THE ABEL MAP FOR SURFACE SINGULARITIES
I. GENERALITIES AND EXAMPLES

JANOS NAGY AND ANDRAS NEMETHI

ABSTRACT. Let (X, 0) be a complex normal surface singularity. We fix one of its good resolutions
X - X, an effective cycle Z supported on the reduced exceptional curve, and any possible
(first Chern) class I! € H2(X,Z). With these data we define the variety ECall(Z) of those
effective Cartier divisors D supported on Z which determine a line bundles Oz (D) with first Chern
class I’. Furthermore, we consider the affine space Picl/(Z ) C H'(O3%) of isomorphism classes of
holomorphic line bundles with Chern class I’ and the Abel map cll(Z) : ECal/(Z) — Picl/(Z).
The present manuscript develops the major properties of this map, and links them with the
determination of the cohomology groups H'(Z, L), where we might vary the analytic structure
(X, 0) (supported on a fixed topological type/resolution graph) and we also vary the possible line
bundles £ € Pic" (Z). The case of generic line bundles of Pic!’ (Z) and generic line bundles of the
image of the Abel map will have priority roles. Rewriting the Abel map via Laufer duality based
on integration of forms on divisors, we can make explicit the Abel map and its tangent map. The
case of superisolated and weighted homogeneous singularities are exemplified with several details.

The theory has similar goals (but rather different techniques) as the theory of Abel map or

Brill-Noether theory of reduced smooth projective curves.

1. INTRODUCTION

In this introduction we plan to provide the major ideas and some of the major results without
technical details. The presentation will automatically provide the structure of the article as well.

The study of the Abel map of projective irreducible smooth curves was a crucial tool in the
classical algebraic geometry and it remained so in the modern theory as well. Though in this work
we will use very little from this theory, in this introduction (and some places later) we will discuss
some comparisons between the curve case and the theory of the present article established for normal
surface singularities, mostly to emphasize the major conceptual differences and additional difficulties
in the later case. (For the Abel map of curves one can consult [ACGHS85] and the references therein.)

The present manuscript is the first one in a series of articles planed (and partly already written)
by the authors. It contains the foundation, the presentation of the basic constructions and of the
basic properties. They are also supported by several examples. The forthcoming manuscripts of the
series treat the theory applied for several important families of singularities, e.g. for singularities
with generic analytic type, or elliptic or splice quotient singularities. E.g., in the second article
[NN18], based on the results of the present one, we treat properties of the generic analytic structure
supported by a fixed resolution graph (topological type). More precisely, we are able to determine
topologically several discrete analytic invariants of such singularities like multivariable Hilbert series
associated with the divisorial filtration, or cohomology of cycles and line bundles supported on the

fixed resolution (in particular, the geometric genus as well).
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We wish to emphasize from the start that we are not generalizing the Abel construction from
the curve case to the — smooth or singular — (quasi)projective surfaces: our goal is to develop
its analogue valid in the context of a resolution of a complex normal surface singularity germ.
This means that if (X, 0) is such a singularity with a fixed good resolution X > X , then for any
effective cycle Z supported on the reduced exceptional curve E and for any (possible) Chern class
I e Hz()?,Z) we construct the space ECal/(Z) of effective Cartier divisors D supported on Z,
whose associated line bundles Oz (D) have first Chern class I’. Furthermore, we consider the space
pic' (Z) c H 1(0%) of isomorphism classes of holomorphic line bundles with Chern class I’ and the
Abel map ¢ (Z) : ECal/(Z) — Picl,(Z), D — Oz(D). In this way, our Abel map is associate with
non-reduced projective curves supported by the exceptional set of a good resolution of a normal
surface singularity. In particular, the combinatorial background is the combinatorics of the dual
resolution graph T' (or the intersection from (, ) of the irreducible exceptional curves), that is,
equivalently, the 3—dimensional link of the singularity. In fact, in order to run properly the theory
(e.g. to be able to define the ‘natural’ line bundles, cf. 2.3), we will even assume that the link of
the singularity is a rational homology sphere. This happens exactly when the resolution graph I’
represents a tree of rational curves. In this way, in all the discussions regarding the analytic types and
properties we move the difficulties from the moduli space of each irreducible exceptional curve E,
(which is trivial in this case) to the analytic properties of their infinitesimal tubular neighbourhoods
and their gluings (analytic plumbing).

Therefore, the Abel map " behaves rather differently than the (projective) Abel map of reduced
smooth curves, it shares more the properties of non—proper affine maps rather than the projective
ones. This will also be clear from the next preliminary presentation of its source and target.

In fact, the space ECal’(Z ) is already constructed in the literature. Note that by a theorem of
Artin [A69, 3.8], there exists an affine algebraic variety Y and a point y € Y such that (Y,y) and
(X, 0) have isomorphic formal completions. Then, according to Hironaka [Hi65], (Y,y) and (X, o)
are analytically isomorphic. In particular, we can regard Z as a projective algebraic scheme, in
which situation ECal,(Z ) was constructed by Grothendieck [Gro62], see also the article of Kleiman
[K113] and the book of Mumford for curves on algebraic surfaces [Mu66]. In particular, ECall(Z ) is
a quasiprojective variety. Though the existence of the space ECa’ (Z) in this way is established, we
will provide several key properties valid in our particular situation, including the local charts. E.g.,
we will characterize topologically when the space ECal/(Z ) is nonempty (ECal/(Z ) # if and only if
—U’ belongs to the Lipman cone, cf. (3.1.5)), and in these cases we show that it is smooth of dimen-
sion (I, Z), cf. Theorem 3.1.10. Furthermore, there exists a natural projection to ECal/(E), whose
fibers are affine spaces. They can be considered as certain jet spaces in the local infinitesimal neigh-
bourhoods of the of the local equations of the effective Cartier divisors. This fiber structure makes
the space rather special, with non—proper/non—compact behaviors. In fact, by fixing the Chern class
even ECal’(E) becomes non—projective too; e.g. for I’ = —FE* (the dual of E,, representing ‘cuts’
which intersects E, but not the other curves) we get ECal/(E) = Ey \ Uuzo By

Note also that the base space Picl/(Z ) is also noncompact, it is an affine space, it has dimension
h'(Oz). (Here the assumption that the link is a rational homology sphere plays a role; otherwise
Picl,(Z )=HY0O3)/H 1(X,Z) would have a complex torus component as well). This affine structure
will be exploited deeply in the body of the paper. Finally we also mention that the Abel map itself
is algebraic, and in fact its (rather non—trivial) expression in local charts can be done explicitly via

Laufer duality (integrating forms along divisors in X ), for details see section 7.
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Since the Abel map is not proper, its image usually is not closed, and it can be a rather complicated
constructible set (it can be singular as well, cf. Example 12.9.1). In this note we give several examples
and also we characterize the dimension of this image. It is not topological, usually it depends in a
subtle way on the analytic structure of the singularity. In order to show the presence of possible
anomalies we list several examples based on the theory of elliptic and splice quotient singularities
(certain familiarity with them might help essentially the reading).

We also show that all the fibers of ¢!’ are smooth (irreducible, quasiprojective), however, their
dimensions might jump. The dimension of ¢=*(£) (£ € Picll(Z)) is h%(Z,L£) — h°(0z) = (I, Z2) +
h'(Z,L) — h'(Oz). Any fiber appears as quotient by the algebraic free proper action of H'(0%),
which, as algebraic variety, has dimension h'(Oz). (This also shows a major difference with the
curve cases, where the space of effective divisors associated with a bundle has the form H°(£)\ {0},
and the action is the projectivization action of C*. In particular, the fibers are projective spaces.)
The above relation makes the connection with another major problem/task of the theory, namely
determination of possible values of h'(Z, L).

This ‘h!’-problem can be formulated even independently of the Abel map, and in fact, it was
our most important motivation. Let us fix a topological type (say, the resolution graph I'), and
we consider an arbitrary analytic type of singularity and its resolution supported by I'. Then for
fixed Chern class I’ and cycle Z we can also consider all the possible line bundles £ € Picl/(Z).
The challenge is to determine all the possible values of h'(Z, L), and understand/organize them is
a conceptual way. This can be split in two major steps: in the first case one varies all the analytic
structures, in the second case one fixes an analytic structure (X, o) (and one of its resolutions X )
and one moves L € Picl/(Z). E.g., in this second case, one can ask for the stratification Uy Wy ), of
Pic’ (Z) ~ HY(Oz) by Wy = {£ : h'(L) = k}. (These are the analogues of the Brill-Noether
strata. For the Brill-Noether theory see [ACGHS85, F110].) Or, one can search for the possible values
k when Wy i, # 0. In the body of the article we will provides several bounds and partial results
(with sharp lower bounds provided by generic structures). Though the older previous results in
normal surface singularities focus mostly on particular analytic structures (rational, elliptic, weighted
homogeneous, splice quotient, etc), and to special line bundles (e.g. of type Oz(l)), in the present
note we aim to create a theory which helps to attack the general case, e.g. to treat the case of
generic analytic structure or the generic line bundles as well.

Part of the results are reduced to the case of Abel maps which are dominant. This case is
completely characterized and solved in section 4; we show in Theorem 4.1.1 that the fact that
cl/(Z ) is dominant depend only on combinatorial properties of the pair Z and I’, and furthermore,
in such a case, h*(Z,Lyen) = 0 for Lye, generic in Picl/(Z). For fixed and large Z (in which
case Picll(Z) = Pic” (X)) we introduce &,

!  as the set of those Chern classes I’ for which ¢V

is dominant, and we list several properties of it. It is a semigroup of the topological Lipman
semigroup/cone §’, and it has several properties of the analytic semigroups. The study of dominant
maps emphasizes again the importance of the study of generic line bundles. In section 5 we will
list several cohomological properties for the generic line bundle L., of Pic’’ (e.g. we determine
its h! topologically, and we show that this value is a sharp lower bound for any h'(L£)). Similarly,
the generic line bundle of the image of the Abel map ' is also studied (its h! is the codimension
of im(c!") and it is also the sharp lower bound for any h!(L) with £ € im(¢")). Upper bounds for
h'(Z, L) are also established.

The Abel map is compatible with additive structure of the divisors and multiplicative structure

of the line bundles. The point is that if we iterate a Chern class sufficiently many times (that
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is, we replace I’ with nl’ where n > 0), then the image of ¢ becomes an affine space, whose
associated vector spaces stabilizes, and which depends only on the ‘dual-base-support’ of I’ (see
Theorem 6.1.9). This collection of stabilized linear subspaces (as a linear subspace arrangement)
and their dimensions become the source of important new analytic invariants, see section 6. E.g., the
dimensions serve as correction terms in our new analytic surgery formulae (see e.g. Theorem 6.1.9).
If the analytic structure of (X, 0) is ‘nice’ (e.g. splice quotient), then these correction invariants can
be connected with known analytic invariants computable from the Poincaré series of the divisorial
filtrations), and in such cases classical formulae can be recovered or improved (see section 9). It is
worth to emphasize that the classical surgery formulae (see e.g. [008], or [BN10]) are valid for the
special ‘natural’ line bundles and under special analytic conditions, and it was not clear at all if any
extension to the general case might exists and/or how to define the correction terms in such general
situations. In the present note this is solved via the above stabilized dimensions of the images of
Abel maps (without any required restriction). Furthermore, under the special analytic conditions
of the old surgery formulae, they are identified with the classical correction terms.

Starting from section 7 we develop the ‘duality picture’ between divisors and differential forms.
This not only describes the Abel map and its tangent map, but it gives a computational tool
in concrete examples as well. The invariants of stable case in language of differential forms are
described in section 8. The general non-stable case is analyzed in section 10.

When a concrete basis of HO(X \ E, Q%)/HO(X’, Q}) (dual to H'(Og)) can be explicitly deter-
mined, the Abel map also becomes more transparent, and several of the above listed problems have
precise (sometimes even combinatorial) solutions. This is exemplified in the case of superisolated
(section 11) and weighted homogeneous (section 12) singularities. Some additional properties in the
Gorenstein situation are also listed.

In the sequel #A denotes the cardinality of the finite set A.

2. PRELIMINARIES

In this section we review some basic facts about topological and analytical invariants of surface
singularities, and we introduce the needed notations as well.

2.1. The resolution. Let (X, 0) be the germ of a complex analytic normal surface singularity, and
let us fix a good resolution ¢ : X = X of (X,0). We denote the exceptional curve ¢~1(0) by E, and
let Uyey 'y, be its irreducible components. Set also Ey := ZUGI E, for any subset I C V. The support
ofacyclel =" n,E, is defined as |I| = U,,20F,. For more details see [La71, NO7, N12, N99b, L13].

2.2. Topological invariants. Let I' be the dual resolution graph associated with ¢; it is a connected
graph. Then M := OX can be identified with the link of (X,0), it is also an oriented plumbed 3-
manifold associated with T'. Tt is known that (X,0) locally is homeomorphic with the real cone
over M, and M contains the same information as I'. We will assume that M is a rational homology
sphere, or, equivalently, I is a tree and all genus decorations of I" are zero. We use the same notation
V for the set of vertices, and d, for the valency of a vertex v.

L := Hy(X,Z), endowed with a negative definite intersection form (, ), is a lattice. It is freely
generated by the classes of 2-spheres {E, }yey. The dual lattice L' := H2(X,Z) is generated by the
(anti)dual classes {EX}, ey defined by (E?, E,,)) = —dyw (Where d,,, stays for the Kronecker symbol).
The intersection form embeds L into L'. Then Hy(M,Z) ~ L'/L, and it is abridged by H. Usually
one identifies L' with those rational cycles I’ € L ® Q for which (I, L) € Z, or, L' = Homg (L, Z).
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There is a natural (partial) ordering of L' and L: we write I7 > 15 if [{ — I3 = > r,FE, with all
ry > 0. Weset Lyg={l €L :1>0}and Lo = L>¢ \ {0}.

Each class h € H = L'/L has a unique representative r, = > r,E, € L’ in the semi-open cube
(i.e. each 1, € QN [0,1)), such that its class [rp] is h.

All the E,—coordinates of any E are strict positive. We define the Lipman cone as &’ := {I’ €
L' : (I'E,) <0 for all v}. As a monoid it is generated over Z>q by {E}},.

The multivariable topological Poincaré series is the Taylor expansion Z(t) =), z(l’)tl/ at the
origin of the rational function

(2.2.1) Z(t) = [J(—t5)>2,

veEY

where t!' = | J the for any I' =3 o\, I, E, € L. By definition, Z(t) is supported on &’. It has a

natural decomposition Z(t) = 3=, ¢y Zn(t), where Zy,(t) = > -, z(I')t"". (Though the exponents
1/d

of t might be rational, that is, Z(t) € Z[[ty ,...,t‘llé‘d]], where d = det(T"), the right hand side of

2.2.1) still will be called ‘rational function’, and >, z(I’ t! a ‘series’.
l

2.3. Analytic invariants. In this manuscript we focus mainly on the structure of the Picard group
and the holomorphic line bundles of X. The group Pic(X) := H'(X, O%) of isomorphism classes of

holomorphic line bundles on X appears in the exact sequence
(2.3.1) 0 — Pic®(X) — Pic(X) -2 L' — 0,

where ¢; denotes the first Chern class. Here Pic®(X) = H!(X, O5) ~ CPs, where p, is the geometric
genus of (X, 0). (X, o) is called rational if py(X,0) = 0. Artin in [A62, A66] characterized rationality
topologically via the graphs; such graphs are called ‘rational’. By this criterion, I' is rational if and
only if x(I) > 1 for any effective non—zero cycle | € L. Here x(I) = —(I,1 — Zk)/2, where Zx € L'
is the (anti)canonical cycle identified by adjunction formulae (—Zx + E,, E,) +2 = 0 for all v.

The epimorphism ¢; admits a unique group homomorphism section I’ — s(I’) € Pic()? ), which
extends the natural section | — Og(l) valid for integral cycles I € L, and such that ¢;(s(l')) =’
[NO7, O04]. We call s(I') the natural line bundle on X with Chern class I’. By its definition, £ is
natural if and only if some power L™ of it has the form O (l) for some [ € L.

Natural line bundles appear in the presence of coverings as well. Indeed, let 7 : (X4p,0) — (X, 0)
be the universal abelian covering of (X, 0) (associated with the homomorphism (M) — Hy (M) =
H) and let 7 : X, — X be the (normalized) pullback of 7 by the resolution ¢ : X — X. Then the
Galois group H acts on 7.(QOx,,), whose eigensheaves are m,(Ox,,) = @nens(—ry) [NO7]. Hence,
in this way, one recovers all the natural line bundles with Chern classes in the open—closed cube.
Those with arbitrary Chern clasess satisfy s(—I —rp) = O5(—l) @ s(—73) for certain | € L.

In the sequel we write uniformly O (') for s(I’).

Since O might have only cyclic quotient singularities, pg(Xap,0) = h' (O ) and H'(O¢-) =
®rH'(X,05%(—rp)). The dimensions py(Xqp,0)n := h'(X,05%(—rp)) (h € H) are called the equi-
variant geometric genera of (X, 0). Clearly, Y, py(Xab, 0)n = pg(Xap,0) and pg(Xap, 0)o = pe(X,0).

2.3.2. Similarly, if Z € L+ is an effective non—zero integral cycle supported by E, and O, denotes
the sheaf of units of Oz, then Pic(Z) = H(Z, 0%) is the group of isomorphism classes of invertible

sheaves on Z. It appears in the exact sequence

(2.3.3) 0 — Pic’(Z) — Pic(Z2) 2 L'(|1Z]) — 0,
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where Pic’(Z) = H'(Z,0y). Here and in the sequel, L(|Z]) denotes the sublattice of L generated
by the base element E, C |Z|, and L'(|Z]) is its dual lattice.

If Zy > Z; then there are natural restriction maps (for simplicity we denote all of them by the
same symbol 7), Pic(X) — Pic(Zs) — Pic(Z). Similar restrictions are defined at Pic” level too.
These restrictions are homomorphisms of the exact sequences (2.3.1) and (2.3.3):

0 — Pic®(X) = Pic(X) 2% L' —0

¥ T v R

0 — Pic’(Z) — Pic(2) - L'(|Z]) = 0

(2.3.4)

Furthermore, for any I’ € L’ we define a line bundle in Pic(Z) by r(s(I')) = O5(I')|z, and we call
them restricted natural line bundles on Z. They satisfies ¢; (r(s(l'))) = R(l").

We also use the notations Picl/()z) .= ¢7}(I') C Pic(X) and PicR(l,)(Z) = ¢ H(R(I")) C Pic(2)
respectively. Multiplications by Og(—1") and by O (—I")|z provide natural (affine space) isomor-
phisms Picl/()?) — Pico()?) and PicR(l/)(Z) — Pic®(2).

Here an important warning is appropriate. If X’ is a small connected neighbourhood of some
exceptional curves Uyey E,, V' C V), then similarly as for X , but now starting with the invariants
of X', one can define the natural line bundles Oz, (I') for any I' € L'(V'). However, for I’ € L', in
general, if V' # V then O (I')| g, # Ox,(R(I')), though both line bundles have the same Chern class
(here R is the restriction). That is, O (I’)| 5, in general is not the intrinsic natural line bundle of
X'

Similarly, for any cycle Z one can define the (intrinsic) natural line bundles of Z by group section
of (2.3.3) by similar properties as the natural line bundles of X are defined. If |Z| = E then they
agree with the restrictions O (I")|z. However, if |Z| # E then it can happen that O (1')|z is not
natural on Z. This explains the use of the terminology ‘restricted natural line bundle’ for O (I)|z:
they are always restriction from the X-level. In order to simplify the notations we will also write
Oz('):=05x(')|z, ' e L.

For any line bundle £ € Pic(X) we also write £(I') := L ® Ox(I).

2.3.5. One of our main interest is to understand the stratification {£ € Pic(X) : h'(£) = k}rez.,
of Pic(X). In the literature about h'(£) — for arbitrary £ — very little is known. However, about
the natural line bundles (of some special analytic structures (X, o0)) recently several results were
proved, see e.g. [CDGZ04, CDGZ08, N08, N11, N12]. Since some of these facts are used in several
examples and play key role in the general presentation we review them in the next subsection.

