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Abstract

Given a smooth morphism Y → S and a proper morphism P → S of algebraic
varieties we give a sufficient condition for extending an S-morphism U → P ,
where U is an open subset of Y , to an S-morphism Y → P , analogous to
Zariski’s main theorem.
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Introduction

A well-known fact is that every morphism from an open subset of a non-
singular algebraic curve to a complete algebraic variety may be extended to a
morphism of the curve. This is proved by considering the closure of the graph
of the map in the product of the curve and the variety and proving that the
projection of the closure to the curve is an isomorphism by means of Zariski’s
main theorem. It is desirable to generalize this extension property to families
of curves, with a view toward applications to moduli problems. Trying to apply
the same argument to families of curves one encounters the following problem.
Given two families of curves g : X → S, h : Y → S, where h is smooth, and a
commutative diagram of morphisms as in (1) below, such that f is finite and
surjective, and fs : g−1(s) → h−1(s) is birational for every s ∈ S, is it true
that f is an isomorphism? If g and h were proper and if the scheme-theoretic
fibers of g were reduced this would follow from Proposition 4.6.7 (i) of [1]. The
latter condition, however, might be difficult to verify. In fact a weaker condition
on g suffices to conclude that f is an isomorphism. Before we formulate one

⋆This work was supported by Università di Palermo (research project 2012-ATE-0446).
Manuscript accepted for publication in Journal of Pure and Applied Algebra,
https://doi.org/10.1016/j.jpaa.2020.106553
c⃝⟨2020⟩. This manuscript version is made available under the CC-BY-NC-ND 4.0
license http://creativecommons.org/licenses/by-nc-nd/4.0/

Email address: vassil.kanev@unipa.it (Vassil Kanev)

Preprint submitted to Elsevier September 12, 2020



of our results let us recall that a morphism of algebraic varieties h : Y → S
over an algebraically closed field k is smooth at y ∈ Y if h is flat at y and
dimk ΩY/S(y) ≤ dimy Yh(y). The following theorem holds.

Theorem 1. Let X,Y and S be algebraic varieties over an algebraically closed
field k. Let d be an integer ≥ 1. Let

X
f

//

g
��
@@

@@
@@

@@
Y

h
����
��
��
��

S

(1)

be a commutative diagram of morphisms such that:

a. h : Y → S is smooth of relative dimension d;

b. f is finite and surjective;

c. for every s ∈ h(Y ) the fiber g−1(s) is irreducible and there is point x ∈
g−1(s) such that g is smooth at x;

d. for every s ∈ g(X) = h(Y ) the map fs : g
−1(s) → h−1(s) is birational.

Then f : X → Y is an isomorphism.

Theorem 1 is used in the proof of the following criterion for extension of
morphisms.

Theorem 2. Let Y, S and P be algebraic varieties over an algebraically closed
field k. Let d be an integer ≥ 1. Let h : Y → S be a smooth morphism
whose nonempty fibers are irreducible of dimension d. Let P → S be a proper
morphism. Let U be an open subset of Y such that U ∩ h−1(s) ̸= ∅ for every
s ∈ h(Y ). Let φ : U → P be an S-morphism. Let Γ ⊂ U ×S P be its graph
and let X = Γ ⊂ Y ×S P be its closure. Suppose that the projection f : X → Y
has the property that f−1(y) is a finite set for every y ∈ Y \U . Then there is a
unique extension of φ to Y : an S-morphism φ̃ : Y → P such that φ̃|U = φ.

We notice that if S is irreducible and normal, then Y is irreducible and
normal as well, and the statement of Theorem 2 follows from Zariski’s main
theorem.

Under the assumptions of Theorem 1, when the relative dimension of g :
X → S is one, Theorem 9 of [2] applied to SpecOX,x → SpecOS,s, where
x ∈ X is arbitrary, s = g(x), yields that g : X → S is smooth, which implies
that f : X → Y is an isomorphism. The proof of Theorem 9 of [2] needs however
an additional assumption, as the author was kindly informed by Prof. J. Kollár
(letter of January 21, 2019), namely Assumption 9.2 of Theorem 9 (ibid.) should
hold for the completions (SpecOX,x)̂→ (SpecOS,s) .̂ This condition might not
hold under the assumptions of Theorem 1.

The paper is organized as follows. In Section 1 we prove Theorem 3, which
is a result of commutative algebra of independent interest, and from which
Theorem 1 and Theorem 2 are deduced. Given a local flat homomorphism of
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Noetherian local rings (A,m) → (R, n) with regular fiber R/mR and a finite
homomorphism R → B, Theorem 3 gives sufficient conditions which ensure
that R → B is an isomorphism. The proof of this theorem is based on the key
idea of J. Kollár by which Theorem 9 of [2] is proved, namely splitting the R-
module B into a direct sum of R and another summand, then proving that this
summand is zero. In Section 2 we give the proofs of Theorem 1 and Theorem 2.

