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Abstract: The search for anti-nucleus antibodies (ANA) represents a fundamental step in the
diagnosis of autoimmune diseases. The test considered the gold standard for ANA research is indirect
immunofluorescence (IIF). The best substrate for ANA detection is provided by Human Epithelial type
2 (HEp-2) cells. The first phase of HEp-2 type image analysis involves the classification of fluorescence
intensity in the positive/negative classes. However, the analysis of IIF images is difficult to perform
and particularly dependent on the experience of the immunologist. For this reason, the interest of
the scientific community in finding relevant technological solutions to the problem has been high.
Deep learning, and in particular the Convolutional Neural Networks (CNNs), have demonstrated
their effectiveness in the classification of biomedical images. In this work the efficacy of the CNN
fine-tuning method applied to the problem of classification of fluorescence intensity in HEp-2 images
was investigated. For this purpose, four of the best known pre-trained networks were analyzed
(AlexNet, SqueezeNet, ResNet18, GoogLeNet). The classifying power of CNN was investigated with
different training modalities; three levels of freezing weights and scratch. Performance analysis was
conducted, in terms of area under the ROC (Receiver Operating Characteristic) curve (AUC) and
accuracy, using a public database. The best result achieved an AUC equal to 98.6% and an accuracy of
93.9%, demonstrating an excellent ability to discriminate between the positive/negative fluorescence
classes. For an effective performance comparison, the fine-tuning mode was compared to those in
which CNNs are used as feature extractors, and the best configuration found was compared with
other state-of-the-art works.

Keywords: CNNs; autoimmune diseases; IIF test; HEp-2; deep learning; fine-tuning;
features extractors

1. Introduction

Autoimmune diseases occur whenever the immune system is activated in an abnormal way and
attacks healthy cells, instead of defending them from pathogens; thus, causing functional or anatomical
alterations of the affected district. [1]. There are at least 80 types of known autoimmune diseases
(AD) [1]. AD can affect almost any part of the body i.e., tissue, organ, body system [2]. The anti-nucleus
autoantibodies (ANA) are directed towards distinct components of the nucleus and are traditionally
sought after with the indirect immunofluorescence (IIF) technique. With this method, in addition to
the antibodies directed towards nuclear components, antibodies directed towards antigens are also
highlighted and located in other cellular compartments. When Human Epithelial type 2 (HEp-2) cells
are used as a substrate, the IIF method allows the detection of autoantibodies to at least 30 distinct
nuclear and cytoplasmic antigens [3]. For this reason, the IIF technique with HEp-2 substrate is

Appl. Sci. 2020, 10, 6940; doi:10.3390/app10196940 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-6522-1259
http://dx.doi.org/10.3390/app10196940
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/19/6940?type=check_update&version=2


Appl. Sci. 2020, 10, 6940 2 of 20

considered the gold standard test for the diagnosis of autoimmune diseases. The patterns with which
fluorescence can occur are associated with groups of autoimmune diseases.

In the IIF image analysis flow, the first phase concerns the fluorescence intensity classification.
This phase is obviously of considerable importance in the diagnostic workflow, as it aims to discriminate
on the presence/absence of autoimmune diseases. Figure 1 shows examples of positive/negative class.
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Figure 1. Examples of indirect immunofluorescence (IIF) images with different fluorescence intensity:
in the upper left a positive centrioles image, in the upper right a positive cytoplasmic image, in the
lower left a positive nucleolar image, in the lower right a negative image. The positivity/negativity
of fluorescence is not strictly correlated with the luminous intensity of the Human Epithelial type 2
(HEp-2) images; the image in the upper left for example, although presenting low light intensity, has a
positive fluorescence intensity.

However, the analysis of IIF images, as a whole, and in particular, in regards to the analysis
of intensity, is extremely complex and linked to the experience of the immunologist [4]. For this
reason, in recent years there have been numerous scientific works aimed at obtaining automatic
support systems for HEp-2 image analysis [5,6]. In particular, in the last few years, various research
groups interested in the topic have tried to exploit the potential offered by recent machine learning
techniques in order to address the problem of the classification of HEp-2 images. However, the topic of
fluorescence intensity classification is still poorly addressed [7].

Over the past decade, the popularity of methods that exploit deep learning techniques has
considerably increased, evidently as deep learning has improved the state-of-the-art methods in
research fields, such as speech recognition and computer vision [8]. Although neural networks had
their scientific boom already in the 80s, their recent success can be attributed to an increased availability
of data, improvements in hardware/software [9], and new algorithms capable of both speeding up
learning in the training phase and improving the generalization of new data [10].

In the field of computer vision, deep learning has expressed its potential in image processing
thanks to Convolutional Neural Networks (CNNs). In recent years there have been several fields of
use of CNNs that, nowadays, allow the development of important applications. Some examples are:
the antispoofing of the face and iris [11], recognition of highway traffic congestion [12], the image
steganography and steganalysis [13], the galaxy morphology classification [14], drone detection,
and classification [15,16].
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Conceptually, the CNNs are inspired by the visual system as proposed in the works of Hubel
and Wiesel on cat and monkey visual cortices [17]. A CNN accepts an image directly as input and
applies a hierarchy of different convolution kernels to it. The first layers allow extraction of elementary
visual features, such as oriented edges, end-points, and corners, and are gradually combined with
subsequent layers in order to detect higher-order features [18].

In the field of image classification in general, CNNs can be used, proposing ad-hoc architecture
and proceeding with its training, or using pre-trained architecture. In the latter case, the training on
specific data to the problem can be carried out from scratch, or through fine-tuning of a part of the
parameters/weights of the pre-trained network.

Fine-tuning is known as transfer learning, as the knowledge of another problem is exploited to
solve the object of the study. Furthermore, a pre-trained CNN architecture can be modified in its
architecture before carrying out training or fine-tuning.

