
THE ABEL MAP FOR SURFACE SINGULARITIES

I. GENERALITIES AND EXAMPLES

JÁNOS NAGY AND ANDRÁS NÉMETHI

Abstract. Let (X, o) be a complex normal surface singularity. We fix one of its good resolutions

X̃ → X, an effective cycle Z supported on the reduced exceptional curve, and any possible

(first Chern) class l′ ∈ H2(X̃,Z). With these data we define the variety ECal
′
(Z) of those

effective Cartier divisors D supported on Z which determine a line bundles OZ(D) with first Chern

class l′. Furthermore, we consider the affine space Picl
′
(Z) ⊂ H1(O∗

Z) of isomorphism classes of

holomorphic line bundles with Chern class l′ and the Abel map cl
′
(Z) : ECal

′
(Z) → Picl

′
(Z).

The present manuscript develops the major properties of this map, and links them with the

determination of the cohomology groups H1(Z,L), where we might vary the analytic structure

(X, o) (supported on a fixed topological type/resolution graph) and we also vary the possible line

bundles L ∈ Picl
′
(Z). The case of generic line bundles of Picl

′
(Z) and generic line bundles of the

image of the Abel map will have priority roles. Rewriting the Abel map via Laufer duality based

on integration of forms on divisors, we can make explicit the Abel map and its tangent map. The

case of superisolated and weighted homogeneous singularities are exemplified with several details.

The theory has similar goals (but rather different techniques) as the theory of Abel map or

Brill–Noether theory of reduced smooth projective curves.

1. Introduction

In this introduction we plan to provide the major ideas and some of the major results without

technical details. The presentation will automatically provide the structure of the article as well.

The study of the Abel map of projective irreducible smooth curves was a crucial tool in the

classical algebraic geometry and it remained so in the modern theory as well. Though in this work

we will use very little from this theory, in this introduction (and some places later) we will discuss

some comparisons between the curve case and the theory of the present article established for normal

surface singularities, mostly to emphasize the major conceptual differences and additional difficulties

in the later case. (For the Abel map of curves one can consult [ACGH85] and the references therein.)

The present manuscript is the first one in a series of articles planed (and partly already written)

by the authors. It contains the foundation, the presentation of the basic constructions and of the

basic properties. They are also supported by several examples. The forthcoming manuscripts of the

series treat the theory applied for several important families of singularities, e.g. for singularities

with generic analytic type, or elliptic or splice quotient singularities. E.g., in the second article

[NN18], based on the results of the present one, we treat properties of the generic analytic structure

supported by a fixed resolution graph (topological type). More precisely, we are able to determine

topologically several discrete analytic invariants of such singularities like multivariable Hilbert series

associated with the divisorial filtration, or cohomology of cycles and line bundles supported on the

fixed resolution (in particular, the geometric genus as well).
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We wish to emphasize from the start that we are not generalizing the Abel construction from

the curve case to the — smooth or singular — (quasi)projective surfaces: our goal is to develop

its analogue valid in the context of a resolution of a complex normal surface singularity germ.

This means that if (X, o) is such a singularity with a fixed good resolution X̃ → X, then for any

effective cycle Z supported on the reduced exceptional curve E and for any (possible) Chern class

l′ ∈ H2(X̃,Z) we construct the space ECal
′
(Z) of effective Cartier divisors D supported on Z,

whose associated line bundles OZ(D) have first Chern class l′. Furthermore, we consider the space

Picl
′
(Z) ⊂ H1(O∗Z) of isomorphism classes of holomorphic line bundles with Chern class l′ and the

Abel map cl
′
(Z) : ECal

′
(Z) → Picl

′
(Z), D 7→ OZ(D). In this way, our Abel map is associate with

non–reduced projective curves supported by the exceptional set of a good resolution of a normal

surface singularity. In particular, the combinatorial background is the combinatorics of the dual

resolution graph Γ (or the intersection from ( , ) of the irreducible exceptional curves), that is,

equivalently, the 3–dimensional link of the singularity. In fact, in order to run properly the theory

(e.g. to be able to define the ‘natural’ line bundles, cf. 2.3), we will even assume that the link of

the singularity is a rational homology sphere. This happens exactly when the resolution graph Γ

represents a tree of rational curves. In this way, in all the discussions regarding the analytic types and

properties we move the difficulties from the moduli space of each irreducible exceptional curve Ev

(which is trivial in this case) to the analytic properties of their infinitesimal tubular neighbourhoods

and their gluings (analytic plumbing).

Therefore, the Abel map cl
′
behaves rather differently than the (projective) Abel map of reduced

smooth curves, it shares more the properties of non–proper affine maps rather than the projective

ones. This will also be clear from the next preliminary presentation of its source and target.

In fact, the space ECal
′
(Z) is already constructed in the literature. Note that by a theorem of

Artin [A69, 3.8], there exists an affine algebraic variety Y and a point y ∈ Y such that (Y, y) and

(X, o) have isomorphic formal completions. Then, according to Hironaka [Hi65], (Y, y) and (X, o)

are analytically isomorphic. In particular, we can regard Z as a projective algebraic scheme, in

which situation ECal
′
(Z) was constructed by Grothendieck [Gro62], see also the article of Kleiman

[Kl13] and the book of Mumford for curves on algebraic surfaces [Mu66]. In particular, ECal
′
(Z) is

a quasiprojective variety. Though the existence of the space ECal
′
(Z) in this way is established, we

will provide several key properties valid in our particular situation, including the local charts. E.g.,

we will characterize topologically when the space ECal
′
(Z) is nonempty (ECal

′
(Z) ̸= if and only if

−l′ belongs to the Lipman cone, cf. (3.1.5)), and in these cases we show that it is smooth of dimen-

sion (l′, Z), cf. Theorem 3.1.10. Furthermore, there exists a natural projection to ECal
′
(E), whose

fibers are affine spaces. They can be considered as certain jet spaces in the local infinitesimal neigh-

bourhoods of the of the local equations of the effective Cartier divisors. This fiber structure makes

the space rather special, with non–proper/non–compact behaviors. In fact, by fixing the Chern class

even ECal
′
(E) becomes non–projective too; e.g. for l′ = −E∗v (the dual of Ev, representing ‘cuts’

which intersects Ev but not the other curves) we get ECal
′
(E) = Ev \ ∪u̸=vEu.

Note also that the base space Picl
′
(Z) is also noncompact, it is an affine space, it has dimension

h1(OZ). (Here the assumption that the link is a rational homology sphere plays a role; otherwise

Picl
′
(Z) = H1(O∗Z)/H1(X̃,Z) would have a complex torus component as well). This affine structure

will be exploited deeply in the body of the paper. Finally we also mention that the Abel map itself

is algebraic, and in fact its (rather non–trivial) expression in local charts can be done explicitly via

Laufer duality (integrating forms along divisors in X̃), for details see section 7.
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Since the Abel map is not proper, its image usually is not closed, and it can be a rather complicated

constructible set (it can be singular as well, cf. Example 12.9.1). In this note we give several examples

and also we characterize the dimension of this image. It is not topological, usually it depends in a

subtle way on the analytic structure of the singularity. In order to show the presence of possible

anomalies we list several examples based on the theory of elliptic and splice quotient singularities

(certain familiarity with them might help essentially the reading).

We also show that all the fibers of cl
′
are smooth (irreducible, quasiprojective), however, their

dimensions might jump. The dimension of c−1(L) (L ∈ Picl
′
(Z)) is h0(Z,L) − h0(OZ) = (l′, Z) +

h1(Z,L) − h1(OZ). Any fiber appears as quotient by the algebraic free proper action of H1(O∗Z),
which, as algebraic variety, has dimension h1(OZ). (This also shows a major difference with the

curve cases, where the space of effective divisors associated with a bundle has the form H0(L) \ {0},
and the action is the projectivization action of C∗. In particular, the fibers are projective spaces.)

The above relation makes the connection with another major problem/task of the theory, namely

determination of possible values of h1(Z,L).
This ‘h1’–problem can be formulated even independently of the Abel map, and in fact, it was

our most important motivation. Let us fix a topological type (say, the resolution graph Γ), and

we consider an arbitrary analytic type of singularity and its resolution supported by Γ. Then for

fixed Chern class l′ and cycle Z we can also consider all the possible line bundles L ∈ Picl
′
(Z).

The challenge is to determine all the possible values of h1(Z,L), and understand/organize them is

a conceptual way. This can be split in two major steps: in the first case one varies all the analytic

structures, in the second case one fixes an analytic structure (X, o) (and one of its resolutions X̃)

and one moves L ∈ Picl
′
(Z). E.g., in this second case, one can ask for the stratification ∪kWl′,k of

Picl
′
(Z) ≃ H1(OZ) by Wl′,k = {L : h1(L) = k}. (These are the analogues of the Brill–Noether

strata. For the Brill–Noether theory see [ACGH85, Fl10].) Or, one can search for the possible values

k when Wl′,k ̸= ∅. In the body of the article we will provides several bounds and partial results

(with sharp lower bounds provided by generic structures). Though the older previous results in

normal surface singularities focus mostly on particular analytic structures (rational, elliptic, weighted

homogeneous, splice quotient, etc), and to special line bundles (e.g. of type OZ(l)), in the present

note we aim to create a theory which helps to attack the general case, e.g. to treat the case of

generic analytic structure or the generic line bundles as well.

Part of the results are reduced to the case of Abel maps which are dominant. This case is

completely characterized and solved in section 4; we show in Theorem 4.1.1 that the fact that

cl
′
(Z) is dominant depend only on combinatorial properties of the pair Z and l′, and furthermore,

in such a case, h1(Z,Lgen) = 0 for Lgen generic in Picl
′
(Z). For fixed and large Z (in which

case Picl
′
(Z) = Picl

′
(X̃)) we introduce S ′dom as the set of those Chern classes l′ for which c−l

′

is dominant, and we list several properties of it. It is a semigroup of the topological Lipman

semigroup/cone S ′, and it has several properties of the analytic semigroups. The study of dominant

maps emphasizes again the importance of the study of generic line bundles. In section 5 we will

list several cohomological properties for the generic line bundle Lgen of Picl
′
(e.g. we determine

its h1 topologically, and we show that this value is a sharp lower bound for any h1(L)). Similarly,

the generic line bundle of the image of the Abel map cl
′
is also studied (its h1 is the codimension

of im(cl
′
) and it is also the sharp lower bound for any h1(L) with L ∈ im(cl

′
)). Upper bounds for

h1(Z,L) are also established.

The Abel map is compatible with additive structure of the divisors and multiplicative structure

of the line bundles. The point is that if we iterate a Chern class sufficiently many times (that
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is, we replace l′ with nl′ where n ≫ 0), then the image of cnl
′
becomes an affine space, whose

associated vector spaces stabilizes, and which depends only on the ‘dual-base-support’ of l′ (see

Theorem 6.1.9). This collection of stabilized linear subspaces (as a linear subspace arrangement)

and their dimensions become the source of important new analytic invariants, see section 6. E.g., the

dimensions serve as correction terms in our new analytic surgery formulae (see e.g. Theorem 6.1.9).

If the analytic structure of (X, 0) is ‘nice’ (e.g. splice quotient), then these correction invariants can

be connected with known analytic invariants computable from the Poincaré series of the divisorial

filtrations), and in such cases classical formulae can be recovered or improved (see section 9). It is

worth to emphasize that the classical surgery formulae (see e.g. [O08], or [BN10]) are valid for the

special ‘natural’ line bundles and under special analytic conditions, and it was not clear at all if any

extension to the general case might exists and/or how to define the correction terms in such general

situations. In the present note this is solved via the above stabilized dimensions of the images of

Abel maps (without any required restriction). Furthermore, under the special analytic conditions

of the old surgery formulae, they are identified with the classical correction terms.

Starting from section 7 we develop the ‘duality picture’ between divisors and differential forms.

This not only describes the Abel map and its tangent map, but it gives a computational tool

in concrete examples as well. The invariants of stable case in language of differential forms are

described in section 8. The general non–stable case is analyzed in section 10.

When a concrete basis of H0(X̃ \ E,Ω2
X̃
)/H0(X̃,Ω2

X̃
) (dual to H1(OX̃)) can be explicitly deter-

mined, the Abel map also becomes more transparent, and several of the above listed problems have

precise (sometimes even combinatorial) solutions. This is exemplified in the case of superisolated

(section 11) and weighted homogeneous (section 12) singularities. Some additional properties in the

Gorenstein situation are also listed.

In the sequel #A denotes the cardinality of the finite set A.

2. Preliminaries

In this section we review some basic facts about topological and analytical invariants of surface

singularities, and we introduce the needed notations as well.

2.1. The resolution. Let (X, o) be the germ of a complex analytic normal surface singularity, and

let us fix a good resolution ϕ : X̃ → X of (X, o). We denote the exceptional curve ϕ−1(0) by E, and

let ∪v∈VEv be its irreducible components. Set also EI :=
∑

v∈I Ev for any subset I ⊂ V. The support
of a cycle l =

∑
nvEv is defined as |l| = ∪nv ̸=0Ev. For more details see [La71, N07, N12, N99b, L13].