2.3.6. The analytic multivariable Poincaré series is defined as follows [N12], see also [CDGZ04,

CDGZ08]. For every L € Pic(X) (respectively, for Z > E and L € Pic(Z)) one defines

HY(X, L)
HO(X, L(—Er))

HY(Z, L)
HY(Z — Er, L(—Er))

Pr o= Z (—=1)+t dim

Icv

and pz ¢ = Z (- dim
Icv

For Z > 0 and £ € Pic(X) one has pr = pzr,. If (ci(£),E,) < 0 for some v € V, then
HY(X,L(—Ers)) — H(X,L(—E;)) is an isomorphism for any I ¥ v (and similar isomorphism
holds for any Z > F), hence

(2.3.7) pe =pze =0 whenever (L) & —S'.
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At the level of X one defines a multivariable series as Py (t) := e pL(_ll)tll. It also has an H-
decomposition Y, Pz p, Prp = Z[l,]:h pﬁ(_l/)tl/, according to the classes [I'] € H of the exponents
of t!'. By (2.3.7) it is supported on ¢;(£) + &’. We write P(t) := Po_(t) =3, pof(_l/)tl/.

The first cohomology of the natural line bundles and the series P(t) are linked by the following
identity proved in [N12]:

(238) hl(jzv 0(_771 - Z)) = - Z PO(—rp—i—a) +pg(Xab70)h + X(l) - (l, 7"h)~
aEL,a,)fO

2.3.9. Recently there is an intense activity in the comparison of the analytic invariant P(t) and
the topological Z(t) (their coincidence imply e.g. the so-called Seiberg—Witten Invariant Conjecture
[N11, N12]). For the equality of P(t) and Z(t) for certain families singularities (rational, weighted
homogeneous, splice quotient) see e.g. [CDGZ04, CDGZ08, N08, N12] and the references therein.
We emphasize that in the previous results in the literature the main goal mostly was to characterize
for special (‘nice’) analytic structures the sheaf-theoretical invariants h'(L) topologically, and those
methods were applicable only for natural line bundles £. In the present note our goal is to treat

h1(L) for any line bundle and for any analytic structure.

2.4. Notations. In the body of the article we will present several examples. In them we will
use the following standard notations. We will write Z,,;, € L for the minimal (or fundamental)
cycle of Artin, which is the minimal non-zero cycle of 8’ N L [A62, AG6]. Yau’s mazimal ideal
cycle Zmar € L is the divisorial part of the pullback of the maximal ideal mx, C Ox,, i.e.
¢p*mx - O = Og(—=Zmaz) - I, where T is an ideal sheaf with 0-dimensional support [Y80]. In
general Zin < Zmaz- Zmin can be found by Laufer’s algorithm [La72]. This algorithm also shows
that h®(Oz, . ) =1, hence h'(Oz, . ) =1 — x(Zmin) is topological.

3. EFFECTIVE CARTIER DIVISORS

3.1. For any Z € L+g let ECa(Z) be the space of (analytic) effective Cartier divisors on Z. Their
supports are zero—dimensional in F. Taking the class of a Cartier divisor provides the Abel map c :
ECa(Z) — Pic(Z). Let ECa! (Z) be the set of effective Cartier divisors with Chern class I’ € L'(]Z]),
that is, ECal/(Z) = c_l(Picl/(Z)). Sometimes we denote the restriction of ¢ by ¢! : ECal/(Z) —
Picl,(Z), " € L'(]Z]). It is also convenient to use the simplified notation ECa’ (Z) := ECaR(l/)(Z)
and Pic (2) := Pic™)(Z) for any I € L.

For any Zs > Z; > 0 (and I’ € L) one has the commutative diagram

ECa’ (Z,) — Pic! (Z)
! L
(3.1.1) ECal (2,) — Pic (Z))

Regarding the existence of ECa(Z) and the Abel map we note the following. First, by a theorem
of Artin [A69, 3.8], there exists an affine algebraic variety Y and a point y € Y such that (Y, y) and
(X, 0) have isomorphic formal completions. Then, according to Hironaka [Hi65], (Y, y) and (X, o) are
analytically isomorphic. In particular, we can regard Z as a projective algebraic scheme, in which
case ECal/(Z ) together with the algebraic Abel map, as part of the general theory, was constructed
by Grothendieck [Gro62], see e.g. the article of Kleiman [K113] with several comments and citations

and the book of Mumford for curves on algebraic surfaces [Mu66]. In particular,

¢:ECa(Z) — Pic(Z) is algebraic.
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(For concrete charts of ECal/(Z) see e.g. the proof of theorem 3.1.10 and for the Abel map in
concrete charts see section 7.) Though these spaces are identified by the general theory, in the body
of this note we verify directly several properties of them in order to illuminate the peculiarities of the
present situation, e.g. we discuss the smoothness and the dimension of ECa!’ (Z) and the structure of
the fibers of the Abel map: the related numerical invariants will be crucial in the further discussions.
Doing this we develop several special properties of the Abel map in the language of invariants of
normal surface singularities; these connections will be exploited deeply.

We write ECa(X) for the set of effective Cartier divisors on X.
3.1.2. Let us fix Z € L, Z > 0. As usual, we say that £ € Picl'(Z) has no fixed components if

(3.1.3) HY(Z,L)eg :=H(Z,L)\ |J H°(Z- E.,,L(-E,))
E,C|Z|

is non—empty. Note that H°(Z, L) is a module over the algebra H°(Oz), hence one has a natural
action of H°(0%) on H(Z, L)req. For the next lemma see e.g. [KI105, §3].

Lemma 3.1.4. L € Picl/(Z) is in the image of ¢ : ECal/(Z) — Picll(Z) if and only if HY(Z, L)reg 7
0. In this case, c™ (L) = HY(Z, L)reg/ H’(O%).

In the next discussion we assume Z > FE basically imposed by the easement of the presentation;
everything can be adopted for any Z > 0, see e.g. 4.1.4 or 5.1.

Note that H*(Z, L)eg #0 = HY(L|p,) #0Vv = (I',E,) >0Vv = ' € —§'. Conversely, if
I'==3, myE}; e =8 (for certain m, € Z>), and I’ # 0, then one can construct for each E, cuts

in X intersecting F, in a generic point and having with it intersection multiplicity m,,. Since I’ # 0

their collection is nonempty, and it provides elements in ECal/()? ) and ECal,(Z ) respectively (the
second one by restriction). However, this collection is empty whenever I’ = 0, hence this special case
needs slightly more attention. By definition we declare that ECaO(Z ) is a space consisting of a point
(what we can call the ‘empty divisor’), ECa’(Z) = {0}, and ¢* : ECa’(Z) — Pic’(Z) is defined as

(D) = Oz. Since for I’ = 0 any section from H®(Z, L)eq trivializes £, one has:
HYZ, L)reg #0 <& L=0z & Lcim(®) (' =0).
Therefore, the above discussions combined provide
(3.1.5) ECa (2)£0 < I'e-§.
The action of H(O%) can be analysed quite explicitly. Note that from the exact sequence
(3.1.6) 0— H(Oz_p(—E)) = H(Oz) 2 H°(Op) =C =0

one gets that H°(0}) = r5'(C*) = H*(Oz) \ H*(Oz_g(—E)). In particular, H°(O%), as algebraic
variety, has the dimension of the vector space H(Oz), PHY(O}) as algebraic variety is isomorphic
with H(Oz_p(—E)), and HO(Z, L)reg/ H(O}) = PHO(Z, £)1eg /PH*(O3).

Lemma 3.1.7. Assume that H*(Z,L)eq # 0. Then
(a) the action of H*(O%) on H(Z, L)yeg is algebraic, free and proper;
(b) PHO(Z, L)req over PHO(Z, L)veq /PH®(O%) is a principal affine bundle.

Hence, the fiber c=1(L), L € im(cl,), is an irreducible quasiprojective variety of dimension

(3.1.8) Oz, L) —h°(Oz) = (I, Z) + h'(Z, L) — h1(Oy).



Abel maps 9

Proof. For s € H°(Z, L)reg the multiplication by s, Oz —%, £, is injective, hence induces injections
H°(Oz) =% HO(L) and H°(O}) —% H°(L),eq. Hence the action is free. Next we prove that the
action of PHY(0%) on PHY(Z, L)yeg is proper.

Introduce hermitian metrics in both H°(Oz) and H°(Z, L£). Write H® := H°(Oz_g(—F)) in
H°(Ogz) and choose h* with H°(Oz) = H® @ C(ht). Set also B := N,H*(Z — E,,L(—E,)) C
HY(Z,L) and let B* be its unitary complement in H°(Z,£). Note that H°(Z,£) \ B is also
stable with respect to the action of H°(O%) = B @& C(ht) \ B® 0. Since H°(Z, L) cg is open in
HY(Z,L)\ B, it is enough to show that H°(Oj) acts properly on H°(Z, L)\ B. Fix K compact
in H(Z,£) \ B and let K’ be its lift to the unit sphere of H°(Z,L). We need to show that if
h=h'+ht € HO®C(ht) and |h°| — oo, and k € K’, then the components (hk);+(hk)2 € B L B+
of hk satisfy |(hk)1|/|(hk)2] — oo. For this note the following facts.

First, H° - H°(Z,£) C B, hence (h°k); = 0. Next, since K’ is compact, |(h1k);| and |(h1k)s]
are bounded from above. Finally, since h°k # 0, for any h° in the unit sphere, the set {|h%k|}y is
bounded from below by a positive number. Hence, whenever |h°| — oo one also has
0

h
|(hk)1l/|(hk)2| = |( k)L + [R] (W k)I/I( k)| = o0
(a) implies (b) (since PHY(03%) ~ H is an affine space) and the equality in (3.1.8) follows from

Riemann—Roch formula. O

Example 3.1.9. Assume that (X,o0) is rational, and I’ € —&’. Then Picl/(Z) = 0, hence if
c1(L) = U then £ = O(l'). Furthermore, £ is basepoint free [Li69, Th. 12.1]. Thus ECal/(Z) =
HY(Z, L)reg/H®(O%) and since the action of H°(O%) is free (cf. 3.1.7), ECal/(Z) is smooth. Since
hY(Z,L) = h'(Oz) = 0 (cf. [Li69, N99b]), its dimension is (I’,Z) (use (3.1.8)). Furthermore,
its topological Euler characteristic is Xtop(ECal/(Z )) = Xtop(PH®(Z, L)1eq), which is the coefficient
z(=1") of the multivariable series Z(t) by [CDGZ08, N08, N12].

These facts generalize as follows.

Theorem 3.1.10. Ifl' € —S’ then the following facts hold.

(1) ECal/(Z) is a smooth complex (irreducible) variety of dimension (I', 7).

(2) The topological Euler characteristic of ECal,(Z) is z(=U"). In fact, the natural restriction
T ECal/(Z) — ECal’(E) is a locally trivial fiber bundle with fiber isomorphic to an affine space.
Hence, the homotopy type of ECal/(Z) is independent of the choice of Z and it depends only on the
topology of (X, 0).

(3) r: ECal,(Zg) — ECal/(Zl) is surjective for any Zo > 7.

Proof. As we already said in 3.1, ECal/(Z) is an algebraic variety, cf. [Gro62, K113]. We need to
construct in the neighbourhood of each Cartier divisor a smooth chart.

First assume that Z = E. Then ECa’ (E) is independent of the self-intersections E2, hence
(keeping the analytic type of E, but) modifying the self-intersections into very negative integers, we
can assume that the singularity is rational. In this modified case, ECal/(E) =P(H(E,O'))reg),
see Example 3.1.9. Note that H(E, O(I'))eg is also independent of the self-intersection numbers,
hence, in any case, ECal/(E) =P(H°(E,O("))reg). In particular, ECa” (E) is smooth, irreducible
and with the required dimension and Euler characteristic, cf. Example 3.1.9.

Let us provide some local charts of ECal/(E). Fix D € ECal/(E) with support {p;}; C E.

If p; € E, is a smooth point of E, then there exists a local neighbourhood U; of p; in X with local
coordinates (x,y) such that {x = 0} = ENU; and D in U; is represented by the local Cartier equation
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{y™} for some m € Zq. Then a local neighbourhood U;(E) of the divisor {y™} in ECa~™%(E)
is given by local Cartier divisors {y™ + f(y)}, where f € O(E NU;) is a small perturbation of
the zero function, modulo the multiplicative action of O*(E N U;). Multiplying y™ by 1 + azy”

m

we get that perturbation of type y™ + Zkzo apy®t™ constitute the orbit of y™ (or, differently
said, Yo ary®tm
this orbit (a;)o<icm — {y™ + >_; aiy'} (lai| < 1) provides a smooth chart U;(E) of dimension

m = (—mE¥ E). Here, —mE? is the local contribution in the Chern class l’.

is the tangent space of the orbit). Therefore, the smooth transversal slice to

Similarly, if p;, = E, N E,, then there exists a neighbourhood U; of p; in X with local coordinates
(z,y) such that {x =0} =U;NE, and {y = 0} = U;NE,, and D in U; is represented by {a"™ +y™},
n,m € Zso. Then, a local neighbourhood U;(E) of 2™ + y™ in ECa~mFv—nF. (E) is given by
{2"+y™ +ap+Y ;5 aix* + 3,5, biy'} modulo the action of O*(ENU;). The orbit of this action at
a+y™ is {z" +ym_—|— Yisn azt + > iom biy Az +y™)}, it is smooth. A possible smooth slice of
itis {z"+y™+ao+ Y iy @it +> 0 biy'}/{an+bm = 0}, which is of dimension (—mE; —nE}, E)
(the local contribution into (I’, E)).

Products of type U(D) = [[, U;(E) constitute a local neighbourhood of D in ECal/(E).

Consider now an arbitrary Z > E and the restriction r : ECal/(Z) — ECal/(E). We show that
ECal/(Z) can be covered by open sets of type 7~ ([[,Ui(E)) = [[,r; '(Ui(E)), where r; is either
the restriction ECa~™F" (Z) — ECa™™Fv (E) or ECa™™E: ~Fu(7) - ECa~™E ~"Fi(E), and each
r; (Ui (E)) is a product of U;(E) and an affine space.

Indeed, assume first that p; is a smooth point of E as above, p; € E,, and let N > 1 be the
multiplicity of Z along E,. Then in U; the local equation of Z is 2V and let us fix a Cartier
divisors in r~}(U;(F)) whose restriction is y™, represented by f := y™ + xg(x,y) for some g €
O(U;) /(2N ~1), modulo O*(U;)/(z™). Multiplication f(1+a;y'zV 1) = f+a;y™T 2N =1 shows that
f+ymaN1OU;) (mod (zV)) is in the orbit. Using this fact, and multiplication by 1 + a;y‘x™ 2
one shows that f + y™xN"20(U;) (mod (z%)) is also in the orbit. By induction, we get that the
orbit is f +y™O(U;) (mod (z)), and it is smooth. A transversal smooth cut can be parametrized
by the chart {y™ + 3>,y <y, @ij'y’ }, Which has dimension (—mE},Z) = mN. For i > 0 the
variables a;; can be chosen as affine coordinates.

More conceptually, in this case, multiplication of f by 1 + h gives f + fh (mod (z)), hence
the orbit is identified with f + ideal(f,x""), which has a smooth section whose dimension is the
codimension of ideal(f,z), that is, the intersection multiplicity (f,z"),, = mN.

Similar chart can be found in the case of p; = E, N E, as well. Let us use the previous notations,
let us fix a divisor f = 2" + y™ + zyg(x,y) whose restriction to F is 2™ + y™, and assume that in
Z the multiplicities of {z = 0} and {y = 0} are N and M. Then the orbit is identified with f +
ideal(f, zNy™), which has a smooth transversal cut whose dimension is the intersection multiplicity
(f,zNyM),, = mN +nM. The mN +nM coordinates of the cut cannot be chosen canonically. We
invite the reader to check that these coordinated can be chosen in such a way that first we choose
the m+n (local) coordinated of the reduces part (as above in the case Z = F) then we can complete
them with m(N — 1) + n(M — 1) affine coordinates.

Taking product we obtain charts of type [[, Ui(Z) := r~ Y[, Us(E)) = ([, Ui(E)) x CH-Z=E),

(3) follows from the description of the above charts. O

3.2. The tangent map of c. The smoothness of ¢7!(£). Assume that £ € Picl/(Z) has no
fixed components. Fix any D € ¢~ (L) C ECaull(Z)7 and let s € H°(Z, L) be the section whose
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divisor is D. Then multiplication by s gives an exact sequence of sheaves
(3.2.1) 0—0z %L —0Op—0.

Division by s identifies £ by Oz (D), hence the above exact sequence can be identified with the exacts
sequence 0 - Oz — Oz(D) — Op(D) — 0 (this is a generalization of the so-called Mittag—Lefler
sequence, defined for effective divisors on curves).

Since Op is finitely supported H°(Op) = Op. Its dimension is (I, Z).

Proposition 3.2.2. The coboundary homomorphism 65 : H*(Op) — H'(Oyz) of the cohomological
long exacts sequence of (3.2.1) can be identified with the tangent map

Tp () : Tp(ECA' (2)) — T,(Pic" (2))

of & at D. Moreover, the Zariski tangent space Tp(c= (L)) of ¢~ (L) at D is identified with its
kernel, hence (by the cohomological long exact sequence) by H°(Z,L)/H®(Ogz). This shows that
dimTp(c7 (L)) = dime (L) at any D € ¢~ (L) (cf. (3.1.8)), hence ¢~ (L) is smoothly embedded
into ECall(Z), and ¢ 1(L), as a subscheme ofECal/(Z), can be identified with HY(Z, L)reg /H®(O%).

This fact reformulated shows that 6% induced on Np(c=' (L)) := Tp(ECd (2))/Tp(c (L)), the
normal space of c=1(L) C ECa" at D, is injective.

Proof. See [Mu66, p. 164], or [KI05, Remark 5.18], or [K113, §5]. O
Corollary 3.2.3. If dim(ECal/(Z)) =1 and ¢ is not constant then im(¢) is smooth.

3.3. The special fibers of ¢'. Though all the fibers of " are smooth, still we wish to distinguish

certain fibers of ¢! with pathological behaviour. There are several types we can consider.

Definition 3.3.1. (a) D € ECal/(Z) is called a critical divisor (point) if rang(7Tpc) < rang(Tp,., c),

where Dgep, € ECal/(Z) is a generic divisor. If (¢/')~(£) contains a critical divisor (point) then £

is a called a critical bundle (value).

’

) C

(b) We say that £ € im(c!") is T—typical (‘tangent-map—typical’) if the linear subspace im(T (¢!
T,Pic" (Z) is independent of the choice of D € ¢~*(L). Otherwise £ is T-atypical.

The prototype of a map with a T-atypical value is the blowing up ¢ : B — C? at the origin

0 € C2: then 0 is a T—atypical value. For such an example realized by a concrete ¢’ see 3.4.3.

Lemma 3.3.2. For fized ' and L € im(cl') consider the following properties:

(i) L is a T—atypical value of &,

(ii) L is a singular point of the closure im(c') of the image of ¢ (where im(cV) is taken with the
reduced structure),

(iii) dim((c")~Y(L)) is strict larger the the dimension of the generic fiber of ¢,

(iv) L is critical bundle,

(v) any D € (Y"YL) is a critical divisor.
Then (iii) & (iv) < (v), (i) = (i) and (it) = (iii).

Proof. The equivalences (iii) < (iv) < (v) follow from Proposition 3.2.2. For (i) = (i) first notice
that ¢=1(L£) is smooth and irreducible, hence it is enough to verify the statement locally at a generic
point of ¢~ !(£). On the other hand, if (iii) is not true, that is, if (locally) rang(Tpc) = rang(Tp,., c),
then c in that neighbourhood is a fibration, hence (locally) the normal bundle of ¢=!(£) is a pullback

of a vector space V, hence (using also Proposition 3.2.2) im(Tp(c)) is constant V.
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(ii) = (i1i). Assume that (i) is not true, hence, as in the previous case, rang(Tpc) = rang(Tp,., c)
for any D € ¢1(£), and ¢ in that neighbourhood is a fibration. im(c) is the image of the quotient
space obtained from the total space by collapsing each fibers into a point. But for any D € ¢=1(L)
the space Np(c=1(L£)) is mapped by Thc injectively onto im(Tpc), and this image is independent of
the choice of D (by the proof (i) = (ii1)). This shows that, in fact, im(c) is immersed at £. Since

the fiber ¢=1(L) is connected, im(c) is in fact embedded. Hence, im(c) is smooth at L. O

Remark 3.3.3. (a) In principle, by general properties of algebraic maps, neither (4i) nor (i) imply
(i) by general nonsense. Indeed, set Y := {(x,y,a) € C3 : y = az?} and consider the projection
p:Y — C? induced by (x,y,a) — (z,y). Then the fiber p~1(0,0) satisfy (iii) but not (i).

Take also Y := C* x C and consider the map Y — C? given by (z,y) — (yz,y?z, y>x). Then the
closure of the image is singular at the origin. This value satisfies () and (i) but not (4).

The implication (i) = (ii) also fails, in general. E.g., if ¢’ is dominant, and £ € im(c!'), then £
is not a distinguished point of the closure of the image even if it is critical, see e.g. 3.4.3. However,
examples suggest the following conjectural property: if ¢" is dominant and some £ € Picl/(Z)
satisfies (74) then £ is not an interior point of im(c).