Notation. If φ : A → B is a homomorphism of rings and I ⊂ A, J ⊂ B are ideals
we denote, following [3], φ(I)B by IB and φ−1J by A ∩ J . If p ⊂ A is a prime
ideal, then k(p) is the quotient field of A/p. A variety over an algebraically
closed field k is a reduced separated, possibly reducible, scheme of finite type
over k. A point of a variety is a closed point of the scheme. The maximal
spectrum of a ring A is denoted by SpmA.

1. The main theorem

Theorem 3. Let (A,m) and (R, n) be Noetherian local rings, and let A → R
be a local flat homomorphism. Suppose that A is reduced. Suppose that:

a. R⊗A k(m) is a regular ring of dimension n ≥ 1 and k(n) is separable over
k(m);

b. R⊗A k(p) is a regular ring for every minimal prime ideal p of A.

Set S = SpecA, s0 = m, Y = SpecR, y0 = n, and let h : Y → S be the
associated morphism of affine schemes. Suppose there is a commutative diagram
of morphisms of schemes

X
f

//

g
��
@@

@@
@@

@@
Y

h
����
��
��
��

S

(2)

such that:

i. f is finite and surjective;

ii. Xs0 is irreducible and generically reduced;

iii. g is flat at the generic point of Xs0 ;

iv. if η ∈ Xs0 and ζ = f(η) ∈ Ys0 are the generic points of Xs0 and Ys0 then
f ♯(ζ) : k(ζ) → k(η) is an isomorphism;

v. every irreducible component of X contains g−1(s0).

Then Y is reduced and f ◦ i : Xred → Y is an isomorphism. Moreover the open
set of reduced points of X contains the generic point of g−1(s0). Assumption (a)
implies Assumption (b) if R is a localization of a finitely generated A-algebra,
or if A is a G-ring (cf. [4, § 34], or [3, § 32]).
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Start of proof of Theorem 3. Let p1, . . . , pm be the minimal prime ideals
of A. One has Api = k(pi) for every i since A is reduced. Tensoring 0 → A →
⊕iApi

by R one obtains by Assumption (b) that R is reduced. Assumption (i)
implies that X ∼= SpecB, where B = OX(X) is a finite R-module and moreover
f ♯(Y ) : R → B is injective, since f is surjective and R is reduced. The points
of X where f is not flat form a closed subset Z ⊂ X. The image f(Z) is closed
in Y since f is finite. Let Y ′ = Y \ f(Z), X ′ = f−1(Y ′). Then f |X′ : X ′ → Y ′

is finite and flat.
We claim that ζ ∈ Y ′. One applies [4, 20.G] to OS,s0 → OY,ζ → OX,η and

M = OX,η. By hypothesis OY,ζ and OX,η are flat OS,s0-modules. Furthermore
Ys0 is integral by Assumption (a), so OY,ζ ⊗OS,s0

k(s0) ∼= OYs0 ,ζ
∼= k(ζ) is a

field. Hence OX,η ⊗OS,s0
k(s0) is a flat OY,ζ ⊗OS,s0

k(s0)-module. Therefore

OX,η is a flat OY,ζ-module. The hypothesis that g−1(s0) is irreducible implies
that f−1(ζ) = η, therefore ζ ∈ Y ′, η ∈ X ′.

Assumption (i) and Assumption (v) imply that every irreducible component
of Y , being an image of some irreducible component of X, contains h−1(s0) and
in particular ζ. Therefore the open set Y ′ is connected and dense in Y . We
claim that f |X′ : X ′ → Y ′ is an isomorphism. First, f∗OX′ is a locally free
sheaf of a certain rank d ≥ 1, since f |X′ is finite, surjective and flat, and Y ′ is
connected. One has d = dimk(y) Γ(Xy,OXy

) for every y ∈ Y ′. Let y = ζ. Then
f−1(y) = η and furthermore f : X → Y is unramified at η. Indeed, it suffices to
verify that f |Xs0

: Xs0 → Ys0 is unramified at η. This holds since OYs0 ,ζ
= k(ζ),

OXs0
,η = k(η), for by hypothesis Xs0 is irreducible and generically reduced, and

furthermore k(ζ) → k(η) is an isomorphism by Assumption (iv). We obtain that
for y = ζ, Xy = Spec k(η) and d = dimk(y) Γ(Xy,OXy ) = 1. This shows that

the morphism of sheaves of rings f ♯ : OY ′ → f∗OX′ makes f∗OX′ a locally free
OY ′ -module of rank 1. This implies that f ♯ : OY ′ → f∗OX′ is an isomorphism,
hence f |X′ : X ′ → Y ′ is an isomorphism. Since Y is reduced this implies that
the open set of reduced points of X contains X ′, in particular the generic point
η of g−1(s0) is a reduced point of X.