In our previous work [19], we started to tackle the problem of fluorescence intensity classification
by means of CNNs, but we did it by limiting their use to feature extractors. In this study, we analyzed
various known CNNs and their respective layers from which to extract the features that allowed
classification by means of Support Vector Machine (SVM) classifiers. The advantage of this type of work
is the simplicity of implementation (no retraining of the pre-trained networks must be carried out),
the disadvantage is usually relatively lower performances than those obtained from the pre-trained
networks with the fine-tuning method. This is confirmed in the recent review by Rahman et al. [7],
in fact the authors, regarding our previous work, comment as follows: “It is believed that the adoption
of features from a fine-tuned CNN model would further improve the performance of Cascio et al.
(2019c)’s method “.

The importance of the topic, the fact that it has been little addressed by the scientific community,
and the possibility of analyzing the effectiveness of pre-trained networks, training them with the
performing mode of fine-tuning, were the motivations that led us to face the problem of fluorescence
intensity classification in HEp-2 images.

2. Literature Review

Numerous contributions have been made in recent years by the scientific community in the
classification of HEp-2 images, especially due to contests organized on the subject, such as ICPR
2012 [20], ICIP 2013 [21], and ICPR 2014 [22]. However, these competitions have only dealt with the
theme of pattern classification, considering 6/7 classes of significant interest.

In Li and Shen’s work [23], a deep cross residual network (DCR-Net) was proposed. The structure
is similar to DenseNet, but the authors, in order to minimize the vanishing gradient problem, added
cross-residual shortcuts between some layers to the original network. The advantage of the change is to
increase the depth of the network by improving feature representation. They made a date augmentation
for rotations. The database used is I3A Task 1 and MIVIA. The method showed a Mean Class Accuracy
(MCA) of 85,1% on a private test of I3A database.

Manivannan et al. [24] proposed a method that allowed them to win the ICPR 2014 contest with an
MCA of 87.1%. They extracted a local feature vector that is aggregated via sparse coding. The method
uses a pyramidal decomposition of the cell analyzed in the central part and in the crown that contains
the cell membrane. Linear SVMs are the classifiers used on the learned dictionary. Specifically, they use
four SVMs, the first one trained on the orientation of the original images, and the remaining three,
respectively, on the images rotated by 90/180/270 degrees.

In a few cases, the authors have ventured into unsupervised classifications methods for the
analysis of HEp-2 images [25,26]. In these cases, the number of analyzed patterns was reduced.
In [25], the authors compared the method called BoW (Bag of Words), based on hand-crafted features
and the deep learning model as learning hierarchical features, by clustering unsupervised learning.
The authors obtained the best results with the BoW model. They demonstrated that, while the deep
learning model allows better extraction of global features, the BoW model is better at extracting local
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features. In [26], the authors proposed the grouping of centromeres present on the cells through a
clustering K-means algorithm; the method allows the identification and classification of the centromere
pattern. The method is tested on two public databases, MIVIA and Auto-Immunité, Diagnostic Assisté
par ordinateur (AIDA), on which accuracy performances of 92% and 98%, respectively, are obtained.
Despite the high indexing performance of the centromeric pattern, being able to classify only one type
of pattern is certainly a limitation for the method.

Only recently has deep learning been applied to the various fields of HEp-2 image analysis [7].
In this context, one of the first works on the classification of HEp-2 images in which CNN was used
is due to Gao et al. [27]. In this work, a CNN having eight layers, compared to the Bag of Features
and Fisher Vector methods, was compared. The proposed CNN architecture has six convolution-type
layers with pooling operations, and two fully-connected layers. The database used for the test is I3A
Task 1 and MIVIA. The authors obtained 96.76% of mean class accuracy (MCA) and 97.24% of accuracy.

In [28], the authors used well-known CNNs in the pre-trained mode as vector feature extractors
and trained multiple SVM classifiers in the one-against-all (OAA) mode. This strategy is one of the best
known for breaking down a multi-class problem into a series of binary classifiers. Instead of using the
classic OAA scheme, in which the test is assigned to the majority classifier result, the authors proposed
the use of a K-nearest neighbors (KNN) based classifier as a collector of the various ensemble results.
The performances on the public database I3A are in terms of MCA 82.16% and 93.75% at the cell level,
and at the image level, respectively.

Some research groups have dealt with other aspects in the field of HEp-2 images, such as
segmentation [29] and the search for mitosis [30].

The problem of classifying the intensity of fluorescence has certainly been little addressed [7].
The reason is probably due to the lack of public databases containing both positive and negative images;
to date, it seems that the only public database of HEp-2 images with these characteristics is AIDA [4].

In Merone et al. [31], the problem of fluorescence intensity analysis was addressed but the authors
did not make a classification between positive and negative, rather between positive, negative and
weak positive. The authors extracted features through an Invariant Scattering Convolutional Network
and used SVM classifiers with a Gaussian kernel. The network was based on multiple wavelet module
operators and was used as a texture description. To classify the tree-class the authors applied the
one-on-one approach and trained the tree binary classifier (negative vs. positive/negative vs. weak
positive/negative vs. weak positive). Their method was trained on a private database of 570 wells
for a total of 1771 images in which the fluorescence intensity was blindly classified by two doctors.
The accuracy reported in the private database was 89.5%.

A classification of fluorescence intensity into positive vs. weak positive was also carried out by
Di Cataldo et al. [32]. The authors used local contrast features at multiple scales and a KNN classifier
to characterize the image, thereby achieving an accuracy of 85% in fluorescent intensity discrimination.

In Bennamar Elgaaied et al. [4] the authors have implemented a method based on SVM to classify
the HEp-2 images in positive or negative intensity. They achieved an accuracy of 85.5% using traditional
features based on intensity, geometry, and shape. The same set of tests was analyzed by two young
immunologists verifying a greater ability of the automatic system (85.5% vs. 66%).

Other authors addressed the classification in positive/negative intensity on private databases.
Iannello et al. [33] used a private database with 914 images to train a classifier able to discriminate
between positive and negative intensity. Some areas of interest, called patches, have been extracted
from the training set with the aid of the scale-invariant feature transform (SIFT) algorithm; therefore,
19 features are extracted from these. The features were extracted from first and second order gray
level histograms. Two method of feature reduction was applied, the principal component analysis
(PCA) and the linear discriminant analysis (LDA). Finally, the classification was based on the Gaussian
mixture model and reaches an accuracy of 89.49%.