(b) We wish to emphasize again that ¢ is not proper. In particular, above a small (relative)
neighbourhood in im(cll) of a regular value, the global map " is not necessarily C* locally trivial
fibration (see e.g. Example 3.4.4).

3.4. Examples. Next we exemplify some typical anomalies of the map c.

Example 3.4.1. Fix a topological type of singularities (e.g. a resolution graph) and consider
different analytic structures realizing it. Then not only the dimension of the target of ¢ : ECa’ (Z2) —
Pic' (Z) (that is, h'(Oz)) but also the dimension of the image of ¢’ might depend on the
analytic structure of (X, 0). Indeed, let us fix the following graph (picture from the left):

-2 -1 -7 =2 3 6 1 1 4 8 2 1

3I B QI 3 I

Then (X, 0) is a numerically Gorenstein elliptic singularity with 1 < py < 2; for details regarding
elliptic singularities see [N99, N99b]. Set —!’ := Z,,;, (the minimal cycle, which equals E}, the
cycle shown in the middle diagram), and Z = Zk (the last diagram), hence (Z,l’) = 1. Then
ECa' (Z) = C, and Pic" (Z) = CPs. Write £ = Oy, (— Zmin)-

If p, = 2 (hence (X, 0) is Gorenstein) then £ has no fixed components [N99, 5.4], and h'(Z,£) = 1
[N99, 2.20(d)]. Hence £ € im(c) and dim ¢~ (L) = 0 (use (3.1.8)). Therefore, dimim(c) = 1.

On the other hand, if p; = 1, then Zy0 > Zmin, see e.g. [N99, 2.20(f)]. Hence £ has fixed
components and £ ¢ im(c). Since the fibers of ¢ are connected (cf. 3.1.7), ¢ : C — C (with
L ¢ im(c)) cannot be quasi-finite, hence ¢ is constant and dimim(¢) = 0. (This last statement can
be deduced from Theorem 4.1.1 too, or from 6.3 (i) < (v), where we characterize completely the
cases dim(im(¢"')) = 0.)

Example 3.4.2. The image of ¢ usually is not closed. We construct such an example in two
steps. First, assume that (X, 0) is a singularity with topological type given by the graph I'; from
the left

-3 -1 -13 -1 =3 -3 -1 -13 -1 =3

I E, I's:
-2 -2 -2 -2 o2
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Furthermore, assume that the minimal cycle Z,,;, equals the maximal ideal cycle Z,,,,. In partic-
ular, O(—Znin) has no fixed components. For a detailed study of this singularity (and any analytic
type with the above graph) see [NO17]. Set —l' = Z = Z;, = E¥, and £ := Oz(—Z). Since
(E*,E*) = —1 and the Z(t)—coefficient z(E) = 0, one has ECa' (Z) = C*. In fact, the correspond-
ing effective divisors correspond to the points of E}®9 := E,, \ Sing(F). Using (3.1.8) and [NO17, §4]
(which shows k(L) = 1) one obtains that dimc¢=1(£) = 0. Furthermore, Picl/(Z) = C2 (cf. 2.4),
hence we get an injection ¢ : C* < C2. For any q € E}® = C* we write £, := ¢/’ (¢) € Picl/(Z).

In fact, im(cl/) can be determined explicitly. Let I'; and ', be the subgraphs consisting of the
left /right cusp together with v. They determine minimally elliptic singularities with p, = 1, and
the corresponding restrictions provide the two coordinates in Picl’(Z). Applying [Ha77, 6.11.4] for
these two coordinates we get that im(c!') in some affine coordinates (21, z2) has the form zyz, = 1.

Furthermore, this situation can be used to analyze another singularity (X’, 0), whose im(¢’) equals
im(c) \ {1 point}. Fix an arbitrary point p € E}%9, and glue to the resolution of (X, 0) (associated
with I';) another irreducible (—2)-exceptional curve £, transversally to £, at p. In this way we
create the resolution of a new singularity (X', 0) with exceptional curve E' = {E,}, U {E}} (with
natural notations). The new graph is on the right hand side above.

In the new situation we take —I' = ;" and Z' := Z} ;,, = E*. Then ECal,(Z’) can be identified
with (E.)™ = ET¢9\ {p} = C*\ {p}, and ¢’ : C*\ {p} — C? with the restriction of ¢ to C* \ {p}.
(More precisely, for ¢ € C*\ {p} one has ¢/(q)|z = L, ® Oz(p).) Since c is injective, the image of ¢’
cannot be closed. Via similar construction we can eliminate from the image of ¢ any point.

Example 3.4.3. The map c usually is not a locally trivial fibration over its image, in fact, the
fibers of ¢ usually are not even equidimensional.

Consider the graph I'; from Example 3.4.2. It can be realized also by a complete intersection
(splice quotient) singularity with py = 3, cf. [NW90, NO17]. Set —I' = 2Z,,;, = 2E} and Z = Zpnn,.
Then ECal/(Z) is the double symmetric product of E}¢9, namely C* x C*/Zy ~ C* x C. On
the other hand, Picl'(Z) = C2. (For numerical cohomological invariants see again [NO17].) It
turns out that ¢ is dominant (use e.g. Theorem 4.1.1(3)), hence ¢ is birational, with all fibers
connected. Since Zpar = 2Zmin, L = Oz(—2Zmin) has no fixed components, hence £ € im(c).
Furthermore, h'(L£) = 1 (see e.g. [NO17, (5.4)]), hence dimc¢™1(£) = 1 by (3.1.8) (since h'(Oz) = 2
and (I',Z) = 2). This can be seen in the following way as well. By Riemann-Roch h°(L) = 2
and H°(Oz)* = C*, hence by 3.1.7 ¢=!(£) is 1-dimensional. In particular, the fibers of ¢ are not
equidimensional. (Furthermore, one can show that im(c) is homeomorphic to (C*)2U{(0,0)}, where
(0,0) corresponds to L.)

Example 3.4.4. Even if all the fibers have the same dimension (and by Theorem 3.2.2 they
are smooth) the topology of some fibers might jump. Take for example the graph

-2 -1 -8 -2

By Ep
-3

It supports a non—numerically Gorenstein elliptic singularity. Recall that if C' denotes the el-
liptic cycle (here it is supported on the union of all irreducible exceptional curves except Es),
and (C, Zynin) < 0, then the length of the elliptic sequence is one, cf. [Y79, Y80]. Hence, for
any analytic realization, p; = 1. Take —l' = Z = Z,,;, = Ef + E5. A computation shows
that ECal/(Z) = C?\ {0}. Then ¢ : C?\ {0} — C can be identified with the restriction to
C?%\ {0} of the linear projection C?> — C. Hence the generic fiber is C while there is a special
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fiber ~ C*. By this correspondence Picl/(Z) = C is identified by Fj \ Enode- The generic fibers
correspond to the divisors {p,q}, where p € E{Y ~ C*, and q € E;*Y ~ C; they are sent by ¢ to
p € E1% C E1\ Enode ~ Picl/(Z). Since ¢ can be any point on F5,“Y, the fibers are C. On the other
hand, any divisor given by a smooth cut at Eq N Es, transversal to both F; and Fs, (parametrized

by the slope C*) is sent by ¢ to Eq N Es, whose fiber is exactly this parameter space C*.
Example 3.4.5. For an example when the image of c¢ is singular see Example 12.9.1.

3.5. The topology of the fibers of ¢ and the coefficients of the Poincaré series.

Let us analyse again the fibers of ¢ : ECal/(Z) — Picl/(Z), Z > E. Assume that £ € im(c). Then
{H, := H*(Z — E,, L(—E,))}vey is a proper linear subspace arrangement in H° := H°(Z, L). For
any subset () # I C V write H; := NyerH,, and introduce also Hy := H°. Note that the topological
Euler characteristic satisfies X0p(PH;) = dim Hy, hence by the inclusion-exclusion principle one
obtains
(3.5.1) Xtop(P(HO\ U, H,)) = > (=) dim Hy = (=)' codim(H,; ¢ HP).

Icy I
In particular the analytic invariant pz  (cf. 2.3.6) equals the topological Euler characteristic of
the corresponding linear subspace arrangement complement, pz r = Xtop(P(H?(Z, L)reg)). Using
Lemmas 3.1.4 and 3.1.7 this reads as

Pz = Xtop(c_l (ﬂ))

This fact links the coefficients of the topological series Z(t) and the numerical analytical invariants
pz.c: the Euler characteristic of the total space ECa" is z(—1"), while the Euler characteristic of
each fiber ¢=}(£) (£ € im(c)) is pz .-

Example 3.5.2. Assume that (X, o) is rational. Then Picl/(Z) is a point: if ¢;(£) = I’ then
L = 0O('"). Hence ECa' is the unique fiber ¢ H(O(l")). Therefore, z(—l') = pzouy (I' € =8'), or
Z(t) = Pz o(t). This generalizes the similar identity proved in [CDGZ04, CDGZ08, N08, N12] valid
for Z > 0 (or, for X).

This identity Z(t) = Po (t) is valid for a more general family of singularities, namely for splice
quotient singularities [N12, N08]. (This family was introduced by Neumann and Wahl in [NWO05b,
NWO05]). This identity reinterpreted in our present language says that for any —I’ € &’ and Z > 0
the Euler characteristic of the total space ECal/(Z ) and the Euler characteristic of the very special

fiber ¢=1(O(1")) (over the unique natural line bundle) coincide.

Conjecture 3.5.3. For a splice quotient singularity and —1I' € S’ the fiber c=1(O(1")) is a topological
deformation retract of ECal,(Z).

A detailed study of the Abel map in the case of splice quotient singularities will appear in one of
the parts of the present series of articles.

In the present work we wish to focus (instead/besides of the ‘Pp = Z identity’) on the more
complex package of invariants provided by (all the fibers of) c¢. In particular, we analyse other, less

specific fibers as well, e.g. the generic fibers over im(c).

l

4. CHARACTERIZATION OF Cl DOMINANT

4.1. In order to determine properties of line bundles £ € Pic(Z) with given Chern class we need

first to understand the situations when ¢!’ is dominant.
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Theorem 4.1.1. Fizl' € —=S', Z > E as above, and consider ¢ ECal/(Z) — Picl/(Z).

(1) ¢ is dominant if and only if H°(Z, L)reg # O for generic L € Picl/(Z).

(2) If " is dominant then h'(Z,L) = 0 for generic L € Picl,(Z).

(3) " is dominant if and only if x(=1") < x(=U'4+1) for all 0 < 1 < Z, 1 € L. In particular,
the fact that " is dominant is independent of the analytic structure supported by I' and it can be

characterized topologically (and explicitly).

Proof. For (1) use Lemma 3.1.4. For (2) note that for ¢ dominant the dimension of ECal/(Z) is the

sum of the dimensions of the generic fiber and of the base (which equals h!(Oz)). Hence, by (3.1.8)

and 3.1.10(1), h°(Z, L) = dimc Y (L) + h%(Z) = (I, Z) = hY (2) + % (Z) = (', Z) + x(Z) = x(Z, L).
(3) First note that for any cycle l € L, 0 <[ < Z, and any L € Picl/(Z), one has

(4.1.2) XY = X (U +1) & ZL) < (2~ 1 L(-1)),

where, by convention, x(Z — I, L(—1)) is zero whenever [ = Z.

Assume that ¢ is dominant and the equivalent conditions from (4.1.2) are satisfied for some [, where
0 <1< Z. Take a generic £ € Pic' (). Hence H(Z, L)reg # 0 (cf. part (1)) and x(Z, L) = h°(Z, L)
by part (2). Hence h°(Z,L) = x(Z,L) < x(Z — 1, L(-1)) < h°(Z — 1, L£(=1)). Therefore, by the
cohomological exact sequence of 0 — L(—1)|z_; — L, we necessarily have equality H°(Z—1, L(—1)) =
H°(Z,L). Then for any E, in the support of [ we also have equality H*(Z—E,, L(—E,)) = H*(Z, L),
hence H(Z, L)yeq = 0, which leads to a contradiction.

Assume that x(=1") < x(=I' +1) for any 0 < < Z. This, for | = Z, implies x(Z, L) > 0, hence
necessarily h°(Z, £) > 0 for any L € Picl/(Z). If for a generic £ one has H%(Z, L)yeq = 0, then there
exists E, such that H%(Z,£) = H(Z — E,,L(—E,)). If H(Z — Ey, L(—Ey))reg = 0 again, then
we continue the procedure. In this way we obtain a cycle 0 < | < Z such that H*(Z — 1, L(-1)) =
HY(Z, L) and HY(Z—1,L(—1))reg # 0. Note that for £ generic L(—1)|z_; € Picll*l(Z—l) is generic as
well. Hence ¢!’ ! is dominant and by (1)-(2) h'(Z —1, £(—1)) = 0. Therefore, x(Z, L) < h°(Z, L) =
hO(Z —1,L(-1)) = x(Z—1, L(—1)), which by (4.1.2) reads as x(—1') > x(—I’+1), a contradiction. [

Example 4.1.3. The statement of Theorem 4.1.1(3) is non—empty even for I’ = 0. In this case, since
ECa is a point, ¢ is dominant if and only if Pic’(Z) is a point, that is, h'(Oz) = 0. Hence part
(3) reads as the following topological characterization of the vanishing of h'(Oz): For any normal
surface singularity and any cycle Z > 0, h'(Oz) = 0 if and only if x(I) > 0 for any 0 < [ < Z. (This
is a generalization of the rationality criterion of Artin [A62, A66], which corresponds to Z > 0.)

Remark 4.1.4. Above, we assumed that Z > E. This is not really necessary: if the support |Z]
of Z is smaller then one can restrict all the objects to |Z|, and the above statements (and also the
next Theorem 5.3.1) remain valid. (Along the restriction, X will be replaced by a small convenient
neighbourhood of Ug, |z Ey, and L by Z(E\) g, c|z|-)

4.1.5. The semigroup of dominant Chern classes (Z > 0). Theorem 4.1.1(3) motivates the

introduction of the following combinatorial set
Shom = {=U" | x(=U') < x(=U'+1) for all l € L¢}.

By definition, —I’ € S}, if and only if ¢ is dominant for Z > 0.

Sometimes it is more convenient to use the next equivalent form (note the sign modification):

(4.1.6) Shom =" | x(1) > (',1) for all | € L~o}.
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Lemma 4.1.7. S, has the following properties:
(Z) S(/iom C S/'
(i) 0 € S}, iff L is rational. More generally, for I C'V andn, >0 forallv € I, if Y7 . n,E} €
S, then the components of Uygr E, are rational. Hence, in general, S’ \ S, is infinite.
(1) 8" N (Zk /2 + Sg) C Spopms where S :={l' e L& Q : (I',E,) <0 for all v}.
(w) S, s a semigroup (not necessarily with identity element).
(v) S s an S’ -module, that is, if I} € S}, 15 € S" then I} +15 € S},
(vi) S}, s min-stable, like S’, that is, if 17,15 € Sl then m := min{l}, 15} € S,

om’

om’

Proof. For (i) use (3.1.5) or (4.1.6). (ii) follow from Artin’s criterion. (i4i) is clear. For (iv) — (v)
use (4.1.6): if x(1) > (I1,1) and 0 > (15,1) (cf. (4)), then x(1) > (I +15,1). Next we prove (vi).

We wish to show that x(I) > (m,!) for any [ > 0. Set x; =} —m (i = 1,2). Assume first that
[ > x4, and write | = x;+2. Then from the assumptions x(z1) > (m+z2, z1) (equality only if z; = 0)
and x(z) > (m+x1, z) (equality only if z = 0). These added provide x(I) > (m, 1)+ (x1,z2) > (m,1).

Next assume that [ # x1, and choose u; > 0 minimal, supported by the support of z1, such that
I+uy > x1. Then the hypothesis applied for I{ = m+x1 gives x(I+u1 —21) > (m+x1,l+u; —21)
(equality only if I + w3 — 21 = 0) and applied for I, = m + x5 gives x(z1 —u1) > (m + 22,21 — uy)
(equality only if x1 —uj = 0). These added gives x(I)—(m, 1) > (u1,l4+u1 —z1)+(z2, 21—u1) > 0. O

Corollary 4.1.8. (i) For any —l' € L' there exists a unique minimal lgon, € L>o with =" 4+ laom €
Shom-

(7)) laom can be found by the following algorithm (see the analogy with [La72]). We construct a
computation sequence {z;}i_., (where zip1 = z; + Ey(;y for some v(i) € V) as follows. Fix a generic
line bundle L € Picl/()?). Start with zo = 0. Assume that z; is already constructed and consider
L(—2;). If H(L(~2;)) has no fived components then stop and z; is the last term z,. If HO(L(—2;))
has a fized component, choose one of them, say E,@y, and write z;y := z; + Ey) and repeat the

algorithm. Then this procedure stops after finitely many steps and z¢ = lgom -

Proof. (i) Set D := (=l' + L>o) NS}, Then D # O by 4.1.7(ii7) and it has a unique minimal
element by 4.1.7(vi).

(7i) We show inductively that z; < l4,,, and the construction stops exactly when z; = lgom. Note
that zo = 0 < lyom. If 2; = lgom then —I' + z; € 8/, hence by Theorem 4.1.1(1) H°(L(—z;)) has

no fixed components, hence we have to stop.

om?

If, by induction 2z; < lgom, we have to show that the algorithm does not stop and z;11 < lgom
as well. Indeed, if —I' + z; < —U' + lgom then —I' + z; & S/}, by the minimality of lgo.,, hence
by Theorem 4.1.1 H°(L(—z;)) has fixed components. Hence the procedure continues. Note also
that the generic section of H°(L(—~l4om)) has no fixed components, hence the fixed components of
H°(L(—2;)) should be supported on lgom — 2. Hence z; + E, ;) < liom- O

Remark 4.1.9. Though &, is defined above combinatorially/topologically, it shares (see e.g. (iv)
and (vi)) several properties of an analytic semigroup associated with an analytic structure supported
on I". This ‘coincidence’ will be clarified completely in the forthcoming part [NN18], where we prove

that the analytic semigroup associated with the generic analytic structure is exactly S, U{0}.

5. COHOMOLOGY OF LINE BUNDLES AND dimim(c!)

5.1. Line bundles with ¢;(£) ¢ —S’. Recall that by (3.1.5) ECal/(Z) # (0 iff I’ € —S’. Hence any
result based on the Abel map uses I’ € —S’. E.g., in this section we establish a sharp lower bound
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for h'(Z, L) whenever c;(£) = I' € —§’. Before we provide that statement we wish to emphasise
that this extends automatically to the case of all bundles £, even if ¢; (L) & —S'.

Indeed, it is known that for any « € L’ there exist s(z) = x4+ € L’ with the following properties:
(a) s(z) € §’, (b) I € L>g, (c) s(x) is minimal with properties (a)-(b). Furthermore, the cycle [ can
be determined explicitly using a generalized Laufer sequence [NO7, Prop. 4.3.3]. One constructs a
computation sequence {z;}!_, 20 = 0, zi41 = 2z + E,(;) for some v(i) € V inductively as follows. If
x+2z; € 8 then one stops, and automatically ¢ = ¢ and z; = . If there exists E, with (z+2z;, E,) >0
then choose E,, ;) as such an E,, and one defines z;11 = z; + E,(;). Along the computation sequence
i — x(z + z;) is decreasing. Furthermore, if Z > I, then the sequence applied for © = —I' = —¢; (L),
we get that h®(Z — z;, £(—2;)) is constant, and

(5.1.1) h'(Z,L) = h'(Z — 1, £(-1)) — x(Ll;) and e (£(-1)) € —S.

Here, clearly, x(L£];) = (I',1)+x(1) = x(=U'+1)—x(=1"). If I £ Z, then one constructs a computation
sequence inductively as follows: if —I'+z; € §'(]Z—z;]|) (the Lipman cone associated with the support
|Z — z;|) then one stops, otherwise there exists E, ;) (identified as above) supported on Z — z;, which
provides ziy1 = 2; + Ey(;). In particular, for any £ € Pic(Z), there exists [ € Lx¢ such that
—c1(L(=1)) € §'(|Z —1]), and (5.1.1) holds.

Summarized, the computation of any h'(Z, L), up to the topology of the graph, can be reduced
to the case —c1 (L) € &’ (maybe supported on a smaller set).

5.2. Semicontinuity. We emphasise another specific fact as well: since " is not proper, the
semicontinuity of the dimension of the fiber (with respect to the points of the target) does not follow

automatically from the general theory. Nevertheless, we have the following result.

Lemma 5.2.1. h%(Z, L) and h'(Z, L) are semicontinuous with respect to L € Picl/(Z), In particu-

lar, via (3.1.8), dimc=Y(L) is also semicontinuous with respect to L € Picll(Z).