In order to prove the isomorphism f ◦ i : Xred
∼−→ Y we replace X by Xred

and observe that all the assumptions of the theorem hold for f ◦ i = fred :
Xred → Y and gred : Xred → S. We may thus assume that X = SpecB is
reduced, so by Assumption (v) g−1(s0) ⊂ V (p), where p is any associated prime
ideal of B.

Let I be the radical ideal I = I(Y \ Y ′) ⊂ R. We will prove below that
if I ̸= R, then depth(I,R) ≥ 2. Assuming this statement one proves that
f : X → Y is an isomorphism as follows. Consider the exact sequence of finite
R-modules

0 → R
f♯(Y )−→ B → Q → 0. (3)

Let R′ be the image of R. By way of contradiction let us assume Q ̸= 0. Let
J =

√
ann(Q). One has V (J) = Supp Q, so Y \ V (J) ⊂ Y ′. The isomorphism

f−1(Y ′)
∼−→ Y ′, proved above, shows that Y ′ ⊂ Y \ V (J). Therefore I =

J ̸= R. The stated inequality depth(I,R) ≥ 2 implies by [3, Theorem 16.6]
that Ext1R(Q,R) = 0. Hence (3) splits, B ∼= R′ ⊕ Q′. Let p = annR(x) be
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an associated prime ideal of Q. Since Ass(Q) ⊂ Supp(Q) = V (J) (cf. [3,
Theorem 6.5]), one has p ⊃ I. Let p′ ⊂ R′ be the image of p and let x′ ∈ Q′ be
the preimage of x. Since p′ ·x′ = 0 the subset p′ ⊂ B consists of zero divisors, so
p′ ⊂ P1 ∪ · · · ∪Pm, where Pi, i = 1, . . . ,m, are the associated prime ideals of B.
Let pi = R∩Pi. Then p ⊂ p1 ∪ · · · ∪ pm, so p ⊂ pj for some j. Let P =

√
(mB).

Assumption (v) means that Pi ⊂ P for every i. Hence R∩P ⊃ pj ⊃ p ⊃ I. Since
P ∈ SpecB and R ∩P ∈ SpecR are the same as η ∈ X and ζ ∈ Y respectively,
one obtains that ζ belongs to V (I) = Y \ Y ′. This contradiction shows that
Q = 0 and therefore f ♯(Y ) : R → B is an isomorphism. The isomorphism
f ◦ i : Xred → Y is proved.

We prove now the last statement of the theorem. Let C be a finitely gen-
erated A-algebra. Let T = SpecC, u : T → S = SpecA be the morphism
corresponding to A → C. Suppose there is an A-isomorphism of R with OT,z

for some z ∈ T . Let j : Y → T be the composition Y
∼−→ SpecOT,z −→ T . One

has u(z) = s0 and OT,z ⊗OS,s0
k(s0) ∼= OTs0

,z. Assumption (a) implies, accord-
ing to [5, Corollaire II.5.10], that the fiber Ts0 is smooth at z, so u is smooth
at z by [6, Theorem VII.1.8]. Smoothness at a point is an open condition so
we may, replacing T by an affine neighborhood of z, assume that u : T → S
is smooth. It is moreover surjective since the flat morphism u is an open map.
Every fiber Ts, s ∈ S is geometrically regular. Let s ∈ S, y ∈ h−1(s), t = j(y).
One has OS,s-isomorphisms

OYs,y
∼= OY,y ⊗OS,s

k(s) ∼= OTs,t.

Therefore OYs,y is geometrically regular. This means that R⊗A k(p) is geomet-
rically regular ring for every p ∈ SpecA, in particular Assumption (b) holds.

Suppose now that A is a G-ring. Then A is quasi-excellent (cf. [4, § 34]). Let
k = k(m), n0 = n/mR ⊂ R⊗Ak. Assumption (a) implies that R⊗Ak is formally
smooth with respect to the n0-adic topology (cf. [4, § 28.M] Proposition). Hence
by Théorèm 19.7.1 of [7, Ch.0] the homomorphism A → R is formally smooth
with respect to the m-adic and n-adic topologies of A and R. A theorem of André
[8] yields that A → R is a regular homomorphism, so R⊗A k(p) is geometrically
regular for every p ∈ SpecA. This implies Assumption (b).

