
For Review Only

 

 

 

 

 

 

A Network Tomography Approach for Traffic Monitoring in 

Smart Cities 
 

 

Journal: Transactions on Intelligent Transportation Systems 

Manuscript ID T-ITS-17-05-0511.R1 

Manuscript Type: Smart and Green Transportation for Smart Cities 

Date Submitted by the Author: 13-Dec-2017 

Complete List of Authors: Zhang, Ruoxi; Missouri University of Science and Technology, Computer 
Science 
Newman, Sara; Missouri University of Science and Technology, Computer 
Science 
Ortolani, Marco; Universita' degli Studi di Palermo, Computer Science 
Silvestri, Simone; University of Kentucky, Computer Science 

Keywords: Traffic monitoring, Network Tomography, Smart Cities 

Abstract: 

Traffic monitoring is a key enabler for several  planning and management 
activities of a Smart City. However, traditional techniques are often not 
cost efficient, flexible, and scalable. This paper proposes an approach to 
traffic monitoring that does not rely on probe vehicles, nor requires vehicle 
localization through GPS. Conversely, it exploits just a limited number of 
cameras placed at road intersections to measure car end-to-end traveling 
times. We model the problem within the theoretical framework of network 
tomography, in order to infer the traveling times of all individual road 
segments in the road network.  
We specifically deal with the potential presence of noisy measurements, 
and the unpredictability of vehicles paths. Moreover, we address the issue 

of optimally placing the monitoring cameras in order to maximize 
coverage, while minimizing the inference error, and the overall cost. We 
provide extensive experimental assessment on the topology of downtown 
San Francisco, CA, using real measurements obtained through the Google 
Maps APIs, as well as on realistic synthetic networks. Our approach 
provides a very low error in estimating the traveling times of more than 
95% of all roads even when as few as 20% of road intersections are 
equipped with cameras. 
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A Network Tomography Approach for
Traffic Monitoring in Smart Cities

Ruoxi Zhang, Sara Newman, Marco Ortolani, and Simone Silvestri∗

Abstract—Traffic monitoring is a key enabler for several
planning and management activities of a Smart City. However,
traditional techniques are often not cost efficient, flexible, and
scalable. This paper proposes an approach to traffic monitoring
that does not rely on probe vehicles, nor requires vehicle
localization through GPS. Conversely, it exploits just a limited
number of cameras placed at road intersections to measure
car end-to-end traveling times. We model the problem within
the theoretical framework of network tomography, in order
to infer the traveling times of all individual road segments
in the road network. We specifically deal with the potential
presence of noisy measurements, and the unpredictability of
vehicles paths. Moreover, we address the issue of optimally
placing the monitoring cameras in order to maximize coverage,
while minimizing the inference error, and the overall cost. We
provide extensive experimental assessment on the topology of
downtown San Francisco, CA, using real measurements obtained
through the Google Maps APIs, as well as on realistic synthetic
networks. Our approach provides a very low error in estimating
the traveling times of more than 95% of all roads even when as
few as 20% of road intersections are equipped with cameras.

Index Terms—Traffic monitoring, network tomography, smart
cities.

I. INTRODUCTION

The Smart City paradigm is constantly gaining momentum,
also thanks to innovative applications for the efficient man-
agement of a city’s assets leveraged by the availability of
pervasive monitoring devices. According to the Smart City
Council [1], efficient traffic monitoring is a key enabler to im-
prove urban livability, and sustainability by optimizing traffic
flow, road construction, and urban planning in general [2].

Collecting continuous and detailed traffic information is
challenging. Previous work in this area has often relied on
the deployment of traffic sensors, such as inductive loop
detectors embedded in pavements [3], or cameras placed at
strategic spots [4], but those approaches generally incur in high
deployment and maintenance cost, and can only provide local
information. Other strategies have been proposed that make
use of probe vehicles, such as taxis, buses and Unmanned
Aerial Vehicles [5]–[7]; however, probe vehicles generally do
not represent the actual traffic flow and are not pervasively
available in many cities. Crowd sensing technologies, such
as smart phones, have also been proposed for the evaluation
of urban dynamics [8]; although potentially effective, these
approaches may pose a threat for the user’s privacy, and can
be the target of cyber attacks [9].

An interesting alternative approach that has been discussed
in the literature is based on Network Tomography, an efficient
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theoretical tool to estimate the internal state of a network by re-
lying only on end-to-end measurements [10]. This framework
has been traditionally investigated in the context of computer
networks, but it has also been applied to other contexts,
including vehicular traffic estimation [11], [12]. A limited
number of monitors are coupled to nodes at the edge of the
network, so that they can exchange probing packets to collect
end-to-end measurements of the network paths. The end-to-
end measurements are related to the unknown individual link
measurements by solving a linear system of equations. Clearly,
monitors need to be strategically placed in order to maximize
the number of identifiable links, i.e. the number of links for
which a unique solution exists.

In this paper, we use network tomography to devise a novel
approach for vehicular traffic monitoring in Smart Cities. We
assume that cameras are statically placed at few selected road
intersections, so that they will play the role of monitors in the
network tomography terminology. Similarly, cars traversing
the roads between pairs of cameras represent the probing
packets. At each of the monitored intersections, images of
car license plates are captured and sent to a centralized Traffic
Control Center (TCC) for analysis, so that the corresponding
end-to-end traveling times may be inferred. The TCC con-
structs and solves an optimization problem in order to infer the
traffic conditions on all individual roads segments for which
only end-to-end traveling times had originally been collected.

The application of Network Tomography to vehicular traffic
is not straightforward and several challenges need to be
addressed. Specifically, in communication networks probe
packets are assumed to follow a predefined (possibly source-
assigned) path [10]. This clearly does not hold for vehicles,
which are completely independent, and may very well follow
multiple paths between any pair of cameras. In addition, end-
to-end traveling times are affected by non negligible noise,
which might make the resulting linear system impossible.