Proof. Consider a covering by small balls {U,}, of X. Since L|y, is trivial for any « and L,
H(Z,L) =ker(0z : ®aH(Ozlv.) = BazpH’(Oz|u.nv,)), where the L-dependence is codified in
§c. But the corank of the linear map (hence, consequently h%(Z, L) too) is semicontinuous. The
semicontinuity of h'(Z, L) follows by Riemann—Roch. O

5.3. We prove the following sharp semicontinuity inequality.

Theorem 5.3.1. (1) Fiz an arbitrary I’ € L. Then for any L € Picll(Z) one has

h'(Z, L) > x(—1U") — ming<i<z 1er X(=I' + 1), or, equivalently

5.3.2
G32) h0(2,2) > maxociesien X(Z 1 L(~1)) = maxosiezier{ X(Z 1)+ (Z =11 — 1)}

Furthermore, if L is generic in Picll(Z) then in both inequalities we have equality.
In particular, h*(Z, L) is topological and explicitly computable from L, whenever L is generic.
(2) Assume that ' € =S’ and ¢ is not dominant. Then the inequalities in (5.3.2) are strict for
any £ € im(&").

Proof. (1) The two inequalities (and the corresponding equalities) are equivalent by Riemann—Roch.

We will prove the statement for h°. For any [ and £ (by a cohomological exact sequence) one has
(5.3.3) RO(Z, L) > h(Z —1,L(=1)) > x(Z — 1, L(-1)),

hence the inequality follows. We need to show the opposite inequality for £ generic. Clearly, if
h%(Z,L) = 0, then the opposite inequality follows (take e.g. | = Z). Hence, assume h°(Z, L) # 0.
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Then, as in the proof of Theorem 4.1.1, there exists 0 < I < Z such that h°(Z, £) = h%(Z —1, L(-1))
and HY(Z — 1, £(—1))reg # 0. In this case I' =1 € =&’ by (3.1.5) and (by Theorem 4.1.1) h!(Z —
I,L£(—1)) = 0 as well. Hence h%(Z, L) = x(Z — 1, L(—1)) < maxo<;<z X(Z — |, L(=1)).

(2) Assume that h°(Z,£) = maxo<i<z x(Z — I, £(—1)). If the max at the right hand side can
be realized by a certain Iy > 0 then using (5.3.3) for Iy we get that h®(Z,L£) = h°(Z — ly, L(—1p)),
hence £ has fixed components, that is, £ ¢ im(cl'). On the other hand, if the max is realized only
by I =0, then ¢ is dominant by Theorem 4.1.1(3). (]

Since Hl(f(,ﬁ) =lim. z H'(Z, L), cf. [Ha77, Th. 11.1], we obtain the following.

Corollary 5.3.4. Forl’ € L' and any L € Picl,(f() one has WY (X, L) > X(=1")—minjer_, x(~I'+1).
Equality holds whenever L 1is generic in Picl/(f(). Furthermore, if I € =S’ and ¢ is not dominant,
then h*(X, L) > x(=1') — miner., X(—I' +1) whenever L € im(c!).

Example 5.3.5. Assume that I’ = 0 and h!'(Oz) # 0. Then c° is not dominant, hence h'(Z, £) >
—ming<;<z x(I) for any £, and h'(Oz) > 1 — ming<;<z x(1).

Moreover, for generic £ € Pic’(Z) one has h'(Z, L) = —ming<;<z x(I). This for Z > 0 and T
elliptic reads as hl()? , L) = 0; this fact for minimally elliptic I" was proved by Laufer in [La77], and
for arbitrary elliptic case in [N99].

Example 5.3.6. Consider the situation of Corollary 5.3.4. For certain topological types one can
find for any I explicitly a cycle Iy € L>o which realizes minjer_, x(—1I' +1) = x(~I' + lmin)-
Indeed, consider the construction x — 2 + 1 = s(x) described in 5.1. Since x is decreasing along
the sequence, (%) x(s(x)) < x(z). Next, assume e.g. that the lattice has the property that x(I) >0
for all [ € L>o (hence the graph is either rational or elliptic). Then for any s € S’ one has (xx)
x(s) < x(s+1) for all I € L>o.

We claim that for rational and elliptic singularities minjer,_, x(—1" +1) = x(s(=1")).

Indeed, by (*) one has x(=U' + lnin) > x(s(=U' 4+ Linin)), and by the universal property of the
operator s one also has s(—I' + L) > s(=1'), hence by (x*) x(s(=I' + lmin)) > x(s(=1")).

In particular, for rational and elliptic germs h'(X, £) = x(—I') — x(s(—1')) whenever £ is generic.

See also Corollary 5.5.2, where we prove for any (X, o) the existence of a unique minimal cycle
with the property of l,,in.

5.4. In parallel to S} ,, (see 4.1.5), Corollary 5.3.4 indicates another subset of L’:
(5.4.1) Van' :=={=1I" | x(=I') < x(=U'+1) for all | € L>o}.

This indexes those cycles —I’ for which h'(X, £) = 0 for generic £ € Pic" (X).

For arbitrary line bundles £ € Pic! (X ) the existent vanishing theorems formulate sufficient (but
usually not necessary) criterions. E.g., h*(X, L) = 0 for any (X,0) whenever —I' € Zx + &’ (this
is the so-called Grauert-Riemenschneider vanishing) [GrRie70, La72, Ra72], or, for rational (X, o)
whenever —!’ € 8’ (Lipman’s Criterion) [Li69]. Even so, Corollary 5.3.4 provides a necessary and
sufficient vanishing condition for generic line bundles, which, surprisingly, is independent of the
analytic structure of (X, 0). Van' lists precisely the corresponding Chern classes.

For rational singularities (since h'(X, £) depends only on ¢;(£), cf. [N0O7, 4.3.3]), h}(X, L) =0
for any line bundle with fixed ¢1(£) exactly when —c¢;(£) € Van'. This is not valid for more general
singularities: —I’ € Van' does not guarantee the vanishing h' (5( , L) = 0 for non—generic (hence for
arbitrary) bundles. E.g., in the elliptic case, 0 € Van', however hl()?, O%) =pg > 0.
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Though most of the statements of the next lemma will not be needed in this first part of the
series of articles, for completeness and further references we list some properties of Van' (which can
be compared e.g. with those from Lemma 4.1.7). Note that a semigroup module structure of type

(iv) usually is not studied/observed in vanishing theorems.

Lemma 5.4.2. Van' satisfies the following properties:

(i) Van' C {l'|(I', Ey) <1 for all v}; in general Van' ¢ S’ (e.g. for rational singularities each
E, € Van'), furthermore S}, C Van/,

(i) 0 € Van' iff L is rational or elliptic,

(i1i) Vaan' is not necessarily a semigroup (2E, & Van' if |V| > 1, ¢f. (1)),

(iv) Van' is closed to the 8'—action,

(v) Van' is min—stable,

(vi) Van' \ 8" might have infinitely many elements (e.g. if E, € Van' then E, +8’ C Van’' too),

(vii) Van' is not necessarily in the first quadrant, however Van' N L is in the first quadrant
for a minimal resolution (hence for L generic and with c1(L) € L, the vanishing hl()z,ﬁ) implies
(L) <0).

Proof. For (i) take | = E, in (5.4.1), and check h!'(O(—E,)) = 0 for rational germs. For (iv) — (v)
repeat the arguments from the proof of 4.1.7. For (vii) note that if the graph consists of a (—1)
(resp. (—2)) vertex then —F (resp. —F/2) is in Van'. On the other hand, if —I’ = x; — 3, where
x1, 22 € L>o have no common E, in their supports, then x(—I') < x(—I' + z2) implies x(—z2) < 0.
But, in a minimal graph if xy(—z) < 0 and « > 0 then = 0. Indeed, take E, C |z| such that
(Ey,z) < 0. Then x(—z + E,) < x(—z) < 0. If we continue the procedure, in the last step we get
X(—FEy) < 0 for some w, a fact which can happen only if F,, is a (—1)—curve. O

Remark 5.4.3. In Theorem 5.3.1 (see also Corollary 5.3.4 too) the set of ‘generic’ line bundles
Le Picl/(Z) which satisfy (5.3.2) with equality is not explicit. There exists an open Zariski set for
which (5.3.2) holds with equality, but this usually is not the complement of im(¢!'). In other words,
the complement of im(c! ) might have a non—trivial stratification according to the values of h!(Z, L),
and the Zariski open strata corresponds to the ‘generic’ bundles of Theorem 5.3.1.

Indeed, take the graph I'; from Example 3.4.2, and consider the splice quotient analytic structure
on it (for details see e.g. [NO17]). In particular, p, = 3. Set Z > 0 (e.g. Z = Zk), and
L = Oz(—Zmin). Since h(Oz ) =2 and h*(X,O(=Zmimn)) = 1, one also has h'(Z, L) = 1.
Note also that the maximal ideal cycle Z,,4s is 2Zmin, hence £ & im(c~%mi). On the other hand,
min x = X(Zmin) = —1, hence h'(Z, Lyen,) = 0 for generic bundles L., € Pi¢ = Zmin (Z). Hence, the

complement of im(c~%min) has a non—trivial h'-stratification.

5.5. The cohomology cycle of line bundles. If (X, 0) is a singularity with p, > 0, then its
cohomology cycle (associated with a fixed resolution ¢) is the unique minimal cycle Z.,, € L+ such
that py = hY (Zeon, O%). We extend this definition as follows.

Proposition 5.5.1. (a) Fiz a line bundle £ € Pic(X) with h*(X,L£) > 0. The set Ly := {l € Lx :
h(1, L) = h*(X,L)} has a unique minimal element, denoted by Zeon (L), called the cohomological
cycle of L (and of ¢). It has the property that h'(l, L) < h*(X, L) for any | # Zeon(L) (1> 0).

(b) Fiz Z > 0 and L € Pic(Z) with h'(Z,L) > 0. The set Ly :={l€ L, 0<1<Z : h'(,L£) =
hY(Z,L)} has a unique minimal element, denoted by Zeon(Z, L), called the cohomological cycle of
(Z,L). It has the property that h*(l,L£) < h'(Z, L) for any l * Zeon(Z,L) (0 <1< 7).

Proof. The proof of [Re97, 4.8], valid for O, can be adopted to this situation as well. O
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If h*(X, L) = 0, then by convention Zeo, (L) = 0.
Corollary 5.5.2. (a) For anyl' € L' consider the set
Luri= {lmin € Lo | X(=1'+ bmin) = min x (=" + D)}

Then Ly has a unique minimal element Z.on(l'), which coincides with the cohomological cycle of
any generic L € Picl/()?).
(b) For any Z >0 and !’ € L' consider the set

LZ,l’ = {lmln S L7 0 S lmln S 27 | X(fl/ + lmzn) = X(fl/ + l)}

min
0<i<Z, €L
Then Lz has a unique minimal element Zon(Z,1"), which coincides with the cohomological cycle
of any generic L € Picl/(Z).
Proof. Combine Theorem 5.3.1 and Proposition 5.5.1. O

Corollary 5.5.3. (1) Elements of type —U' + Z.on(I') (I € L') belong to Van'.
(2) If =U' < =" then —U' + Zon(I') < =" 4+ Zeon(l") as well. Furthermore, if =" < =" <
U Zoon () then 1 + Zuon(I') = —1" + Zeon(I").

Example 5.5.4. Assume that L is numerically Gorenstein (that is, Zx € L). Then by [KN17,
Lemma 6] (and x(I) = x(Zx — 1)) one gets Zopn(I' =0) < Zg /2.

5.6. The dimension of im(c). For an arbitrary element £ of the image im(c : ECal/(Z) —

Picl/(Z)) one has dimim(c) + dimc¢™1(£) > dimECal/(Z) = (I',Z), with equality whenever L is

a generic element of the image im(c). This combined with Lemma 3.1.7(b) gives the following.

Proposition 5.6.1. For any £ € im(c'') C Picl/(Z) one has
(5.6.2) h(Z, L) > h'(Oz) — dim(im(c")) = codim(im(c")).

In (5.6.2) equality holds whenever L is generic in the image of ¢ (that is, generic with the property
HO(Z,L)eg # 0). This fact and Theorem 5.3.1 applied for the generic element of im(c) imply

6. im(im(c")) > x(=I') — min_ x(=I' +1).
(5.6.3) codim(im(c" )) > x(=1") oin, x(=l'"+1)
Furthermore, if ¢ is not dominant then the inequality in (5.6.3) is strict.

In general, the codimension of im(c) cannot be characterized topologically. Indeed, take e.g.
I' =0, then im(c) is a point with codimension h'(Q). Moreover, by Example 3.4.1, the dimension

of im(c) is not topological either.

5.7. Upper bounds for h!'(Z, £). Theorem 5.3.1 and Corollary 5.3.4 provide sharp lower bounds
for h*(Z, L) and h! ()Z', L). A possible upper bound is given by the next proposition.

Proposition 5.7.1. Fiz Z > 0 and an arbitrary L € Pic(Z) with l' = ¢;(L£) € =8’
(a) If h°(Z, L) = 0 then h*(Z, L) < —x(Z) < h*(Oyz).
(b) If HY(Z, L)reg # 0 then h'(Z,L£) < h'(Oz).
(¢c) In general, if R°(Z, L) # 0 then

(5:7.2) W(2.L) < max {h(O71) + x(~1) = x(~1'+1)} < h'(Oz) +x(~1') = min x(~I'+1).

In particular, by (5.8.2) and (5.7.2), h*(Z, L) takes values in an interval of length (at most)
h'(Oz).
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Note that h!'(O0z) < maxo<i<z{h*(Oz_;) + x(—1") — x(—' + 1) } (take [ = 0). Hence (b) gives a
better bound than (¢) whenever H(Z, L)eq # 0. (Examples with h'(Z, £) £ h'(Oz) exist even for
I =0, see e.g. Example 8.2.4 in part IT [NN18], when we will treat the generic analytic structures).

Furthermore, (c¢) for I = 0 reads as h'(Z, £) < maxo<i<z{h'(Oz_;) — x(I) }, which for Z =
Zk € L transforms into h'(Zf, £) < maxo<i<z,{ W' (O1) — x(1) } (use x(Zx —1) = x(1)).

Proof. (a) WM (Z,L) = —x(Z,L) = —x(Z) — (Z,I') < —x(Z) = —h°(Oz) + h}(Oz).

(b) Multiplication by a generic s € H(Z, L) gives an exact sequence of sheaves 0 — Oz — L —
F — 0, where F is Stein. Hence H'(Oz) — H(Z, L) is onto and h*(Z, L) < h1(Oy).

(c) If [ is the fixed divisor of £ supported on E, then from the exact sequence 0 — L(—1)|z—; —
L — L], — 0 we get h'(L) = h'(Z —1,L£(-1)) — x(L];), and L£(—1)|z—; has no fixed components.
Hence h'(Z —1,L£(—1)) < h*(Oz_;) by (b). O
Remark 5.7.3. The inequality h'(Z,£) < h'(Oz), valid for the case when £ has no fixed compo-
nents, has the following geometric interpretation, cf. (3.1.8): h1(Oz) — h'(Z, L) = codim(c~1(L) C
ECal/) > 0. The inequality for £ = O(—I), l € Lsq, was already proved in [OWY14, Th. 3.1].

5.8. The h!'-stratification of Pic' (2). Fix Z > 0, ' € -8’ and k € Z with

AN . oy < < pl AN . ot )
X(=1) = min x(=1'+1) <k <h(Oz) +x(=1) = min x(=I"+1)

Definition 5.8.1. For any !’ and k as above we set
(5.8.2) Wy g = {L e Pid" (Z) : W(Z,L) = k}.

From the semicontinuity lemma 5.2.1 we automatically have for the closure Wy
(5.8.3) Wi c{LePic'(2) : BN(Z,L) > k}.

These sets constitute the analogs of the Brill-Noether strata defined for projective curves by the
Brill-Noether theory, see [ACGHS85, F110] and the references therein.

Lemmas 5.6.1 and 3.3.2 have the following consequences.

Corollary 5.8.4. Fiz ' € —8'. Then im(¢") ¢ W,

’ . .
bundles of ¢ are included in Wi codim im(ct’ )+1-

«codimim(ct’y- Furthermore, the set of critical

Example 5.8.5. If the fibers of ¢’ over im(¢!’) are not equidimensional, then im(c!') consists of more
strata of type Wy i, (see e.g. Example 3.4.3). But, even if the fibers over im(c!") are equidimensional,
hence im(c!’) consists of only one stratum, it can happen that ¢! is not a (topological) locally trivial
fibration over im(cl/), see e.g. Example 3.4.4. In particular, ¢’ over a strata Wi i usually is not a

(topological) locally trivial fibration.

6. ‘MULTIPLE’ STRUCTURES. THE ‘STABLE’ im(c!).

6.1. Monoid structure of divisors. In this section we will exploit the additional natural additive
structure s'1/2(Z) : ECal/l(Z) x ECal2 (Z2) — ECalllH/?(Z) (11,15 € —=8’) provided by the sum of the

divisors. (Sometimes we will abridge s'2(Z) as s.)
Lemma 6.1.1. s/l (Z) is dominant and quasi—finite.

Proof. An effective divisor decomposes in finitely many ways, hence the quasi—finiteness follows.

Since the dimensions of the source and the target are equal, cf. Theorem 3.1.10, s is dominant. [J
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In general, s is not surjective. E.g., in Example 3.4.4, the elements of ¢~!(E; N Ey) = C* are not
in the image of s%1:72 (Z).
There is a parallel multiplication Pich (Z) x Pic’ (Z) = Pichti (Z), (L1,L2) — L1 ®Lsy. Clearly,

i+l o slile = (i @ l2 in Picit2. In the next discussions we replace ¢!’ by the composition
~' . v R 0z(<') p. 0
¢ :ECa’ (Z) — Pic’ (Z) — " Pic (2),

where the second map is the multiplication by the natural line bundle Oz(—1"). Since Oz(l} +1}) =
Oz(1}) ® Oz(1) we also have @172 o shlz = &1 @ @2 in Pic®. After identification of Pic® with (the
additive) H'(Oy), this reads as @112 o 112 = &1 +-¢2 in H'(Oyz). The advantage of this new map
is that it collects all the images of the effective Cartier divisors in a single vector space H'(Oyz).

Lemma 6.1.1 and the construction imply

(6.1.2) im () 4+ im(¢2) C im(&172) C im () + im ().

Definition 6.1.3. For any I’ € -8’ let Az(l') (if there is no confusion, A(I’)) be the smallest
dimensional affine subspace of H'(Oz) which contains im(¢"'). Let Vz(I') be the parallel vector
subspace of H!(Oz), the translation of Az(l') to the origin.

Remark 6.1.4. From this definition follows that dim Vz(I’) is greater than or equal to the dimension
of the Zariski tangent space at any £ € im(c”(Z)); in particular, dim Vz (")) > dimim(c (2)).
Hence, by (5.6.2) one also has dim Vz (') > h'(Oz) — h'(Z, L) for any L € im(c" (Z)).

Example 6.1.5. In general, im(¢") ¢ Az(I'); take e.g. the first case of Example 3.4.2, when
dimim(¢!') = 1 and Az (') = C2. (The fact that Az(I') = C? can be deduced in the following way
as well. ¢ is dominant for n > 1, hence Az (nl’) = C2. But Vz(I') = Vz(nl'), see e.g. the next

Lemma.)
Using (6.1.2) one obtains the following properties of the spaces {Az(l')}; of HY(Oz):

Lemma 6.1.6.

(a) Az(1+1) = Az(I1) + Az(ly) == {a1 + a2 : a; € Az(l}}; in particular, Vz(1]) C Vz(1%)
whenever I} <1y and Vz(nl') = Vz(I') for any n > 1.

(b) For any —l' =5 a,E} € S let the E* —support of I be I(I') :== {v : a, # 0}. Then Vz(I")
depends only on I(1").

E.g., if I(') =V, then ¢ is dominant for any n > 1 (use Theorem 4.1.1(3).) Hence, Vz(I') =
Vz(nl') = HY(Ogz).