In the work of Zhou et al. [34] the authors presented a fluorescence intensity classification method
in which private databases are analyzed. The method makes use of the fusion of global and local type
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features. For simple cases, they use the SVM classifier with global features, while for doubtful cases,
they proposed a further classification based on local features combined with another SVM. The results
show an accuracy of 98.68%. However, as the analysis was conducted on a private database, the work
does not allow easy performance comparison.

Despite its recognized potential, deep learning, and, in particular, the fine-tuning training method,
has hardly been used for fluorescence intensity analysis. Only in one of our recent works presented at
congress [35], was the fine-tuning method used with the pre-trained GoogLeNet network. In this study,
albeit with a very limited analysis, promising results were obtained. In fact, the accuracy was 93%
with an area under the Receiver Operating Characteristic (ROC) curve (AUC) of 98.4%. A synthetic
representation of the literature presented here, with its pros and cons, is shown in the Table 1.

In the present work we analyzed the effectiveness of the fine-tuning training method applied to the
problem of fluorescence intensity classification in HEp-2 images. For this purpose four of the best known
pre-trained networks (AlexNet, SqueezeNet, ResNet18, GoogLeNet) have been analyzed. Different
training modalities have been investigated; three levels of freezing weights and scratch. The effect
that data augmentation by rotations can lead to classification performance was tested and the k-fold
cross validation procedure was applied to maximize the use of the database examples. For an effective
performance comparison, the fine-tuning mode was compared with those in which CNNs are used by
feature extractors. The best configuration found was compared with other state-of-the-art works.
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Table 1. Literature related to automatic analysis of HEp-2 images.

Reference Method and Database Pros Cons Purpose of the Research

Percannella [29]

-Preprocessing with histogram equalization and
morphological operations. Double segmentation

phase based on the use of a classifier.
Accurate segmentation masks. A public database was

used.
The analysis was conducted on only six cell patterns.

Mitoses were not considered.
HEp-2 cells segmentation.

-MIVIA dataset.

Gupta [28]
-Data augmentation. Linear Support Vector Machine
(SVM) trained with features extracted from AlexNet.

It is one of the few works for the classification of
mitosis. A public database was used.

A classification phase of fluoroscopic patterns, to verify
whether the identification of mitosis allows a substantial

improvement in performance, is missing.

HEp-2 cells classification into
mitotic and non-mitotic classes.

-I3A dataset.

Shen [23]

-Preprocessing with stretching and data augmentation.
Classification based on Deep Co-Interactive Relation

Network (DCR-Net).
The implemented method proved to be robust and

performing by winning the ICPR 2016 contest on the
I3A task1 dataset.

The classification is cell level based, but the cells was
manually segmented.

Classification of (six) staining
patterns.

-I3A task1 and MIVIA dataset.

Manivannan [24]

-Preprocessing with intensity normalization.
Pyramidal decomposition of the cells in the central

part and in the crown. Four types of local descriptors
as features and sparse coding as aggregation.
Classification based on linear SVM classifiers.

The pyramidal decomposition proved to be very
efficient, in fact the method won the ICPR 2014 contest

on the I3A task1 and task2 dataset.

The final classification is obtained considering the
maximum value of the classifiers used. The use of an

additional classifier could give greater robustness and better
performance.

Classification of (six/seven) staining
patterns with/without segmentation

masks.

-I3A task1 and I3A task2 dataset.

Gao [25]

-Preprocessing with intensity normalization. Bag of
Words based on scale-invariant feature transform

(SIFT) features, comparing with deep learning model
(Single-layer networks for patches classification and

multi-layer network for full images classification).
Classification by k-means clustering.

A comparison between the traditional method based
on Bag of Words and the method based on deep

learning was made.

The classification is cell level based, but the cells was
manually segmented.

Classification of (six) staining
patterns.

-I3A task1 and MIVIA dataset.

Vivona [26]

-Preprocessing with contrast limited adaptive
histogram equalization (CLAHE) and morphological
operations like dilatation and holes filling. Automatic

segmentation of the Centromere pattern.
Classification by k-means clustering.

Good performance of centromere identification
without manual segmentation and supervised dataset.

A public database was used.

Only one fluorescence pattern was analyzed. Classification of centromere pattern.

-AIDA and MIVIA dataset.

Gao [27]

-Preprocessing with intensity normalization and data
augmentation. CNN (Convolutional Neural Network)

with eight layers (six convolutional layers and two
fully connected layers).

A comparison between the traditional methods such
Bag of words and Fisher Vector (FV) was made.

The classification is cell level based, but the cells was
manually segmented.

Classification of (six) staining
patterns.

-I3A task1 and MIVIA dataset.

Cascio [28]

-Preprocessing with stretching and data augmentation.
Six linear SVM trained with features extracted from

CNN. Final classification with KNN (K-nearest
neighbors) to improve classic one-against-all strategy.

An intensive analysis of procedures and parameters
was conducted, which allowed performances among

the highest on the I3A task1 public database.

The classification is cell level based, but the cells was
manually segmented.

Classification of (six) staining
patterns.

-I3A task1 dataset.
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Table 1. Cont.

Reference Method and Database Pros Cons Purpose of the Research

Di Cataldo [32]

-Preprocessing based on histogram equalization and
morphological opening. Segmentation with the

Watershed technique. KNN classifier with
morphological features and global/local texture

descriptors to classify the patterns and KNN with
local contrast features at multiple scale to classify

intensity fluorescence.

One of the most comprehensive works for HEp-2
image classification.

Probably due to the database at their disposal, they do not
analyze the positive/negative fluorescence intensity.

Classification between positive and
weak positive fluorescence classes.

Classification of (six) staining
patterns.

-I3A and MIVIA dataset.

Merone [31]

-Three SVM with Gaussian kernel trained on features
extracted from Invariant Scattering Convolutional

Network based on wavelet modules. Final
classification based on one-against-one strategy.

The network was based on multiple wavelet module
operators and was used as a texture description, in

this way it was particularly effective.

The use of a private dataset of HEp-2 images for
training/test the method.