In order to address those issues, we provide theoretical
proofs that allow us to formulate an optimization problem for
the camera placement problem to obtain maximum coverage
and minimum error, while minimizing the cost of deploying
cameras. Furthermore, we formulate a linear optimization
problem to minimize the margin of error for measurements, so
that it is actually possible to solve the linear system. Finally,
we design a greedy approach inspired by the Kernighan-
Lin graph partitioning algorithm [13] to assign end-to-end
measurements to paths between cameras.

We test our approach on real network topologies of the
downtown San Francisco area, and generate realistic traveling
times for cars over such topologies by a script based on the
Google Maps API [14]. Our results show that our approach
is able to cover more than 95% of the road network when as
few as 20% of road intersections are equipped with cameras.
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II. RELATED WORK

Traditional approaches to urban traffic monitoring rely on
the city infrastructure to gather information about road condi-
tions and usage; for instance, data related to traffic flow is often
directly measured through inductive loop detectors embedded
in pavements [3], or inferred by cameras placed at strategic
spots, such as road intersections [4]. Even though extensive
deployment may be devised, such approaches are clearly not
very cost-effective, and can hardly obtain pervasive coverage.

Other strategies have been proposed that require some
form of collaboration on part of the involved entities, either
through devices installed on board of commercial or public
transportation vehicles, such as taxis or buses; the authors
of [5], for instance, describe a system for real-time estimate
of the average speed of traffic through GPS sensors installed
in the public transportation fleet of a Greek city. Direct
control over the monitoring equipment clearly allows for
more flexibility; however bus routes, for instance, are not
necessarily representative of the general traffic conditions due
to dedicated routes, frequent stops, and so on. Recently, the
use of more advanced technology has been proposed; a system
employing Vehicular Sensor Networks for traffic estimation
and optimization has been proposed in [6], whereas the use
of Unmanned Aerial Vehicles (UAVs) for real-time traffic
monitoring and management is surveyed in [7]. The intrinsic
drawback of such approaches is that an extensive investment
needs to be made, which can be prohibitively expensive and
might make testing impractical.

Finally, an alternative line of research has suggested the
use of crowd sensing technologies, such as smart phones [8]
for the evaluation of urban dynamics; such systems, however,
impose extra costs to users, necessarily require user-provided
information, which can be easily manipulated, and may also
pose a threat with regards to users’ privacy.

Our goals set our approach apart from those proposals.
First of all we do not assume any explicit collaboration from
the vehicles, that merely act as “passive” probes, and we
do not require cars to be equipped with tracking devices,
nor we assume any explicit collaborations from the users.
We instead chose to rely on the theoretical grounds provided
by network tomography [15]–[18]. Traditional approaches in
this field have been proven successful in reconstructing the
set of all end-to-end measurements by probing a basis of
paths determined by rank decomposition techniques [19]. Nev-
ertheless, these approaches are designed for communication
networks, and probe packets are assumed to be source routed.
This assumption clearly does not hold in our context, where
drivers are free to chose their own path. Only few papers,
e.g. [11], consider network tomography applied to vehicular
traffic monitoring. However, these papers do not deal with the
placement of cameras nor the presence of noisy measurements.
In [18], a linear programming formulation is proposed in the
context of network tomography in order to maximize the load
carried on the network. This formulation differs from the
objectives and constraints of the optimization problems studied
in this paper, and therefore cannot be directly compared.

Artificial Intelligence approaches to infer individual road

segment delays given some, possibly noisy, traveling times
obtained from cameras have been proposed in [12], [20], [21].
These approaches are based on kernel ridge regression [20]
and inverse Markov chains [12], [21]. However, these solutions
do not address the placement of cameras at intersections to
obtain the end-to-end delays, and therefore cannot be directly
compared to ours.

Overall, our framework advances previously proposed ap-
proaches by comprehensively solving the challenges that arise
by applying network tomography to vehicular networks, in
order to provide a cost efficient, flexible and accurate way for
traffic monitoring in Smart Cities.

III. BACKGROUND ON NETWORK TOMOGRAPHY

Network tomography was originally designed for commu-
nication networks, such as the Internet, to infer the internal
network state through end-to-end measurements taken by
monitors, typically strategically placed at the edge of the
network [22]. A network is modeled as an undirected graph
G = (V,E), where V is the set of nodes, and E is the
set of links. Some of the nodes are selected as monitors,
and will exchange probing packets in order collect end-to-end
measurements of the metric of interest (e.g. the overall delay,
or packet loss, across the path between two monitors). With
reference to the toy example shown in Figure 1, monitor nodes
are indicated by shadowed circles, and thick lines highlight
three of the possible paths between any pair of such monitors,
namely p1(m1,m3) = {l1, l7}, p2(m1,m9) = {l1, l15}, and
p3(m9,m3) = {l15, l7}.

The fundamental assumption is the additive nature of the
metric to be inferred. As an example, the delay of an end-
to-end path is the sum of the delays of its links. If we let
bi indicate the measurement obtained by probing path i, and
by xj the (yet unknown) delay on link jth, measurements
collected on the path between monitors m1 and m9 in Figure 1
would be expressed as: x1 + x15 = b1.

In general, let P = {p1, p2, ..., p|P |} represent the set
of probing paths between monitors. The relation between
paths and links is represented by a binary matrix R, of size
|P | × |E|, where each row refers to a specific probing path.
More specifically, element (i, j) of matrix R is set to 1 if
link lj belongs to path pi, and to 0 otherwise. The end-to-end
measurements are stored in a 1×|P | vector b, whose elements
bi represent the end-to-end measurements over path pi.