Proof. (b)) Vz(I') CVz(I' +nE}) C Vz(I')+ Vz(nEY) C Vz(I') + Vg (EE) C Vz (') for v e I(I'). O

Definition 6.1.7. (a) 6.1.6(b) motivates to use the notation Vz(I) for Vz (') whenever I = I(I').
Hence Lemma 6.1.6(a) reads as Vz(I1 U I2) = Vz(I1) + Vz(I2).
(b) If Zy > Z, then the restriction (cf. 3.1) satisfies 7(Vz,(I")) = Vz, (I), hence dim Vz,(I") >
dim Vz, (I') and the pair Vz(I') C H'(Oy) stabilizes as Z increases. Set (Vg(I') € H'(Og)) for
lim (Vz(l/) C Hl(OZ)) and (Vf(([) C Hl(O);)) = lim (Vz(I) C Hl(OZ))

Remark 6.1.8. & : ECal'(Z) — Pic’(Z) = H'(Oy) has a very strong hidden rigidity property as
well. Assume e.g. that Z > E and ECal/(Z) is 1-dimensional. Then ECal’(Z) can be identified with
some E7°9 := E, \ Uy, Ey. Therefore, the symmetric product ECal/(Z)X”/Gn (where &,, is the
permutation group of n letters) embeds as a Zariski open set into ECa™ (Z). Hence, by Lemma 3.1.7,
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the generic fibers of the restriction of &’ (ECal/(Z)X"/Gn — HY(Oy), [D1,---,D,] = 3, & (Dy))
must be irreducible. This fact imposes serious restrictions for a map to be equal to some .

E.g., C — C2, ¢t — (t,t%) is not birational equivalent with a certain & . Indeed, its ‘double’,
C*2/&y — C2, (t,8) +> (t + s,t* + s*), rewritten in terms of elementary symmetric functions reads

as C? — C2, (01,09) + (01,01 — 40907 + 203), which has non-irreducible generic fibers.

By the next theorem, V(I') = H'(Oy) if and only if ¢’ is dominant for n > 1; and in 6.3 we will
characterize those cases when Vz(I') = 0. But besides these two limit situations the construction
provides a rather complex linear subspace arrangement {Vz(l')};/, which, in general, contains deep

analytic information about (X, o).

Theorem 6.1.9. Fizl' € =S’ and Z > 0 as above. Then for n > 1 the following facts hold.
(a) The image of & is the affine subspace Az(nl') of HY(Oyz) (a translated of Az(l")).
(b) All the (non—empty) fibers of & have the same dimension.

In particular, for any L € Pic"l/(Z) without fized components (and n>> 1) one has

(6.1.10) h'(Z,L) = h'(Oz) — dim Vz (') = codim (V2 (I') € H'(Oy)).

(c) Let I C'V be the E*~support of I'. Decompose Z as Z|; + Z|y\; according to the supports I
and V\ I. Then for all L € Pic"l/(Z) without fived components (and n>> 1) h*(Z, L) depends only
on the E*—support I of l':

(6.1.11) h'(Z, L) = h'(Og,,,)-
Hence, by (6.1.10),
(6.1.12) dimVz(I) = h'(Oz) = h'(Og,,,).

In particular, if ()Z'/EV\I, oy\1) denotes the multi-germ (the disjoint union of singularities) obtained
by contracting the connected components of Ey\y in X, then for Z > 0 we obtain

(6.1.13) dim V(1) = py(X, 0) — pg(X/E\1,001)-

Therefore, Vy(I) = HY(Oz) = CPs(X:0) if and only if T'\ I is a disjoint union of rational graphs.
(d) With the notations of (c), Vz(I) = ker(H(Oz) — Hl(OZ|v\I)),
(e) Any L € Pic”l/(Z) without fized components is generated by global sections.

Remark 6.1.14. (a) In (6.1.10) h'(Z,£) > —x(Z, L) (since h°(Z, L) > 0), which gives a topological
lower bound for codim(Vz (') ¢ H(Oz)).

(b) (6.1.13) generalizes the ‘p,—additivity formula’ of Okuma [O08], which was proved for splice
quotient singularities, for details see 9.3. Note that the present formula is valid for any singularity.

(c) Part (a) of Theorem 6.1.9 is equivalent (by a similar argument as the proof of Lemma 6.1.6 (b))
by the following statement: (a’) If —I' = " _; a,E; with a, > 0 (but no other relations between
them), then the image of ¢ is an affine subspace, a translated of Vy (I).

(d) Parts (b)—(c) of Theorem 6.1.9 imply that im(c™') (for n > 1) is closed and consists of only
one hl-strata: im(c"') = Wt 11 (05) —dim Vs (1)

Proof of Theorem 6.1.9. (a) Write A(I') as a + V(') for some a € A(I'). Then by (6.1.2) im(&"') c
na+ V(I'). We have to show that for n > 0 we have equality im(¢™') = na + V(I').

We choose smooth points 21, .. .,z in im(¢") such that the tangent spaces T}, im(&" ), translated
to the origin, generate V(I’). Then taking Zariski neighborhoods U; of z; in im(Eil)7 we notice that
(=i 4+ Ui) contains a Zariski open set of V(I'). But Y,(—z; + U;) € 3,(—z; +im(@))
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—> T+ im(¢#') ¢ V(I’), hence — T+ im(¢"") contains a Zariski open subset of V(I'). On
the other hand, if U is a Zariski open set of a vector space V', then U + U = V. This shows that
im(¢2") is an affine space associated with V().

(b) If we replace I’ by some multiple if it, by part (@) we can assume that & : ECal,(Z) — HY(Ogz)

has image A(l'). Consider the following diagram (for some m € Z~o which will be determined later):

(ECa (2))™ - ECa™ (2)
Y L aml’
(A@))™ = A(ml)

Fix any © € A(ml'). Since ®¢ and ¥ are surjective, the fiber (@™')~!(x) intersects im(s) at
some point p. Since the source and target spaces of s are smooth of the same dimension, by Open
Mapping Theorem (see e.g. [GR70, p. 107]) there exists an (analytic) open neighbourhood U of
p (hence intersecting the fiber) contained in im(s). Hence, using also the quasi-finiteness of s,
dim(@")"1(z) = dim(@ o s)"'(x) = dim(X o ® )" (x). Thus, if x = (z1,...,2,) are the
coordinates in ( A(I') )™, then we have to analyse the set (@& )~ {x : > @i = x} for any fixed .

In A(l’) there is a Zariski open subset U, with the following two properties:

(i) for any y € U, the fiber (¢"')~!(y) has the minimal possible dimension, namely dim ECa" (Z)—
dimAl) = (', Z) — d(l');

(i) if F:= A(I')\ U is its complement, then dim(&@)~!(F) < dim ECal,(Z) =", 2).

We stratify H, := {x : ), x; = x} with the sets 7, :== {x € H, : #{i:2; € F} = k}, where
0 <k < m. Set also EF, := (&)~ Y(Fp).

Then Fy is a non—empty open set of H,, of dimension (m—1)d(!’), hence dim EFy = (m—1)d(l')+
m((',Z)—d(l")) = (ml’', Z) — d(I'). Next we estimate the dimensions of the other strata as well.

First, we consider the case 1 < k < m. Then F is covered by several components according to the
position of I = {i1,...,1;} indexing those x; which belong to F. Fix suxh a component Fj r, and
write (6961/)*1(]:;“) = EFj 1. We consider the projection pry : Frr — MiF, x = (ziy,..., i),
and the lifted one Epry : EFj 1 — I_II(Eil)_l(F). Note that Epr; is an injection and its target has
dimension < k((I', Z) — 1). Furthermore, the fibers of Epr; have dimension (m —k — 1)d(l') + (m —
YU, Z2)—d(l")) = (m—Fk)(I',Z)—d(l"). Hence, dim EFy; < (m—k)(I',2)—d(I")+k((I',Z)-1) =
(ml', Z) —d(l') — k.

The case k = m is slightly different. Using the injection F,, — I_Im(Ei/)_l(F) we get ‘only’
dim EF,,, <m((I', Z) —1). Therefore, if m > d(I’) then we get dim EF,, < dim EFy. Hence, finally,
dim(c™')~1(z) = dim EFy = dim ECa™ (Z) — dim A(ml).

For (6.1.10) use part (b) and Lemma 5.6.1.

(¢) For any n > 1 and £ € im(c¢") (6.1.10) gives h'(Z,£) = h*(Oz) — dz(I'). By Grauert—
Riemenschneider vanishing theorem h'(Z|;, L(—=Z|\\1)) = 0, hence h'(Z,L) = h'(Z|\\, L£). If L
is associated with certain effective divisor D € ECanl/(Z) (as the image of ¢™'), then Llz|, s
associated with the restriction of this divisor to Z|y\;. But this restriction has an empty support,
hence L|z),,,, is the trivial bundle over Z|y\;.

(d) Since the restriction of any element of ECanll(Z) to Z|y\s is the empty divisor, the image of
the composition ECa”l/(Z) — ECaO(Z|V\I) — PicO(Z|V\I) is the trivial bundle (that is, the zero
element of Pic’(Zyy;)). Therefore, im(¢™') C ker(H'(Oz) — Hl(OZ|v\1)). Since they have the
same dimension (cf. 6.1.12) they must agree.
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(e) Let n be so large that im(¢"') = Az(nl') is an affine subspace. We claim that any £ €
im(¢2"') = Az (2nl') is generated by global sections. Indeed, fix such a bundle and one of its sections
s € H%(Z, L) whose divisor is an element of ECaZ"l/(Z ), whose support with reduced structure is
p:={p1,...,pk} C E. Let ECaZl,(Z) be the subspace of ECa”™ (Z) consisting of divisors supported
in the complement of p. This is a Zariski open set of ECBL"II(Z)7 hence c(ECagl,(Z)) contains a
Zariski open set U in Az(nl’). Then U+ U = Az(2nl’), hence £ admits a section whose divisor has
support off p. O

6.2. Cohomological reinterpretations of Vz(I'). Fix £ € im(¢™') (n > 1), D € (¢"')~1(L),
and s € H°(Z, L) without fixed components. Then, as in the situation of 3.2 one has the co-
homological long exact sequence H°(Z, L) e 0p 2 HY(Oz) - HYZ,L) — 0 from (3.2.1).
Then by Theorem 6.1.9, im(¢™’) = A(nl’). Therefore, im(Tpc™) C Tz A(nl'). But, by Lemma
3.1.7, dimimTpc™’ = dim ECa™ (Z) — dimim(c") "1 (L) = h1(Oz) — h(Z, L) = dim T A(nl') =
dim V2 (I'). Hence, im(Tpé™) = Vz(I'). As im(Tpe™') = imé (cf. Prop. 3.2.2) for V(I') we get two
other cohomological reinterpretations. Either it is the Artin algebra Op/im(R.), as a vector space,
identified as the image of Op into H!(Oyz), or it is also the kernel of H'(xs) : HY(Oz) — HY(Z, L).

In other words, for n > 1, the image of Op — H*(O%) is independent of the choice of D, while
the kernel of H!(xs) : HY(Oz) — H'(Z, L) is independent of the choice of s. Furthermore, they are
equal, and in fact this subspace of H'(O) depends only on the E*—support I of I’, and it equals
Vz(I).

There is a parallel analogous discussion for X (instead of Z) as well (in that case the reduced
structure of D is Stein, hence h'(Op) = 0 again).

6.3. Example. Characterization of the cases dimim(c) = 0. Fix I’ € =&’ with E*-support
I CVand Z > 0 as above. Using (3.1.8) and (6.1.12) one proves that the following facts are
equivalent (for an additional equivalent property see also Example 8.1.4):

(i) im(c") is a point (or, Vz(I') = 0);

(ii) there exists L € Picl,(Z) without fixed components such that h'(Z, L) = h'(2);

(iii) any £ € Pic’ (Z) without fixed components satisfies h!(Z, £) = h'(Z);

(iv) all line bundles £ € Picl,(Z ) without fixed components are isomorphic to each other;

(v) hY(Oz) = hl(OZh,\I)-

Let us define S, as {~l' € §" : im(cl,) is a point} C &', this is the set of Chern classes satisfying
the above equivalent conditions. Using (6.1.2) we obtain that S}, is a semigroup.

Part (v) via Proposition 5.5.1 reads as follows:
(6.3.1) Spr = L>0{ By | Ey & |Zeon(Z,0z)]).

Note that (in contrast with S}, .) S, is not topological. Indeed, take e.g. the graph from Example
3.4.1, =l' :== Zyin = E} (where v is the (—2)-vertex adjacent with the (—7) vertex), and set
Z = Zk. Then, if py(X, 0) = 2 (that is, (X, 0) is Gorenstein) then Z.,4(Z,Oz) = Z, and S}, = {0}.
If py(X,0) = 1, then Z.on(Z, Oz) is the minimally elliptic cycle, and S}, = Z(Ey).

In [OWY14, OWY15a, OWY15b] a cycle | € S'N L is called pg—cycle if Og(—1) € Pic(X) has no
fixed components, and h'(X, O%(—1)) = py- Note that this in our language means that —I € S,
for Z > 0. Our results generalizes several statements of [loc.cit.] for arbitrary bundles £ without

fixed components (replacing O (—1)) and arbitrary dim im(c!).
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This particular case and several similar classical results valid for bundles of type O(I") motivate
to investigate the position of the natural line bundles with respect to im(¢') (i.e., whether O(I’) has

fixed components or no). This is the subject of section 9.

7. THE ABEL MAP VIA DIFFERENTIAL FORMS

7.1. Review of Laufer Duality [La72], [La77, p. 1281]. Following Laufer, we identify the dual
space H 1()? ,O%)* with the space of global holomorphic 2-forms on X \ E up to the subspace of
those forms which can be extended holomorphically over X.

For this, use first Serre duality H*(X, Og) ~ HM(X, Q%) Then, in the exact sequence

0— HJ(X,0%) = H(X,0%) — H(X \ E,0%) —» H}(X,0%) — H'(X,0%)
HS(X,Q}) = H2()Z',(9)~()* = 0 by dimension argument, while HI(X,Q?)?) = 0 by the Grauert—
Riemenschneider vanishing. Hence,

(7.1.1) HY(X,0%)" ~ H)(X,0%) ~ H'(X \ E,0%)/H°(X,0%).

The second isomorphism can be realized as follows. Fix a small tubular neighbourhood N C X
of E such that its closure is compact in X. Take any w € H 0()? \ E, Q%), and extend the restriction
wg\n to a C(2,0)-form © on X. Then O is a compactly supported C>(2,1)~form, dd& = 0,

hence 0 determines a class in H, 1(X 0?). If @ is a holomorphic extension then 0o = 0. Next, let
X be a C>(0,1) form in X. Then the duality H*(X, O ) @ H; (X,02) — C is the perfect pairing
(. 1031) = [ Anaa.
X

Assume that the class [\ € Hl()?,O)?) is realized by a Cech cocyle \jj € O(U; N U;), where
{U;}; is an open cover of E, U; N U;NUy = (0, and each connected component of the intersections
U; N Uj is either a coordinate bidisc B = {|u| < 2¢, |v| < 2¢} with coordinates (u,v), such that
ENB C {uv = 0}, or a punctured coordinate bidisc B = {¢/2 < |[v| < 2¢, |u| < 2¢} with coordinates
(u,v), such that EN B = {u = 0}. Then A is obtained as follows: one finds C*° functions A; on U;
such that A\; — A\; = \;; on U; N Uj, and one sets A as d\; on U;. Then, by Stokes theorem

(7.1.2) , [0@)) Z /l "

By Stokes theorem, if w has no pole along F in B, then the B—contribution in the above sum is zero.

7.1.3. Above HO(X \ E,Q%) can be replaced by HO()?,Q}(Z)) for a large cycle Z (e.g. for
Z > | Zk]). Indeed, for any cycle Z > 0 from the exacts sequence of sheaves 0 — Q} — Q%(Z) —
Oz(Z + Kg) — 0 and from the vanishing h'(Q%) = 0 and Serre duality one has

(7.1.4) HY(Q%(2))/H(9%) = H*(Oz(Z + K)) ~ H'(Oz)*.
Since H*(Oz) ~ HY(O) for Z > | Zk ], the natural inclusion

0/()2 0/()2 0¥ 2 0/()2
(7.1.5) HY(Q%(2))/H" (%) = H (X \ E,Q%)/H"(Q%)
is an isomorphism.

7.1.6. The above duality, via the isomorphism exp : H*(X, Og) = ¢ 1(0) C HY(X, 0%) = Pic(X),
can be transported as follows. Consider the following situation. We fix a smooth point p on FE, a
local bidisc B 3 p with local coordinates (u,v) such that BN E = {u = 0}. We assume that a
certain form w € HO(X, Q%(Z)) has local equation w = 37, i~ a;ju'v/du Adv in B.
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In the same time, we fix a divisor D on X’, whose local equation in B is v, n > 1. Let ﬁt
be another divisor, which is the same as D in the complement of B and in B its local equation is
(v + tu®=1)", where 0 > 1 and t € C (with |t| < 1 whenever o = 1).

Next we will provide three type of formulae.

The first one is the composition of several maps. Note that the pairing (-, [0@]) (abridged as (-, w))
produces a map H'(X, O%) — C. Then we identify HY(X, O) with Pic’(X) by the exponential
map. Then we consider the composition ¢ — Dy — D Og(ﬁt — D) — exp™? Og(f)t - D)
(exp~? (’))?(f)t — D),w). The first formula makes this composition explicit. This restricted to
any cycle Z > 0 can be reinterpreted as w—coordinate of the Abel map restricted to the path
t — Dy := Dy| (and shifted by the image of D := D|y).

The second formula determines the tangent application of the above composition (in this way it
determines the w—coordinate of the tangent application of the Abel map restricted to Dy).

In the third formula we replace the path D; by a complete neighborhood of D in ECa(Z).

Note that if we consider — instead of a single form w — a complete set of representatives of a
basis of HO(X, Q%(Z))/HO()N(, Q%), then we get by the above three constructions the restriction of
the Abel map to the path Dy, the tangent map of this restriction, and in the third case the ‘complete’
Abel map defined in some neighbourhood of D.

7.2. The Abel map restricted to D;. The first two cases start with the explicit computation of
{(exp~! O);(f)t — D), w), as follows. Dy — D is the divisor D’ = div((v + tu®~1)/v)", supported in
B = {|ul, |v| < €}. We can fix ¢ such that the support of D’ is in {|v] < ¢/2}, and set B* := {¢/2 <
lu| <€, |u| < €}. Using the trivialization of O(D’) in X \ {|v| < ¢/2} and the realization O(D’') on
B, we get that O(D') can be represented by the cocycle g = ((v+ tu®~1)/v)™ € O*(B*). Therefore,
log((v + tu®=1) /v)™ = nlog(1 + tu®1 /v) is a cocycle in B* representing its lifting into H! (X, O%).
This paired with w gives:

uo—l

(7.2.1) ((Dy,w)) := {exp* (955(5,5 —D),w) = n/ log(1+t¢ )- Z ai ju' v du A dv.

lul=¢, |v|=e i€Z,5>0
If wi,...,wp, are representatives of a basis for HO(X, Q%(Z))/HO()?, Q}), and Z > 0, then
(7.2.2) Dy = (((Dg,w1)), -+, ({Dy, wp, )

is the restriction of the Abel map to Dy (associated with Z, and shifter by the image of D).
At the level of tangent application on has the formula for (75 pyw) o TDE)(%Dth:O):

d
= log(1 +t
dtli=o {n/m— e B0

uofl

(7.2.3)

) Z ai ju'v?du A dv} =X-a_o0 (A€C").

i€Z,5>0
If w has no pole along the divisor {u = 0} then (exp™' O (D; — D),w) = 0 for any path D;.

Definition 7.2.4. Consider the above situation in the bidisc B: BN E = {u = 0}, D has local
equation v (i.e. n =1), and w = ZieZ,jZO a; juividu A dv. Then we introduce the Leray residue of
w/du along {v = 0} as the 1-form (with possible poles at DNE) defined by (w/dv)|y—o = > aioutdu.
We denote it by Resp(w).

Note that the right hand side of (7.2.3) tests exactly the pole part of the Leray residue Resp(w).
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7.3. The Abel map. Assume as above that in the ball B the divisor D is given by v = 0 (i.e.
n = 1), and its ‘perturbation’ D(c) is given by v = o+ cru+ cau? + - - - with |co| < €. Furthermore,
assume that the form w in B has the form (f(v)/u‘*1)du A dv, where f € O(B) and ¢ > 0. (Note
that the Laurent expansion in variable u of any differential form is a sum of such terms.)

Our aim is the computation of ((D(c),w)).

If {pi}>1 (resp. {hi}i>1 ) denote the power sum (resp. complete) symmetric polynomials (func-
tions) then (cf. [Mac95, p. 23])

(7.3.1) pru+ pou? /2 + p3u /3 + - = log(1 + hyu + hou® +---).