Classification between positive,
negative and weak positive

fluorescence classes.
-Private dataset.

Bennamar [4]

-Separate preprocessing for each class to recognize.
Traditional features extraction and separate features

reduction for each class. Classification based on seven
SVM with Gaussian kernel. Final classification with

KNN.

The only work published in which a complete
Computer aided diagnosis (CAD) system is presented

to classify HEp-2 images in terms of fluorescence
intensity and florescence pattern. The CAD
performance is comparable with the Junior

immunologist.

Perfectible classification performance.
Fluorescence intensity classification
and classification of (seven) staining

patterns.

-AIDA database.

Iannello [33]

-SIFT algorithm to detect patches and features
extracted from first and second order gray level

histograms. Features selection with Principal
Component Analysis (PCA) and Linear Discriminant

Analysis (LDA). Final classification with Gaussian
mixture model.

The features reduction process was particularly careful A private database was used. Fluorescence intensity classification

-Private dataset.

Zhou [34]

-An adaptive local thresholding was applied to cell
image segmentation.

Two step classification: (1) with global features based
on mean and variance of each channel RGB; (2) with

local features based on SIFT and bag of words for
doubt cases.

The classification process is very effective because it is
trained on the segmented cells (without the

background).

A private database was used. Fluorescence intensity classification

-Private dataset.

Cascio [19]
-Data augmentation. Pre-trained CNNs dataset used

as features extractors coupled with linear SVM.
An intense analysis of the parameters involved was

conducted in order to maximize performance.
Convolutional neural networks were used only as feature

extractors.
Fluorescence intensity classification.

-AIDA dataset.

Taormina [35]

-Data augmentation. The GoogLeNet network was
used, both as a feature extractor and training it with

fine-tuning mode.
The use of fine tuning has proved very promising. Limited configurations explored. Fluorescence intensity classification.

-AIDA dataset.
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3. Materials and Methods

3.1. Database and Cross-Validation Strategy

The analysis conducted in this work made use of the data contained in the public AIDA database [4].
Starting in November 2012, the Auto-Immunité, Diagnostic Assisté par ordinateur (AIDA) project

is an international strategic project funded by the European Union (EU) in the context of ENPI
Italy–Tunisia cross-border cooperation, in which one of the objectives was to collect a large database
available to the scientific community.

Using a standard approach, seven immunology services have collected images of the IIF test
on HEp-2 cells accompanied by the report of the senior immunologists. The public AIDA database
consists of images only where three physician experts (independently) have expressed a unanimous
opinion when reporting.

The AIDA database consists of 2080 images relating to 998 patients (261 males and 737 females);
of these images, 582 are negative, while 1498 show a positive fluorescence intensity. The AIDA database
is the public HEp-2 image database containing both images with positive fluorescence intensity and
negative images; the other public databases are essentially composed of positive and weak positive
fluorescence images, but not negative cases.

Besides being “numerous”, the database is extremely varied, containing fluorescence positive sera
with a variety of more-than-twenty staining patterns. In each image, a single or multiple pattern can
be present. The pattern terminology is in accordance with the International Consensus on ANA Patterns
(ICAP). Available online: http://www.anapatterns.org (accessed on 8 September 2020) [36]. Moreover,
manufacturers of kits and instruments employed for the ANA testing were different site-to-site,
as well as, different automated systems solutions for the processing of Indirect Immunofluorescence
tests have been used: IF Sprinter Euroimmun, NOVA from INOVA diagnostic, and Helios from Aesku.
HEp-2 images have been acquired, after incubation of the 1/80 serum dilution, by means of a unit
consisting of a fluorescence microscope (40-fold magnification) coupled with a 50 W mercury vapor
lamp and a digital camera. The camera has a CCD sensor equipped with pixel size that equals 3.2 µm.
The images have 24 bits color-depth and were stored in different common image file formats, as “jpg”,
“png”, “bmp”, and “tif”. The public database can be downloaded, after registration, from the download
section of the site AIDA Project. Available online: http://www.aidaproject.net/downloads (accessed on
8 September 2020).

In order to make maximum use of the available data, the k-fold validation technique at the level
of the specimen was used for the training–validation–test chain in this work [24]. In fact, in order not
to affect the performance, the images belonging to the same well were used entirely, for training, or for
testing. According to this method, the database was divided into five folds (k = 5), with this strategy,
five trainings and related tests were carried out. Regarding the composition of the sets, approximately
each training was obtained using 20% of the dataset for the test, while the remaining 80% was divided
into training and validation to the extent of approximately 64% and 16% of the dataset.

3.2. Statistics

When it is necessary to discriminate between two classes (which in the case of medical imaging
problems often represent healthy/pathological classes), the evaluation of the performance of a diagnostic
system is usually expressed through a pair of indices: sensitivity and specificity. In our case,
the sensitivity represents the fraction of correctly recognized positive images, true positives (TP), on the
total number of positive images, obtained by adding the true positives and the false negatives (FN), i.e.:

Sensitivity =
TP

TP + FN
(1)

http://www.anapatterns.org
http://www.aidaproject.net/downloads
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The specificity of a test is the fraction of recognized negative images, true negatives (TN), on the
total of negative images, obtained by adding the true negatives and the false positives (FP), i.e.:

Speci f icity =
TN

TN + FP
(2)

Using the aforementioned indices, various figures of merit recognized in medical imaging are
obtained. One is certainly accuracy, which is defined as follows:

Accuracy =
TP + TN

TP + FN + TN + FP
(3)

An automatic classification system generally returns an output value in the definition range; in this
case between zero (image negativity) and one (image positivity). The output value must be compared
with a predefined threshold value in order to associate the generic image with the positive/negativity
classes. This leads to a variability of performance, in terms of the figures of merit introduced above,
based on the threshold value chosen. For this reason, very often in medical statistics the Receiver
Operating Characteristic (ROC) curve is used, which allows a performance analysis not dependent
on the choice of the threshold value. In fact, when the threshold value changes, different pairs of
sensitivity and specificity that will define the specific ROC. Therefore, a further figure of merit for
classification systems is the area under the ROC curve, generally indicated with AUC.