Hence, if we let xj represent the delay along link lj , then the
overall delay on path pi may be expressed as

∑|E|
j=1 rijxj = bi.

We can easily extend this over all paths, and formulate the
following linear system:

Rx = b (1)

where x represents the individual link measurements.
In Figure 1, nodes 1 and 9 are selected as monitors.

Adding node 3, and solving the corresponding linear system
would completely determine the traveling times on on all
involved links which are thus said to be identifiable. Only
a limited set of monitors was used. Node 5 in particular
was not selected as monitor, so no camera would need to
be deployed at the corresponding road intersection. It is
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2 3 4
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8 9 10

l1 l2 l3

l4 l5

l6

l7 l8

l9

l10 l11

l12 l13

l14

l15 l16

l17

l18 l19



x1 + x7 + x9 = b1

x1 + x2 + x8 + x9 = b2

x1 + x15 = b3

x15 + x7 + x9 = b4

x16 + x8 + x9 = b5

R =


1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0


Fig. 1: A sample network with 10 nodes and 19 links; the linear system for the choice of nodes {1, 4, 9} as monitors, and
multiple possible paths, and the corresponding matrix.

worth noting that a different choice of monitors, covering
a larger part of the network, however, does not necessarily
improve identifiability; for instance, with monitors {1, 4, 9}
and paths p1(m1,m9) = {l1, l7, l9}, p2(m1,m9) = {l1, l15},
and p3(m9,m4) = {l15, l7, l9}, the system cannot produce
a unique solution for links l7 and l9. Considering additional
paths would not guarantee an improvement in identifiability
either. Several works focused on monitor placement and path
selection to maximize identifiability in communication net-
works [17], [22]. However, applying network tomography to
vehicular networks introduces novel and unique challenges.

IV. A FRAMEWORK FOR VEHICULAR TRAFFIC
MONITORING BASED ON NETWORK TOMOGRAPHY

The goal of our framework is to exploit network tomography
to provide an accurate estimation of the average traveling time
for each road segment in a road network relying only on
end-to-end measurements detected by cameras placed at road
intersections. To this purpose, we begin by stating our model
and assumptions, and then describe the three main modules of
our framework. Table I summarizes the relevant notation used
in the paper.

A. Model and Assumptions

Given the map of the Smart City’s road network, we
create a graph G = (V,E) where V is the set of nodes
representing road intersections, and E the set of road segments
connecting them. In the following we will use the term “road
intersection” and “node” interchangeably; similarly we will
use “road segment” and “link” as synonyms. With no loss of
generality, we will also assume that all links are symmetrical.
Each road segment l ∈ E is characterized by an average
traveling time xl, which represents the time for a car to traverse
the link l, averaged over several measurements in order to
account for variability in travel speed.

TABLE I: Summary of relevant notation.

Symbol Description
G = (V,E) Road network G, E road segments and V intersections.
V ′ ⊆ V Set of candidate intersections for camera placement.
M ⊆ V ′ Set of selected intersections for camera placement.
cm Cost of placing a camera at intersection m ∈ V .
l ∈ E Road segment, or link.
xl,x Traveling time for link l, vector of link traveling times.
bi,b Traveling time for path pi, vector of path traveling times.
P Set of paths between the monitors in V ′.
R Path matrix, R[i, j] = 1 if lj belongs to pi, 0 otherwise.
Ps,d Set of paths between cameras ms,md ∈M
Ts,d Set of measurements collected by cameras ms,md ∈M
Ti Set of measurements assigned to path pi ∈ Ps,d

Our only requirement in terms of hardware is that a limited
number of cameras are deployed at road intersections in order
to collect the images of license plates belonging to cars going
through that intersection. We do not concern ourselves here
specifically with the issue of automatic detection of license
plates, as this is a well investigated problem in image analysis
and can be performed with very high accuracy [23].

We assume that cameras can be deployed at a subset
V ′ ⊆ V of all possible intersections. For each intersection
m ∈ V ′ the cost of placing a camera is cm. The actual
set M ⊆ V ′ of intersections where cameras are placed is
determined by the approach discussed in Section IV-B. If
we consider a pair of cameras deployed at intersections
m1,m2 ∈M , as a vehicle passes through m1 and m2 the
corresponding time stamps are sent to the TCC which can
thus compute the traveling time for that specific vehicle.

B. Camera Placement Problem

The first problem we address is the selection of the set M of
intersections where cameras need to be deployed. Ideally, our
choice of nodes should incur minimum cost, while providing
maximum coverage and minimum estimation error.

Let us consider the linear system Rx = b resulting by
placing cameras at all possible intersections in V ′. Obviously,
this solution would provide maximum coverage and minimum
error, however it would incur a very high cost. By using
network tomography, we are able to use a much smaller set
M ⊆ V ′ and provide both same coverage and error, for a
significantly lower cost. To this purpose, we recall the concept
of basis of the matrix R.

Definition 1 (Basis [24]). Given a binary matrix R of size
|P | × |E|, a basis B is a maximal subset of linearly indepen-
dent rows (paths).

In the following theorems, we show that any basis of the
matrix R has two relevant properties, namely it provides both
maximum coverage and minimum error. In the following, we
use path matrices such as R as sets of vector, to ease the
notation.

Theorem 2. Given a binary matrix R of size |P | × |E|, for
any basis B of R, if there exists a path in P that covers a
link l ∈ E, then there exists a path in B that covers l.

Proof. We prove the statement by contradiction. Let us con-
sider a basis B = {v1, . . . , vn}, and assume that there exists a
link l that is not covered by any vector in B. However, since l
is covered in R, then there must exist at least a vector v̂ ∈ R
that covers l and, since B is a basis, it should be possible to
express v̂ as a linear combination of {v1, . . . , vn}. However,
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we assumed that l is not covered in B, i.e., vi[l] = 0 for each
i = 1, . . . , n. Therefore, v̂ cannot be expressed as a linear
combination of the paths in B, thus B is not a basis of R,
which leads to a contradiction.