Furthermore, by [Mac95, p. 28], for n > 1,

hy 1 0 ... 0
2ho hy 1 ... 0
(7.3.2) (=1)"*tp, =
nhn hn—l hn—2 s hl
We rewrite (7.3.1) as log(A) + pru + pau?/2 + - - = log(A + hy Au+ hg Au® + - - - ) and we make the

substitution A = (v — ¢g) /v, h1A = —c1 /v, ha A = —cy /v, etc., and we obtain

(1_co—|—clu+02u2+-~-)

.3. 1
(7.3.3) og ”

=log (1 - %0) +61(c)u+ da(c)u® 4 - - -,

where for n > 1

a1 0 ... 0
v—cCo
n 2co c1
d (C) -1 ] v=¢ v—c -1 Ce 0
7.34 S(e) =S i) T2 0 .
(7.3.4) n(c) ;(U—Co)’ - : :
ncp Cn—1 Cn—2 e
v—cop v—co v—co o aoe
Note that d,, ; are certain universal polynomials in variables c1, ..., ¢,. Then (( ﬁ(c)7w>> equals

L i—
(7.3.5) /|— » og (1= ATy T gy g =y D) .

v s — (i—1)! CdviT

7.4. Reduction to an arbitrary Z > 0. Consider the above perfect pairing Hl()N(7 0%) ®HO()?\
E,0%)/H°(Q%) — C given via integration of class representatives. In HY(X,0%) let A be the
image of the HI(X,OX(—Z)), hence Hl()?,OX)/A = HY(Oy). On the other hand, in H(X \
B,Q%)/H°(Q%) consider the subspace B := H°(Q%(Z))/H° (%) of dimension h'(Oz) (cf. (7.1.4).
Since (A, B) = 0, the pairing factorizes to a perfect pairing H'(Oz) ® H*(9%(2))/H°(Q%) — C.
It can be described by the very same integral form of the corresponding class representatives.

Moreover, if 5t is an l-parameter family of divisors as in 7.1.6, representing an element in
HY(Oz) (via the surjection H'(O5) — H'(Ogz)), and w is a representative of a class [w] €
HO(Q}(Z))/HO(Qiz), then the expression of the pairing H'(Oz) ® HO(Q%(Z))/HO(Q}) — C,
(exp~t Oz(D;— D), [w]), can be represented by the very same formula (7.2.1) (as in the case Z > 0).
Furthermore, all other formulae of subsections 7.2 and 7.3 also have their extended versions. E.g.,
(7.2.3) gives Txpy(w) o TDEW(Z))(%D,%:O), and (7.3.5) is the [w]-coordinate of the Abel map
ECa' (Z) —» HY(Oy).
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8. THE ‘STABLE’ ARRANGEMENT {Vg([)}rcy AND DIFFERENTIAL FORMS

8.1. The arrangement {Q3(I)}; of forms and its duality with {Vg(I)};.

Definition 8.1.1. Let Q(I) (or, Q(I)) be the subspace of HO(X \ E,Q})/HO()?,Q}) generated
by differential forms w € HO()? \ E, Q%), which have no poles along Er \ UygrE,.

As in Theorem 6.1.9(c), let ()?/EV\I, oy\7) denote the multi-germ obtained by contracting the
connected components of Ey\; in X. Let )Z'(V \ 1) be a small neighbourhood of Ey\; in )Z', which
is the inverse image by ¢ of a small Stein neighbourhood of ()?/EV\I, OW\1)-

Proposition 8.1.2. (a) dim Q(I) :pg()N(/EV\I,ov\I).
(0 -— ITO(X 2
Q(0), induced by restriction, is an isomorphism.

(¢c) Fiz I CV as above and set J CV with JNI = 0. Let Q(J) be the subspace of Q(0) generated
0y 2
by forms from H (X(V\I)\EV\I,Q)?(V\I)) ']
Q)N Q) induces an isomorphism Q(J) N Q(I) — Q(J).
In particular, for any I, the subspace arrangement {Q(J)} jar—p of the multigerm (X/EV\I, o\ 1)
and resolution X (V \ I) can be recovered from the arrangement {Q(M)}ns via {Q(I) N Q) }snr—o-

))/HO(X(V\I),Q?((V\I)). Then linear map p : Q(I) —

without pole along Ej. Then the restriction of p to

Proof. (a)Fix Z =}, o\ ; nwBy with alln, > 0. By (7.1.4) dim Q(I) = dim HO(Qiz(Z))/HO(Q}) =
h'(Oz), which equals p, ()?/EV\I, oy\r) by formal function theorem.

(b) If [w] € ker(p), then w has no pole along E; (since [w] € Q(I)), and has no pole along Ey
either (since p[w] = 0). Hence [w] = 0, and p is injective. Since by (a) the dimension of the source
and the target is the same, p is an isomorphism.

(¢) By (b), for any @ € Q(J) there exists w € Q(I) with p(w) = @. Note that w is necessarily in
Q(INJ), hence Q(J) N QI) — Q(J) is onto. O

The next result shows that the linear subspace arrangement {V(I)}; of HY(X, Og) (cf. 6.1.7)
is dual to the linear subspace arrangement {Q(1)}r of Q(0) = HY(X\ E, Q})/HO()?, Q%)

Theorem 8.1.3. Via duality (7.1.1) one has Vg(I)* = Qg (I).

Proof. We fix a cycle Z > 0 for which Vz(I) = Vg(I). Choose I’ = —3_ ;
is so large that im(c!') is an affine space, cf. Theorem 6.1.9. Then, any element £ of Vy(I) has the
form Oz(Dy — D3), with both Dy, Dy € ECal/(Z). Lift {D;};=1,2 to effective divisors {D] };=1,2 in
X. Since they do not intersect Ey\1, the class [A] of O (D] — Dj) in Pic®(X) can be represented by
a Cech cocycles {Xij}, which in a neighbourhood of Ey; are all zero. Therefore, if w is a form which
has no pole along Ey, ([A], [w]) = 0 by (7.1.2). That is, (Vg (1), Q(I)) =0, or Vi(I) C Q(I)*. Since
by (6.1.12) and Proposition 8.1.2(a) one has dim V(1) = py —dim Q(I), we get Vg (1) = Q(I)*. O

a, E} such that each a,

Example 8.1.4. (Continuation of Example 6.3) Fix I’ € —S§’ with E*—support I C V as in 6.3, and
choose Z > 0. Then

im(c) is a point & Vz(I) =0 & Qgz(I) = Qz(0).

8.2. Convexity property of Q({v})’s. Clearly, the subspace arrangement has the properties
Q) ~ CPs, and QI U J) = Q(I) N Q(J). In this subsection we establish an interesting additional
structure property of the arrangement. It is the analytical analogue of topological convexity property
[LNN14, Prop. 4.4.1].
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For simplicity write , := Q({v}) for v € V, and define

o it =0
1I(1) { SRS

Proposition 8.2.1. For any I CV let 'y be the smallest connected subtree of I' whose set of vertices
I contains I. Then 11(J) = 1I(I) for any I C J C I.

Proof. By induction, it is enough to consider the case J = I U {u}, such that u is on the geodesic
path connecting v, w with v,w € I. Moreover, it is enough to show that 2, C Q, + Q,,. Write the
connected components of I' \ w as U;_,I'x, and set Ij, := V(I'y). Assume that w € Ij.

Choose an arbitrary w € €, and consider its restriction w|)~((10) in Q) := HYQ*(X (L) \
EIO))/HO(QQ()Z'(IO))). By Proposition 8.1.2(b) Q(V \ Iy) — Q(0) is bijective, hence there exists
wy € QV\ Ip) such that Wol g1,y = @l (ry)- But € O QV \ Ip), hence w, € ,. On the other
hand, (w — wv)|)}(10) =0, hence wy, = w — wy, € Q. Thus w = w, + wy € Uy + Q- O

Example 8.2.2. Consider the weighted homogeneous isolated hypersurface singularity (X,o0) =
{z* +y* 4+ 25 = 0} C (C3,0). One verifies that p, = 4 (use either [Pi77], or section 12 from here).
We consider the minimal good resolution, whose graphs is

-5 -1 =5

ZN

If w is the Gorenstein form, then w, 2w, rw and yw generate H° ()Z' \ E, Q%)/HO (Q%) The pole
orders along the central curve Fy are 7, 3, 2, 2. Let v; (1 < i < 4) be the end—vertices. Then for fixed
i, V\ {v;} represents a minimally elliptic singularity. Hence Q,, ~ C by (6.1.12) and Theorem 8.1.3.
If &; are the roots of £&* + 1 =0, then (x + &y)w generates ,,, hence E?Zl Q,, =~ C? = (2w, yw).

In particular, the linear subspace arrangement {{2,}, in CPs = C* is not generic at all. Further-

more, €2,, = 0 hence 8.2.1 can also be exemplified on this concrete example.

8.3. Reduction to an arbitrary Z > 0. The duality from Theorem 8.1.3, valid for X (or,
for any Z > 0) can be generalized for any Z > E as follows. For the definition of Vz(I) see
Definitions 6.1.3 and 6.1.7. In parallel, define Qz(I) as the subspace HO(Q?((ZW\I))/HO(Q}) in
HO(Q}(Z))/HO(Q}). By (7.1.4) dimHO(Q}(Z))/HO(Qi?) = h'(Ogz), while dim Qz(I) = ' (O, ,)-
But, by pairing (similarly as in the proof of Theorem 8.1.3) Vz(I) C Qz(I)*. Furthermore, by
(6.1.12), dim Vz(I) = dim Qz(I)*. Hence

(8.3.1) V(1) = Qz(1)*.

9. THE ‘STABLE’ DIMENSIONS {dim(V%(I))}; AND NATURAL LINE BUNDLES

9.1. Recall that the saturation in S’ of a submonoid M C &’ is the submonoid M := {I' € &' :
In > 1 with nl’ € M}.

Let us fix some cycle Z > E. Regarding the mutual position of the natural line bundle Oz (l)
with respect to the image of ¢! : ECal/(Z) — Picl/(Z) we can consider three cases.

(a) Oz(I') € im(c"), or, equivalently, 0 € im(&"). The set of cycles I’ satisfying this property is
denoted by S;,,. Clearly 0 € S/, and by the first paragraphs of 6.1 it is a sub-monoids of S’. (In
the literature, this monoid — defined for bundles over Z > 0, or over X —, is called the analytic

monoid of (X,0), in contrast with the topological monoid &', since it indexes the restrictions to
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E of the divisors of different holomorhic sections of the natural line bundles of X , or divisors of
fuctions of the universal abelian covering of (X, o), cf. [N99D].)

(b) Oz(nl') € im(c™), or 0 € im(é™), for n > 1. The cycles I’ satisfying this property are
indexed by S/, .

(c)I'eS'\S],.

Example 9.1.1. In general, S, ¢ S/~

m*

E.g. in Example 3.4.3, Oz(—Zpnin) ¢ im(c), however
Oz(~2Zmin) € im(c). Furthermore, in general, S/ = ¢ &’ either. Indeed, take e.g. a situation when
im(c) is a point different than Oz(’). Then Oz(nl’) & im(c™') for n > 1, hence nl’ & S, for

n > 1. In such cases 8’ \ S}, is even infinite. For a concrete example see the last case of 3.4.1.

Lemma 9.1.2. Let Z > E be an arbitrary cycle as above.
(a) Fizl' € =8’ as above, and assume that n > 1 satisfies the next assumptions:
(i) im(@") = A(nl') (automatically satisfied if n is sufficiently large, cf. Theorem 6.1.9),
(i) 0 € im(¢™").
Then 0 € A(l') and im(@™) = A(l') for any m > n.
(b) Sl =S8"if and only if S'\ S, is finite.
Proof. (a) Since 0 € A(nl’), by Theorem 6.1.9(a) necessarily A(kl') = A(l') = V(I') for any k > 1.

Fix £ € im(¢*"). Then, £ € A(kl') and by (6.1.2) and Lemma 6.1.6, A(') = A(I') + £ C im(¢"') +
im(*)  im (@MY C A((n + k)I') = A(I'). Part (b) follows from (a). O
9.2. In the remaining part of this subsection we will work with line bundles defined over Z > 0.
Definition 9.2.1. (a) Following Neumann and Wahl [NW10], we say that (X, 0) and its resolution
¢ satisfy the End Curve Condition (ECC) if E} € S),, for any end vertezx v € V (i.e. for 6, = 1).

(b) We say that (X, 0) and its resolution ¢ satisfies the Weak End Curve Condition (WECC) if
E} € S.,, for any end vertex v € V.

If we restrict ourselves to singularities with rational homology sphere links, by End Curve Theorem
[NW10] (see also [010]) singularities which satisfy ECC are exactly the splice quotient singularities of
Neumann and Wahl [NW05]. The WECC terminology is new in the literature, however its necessity
and importance appeared in many private discussions of the second author with T. Okuma in the
last decade. The main question regarding singularities satisfying WECC is how can one generalize
the results valid for splice quotient singularities to this larger family. The present article shows that
e.g. the p,—additivity formula of Okuma extends. Indeed, the general additivity formula (6.1.12)
provides an additivity with correction term dim V(). Furthermore, as we will see in the next
discussions, the correction term dim Vg (I) has different reinterpretations in terms of certain Hilbert

polynomials or Poincaré series (similarly as in the splice quotient case) whenever WECC is satisfied.
Proposition 9.2.2. (a) (Convexity property of S/ ) Fizu,v eV, u#v. IfE}, E} €S|,

then for any vertex w on the geodesic path in the graph connecting u and v one has E € Si, too.
(b) (X,0) satisfies WECC if and only if S, = S'.

Proof. Fix integers n,,, n,, n, sufficiently large such that (i) n,EZ, n,EZ¥, n,E?% belong to L, (ii)
the F,—multiplicities of these three cycles are equal, and (iii) n,E; and n,E} belong to S;,,. Set
which
contains u. Then ! is supported on U;I';. Since (I, E,) = 0 for any z € V(U;x, L), I|II'; = 0 for
all i # ip. Since (I, E,) < 0 for any z € V(I';,), and (I, E,) < 0, all the entries of {|[';, are strict

positive. We have similar property for n,E* — n,, E} too. Hence min{n, E*, n,Ef} = n,E}. Since,

l:=n,Ef —n,E, and let the connected components of I' \ w be U,;I’;. We distinguish T’

%07
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by assumption there exist functions f, and f,, which can be regarded as sections of O(—n,E})
and O(—n, E}) without fixed components, the generic linear combination af, + bf, is a section of
O(—ny, E?) without fixed components. For (b) use part (a) and the fact that T' is a tree. O

9.3. Different reinterpretations of dim(V(l')) when I’ € % In the sequel we apply the
results of the previous section (e.g. Theorem 6.1.9) for natural line bundles. This will also include
the ‘classical’ cases £ = O5(—[), where [ is an effective integral cycle. In order to do this we will
need additional assumptions of type L € im(c"l/).

We fix the following setup. We consider line bundles over X, or over Z > 0. We write Vg (I) for
the stabilized Vz(I') with Z > 0. We fix I’ € &’ from S/, , this means that there exists n >> 1 such

that O(—nl") admits sections without fixed components. Let o € Z~( be the order of [I'] in L'/L.
We also write ol’ = [ € L. Note that V(') = Vi (ol’), cf. Lemma 6.1.6.

9.4. dim(Vg(l')) as the last coefficient of a Hilbert polynomial. Consider the situation of
subsection 9.3. For n>> 1 from the exact sequence of sheaves 0 = O5(—nl) — Og — Op — 0, we
get

dim H°(0)/H®(O(—nl)) = x(nl) — R (O(—nl)) + p,(X,0),
which combined with Theorem 6.1.9 gives

(9.4.1) dim H°(0)/H°(O(—nl)) = x(nl) + dim V(1)

This already shows that Vg(I) is the free term of the Hilbert polynomial associated with n
dim H°(0)/H°(O(—nl)). This fact can be reorganized even more. Note that by Theorem 6.1.9(d)
O(—nl) is generated by global sections for all n > ng for some ng. Therefore, if we denote
the ideal HO(X,O(—nyl)) C Ox, by J, then the integral closure of its powers satisfy Jm =
HO(X,O(—mnol)) [Li69, ?227]. In particular, dim(Ox../J™) = x(mngl) 4 dim Vg (1).

Recall that there exist integral coefficients €;(J) (where i = 1,2, 3) such that dim(Ox ,/J™) =
eo(7) (") —e(I)(7) +2(T) for m > 1. Here, the polynomial from the right hand side is called
the normal Hilbert polynomial of J. One verifies that €3(J) is independent of the choice of ny.
Then, the two identities combined provide dim Vg (l) = €x(7).

If in our general identities from Theorem 6.1.9 we insert €(J) for dim Vg(I), then we recover
e.g. the results from [OWY15a, §3]; or the additivity statement from [O08, Cor. 4.5].

9.5. dim(Vg (') in terms of the multivariable series P,—o(t). Assume again that ' € S/, ,
and let I be the E}—support of I', that is, I’ = 3 _; a, E}; with a, € Z~. Then with the notations of
9.3, for n sufficiently large O(—nol’) has no fixed components and h' (X, O(—nl)) = p, — dim Vg (I).

This combined with (2.3.8) gives that for cycles of type nl (n > 1)

(9.5.1) > pop = x(nl)+dim Vi (D);
leL, T¢nl

that is, the counting function nl — 351 7w, Po ) of the coefficients of P—o(t) is (for n > 1) the
multivariable quadratic polynomial x(nl) + dim V(1) in nl, whose free term is exactly dim Vg ([I).

The above counting function can be simplified even more: we will reduce the variables of Py
to the variables indexed by I. For this we define the projection (along the E—coordinates) mz :
R(E,)vey — R(Ey)vez, denoted also as z +— x|z, by > oy, LBy = Y o7 L Ey.

For further motivations and topological analogues of the next statements see also [LNN14] (where
Z(t) plays the role of P(t)).
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Lemma 9.5.2. Assume thatl' =3 _;a,E; with a, >0, and " € 8’ too. Then 1" > 1" if and only
S > U

Proof. We prove the < part. Write I — I’ as x + y, where = (resp y) is supported on E; (resp. on
Ey\1). By assumption, > 0. For any u € V\ I one has 0 > (I",E,) = (I', Ey) + (z, Ey) + (y, Ev).
But (', E,) = 0 and (z,E,) > 0. Hence (y,E,) < 0 for any v in the support of y. Since (, ) is
negative definite, y > 0. O

According to the 7; projection, we also define the series Py p(t;) (for any h € H), in variables

{tv}ver by Prn(tr) := Pu(t)|t,=1,0g1-
Note that the series Pro(t7) has the form 37, s/np) pr(l)tY . By Lemma 9.5.2 one has

> Porh = > i)

leL, [#nl lrem(L), lrZnl|;

Therefore, for n > 1, one also has that the counting function of the coefficients of the reduced series

Pr o provides the same expression

(9.5.3) Z pr(lr) = x(nl) + dim Vg (1).
lrenr(L), Li#nl|r
(Note that if the E*—support of nl is I, then nl|; determines uniquely nl.)
E.g., if I = {v} (under the assumption E} € S, ), Pro = >.,,50 P»(m)t™ has only one variable,
and >~ po(m) = x(nl) + dim V(1) for n > 1. -

Theorem 9.5.4. Assume that (X, 0) is a splice quotient singularity associated with the graph T' (or,
equivalently, ¢ : X — X satisfies the ECC, cf. Definition 9.2.1). Then for any I the dimension
dim Vg (1) is topological, computable from T'.

Proof. For splice quotient singularities P(t) equals the topological series Z(t), cf. [N12]. Hence, in
(9.5.1) the left hand side can be replaced by the corresponding sum of the coefficients of Z(t). O

Remark 9.5.5. Let us denote the Seiberg—Witten invariant of the link M (T'), associate with the
canonical spin®—structure of M (T") with sto.q, (M (T)), and the corresponding normalized Seiberg—
Witten invariant by $W0.q, (M (L)) := 6100, (M (D)) + (Z% + [V(I')]) /8, see e.g. [LNN14]. Recall also
that in the splice quotient case P(t) = Z(t) (cf. [N12]). Therefore, if we replace in (9.5.3) P(t)
by Z(t), in the terminology of [LNN14] (9.5.3) reads as follows: dim V() is the periodic constant
of the I-reduction Zj ¢(t;) of Zy(t), and by Theorem 3.1.1 of [LNN14] it equals —5Wq, (M (I')) +
T an (M(T\ ).

9.6. The equivariant version of 9.5. Note that the identity () h! (X, O(—nl')) = pg—dim Vg (I)
holds uniformly for any n > 1, though [nl’] € H might have different H—classes. Such stability
usually cannot be proved via cohomology exact sequence of type 0 — L(—1) — L — L|; — 0,
[ € Lo (since in this situation ¢;(L£(—1)) — c1(£) € L), or by eigenspace decomposition of some
sheaf associated with the universal abelian cover (X,p,0). Maybe one should emphasize that in the
above identity (f) the contribution p, comes from the dimension of Picl/, which is independent of
the class [I'] € H, and not from the py(Xgp,0)p for h = 0.