3.3. Convolutional Neural Networks

The use of Deep Neural Networks for solving classification problems has grown significantly in
recent years. In particular, Convolutional Neural Networks (CNN) are widely used [37]; the name
derives from the convolution operations present in them. The success of deep learning and CNNs is
certainly due, in addition to the high classification performance demonstrated by these classification
methods, also to the ease of carrying out a classification process using these tools. In fact, the traditional
chain composed of preprocessing, features extraction, training model, is entirely replaced by CNNs,
which in their training process include feature extraction. CNNs are networks specialized in data
processing which have the form of multiple vectors with a known grid-form topology. An example
of this type of data can be a time series, which can be seen as a grid at a size sampled from regular
intervals, or an image, which can be seen as a two-dimensional grid of pixels containing the intensity
value for the three color channels (RGB).

The architecture of a CNN is structured as a series of representations made up of two types of
layers: the convolution layers and the pooling layers (see Figure 2). The units in the convolution layers
are organized into feature maps, in which each unit is connected to a local portion of the map of the
next layer through a set of weights called a filter bank. The result of this local weighted average is then
passed through a nonlinear function such as Rectified Linear activation Function (ReLU). All units in a
feature map share the same filter bank.
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The capacity of a CNN can vary based on the number of layers it has. In addition to having
different types of layers, a CNN can have multiple layers of the same type. In fact, there is rarely a
single convolutional level, unless the network in question is extremely simple. Usually a CNN has a
series of convolutional levels, the first of these, starting from the input level and going towards the
output level, is used to obtain low-level characteristics, such as horizontal or vertical lines, angles,
various contours, etc. The levels closest to the output level produce high-level characteristics, i.e.,
they represent rather complex figures such as faces, specific objects, a scene, etc. Since the design and
training of a CNN is a complex problem, where exhaustive research cannot be used, and training
requires large and accurate databases for training, and a computing power that is not always accessible
to researchers, a well-established way in the literature is to use pre-trained CNN networks. Thanks to
ImageNet competition, extremely powerful CNN networks have emerged [38]. These CNNs have
been trained on over a million images to model generic feature rich representations.

In this work, CNNs were used to classify the fluorescence intensity in HEp-2 images. In detail,
the performances of four of the most well-known pre-trained CNNs were analyzed applying them
according to the fine-tuning learning approach. The strategy according to which pre-trained networks
are used as feature extractors was also evaluated. In this case, the classification phase is usually carried
out in combination with a classifier. For this purpose, we have used linear SVM classifiers in this work.
The choice of best configuration was performed automatically, using the AUC as a figure of merit in a
validation process based on the k-fold method.

3.4. Pre-Trained CNNs

Considering the state-of-the-art methods for CNNs, we have chosen the following four architectures:

• AlexNet [10]: the AlexNet network is one of the first convolutional neural networks that has
achieved great classification successes. The winner of the 2012 Image-Net Large-Scale Visual
Recognition Challenge (ILSVRC) competition, this network was the first to obtain more than good
results on a very complex dataset such as ImageNet. This network consists of 25 layers, the part
relating to convolutional layers sees 5 levels of convolution with the use of ReLU and (only for the
first two levels of convolution and for the fifth) the max pooling technique. The second part of the
CNN is composed of fully connected layers with the use of ReLU and Dropout techniques and
finally by softmax for a 1000-d output.

• SqueezeNet [39]: in 2016 the architecture of this CNN was designed to have performances
comparable to AlexNet, but with fewer parameters, so as to have an advantage in distributed
training, in exporting new models from the cloud, and in deployment on a FPGA with limited
memory. Specifically, this network consists of 68 layers with the aim of producing large activation
maps. The filters used instead of being 3 × 3 are 1 × 1 precisely to reduce the computation by 1/9.
CNN is made up of blocks called “fire modules”, which contain a squeeze convolution layer with
1x1 filters and a expand layer with a mix of 1 × 1 and 3 × 3 convolution filters. This CNN has an
initial and a final convolution layer, while the central part of the CNN is composed of 8 fire module
blocks. No fully connected layers are used but an average pooling before the final softmax.

• ResNet18 [40]: this CNN, introduced in 2015, and inspired by the connection between neurons
in the cerebral cortex, uses a residual connection or skip connections, which jump over some
layers. With this method, it is possible to counteract the problem of degradation of performance
as the depth of the net increases, in particular the “vanishing gradient”. This CNN is made up
of 72 layers, the various convolutions are followed by batch normalization and ReLU, while the
residual connection exploits an additional layer of two inputs. The last layers consist of an average
pooling, a fully connected layer and softmax.

• GoogLeNet [41]: this architecture is based on the use of “inception modules”, each of which
includes different convolutional sub-networks subsequently chained at the end of the module.
This network is made up of 144 layers, the inception blocks are made up of four branches, the first
three with 1 × 1, 3 × 3, and 5 × 5 convolutions, and the fourth with 3 × 3 max pooling. After that,
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all feature maps at different paths are concatenated together as the input of the next module.
The last layers are composed of an average pooling and a fully connected layers and the softmax
for the final output.

3.5. Fine-Tuning Description

Fine-tuning is a transfer learning technique that focuses on storing knowledge gained while
solving one problem and applying it to a different but related problem [42]. Since CNNs are composed
of numerous layers and a huge number of parameters, e.g., AlexNet has 650 K neurons and 60 M
parameters (as an example, a graphical representation of the AlexNet architecture is shown in Figure 3),
the network training phase should benefit from the use of databases rich in examples that avoid
the problem of overfitting. Unfortunately, it is not always possible to take advantage of such large
databases. Furthermore, training a CNN effectively better on a large database is demanding both in
terms of computation time and the computational resources required.
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Fine-tuning arises from the need to make up for these deficiencies. This method consists in the
possibility of using a Neural Network, pre-trained on a large database, through a further training
phase with another database, even a small one. The output level is replaced with a new softmax output
level, adjusting the number of classes to the classification problem being faced. The initial values of the
weights used are those of the pre-trained network, except for the connections between the penultimate
and last level whose weights are randomly initialized. New training iterations (SGD) are performed to
optimize the weights with respect to the peculiarities of the new dataset (it does not need to be large).
Fine-tuning can be done in two ways. One way is to freeze the weights of some layers and carry out
new training cycles to modify the weights of the remaining layers. The concept of fixing the weights of
the layers is defined as freezing of the layers. Generally, they are the first layers to be frozen as the
first layers capture low level features. The greater the number of frozen layers, the less the fine-tuning
effort in terms of time and resources is required.