2.2. Topological invariants. Let Γ be the dual resolution graph associated with ϕ; it is a connected

graph. Then M := ∂X̃ can be identified with the link of (X, o), it is also an oriented plumbed 3–

manifold associated with Γ. It is known that (X, o) locally is homeomorphic with the real cone

over M , and M contains the same information as Γ. We will assume that M is a rational homology

sphere, or, equivalently, Γ is a tree and all genus decorations of Γ are zero. We use the same notation

V for the set of vertices, and δv for the valency of a vertex v.

L := H2(X̃,Z), endowed with a negative definite intersection form ( , ), is a lattice. It is freely

generated by the classes of 2–spheres {Ev}v∈V . The dual lattice L′ := H2(X̃,Z) is generated by the

(anti)dual classes {E∗v}v∈V defined by (E∗v , Ew) = −δvw (where δvw stays for the Kronecker symbol).

The intersection form embeds L into L′. Then H1(M,Z) ≃ L′/L, and it is abridged by H. Usually

one identifies L′ with those rational cycles l′ ∈ L⊗Q for which (l′, L) ∈ Z, or, L′ = HomZ(L,Z).
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There is a natural (partial) ordering of L′ and L: we write l′1 ≥ l′2 if l′1 − l′2 =
∑

v rvEv with all

rv ≥ 0. We set L≥0 = {l ∈ L : l ≥ 0} and L>0 = L≥0 \ {0}.
Each class h ∈ H = L′/L has a unique representative rh =

∑
v rvEv ∈ L′ in the semi-open cube

(i.e. each rv ∈ Q ∩ [0, 1)), such that its class [rh] is h.

All the Ev–coordinates of any E∗u are strict positive. We define the Lipman cone as S ′ := {l′ ∈
L′ : (l′, Ev) ≤ 0 for all v}. As a monoid it is generated over Z≥0 by {E∗v}v.

The multivariable topological Poincaré series is the Taylor expansion Z(t) =
∑

l′ z(l
′)tl

′
at the

origin of the rational function

(2.2.1) Z(t) =
∏
v∈V

(1− tE
∗
v )δv−2,

where tl
′
:=

∏
v∈V t

l′v
v for any l′ =

∑
v∈V l

′
vEv ∈ L′. By definition, Z(t) is supported on S ′. It has a

natural decomposition Z(t) =
∑

h∈H Zh(t), where Zh(t) =
∑

[l′]=h z(l
′)tl

′
. (Though the exponents

of tl
′
might be rational, that is, Z(t) ∈ Z[[t1/d1 , . . . , t

1/d
|V| ]], where d = det(Γ), the right hand side of

(2.2.1) still will be called ‘rational function’, and
∑

l′ z(l
′)tl

′
a ‘series’.)

2.3. Analytic invariants. In this manuscript we focus mainly on the structure of the Picard group

and the holomorphic line bundles of X̃. The group Pic(X̃) := H1(X̃,O∗
X̃
) of isomorphism classes of

holomorphic line bundles on X̃ appears in the exact sequence

(2.3.1) 0 → Pic0(X̃) → Pic(X̃)
c1−→ L′ → 0,

where c1 denotes the first Chern class. Here Pic0(X̃) = H1(X̃,OX̃) ≃ Cpg , where pg is the geometric

genus of (X, o). (X, o) is called rational if pg(X, o) = 0. Artin in [A62, A66] characterized rationality

topologically via the graphs; such graphs are called ‘rational’. By this criterion, Γ is rational if and

only if χ(l) ≥ 1 for any effective non–zero cycle l ∈ L>0. Here χ(l) = −(l, l−ZK)/2, where ZK ∈ L′

is the (anti)canonical cycle identified by adjunction formulae (−ZK + Ev, Ev) + 2 = 0 for all v.

The epimorphism c1 admits a unique group homomorphism section l′ 7→ s(l′) ∈ Pic(X̃), which

extends the natural section l 7→ OX̃(l) valid for integral cycles l ∈ L, and such that c1(s(l
′)) = l′

[N07, O04]. We call s(l′) the natural line bundle on X̃ with Chern class l′. By its definition, L is

natural if and only if some power L⊗n of it has the form OX̃(l) for some l ∈ L.

Natural line bundles appear in the presence of coverings as well. Indeed, let π : (Xab, o) → (X, o)

be the universal abelian covering of (X, o) (associated with the homomorphism π1(M) → H1(M) =

H) and let π̃ : X̃ab → X̃ be the (normalized) pullback of π by the resolution ϕ : X̃ → X. Then the

Galois group H acts on π̃∗(OXab
), whose eigensheaves are π̃∗(OXab

) = ⊕h∈Hs(−rh) [N07]. Hence,

in this way, one recovers all the natural line bundles with Chern classes in the open–closed cube.

Those with arbitrary Chern clasess satisfy s(−l − rh) = OX̃(−l)⊗ s(−rh) for certain l ∈ L.

In the sequel we write uniformly OX̃(l′) for s(l′).

Since O
X̃ab

might have only cyclic quotient singularities, pg(Xab, o) = h1(O
X̃ab

) and H1(O
X̃ab

) =

⊕hH
1(X̃,OX̃(−rh)). The dimensions pg(Xab, o)h := h1(X̃,OX̃(−rh)) (h ∈ H) are called the equi-

variant geometric genera of (X, o). Clearly,
∑

h pg(Xab, o)h = pg(Xab, o) and pg(Xab, o)0 = pg(X, o).

2.3.2. Similarly, if Z ∈ L>0 is an effective non–zero integral cycle supported by E, and O∗Z denotes

the sheaf of units of OZ , then Pic(Z) = H1(Z,O∗Z) is the group of isomorphism classes of invertible

sheaves on Z. It appears in the exact sequence

(2.3.3) 0 → Pic0(Z) → Pic(Z)
c1−→ L′(|Z|) → 0,
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where Pic0(Z) = H1(Z,OZ). Here and in the sequel, L(|Z|) denotes the sublattice of L generated

by the base element Ev ⊂ |Z|, and L′(|Z|) is its dual lattice.
If Z2 ≥ Z1 then there are natural restriction maps (for simplicity we denote all of them by the

same symbol r), Pic(X̃) → Pic(Z2) → Pic(Z1). Similar restrictions are defined at Pic0 level too.

These restrictions are homomorphisms of the exact sequences (2.3.1) and (2.3.3):

(2.3.4)
0 → Pic0(X̃) → Pic(X̃)

c1−→ L′ → 0

0 → Pic0(Z) → Pic(Z)
c1−→ L′(|Z|) → 0

↓↓ ↓↓ Rr ↓↓

Furthermore, for any l′ ∈ L′ we define a line bundle in Pic(Z) by r(s(l′)) = OX̃(l′)|Z , and we call

them restricted natural line bundles on Z. They satisfies c1(r(s(l
′))) = R(l′).

We also use the notations Picl
′
(X̃) := c−11 (l′) ⊂ Pic(X̃) and PicR(l′)(Z) := c−11 (R(l′)) ⊂ Pic(Z)

respectively. Multiplications by OX̃(−l′) and by OX̃(−l′)|Z provide natural (affine space) isomor-

phisms Picl
′
(X̃) → Pic0(X̃) and PicR(l′)(Z) → Pic0(Z).

Here an important warning is appropriate. If X̃ ′ is a small connected neighbourhood of some

exceptional curves ∪v∈V′Ev, V ′ ⊂ V, then similarly as for X̃, but now starting with the invariants

of X̃ ′, one can define the natural line bundles OX̃′(l
′) for any l′ ∈ L′(V ′). However, for l′ ∈ L′, in

general, if V ′ ̸= V then OX̃(l′)|X̃′ ̸= OX̃′(R(l′)), though both line bundles have the same Chern class

(here R is the restriction). That is, OX̃(l′)|X̃′ in general is not the intrinsic natural line bundle of

X̃ ′.

Similarly, for any cycle Z one can define the (intrinsic) natural line bundles of Z by group section

of (2.3.3) by similar properties as the natural line bundles of X̃ are defined. If |Z| = E then they

agree with the restrictions OX̃(l′)|Z . However, if |Z| ̸= E then it can happen that OX̃(l′)|Z is not

natural on Z. This explains the use of the terminology ‘restricted natural line bundle’ for OX̃(l′)|Z :
they are always restriction from the X̃–level. In order to simplify the notations we will also write

OZ(l
′) := OX̃(l′)|Z , l′ ∈ L′.

For any line bundle L ∈ Pic(X̃) we also write L(l′) := L ⊗OX̃(l′).

2.3.5. One of our main interest is to understand the stratification {L ∈ Pic(X̃) : h1(L) = k}k∈Z≥0

of Pic(X̃). In the literature about h1(L) — for arbitrary L — very little is known. However, about

the natural line bundles (of some special analytic structures (X, o)) recently several results were

proved, see e.g. [CDGZ04, CDGZ08, N08, N11, N12]. Since some of these facts are used in several

examples and play key role in the general presentation we review them in the next subsection.

2.3.6. The analytic multivariable Poincaré series is defined as follows [N12], see also [CDGZ04,

CDGZ08]. For every L ∈ Pic(X̃) (respectively, for Z ≥ E and L ∈ Pic(Z)) one defines

pL :=
∑
I⊂V

(−1)|I|+1 dim
H0(X̃,L)

H0(X̃,L(−EI))
and pZ,L :=

∑
I⊂V

(−1)|I|+1 dim
H0(Z,L)

H0(Z − EI ,L(−EI))
.

For Z ≫ 0 and L ∈ Pic(X̃) one has pL = pZ,L|Z . If (c1(L), Ev) < 0 for some v ∈ V, then

H0(X̃,L(−EI∪v)) → H0(X̃,L(−EI)) is an isomorphism for any I ̸∋ v (and similar isomorphism

holds for any Z ≥ E), hence

(2.3.7) pL = pZ,L = 0 whenever c1(L) ̸∈ −S ′.
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At the level of X̃ one defines a multivariable series as PL(t) :=
∑

l′∈L′ pL(−l′)t
l′ . It also has an H–

decomposition
∑

h PL,h, PL,h =
∑

[l′]=h pL(−l′)t
l′ , according to the classes [l′] ∈ H of the exponents

of tl
′
. By (2.3.7) it is supported on c1(L) + S ′. We write P (t) := PO

X̃
(t) =

∑
l′ pOX̃

(−l′)t
l′ .

The first cohomology of the natural line bundles and the series P (t) are linked by the following

identity proved in [N12]:

(2.3.8) h1(X̃,O(−rh − l)) = −
∑

a∈L, a�0

pO(−rh−l−a) + pg(Xab, o)h + χ(l)− (l, rh).

2.3.9. Recently there is an intense activity in the comparison of the analytic invariant P (t) and

the topological Z(t) (their coincidence imply e.g. the so-called Seiberg–Witten Invariant Conjecture

[N11, N12]). For the equality of P (t) and Z(t) for certain families singularities (rational, weighted

homogeneous, splice quotient) see e.g. [CDGZ04, CDGZ08, N08, N12] and the references therein.

We emphasize that in the previous results in the literature the main goal mostly was to characterize

for special (‘nice’) analytic structures the sheaf–theoretical invariants h1(L) topologically, and those

methods were applicable only for natural line bundles L. In the present note our goal is to treat

h1(L) for any line bundle and for any analytic structure.

2.4. Notations. In the body of the article we will present several examples. In them we will

use the following standard notations. We will write Zmin ∈ L for the minimal (or fundamental)

cycle of Artin, which is the minimal non–zero cycle of S ′ ∩ L [A62, A66]. Yau’s maximal ideal

cycle Zmax ∈ L is the divisorial part of the pullback of the maximal ideal mX,o ⊂ OX,o, i.e.

ϕ∗mX,o · OX̃ = OX̃(−Zmax) · I, where I is an ideal sheaf with 0–dimensional support [Y80]. In

general Zmin ≤ Zmax. Zmin can be found by Laufer’s algorithm [La72]. This algorithm also shows

that h0(OZmin) = 1, hence h1(OZmin) = 1− χ(Zmin) is topological.

3. Effective Cartier divisors

3.1. For any Z ∈ L>0 let ECa(Z) be the space of (analytic) effective Cartier divisors on Z. Their

supports are zero–dimensional in E. Taking the class of a Cartier divisor provides the Abel map c :

ECa(Z) → Pic(Z). Let ECal
′
(Z) be the set of effective Cartier divisors with Chern class l′ ∈ L′(|Z|),

that is, ECal
′
(Z) := c−1(Picl

′
(Z)). Sometimes we denote the restriction of c by cl

′
: ECal

′
(Z) →

Picl
′
(Z), l′ ∈ L′(|Z|). It is also convenient to use the simplified notation ECal

′
(Z) := ECaR(l′)(Z)

and Picl
′
(Z) := PicR(l′)(Z) for any l′ ∈ L′.