We now focus on the properties of a basis relative to the
inference error. By solving the linear system Rx = b, some
links are identifiable. Therefore the error for those links is zero,
provided that the measurements in b are accurate. However,
for links that are not identifiable, multiple values exist that
would satisfy the system. Our algorithm for inferring values
for unidentifiable links is described in detail in Section IV-C,
but intuitively the larger the space of possible choices, the
larger the potential inference error for the unidentifiable links.

More formally, let Q ⊆ R be any set of paths whose
end points we are planning to monitor through cameras.
Furthermore, let Vol(Q) be the volume of the polyhedron
of feasible solutions for the linear system considering only
the equations in Rx = b corresponding to the paths in Q. We
denote such smaller system as QxQ = bQ. The larger Vol(Q),
the higher the error we may cause by picking a point in the
polyhedron, conversely if Vol(Q) is smaller the inference error
is also smaller1.

Considering all paths in R obviously allows us to obtain
the minimum number of unidentifiable links, as well as the
minimum volume of Vol(R). It is well known in linear
algebra that if we restrict ourselves to consider a basis B of
R, and solve the corresponding linear system BxB = bB ,
we obtain the same set of unidentifiable links [25]. In the
following theorem, we further show that such system implies
the same volume for the polyhedron of possible solutions for
unidentifiable links (i.e., Vol(B) = Vol(R)), and therefore it
provides the same minimum inference error.

Theorem 3. Consider a binary matrix R of size |P |×|E| and
an end-to-end measurement vector b. For any basis B of R,
the polyhedron of possible solutions for the system Rx = b
is the same of the polyhedron of the solutions of the system
Bx = bB .

Proof. A solution x for the system Rx = b exists if the vector
b lies in the span of the vectors in R [24]. Since B is a basis
of R, they both span the same vector space. As a result, x is
also a solution for Bx = bB .

By combining Theorems 2 and 3 we can conclude that in
order to obtain maximum coverage and minimum error, while
minimizing the cost of deploying cameras, we need to look
for the basis of the matrix R with minimum cost. This may be
formally stated as an optimization problem, as follows:

minimize
Q⊆R

C(Q)

subject to Q is a basis of R
(2)

where C(Q) is the cost of deploying monitors at the in-
tersections identified by the set of paths Q. The solution Q
of the above problem can be easily translated into a set of
intersections M by placing cameras at the end points of each
path in Q.

1Note that, upper and lower bounds for the link delays can be easily added
to the system to ensure Vol(Q) <∞.

Algorithm 1: Greedy camera placement algorithm.
Input: Matrix R

1 Q = ∅;
2 while rank(Q) ≤ rank(R) do
3 p∗ = path in R \Q with minimum cost and linearly independent

from the paths in Q;
4 Q = Q ∪ p∗;
5 foreach Path p ∈ Q \R do
6 Update cost cp considering the cameras already required by Q

7 return Q

We note that C() is a submodular function [26]. Addition-
ally, the linearly independent subsets of R form a matroid.
As a result, our problem is the minimization of a submodular
function over a matroid constraint. The unconstrained mini-
mization of a submodular function can be solved in polynomial
time using the Lovász extension [26]. However, even simple
cardinality constraints can make the problem hard [26]. For
this reason, in this paper we propose a greedy algorithm to
solve the optimization problem in Eq. (2).

The algorithm takes as input the matrix R obtained by
placing cameras at all intersections in V ′. It then starts with
an empty solution Q (line 1), which is iteratively expanded by
the while loop (lines 2-6). The loop iterates as long as Q is not
a basis (i.e., its rank is less than that of R). At each iteration,
the path with least cost, which is linearly independent from the
paths in Q, is selected and added to Q (lines 3-4). The inner
for loop (lines 5-6) updates the costs of the paths not in Q by
taking into account the cameras required by the paths in Q.
This is a necessary step to take into account the submodularity
of the objective function.

Complexity Analysis. The while loop runs at most
rank(R) times. Calculating the rank can be performed in
O(|E|3) using Gaussian Elimination. Finding the path with
minimum cost can be done in O(|P |). Finally, the for loop to
update the costs performs O(|P |) iterations for each iteration
of the while loop. As a result, the overall complexity is
O(rank(R)× (|E|3 + |P |)).

C. Solving a Linear System of Noisy Measurements

In this section we address two specific challenges aris-
ing when applying Network Tomography to vehicular traffic
monitoring. First, traffic conditions, drivers’ behavior and
other external factors will likely influence the traveling times
between any pair of monitored intersections, so we must
assume that the corresponding delay measurement will be
affected by unpredictable noise. Such noise may result in an
inconsistent linear system, with no solution. Second, given a
camera placement, there may still be unidentifiable links, and
therefore multiple solutions for the linear system. Therefore,
in this section we discuss our approach to deal with noisy
measurements and to identify a solution that is consistent with
the available information and provides a small inference error
of the traveling times for unidentifiable links.

1) Dealing with Noisy Measurements: Let us consider a
given set of cameras M ⊆ V ′ obtained as discussed in
Section IV-B. As previously mentioned, each pair of cameras
ms,md ∈ M identifies a set Ps,d of paths; for each path
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p ∈ Ps,d the Traffic Control Center (TCC) will compute the
average traveling time bp which will be used in the linear
system. However, not only might bp be intrinsically affected by
a non-negligible amount of noise due to different cars spending
different times to traverse the same path, but cars might as
well follow different paths altogether between the same two
intersections. As a result, the average bp for a path p may
be affected by a significant noise. If the standard network
tomography approach were to be used, the linear system in
Eq. (1) might have no solution.