Our next goal is to prove that depth(I,R) ≥ 2 provided I ̸= R, a statement used
in the proof of Theorem 3. It is proved in [1, Ch.0] Proposition 10.3.1 that, given
a Noetherian local ring (A,m) and a homomorphism of fields k(m) → K, there
exists a Noetherian local ring (B, J) and a flat local homomorphism (A,m) →
(B, J) such that mB = J and k(J) is isomorphic to K over k(m). We include
the proof of the following known fact since we could not find a reference.

Lemma 4. Let (A,m) and (R, n) be Noetherian local rings, and let A → R be
a local flat homomorphism. Let k = k(m), K = k(n). Suppose K is separable
over k. Suppose R ⊗A k is a regular ring of dimension n ≥ 1. Let (B, J) and
A → B be as above: the homomorphism is local and flat, mB = J and k(J)
is k-isomorphic to K. Then there is an A-isomorphism R̂ ∼= B̂[[T1, . . . , Tn]],
where R̂ is the n-adic completion of R and B̂ is the J-adic completion of B.
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Proof. Let us first consider the case where k(m) → k(n) is an isomorphism
and (B, J) = (A,m). We have a commutative diagram of faithfully flat homo-
morphisms (cf. [3, Theorem 22.4])

A //

��

R

��

Â // R̂

(4)

Let t1, . . . , tn ∈ n be elements such that xi = ti(modmR), i = 1, . . . , n gen-
erate the maximal ideal of the regular local ring R/mR ∼= R ⊗A k. Let φ :
Â[[T1, . . . , Tn]] −→ R̂ be the homomorphism of Â-algebras such that φ(Ti) = ti
(cf. [9, Theorem 7.16]). Let m̂ = mÂ and n̂ = nR̂ be the maximal ideals
of Â and R̂. The ring A′ = Â[[T1, . . . , Tn]] is local and complete with maxi-
mal ideal M = (m̂, T1, . . . , Tn) (cf. [10, Ch. III, § 2.6, Proposition 6]). One
has φ(M) = n̂, so R̂/MR̂ ∼= R̂/n̂ ∼= R/n ∼= k(n) ∼= k. Hence φ : A′ → R̂
is surjective (cf. [3, Theorem 8.4]). In order to prove that φ is injective,
applying [3, Theorem 22.5], we need to verify that φ : A′ ⊗Â k → R̂ ⊗Â k

is injective. One has R̂ ⊗Â k ∼= R̂/m̂R̂ ∼= R̂/mR. By assumption the com-
position k = k(m) → R/mR → R/n = k(n) is an isomorphism. Hence

R̂/mR ∼= k[[x1, . . . , xn]] (cf. [11, p. 124, Remark 2]). Therefore the compo-
sition

k[[T1, . . . , Tn]]
∼−→ A′/m̂A′ φ−→ R̂/m̂R̂

∼−→ k[[x1, . . . , xn]]

which transforms Ti in xi is an isomorphism. This implies that φ : A′ ⊗Â k →
R̂ ⊗Â k is an isomorphism. We conclude that φ : Â[[T1, . . . , Tn]] → R̂ is an
isomorphism provided k(m) → k(n) is an isomorphism.

Let us consider now the general case when k = k(m) → k(n) = K is an
arbitrary separable extension. By [3, Theorem 26.9] K is 0-smooth over k.
Hence by [3, Theorem 28.10] B is J-smooth over A. This implies that the
homomorphism B → K = R̂/n̂ has a lifting φ : B → R̂ which is a local
homomorphism of A-algebras (see [3, p. 214]). Applying [4, 20.G] to A → B →
R̂, taking into account that B⊗A k → R̂⊗A k is flat since B⊗A k ∼= K is a field,
we conclude that B → R̂ is flat. Furthermore k(J) = B/J → R̂/n̂ ∼= R/n = k(n)
is an isomorphism and by [3, Theorem 8.11]

R̂⊗B k(J) ∼= R̂⊗B (B ⊗A k) ∼= R̂⊗A k ∼= R̂/mR̂ ∼= R̂/mR

is a regular local ring of dimension n. By the first part of the proof one concludes
that R̂ ∼= B̂[[T1, . . . , Tn]]

Proposition 5. Let (A,m) and (R, n) be Noetherian local rings, and let A → R
be a local flat homomorphism. Suppose k = k(m) → k(n) = K is a separable
extension. Suppose R ⊗A k is a regular ring. Let I ⊂ R be a proper ideal such
that:

a. none of the prime ideals of the set A ∩ V (I) ⊂ SpecA is contained in an
associated prime ideal of A;
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b. I ̸⊂ mR.

Then depth(I,R) ≥ 2.