For any Z2 ≥ Z1 > 0 (and l′ ∈ L′) one has the commutative diagram

(3.1.1)

ECal
′
(Z2) −→ Picl

′
(Z2)

ECal
′
(Z1) −→ Picl

′
(Z1)

↓ ↓

Regarding the existence of ECa(Z) and the Abel map we note the following. First, by a theorem

of Artin [A69, 3.8], there exists an affine algebraic variety Y and a point y ∈ Y such that (Y, y) and

(X, o) have isomorphic formal completions. Then, according to Hironaka [Hi65], (Y, y) and (X, o) are

analytically isomorphic. In particular, we can regard Z as a projective algebraic scheme, in which

case ECal
′
(Z) together with the algebraic Abel map, as part of the general theory, was constructed

by Grothendieck [Gro62], see e.g. the article of Kleiman [Kl13] with several comments and citations

and the book of Mumford for curves on algebraic surfaces [Mu66]. In particular,

c : ECa(Z) → Pic(Z) is algebraic.
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(For concrete charts of ECal
′
(Z) see e.g. the proof of theorem 3.1.10 and for the Abel map in

concrete charts see section 7.) Though these spaces are identified by the general theory, in the body

of this note we verify directly several properties of them in order to illuminate the peculiarities of the

present situation, e.g. we discuss the smoothness and the dimension of ECal
′
(Z) and the structure of

the fibers of the Abel map: the related numerical invariants will be crucial in the further discussions.

Doing this we develop several special properties of the Abel map in the language of invariants of

normal surface singularities; these connections will be exploited deeply.

We write ECa(X̃) for the set of effective Cartier divisors on X̃.

3.1.2. Let us fix Z ∈ L, Z > 0. As usual, we say that L ∈ Picl
′
(Z) has no fixed components if

(3.1.3) H0(Z,L)reg := H0(Z,L) \
∪

Ev⊂|Z|

H0(Z − Ev,L(−Ev))

is non–empty. Note that H0(Z,L) is a module over the algebra H0(OZ), hence one has a natural

action of H0(O∗Z) on H0(Z,L)reg. For the next lemma see e.g. [Kl05, §3].

Lemma 3.1.4. L ∈ Picl
′
(Z) is in the image of cl

′
: ECal

′
(Z) → Picl

′
(Z) if and only if H0(Z,L)reg ̸=

∅. In this case, c−1(L) = H0(Z,L)reg/H0(O∗Z).

In the next discussion we assume Z ≥ E basically imposed by the easement of the presentation;

everything can be adopted for any Z > 0, see e.g. 4.1.4 or 5.1.

Note that H0(Z,L)reg ̸= ∅ ⇒ H0(L|Ev ) ̸= 0 ∀ v ⇒ (l′, Ev) ≥ 0 ∀ v ⇒ l′ ∈ −S ′. Conversely, if
l′ = −

∑
v mvE

∗
v ∈ −S ′ (for certain mv ∈ Z≥0), and l′ ̸= 0, then one can construct for each Ev cuts

in X̃ intersecting Ev in a generic point and having with it intersection multiplicity mv. Since l′ ̸= 0

their collection is nonempty, and it provides elements in ECal
′
(X̃) and ECal

′
(Z) respectively (the

second one by restriction). However, this collection is empty whenever l′ = 0, hence this special case

needs slightly more attention. By definition we declare that ECa0(Z) is a space consisting of a point

(what we can call the ‘empty divisor’), ECa0(Z) = {∅}, and c0 : ECa0(Z) → Pic0(Z) is defined as

c0(∅) = OZ . Since for l′ = 0 any section from H0(Z,L)reg trivializes L, one has:

H0(Z,L)reg ̸= ∅ ⇔ L = OZ ⇔ L ∈ im(c0) (l′ = 0).

Therefore, the above discussions combined provide

(3.1.5) ECal
′
(Z) ̸= ∅ ⇔ l′ ∈ −S ′.

The action of H0(O∗Z) can be analysed quite explicitly. Note that from the exact sequence

(3.1.6) 0 → H0(OZ−E(−E)) → H0(OZ)
rE−→ H0(OE) = C→ 0

one gets that H0(O∗Z) = r−1E (C∗) = H0(OZ) \H0(OZ−E(−E)). In particular, H0(O∗Z), as algebraic
variety, has the dimension of the vector space H0(OZ), PH0(O∗Z) as algebraic variety is isomorphic

with H0(OZ−E(−E)), and H0(Z,L)reg/H0(O∗Z) = PH0(Z,L)reg/PH0(O∗Z).

Lemma 3.1.7. Assume that H0(Z,L)reg ̸= ∅. Then

(a) the action of H0(O∗Z) on H0(Z,L)reg is algebraic, free and proper;

(b) PH0(Z,L)reg over PH0(Z,L)reg/PH0(O∗Z) is a principal affine bundle.

Hence, the fiber c−1(L), L ∈ im(cl
′
), is an irreducible quasiprojective variety of dimension

(3.1.8) h0(Z,L)− h0(OZ) = (l′, Z) + h1(Z,L)− h1(OZ).
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Proof. For s ∈ H0(Z,L)reg the multiplication by s, OZ
·s−→ L, is injective, hence induces injections

H0(OZ)
·s−→ H0(L) and H0(O∗Z)

·s−→ H0(L)reg. Hence the action is free. Next we prove that the

action of PH0(O∗Z) on PH0(Z,L)reg is proper.

Introduce hermitian metrics in both H0(OZ) and H0(Z,L). Write H0 := H0(OZ−E(−E)) in

H0(OZ) and choose h⊥ with H0(OZ) = H0 ⊕ C⟨h⊥⟩. Set also B := ∩vH
0(Z − Ev,L(−Ev)) ⊂

H0(Z,L) and let B⊥ be its unitary complement in H0(Z,L). Note that H0(Z,L) \ B is also

stable with respect to the action of H0(O∗Z) = B ⊕ C⟨h⊥⟩ \ B ⊕ 0. Since H0(Z,L)reg is open in

H0(Z,L) \ B, it is enough to show that H0(O∗Z) acts properly on H0(Z,L) \ B. Fix K compact

in H0(Z,L) \ B and let K ′ be its lift to the unit sphere of H0(Z,L). We need to show that if

h = h0+h⊥ ∈ H0⊕C⟨h⊥⟩ and |h0| → ∞, and k ∈ K ′, then the components (hk)1+(hk)2 ∈ B ⊥ B⊥

of hk satisfy |(hk)1|/|(hk)2| → ∞. For this note the following facts.

First, H0 · H0(Z,L) ⊂ B, hence (h0k)2 = 0. Next, since K ′ is compact, |(h⊥k)1| and |(h⊥k)2|
are bounded from above. Finally, since h0k ̸= 0, for any h0 in the unit sphere, the set {|h0k|}k is

bounded from below by a positive number. Hence, whenever |h0| → ∞ one also has

|(hk)1|/|(hk)2| = |(h⊥k)1 + |h0| · ( h0

|h0|
· k)|/|(h⊥k)2| → ∞ .

(a) implies (b) (since PH0(O∗Z) ≃ H0 is an affine space) and the equality in (3.1.8) follows from

Riemann–Roch formula. �

Example 3.1.9. Assume that (X, o) is rational, and l′ ∈ −S ′. Then Picl
′
(Z) = 0, hence if

c1(L) = l′ then L = O(l′). Furthermore, L is basepoint free [Li69, Th. 12.1]. Thus ECal
′
(Z) =

H0(Z,L)reg/H0(O∗Z) and since the action of H0(O∗Z) is free (cf. 3.1.7), ECal
′
(Z) is smooth. Since

h1(Z,L) = h1(OZ) = 0 (cf. [Li69, N99b]), its dimension is (l′, Z) (use (3.1.8)). Furthermore,

its topological Euler characteristic is χtop(ECa
l′(Z)) = χtop(PH0(Z,L)reg), which is the coefficient

z(−l′) of the multivariable series Z(t) by [CDGZ08, N08, N12].

These facts generalize as follows.

Theorem 3.1.10. If l′ ∈ −S ′ then the following facts hold.

(1) ECal
′
(Z) is a smooth complex (irreducible) variety of dimension (l′, Z).

(2) The topological Euler characteristic of ECal
′
(Z) is z(−l′). In fact, the natural restriction

r : ECal
′
(Z) → ECal

′
(E) is a locally trivial fiber bundle with fiber isomorphic to an affine space.

Hence, the homotopy type of ECal
′
(Z) is independent of the choice of Z and it depends only on the

topology of (X, o).

(3) r : ECal
′
(Z2) → ECal

′
(Z1) is surjective for any Z2 ≥ Z1.

Proof. As we already said in 3.1, ECal
′
(Z) is an algebraic variety, cf. [Gro62, Kl13]. We need to

construct in the neighbourhood of each Cartier divisor a smooth chart.

First assume that Z = E. Then ECal
′
(E) is independent of the self-intersections E2

v , hence

(keeping the analytic type of E, but) modifying the self–intersections into very negative integers, we

can assume that the singularity is rational. In this modified case, ECal
′
(E) = P(H0(E,O(l′))reg),

see Example 3.1.9. Note that H0(E,O(l′))reg is also independent of the self–intersection numbers,

hence, in any case, ECal
′
(E) = P(H0(E,O(l′))reg). In particular, ECal

′
(E) is smooth, irreducible

and with the required dimension and Euler characteristic, cf. Example 3.1.9.

Let us provide some local charts of ECal
′
(E). Fix D ∈ ECal

′
(E) with support {pi}i ⊂ E.

If pi ∈ Ev is a smooth point of E, then there exists a local neighbourhood Ui of pi in X̃ with local

coordinates (x, y) such that {x = 0} = E∩Ui andD in Ui is represented by the local Cartier equation
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{ym} for some m ∈ Z>0. Then a local neighbourhood Ui(E) of the divisor {ym} in ECa−mE∗
v (E)

is given by local Cartier divisors {ym + f(y)}, where f ∈ O(E ∩ Ui) is a small perturbation of

the zero function, modulo the multiplicative action of O∗(E ∩ Ui). Multiplying ym by 1 + aky
k

we get that perturbation of type ym +
∑

k≥0 aky
k+m constitute the orbit of ym (or, differently

said,
∑

k≥0 aky
k+m is the tangent space of the orbit). Therefore, the smooth transversal slice to

this orbit (ai)0≤i<m 7→ {ym +
∑

i aiy
i} (|ai| ≪ 1) provides a smooth chart Ui(E) of dimension

m = (−mE∗v , E). Here, −mE∗v is the local contribution in the Chern class l′.

Similarly, if pi = Eu ∩Ev, then there exists a neighbourhood Ui of pi in X̃ with local coordinates

(x, y) such that {x = 0} = Ui∩Ev and {y = 0} = Ui∩Eu, and D in Ui is represented by {xn+ym},
n,m ∈ Z>0. Then, a local neighbourhood Ui(E) of xn + ym in ECa−mE∗

v−nE
∗
u(E) is given by

{xn+ym+a0+
∑

i≥1 aix
i+

∑
i≥1 biy

i} modulo the action of O∗(E∩Ui). The orbit of this action at

xn+ym is {xn+ym+
∑

i>n aix
i+

∑
i>m biy

i+λ(xn+ym)}, it is smooth. A possible smooth slice of

it is {xn+ym+a0+
∑n

i=1 aix
i+

∑m
i=1 biy

i}/{an+bm = 0}, which is of dimension (−mE∗v −nE∗u, E)

(the local contribution into (l′, E)).

Products of type U(D) =
∏

i Ui(E) constitute a local neighbourhood of D in ECal
′
(E).

Consider now an arbitrary Z ≥ E and the restriction r : ECal
′
(Z) → ECal

′
(E). We show that

ECal
′
(Z) can be covered by open sets of type r−1(

∏
i Ui(E)) =

∏
i r
−1
i (Ui(E)), where ri is either

the restriction ECa−mE∗
v (Z) → ECa−mE∗

v (E) or ECa−mE∗
v−nE

∗
u(Z) → ECa−mE∗

v−nE
∗
u(E), and each

r−1i (Ui(E)) is a product of Ui(E) and an affine space.

Indeed, assume first that pi is a smooth point of E as above, pi ∈ Ev, and let N ≥ 1 be the

multiplicity of Z along Ev. Then in Ui the local equation of Z is xN and let us fix a Cartier

divisors in r−1(Ui(E)) whose restriction is ym, represented by f := ym + xg(x, y) for some g ∈
O(Ui)/(x

N−1), modulo O∗(Ui)/(x
N ). Multiplication f(1+aiy

ixN−1) ≡ f+aiy
m+ixN−1 shows that

f + ymxN−1O(Ui) (mod (xN )) is in the orbit. Using this fact, and multiplication by 1 + aiy
ixN−2

one shows that f + ymxN−2O(Ui) (mod (xN )) is also in the orbit. By induction, we get that the

orbit is f + ymO(Ui) (mod (xN )), and it is smooth. A transversal smooth cut can be parametrized

by the chart {ym +
∑

i<N, j<m aijx
iyj}, which has dimension (−mE∗v , Z) = mN . For i > 0 the

variables aij can be chosen as affine coordinates.

More conceptually, in this case, multiplication of f by 1 + h gives f + fh (mod (xN )), hence

the orbit is identified with f + ideal(f, xN ), which has a smooth section whose dimension is the

codimension of ideal(f, xN ), that is, the intersection multiplicity (f, xN )pi = mN .