In order to deal with this problem, we modify the original
formulation to account for the possible presence of noise
in the measurements. Specifically, we define a parameter ∆
representing the allowed margin of noise, and substitute each
of the equations in the linear system by two inequalities:

|E|∑
j=1

rijxj ≤ bi + ∆;
|E|∑
j=1

rijxj ≥ bi − ∆ (3)

A sufficiently large value for ∆ allows to make sense of
the available end-to-end measurements, so that a solution for
the system may exist. However, an excessively large value for
this parameter would result in an inaccurate solution, differing
significantly from the actual values of the traveling times of
the road segments.

Our goal is thus to find the minimum value of ∆ that enables
a solution of the linear system while also minimizing the error
in inferring the road segments traveling times. To this purpose,
we define the following linear optimization problem:

minimize ∆

subject to Rx ≤ b + ∆, Rx ≥ b− ∆

x ≥ 0

(4)

where R is the binary matrix of size |P | × |E|. Note that,
here the set P accounts for the possibility of multiple paths
between any two intersections where cameras are installed.

The problem can be solved efficiently by well-known linear
optimization algorithms such as the Simplex method [27], and
the solution would provide a value xj for each road segments
lj ∈ E, that we use as an estimate of the average traveling
time for that link if lj is identifiable.

Note that we may extend the above formulation to include
vehicle classes. It may be possible to derive a linear system
for each class to obtain more accurate information. However,
this may come at the expense of additional noise due to
potentially inaccurate vehicle classification, or inherent noise
in each class. We will consider vehicle classes as a future
extension of our work.

2) Solution for Unidentifiable Links: It may be the case that
only some road segments are identifiable. For such segments
the optimizer would return a unique solution; conversely, the
values for non identifiable links would not be not unique. In
general, the optimizer provides a solution in the form of a point
on the surface of the convex polyhedron H defined by the
constraints of the optimization problem. We already discussed
in Section IV-B how to place cameras so that such polyhedron
is as small as possible. However, unidentifiable links cannot
be avoided in general, so we need a method to pick a “good”

solution within the polyhedron that provides a small inference
error.

The intuition behind our approach is that even though
the vertices of the polyhedron may be admissible solutions,
they are likely not convenient for us. Such solutions are
characterized by very high traveling times assigned to few
links, and very low ones to others. Such disproportionate
polarization is not realistic, therefore in our approach the goal
is to return a solution which corresponds to the centroid of
the polyhedron.

Definition 4 (Centroid). Given a polyhedron H ⊆ Rn with
vertices = {v1,v2, . . . ,vn}, the centroid B(H) ∈ Rn is
calculated as B(H) = 1

n

∑n
i=1 vi.

Note that since H is convex, as it results from the intersec-
tion of convex polyhedrons defined by the linear inequalities,
the centroid B(H) always lies within H , and therefore it
is a feasible solution for the linear system. Calculating the
centroid, however, requires the knowledge of all the vertices
of the polyhedron. Identifying such vertices is feasible using a
similar approach as the one adopted by the Simplex algorithm
[27]. However, the number of such vertices can be exponential
with the number of constraints. Therefore we propose an
alternative approach to provide an approximated centroid.

Our approach consists in generating a set W of random
points that lie within the polyhedron H identified by the linear
system in Eq. (4). We iteratively generate random points, and
accumulate in W those that verify the constraints of the linear
system. Subsequently, we calculate the centroid of B(W ) as
an approximation of the centroid B(H). We show in Section
V that this approach provides a very accurate estimation of
the traveling times of the links in the road network.

D. Pairing End-to-End Measurements to Paths
We now focus on the last challenge, and deal with the pos-

sible different paths that drivers follow between two monitors.
Note that this problem does not occur in the original formu-
lation of network tomography for communication networks,
since routing is either source-based or known a priori [28].

As an example of this problem, with reference to the
linear system in Figure 1, traveling times b1 and b2 are both
computed from measurements collected by the same pair of
monitors (m1 and m4); however, b1 should be associated to
path p1 = {l1, l7, l9}, whereas b2 to path p2 = {l1, l2, l8, l9}.

In general, let Ps,d indicate the set of all paths that may
be potentially traveled by cars having two monitored road
intersections ms,md ∈ M as source and destination, respec-
tively. Paths in Ps,d may differ in length and traffic conditions,
and consequently be characterized by significantly different
traveling times. Moreover, we do not expect car to be an active
part of our framework; in particular, they are not assumed to be
equipped with any tracking device, such as GPS, that might
enable us to infer which of the paths in Ps,d was actually
traversed by a specific car. As a consequence, we are faced
with the problem of correctly assigning a delay measurement
to a specific path.

Formally, the TCC may compute the traveling time tj
for each vehicle j traveling from ms to md. Additionally,
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Algorithm 2: Assignment of end-to-end measures to paths
between a pair of monitors.

1 Generate a random assignment T1, T2, . . . , Tk;
2 Calculate the empirical distributions P̂i for each Xi;
3 do
4 δ∗ = 0;
5 foreach pair of samples t1, t2 ∈ Ts,d do
6 Calculate δ1,2 as the increase in P(T1, . . . , Tk) by switching

t1 and t2;
7 if δ1,2 > 0 and δ∗ < δ1,2 then
8 δ∗ = δ1,2

9 Switch t1 and t2 that provided δ∗
10 while δ∗ > δmin;
11 return the current assignment T1, T2, . . . , Tk

in order to build the linear system described in Eq. (4), it
needs to compute the average traveling time bi for each path
pi ∈ Ps,d. Let Ts,d = {t1, t2, . . . , tr} be the set of end-to-end
measurements collected for any of the paths in Ps,d between
monitors ms and md, and let |Ts,d| = r and |Ps,d| = k.