In this case, the weights of the first CNN levels are frozen and the remaining parameters/weights are
trained. The other way is to have the architecture re-train entirely on the new database. This method
is called training from scratch. It is intuitive that the greater the number of frozen layers the
lower the computational cost of training, so training from scratch is the most expensive form of
computational training.

3.6. Hyperparameter Optimization

The design of a generic CNN provides, in addition to establishing the architecture and the
topology, the optimization of parameters and connection weights through optimization procedures in
the training phase. It refers to the numerous values to be optimized as hyperparameters optimization.
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The pre-trained CNNs have a consolidated and optimized architecture for the database for which they
were originally trained.

The process of optimizing the parameters during the training phase is certainly not trivial.
Among the most recognized methods, there is the Stochastic Gradient Descent with Momentum
(SGDM) that minimizes the loss function at each iteration considering the gradient of the loss function
on the entire training dataset. The momentum term reduces the oscillations of the SGDM algorithm
along the path of steepest descent towards the optimum. The momentum is responsible for reducing
some noise and oscillations in the high curvature regions of the loss function generated by the SGD.
A variant of the SGD uses training subsets called mini-batches, in this case a different mini-batch is
used at each iteration. Simply put, the mini-batch specifies how many images to use in each iteration.
The full pass of the training algorithm over the entire training set using mini-batches is one epoch.
SGDM with mini-batch was used in this work.

Another fundamental parameter of the training process is the learning rate that allows to
set the learning speed of the training process with the level of improvement of the network’s
weights. Conceptually, a high learning rate increases the speed of training execution by sacrificing
the performance of the trained network, while a low learning rate will increase the training times by
optimizing the network’s weights that will be more performing. This parameter defines the level
of adjustments of weight connections and network topology applied at each training cycle. A small
learning rate permits a surgical fine-tune of the model to the training data, at the cost of a greater
number of training cycles and longer processing times. A high learning rate permits the model to
learn more quickly, but may sacrifice its accuracy caused by the lack of precision over the adjustments.
This parameter is generally set to 0.01, but in some cases, it is interesting to be fine-tuned, especially
when it is necessary to improve the runtime when using SGD. Table 2 shows the search space analyzed
for the optimization of the parameters.

Table 2. Hyperparameters grid search.

Parameter Configurations

Training mode Stochastic Gradient Descent with Momentum with
mini-batch

Mini-batch size {4, 8, 16, 32, 64, 128, 256}

Learning Rate {0.01, 0.001, 0.0001}

Momentum coefficient 0.9

Epoch max 10 epoch if freeze some layers max 30 epoch if
training CNN from scratch

The extraction of features from a pre-trained CNN is simple to implement and computationally
fast as it exploits the implicit power of representing CNN characteristics. In this work, the feature
vector extracted from the generic CNN is used to train a SVM classifier. As the size of the feature vector
is large, we have chosen to train a linear SVM that has one hyperparameter: the penalty parameter “C”
of the error term. The search for linear kernel parameter “C” is carried out using MATLAB “logspace”
function in the range [10−6, 102.5]; twenty equidistant values on a logarithmic scale were analyzed.

3.7. Training Strategy and Classification

In this work the binary classification of HEp-2 images in positive and negative fluorescence intensity
was analyzed. In this regard, the transfer learning technique was used on CNN pre-trained networks.

In detail, the fine-tuning approach was analyzed for each CNN network, according to which,
starting from the generic pre-trained CNN, the parameters are optimized by carrying out a training
using the new database. In general, to implement fine-tuning, the last layer must be replaced to
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correctly define the number of classes to be discriminated. The problem analyzed in this work, since we
want to discriminate between two classes, turns out to be binary.

In the present work, the four CNN networks described in Section 3.4 have been analyzed, training
them both in scratch mode and with fine-tuning considering three different depths of freeze. Table 3
shows the three freeze levels chosen for each CNN.

Table 3. Number of frozen layers at different levels and for the CNN analyzed.

CNN Name Total Layers Low Frozen Medium Frozen High Frozen

AlexNet 25 9 16 19

SqueezeNet 68 11 34 62

ResNet18 72 12 52 67

GoogLeNet 144 11 110 139

As an example, Figure 4 shows the 25 layers that make up the AlexNet CNN with the graphic
overlay of the three frozen levels chosen to perform the fine-tuning. The first level called low frozen
indicates that the weights of the first nine layers of CNN AlexNet are fixed with the values of the
network pre-trained on the original ImageNet database. The fine-tuning in this case consists in
applying training cycles to CNN by changing the weights of the remaining layers at each iteration, i.e.,
from layer 10 to the last. In a very similar way to the first level, the medium frozen and high frozen
levels were taken into consideration, which, respectively, fix the weights of the pre-trained AlexNet
network up to layer 16 and layer 19; the fine-tuning in these two cases is carried out by modifying the
weights of the last 9 layers and 6 layers. As described in sub-Section 3.6, the three selected fine-tuning
levels are analyzed by iterating on the learning rate values {0.01, 0.001, 0.0001} and on the various batch
sizes considering a maximum of 10 epochs. The results obtained and the related best configurations
are reported in the next section.
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Table 4 shows, by way of example, part of the code to carry out the fine-tuning of CNN AlexNet.
The code is written using MATLAB R2020a [43] and conceptually consists of seven steps.

Table 4. Steps for the fine-tuning of the pre-trained AlexNet network.

Step 1: load AlexNet pre-trained CNN and take input
image size.

After download and install Deep Learning Toolbox Model
for AlexNet Network support package, set “myNet” as

AlexNet CNN pre-trained on the ImageNet data set.
set “inputSize” because AlexNet requires input images of

size 227×227×3.