Proof. We may replace I by its radical and thus assume that I =
√
I. Indeed,

depth(I,R) = depth(
√
I,R) (see [9, Corollary 17.8]), V (I) = V (

√
I) and I ̸⊂

mR if and only if
√
I ̸⊂ mR since the condition that R ⊗A k is regular implies

that mR is a prime ideal. Furthermore Condition (b) implies that mR $ n, so
dimR ⊗A k ≥ 1. Let I = P1 ∩ · · · ∩ Pr, where Pi, i = 1, . . . , r are the minimal
prime ideals which contain I. We claim that there exists a1 ∈ A ∩ I, such that
a1 is not a zero divisor of A. If this were not the case, then A∩ I ⊂ p1∪· · ·∪ps,
where pi, i = 1, . . . , s are the associated primes of A. Then A ∩ I ⊂ pj for some
j and consequently A ∩ Pi ⊂ pj for some i (cf. [11, Proposition 1.11]). This
contradicts Condition (a).

Let Î, R̂ be the n-adic completions of I and R. The equality depth(I,R) =
depth(Î , R̂) holds. Indeed, let I = (x1, . . . , xm). Consider the Koszul complex
K• = K•(x1, . . . , xm), where Ki(x1, . . . , xm) = ΛiN,N = ⊕m

i=1Rei and di :
Ki → Ki+1 is di(v) = x ∧ v, where x =

∑m
i=1 xiei. Then depth(I,R) = r iff

Hi(K•) = 0 for i < r and Hr(K•) ̸= 0 (cf. [9, Theorem 17.4]). Since Î = IR̂
the images x′

i of xi in R̂, i = 1, . . . ,m, generate Î. The corresponding Koszul

complex is K
′• = K ′(x′

1, . . . , x
′
m) ∼= K•(x1, . . . , xm) ⊗R R̂. Since R → R̂ is

faithfully flat one has that Hi(K
′•) ∼= Hi(K•) ⊗R R̂ and Hi(K

′•) ̸= 0 if and
only if Hi(K•) ̸= 0. By the above criterion depth(I,R) = depth(Î , R̂).

Let (A,m) → (B, J) and R̂ ∼= B̂[[T1, . . . , Tn]] be as in Lemma 4. The
hypothesis I ̸⊂ mR implies Î = IR̂ ̸⊂ (mR)R̂ = mR̂ since R → R̂, being
a faithfully flat homomorphism, has the property that aR̂ ∩ R = a for every
ideal a in R. Furthermore the ring extensions A → B → B̂ → R̂ yield mR̂ =
(mB)R̂ = JR̂ = ĴR̂. Therefore Î ̸⊂ ĴR̂.

Let a1 ∈ A ∩ I be a non zero divisor of A as above. Let a′1 ∈ Î be
its image in R̂. Let f ∈ Î \ ĴR̂. We claim that a′1, f is an R̂-regular se-
quence. This implies that depth(Î , R̂) ≥ 2. Abusing notation we identify R̂
with B̂[[T1, . . . , Tn]]. Let f = f( mod ĴR̂) ∈ K[[T1, . . . , Tn]]. There exist pos-
itive integers u1, u2, . . . , un such that the automorphism s of K[[T1, . . . , Tn]]
defined by s(Ti) = Ti + Tui

n for 1 ≤ i ≤ n − 1 and s(Tn) = Tn transforms f in
g(T1, . . . , Tn) with g(0, . . . , 0, Tn) ̸= 0 (cf. [10, Ch.VII § 3 no.7] Lemma 3). The
same substitution yields a B̂-automorphism φ of B̂[[T1, . . . , Tn]]. Let g = φ(f).
Let C = B̂[[T1, . . . , Tn−1]]. This is a complete local ring with maximal idealM =
(Ĵ , T1, . . . , Tn−1) and R̂ ∼= C[[Tn]]. We claim that a′1, g is a regular R̂-sequence.

Indeed, the injectivity of A
·a1−→ A implies the injectivity of R̂

·a1−→ R̂ since the
composition A → R → R̂ is flat. One has g(modM) = g(0, . . . , 0, Tn) ̸= 0 and
R̂/a′1R̂

∼= (B̂/a′1B̂)[[T1, . . . , Tn]] ∼= C[[Tn]], where C = (B̂/a′1B̂)[[T1, . . . , Tn−1]]
is a complete local ring with maximal ideal (Ĵ/a′1Ĵ , T1, . . . , Tn−1). Applying
[10, Ch.VII § 3 no.8] Proposition 5 to the image of g(mod a1R̂) in C[[Tn]] we
conclude that g(mod a′1R̂) is not a zero divisor in R̂/a′1R̂. Therefore a′1, g is a
regular R̂-sequence. Since φ(a′1) = a′1, φ(f) = g, the same holds for a′1, f with
a′1, f ∈ Î. We thus obtain that depth(I,R) = depth(Î , R̂) ≥ 2.
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End of proof of Theorem 3. Recall that we have reduced the proof of the
theorem to the case of reduced X = SpecB and we have assumed by way of
contradiction that I = I(Y \ Y ′) $ R. We prove that depth(I,R) ≥ 2 applying
Proposition 5. The condition I ̸⊂ mR is fulfilled since mR = ζ ∈ Y ′. We
want to verify that Condition (a) of Proposition 5 holds. By hypothesis A is
reduced, so one needs to prove that A∩V (I) contains none of the minimal prime
ideals of A. Let Xi = V (Pi), i = 1, . . . , n be the irreducible components of X.
Assumption (i) and Assumption (v) imply, using that η ∈ X ′ and ζ = f(η) ∈ Y ′,
that there is a bijective correspondence between the irreducible components of
X and those of Y given by