Our problem consist in determining a partition
T1, T2, . . . , Tk of Ts,d such that each Ti contains only
the end-to-end measurements that belong to path pi ∈ Ps,d.
Once the sets T1, T2, . . . , Tk are identified, the average
end-to-end traveling time for a path pi will be computed as
bi = 1

|Ti|
∑

t∈Ti
t. This value can be used as the right-hand

side for the inequalities related to path pi in the linear system
described in Section IV-C.

In order to find the partitioning of Ts,d, we assume that
the probability Ps,d(pi) with which a car follows a path pi
between ms and md is known, so that we know that the
expected number of measurements belonging to set Ti is given
by r × Ps,d(pi), where we recall r = |Ts,d|. Note that, in
Section V-E we relax this assumption and experimentally show
that our approach is effective even when there is an inaccurate
knowledge of the probability distribution.

We model the traveling times along a path pi by means of
a random variable Xi, whose probability distribution is not
restricted to have any specific shape. Ti is then the set of
realizations of such random variable. If P(Xi = t) indicates
the probability that a sample t ∈ Ts,d has been generated by
Xi, the likelihood of an assignment T1, . . . , Tk is given by:

P(T1, . . . , Tk) = Πk
i=1Πt∈Ti

P(Xi = t) (5)

and the best assignment T1, . . . , Tk is one that maximizes such
likelihood. In the ideal case when the distributions are known
for each variable Xi, the best partitioning can be determined
by assigning each measurement t to the variable Xi for which
P(Xi = t) is the highest.

In our case, however, the distributions are not known, so
we resort to an iterative greedy approach inspired by the
Kernighan-Lin graph partitioning algorithm [13]. The idea is
to start from a random assignment respecting the cardinality
constraints for each set Ti, and iteratively make use of the
samples in Ti to estimate the empirical distribution P̂i of
each variable Xi. Then, for each pair of samples t1 ∈ Ti and
t2 ∈ Tj we calculate δ1,2 which is defined as the increase in
the likelihood of the assignment in Eq. (5) by swapping t1 and

Figure 1: the quadtree model. Left: r = 3/4 (large-square preference). Middle: r = 1 (neutral). Right: r = 5/4
(small-square preference).

Figure 2: Left: the Growing Random Planar Graph model [16]. Middle: the roads of San Joaquin County, California,
USA [19]. Right: the quadtree model with r = 15/16.

w
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Splitn = w

Figure 3: Splitting square w.

3

Fig. 2: Example of quadtree based synthetic topology [29].

t2, i.e. by assigning t1 to Tj and t2 to Ti. The pair of samples
with highest δ are then switched at the current iteration. The
algorithm terminates as soon as the increase drops below a
threshold δmin.

The pseudo-code for the algorithm is in shown in Algo-
rithm 2. Each iteration of the algorithm has O(r3) complexity,
since each pair of samples t1, t2 ∈ Ts,d must be analyzed, and,
for each of these pairs, δ1,2 must be computed, an operation
whose complexity is upperbounded by O(r).

In order to ensure convergence of the algorithm, δ1,2 is
calculated as follows. For t1 ∈ Ti and t2 ∈ Tj , we simulate
the swapping of t1 and t2, obtaining the corresponding sets
T ′
i = Ti \ {t1} ∪ {t2} and T ′

j = Tj \ {t2} ∪ {t1} and the
new empirical distributions P̂′

i and P̂′
j , for Xi and Xj . δ1,2 is

defined as:

δ1,2 =max{(Πt∈T ′
i
P̂′
i(Xi = t)−Πt∈Ti

P̂i(Xi = t)), 0}×
max{(Πt∈T ′

j
P̂′
j(Xj = t)−Πt∈Tj

P̂j(Xj = t)), 0}
(6)

The rationale behind the above formula is that whenever
t1 and t2 are exchanged, a strictly positive increase in the
probability of the new assignment occurs even if the empirical
distributions of Xi and Xj may change.

V. EXPERIMENTAL ASSESSMENT

A. Experimental Setup

In this section we experimentally evaluate our framework
through simulations. We consider both synthetic and real
road networks. Synthetic road networks have been generated
using the realistic model proposed in [29]. The model is
based on quad trees and has two parameters: the number of
intersections f , and q which controls the amount of sprawl.
In our experiments f is varied to consider different scenarios
and q is set to 1. Traveling times are randomly generated in
the interval [3, 10], which represents the ground truth for our
inference. An example of the topology generated with this
model is shown in Figure 2.

The real road network topology is instead taken from
downtown San Francisco, CA, as shown in in Figure 3. When
required, we generate networks of varying size by considering
only the part of the road network comprised within a specified
radial distance from geographical center of the map. We
developed a script based on the Google Maps API [14] to
obtain real traveling times. Specifically, our script uses the
APIs to obtain the current traveling time in every road segment
in the downtown San Francisco map. Figure 4 shows the
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Fig. 3: Road topology used for the experiments.
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Fig. 4: Cumulative Density Function (CDF) of delays observed
in downtown San Francisco, CA.

Cumulative Density Function (CDF) for the observed delays
at 2PM on 8/8/20172. We used these values as ground truth
for our experiments with the real road network topology.

For both synthetic and real networks we generated the cost
cm of deploying a camera at intersection m ∈ V ′ as a random
number in the interval [1, 10].

In order to account for the fact that in a real-life scenario,
drivers may decide to follow alternate, but not entirely dissim-
ilar, routes for each pair of intersections ms,md, we consider
all paths in the set Ps,d whose number of hops is less than or
equal to a factor θ of the length of the shortest path between
ms and md. The set Ps,d was constructed through a modified
version of the transitive closure of the adjacency matrix of the
road map graph G [30]. In our experiment, we show the impact
of the parameter θ on the performance of our approach. We
also assumed that collected end-to-end traveling times may
be randomly corrupted by some amount of noise, and we
performed experiments to show the impact of such noise.