%%% load pre-trained network
myNet = alexnet;

%%% take input image size
inputSize = myNet.Layers(1). InputSize;

Step 2: load images.
Load the training/validation/test images with the

imageDatastore function that automatically labels the
images based on folder names and stores the data as an
ImageDatastore object. The imageDatastore function is

optimized for large image data and efficiently read batches
of images during training.

%%% load training / validation / test
imdsTrain = imageDatastore(dir_training),

‘IncludeSubfolders’,true, ‘LabelSource’, ‘foldernames’);
imdsValid = imageDatastore(dir_validation),

‘IncludeSubfolders’,true, ‘LabelSource’, ‘foldernames’);
imdsTest = imageDatastore(dir_test),

‘IncludeSubfolders’,true, ‘LabelSource’, ‘foldernames’);
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Table 4. Cont.

Step 3: resize images and apply augmentation with rotation.
With the augmentedImageDatastore function, the

training/validation/test images are resized and augmented
with rotation of 20◦.

%%% resize images and augmentation with rotation
imageAugmenter =

imageDataAugmenter(‘RandRotation’,(−20,20));
augimdsTrain = augmentedImageDatastore(inputSize(1:2),

imdsTrain, ‘DataAugmentation’, imageAugmenter);
augimdsValid = augmentedImageDatastore(inputSize(1:2),

imdsValid, ‘DataAugmentation’, imageAugmenter);
augimdsTest = augmentedImageDatastore(inputSize(1:2),

imdsTest, ‘DataAugmentation’, imageAugmenter);

Step 4: replace final layers.
Replace final layers considering that the new classes are

only positive and negative while the pre-trained AlexNet
are configured for 1000 classes.

%%% replace final layers
layersTransfer = myNet.Layers(1:end-3);

layers = (layersTransfer fullyConnectedLayer (2) % two
class: positive and negative softmaxLayer

classificationLayer);

Step 5: freeze initial layers.
With the freezeWeights function, the first network layers

chosen are frozen so the new training does not change
these weights.

%%% freeze initial layers
freeze = 16; % the first 16 layers layers(1:freeze) =

freezeWeights(layers(1:freeze));

Step 6: training network.
”Option” set the various training parameters such as the

optimization algorithm, the learning rate, etc. The function
trainNetwork executes the training on the network

“myNet” considering the options, the freeze weights and
the validation images set.

%%% training options
options = trainingOptions(‘sgdm’, . . . % sgd with

momentum
‘MiniBatchSize’, 32, ‘MaxEpochs’, 10, . . . ‘LearnRate’, 0.001,
. . . ‘Momentum’, 0,9, . . . ‘ValidationData’, augimdsValid’);
%%% train network using the training and validation data

myNet = trainNetwork(augimdsTrain, layers, options);

Step 7: test network.
With the classify function, the network trained on the

validation set is tested on the test set, and the performance
measures are extracted, such as ACC and AUC. Perfcurve
function find the AUC and then the ROC curve is drawn

with plot function.

%%% test network fine tuned
[pred, probs] = classify(myNet, augimdsTest);

%%% extract performance
(X,Y,T,AUC) = perfcurve(imdsTest.Labels, probs, ‘POS’);

fprintf(‘ACC: %d\n’, accuracy); %print ACC
fprintf(‘AUC: %d\n’, AUC); %print AUC

figure, plot(X,Y,‘r’); %ROC curve
accuracy = mean(pred == imdsTest.Labels);

4. Results

This section reports the procedures carried out and the results obtained regarding the classification
of the fluorescence intensity in the positive/negative classes of the HEp-2 images with the fine-tuning
method. For a better evaluation of the results, a comparison was made with the results obtained by the
same CNNs used by feature extractors and finally a comparison with other state-of-the-art methods.

For the four pre-trained CNN networks described in Section 3.4, the transfer learning technique
applied to HEp-2 images was analyzed. The division of the available patterns was carried out with a
5-fold cross validation and for each of the 5 iterations, training, validation, and testing were performed.
The training phase was optimized considering the AUC as a measure of merit. IIF images have been
resized to 227 × 227 (for AlexNet and SqueezeNet networks) and 224 × 224 (for GoogLeNet and
ResNet18 networks) to be provided as input to CNN; no preprocessing has been applied to the image.
CNN networks want a 3-channel image input, for this reason, we have evaluated the results using
both RGB IIF images and only the green channel and replicating it on R and B channels. The results
favored the second choice, to which all of the analyses reported in this work were conducted.

Moreover, we evaluated the application of the data augmentation using the rotation with angles of
20◦. Data augmentation is a very effective practice especially when the data set for training is limited,
or as in our case, when some classes are not particularly represented in the set of examples. In this way
an 18 times larger sample data set was obtained.

The effect of this data augmentation was valued quantitatively in terms of performance. Table 5
shows the best results obtained, in terms of AUC, from the four CNNs analyzed:
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Table 5. Best AUC results.

CNN Name High
Frozen

Medium
Frozen

Low
Frozen Scratch Low Frozen + Data

Augmentation
Scratch + Data
Augmentation

AlexNet 97.20% 97.93% 97.82% 98.00% 98.08% 98.02%

SqueezeNet 97.96% 98.39% 98.55% 98.38% 98.63% 98.46%

ResNet18 97.27% 97.88% 98.11% 98.24% 98.33% 98.32%

GoogLeNet 96.30% 96.78% 98.00% 97.96% 98.37% 98.20%

The results are shown, considering the three levels of freeze of the pre-trained networks’ weights
and considering the retraining from scratch. The last two columns of Table 5 show the results obtained
by performing a data augmentation, respectively, with the low frozen and with the scratch. As expected,
the training with less freezing allows a better adaptation of the CNN to the classification problem.
As for the data augmentation procedure, the results show that the application of this procedure leads,
in all cases, to a slight improvement in performance. For each of the four CNN networks, Table 6
shows the parametric configuration that obtained the best result.

Table 6. Best Hyperparameter.