Xi 7→ Xi ∩X ′ 7→ f(Xi ∩X ′) 7→ f(Xi ∩X ′) = f(Xi) = Yi.

Let us give to Xi ⊂ X and Yi ⊂ Y the structure of reduced closed subschemes
and let fi : Xi → Yi be the morphism induced by f , i = 1, . . . , n. For every i
the affine schemes Xi, Yi are integral, the morphism fi is finite and if xi ∈ Xi,
yi ∈ Yi are the generic points, the homomorphism

(f ♯
i )yi

: k(yi) = OYi,yi
−→ OXi,xi

= k(xi)

is an isomorphism since it coincides with OY,yi
→ OX,xi

and yi ∈ Y ′, xi =
f−1(yi) ∈ X ′. Let Y reg = {u ∈ Y |OY,y is a regular ring}. We claim that
Y reg ⊂ Y ′. Let y ∈ Y reg. One has that y ∈ Yi \ ∪j ̸=iYj for some i. The
regular ring OY,y = OYi,y is integrally closed in its field of fractions k(yi). Let
Ri = OYi

(Yi), Bi = OXi
(Xi), y = q ∈ SpecRi, S = Ri \ q. The finite injective

homomorphism of integral domains f ♯
i (Yi) : OYi(Yi) → OXi(Xi) induces an iso-

morphism of the fields of fractions k(yi)
∼−→ k(xi). Since S−1Ri is integrally

closed one obtains that S−1Ri → S−1Bi is an isomorphism, hence f−1
i (y) con-

sists of a unique point x ∈ Xi and (f ♯
i )y : OYi,y → OXi,x is an isomorphism. One

has f−1(y) = f−1
i (y) = {x} since y ∈ Yi \ ∪j ̸=iYj . Furthermore OXi,x = OX,x

since X is reduced and x ∈ Xi \ ∪j ̸=iXj . Therefore (f ♯)y : OY,y → OX,x is an
isomorphism, so y ∈ Y ′. The claim that Y reg ⊂ Y ′ is proved. Suppose now that
q ∈ V (I) = Y \ Y ′ and A ∩ q = p is a minimal prime ideal of A. Let S = A \ p.
One has by Assumption (b) that R ⊗A k(p) = R ⊗A Ap = S−1R is a regular
ring. Hence Rq is a regular ring, so q ∈ Y reg which contradicts the inclusion
Y reg ⊂ Y ′ proved above. We thus prove that Condition (a) of Proposition 5
holds, therefore depth(I,R) ≥ 2. Theorem 3 is proved.

2. A criterion for extending morphisms

In this section we give the proofs of Theorem 1 and Theorem 2. We refer to
[12, I. §4.4] or [5, II] for the properties of smooth morphisms we use. We use
an argument from the course notes of M. Mustata of 2009 for the proof of the
following proposition, which we need.

Proposition 6. Let g : X → S be a morphism of algebraic varieties over an
algebraically closed field k. Suppose there is an integer d ≥ 1 such that for every
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s ∈ S the fiber g−1(s) is irreducible of dimension d. Then every irreducible
component of S is dominated by a unique irreducible component of X and every
irreducible component of X is a union of fibers of g. In each of the following three
cases there is a bijective correspondence between the irreducible components of
X and those of S given by Xi → g(Xi) as well as by Si → g−1(Si) in Case (a).

a. g is a closed morphism.

b. All irreducible components of X have the same dimension.

c. Every irreducible component of X contains a point in which g is flat.