We focus on three main metrics to evaluate our approach.
Cost refers to the total cost of deploying cameras at the
selected intersections. Coverage is defined as the fraction
of links for which an estimation is provided with respect
to the total number of links in E. The inference error is
measured using the Mean Square Error (MSE). Specifically,
let x1, . . . , x|E| be the ground truth values of delays in the
network, and let x̂1, . . . , x̂|E| be the inferred values. The MSE
is defined as MSE = 1

|E|
∑|E|

i=1(x̂i − xi)
2. Note that, for

uncovered links we assume that the inferred delay is zero, so
that the corresponding error is maximized. The availability of
additional information is available, e.g. road lengths and speed
limits, would result in better inference.

2We also considered different times and days, and obtained similar results.

Results are averaged over several runs in order to obtain a
reliable confidence interval. The plots show the average and
standard deviation of the considered metrics.

B. A Comparison Approach based on Vertex Cover

Previous works on vehicular traffic estimation based on
cameras [11], [12], [21] do not address the camera placement
problem. Similarly, monitor placement in communication net-
works is based on routing assumptions that do not hold for
vehicular networks [16], [22], [31], [32]. For these reasons we
chose instead to compare our method to an approach inspired
by the Weighted Vertex Cover (WVC) problem [33], which has
been adopted in several coverage problems in communication
and vehicular networks [34]. Specifically, given the road
network G = (V,E) and the costs cm for each m ∈ V , we
assume that if a camera is placed at an intersection m ∈ V , the
traffic along all the links in E incident to m can be accurately
monitored. In terms of the WVC problem, we say that m
covers the links adjacent to it. Under this setting, we are
looking for a set MWVC ⊆ V to place cameras such that it
incurs minimum costs and each edge in E is covered by at least
one camera in MWVC . A similar formulation of the problem
is straightforward for the case when cameras are allowed to
be placed only at a subset V ′ ⊆ V of intersections.

The WVC problem is NP-Complete, however there are sev-
eral heuristics that provide a provable approximation bound.
In this paper we use the heuristic proposed by Clarkson et
Al. that provides a 2 approximation bound with respect to the
optimal solution [33]. This approach is referred to as WVC.

C. Synthetic Networks

Experiment I. In the first set of experiments we allow cameras
to be potentially deployed at any intersection in the network,
i.e., V ′ = V . In addition, we consider three values for θ,
namely 1, 1.2, and 1.5, and we consider no errors in the
measurements nor in the assignment of measurements to paths.

Figure 5(a) shows the total cost of deploying cameras at
intersections returned by our approach, and at those selected
by WVC, under different network sizes. Our approach clearly
outperforms WVC. The strength of our solution is the ability
to exploit the correlation between end-to-end measurements
through the solution of the linear system. Conversely, each
camera in WVC is only able to provide a local estimation,
although unbiased, of its adjacent links. As a result, WVC
requires more cameras and therefore it incurs a higher cost.
In addition, our solution requires a lower cost as the value
of θ increases, since fewer cameras are necessary to cover
the network. Nevertheless, even in the extreme case of a
single path between each pair of cameras (θ = 1), we still
significantly outperform WVC.

Note that, by allowing cameras to be potentially deployed
at every intersection, our approach is able to uniquely identify
all links in the network. Similarly, WVC returns a set of nodes
for which every link is adjacent to at least a node in that set.
As a result, both approaches achieve full coverage and incur
a null inference error.
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Fig. 5: Synthetic Networks: Cost vs. size of the network (a),
Coverage (b), Cost (c) and MSE (d) vs. % of nodes where
cameras can be placed, ∆ (e), MSE (f) vs. % of noise.

Experiment II. In this set of experiments, we allow cameras
to be placed only at a subset of intersection V ′ ⊆ V and
we study the performance upon increasing the size of V ′. The
intersections in V ′ are chosen randomly, and again we assume
no errors are present.

Figure 5(b) and (c) show the coverage and the cost of
camera deployment versus the size of V ′, expressed as the
percentage of nodes in V where cameras can be placed.
Remarkably, our approach is able to provide higher coverage
at a smaller cost compared to WTC by exploiting end-to-end
measurements. As a numerical example, our approach provides
a coverage higher than 90% coverage of the network, with
θ = 1.2, when having only 30% of intersections in V ′ and
incurring a cost less than 75. On the contrary, WTC requires
at least 70% of intersection available to achieve a similar
coverage, and it incurs a cost of about 150.

The lower coverage also has an impact on the quality of
the inference, as shown in Figure 5(d). Our approach incurs
a very low error for all settings of θ, again highlighting the
inference capabilities of network tomography when applied to
vehicular networks. Conversely, WTC results in an error which
is significantly higher than our approach.
Experiment III. In the third and final set of experiments, we
focus on the effect of noisy measurements. For this purpose,
we consider the end-to-end measurements to be affected by
a random noise e ∈ [0, 1], and we study the performance by

increasing the value of e. Specifically, depending on e we alter
the ground truth bi value for the delay of path pi in Eq. 4, with
a random value in the interval [(1− e)× bi, (1 + e)× bi]. This
makes the linear system likely to have no solution. Therefore
a value of ∆ > 0 is necessary to satisfy all the constraints
given the noisy measurements. In these experiments we allow
cameras to be potentially deployed at all of intersections.