CNN AUC Learning Rate Mini-batch Epoch

AlexNet 98.08% 0.001 16 4

SqueezeNet 98.63% 0.001 16 6

ResNet18 98.33% 0.001 16 8

GoogLeNet 98.37% 0.01 32 7

Figure 5 shows the ROC curve relating to the best configuration obtained, that is SqueezeNet with
low frozen level and with data augmentation.
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In order to assess the significance of the results obtained with the CNNs trained with the fine-tuning
technique, the performances obtained by the same CNN used as feature extractors were evaluated.
In this case, the classification was achieved by means of linear SVM classifiers.

The idea on which the SVM is based is to find the best hyperplane that allows the “larger margin”
between two classes represented by the projection in the n-dimensional space of the feature vector [44].
In the case of non-separable data, a hyperplane is sought that separates many, but not necessarily all
the data, through the formulation of a “soft margin” using the penalty parameter C (or error term).
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The linear SVM training phase was carried out by extracting the features, for the various layers,
from all the training images. The SVM parameter C has been optimized on the validation set.
The validated model was subsequently used for the test. Table 7 shows the best results obtained,
in terms of AUC, for each pre-trained network analyzed and reports the layers that provided the
best results.

Table 7. Best AUC results obtained by CNN used as feature extractors.

CNN AUC Best Layers

AlexNet 95.52% ‘Conv 5′

SqueezeNet 95.50% ‘Pool 10′

ResNet18 97.80% ‘Fc 1000′

GoogLeNet 95.76% ‘Inception 3a output’

The best result obtained with the CNNs used as a features extractor coupled to the SVM classifier
reached an AUC equal to 97.8%. This result was obtained with the ResNet18 CNN. The SVM parameter
C associated with the best configuration was C = 0.0298. The results in Table 7, when compared
with those of Table 5, show that, with the same CNN used, the fine-tuning method achieves better
performances than the other method.

Moreover, the results obtained in this work were compared with other state-of-the-art works in
Table 8.

Table 8. Performance comparison.

Method Images Dataset Accuracy AUC

Iannello [32] 914 89.49% -

Bennamar Elgaaied [4] 1006 85.5% -

Zhou [34] 1290 98.68% -

Cascio [19] 2080 92.8% 97.4%

Taormina [35] 2080 93.0% 98.4%

Present method 2080 93.93% 98.63%

Unfortunately, not all of the authors of these works in Table 8 calculated the AUC value. While,
from the comparison in accuracy it is verified that our method turns out to be the second best. However,
it should be noted that while Zhou et al. [34] aimed to maximize accuracy, the AUC was maximized in
this work. For a more direct comparison with other methods that based their optimization on accuracy,
we repeated the analysis using the latter index as a figure of merit, obtaining for the best configuration
(also, this time with the SqueezeNet network), the result of 94.32% accuracy and an AUC equal to 98.34%.

It should also be noted that the AIDA database used in this work (as reported in sub-Section 3.1)
is varied, both in terms of patterns contained (more than 20, both in single and multiple forms) and in
terms of instruments and methods of acquisition (manufacturers of kits and instruments employed
were different site-to-site); this makes it particularly difficult to classify.

Running Time

The training that provided the best performances required a calculation time of approximately
28 h for all 5 k-folds (using a 3.4 GHz Intel i7 CPU). Table 9 shows the calculation times, in terms of
intervals obtained by varying the configuration hyperparameters (mini-batch, learning rate, epoch,
etc.) necessary for the training of the various CNNs.
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Table 9. CNNs training times.

CNN Name
Training Time in Hours (min–max)

High Frozen Medium Frozen Low Frozen Scratch

AlexNet (3.42–9.57) (4.33–12.58) (4.69–17.24) (5.65–26.3)

SqueezeNet (6.26–10.22) (7.43–14.15) (11.93–27.96) (12.56–36.57)

ResNet18 (4.28–9.94) (4.51–10.51) (4.91–11.52) (5.86–18.12)

GoogLeNet (4.02–8.26) (4.13–16.32) (4.27–18.54) (5.37–24.4)

The configurations in which the CNNs were analyzed as feature extractors coupled with the SVM
classifier required training times within the interval (0.57–13.6) hours.

5. Discussions and Conclusions

In this work, the discriminating capabilities of pre-trained CNNs applied to the problem of
the classification of fluorescence intensity in HEp-2 images were investigated, a problem of crucial
importance for the diagnosis of autoimmune diseases. To this end, four of the best known CNNs have
been analyzed with the fine-tuning training method. In particular, the effectiveness of the fine-tuning
method was verified in different freezing levels, in training from scratch mode and with and without
data augmentation. The method was developed and tested using the AIDA public database. The best
explored configuration showed in terms of performance: AUC of 98.6% and an accuracy of 93.9%.

The best configuration analyzed was compared with other state-of-the-art methods demonstrating
an excellent ability to classify the fluorescence intensity in HEp-2 images. Unfortunately, in [34] a
private database was used, so a more direct comparison on the same data is not possible. The difference
in accuracy between our method and that of Zhou et al., even after optimization in accuracy, is still
significant. Perhaps the best performance obtained in [34] is not due to a lower capacity of the CNN
fine-tuning, but rather (in addition to the different database used) to the fact that, in [34], a segmentation
of the images was performed in search of the cells, and starting from these, a clustering was performed
that led to image classification. In this way, the method, effectively eliminating the background, shows
greater robustness and, therefore, better performance.

The effectiveness of the fine-tuning technique was verified by comparing the performance of the
same CNNs used by feature extractors (and coupled to SVM-type classifiers). With the same CNN
used, fine-tuning has always given better results than the other method. It was possible to verify,
for all the pre-trained networks analyzed, an, albeit, slight increase in performance with the use of
the data augmentation method. Furthermore, as expected, for each network, the best performances
were obtained with low freezing of the layers. The best performing network for the classification of
fluorescence intensity in IIF images was SqueezeNet.

It should be noted that the CNNs tested in the various configurations obtained performances
all contained in a very small range (about 3% of AUC).This denotes very similar classifying abilities
(at least of the specific problem) of the CNN analyzed.
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