Proof. Step 1. Let us first suppose that S is irreducible. Let X = X1∪· · ·∪Xn

be an irredundant decomposition of X into irreducible components. Let y ∈ S.
By hypothesis g−1(s) is irreducible, so g−1(s) ⊂ Xj for some j. The hypothesis

implies that g is surjective, consequently S = g(Xi) for some i. Renumbering
we may suppose that i = 1. Let U = X1 \ ∪i≥2Xi. If x ∈ U and s = g(x) then
X1 is the unique irreducible component of X which contains g−1(s). The image
g(U) contains an open subset V ⊂ S, V ̸= ∅ [13, Theorem IV.3.7] and one has
g−1(s) ⊂ X1 for every s ∈ V . We claim that Xi ⊂ g−1(S \ V ) for i ≥ 2. Let
x ∈ Xi \X1. Then s = g(x) /∈ V . The inclusion Xi \X1 ⊂ g−1(S \ V ) implies
Xi ⊂ g−1(S \V ). Therefore X1 is the unique irreducible component of X which
dominates S. Let g1 = g|X1

. If s ∈ V then g−1
1 (s) = g−1(s), so dim g−1

1 (s) = d.
This implies that dimX1 − dimS = d and dim g−1

1 (g1(x)) ≥ d for every x ∈ X1

(ibid.). Let x ∈ X1, s = g(s) = g1(s). Then g−1
1 (s) is closed in X of dimension

≥ d and moreover it is contained in g−1(s) which is by hypothesis irreducible
of dimension d. Therefore g−1

1 (s) = g−1(s). This shows that X1 is a union of
fibers of g : X → S.

Step 2. Let now S be arbitrary algebraic variety. Let X = X1 ∪ · · · ∪ Xn

S = S1 ∪ · · · ∪ Sm be the irredundant decompositions into irreducible compo-
nents. Let i ∈ [1,m]. Since g : X → S is surjective Si = g(Xj) for some j.
Applying Step 1 to S′ = Si and X ′ = g−1(Si) one concludes that Xj is the
unique irreducible component of X which dominates Si. Let Xi be an arbitrary
irreducible component of X. Let Z = g(Xi). Applying Step 1 to S′ = Z and
X ′ = g−1(Z) one obtains that Xi is a union of fibers of g : X → S.

Step 3. Case (a). If g : X → S is closed, then Si = g(Xi) is closed and
irreducible and Xi = g−1(Si). Hence S = S1 ∪ · · · ∪ Sn is an irredundant union
of irreducible closed subsets of S.

Case (b). If dimXi = N for every i = 1, . . . , n then dim g(Xi) = N − d for
every i = 1, . . . , n. This implies that every g(Xi) is an irreducible component of
X. By Step 2 every irreducible component of S is dominated by a unique irre-
ducible component of X, so S = S1∪· · ·∪Sn with Si = g(Xi) is an irredundant
decomposition of S into irreducible components.

Case (c). The set of points U ⊂ X in which g is flat is open [4, Theorem 53].
By hypothesis U ∩ Xi ̸= ∅ for every i = 1, . . . , n. Therefore Ui = U \ ∪j ̸=iXj

is an open nonempty subset of X contained in Xi. The flat morphisms are
open maps [6, Theorem V.5.1], therefore g(Ui) is an open subset of S contained
in the irreducible closed subset g(Xi). Therefore Si = g(Xi) is an irreducible
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component of S. By Step 2 S = S1 ∪ · · · ∪Sn with Si = g(Xi) is an irredundant
decomposition of S into irreducible components.

Proof of Theorem 1. One has to prove that for every y ∈ Y there is an
affine neighborhood of y such that f restricted to its affine preimage is an
isomorphism. So, it suffices to prove Theorem 1 for affine varieties X,Y and
S. Let E = A(X), D = A(Y ), C = A(S). One may furthermore assume that
SpecD → SpecC is a smooth morphism of relative dimension d. In order to
prove that the finite homomorphism D → E is an isomorphism it suffices to
prove that for every maximal ideal my ⊂ D, if T = D \ my, the localization
T−1D → T−1E is an isomorphism. Let my ∩ C = ms, s = h(y) and let U =
C \ ms = T ∩ C. Taking into account that E = A(X) is reduced, we prove
that T−1D → T−1E is an isomorphism applying Theorem 3, where the local
homomorphism A → R is Cms

= U−1C → T−1D = Dmy
, B = T−1E and the

diagram (2) is

SpecT−1E
f

//

g
''OO

OOO
OOO

OOO
SpecT−1D

h
wwooo

ooo
ooo

oo

SpecU−1C

(5)

Let us verify the various assumptions of Theorem 3. Assumption (a) and
Assumption (b) hold since SpecD → SpecC is a smooth morphism and k(m) =
k = k(n). Assumption (b) of Theorem 1 means thatD → E is a finite homomor-
phism and SpmE → SpmD is surjective. This implies, since D and E are re-
duced, finitely generated algebras over k, that D → E is injective. By the going-
up theorem SpecE → SpecD is surjective, hence SpecT−1E → SpecT−1D is
surjective and this shows that Assumption (i) of Theorem 3 holds. By Assump-
tion (c) of Theorem 1 the fiber g−1(s) is irreducible, hence there is a unique
minimal prime ideal P in E which contains msE, P = I(g−1(s)). The existence
of a point x ∈ g−1(s) such that g is smooth at x implies that SpecE → SpecC
is smooth at P , hence the fiber SpecE/msE is smooth at the generic point
P/msE, i.e. EP /msEP is a field. This implies that the ideal msE has an irre-
dundant primary decomposition msE = Q1 ∩ Q2 ∩ . . . ∩ Qm, where Q1 = P is
a prime ideal and P $