Now, if we apply (2.3.8) for (f) for different classes we obtain the following fact. Let us fix, as
above I’ € S/ with E*-support I, and let us fix also some k € Zsq, h := [kl'] € H, and write
kl' = rp, + 1, for some I, € L. Let o be the order of [I'] in H as above. Then from (2.3.8) one has

R O(=r, — 1 —nol') = — Z PO(—rp—tx—nol’) + Pg(Xap; 0)n + X (I + nol") — (Ix + nol’, ).
a€L,a?0
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or, for any k and any n > 1,
Z PO(—rp—1x—nor) = Xk +n0l") = (Ix +nol’, 1) + pg(Xap, 0)n — pg + dim Vi (I).
a€Ll,a}0

Hence dim Vg (I) connects the asymptotic behaviour of different h-components of P(t) of the form
h=[kl], k € Z.

. . /
10. THE ‘NON-STABLE’ dimim(c) AND DIFFERENTIAL FORMS.

10.1. The first theorem of this section is a generalization of that statement of section 8, which says
that for Z > E the dual of the vector subspace Vz(nl") C H!(Oyz), the ‘stable image affine subspace’
im(¢™') = Az (nl') (n>> 1) shifted to the origin, agrees with the subspace of forms Q(I), where I
is the E*—support of I’ (see Theorem 8.1.3 and subsection 8.3). Vz(nl’) can also be interpreted (up
to a shift) as the tangent space at any £ € Az(nl’) of Az(nl’). Hence, L+ Vz(nl’) is the intersection
of all the kernels of linear maps Trw, where w € Qz(I) (that is, for all w without pole along those
E,’s which support the divisors from ECa™ (Z)). For the explicit description of the duality see 7.1.

The new setup is the following. Consider a divisor D € ECal/(Z), which is a union of (I, E)
disjoint divisors {D; };, each of them Oz-reduction of divisors {D;}; from ECa! (X) intersecting E
transversally. Set D = U;D; and £ := ¢ (D) € HY(Z,0y). Set also Z = Yoy Mo Ey.

We introduce a subsheaf Q?{(Z)regResB of Q?{(Z) consisting of those forms w which have the
property that the residue Res B, (w) has no poles along l~)i for all 4. This means that the restrictions
of Q%(Z)ngCSB and Q}(Z) on the complement of the support of D coincide, however along D
is satisfies the following requirement. If p = E N 51 =FE, N 52 has local coordinates (u,v) with
{u =0} = E and D; with local equation v, then a local section of Q}(Z) near p has the form
w = Zizfmv,i >0 a; ju'vidu A dv. Then the residue Resp (w) is (w/dv)|v=0 = 3_; a; ou'du, hence
the pole-vanishing reads as a; o = 0 for all ¢ < 0. Note that Q}(Z — D) and the sheaf of regular
forms Q% are subsheaves of Q% (Z)"#"*p.

Theorem 10.1.1. In the above situation one has the following facts.

(a) The sheaves Q%(Z)regResB/Qiz and Oz(Kg + Z — D) are isomorphic.

(b) HO()?,Q}(Z)regResB)/HO()?,Q}) ~ HYZ,L£)*. (The left hand side can be regarded as a
subspace of H(X, Q% (2))/H(X,9%) ~ H'(Z,02)".)

(¢) The image Tpﬁl(TDECal/(Z)) of the tangent map Tpd at D of & - ECal/(Z) — HY(Z,07) =
Hl()?,o)z) is the intersection of kernels of linear maps Trw : TLHl()N(,O;() — C, where w €
HO ()NQ Q}(Z)regReSB)‘

Proof. (a) Consider the following diagram:
0 — Q}(fﬁ) — Q}(Zfﬁ) — O0z(Kg+Z-D) — 0

o s b

0 — 0L Q2(Z)eERen o Q2(Z)eERen /0L - 0

Above « and S are the natural inclusions. We claim that their cokernels are isomorphic. Indeed,
with the notation M;; = u'v/du A dv one has coker(a) = {3750 i50 @i Mi i} /{2 51550 @i,iMi s}
and coker(f) = {ZjEO,iz—mW aijM;jlaicoo = 0}/{> ;51 ez @ijMi;}. Hence v is an isomor-
phism.

(b) Since H'(X,0%) = 0, by part (a) we have HO(X, 0% (Z)*R=p) /HO(X,0%) = HO(O7(K g+
Z — D)). But, this last one equals H'(Z,Oz(D))* by Serre duality.
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(c) We prove the statement in the case (I', E) = 1, the general case follows similarly. Hence, set
I! = —E! for some vertex v € V, that is, D is a transversal cut at the point p of the exceptional
divisor E,. Consider local coordinates (u,v) around p as above. Recall that the local equation of D
is v. Let {lNDt}tEQ lt|<1 be a path in ECa' at D whose local equation is v 4 tu®~! for some o > 1.

Consider also an arbitrary form w € HO(X, Q}(Z)) (with local equation as above). Then (the
class of) w is in the dual space of the image TDEi/(TDECal/(Z)) if and only if (Trw)(Tpe (8)) =0
for all tangent vectors d, the tangent vectors of paths of type Dy at D. But Trw(Tpé (5)) =
A-a_p0 (A # 0) by 7.2.3. Therefore, the dual space of forms is exactly the class of forms from
H(X, Q}(Z)regRes’ﬁ).

In fact, one also sees that the dimensions of these two spaces im(Tp¢) and N, Trw agree. Indeed,
dimim(Tpe) = ht(Oz) — h(Z, L) by (3.1.8). But, dimN,, Trw is the same by (b). |

; ; 0y O2 0y 02
Corollary 10.1.2. Assume that {wy,...,wp} is a basis of H°(X,0%(2))/H"(X,Q%). Then
HO(X, Q% (Z)#Rp) /H (X, 0% ) =
{(a1,...,an) € C": Resp (_,0awa) has no pole along D; for all i}.

Hence, by Theorem 10.1.1, the dimension of the right hand side is h*(Z, L), and the number of inde-
pendent relations between (ay, ..., ap), h'(Oz)—h'(Z, L), is the dimension of imTpc" (TDECall (2)).
In particular, dim(im(c (2))) is the number of independent relations for {D;}; generic.

10.2. The above theorem can be applied rather directly in several situations, when we can provide
a bases for H'(Z,07)* = H°(X,Q%(2))/H°(X,9%), and verify directly for certain (or for all)

divisors D the above pole—vanishing property. In the next subsections we provide such applications.

10.3. The Gorenstein case. Assume that (X, 0) is Gorenstein, fix a resolution X = X as above,
and let wy € HO(X, Q}(Z k) be the pullback of the Gorenstein form, well defined up to a non—zero
constant. Its pole is Zk, the (anti)canonical cycle. Since Qi{ = 03(-Zk), H'(X, Q%(ZK))/HO(X, Q})
is isomorphic with H%(X,0%)/H%(X, O5(—Zk)), hence if we fix a basis of H*(X,0%)/H*(X,0%(—Zk))
consisting of classes of functions {f1,...,fp,} € H°(X,O%) with divisors divgf, #? Zxk then in
HO(X,9%(2))/H°(X, Q%) the classes of forms { fiwo, ..., fp,wo} form a basis.

Therefore, for any fixed I C V,

(10.3.1) Q) ={(a,...,ap,) € CP :mp, (3 0afa) > mp,(Zk) for any v € I,

where mg, (-) denotes the coefficient of a cycle along F,.

By Theorem 6.1.9 dimQ(I) = h'(X, L) for any £ with ¢;(£) = nl’ with n > 1 and where
I := {E*-support of I'}. Furthermore, the number of independent relations between (a1, ...,ap,),
pg — dim Q(I), is the dimension of the stable im(c¢™') (n > 1).

According to Theorem 10.1.1, these facts have the following generalizations. Set D =U;D; be a
divisor as in 10: each D; is a transversal cut intersecting E,¢;y. Let v; : (C,0) — (51, D; N Eyq)),
t — ;(t), be a parametrization (local diffeomorphism). Set £ = O%(D) and ¢, (£) =1".

Theorem 10.3.2. With the above notations one has
H(X, Q% (2)"eRp) /H(X,0%) = {(a1....,ap,) € CP : 0rdy(¥ a0 faoVi) > M, (Zx) for all i}.

Similarly as in Corollary 10.1.2, the dimension of the right hand side is hl()?, L), and the number of
independent relations between (ay, ..., ap,), pg—h' (X, L), is the dimension of imTpc" (TDECaZ/(Z))
(Z > 0), and dim(im(c"")) is the number of independent relations for {D;}; generic.
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We will apply this theorem in section 11 for superisolated (hypersurface, hence Gorenstein) germs.
The general non—Gorenstein case (that is, Corollary 10.1.2) will be exemplified in section 12 on

the case of weighted homogeneous germs, in which case we construct a concrete basis {wi, ..., wp, }.

11. SUPERISOLATED SINGULARITIES

11.1. The setup. We will exemplify the Gorenstein case on a special family of isolated hypersur-
face singularities. The family of superisolated singularities creates a bridge between the theory of
projective plane curves and the theory of surface singularities. This bridge will be present in the
next discussions as well. For details and results regarding such germs see e.g. [Lu87, LNMO05].

Assume that (X,0) is a hypersurface superisolated singularity. This means that (X,0) is a
hypersurface singularity {F(z1,x2,23) = 0}, where the homogeneous terms Fy + Fyy1 + -+ of
F satisfy the following properties: {F; = 0} is reduced and it defines in CIP? an irreducible rational
cuspidal curve C; furthermore, the intersection {F;.; = 0} N Sing{F; = 0} in CP? is empty.
The restrictions regarding Fy implies that the link of (X, 0) is a rational homology sphere (this fact
motivates partly the presence of these restrictions). With F, fixed, all the possible choices for {F;};~q
define an equisingular family of singularities with fixed topology and fixed p, = d(d — 1)(d — 2)/6.
For simplicity, here we will take for Fyy; the (d + 1)*"—power of some linear function and F; = 0
for ¢ > d 4+ 1. Moreover, by linear change of variables, we can assume Fy11 = —x§+1. (Note
that in our treatment the analytic type of the singularity plays a crucial role, hence, by the choice
Fy = —x§+1 we restrict ourselves to a special analytic family. We do this since in this case the
presentation of the next subsections are more transparent. However, it would be interesting to
analyse the stability /non-stability of the Abel map in the whole equisingular family when we vary
F,i>d+1.)

If we blow up the origin of C? then the strict transform X’ of X is already smooth (this property
is responsible for the name ‘superisolated’), the exceptional curve C' C X' is irreducible and it can
be identified with C' [Lu87]. Hence, resolving the plane curve singularities of C’ we get a minimal
resolution of X; for the precise resolution graph see e.g. [Lu87, LNMO05]. In the minimal (or, in
the partial) resolution the exceptional curve corresponding to C’ will be denoted by FEy. In the
chart 1 = ww, x3 = vw, 3 = w the total transform has equation w?(w — Fy(u,v,1)) = 0,
X' ={w=Fi(u,v,1)}, C" ={w = F4(u,v,1) = 0}.

We wish to discuss the Abel map associated with several choices of I’ and Z.

11.2. The case I’ = —kE} (k> 1), Z = Zx (and generic divisor on ECal/(Z)).

In this case a generic point D of ECal/(Z ) consists of k transversal cuts of Fy at generic points.
In order to determine dimim(c!), which equals dim imTDEi/(TDECal/(Z )), we will apply Theorem
10.3.2. Hence, we need to analyse the restriction of forms on the components of the divisor D.
Note that Theorem 10.3.2 automatically provides h'(Zx,O(D)) too. Furthermore, by Grauert—
Riemenschneider vanishing h! (X, O(D — Z)) = 0, one also has h!(Zx, O(D)) = h(X,O(D)).

Since the first blow up already creates the exceptional divisor C' = Fj, all the computation
can be done in this partial resolution ¢ : X’ — X, and we can even assume that D is in the
chart considered above. First, we find {fo}52, such that {fiwo, -, fp,wo} induces a basis in
HO()N(,Q}(Z))/HO()N(,Q}). Notice that the pullback of any monomial x™ = z"z?z5" has
vanishing order deg(x™) = >, m; = |m| along Ey. Moreover, the multiplicity of Zx along C’ is
d — 2. Since the number of monomials of degree strict less than d — 2 is py = d(d — 1)d — 2) /6, the
set {x™ : deg(x™) < d — 3} serve as a bases for HO()N(,O)?)/HO()?,O)}(—ZK)).
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Next, we consider parametrizations of each component {Ez}le (the liftings of the divisors {D; }),
t— () = (ui(t),vi(t), w;(¢t)) € X'. In fact, we can start with a parametrization ¢ — (u;(t),v;(t))
of a transversal cut of {Fy(u,v,1) = 0} C C? at some smooth point. Then we lift it to X’ by setting
w;(t) == f(u;(t),v;(t),1). The tranversality implies that w;(t) has the form cit + cot? + --- with
c1 # 0, hence after a reparametrization with ¢ := w;(t), we can assume that w;(t) = t.

We denote the point (u;(0),v;(0)) € {Fa(u,v,1) = 0} € C? by p;. We abridge (u,v)™(p;) :=
1;(0)™ v;(0)™2. Then, the restriction of a monomial x™ to D; is

u(t)mlv(t)mztlml — t\m\ ((va)m(pi) + Hm(t)),
where Hypy,(t) denotes the ‘higher order terms’ with Hy,(0) = 0. Hence, by Theorem 10.3.2,

z)td—(f—\)ﬂj\_ has no pole for all z}.

h'(Zyk,0(D)) = dim {(am)m c CPs - Zam (u,v

Expanding the sum into its Laurent series in ¢, and separating the coefficients of {¢t~4+2+J}, j<d—3,
we get for each D; a linear system with d—2 equations for the variable (am )m. We need to determine
the rank of the corresponding matrix. This matrix has a natural block decomposition, a block is
indexed by j and the set m with fixed [m|. We prefer to order the rows by t=4+2 =443 =1

E.g., for fixed D;, the first row has its first entry 1 (corresponding to the block ¢~9*2? and
|m| = 0) and all other entries zero. The second raw has some entry in the first place, the second
block corresponding to =93 and |m| = 1) has three entries, namely u(p;),v(p;),1 (which are the
evaluations of the degree < 1 (u,v)-monomials at p;), and the blocks corresponding to |m| > 1
are zero. More generally, above the diagonal all the blocks are zero, the diagonal block indexed by
t=9*2+7 and |m| = j contains the evaluation of the (u,v)-monomials of degree < j at p;.

E.g., if £ = 1, then the matrix has d — 2 rows and p, columns, and each diagonal block contains
one entry 1, hence its rank of the linear system is d — 2. In particular, dimim(c¢ o) = d — 2.

For k > 2, we have to put together all the linear equation corresponding to all D;. A block
indexed by ¢t~9*2%J and |m| = j’ will have k rows. Again, all the blocks above the diagonal are
zero. On the other hand, the rank of the diagonal block indexed by =927 and |m| = j is as large
as possible, it is min{k, (j ;2)} Indeed, its rows consists of the evaluation of (u,v)-monomials of
degree < j at points p;: since the points p; are generic they impose independent conditions on the
corresponding (homogeneous) linear system (in variable (z1, z2, z3)) of degree j. Hence, the rank of
the matrix is Z?;g min{k, (]‘52)}

Theorem 11.2.1. For any k > 1 the dimension of im(c=%%0) is Z?;S’ min{k, ("3%)}. The first k
KE5 s dominant is k = (dgl). im(c=*0) has codimension 1 for k = (dgl) - 1.
Accordingly, for a generic £ € im(c™*F0), h'(Z, L) = p, — dim(im(cFF0)).

when ¢~

11.3. The case I' = —kE} (k > 1), Z = Zx (and special divisor on ECa’ (2)).

In the previous subsection we considered generic points P := {p1,...,pr} on C, in particular,
for all j (0 < j < d — 3) they imposed independent conditions on the linear system Op2(j) (or,
on the (u,v)-monomials of degree < j). However, taking special points they might fail to impose
independent conditions on some Opz(j). The discussion will show that im(cl/) has several (rather
complicated) hl-stratification, (some of them) imposed by special divisors.

Here we will indicate such possibilities; nevertheless, for simplicity we will restrict ourselves only
to certain cases when only one block degenerates and the rang of the total linear system is determined
again by the diagonal blocks. Even under this restriction we find the situation extremely rich, since

it accumulates the classical plane curve geometry. However, the reader is invited to work out cases
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when the global rank depends on certain entries from the sub—diagonal blocks as well, covering even
more sophisticated h'-strata.

Recall that in the diagonal block of (t~4+2+J |m| = j) we test if P impose independent conditions
on Opz(j) or not. In the sequel we will assume that there exits exactly on j, say jo, when P
fails to impose independent conditions. Clearly jo > 0. Furthermore, we will also assume that
(j(’;'l) <k< (j0;3). This means that in all the diagonal blocks with j < jo the number k of rows
is > than the number (j '52) of columns, hence the j—blocks has rank (j ‘52) Symmetrically, in all
the j—diagonal blocks with j > jg the number k or rows is < than the number (j ;2) of columns,
hence the rank is k. Therefore, if the jo-block is degenerated with rank min{k, ("°}?)} — A for
some A > 0, then independently of the sub—diagonal entries, the rank of the matrix of the system
is Z?;g min{k, ("1?)} — A. In particular, h!(Zx,O(D)) increases by A compared with the generic
situation of 11.2.

Let us list some cases when such a degeneration can occur. Take e.g. jo = 1 and £ = 3 and
{p1,p2,p3} are collinear. For jo = 2 we give two possibilities: either k& = 4 and the four points are
collinear, or k = 6 and the six points are contained in a conic.

We recall here two classical theorems of plane curve geometry, which can be used to produce
similar examples; for more see the article [EGH96] and the citations therein.

(a) [EGH96, Prop. 1] For jo > 1 and k < 2jo + 2 the points P fail to impose independent
conditions on Opz(jo) if and only if either jo + 2 points of P are collinear or k = 2jy + 2 and P is
contained in a conic.

(b) [EGH96, Th. Cayley-Bacharach4] Assume that P consists of k = e - f poinst which are the
intersection points of two curves of degree e and f. Then if a plane curve of degree jo =e+ f — 3
contains all but one point of P then it contains all of P.

12. WEIGHTED HOMOGENEOUS SINGULARITIES.

12.1. Preliminaries. Assume that (X, o) is a weighted homogeneous normal surface singularity,
that is, there exists a a normal affine variety X¢, which admits a good C*—action and singular point
o € X® such that (X, o) is analytically isomorphic with (X®,0). This implies that the minimal good
resolution graph I is star shaped. As above, we assume that the link is a rational homology sphere,
hence all the vertex—genera are zero. We write vy for the central vertex, hence I' \ vy consists of v
strings. We assume that v > 3 (otherwise p, = 0, an uninteresting situation for the Abel map). Let
—bo be the Euler number of vyp. The Euler numbers of the vertices v;; of the Gt string (1 < j <v)
are —bj1,..., —bjs,, with b;; > 2, determined by the continued fraction oj /w; = [bj1, ..., bjs,], where
ged(aj,w;j) =1, 0 < w; < a;. For each j, vy is connected with vj; by one edge. The link is a
Seifert fibered 3-manifold with Seifert invariants (bg,g = 0; {(j,w;)};). In particular, the Seifert
invariants characterize the topological type uniquely, see e.g. [Neu81].

We denote by Ej; the irreducible exceptional curves indexed by vertices vj;. Let P; (1 < j <wv)
be E,, N Ej1. One has the following result:

Theorem 12.1.1. (Analytic Classification Theorem) [CR73, Do75, Do77, OrWa77, Pi77,
Neu81b] The analytic isomorphism type of a normal surface weighted homogeneous singularity
(with rational homology sphere link) with fixed Seifert invariants is determined by the analytic type
of (Ew,, {P;};) modulo an action of Aut(E,,,{P;};). (This is the same as the analytic classification

of Seifert line bundles over the projective line.)
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Next we show that the minimal resolution of any weighted homogeneous singularity can be con-
structed by a special ‘analytic plumbing’.

First we construct an analytic space X¢ (the candidate for the resolution of X®). Basically
we mimic the analytic plumbing construction of the resolution of cyclic quotient singularities from
e.g. [BPV84, La7l]. Corresponding to the legs we fix distinct complex numbers p; € C; the affine
coordinates of the points P;. Each leg, with divisors {E]Z}:le, 1 < 5 < v, will be covered by open sets
{U;i}i2,, copies of C? with coordinates (u;;,v;;). For each 1 < i < s; we glue U;;—1 \ {uj,—1 = 0}

-1

ji
i1 i

with U;; \ {vj; = 0}. The gluing maps are v,; = u Fio1

(1<i<s;)and uj,; equals u vj 1 for
2<i<s;and u?—fé(vj,o —pj) for i =1.