Similar chart can be found in the case of pi = Eu ∩Ev as well. Let us use the previous notations,

let us fix a divisor f = xn + ym + xyg(x, y) whose restriction to E is xn + ym, and assume that in

Z the multiplicities of {x = 0} and {y = 0} are N and M . Then the orbit is identified with f +

ideal(f, xNyM ), which has a smooth transversal cut whose dimension is the intersection multiplicity

(f, xNyM )pi = mN +nM . The mN +nM coordinates of the cut cannot be chosen canonically. We

invite the reader to check that these coordinated can be chosen in such a way that first we choose

the m+n (local) coordinated of the reduces part (as above in the case Z = E) then we can complete

them with m(N − 1) + n(M − 1) affine coordinates.

Taking product we obtain charts of type
∏

i Ui(Z) := r−1(
∏

i Ui(E)) = (
∏

i Ui(E))× C(l′,Z−E).

(3) follows from the description of the above charts. �

3.2. The tangent map of c. The smoothness of c−1(L). Assume that L ∈ Picl
′
(Z) has no

fixed components. Fix any D ∈ c−1(L) ⊂ ECal
′
(Z), and let s ∈ H0(Z,L) be the section whose
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divisor is D. Then multiplication by s gives an exact sequence of sheaves

(3.2.1) 0 → OZ
·s−→ L → OD → 0.

Division by s identifies L by OZ(D), hence the above exact sequence can be identified with the exacts

sequence 0 → OZ → OZ(D) → OD(D) → 0 (this is a generalization of the so-called Mittag–Lefler

sequence, defined for effective divisors on curves).

Since OD is finitely supported H0(OD) = OD. Its dimension is (l′, Z).

Proposition 3.2.2. The coboundary homomorphism δ1D : H0(OD) → H1(OZ) of the cohomological

long exacts sequence of (3.2.1) can be identified with the tangent map

TD(cl
′
) : TD(ECal

′
(Z)) → TL(Pic

l′(Z))

of cl
′
at D. Moreover, the Zariski tangent space TD(c−1(L)) of c−1(L) at D is identified with its

kernel, hence (by the cohomological long exact sequence) by H0(Z,L)/H0(OZ). This shows that

dimTD(c−1(L)) = dim c−1(L) at any D ∈ c−1(L) (cf. (3.1.8)), hence c−1(L) is smoothly embedded

into ECal
′
(Z), and c−1(L), as a subscheme of ECal

′
(Z), can be identified with H0(Z,L)reg/H0(O∗Z).

This fact reformulated shows that δ1D induced on ND(c−1(L)) := TD(ECal
′
(Z))/TD(c−1(L)), the

normal space of c−1(L) ⊂ ECal
′
at D, is injective.

Proof. See [Mu66, p. 164], or [Kl05, Remark 5.18], or [Kl13, §5]. �

Corollary 3.2.3. If dim(ECal
′
(Z)) = 1 and cl

′
is not constant then im(cl

′
) is smooth.

3.3. The special fibers of cl
′
. Though all the fibers of cl

′
are smooth, still we wish to distinguish

certain fibers of cl
′
with pathological behaviour. There are several types we can consider.

Definition 3.3.1. (a) D ∈ ECal
′
(Z) is called a critical divisor (point) if rang(TDc) < rang(TDgenc),

where Dgen ∈ ECal
′
(Z) is a generic divisor. If (cl

′
)−1(L) contains a critical divisor (point) then L

is a called a critical bundle (value).

(b) We say that L ∈ im(cl
′
) is T–typical (‘tangent–map–typical’) if the linear subspace im(TD(cl

′
)) ⊂

TLPic
l′(Z) is independent of the choice of D ∈ c−1(L). Otherwise L is T–atypical.

The prototype of a map with a T–atypical value is the blowing up c : B → C2 at the origin

0 ∈ C2: then 0 is a T–atypical value. For such an example realized by a concrete cl
′
see 3.4.3.

Lemma 3.3.2. For fixed l′ and L ∈ im(cl
′
) consider the following properties:

(i) L is a T–atypical value of cl
′
,

(ii) L is a singular point of the closure im(cl′) of the image of cl
′
(where im(cl′) is taken with the

reduced structure),

(iii) dim((cl
′
)−1(L)) is strict larger the the dimension of the generic fiber of cl

′
,

(iv) L is critical bundle,

(v) any D ∈ (cl
′
)−1(L) is a critical divisor.

Then (iii) ⇔ (iv) ⇔ (v), (i) ⇒ (iii) and (ii) ⇒ (iii).

Proof. The equivalences (iii) ⇔ (iv) ⇔ (v) follow from Proposition 3.2.2. For (i) ⇒ (iii) first notice

that c−1(L) is smooth and irreducible, hence it is enough to verify the statement locally at a generic

point of c−1(L). On the other hand, if (iii) is not true, that is, if (locally) rang(TDc) = rang(TDgenc),

then c in that neighbourhood is a fibration, hence (locally) the normal bundle of c−1(L) is a pullback

of a vector space V , hence (using also Proposition 3.2.2) im(TD(c)) is constant V .
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(ii)⇒ (iii). Assume that (iii) is not true, hence, as in the previous case, rang(TDc) = rang(TDgenc)

for any D ∈ c−1(L), and c in that neighbourhood is a fibration. im(c) is the image of the quotient

space obtained from the total space by collapsing each fibers into a point. But for any D ∈ c−1(L)
the space ND(c−1(L)) is mapped by TDc injectively onto im(TDc), and this image is independent of

the choice of D (by the proof (i) ⇒ (iii)). This shows that, in fact, im(c) is immersed at L. Since

the fiber c−1(L) is connected, im(c) is in fact embedded. Hence, im(c) is smooth at L. �

Remark 3.3.3. (a) In principle, by general properties of algebraic maps, neither (iii) nor (ii) imply

(i) by general nonsense. Indeed, set Y := {(x, y, a) ∈ C3 : y = ax2} and consider the projection

p : Y → C2 induced by (x, y, a) 7→ (x, y). Then the fiber p−1(0, 0) satisfy (iii) but not (i).

Take also Y := C∗ ×C and consider the map Y → C3 given by (x, y) 7→ (yx, y2x, y3x). Then the

closure of the image is singular at the origin. This value satisfies (ii) and (iii) but not (i).

The implication (iii) ⇒ (ii) also fails, in general. E.g., if cl
′
is dominant, and L ∈ im(cl

′
), then L

is not a distinguished point of the closure of the image even if it is critical, see e.g. 3.4.3. However,

examples suggest the following conjectural property: if cl
′
is dominant and some L ∈ Picl

′
(Z)

satisfies (iii) then L is not an interior point of im(c).

(b) We wish to emphasize again that cl
′
is not proper. In particular, above a small (relative)

neighbourhood in im(cl
′
) of a regular value, the global map cl

′
is not necessarily C∞ locally trivial

fibration (see e.g. Example 3.4.4).

3.4. Examples. Next we exemplify some typical anomalies of the map c.

Example 3.4.1. Fix a topological type of singularities (e.g. a resolution graph) and consider

different analytic structures realizing it. Then not only the dimension of the target of c : ECal
′
(Z) →

Picl
′
(Z) (that is, h1(OZ)) but also the dimension of the image of cl

′
might depend on the

analytic structure of (X, o). Indeed, let us fix the following graph (picture from the left):

−2 −1s −7 −2

Ev

−3

s s ss
3 6s 1 1

2

s s ss
4 8s 2 1

3

s s ss
Then (X, o) is a numerically Gorenstein elliptic singularity with 1 ≤ pg ≤ 2; for details regarding

elliptic singularities see [N99, N99b]. Set −l′ := Zmin (the minimal cycle, which equals E∗v , the

cycle shown in the middle diagram), and Z = ZK (the last diagram), hence (Z, l′) = 1. Then

ECal
′
(Z) = C, and Picl

′
(Z) = Cpg . Write L = OZK (−Zmin).

If pg = 2 (hence (X, o) is Gorenstein) then L has no fixed components [N99, 5.4], and h1(Z,L) = 1

[N99, 2.20(d)]. Hence L ∈ im(c) and dim c−1(L) = 0 (use (3.1.8)). Therefore, dim im(c) = 1.

On the other hand, if pg = 1, then Zmax > Zmin, see e.g. [N99, 2.20(f)]. Hence L has fixed

components and L ̸∈ im(c). Since the fibers of c are connected (cf. 3.1.7), c : C → C (with

L ̸∈ im(c)) cannot be quasi–finite, hence c is constant and dim im(c) = 0. (This last statement can

be deduced from Theorem 4.1.1 too, or from 6.3 (i) ⇔ (v), where we characterize completely the

cases dim(im(cl
′
)) = 0.)

Example 3.4.2. The image of c usually is not closed. We construct such an example in two

steps. First, assume that (X, o) is a singularity with topological type given by the graph Γ1 from

the left

s s s s ss s
−3 −1 −13 −1 −3

−2 −2
EvΓ1 : Γ2 :

s s s s ss ss
−3 −1 −13 −1 −3

−2 −2 −2
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Furthermore, assume that the minimal cycle Zmin equals the maximal ideal cycle Zmax. In partic-

ular, O(−Zmin) has no fixed components. For a detailed study of this singularity (and any analytic

type with the above graph) see [NO17]. Set −l′ = Z = Zmin = E∗v , and L := OZ(−Z). Since

(E∗v , E
∗
v ) = −1 and the Z(t)–coefficient z(E∗v ) = 0, one has ECal

′
(Z) = C∗. In fact, the correspond-

ing effective divisors correspond to the points of Ereg
v := Ev \Sing(E). Using (3.1.8) and [NO17, §4]

(which shows h1(L) = 1) one obtains that dim c−1(L) = 0. Furthermore, Picl
′
(Z) = C2 (cf. 2.4),

hence we get an injection c : C∗ ↪→ C2. For any q ∈ Ereg
v = C∗ we write Lq := cl

′
(q) ∈ Picl

′
(Z).

In fact, im(cl
′
) can be determined explicitly. Let Γl and Γr be the subgraphs consisting of the

left/right cusp together with v. They determine minimally elliptic singularities with pg = 1, and

the corresponding restrictions provide the two coordinates in Picl
′
(Z). Applying [Ha77, 6.11.4] for

these two coordinates we get that im(cl
′
) in some affine coordinates (z1, z2) has the form z1z2 = 1.

Furthermore, this situation can be used to analyze another singularity (X ′, o), whose im(c′) equals

im(c) \ {1 point}. Fix an arbitrary point p ∈ Ereg
v , and glue to the resolution of (X, o) (associated

with Γ1) another irreducible (−2)–exceptional curve E′p transversally to Ev at p. In this way we

create the resolution of a new singularity (X ′, o) with exceptional curve E′ = {E′v}v ∪ {E′p} (with

natural notations). The new graph is on the right hand side above.

In the new situation we take −l′ = E′∗v and Z ′ := Z ′min = E′∗p . Then ECal
′
(Z ′) can be identified

with (E′v)
reg = Ereg

v \ {p} = C∗ \ {p}, and c′ : C∗ \ {p} → C2 with the restriction of c to C∗ \ {p}.
(More precisely, for q ∈ C∗ \ {p} one has c′(q)|Z = Lq ⊗OZ(p).) Since c is injective, the image of c′

cannot be closed. Via similar construction we can eliminate from the image of c any point.

Example 3.4.3. The map c usually is not a locally trivial fibration over its image, in fact, the

fibers of c usually are not even equidimensional.

Consider the graph Γ1 from Example 3.4.2. It can be realized also by a complete intersection

(splice quotient) singularity with pg = 3, cf. [NW90, NO17]. Set −l′ = 2Zmin = 2E∗v and Z = Zmin.

Then ECal
′
(Z) is the double symmetric product of Ereg

v , namely C∗ × C∗/Z2 ≃ C∗ × C. On

the other hand, Picl
′
(Z) = C2. (For numerical cohomological invariants see again [NO17].) It

turns out that c is dominant (use e.g. Theorem 4.1.1(3)), hence c is birational, with all fibers

connected. Since Zmax = 2Zmin, L = OZ(−2Zmin) has no fixed components, hence L ∈ im(c).

Furthermore, h1(L) = 1 (see e.g. [NO17, (5.4)]), hence dim c−1(L) = 1 by (3.1.8) (since h1(OZ) = 2

and (l′, Z) = 2). This can be seen in the following way as well. By Riemann–Roch h0(L) = 2

and H0(OZ)
∗ = C∗, hence by 3.1.7 c−1(L) is 1–dimensional. In particular, the fibers of c are not

equidimensional. (Furthermore, one can show that im(c) is homeomorphic to (C∗)2∪{(0, 0)}, where
(0, 0) corresponds to L.)

Example 3.4.4. Even if all the fibers have the same dimension (and by Theorem 3.2.2 they

are smooth) the topology of some fibers might jump. Take for example the graph

−2 −1s −8 −2

E1 E2

−3

s s ss
It supports a non–numerically Gorenstein elliptic singularity. Recall that if C denotes the el-

liptic cycle (here it is supported on the union of all irreducible exceptional curves except E2),

and (C,Zmin) < 0, then the length of the elliptic sequence is one, cf. [Y79, Y80]. Hence, for

any analytic realization, pg = 1. Take −l′ = Z = Zmin = E∗1 + E∗2 . A computation shows

that ECal
′
(Z) = C2 \ {0}. Then c : C2 \ {0} → C can be identified with the restriction to

C2 \ {0} of the linear projection C2 → C. Hence the generic fiber is C while there is a special
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fiber ≃ C∗. By this correspondence Picl
′
(Z) = C is identified by E1 \ Enode. The generic fibers

correspond to the divisors {p, q}, where p ∈ Ereg
1 ≃ C∗, and q ∈ Ereg

2 ≃ C; they are sent by c to

p ∈ Ereg
1 ⊂ E1 \Enode ≃ Picl

′
(Z). Since q can be any point on Ereg

2 , the fibers are C. On the other

hand, any divisor given by a smooth cut at E1 ∩ E2, transversal to both E1 and E2, (parametrized

by the slope C∗) is sent by c to E1 ∩ E2, whose fiber is exactly this parameter space C∗.