Figure 5(e) shows the values of ∆ corresponding to increas-
ing values for the error parameter for network topologies of
size 10, 30, and 50 nodes. As expected, a higher value of
∆ is required as the noise increases, and also a higher value
is necessary to satisfy the constraints for bigger topologies.
Intuitively, the bigger the topology the higher the number of
paths, the higher the impact of noise on the feasibility of the
linear system. Figure 5 (f) shows the inference error under
different magnitude of noise. The error increases with the
amount of noise and the size of the network. This increase is
due to the higher values of ∆, that result in larger polyhedrons,
and consequently to larger inference errors. Nevertheless, it is
worth noting that although the error increases, our approach
is effectively able to achieve a small inference error in all the
considered settings.
D. Real Networks

We now describe the results obtained using the road net-
work of downtown San Francisco, CA. We performed similar
experiments with respect to the synthetic networks.
Experiment I. Figure 6(a) shows the cost of deploying
cameras at selected intersections as a function of the network
size. The results confirm the outcome obtained for synthetic
networks, and also in this case our approach outperforms WTC
incurring a lower cost. The advantage becomes more evident
as the network size increases, since the effect of exploiting
end-to-end measurements is more prominent.
Experiment II. We now consider the performance when
increasing the size of the set V ′ where cameras can be placed.
As figures 6(b), (c) and (d) show, WVC reveals its weaknesses
in real settings too, achieving lower coverage, at a higher
cost, which results in a higher inference error for the link
delays. Note that the higher values of the MSE compared to
the synthetic networks are due to the higher delays of the
links in this dataset, in the interval [10, 300] as obtained by
the script based on the Google APIs. Conversely, the delays
for the synthetic networks are in the interval [3, 10].
Experiment III. In the final set of experiments we added noise
to the measurements as discussed for the case of synthetic
networks. Figure 6(e) and (f) show the value of ∆ and the
inference error as a function of the magnitude of added noise.
Similarly to the synthetic network case, a higher ∆ and a
higher error occur as we increase the noise and the size of the
network. Nevertheless, even in this case our approach shows
great tolerance to noisy measurements, as the MSE, which is
a quadratic error, increases only linearly with the noise.
E. Assigning Measurements to Paths

In this set of experiments, we aim to evaluate the perfor-
mance of the algorithm presented in Section IV-D whose goal
is to assign the measurements Ts,d collected between two
intersections ms and md, to the paths Ps,d between them. We
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Fig. 6: Real Networks: Cost vs. size of the network (a),
Coverage (b), MSE (c) and Cost (d) vs. % of nodes where
cameras can be placed, ∆ (e), MSE (f) vs. % of noise.
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Fig. 7: Assigning measurements to paths, with (a) perfect and
(b) inaccurate knowledge of the driver preference distribution.

assume that each path pi ∈ Ps,d has a ground truth average
delay µi and that the traveling times over pi follow a Gaussian
distribution < µi, σ >. The value of µi is picked randomly in
the interval [1,100], while σ is set to 3. We additionally assume
that the driver preference for the available paths follows a
geometric distribution with parameter λ ∈ [0, 1], meaning
that path pi ∈ Ps,d is picked with probability (1 − λ)i. This
distribution models the real life scenario in which most drivers
tend concentrate over few paths.

Using these assumptions, we simulate 800 cars traveling
from ms to md. Each car picks a path pi in Ps,d according
to the geometric distribution. Then, we add a measurement in
the set Ts,d as realization of the Gaussian distributed random

variable with parameters < µi, σ >.
We run our algorithm to partition the set Ts,d into

T1, T2, . . . , where Ti contains the measurements assigned to
the path pi. The estimated average traveling time for pi is
µ̂i, obtained averaging the measurements in Ti. We use the
Mean Square Error (MSE) between the actual averages and the
estimated averages to evaluate the accuracy of our approach,
specifically MSE = 1

|Ps,d|
∑

pi∈Ps,d
(µ̂i − µi)

2.
We compare our approach with the clustering algorithm K-

means [35]. This algorithm starts from K randomly assigned
centroids, where for us K = |Ps,d|, and it assignes the mea-
surement in Ts,d to the closest centroid. At each subsequent
iteration, centroids are updated based on the previous mea-
surement assignment, and measurements are assigned again
to the closest updated centroid. The process is repeated until
a convergence criteria is met. We refer the reader to [35] for
more details about K-means.

We initially assume that the parameter λ of the geometric
distribution of the driver preference is known. Figure 7(a)
shows the results increasing the number of paths in Ts,d. As
expected, the availability of a larger number of paths makes
the problem harder. Nevertheless, our approach incurs in a
small error, and it outperforms K-Means by providing a more
accurate estimation of the traveling times in all settings.

Next, we relax the assumption on perfect knowledge of the
driver preference distribution. Specifically, we set λ = 0.5
but run the algorithm assuming a distribution with parameter
λ + ∆λ, where ∆λ represents the amount of knowledge
inaccuracy. Figure 7 (b) shows the MSE for 4 paths increasing
the value of ∆λ. K-Means is not affected by ∆λ, since it does
not make use of the underlying driver preference distribution.
Our approach shows very high robustness as it is able to
provide better accuracy than K-means, even under severe
inaccurate knowledge.

VI. CONCLUSIONS

This paper addressed the issue of vehicular traffic moni-
toring in a smart city. We described a method for inferring
the traveling times on each road segment of the city, while
requiring just a minimum number of monitoring devices to
be deployed at selected intersections. The theoretical grounds
for our method are provided by the Network Tomography
approach. We formulated an optimization problem for the
optimal placement of monitoring cameras, and exploited linear
algebra to propose an efficient greedy solution. We addi-
tionally adapted the classical network tomography approach
by allowing for noisy measurements and unpredictability of
vehicles paths. Experimental results on real and synthetic
networks show that our approach provides a cost efficient
deployment of cameras that allows to achieve full coverage
of the road network and a very low inference error.
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