√
Qi for i ≥ 2. We claim that P ∩D ⊂ my. Indeed, by

the surjectivity of f : X → Y there exists a point x ∈ X such that f(x) = y,
so mx ∩ D ⊂ my. One has x ∈ g−1(s), so mx ⊃ P , therefore P ∩ D ⊂ my.
Localizing one obtains a primary decomposition

msT
−1E = T−1P ∩

(
∩i≥2T

−1Qi≥2

)
,

where T−1P $
√
(T−1Qi) for i ≥ 2. This proves that SpecT−1E/msT

−1E =
SpecB/mB is irreducible and generically reduced, so Assumption (ii) of
Theorem 3 holds. Assumption (iii) for SpecT−1E → SpecT−1C follows from
the smoothness of the morphism SpecE → SpecC at the point P mentioned
above. Assumption (iv) follows from Assumption (d) of Theorem 1. It remains
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to prove that Assumption (v) holds. The irreducible components of SpecT−1E
are of the form V (T−1P0) where P0 is a minimal prime ideal of E such that
P0 ∩ T = ∅, i.e. P0 ∩D ⊂ my. By the going-up theorem there is a prime ideal
p′ in E such that P0 ⊂ p′ and p′ ∩D = my. Hence p′ = mx for some x ∈ X with
f(x) = y. This implies that the irreducible component V (P0) of X contains a
point x of the fiber g−1(s). The image of the smooth morphism h : Y → S is
open. Let S1 = h(Y ) = g(X). The fibers of the morphism g : X → S1 are
irreducible of dimension d by hypothesis. Using Proposition 6 we conclude that
the irreducible component V (P0) of X, being a union of fibers of g : X → S1,
contains g−1(s), therefore P0 ⊂ P . Localizing one obtains T−1P0 ⊂ T−1P .
Therefore V (T−1P0) contains V (T−1P ), which is the preimage of the closed
point of the map SpecT−1E → SpecU−1C. All the assumptions of Theorem 3
were verified, so we conclude that T−1D → T−1E is an isomorphism. Theo-
rem 1 is proved.

Proof of Theorem 2. The morphism f : X → Y is proper and its image
contains U , hence it is surjective. Furthermore the hypothesis of the theorem
implies that f has finite fibers, so f is a finite morphism by Zariski’s Main
Theorem [14, Corollary 12.89]. One has the commutative diagram (1) with
g = h ◦ f : X → S. We want to verify that the conditions of Theorem 1 hold.
Condition (a) holds by hypothesis. Condition (b) was verified above. We claim
that every fiber g−1(s), s ∈ g(X) = h(Y ) is irreducible of dimension d. For the
proof of this statement we may replace S by its open subset h(Y ), so we may
assume that h : Y → S is surjective. The fibers of h are irreducible of dimension
d, so according to Proposition 6(c) the irredundant decompositions of S and Y
as finite union of closed irreducible subsets are respectively S = ∪m

i=1Si and

Y = ∪m
i=1Yi, where Si = f(Yi), dimYi − dimSi = d, and furthermore every

Yi is a union of fibers of h : Y → S. Let Γi ⊂ Y ×S P be the graph of
φ|Yi∩U : Yi ∩ U → P . Then Γ = ∪m

i=1Γi and the irredundant decomposition
of X = Γ is X = ∪m

i=1Xi, where Xi is the closure of Γi in Y ×S P . One has
X∩(U×SP ) = Γ, so f−1(U) = Γ. Let Z be an irreducible component of g−1(s).
One has Z ⊂ Xi for some i, hence s = g(Z) ∈ Si and dimZ ≥ dimXi−dimSi =
dimYi − dimSi = d. Since f : X → Y is finite and f(Z) ⊂ h−1(s) one has that
f(Z) = h−1(s). The map f |Γ : Γ → U is an isomorphism, so Z contains the
nonempty open subset f−1(U ∩h−1(s)), hence Z equals its closure. This shows
that g−1(s) is irreducible for every s ∈ g(X) = h(Y ). The remaining conditions
of (c) and (d) of Theorem 1 hold since f−1(U) → U is an isomorphism. By
Theorem 1 f : X → Y is an isomorphism. The morphism φ̃ = π2 ◦f−1 : Y → P
is the extension of φ : U → P . Theorem 2 is proved.
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