Example 3.4.5. For an example when the image of c is singular see Example 12.9.1.

3.5. The topology of the fibers of c and the coefficients of the Poincaré series.

Let us analyse again the fibers of c : ECal
′
(Z) → Picl

′
(Z), Z ≥ E. Assume that L ∈ im(c). Then

{Hv := H0(Z − Ev,L(−Ev))}v∈V is a proper linear subspace arrangement in H0 := H0(Z,L). For

any subset ∅ ≠ I ⊂ V write HI := ∩v∈IHv, and introduce also H∅ := H0. Note that the topological

Euler characteristic satisfies χtop(PHI) = dimHI , hence by the inclusion–exclusion principle one

obtains

(3.5.1) χtop(P(H0 \ ∪vHv)) =
∑
I⊂V

(−1)|I| dimHI =
∑
I

(−1)|I|+1codim(HI ⊂ H0).

In particular the analytic invariant pZ,L (cf. 2.3.6) equals the topological Euler characteristic of

the corresponding linear subspace arrangement complement, pZ,L = χtop(P(H0(Z,L)reg)). Using

Lemmas 3.1.4 and 3.1.7 this reads as

pZ,L = χtop(c
−1(L)).

This fact links the coefficients of the topological series Z(t) and the numerical analytical invariants

pZ,L: the Euler characteristic of the total space ECal
′
is z(−l′), while the Euler characteristic of

each fiber c−1(L) (L ∈ im(c)) is pZ,L.

Example 3.5.2. Assume that (X, o) is rational. Then Picl
′
(Z) is a point: if c1(L) = l′ then

L = O(l′). Hence ECal
′
is the unique fiber c−1(O(l′)). Therefore, z(−l′) = pZ,O(l′) (l′ ∈ −S ′), or

Z(t) = PZ,O(t). This generalizes the similar identity proved in [CDGZ04, CDGZ08, N08, N12] valid

for Z ≫ 0 (or, for X̃).

This identity Z(t) = PO
X̃
(t) is valid for a more general family of singularities, namely for splice

quotient singularities [N12, N08]. (This family was introduced by Neumann and Wahl in [NW05b,

NW05]). This identity reinterpreted in our present language says that for any −l′ ∈ S ′ and Z ≫ 0

the Euler characteristic of the total space ECal
′
(Z) and the Euler characteristic of the very special

fiber c−1(O(l′)) (over the unique natural line bundle) coincide.

Conjecture 3.5.3. For a splice quotient singularity and −l′ ∈ S ′ the fiber c−1(O(l′)) is a topological

deformation retract of ECal
′
(Z).

A detailed study of the Abel map in the case of splice quotient singularities will appear in one of

the parts of the present series of articles.

In the present work we wish to focus (instead/besides of the ‘PO = Z identity’) on the more

complex package of invariants provided by (all the fibers of) c. In particular, we analyse other, less

specific fibers as well, e.g. the generic fibers over im(c).

4. Characterization of cl
′
dominant

4.1. In order to determine properties of line bundles L ∈ Pic(Z) with given Chern class we need

first to understand the situations when cl
′
is dominant.
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Theorem 4.1.1. Fix l′ ∈ −S ′, Z ≥ E as above, and consider cl
′
: ECal

′
(Z) → Picl

′
(Z).

(1) cl
′
is dominant if and only if H0(Z,L)reg ̸= ∅ for generic L ∈ Picl

′
(Z).

(2) If cl
′
is dominant then h1(Z,L) = 0 for generic L ∈ Picl

′
(Z).

(3) cl
′
is dominant if and only if χ(−l′) < χ(−l′ + l) for all 0 < l ≤ Z, l ∈ L. In particular,

the fact that cl
′
is dominant is independent of the analytic structure supported by Γ and it can be

characterized topologically (and explicitly).

Proof. For (1) use Lemma 3.1.4. For (2) note that for c dominant the dimension of ECal
′
(Z) is the

sum of the dimensions of the generic fiber and of the base (which equals h1(OZ)). Hence, by (3.1.8)

and 3.1.10(1), h0(Z,L) = dim c−1(L) + h0(Z) = (l′, Z)− h1(Z) + h0(Z) = (l′, Z) + χ(Z) = χ(Z,L).
(3) First note that for any cycle l ∈ L, 0 < l ≤ Z, and any L ∈ Picl

′
(Z), one has

(4.1.2) χ(−l′) ≥ χ(−l′ + l) ⇔ χ(Z,L) ≤ χ(Z − l,L(−l)),

where, by convention, χ(Z − l,L(−l)) is zero whenever l = Z.

Assume that c is dominant and the equivalent conditions from (4.1.2) are satisfied for some l, where

0 < l ≤ Z. Take a generic L ∈ Picl
′
(Z). HenceH0(Z,L)reg ̸= ∅ (cf. part (1)) and χ(Z,L) = h0(Z,L)

by part (2). Hence h0(Z,L) = χ(Z,L) ≤ χ(Z − l,L(−l)) ≤ h0(Z − l,L(−l)). Therefore, by the

cohomological exact sequence of 0 → L(−l)|Z−l → L, we necessarily have equalityH0(Z−l,L(−l)) =

H0(Z,L). Then for any Ev in the support of l we also have equalityH0(Z−Ev,L(−Ev)) = H0(Z,L),
hence H0(Z,L)reg = ∅, which leads to a contradiction.

Assume that χ(−l′) < χ(−l′ + l) for any 0 < l ≤ Z. This, for l = Z, implies χ(Z,L) > 0, hence

necessarily h0(Z,L) > 0 for any L ∈ Picl
′
(Z). If for a generic L one has H0(Z,L)reg = ∅, then there

exists Ev such that H0(Z,L) = H0(Z − Ev,L(−Ev)). If H0(Z − Ev,L(−Ev))reg = ∅ again, then

we continue the procedure. In this way we obtain a cycle 0 < l ≤ Z such that H0(Z − l,L(−l)) =

H0(Z,L) andH0(Z−l,L(−l))reg ̸= ∅. Note that for L generic L(−l)|Z−l ∈ Picl
′−l(Z−l) is generic as

well. Hence cl
′−l is dominant and by (1)–(2) h1(Z − l,L(−l)) = 0. Therefore, χ(Z,L) ≤ h0(Z,L) =

h0(Z−l,L(−l)) = χ(Z−l,L(−l)), which by (4.1.2) reads as χ(−l′) ≥ χ(−l′+l), a contradiction. �

Example 4.1.3. The statement of Theorem 4.1.1(3) is non–empty even for l′ = 0. In this case, since

ECa0 is a point, c0 is dominant if and only if Pic0(Z) is a point, that is, h1(OZ) = 0. Hence part

(3) reads as the following topological characterization of the vanishing of h1(OZ): For any normal

surface singularity and any cycle Z > 0, h1(OZ) = 0 if and only if χ(l) > 0 for any 0 < l ≤ Z. (This

is a generalization of the rationality criterion of Artin [A62, A66], which corresponds to Z ≫ 0.)

Remark 4.1.4. Above, we assumed that Z ≥ E. This is not really necessary: if the support |Z|
of Z is smaller then one can restrict all the objects to |Z|, and the above statements (and also the

next Theorem 5.3.1) remain valid. (Along the restriction, X̃ will be replaced by a small convenient

neighbourhood of ∪Ev⊂|Z|Ev, and L by Z⟨Ev⟩Ev⊂|Z|.)

4.1.5. The semigroup of dominant Chern classes (Z ≫ 0). Theorem 4.1.1(3) motivates the

introduction of the following combinatorial set

S ′dom := {−l′ | χ(−l′) < χ(−l′ + l) for all l ∈ L>0}.

By definition, −l′ ∈ S ′dom if and only if cl
′
is dominant for Z ≫ 0.

Sometimes it is more convenient to use the next equivalent form (note the sign modification):

(4.1.6) S ′dom = {l′ | χ(l) > (l′, l) for all l ∈ L>0}.
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Lemma 4.1.7. S ′dom has the following properties:

(i) S ′dom ⊂ S ′.
(ii) 0 ∈ S ′dom iff L is rational. More generally, for I ⊂ V and nv > 0 for all v ∈ I, if

∑
v∈I nvE

∗
v ∈

S ′dom then the components of ∪v ̸∈IEv are rational. Hence, in general, S ′ \ S ′dom is infinite.

(iii) S ′ ∩ (ZK/2 + S ′Q) ⊂ S ′dom, where S ′Q := {l′ ∈ L⊗Q : (l′, Ev) ≤ 0 for all v}.
(iv) S ′dom is a semigroup (not necessarily with identity element).

(v) S ′dom is an S ′–module, that is, if l′1 ∈ S ′dom, l′2 ∈ S ′ then l′1 + l′2 ∈ S ′dom.

(vi) S ′dom is min–stable, like S ′, that is, if l′1, l
′
2 ∈ S ′dom then m := min{l′1, l′2} ∈ S ′dom.

Proof. For (i) use (3.1.5) or (4.1.6). (ii) follow from Artin’s criterion. (iii) is clear. For (iv) − (v)

use (4.1.6): if χ(l) > (l′1, l) and 0 > (l′2, l) (cf. (i)), then χ(l) > (l′1 + l′2, l). Next we prove (vi).

We wish to show that χ(l) > (m, l) for any l > 0. Set xi = l′i −m (i = 1, 2). Assume first that

l ≥ x1, and write l = x1+z. Then from the assumptions χ(x1) ≥ (m+x2, x1) (equality only if x1 = 0)

and χ(z) ≥ (m+x1, z) (equality only if z = 0). These added provide χ(l) > (m, l)+(x1, x2) ≥ (m, l).

Next assume that l ̸≥ x1, and choose u1 > 0 minimal, supported by the support of x1, such that

l+u1 ≥ x1. Then the hypothesis applied for l′1 = m+x1 gives χ(l+u1−x1) ≥ (m+x1, l+u1−x1)

(equality only if l + u1 − x1 = 0) and applied for l′2 = m+ x2 gives χ(x1 − u1) ≥ (m+ x2, x1 − u1)

(equality only if x1−u1 = 0). These added gives χ(l)−(m, l) > (u1, l+u1−x1)+(x2, x1−u1) ≥ 0. �

Corollary 4.1.8. (i) For any −l′ ∈ L′ there exists a unique minimal ldom ∈ L≥0 with −l′+ ldom ∈
S ′dom.

(ii) ldom can be found by the following algorithm (see the analogy with [La72]). We construct a

computation sequence {zi}ti=0, (where zi+1 = zi +Ev(i) for some v(i) ∈ V) as follows. Fix a generic

line bundle L ∈ Picl
′
(X̃). Start with z0 = 0. Assume that zi is already constructed and consider

L(−zi). If H0(L(−zi)) has no fixed components then stop and zi is the last term zt. If H0(L(−zi))

has a fixed component, choose one of them, say Ev(i), and write zi+ := zi + Ev(i) and repeat the

algorithm. Then this procedure stops after finitely many steps and zt = ldom.

Proof. (i) Set D := (−l′ + L≥0) ∩ S ′dom. Then D ̸= ∅ by 4.1.7(iii) and it has a unique minimal

element by 4.1.7(vi).

(ii) We show inductively that zi ≤ ldom and the construction stops exactly when zi = ldom. Note

that z0 = 0 ≤ ldom. If zi = ldom then −l′ + zi ∈ S ′dom, hence by Theorem 4.1.1(1) H0(L(−zi)) has

no fixed components, hence we have to stop.

If, by induction zi < ldom, we have to show that the algorithm does not stop and zi+1 ≤ ldom

as well. Indeed, if −l′ + zi < −l′ + ldom then −l′ + zi ̸∈ S ′dom by the minimality of ldom, hence

by Theorem 4.1.1 H0(L(−zi)) has fixed components. Hence the procedure continues. Note also

that the generic section of H0(L(−ldom)) has no fixed components, hence the fixed components of

H0(L(−zi)) should be supported on ldom − zi. Hence zi + Ev(i) ≤ ldom. �

Remark 4.1.9. Though S ′dom is defined above combinatorially/topologically, it shares (see e.g. (iv)

and (vi)) several properties of an analytic semigroup associated with an analytic structure supported

on Γ. This ‘coincidence’ will be clarified completely in the forthcoming part [NN18], where we prove

that the analytic semigroup associated with the generic analytic structure is exactly S ′dom ∪ {0}.

