire vaccine-preventable diseases [36, 111–117].

3.2. B Cell Compartment. The B cell compartment is
impacted by similar alterations as those affecting T cells:
indeed, several studies [114, 118, 119] demonstrated that
HIV-infected children, even with undetectable viral load,
show B cell alterations typical of older healthy controls, such
as an increased number of mature-activated (CD10- CD21-)
and senescent double-negative (IgD- CD27-) B cells. Other B
cell alterations linked with chronic HIV persistence include
increased percentages of immature transitional (CD10+/++
CD21low/high CD27-), activated memory (CD10- CD21low
CD27+), and exhausted memory (CD10- CD21low CD27-)
B cells and decreased percentages of resting memory
(CD10- CD21high CD27+) B cell subset [120, 121]. A study
[122] on ART-naïve children below 2 years of age revealed
many alterations of their B cell phenotype compared to the
uninfected control group: they had significant depletion of
naïve (IgD+ CD27-), nonswitched memory (NSM, IgD+
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CD27+), naïve mature (CD21high CD27-), and activated
(CD25+) B cells and significant expansion of double negative,
activated memory (CD21low CD27+), tissue-like memory
(TLM, CD21low CD27-), and apoptosis-prone (CD95+) B
cells. ART-naïve children suffered a progressive deterioration
over 1-year follow-up, with further depletion of naïve and
NSM cells and expansion of double-negative B cell subset.
On the other hand, one year of ART could only partially
restore these alterations: there was an increase in the naïve,
NSM, and naïve mature cell subsets and a decrease in the dou-
ble-negative, activated memory, and TLM subsets; however,
no improvement was found in the resting memory, activated,
and apoptosis-prone B cell subsets that remained significantly
altered. Thus, as for T cell compartment, ART does not fully
restore B cell functionality. Notably, despite ART, homing of
B cells to germinal center is defected with the consequent
impaired vaccine responses in HIV-infected children [114,
123, 124]. In addition, the expression of B cell genes, including
those involved in the inflammation and aging, that could pre-
dict the response to vaccination [125, 126], remains perturbed
even after a stable and long virological control.

4. Chronic Immune Activation and
Persistent Inflammation

Persistent inflammation and chronic immune activation are
leading causes of the senescent pathway that favors the risk
of non-AIDS morbidity and mortality in HIV-infected chil-
dren. T cell activation, marked by CD38 and HLA-DR coex-
pression on CD8 T cells, is a prognostic indicator for disease
progression at different stages of HIV infection [127]. More-
over, HIV infection drives the microbial translocation [128]:
the massive depletion of CD4 cells associated with HIV infec-
tion induces an impairment of mucosal surface integrity in
the gut and leads to the release of pathogen-associated molec-
ular patterns (PAMPs, such as bacterial lipopolysaccharide,
16S ribosomal DNA, and CpG DNA [55]) and damage-
associated molecular patterns (DAMPs, such as mitochon-
drial DNA, high-mobility group box 1 protein, and defensins
[129, 130]) into the circulation. PAMPs and DAMPs activate
the immune system by binding to the extra- or intracellular
domain of Toll-like receptors (TLRs), which are involved in
the host inflammatory response, initiating a complex-signal
transduction cascade which, via the NF-κB pathway [131],
ultimately leads to increased transcription of proinflamma-
tory cytokines (such as IL-6, IL-10, and interferon-α) that
may play a role in establishing a protumorigenic inflamma-
tory environment [66].

Several studies [132–134] have suggested that, despite
viral suppression, children with perinatally acquired HIV
have higher levels of inflammation, immune activation, and
alterations in intestinal permeability, compared to HEU
and HUU children. Notably, immune activation is higher in
viremic than aviremic children, but microbial translocation
may occur regardless of viremia and T cell activation. While
ART in HIV-infected subjects generally allows for immune
reconstitution in peripheral blood, reconstitution of the gas-
trointestinal tract occurs at a much slower pace, and both
immunological and structural abnormalities persist in the

gastrointestinal tract, thus explaining the residual inflamma-
tion and heightened morbidities in HIV-infected ART recip-
ients [135]. In a cohort of HIV-infected children [136], ART
initiation rapidly and persistently reversed T cell activation
but failed to normalize CD4/CD8 ratios and plasma sCD14
levels. However, another study on a cohort of perinatally
HIV-infected children [137] showed that ART initiation nor-
malized sCD163 (marker of monocyte activation) levels and
improved long-term pediatric outcomes. A recent study
[138] agreed that immune activation decreases over time in
children after starting ART, which does not have adverse
effects itself on microbial translocation.