Furthermore, all U; o charts will be identified to each other: w;o = ug,0, vj0 = vg,0; denoted
simply by Up, with coordinates (ug, vo). Till now, the curve E,, appears only in Uy, it has equation
up = 0. To cover E,, completely we need another copy U_; of C? with coordinates (u_1,v_1) as

well; the gluing of Uy \ {vo = 0} with U_; \ {u_y = 0} is vo = u_1, ug = u”v_;.

We call the output space X@. If we contract (analytically) E = E,, U (U;.:E;i) we get a space X
whose germ at its singular point is a normal surface singularity (X,;, 0). In this context, a resolution
Ez; of (Xpi,0) (as a subset of )’51) is the pullback of a small Stein neighbourhood of o. The following
statement is proved in [N]; basically it follows from the Analytic Classification Theorem 12.1.1 and
from the fact that if we blow down the legs the obtained space carries naturally a Seifert line bundle
structure over the projective line.

Proposition 12.1.2. The analytic structure on (X, 0) carries a weighted homogeneous structure.
Moreover, the minimal good resolution of any weighted homogeneous singularity with Seifert invari-
ants (bo,g = 0;{(a;,w;)};) admits such an analytic plumbing representation for certain constants
{p;}; (that is, it can be embedded in some X constructed above via plumbing). By Theorem 12.1.1
we can even assume that each p; is non—zero (what we will assume below).

The C* orbits lifted to X and closed are as follows: the generic ones, which intersect F,, sit in
Up UU_; and are given by {vg = c}, ¢ € (C\ {U;{p;}}) Uoo. The special Seifert orbit for each j in
Ujs, is given by {v;, = 0}.

In the sequel we will identify our weighted homogeneosu germ (X, 0) with such (X, 0).

For each j we also introduce 0 < w;- < o such that ij;- — 1= o 7; for some 7;.

12.2. A basis for H(X\E,0%)/H(X,Q%). For(, {m;}; € Z,n € Lz, let ), :=ug" " [](vo—
pj) "™ vgdug A dug be a section of Qi} over Uy, with possible poles over E N Uy. This under the

transformation vy = u:}, = ulﬁ’lv,l transforms into the following form on U_q:

iu:?oé-‘rz mj_n_QU:f_lnj(l . u_lpj)fmj du_q Adv_y.
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The regularity over X \ E requires that the exponent of u_; should be non-negative:

Let is fix one of the legs, say j. By induction using substrings of the legs and the corresponding
continued fraction identities (facts used intensively in cyclic quotient invariants computations) one

. . —Tj —wj W o
ets that the transformation between chart Uy and U, . is ug = w, *v, .7, vo = u,’. v,” . Then
J:85 3,85 " J:85 7585 79,85 ’

wy,, in the chart Uj s, under this transformation becomes

’ ’
Til—wimitw;—1 wil—ajm;+a;—1
3,85 3,55

’ ’

W (e 7} w o

J J J J
v

(uj,sj 7,85 +p])n : Hj/;ﬁj (uj,sjvj,rj +pj’ - pj)_Mj dvji'sj A duj»sj‘

Again, by the regularity along X \ E, the exponent of v, should be non-negative, hence w;¢ —

ajmj + a5 —1 > 0. The largest solution for m; is
(1222) m]— = ijg/OéjW .

Hence, the form wy, extends to a form wy, on X, regular on X \ E, if for mj = [w;jl/a;] as in
(12.2.2) (for all j) the inequality (12.2.1) holds. If ¢ < 0 then m; = [w;¢/a;] < 0, hence the form
wy.p is regular on X, and in HO(X \ E, 0%)/H° (X, Q%) it is zero. Hence, we can consider only the
values ¢ > 0. For them we set as a combination of the right hand side of (12.2.1) and (12.2.2)

Ny ‘= —bog — 2 =+ Z]‘ [wjﬂ/aﬂ .
If ny < 0 then there is no such form with pole /+1 along E,, cf. (12.2.1). Set W :={£ >0 : n, > 0}.
Lemma 12.2.3. [N] The formswg,, (£ € W, 0 <n < ng) form a basis of HY(X\E, Q?{)/HO(X', Q})

Proof. By their construction, the forms generate H° ()?\E7 Q})/HO()?, Q%) But, by the p,—formula
of Pinkham [Pi77], namely p, = >°,c) (n¢ + 1), their number is exactly py, the dimension of this
quotient space. ([l

Remark 12.2.4. ny = —2, hence the E,,—pole of any wy , is > 2.

12.3. Natural line bundles. Let X® be as above, let O® be the closure of a lifted C* orbit into
Xa, and set O := 0°NnXcX.

Theorem 12.3.1. O5(0) is a natural line bundle in Pic(X).

Proof. For each O = 0% N X we find a local analytic function fo : (X,0) — (C,0) such that the
divisor in X of fo o ¢ has the form noO + 3, n,E, for some no,n, € Zso. This implies that
0% (no0) ~ Ox (=, mE,). In order to find fo we use the fact that a weighted homogeneous
germ is splice quotient [NWO05b, NWO05]. In fact, by [Neu83], the universal abelian cover (UAC) of
(X, 0) is a Brieskorn complete intersection and certain powers of the coordinate functions of this
complete intersection are the end curve functions of (X, 0) which have the wished properties for the
orbits supported by the end vertices.

A similar argument clarifies the case of the other (generic) orbits as well. Let the UAC complete
intersection equations be Z” a; ;2% =0,1<j<v,and 1 <i < v -2, and where {aivj}i_j has
full rank, cf. [Neu83]. Then we add one more equation of type ) . b;z* + w = 0, such that the
new larger matrix has again full rank. The new system corresponds to a splice quotient equations
of the graph I obtained from I' by blowing up the central vertex. The point is that the resolution
with dual graph I of this splice quotient singularity associated with I can be obtained from X
by blowing up a certain point P € E,, \ U;P;. P is determined by the choice of the coefficients
{b;}i, and modification of the {b;};’s provides different points P. By the theory of splice quotient
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singularities, the end curve function w = 0 cuts out an end curve in the UAC, which projected on
(X, o) is irreducible. Hence ), b;z* is a weighted homogeneous function on the UAC of (X, 0), one
of its powers is a homogeneous function on (X, 0) whose reduced zero set is irreducible. Its strict
transform is some O, where O N E,, depends on the choice of {b;};. In particular all such orbits

define the same line bundle, the natural line bundle. O

12.4. The Abel maps, h'(Z, £) and dimim(¢") for different line bundles and /'.

In the sequel we fix a cycle Z: for simplicity we assume that Z > 0, e.g. in the numerical
Gorenstein case we can take Z = Z, or, in general, Z € Zx +8’ (in which cases for any £ € Pic()?)
with ¢1(L) € =8 one has h'(X, L) = h*(Z, L|)). In this case we will use all the differential forms
we,n, constructed above. The interested reader might rewrite the statements and proofs below for

smaller cycles (using forms a similar system of forms with poles < Z).

12.5. The value h'(Z,0z(—kE} ), k > 1. Consider the natural line bundle Oz(—E;} ). If O,
denotes the intersection of the generic C*—orbit with X, Oy N E,, = {q} (where the intersection
point ¢ can be identified with the vo— affine coordinate in Up), then by Theorem 12.3.1 Oz(—Ej} ) =
0z(0,) for any q € E,, \U;E; 1. Recall that O, in the chart Uy is given by {vg = ¢}. For k distinct
orbits Og,, ..., 04, we apply Corollary 10.1.2. The restrictions are of type

Ty

Za&nq? =0, forall/eWand 1 <i<k.

n=0
Proposition 12.5.1. With the above notations, the number of independent relations (or, pg —
W'Y (Z,O(=kE})), cf. Corollary 10.1.2) is >,y min{ng + 1,k}. Hence

h'(Z,0(~kE},)) = Y max{0,n, + 1 — k}.
Lew

Proof. Use the previous discussion and py = >,y e + 1. O
E.g., for k = 1 the number of independent relations is #W and h'(Z, O(=E;,)) = pg — #W.

12.6. The Zariski tangent space of im(¢'') at Oz(I'), for I' = —kE; , k> 1.

Take first k = 1, L = Oz(I') = Oz(—E},), and let Trim(¢") be the Zariski tangent space of
im(c") at £. By Theorem 12.3.1 O, € (¢"')~(£L) for any ¢ € E,, \ U;P;, and (cf. Corollary 10.1.2
and 12.5) imTo, (cl/) is the kernel of forms " as,wen with Y as,q" = 0 for all £ € W. We
wish to describe the space generated by all subspaces imTp, (cl,) C Tgim(cl/) when we move g. By
taking (n, + 1) different values ¢, we get that the vectors (¢°,¢l,...,¢™) (dual to the hyperplane
> aengy = 0) are linearly independent (since their Vandermonde determinant is non-zero), hence
>, imTo, () = T Pic" (Z), the whole tangent space of pic" (Z) at L. Hence we proved the following

statement for k = 1.

Theorem 12.6.1. T,im(c") = T;Pic" (Z) for any I! = —kE}

vo?

k>1.
The general case k > 1 follows from the case k =1 and (6.1.2).

12.7. The value h'(Z, Oz(—E;,,)). Fix some leg j and consider the corresponding end-vertex
Ej s, and the natural line bundle OZ(fE;‘)Sj )- If O; denotes the intersection of the special C*—orbit
with X, then in Uj,s; it is given by {v; s, = 0} and by Theorem 12.3.1 Oz(—E7 ) = Oz(0;). We

J

apply again Corollary 10.1.2 for the forms wy,, in Uj, (cf. 12.2)

Til—wimi+wi—1 wil—a;mita;—1, Wi n Wiy —m;
J:8; 7155 (uj,sjvj,s]‘ +pj) ’ Hj’#j(uj’Sj’Uj’Tj Ty _pj) ’ dvj’sj A duj’sj.
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Some of the forms have no poles along {u;,;, = 0}, hence they determine no restrictions. That is,
any restriction appears only if 7;¢ — wim; +w} —1 < 0.

We recall that the vj s, exponent w;¢ — a;m; + a; — 1 is non—negative. However, if this exponent
is strict positive, then the restriction to {v; s, = 0} is zero. Hence, restriction appears only if this

exponent is exactly zero. Note that w;¢ — a;m; + a; —1 = 0 if and only if a;|w;¢ — 1.
Proposition 12.7.1. The number of independent relations, p, — h'(Z, (’)Z(—E;’Sj)), 18
doeewne #L 2 Tl — Wi [lwifag] + Wl =1 <0, aj|wil —1}.

12.8. The dimension of im(¢') for I’ = —E} . Let d:= (Z,1'), this is the dimension of ECa! (2)
(cf. Theorem 3.1.10). In fact, ECal/(Z) projects onto E,, \ U;P; with fibers ~ C4~1. We are again
in chart Uy, and we simplify the coordinate notations (ug,vo) into (u,v). We have to restrict the
forms wy , to the generic transversal cut 5gen given by {v = ¢+ cqu+--- + cd,lud_l}. In this
generic case the linear system is more complicated, the rank is much harder to compute.

Recall p; = 3,01y (ne+1). We define the function s : Z>¢ — Zx>o by decreasing induction. First,
set s(£) = 0 for any £ > 0 (e.g. for any ¢ larger than any element of W). Then define
(12.81) o(0) = { max{0, s(¢ + 1) — 1} %f (gw,

s(0+1) +ng if £ew.

Lemma 12.8.2. (a) s(0) < py, — #W.

(b) The following facts are equivalent: (i) s(0) = py —#W, (it) s(£) =0 for all £ > 0, (iii) ng =0
forall £ e W, (i) pg =#W and s(0) = 0.

Proof. (a) By a decreasing induction one gets

s(0) = Z neg —#0 0 >0, 0 ¢W, s(f' +1) > 0}.
>0, 0eWwW

In particular,
(12.8.3) s(0)=pg —#W —#{l : £ >0, L& W, s({+1) >0} <p, —H#W.

(b) (ii)= (iii)= (iv)= (i) are easy, we prove (i)=(ii). We use from (12.8.3) that (1) {¢ > 0, £ &
W, s(£+1) > 0} = 0. Recall that 0 € W (cf. 12.2.4). Hence s(1) = 0 (and necessarily s(0) = 0
too). If 1 € W then s(2) = 0 from the definition of s(1), if 1 € W then s(2) = 0 from (). Repeating
the argument, we get (4i). O
Theorem 12.8.4. h'(Z, Oz(ﬁgen)) = 5(0), hence

number of independent relations = dimim(c") = p, — s(0).

Recall that if Ogep, is the intersection of the generic C*—orbit with X , then the natural line bundle
Oz(—E}) is Oz(Ogen) and h'(Z,0z(Ogen)) = pg — #W. This identity and the one from Theorem
12.8.4 show that the inequality from (12.8.3) is compatible with the semicontinuity of h!, cf. 5.2.1.

Corollary 12.8.5. hl(Z, Oz(ﬁgen)) =h'(Z,02(0gen)) if and only if ng =0 for all £ € W, and in
this case in fact h*(Z,0z(Ogen)) =0 and ¢ P is dominant.

In the next proof we write W = {{1,...,lpmaz} with {1 < -+ < Lpas.
12.8.6. Proof of Theorem 12.8.4. According to Corollary 10.1.2 we have to find the dimension

{{aenteew, 0<n<n, : Resp (220 .n@e,nwe,n) has no pole along 5_96”}.
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Recall that 5gen ={v=c+acau+- -+ cd_lud’l} with ¢; generic. In fact, what we will need is
1 0. fweset v :==v—(cg+crut---+ cd,lud_l) then dv A du = dv’ A du, hence in the form
dv A du can be replaced by dv’ A du, and Resp (X0 nenwWen) = (Zz,nag’nwg,n/dvﬂf)gw.

The vanishing of poles provides a linear system whose matrix will be labelled as follows. The
columns are indexed by {¢,n}eew . We subdivide this in vertical blocks. The first one, B(¢1),
contains ny, + 1 columns, the second one, B({s), contains ng, + 1 columns, etc. Their columns are
indexed by the corresponding n’s. The rows are indexed by the pole orders: the first row corresponds
to ufmez—1 the last one to v~ !.

We define also the sub-block B’(¢;) (¢; € W) of B(¥;), it is obtained from B(¢;) by deleting the
rows corresponding to pole orders strict higher than ¢; + 1 (rows w=*~', I > [;). In fact, all the
entries of the deleted part are zero, and the highest row kept in B’(¢;) contains non—zero entries.

We proceed by induction: we fix some ¢, 0 < £ < {42, and assume that £, 1 < ¢ < ¥; for some
¢; € W. Then we consider the submatrix M (¢) (in the up-right corner) containing all the entries
from the columns contained in the vertical blocks B(¢;) with £; > ¢;, and from the rows w1 with
I <1 < lyas- It is the matrix of a linear system with l,,,4, — £ + 1 equations and with variables
Hag; nte;ew, e >0;,0<n<ny, what we formulate next. By decreasing induction we prove that s(¢) is
exactly the dimension dim(¢) of

{{aej,n}ejzei,ogngnej : (Ze,-z@i,nafgmwfjvn/dv)bgm has no pole of order > ¢ + 1}.

If ¢ = {142, then the system contains ny + 1 variables and a nontrivial equation (one checks that

at least one entry of the system is non—zero), hence dim(p,q42) = n,,.. = $(lmaz)-

When we step from £+ 1 to £ (0 < £ < £p42), we have to consider two cases.

First assume that £ € W (say £ = ¢;). Then we add ny+ 1 new variables and one new equation. In
the columns corresponding to the new variables only the last row contains non—zero entries, but this
part indeed contains at least one non—zero entry. Hence the new equation is linearly independent
from the old ones, and dim(l) = dim({ + 1) + ng + 1 — 1; this is the inductive step for s(¢) too.

If ¢ €W, say ;1 < £ < {;, then in the new system one has the same number of variables, but
there is one more equation corresponding to the new row ¢. We divide this case into two subcases.
First, assume that the rank of M (£ + 1) equals the number of columns ijzli (ng; +1). Hence,
adding a new row we cannot increase the rank, hence dim(¢ + 1) = dim(¢). In fact, dim(¢ + 1) = 0,
and the new equation (even if it is ‘generic’) cannot decrease the dimension of the system.

In the second case we assume that the rank of M (€+1) is strict smaller than the number of columns
Ze,-ze,: (ng;+1). In this case we claim rank(M (¢)) = rank(M (£/+1)+1), hence dim(¢) = dim(¢+1)—1.
This again agrees with (12.8.1). The claim follows from the next lemma via standard linear algebra.

Lemma 12.8.7. Fiz {; € W. Assume that the hight £;+1 of the sub—block B’({;) is not smaller then
its width ng, + 1. Then the top (ng, + 1) x (ng, + 1) minor M’ of B'(¢;) has non—zero determinant.
Furthermore, if the hight ¢; + 1 of the sub-block B'(¢;) is smaller then its width ne, + 1 then the
l; + 1 rows of B'(¢;) are linearly independent.

We prove this lemma in two steps. The first step is the next statement.

Lemma 12.8.8. For any m € Z~q we construct the m x m-matriz M(c) as follows. Its n'"—column
consists of the first m coefficients of the series (Zkzo cxuF)"L. E.g., the first column has entries
(1,0,...), the second one (co,ci,...), the third one (c3,2cocy,...). Then det M(c) = c;n(m_l)m,

Proof. Assume that {C),}1<n<m are the columns of M(c). Consider the matrix M(c)’ consisting of
columns {C! }1<n<m, C; = C1, Cy = Cy — ¢oCy, C% = C3 — 2¢oCs + ¢3C4, ete. Then det M(c) =
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det M(c)’". But C!, consists of the coefficients of (—co + > ;<o cxu®)" !, hence the entries of M (c)’

above the diagonal are zero, and on the diagonal one has the entries 1,c1,c3?, .. .. O

Finally we prove Lemma 12.8.8. We apply Lemma 12.8.7 for m = ¢; + 1. Note that we can
consider only the first situation (when the height is sufficiently large, since in the other case the
matrix can be completed to a square matrix of size ny, + 1 with non-zero determinant.

For fixed ¢; the forms have the form wy, , = u=% 71 fy, (vo)vfdvy A dug, 0 < n < ny,, where
fe,(vo) :=T1;(vo —p;)~™7. Let us we substitute vo — >4+, cxu® in this function, and consider its
Taylor expansion P(u) = by + byu + ---. Then the columns of the top minor M’ of B’({;) are the
coefficients of the product (3, cxu®)™ - P(u). Since by # 0, this means that M’ is obtained from
M (c) by multiplication with an invertible matrix. Hence det M’ # 0.

This ends the proof of Theorem 12.8.4.

12.9. The Abel map ¢ ina neighborhood of some 0, supported by E,,. Since we have a
basis of differential forms, using the results and the notations of subsection 7.3 we are able to give
the ‘complete Abel map’. Indeed, assume that O is the intersection of a generic C*—orbit with X ,
and in some local chart it is given by v = 0. Consider the parametrization of its neighbourhood
in ECa! (Z) in the form D(c) = {v = co + c1u + -+ + cq_1u?"1} (|co| < 1), where d = (Z,1)
is the dimension of ECal/(Z ). Above we constructed p, differential forms having in this chart the
expressions wy,, = u™ "' fy v dv A du, where fo,, = ];(v —p;)~™, £ €W and 0 <n < ny. Then
the Abel map restricted to this chart is ¢ — (((D(c),wen)))en, where each coordinate ((D(c),we.n))
is determined explicitly in (7.3.5).

The reader is invited to take his/her favorite star—shaped graph, determine explicitly the forms
and the corresponding Abel map. Here we will exemplify the general description by an example
when the image of the Abel map is a singular hypersurface.

Example 12.9.1. Consider the star—shaped graph with by = 4, v = 8, (a;,w;) = (8,1) for all j.
Then p, = 3. By a computation W = {1}, and the three forms are u=2f(v)v", where n = 0,1, 2,
and f(v) = [[;(v - p;j)~*. By a computation (using Laufer’s algorithm) Z,,;, = E + E,,, and
h(Oz,...) = 3. In fact, | Zx| = Znin. We determine the Abel map ¢ for Z = Z,;,, and ! = —E .
Hence d = (Z,1') = 2, and D(c) = {v = ¢o + ciu}. By (7.3.5) the Abel map is

(co,c1) = (—c1f(co), —crco f(co), —c1ch f(co))-

If (A, B, C) are the coordinates in the target, then im(c) = {AC = B?}. It is surprising that im(c)
is independent of the choice of the points {p,}, (that is, of the analytic structure of (X, 0)).
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