5. Cohomology of line bundles and dim im(cl
′
)

5.1. Line bundles with c1(L) ̸∈ −S ′. Recall that by (3.1.5) ECal
′
(Z) ̸= ∅ iff l′ ∈ −S ′. Hence any

result based on the Abel map uses l′ ∈ −S ′. E.g., in this section we establish a sharp lower bound
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for h1(Z,L) whenever c1(L) = l′ ∈ −S ′. Before we provide that statement we wish to emphasise

that this extends automatically to the case of all bundles L, even if c1(L) ̸∈ −S ′.
Indeed, it is known that for any x ∈ L′ there exist s(x) = x+ l ∈ L′ with the following properties:

(a) s(x) ∈ S ′, (b) l ∈ L≥0, (c) s(x) is minimal with properties (a)-(b). Furthermore, the cycle l can

be determined explicitly using a generalized Laufer sequence [N07, Prop. 4.3.3]. One constructs a

computation sequence {zi}ti=0, z0 = 0, zi+1 = zi + Ev(i) for some v(i) ∈ V inductively as follows. If

x+zi ∈ S ′ then one stops, and automatically i = t and zi = l. If there exists Ev with (x+zi, Ev) > 0

then choose Ev(i) as such an Ev, and one defines zi+1 = zi+Ev(i). Along the computation sequence

i 7→ χ(x+ zi) is decreasing. Furthermore, if Z > l, then the sequence applied for x = −l′ = −c1(L),
we get that h0(Z − zi,L(−zi)) is constant, and

(5.1.1) h1(Z,L) = h1(Z − l,L(−l))− χ(L|l) and c1(L(−l)) ∈ −S ′.

Here, clearly, χ(L|l) = (l′, l)+χ(l) = χ(−l′+l)−χ(−l′). If l ̸≤ Z, then one constructs a computation

sequence inductively as follows: if−l′+zi ∈ S ′(|Z−zi|) (the Lipman cone associated with the support

|Z−zi|) then one stops, otherwise there exists Ev(i) (identified as above) supported on Z−zi, which

provides zi+1 = zi + Ev(i). In particular, for any L ∈ Pic(Z), there exists l ∈ L≥0 such that

−c1(L(−l)) ∈ S ′(|Z − l|), and (5.1.1) holds.

Summarized, the computation of any h1(Z,L), up to the topology of the graph, can be reduced

to the case −c1(L) ∈ S ′ (maybe supported on a smaller set).

5.2. Semicontinuity. We emphasise another specific fact as well: since cl
′
is not proper, the

semicontinuity of the dimension of the fiber (with respect to the points of the target) does not follow

automatically from the general theory. Nevertheless, we have the following result.

Lemma 5.2.1. h0(Z,L) and h1(Z,L) are semicontinuous with respect to L ∈ Picl
′
(Z). In particu-

lar, via (3.1.8), dim c−1(L) is also semicontinuous with respect to L ∈ Picl
′
(Z).

Proof. Consider a covering by small balls {Uα}α of X̃. Since L|Uα is trivial for any α and L,
H0(Z,L) = ker(δL : ⊕αH

0(OZ |Uα
) → ⊕α ̸=βH

0(OZ |Uα∩Uβ
)), where the L–dependence is codified in

δL. But the corank of the linear map (hence, consequently h0(Z,L) too) is semicontinuous. The

semicontinuity of h1(Z,L) follows by Riemann–Roch. �

5.3. We prove the following sharp semicontinuity inequality.

Theorem 5.3.1. (1) Fix an arbitrary l′ ∈ L′. Then for any L ∈ Picl
′
(Z) one has

(5.3.2)
h1(Z,L) ≥ χ(−l′)−min0≤l≤Z, l∈L χ(−l′ + l), or, equivalently

h0(Z,L) ≥ max0≤l≤Z, l∈L χ(Z − l,L(−l)) = max0≤l≤Z, l∈L{χ(Z − l) + (Z − l, l′ − l) }.

Furthermore, if L is generic in Picl
′
(Z) then in both inequalities we have equality.

In particular, h∗(Z,L) is topological and explicitly computable from L, whenever L is generic.

(2) Assume that l′ ∈ −S ′ and cl
′
is not dominant. Then the inequalities in (5.3.2) are strict for

any L ∈ im(cl
′
).

Proof. (1) The two inequalities (and the corresponding equalities) are equivalent by Riemann–Roch.

We will prove the statement for h0. For any l and L (by a cohomological exact sequence) one has

(5.3.3) h0(Z,L) ≥ h0(Z − l,L(−l)) ≥ χ(Z − l,L(−l)),

hence the inequality follows. We need to show the opposite inequality for L generic. Clearly, if

h0(Z,L) = 0, then the opposite inequality follows (take e.g. l = Z). Hence, assume h0(Z,L) ̸= 0.
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Then, as in the proof of Theorem 4.1.1, there exists 0 ≤ l < Z such that h0(Z,L) = h0(Z− l,L(−l))

and H0(Z − l,L(−l))reg ̸= ∅. In this case l′ − l ∈ −S ′ by (3.1.5) and (by Theorem 4.1.1) h1(Z −
l,L(−l)) = 0 as well. Hence h0(Z,L) = χ(Z − l,L(−l)) ≤ max0≤l≤Z χ(Z − l,L(−l)).

(2) Assume that h0(Z,L) = max0≤l≤Z χ(Z − l,L(−l)). If the max at the right hand side can

be realized by a certain l0 > 0 then using (5.3.3) for l0 we get that h0(Z,L) = h0(Z − l0,L(−l0)),

hence L has fixed components, that is, L ̸∈ im(cl
′
). On the other hand, if the max is realized only

by l = 0, then cl
′
is dominant by Theorem 4.1.1(3). �

Since H1(X̃,L) = lim←,Z H1(Z,L), cf. [Ha77, Th. 11.1], we obtain the following.

Corollary 5.3.4. For l′ ∈ L′ and any L ∈ Picl
′
(X̃) one has h1(X̃,L) ≥ χ(−l′)−minl∈L≥0

χ(−l′+l).

Equality holds whenever L is generic in Picl
′
(X̃). Furthermore, if l′ ∈ −S ′ and cl

′
is not dominant,

then h1(X̃,L) > χ(−l′)−minl∈L≥0
χ(−l′ + l) whenever L ∈ im(cl

′
).

Example 5.3.5. Assume that l′ = 0 and h1(OZ) ̸= 0. Then c0 is not dominant, hence h1(Z,L) ≥
−min0≤l≤Z χ(l) for any L, and h1(OZ) ≥ 1−min0≤l≤Z χ(l).

Moreover, for generic L ∈ Pic0(Z) one has h1(Z,L) = −min0≤l≤Z χ(l). This for Z ≫ 0 and Γ

elliptic reads as h1(X̃,L) = 0; this fact for minimally elliptic Γ was proved by Laufer in [La77], and

for arbitrary elliptic case in [N99].

Example 5.3.6. Consider the situation of Corollary 5.3.4. For certain topological types one can

find for any l′ explicitly a cycle lmin ∈ L≥0 which realizes minl∈L≥0
χ(−l′ + l) = χ(−l′ + lmin).

Indeed, consider the construction x 7→ x + l = s(x) described in 5.1. Since χ is decreasing along

the sequence, (∗) χ(s(x)) ≤ χ(x). Next, assume e.g. that the lattice has the property that χ(l) ≥ 0

for all l ∈ L≥0 (hence the graph is either rational or elliptic). Then for any s ∈ S ′ one has (∗∗)
χ(s) ≤ χ(s+ l) for all l ∈ L≥0.

We claim that for rational and elliptic singularities minl∈L≥0
χ(−l′ + l) = χ(s(−l′)).

Indeed, by (∗) one has χ(−l′ + lmin) ≥ χ(s(−l′ + lmin)), and by the universal property of the

operator s one also has s(−l′ + lmin) ≥ s(−l′), hence by (∗∗) χ(s(−l′ + lmin)) ≥ χ(s(−l′)).

In particular, for rational and elliptic germs h1(X̃,L) = χ(−l′)−χ(s(−l′)) whenever L is generic.

See also Corollary 5.5.2, where we prove for any (X, o) the existence of a unique minimal cycle

with the property of lmin.

5.4. In parallel to S ′dom (see 4.1.5), Corollary 5.3.4 indicates another subset of L′:

(5.4.1) V an′ := {−l′ | χ(−l′) ≤ χ(−l′ + l) for all l ∈ L≥0}.

This indexes those cycles −l′ for which h1(X̃,L) = 0 for generic L ∈ Picl
′
(X̃).

For arbitrary line bundles L ∈ Picl
′
(X̃) the existent vanishing theorems formulate sufficient (but

usually not necessary) criterions. E.g., h1(X̃,L) = 0 for any (X, o) whenever −l′ ∈ ZK + S ′ (this
is the so-called Grauert-Riemenschneider vanishing) [GrRie70, La72, Ra72], or, for rational (X, o)

whenever −l′ ∈ S ′ (Lipman’s Criterion) [Li69]. Even so, Corollary 5.3.4 provides a necessary and

sufficient vanishing condition for generic line bundles, which, surprisingly, is independent of the

analytic structure of (X, o). V an′ lists precisely the corresponding Chern classes.

For rational singularities (since h1(X̃,L) depends only on c1(L), cf. [N07, 4.3.3]), h1(X̃,L) = 0

for any line bundle with fixed c1(L) exactly when −c1(L) ∈ V an′. This is not valid for more general

singularities: −l′ ∈ V an′ does not guarantee the vanishing h1(X̃,L) = 0 for non–generic (hence for

arbitrary) bundles. E.g., in the elliptic case, 0 ∈ V an′, however h1(X̃,OX̃) = pg > 0.
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Though most of the statements of the next lemma will not be needed in this first part of the

series of articles, for completeness and further references we list some properties of V an′ (which can

be compared e.g. with those from Lemma 4.1.7). Note that a semigroup module structure of type

(iv) usually is not studied/observed in vanishing theorems.

Lemma 5.4.2. V an′ satisfies the following properties:

(i) V an′ ⊂ {l′ | (l′, Ev) ≤ 1 for all v}; in general V an′ ̸⊂ S ′ (e.g. for rational singularities each

Ev ∈ V an′), furthermore S ′dom ⊂ V an′,

(ii) 0 ∈ V an′ iff L is rational or elliptic,

(iii) V an′ is not necessarily a semigroup (2Ev ̸∈ V an′ if |V| > 1, cf. (i)),

(iv) V an′ is closed to the S ′–action,
(v) V an′ is min–stable,

(vi) V an′ \ S ′ might have infinitely many elements (e.g. if Ev ∈ V an′ then Ev + S ′ ⊂ V an′ too),

(vii) V an′ is not necessarily in the first quadrant, however V an′ ∩ L is in the first quadrant

for a minimal resolution (hence for L generic and with c1(L) ∈ L, the vanishing h1(X̃,L) implies

c1(L) ≤ 0).

Proof. For (i) take l = Ev in (5.4.1), and check h1(O(−Ev)) = 0 for rational germs. For (iv)− (v)

repeat the arguments from the proof of 4.1.7. For (vii) note that if the graph consists of a (−1)

(resp. (−2)) vertex then −E (resp. −E/2) is in V an′. On the other hand, if −l′ = x1 − x2, where

x1, x2 ∈ L≥0 have no common Ev in their supports, then χ(−l′) ≤ χ(−l′ + x2) implies χ(−x2) ≤ 0.

But, in a minimal graph if χ(−x) ≤ 0 and x ≥ 0 then x = 0. Indeed, take Ev ⊂ |x| such that

(Ev, x) < 0. Then χ(−x + Ev) ≤ χ(−x) ≤ 0. If we continue the procedure, in the last step we get

χ(−Ew) ≤ 0 for some w, a fact which can happen only if Ew is a (−1)–curve. �

Remark 5.4.3. In Theorem 5.3.1 (see also Corollary 5.3.4 too) the set of ‘generic’ line bundles

L ∈ Picl
′
(Z) which satisfy (5.3.2) with equality is not explicit. There exists an open Zariski set for

which (5.3.2) holds with equality, but this usually is not the complement of im(cl
′
). In other words,

the complement of im(cl
′
) might have a non–trivial stratification according to the values of h1(Z,L),

and the Zariski open strata corresponds to the ‘generic’ bundles of Theorem 5.3.1.

Indeed, take the graph Γ1 from Example 3.4.2, and consider the splice quotient analytic structure

on it (for details see e.g. [NO17]). In particular, pg = 3. Set Z ≫ 0 (e.g. Z = ZK), and

L := OZ(−Zmin). Since h1(OZmin) = 2 and h1(X̃,O(−Zmin)) = 1, one also has h1(Z,L) = 1.

Note also that the maximal ideal cycle Zmax is 2Zmin, hence L ̸∈ im(c−Zmin). On the other hand,

minχ = χ(Zmin) = −1, hence h1(Z,Lgen) = 0 for generic bundles Lgen ∈ Pic−Zmin(Z). Hence, the

complement of im(c−Zmin) has a non–trivial h1–stratification.

5.5. The cohomology cycle of line bundles. If (X, o) is a singularity with pg > 0, then its

cohomology cycle (associated with a fixed resolution ϕ) is the unique minimal cycle Zcoh ∈ L>0 such

that pg = h1(Zcoh,OX̃). We extend this definition as follows.