To support the concept that persistent immune activa-
tion and cellular exhaustion are closely linked to accelerated
biological aging and immune senescence, Gianesin et al.
[56] found that HIV-infected children accumulate activated
and exhausted CD8 T cells together with a higher percentage
of senescent CD8 T cells, which are all inversely correlated
with telomere length. The immune exhaustion is also
increased in HIV-infected individuals despite viral suppres-
sion [139]. Indeed, PD-1 is the eligible marker of immune
exhaustion of T cells, and its increased expression levels pre-
dict the rate of HIV disease progression in adults [140, 141].
HIV-infected children have increased PD-1 expression on
CD8 T cells that correlates with immune activation [142,
143]. It was recently demonstrated that CD4 cells expressing
PD-1 constitute an important source of persistent viral repli-
cation in ART-treated individuals, and the contribution of
PD-1+ CD4 cells to the persistent reservoir progressively
decreased with increased length of ART [144].

Immune activation also results in chronic stimulation
and expansion of B cells. ART allows, at least partially, the
normalization of activated B cell subsets and age-dependent
accumulation of resting memory B cells [145]. However,
as for T cell, ART does not eliminate B cell activation. In
HIV-infected adults, immune activation persists over time
and is susceptible to therapy; indeed, compared to classical
combined ART, a monotherapy with protease inhibitors
has a lower control on DAMP levels and B cell hyperactiva-
tion, so it may have lower control on EBV reactivation and/or
polyclonal expansion of EBV-infected B cells and, thus, on
the onset of EBV-related malignancies [146]. Few data are
available about B cell activation in HIV-infected children. A
study [71] demonstrated that children on ART have signifi-
cant lower levels of microbial translocation and EBV levels
than ART-naïve children. Recently, a study [147] showed
that pre-ART progressors had higher percentages of mature
activated and TLM cells and higher plasma levels of IL-4,
IL-6, IL-10, and IgA compared to seronegative controls. After
ART initiation, levels of proinflammatory cytokines IL-4,
IL10, and IgG significantly lowered.

Overall, all these reports agree that, despite ART, micro-
bial translocation persists and leads to a chronic low-grade
inflammation. In HIV-infected children, the monitoring of
persistent inflammation/immune activation and immune
exhaustion will be of clinical importance to estimate the rate
of premature aging and its associated production of inflam-
matory cytokines, as pivotal factors acting in the pathogene-
sis of premature aging and malignancies.
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5. Premature Biological Aging

Telomeres are involved in cellular aging and immune senes-
cence mechanisms. Telomeres are long tandem repeated
DNA sequences (TTAGGG) at the end of chromosomes that
are essential for protection of chromosome integrity, pre-
venting end-to-end fusion and DNA degradation [148].
The ribonucleoprotein complex telomerase has the function
of maintaining telomeres by synthesizing new telomeric
repeats; its activity is usually not detected in somatic cells
due to the downregulation of its catalytic protein TERT,
which is instead expressed during embryogenesis, in rapidly
dividing tissues and in the vast majority of tumors [148].
During each cell division, DNA polymerase is unable to copy
the end of chromosomes (the end-replication problem); thus,
some of the telomere repeats are lost. After several cell divi-
sions, telomere length reaches a critical threshold, below
which cells stop dividing and physiologically undergo senes-
cence or trigger genomic instability, that may promote age-
associated diseases and tumor development [149].

Telomeres get naturally shorter with age [150]; telomere
length is therefore a valid biomarker of aging in the general
population, and accelerated telomere shortening leads to pre-
mature aging, which is correlated with several pathologies
[151, 152]. The causes leading to accelerated telomere shorten-
ing can be, however, diverse. Indeed, telomere length and their
shortening rate are not only associated with genetic factors,
gender, and ethnicity, but they are also influenced by different
behavioral and environmental factors, such as stress, physical
activity, dietary habits, smoke, and alcohol consumption.