Proposition 5.5.1. (a) Fix a line bundle L ∈ Pic(X̃) with h1(X̃,L) > 0. The set LL := {l ∈ L>0 :

h1(l,L) = h1(X̃,L)} has a unique minimal element, denoted by Zcoh(L), called the cohomological

cycle of L (and of ϕ). It has the property that h1(l,L) < h1(X̃,L) for any l ̸≥ Zcoh(L) (l > 0).

(b) Fix Z > 0 and L ∈ Pic(Z) with h1(Z,L) > 0. The set LZ,L := {l ∈ L, 0 < l ≤ Z : h1(l,L) =
h1(Z,L)} has a unique minimal element, denoted by Zcoh(Z,L), called the cohomological cycle of

(Z,L). It has the property that h1(l,L) < h1(Z,L) for any l ̸≥ Zcoh(Z,L) (0 < l ≤ Z).

Proof. The proof of [Re97, 4.8], valid for OX̃ , can be adopted to this situation as well. �
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If h1(X̃,L) = 0, then by convention Zcoh(L) = 0.

Corollary 5.5.2. (a) For any l′ ∈ L′ consider the set

Ll′ := {lmin ∈ L≥0 | χ(−l′ + lmin) = min
l∈L≥0

χ(−l′ + l)}.

Then Ll′ has a unique minimal element Zcoh(l
′), which coincides with the cohomological cycle of

any generic L ∈ Picl
′
(X̃).

(b) For any Z > 0 and l′ ∈ L′ consider the set

LZ,l′ := {lmin ∈ L, 0 ≤ lmin ≤ Z, | χ(−l′ + lmin) = min
0≤l≤Z, l∈L

χ(−l′ + l)}.

Then LZ,l′ has a unique minimal element Zcoh(Z, l
′), which coincides with the cohomological cycle

of any generic L ∈ Picl
′
(Z).

Proof. Combine Theorem 5.3.1 and Proposition 5.5.1. �

Corollary 5.5.3. (1) Elements of type −l′ + Zcoh(l
′) (l′ ∈ L′) belong to V an′.

(2) If −l′ ≤ −l′′ then −l′ + Zcoh(l
′) ≤ −l′′ + Zcoh(l

′′) as well. Furthermore, if −l′ ≤ −l′′ ≤
−l′ + Zcoh(l

′) then −l′ + Zcoh(l
′) = −l′′ + Zcoh(l

′′).

Example 5.5.4. Assume that L is numerically Gorenstein (that is, ZK ∈ L). Then by [KN17,

Lemma 6] (and χ(l) = χ(ZK − l)) one gets Zcoh(l
′ = 0) ≤ ZK/2.

5.6. The dimension of im(c). For an arbitrary element L of the image im(c : ECal
′
(Z) →

Picl
′
(Z)) one has dim im(c) + dim c−1(L) ≥ dimECal

′
(Z) = (l′, Z), with equality whenever L is

a generic element of the image im(c). This combined with Lemma 3.1.7(b) gives the following.

Proposition 5.6.1. For any L ∈ im(cl
′
) ⊂ Picl

′
(Z) one has

(5.6.2) h1(Z,L) ≥ h1(OZ)− dim(im(cl
′
)) = codim(im(cl

′
)).

In (5.6.2) equality holds whenever L is generic in the image of c (that is, generic with the property

H0(Z,L)reg ̸= ∅). This fact and Theorem 5.3.1 applied for the generic element of im(c) imply

(5.6.3) codim(im(cl
′
)) ≥ χ(−l′)− min

0≤l≤Z
χ(−l′ + l).

Furthermore, if cl
′
is not dominant then the inequality in (5.6.3) is strict.

In general, the codimension of im(c) cannot be characterized topologically. Indeed, take e.g.

l′ = 0, then im(c) is a point with codimension h1(OZ). Moreover, by Example 3.4.1, the dimension

of im(c) is not topological either.

5.7. Upper bounds for h1(Z,L). Theorem 5.3.1 and Corollary 5.3.4 provide sharp lower bounds

for h1(Z,L) and h1(X̃,L). A possible upper bound is given by the next proposition.

Proposition 5.7.1. Fix Z > 0 and an arbitrary L ∈ Pic(Z) with l′ = c1(L) ∈ −S ′.
(a) If h0(Z,L) = 0 then h1(Z,L) ≤ −χ(Z) < h1(OZ).

(b) If H0(Z,L)reg ̸= ∅ then h1(Z,L) ≤ h1(OZ).

(c) In general, if h0(Z,L) ̸= 0 then

(5.7.2) h1(Z,L) ≤ max
0≤l≤Z

{h1(OZ−l) + χ(−l′)− χ(−l′ + l) } ≤ h1(OZ) + χ(−l′)− min
0≤l≤Z

χ(−l′ + l).

In particular, by (5.3.2) and (5.7.2), h1(Z,L) takes values in an interval of length (at most)

h1(OZ).
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Note that h1(OZ) ≤ max0≤l≤Z{h1(OZ−l) + χ(−l′)− χ(−l′ + l) } (take l = 0). Hence (b) gives a

better bound than (c) whenever H0(Z,L)reg ̸= ∅. (Examples with h1(Z,L) ̸≤ h1(OZ) exist even for

l′ = 0, see e.g. Example 8.2.4 in part II [NN18], when we will treat the generic analytic structures).

Furthermore, (c) for l′ = 0 reads as h1(Z,L) ≤ max0≤l≤Z{h1(OZ−l) − χ(l) }, which for Z =

ZK ∈ L transforms into h1(ZK ,L) ≤ max0≤l≤ZK{h1(Ol)− χ(l) } (use χ(ZK − l) = χ(l)).

Proof. (a) h1(Z,L) = −χ(Z,L) = −χ(Z)− (Z, l′) ≤ −χ(Z) = −h0(OZ) + h1(OZ).

(b) Multiplication by a generic s ∈ H0(Z,L) gives an exact sequence of sheaves 0 → OZ → L →
F → 0, where F is Stein. Hence H1(OZ) → H1(Z,L) is onto and h1(Z,L) ≤ h1(OZ).

(c) If l is the fixed divisor of L supported on E, then from the exact sequence 0 → L(−l)|Z−l →
L → L|l → 0 we get h1(L) = h1(Z − l,L(−l)) − χ(L|l), and L(−l)|Z−l has no fixed components.

Hence h1(Z − l,L(−l)) ≤ h1(OZ−l) by (b). �

Remark 5.7.3. The inequality h1(Z,L) ≤ h1(OZ), valid for the case when L has no fixed compo-

nents, has the following geometric interpretation, cf. (3.1.8): h1(OZ)− h1(Z,L) = codim(c−1(L) ⊂
ECal

′
) ≥ 0. The inequality for L = O(−l), l ∈ L>0, was already proved in [OWY14, Th. 3.1].

5.8. The h1–stratification of Picl
′
(Z). Fix Z > 0, l′ ∈ −S ′ and k ∈ Z with

χ(−l′)− min
0≤l≤Z

χ(−l′ + l) ≤ k ≤ h1(OZ) + χ(−l′)− min
0≤l≤Z

χ(−l′ + l).

Definition 5.8.1. For any l′ and k as above we set

(5.8.2) Wl′,k := {L ∈ Picl
′
(Z) : h1(Z,L) = k}.

From the semicontinuity lemma 5.2.1 we automatically have for the closure Wl′,k

(5.8.3) Wl′,k ⊂ {L ∈ Picl
′
(Z) : h1(Z,L) ≥ k}.

These sets constitute the analogs of the Brill–Noether strata defined for projective curves by the

Brill–Noether theory, see [ACGH85, Fl10] and the references therein.

Lemmas 5.6.1 and 3.3.2 have the following consequences.

Corollary 5.8.4. Fix l′ ∈ −S ′. Then im(cl
′
) ⊂ Wl′,codim im(cl′ ). Furthermore, the set of critical

bundles of cl
′
are included in Wl′,codim im(cl′ )+1.

Example 5.8.5. If the fibers of cl
′
over im(cl

′
) are not equidimensional, then im(cl

′
) consists of more

strata of type Wl′,k (see e.g. Example 3.4.3). But, even if the fibers over im(cl
′
) are equidimensional,

hence im(cl
′
) consists of only one stratum, it can happen that cl

′
is not a (topological) locally trivial

fibration over im(cl
′
), see e.g. Example 3.4.4. In particular, cl

′
over a strata Wl′,k usually is not a

(topological) locally trivial fibration.

6. ‘Multiple’ structures. The ‘stable’ im(cl
′
).

6.1. Monoid structure of divisors. In this section we will exploit the additional natural additive

structure sl
′
1,l

′
2(Z) : ECal

′
1(Z)× ECal

′
2(Z) → ECal

′
1+l′2(Z) (l′1, l

′
2 ∈ −S ′) provided by the sum of the

divisors. (Sometimes we will abridge sl
′
1,l

′
2(Z) as s.)

Lemma 6.1.1. sl
′
1,l

′
2(Z) is dominant and quasi–finite.

Proof. An effective divisor decomposes in finitely many ways, hence the quasi–finiteness follows.

Since the dimensions of the source and the target are equal, cf. Theorem 3.1.10, s is dominant. �
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In general, s is not surjective. E.g., in Example 3.4.4, the elements of c−1(E1 ∩E2) = C∗ are not

in the image of sE
∗
1 ,E

∗
2 (Z).

There is a parallel multiplication Picl
′
1(Z)×Picl

′
2(Z) → Picl

′
1+l′2(Z), (L1,L2) 7→ L1⊗L2. Clearly,

cl
′
1+l′2 ◦ sl′1,l′2 = cl

′
1 ⊗ cl

′
2 in Picl

′
1+l′2 . In the next discussions we replace cl

′
by the composition

c̃l
′
: ECal

′
(Z)

cl
′

−→ Picl
′
(Z)

OZ(−l′)−→ Pic0(Z),

where the second map is the multiplication by the natural line bundle OZ(−l′). Since OZ(l
′
1+ l′2) =

OZ(l
′
1)⊗OZ(l

′
2) we also have c̃l

′
1+l′2 ◦ sl′1,l′2 = c̃l

′
1 ⊗ c̃l

′
2 in Pic0. After identification of Pic0 with (the

additive) H1(OZ), this reads as c̃
l′1+l′2 ◦ sl′1,l′2 = c̃l

′
1 + c̃l

′
2 in H1(OZ). The advantage of this new map

is that it collects all the images of the effective Cartier divisors in a single vector space H1(OZ).

Lemma 6.1.1 and the construction imply

(6.1.2) im(c̃l
′
1) + im(c̃l

′
2) ⊂ im(c̃l

′
1+l′2) ⊂ im(c̃l

′
1) + im(c̃l

′
2).

Definition 6.1.3. For any l′ ∈ −S ′ let AZ(l
′) (if there is no confusion, A(l′)) be the smallest

dimensional affine subspace of H1(OZ) which contains im(c̃l
′
). Let VZ(l

′) be the parallel vector

subspace of H1(OZ), the translation of AZ(l
′) to the origin.

Remark 6.1.4. From this definition follows that dimVZ(l
′) is greater than or equal to the dimension

of the Zariski tangent space at any L ∈ im(cl′(Z)); in particular, dimVZ(l
′)) ≥ dim im(cl

′
(Z)).

Hence, by (5.6.2) one also has dimVZ(l
′) ≥ h1(OZ)− h1(Z,L) for any L ∈ im(cl

′
(Z)).

Example 6.1.5. In general, im(c̃l
′
)  AZ(l

′); take e.g. the first case of Example 3.4.2, when

dim im(cl
′
) = 1 and AZ(l

′) = C2. (The fact that AZ(l
′) = C2 can be deduced in the following way

as well. cnl
′
is dominant for n ≫ 1, hence AZ(nl

′) = C2. But VZ(l
′) = VZ(nl

′), see e.g. the next

Lemma.)

Using (6.1.2) one obtains the following properties of the spaces {AZ(l
′)}l′ of H1(OZ):

Lemma 6.1.6.

(a) AZ(l
′
1 + l′2) = AZ(l

′
1) + AZ(l

′
2) := {a1 + a2 : ai ∈ AZ(l

′
i}; in particular, VZ(l

′
1) ⊂ VZ(l

′
2)

whenever l′1 ≤ l′2 and VZ(nl
′) = VZ(l

′) for any n ≥ 1.

(b) For any −l′ =
∑

v avE
∗
v ∈ S ′ let the E∗–support of l′ be I(l′) := {v : av ̸= 0}. Then VZ(l

′)

depends only on I(l′).

E.g., if I(l′) = V, then cnl
′
is dominant for any n ≫ 1 (use Theorem 4.1.1(3).) Hence, VZ(l

′) =

VZ(nl
′) = H1(OZ).

Proof. (b) VZ(l
′) ⊂ VZ(l

′ + nE∗v ) ⊂ VZ(l
′) + VZ(nE

∗
v ) ⊂ VZ(l

′) + VZ(E
∗
v ) ⊂ VZ(l

′) for v ∈ I(l′). �

Definition 6.1.7. (a) 6.1.6(b) motivates to use the notation VZ(I) for VZ(l
′) whenever I = I(l′).

Hence Lemma 6.1.6(a) reads as VZ(I1 ∪ I2) = VZ(I1) + VZ(I2).