5.1. Telomere Implications in Diseases. Telomere length is
associated with age-related diseases and decreased life span.
Several studies linked shorter telomeres and telomere attri-
tion with increased risk and increased severity of cardiovas-
cular diseases, stroke, heart attack, and mortality [153–159].
As an example, a study on elderly patients [153] showed that,
among the 143 studied patients, the 71 with shortest telo-
meres had a 3- and 8-fold higher mortality rate due to heart
and infectious diseases, respectively. Premature aging disor-
ders, among which progeria, Nijmegen breakage, Cockayne
and Down syndromes, and dyskeratosis congenita are associ-
ated with shorter telomeres; instead, others like Werner and
Boom syndromes and Ataxia telangiectasia are associated
with an accelerated telomere shortening [160]. In contrast
to the clear association of the aforementioned aging condi-
tions with telomere length or erosion, similar studies on
other conditions raised conflicting results: it is not yet fully
cleared whether type II diabetes [161, 162] and Alzheimer’s
[163–167] and Parkinson’s [168, 169] diseases are associated
with telomere shortening or if having shorter telomeres is a
risk factor for such conditions. Moreover, telomere dynamics
is intrinsically related with the tumorigenesis mechanism.
Indeed, shortening of telomeres below a critical level triggers
the pathways that lead to cell senescence, when genomic
instability is increased [170]. Should the apoptotic mecha-
nism fail, cells may acquire immortality (mainly through
the upregulation of telomerase) and, thus, tumorigenesis
mechanisms may begin. Telomeres have therefore the poten-

tial to be both beneficial and detrimental factors, whether
they are recognized in the signaling pathway resulting in cell
apoptosis or not. In agreement with this dual role, some types
of cancers have been associated with shortened telomeres
while others with elongated telomeres [171].

Telomeres are not only involved in diseases affecting the
elderly population, but they also have a role in conditions
affecting children and adolescents. A recent study [172] on
62 children and adolescents diagnosed with AATD (α1-anti-
trypsin deficiency) and with intermediate to high risk for
developing lung or liver damage showed that they had signif-
icantly shorter telomeres and increased oxidative stress than
controls; high-risk patients showed not only shorter telo-
meres but also lower TERT expression and decreased telome-
rase activity than the other groups. Another study [173] on
44 patients, among which 26 children, with inherited telo-
mere biology disorders (such as dyskeratosis congenita,
Hoyeraal-Hreidarsson, and Revesz syndrome) showed that
57% of them had at least one structural brain abnormality
or variant; they also had psychiatric diagnoses and other dis-
eases more frequently than the general population. Another
confirmation comes from a study [174] conducted on 47
young adults (17-24 years old) diagnosed with the premature
aging syndrome of Prader-Willi (PWS). They displayed sig-
nificantly shorter telomere length compared to age-matched
healthy controls; they also showed a mild association with
lower IQ. Childhood cancers sometimes need to be addressed
differently from adult ones; one of the reasons resides in the
differences in the mutational landscapes and the prevalence
of telomere maintenance mechanisms [175]. Environmental
and behavioral factors might also impact on telomere length
and erosion in newborns, children, and adolescents. For
example, a study on 762 mother-newborn pairs in China
[176] demonstrated that prenatal exposure to some phthalate
metabolites was associated with shorter cord blood telomere
length; this study was also an evidence that intrauterine envi-
ronment has the potential to impact newborns’ telomere
length. Different studies on European cohorts [177, 178]
showed that higher child adiposity indicators are associated
with short telomeres in children; overweight and obesity in
childhood and adolescence are associated with shorter telo-
meres; therefore, an increased BMI early in life may be asso-
ciated with accelerated biological aging and may have an
adverse impact on future health during adulthood.

To summarize, telomere length has the potential to have
a valid diagnostic significance in specific settings. A recent
work by Alder et al. [179] measured telomeres of 100 individ-
uals with known pathogenic mutations in telomerase and
other telomere maintenance genes, compared with those of
636 healthy individuals of all ages. All of the 100 patients
had age-adjusted telomere length below the 50th percentile:
this indicated a 100% negative predictive value for identifying
a clinically relevant mutation in telomerase/telomere mainte-
nance genes. Moreover, a significant correlation was found
between faster telomere attrition and earlier onset of idio-
pathic bone marrow failure; 25% of the idiopathic bone mar-
row failure patients had their treatment regimen choice
modified based on their telomere length measurement,
resulting in an improvement of their clinical outcomes.
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5.2. Telomere Shortening in HIV-Infected Children and
Impact of ART. There is nowadays evidence that HIV-
infected individuals have overall shorter telomeres than
uninfected controls [180–183], implicating that HIV directly
influences telomere attrition, which occurs early after infec-
tion [184]. It has also been suggested that antiretroviral drugs
themselves can impact on accelerated aging. Indeed, HIV
reverse transcriptase shares homology with TERT [148,
185, 186]; therefore, nucleoside reverse transcriptase inhibi-
tors (NRTIs), such as zidovudine (ZDV) or abacavir, might
also inhibit TERT. In vitro studies showed that NRTIs inhibit
telomerase causing an accelerated erosion of telomeres [53,
54, 187, 188]; recent studies argued that the effect of prophy-
laxis and therapy is negligible compared to that of the infec-
tion itself [56]. However, two studies published in 2018 still
reported apparently conflicting results on the impact of dif-
ferent NRTI regimens on patients’ telomere length and their
change over time [189, 190]. The main findings of the papers
presented in this paragraph are also summarized in Table 1.

A study [37] on 94 0-19-year-old HIV-infected children
found no significant differences in their relative telomere
length compared to that of exposed (HEU) and unexposed
(HUU) uninfected controls. However, in the HIV-positive
group, higher viral load was associated with shortening of
telomeres. To investigate the impact of NRTIs on children’s
telomeres, a study was conducted on 114 HEU infants
exposed to ZDV prophylaxis [191]; their telomeres at birth
were similar to those of HUU controls, and no association
was found between telomere length and maternal ART regi-
men. Among the 114 HEU children, those exposed to mater-
nal ZDV+lamivudine+nelfinavir/nevirapine regimen had
longer telomeres at birth. Moreover, telomere attrition in
HEU children was more rapid in their first year of life com-
pared to that in HUU children, but then it normalized. In
agreement with these findings, a recent study [192] on 94
HEU ZDV-exposed and 85 HEU ZDV-unexposed newborns
revealed that telomere length of the ZDV-exposed infants
was longer compared to that of ZDV-unexposed ones. This
study also found a correlation between high maternal plasma
viremia levels and shorter infants’ telomeres. In partial con-
flict with these evidences, a recent study [193] on 120 HIV-
infected children below 6 years of age who started ART
before 2 years of age found that telomeres of HUU children
were significantly longer than those of HIV-infected and
HEU children; instead, HIV-infected and HEU children
had similar telomere lengths. In addition, this study did not
find any relationship between telomere length and
markers of inflammation (IL-6, TNF-α, high-sensitivity
CRP, and sCD14). Only one study [56] analyzed both the
immune senescence profile and telomere length in 0-5-
year-old HIV-infected, HEU, and HUU children. In this
study, telomeres were significantly shorter in HIV-
infected children compared to HEU and HUU ones; more-
over, among the HIV-infected children, telomeres were
shorter in ART-naïve than in ART-treated children. HIV-
infected children also displayed significantly higher percent-
ages of senescent (CD28- CD57+), activated (CD38+
HLADR+), and exhausted (PD1+) CD8 T cells, while these
percentages were comparable between HEU and HUU chil-

dren. The inverse correlation found between activated,
exhausted, and senescent CD8 cells and telomere length cor-
roborated the idea that persistent immune activation is closely
linked to accelerated biological aging and immune senescence.
Given the need of maintaining children with HIV on ART for
their entire life span, it is of interest to investigate the long-
term consequences of perinatally acquired HIV. A 2019 study
[194] investigated telomere length and erosion, together with
thymic and bone marrow output, of young adults (median
age 27 years old) who acquired HIV perinatally compared to
age-matched individuals infected later in life. Both groups
showed a normal thymic output and normal CD4 count; how-
ever, both groups had shorter telomeres and a faster telomere
erosion compared to uninfected age-matched controls. This
apparent discrepancy has been explained proposing that the
attempt to control the infection continuously recruits naïve
cells, which shift to the memory phenotype. Moreover, the
positive correlation that was found between CD4 count and
telomere length in both HIV-infected groups furtherly sup-
ports the concept that CD4 cells are newly recruited cells
which underwent fewer cell divisions.

The collection of these data supports the idea that HIV
infection itself has the major detrimental impact on cellular
aging, and ART benefits strongly outweigh the negative
effects on telomeres.

6. Conclusions

ART has changed the natural history of HIV, which is now
considerably a chronic disease.

Despite effectiveness of treatments, HIV-infected children
still do not have the same life expectancy and quality of life
compared to the general population. Perinatally infected chil-
dren acquire the virus early, when their immune system has
not yet reached full development and they are unable to mount
efficient immune response, so the disease has a faster progres-
sion. A persistent state of inflammation and activation of the
immune system contributes to establishing a premature aging
profile. This cannot be fully reverted by ART, representing
one of the main causes of comorbidities/malignancies in treated
HIV-infected children. Accumulating evidence demonstrated
that the beneficial effects of ART greatly outweigh the potential
side effects of NRTI use; indeed, it is mainly HIV that induces
telomere attrition and premature aging. In this setting, the
monitoring of markers of inflammation/immune activation
and premature aging is of great clinical relevance. Early-
treated children with reduced inflammatory and senescent sta-
tus could reveal optimal candidates for future treatments and
vaccine trials.
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