(b) If Z2 ≥ Z1, then the restriction (cf. 3.1) satisfies r(VZ2(l
′)) = VZ1(l

′), hence dimVZ2(l
′) ≥

dimVZ1(l
′) and the pair VZ(l

′) ⊂ H1(OZ) stabilizes as Z increases. Set
(
VX̃(l′) ⊂ H1(OX̃)

)
for

lim←
(
VZ(l

′) ⊂ H1(OZ)
)
and

(
VX̃(I) ⊂ H1(OX̃)

)
:= lim←

(
VZ(I) ⊂ H1(OZ)

)
.

Remark 6.1.8. c̃l
′
: ECal

′
(Z) → Pic0(Z) = H1(OZ) has a very strong hidden rigidity property as

well. Assume e.g. that Z ≥ E and ECal
′
(Z) is 1–dimensional. Then ECal

′
(Z) can be identified with

some Ereg
v := Ev \ ∪w ̸=vEw. Therefore, the symmetric product ECal

′
(Z)×n/Sn (where Sn is the

permutation group of n letters) embeds as a Zariski open set into ECanl
′
(Z). Hence, by Lemma 3.1.7,
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the generic fibers of the restriction of c̃nl
′
(ECal

′
(Z)×n/Sn → H1(OZ), [D1, · · · , Dn] 7→

∑
i c̃

l′(Di))

must be irreducible. This fact imposes serious restrictions for a map to be equal to some c̃l
′
.

E.g., C → C2, t 7→ (t, t4) is not birational equivalent with a certain c̃l
′
. Indeed, its ‘double’,

C×2/S2 → C2, (t, s) 7→ (t+ s, t4 + s4), rewritten in terms of elementary symmetric functions reads

as C2 → C2, (σ1, σ2) 7→ (σ1, σ
4
1 − 4σ2σ

2
1 + 2σ2

2), which has non–irreducible generic fibers.

By the next theorem, VZ(l
′) = H1(OZ) if and only if cnl

′
is dominant for n ≫ 1; and in 6.3 we will

characterize those cases when VZ(l
′) = 0. But besides these two limit situations the construction

provides a rather complex linear subspace arrangement {VZ(l
′)}l′ , which, in general, contains deep

analytic information about (X, o).

Theorem 6.1.9. Fix l′ ∈ −S ′ and Z > 0 as above. Then for n ≫ 1 the following facts hold.

(a) The image of c̃nl
′
is the affine subspace AZ(nl

′) of H1(OZ) (a translated of AZ(l
′)).

(b) All the (non–empty) fibers of c̃nl
′
have the same dimension.

In particular, for any L ∈ Picnl
′
(Z) without fixed components (and n ≫ 1) one has

(6.1.10) h1(Z,L) = h1(OZ)− dimVZ(l
′) = codim

(
VZ(l

′) ⊂ H1(OZ)
)
.

(c) Let I ⊂ V be the E∗–support of l′. Decompose Z as Z|I + Z|V\I according to the supports I

and V \ I. Then for all L ∈ Picnl
′
(Z) without fixed components (and n ≫ 1) h1(Z,L) depends only

on the E∗–support I of l′:

(6.1.11) h1(Z,L) = h1(OZ|V\I ).

Hence, by (6.1.10),

(6.1.12) dimVZ(I) = h1(OZ)− h1(OZ|V\I ).

In particular, if (X̃/EV\I , oV\I) denotes the multi–germ (the disjoint union of singularities) obtained

by contracting the connected components of EV\I in X̃, then for Z ≫ 0 we obtain

(6.1.13) dimVZ(I) = pg(X, o)− pg(X̃/EV\I , oV\I).

Therefore, VZ(I) = H1(OZ) = Cpg(X,o), if and only if Γ \ I is a disjoint union of rational graphs.

(d) With the notations of (c), VZ(I) = ker(H1(OZ) → H1(OZ|V\I )).

(e) Any L ∈ Picnl
′
(Z) without fixed components is generated by global sections.

Remark 6.1.14. (a) In (6.1.10) h1(Z,L) > −χ(Z,L) (since h0(Z,L) > 0), which gives a topological

lower bound for codim
(
VZ(l

′) ⊂ H1(OZ)
)
.

(b) (6.1.13) generalizes the ‘pg–additivity formula’ of Okuma [O08], which was proved for splice

quotient singularities, for details see 9.3. Note that the present formula is valid for any singularity.

(c) Part (a) of Theorem 6.1.9 is equivalent (by a similar argument as the proof of Lemma 6.1.6(b))

by the following statement: (a′) If −l′ =
∑

v∈I avE
∗
v with av ≫ 0 (but no other relations between

them), then the image of c̃l
′
is an affine subspace, a translated of VZ(I).

(d) Parts (b)–(c) of Theorem 6.1.9 imply that im(cnl
′
) (for n ≫ 1) is closed and consists of only

one h1–strata: im(cnl
′
) = Wnl′,h1(OZ)−dimVZ(I).

Proof of Theorem 6.1.9. (a) Write A(l′) as a+ V (l′) for some a ∈ A(l′). Then by (6.1.2) im(c̃nl
′
) ⊂

na+ V (l′). We have to show that for n ≫ 0 we have equality im(c̃nl
′
) = na+ V (l′).

We choose smooth points x1, . . . , xk in im(c̃l
′
) such that the tangent spaces Txi im(c̃l

′
), translated

to the origin, generate V (l′). Then taking Zariski neighborhoods Ui of xi in im(c̃l
′
), we notice that∑

i(−xi + Ui) contains a Zariski open set of V (l′). But
∑

i(−xi + Ui) ⊂
∑

i(−xi + im(c̃l
′
)) ⊂
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−
∑

i xi + im(c̃kl
′
) ⊂ V (l′), hence −

∑
i xi + im(c̃kl

′
) contains a Zariski open subset of V (l′). On

the other hand, if U is a Zariski open set of a vector space V , then U + U = V . This shows that

im(c̃2kl
′
) is an affine space associated with V (l′).

(b) If we replace l′ by some multiple if it, by part (a) we can assume that c̃l
′
: ECal

′
(Z) → H1(OZ)

has image A(l′). Consider the following diagram (for some m ∈ Z>0 which will be determined later):

( ECal
′
(Z) )m

s−→ ECaml′(Z)

(A(l′) )m
Σ−→ A(ml′)

↓ ↓⊕ c̃l
′

c̃ml′

Fix any x ∈ A(ml′). Since ⊕ c̃l
′
and Σ are surjective, the fiber (c̃ml′)−1(x) intersects im(s) at

some point p. Since the source and target spaces of s are smooth of the same dimension, by Open

Mapping Theorem (see e.g. [GR70, p. 107]) there exists an (analytic) open neighbourhood U of

p (hence intersecting the fiber) contained in im(s). Hence, using also the quasi–finiteness of s,

dim(c̃ml′)−1(x) = dim(c̃ml′ ◦ s)−1(x) = dim(Σ ◦ ⊕ c̃l
′
)−1(x). Thus, if x = (x1, . . . , xm) are the

coordinates in (A(l′) )m, then we have to analyse the set (⊕ c̃l
′
)−1{x :

∑
i xi = x} for any fixed x.

In A(l′) there is a Zariski open subset U , with the following two properties:

(i) for any y ∈ U , the fiber (c̃l
′
)−1(y) has the minimal possible dimension, namely dimECal

′
(Z)−

dimA(l′) = (l′, Z)− d(l′);

(ii) if F := A(l′) \ U is its complement, then dim(c̃l
′
)−1(F ) < dimECal

′
(Z) = (l′, Z).

We stratify Hx := {x :
∑

i xi = x} with the sets Fk := {x ∈ Hx : #{i : xi ∈ F} = k}, where
0 ≤ k ≤ m. Set also EFk := (⊕ c̃l

′
)−1(Fk).

Then F0 is a non–empty open set of Hx of dimension (m−1)d(l′), hence dimEF0 = (m−1)d(l′)+

m((l′, Z)− d(l′)) = (ml′, Z)− d(l′). Next we estimate the dimensions of the other strata as well.

First, we consider the case 1 ≤ k < m. Then F is covered by several components according to the

position of I = {i1, . . . , ik} indexing those xi which belong to F . Fix suxh a component Fk,I , and

write (⊕ c̃l
′
)−1(Fk,I) = EFk,I . We consider the projection prI : Fk,I → ⊓IF , x 7→ (xi1 , . . . , xik),

and the lifted one EprI : EFk,I → ⊓I(c̃
l′)−1(F ). Note that EprI is an injection and its target has

dimension ≤ k((l′, Z)− 1). Furthermore, the fibers of EprI have dimension (m− k− 1)d(l′) + (m−
k)((l′, Z)−d(l′)) = (m−k)(l′, Z)−d(l′). Hence, dimEFk,I ≤ (m−k)(l′, Z)−d(l′)+k((l′, Z)−1) =

(ml′, Z)− d(l′)− k.

The case k = m is slightly different. Using the injection Fm → ⊓m(c̃l
′
)−1(F ) we get ‘only’

dimEFm ≤ m((l′, Z)−1). Therefore, if m ≥ d(l′) then we get dimEFm ≤ dimEF0. Hence, finally,

dim(c̃ml′)−1(x) = dimEF0 = dimECaml′(Z)− dimA(ml′).

For (6.1.10) use part (b) and Lemma 5.6.1.

(c) For any n ≫ 1 and L ∈ im(cnl
′
) (6.1.10) gives h1(Z,L) = h1(OZ) − dZ(l

′). By Grauert–

Riemenschneider vanishing theorem h1(Z|I ,L(−Z|V\I)) = 0, hence h1(Z,L) = h1(Z|V\I ,L). If L
is associated with certain effective divisor D ∈ ECanl

′
(Z) (as the image of cnl

′
), then L|Z|V\I is

associated with the restriction of this divisor to Z|V\I . But this restriction has an empty support,

hence L|Z|V\I is the trivial bundle over Z|V\I .
(d) Since the restriction of any element of ECanl

′
(Z) to Z|V\I is the empty divisor, the image of

the composition ECanl
′
(Z) → ECa0(Z|V\I) → Pic0(Z|V\I) is the trivial bundle (that is, the zero

element of Pic0(ZV\I)). Therefore, im(cnl
′
) ⊂ ker(H1(OZ) → H1(OZ|V\I )). Since they have the

same dimension (cf. 6.1.12) they must agree.
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(e) Let n be so large that im(c̃nl
′
) = AZ(nl

′) is an affine subspace. We claim that any L ∈
im(c̃2nl

′
) = AZ(2nl

′) is generated by global sections. Indeed, fix such a bundle and one of its sections

s ∈ H0(Z,L) whose divisor is an element of ECa2nl
′
(Z), whose support with reduced structure is

p := {p1, . . . , pk} ⊂ E. Let ECanl
′

p (Z) be the subspace of ECanl
′
(Z) consisting of divisors supported

in the complement of p. This is a Zariski open set of ECanl
′
(Z), hence c(ECanl

′

p (Z)) contains a

Zariski open set U in AZ(nl
′). Then U +U = AZ(2nl

′), hence L admits a section whose divisor has

support off p. �

6.2. Cohomological reinterpretations of VZ(l
′). Fix L ∈ im(cnl

′
) (n ≫ 1), D ∈ (cnl

′
)−1(L),

and s ∈ H0(Z,L) without fixed components. Then, as in the situation of 3.2 one has the co-

homological long exact sequence H0(Z,L) RL−→ OD
δ−→ H1(OZ) → H1(Z,L) → 0 from (3.2.1).

Then by Theorem 6.1.9, im(cnl
′
) = A(nl′). Therefore, im(TDcnl

′
) ⊂ TLA(nl

′). But, by Lemma

3.1.7, dim imTDcnl
′
= dimECanl

′
(Z) − dim im(cnl

′
)−1(L) = h1(OZ) − h1(Z,L) = dimTLA(nl

′) =

dimVZ(l
′). Hence, im(TD c̃nl

′
) = VZ(l

′). As im(TD c̃nl
′
) = imδ (cf. Prop. 3.2.2) for VZ(l

′) we get two

other cohomological reinterpretations. Either it is the Artin algebra OD/im(RL), as a vector space,

identified as the image of OD into H1(OZ), or it is also the kernel of H1(×s) : H1(OZ) → H1(Z,L).
In other words, for n ≫ 1, the image of OD → H1(OZ) is independent of the choice of D, while

the kernel of H1(×s) : H1(OZ) → H1(Z,L) is independent of the choice of s. Furthermore, they are

equal, and in fact this subspace of H1(OZ) depends only on the E∗–support I of l′, and it equals

VZ(I).

There is a parallel analogous discussion for X̃ (instead of Z) as well (in that case the reduced

structure of D is Stein, hence h1(OD) = 0 again).

6.3. Example. Characterization of the cases dim im(c) = 0. Fix l′ ∈ −S ′ with E∗–support

I ⊂ V and Z > 0 as above. Using (3.1.8) and (6.1.12) one proves that the following facts are

equivalent (for an additional equivalent property see also Example 8.1.4):

(i) im(cl
′
) is a point (or, VZ(l

′) = 0);

(ii) there exists L ∈ Picl
′
(Z) without fixed components such that h1(Z,L) = h1(Z);

(iii) any L ∈ Picl
′
(Z) without fixed components satisfies h1(Z,L) = h1(Z);

(iv) all line bundles L ∈ Picl
′
(Z) without fixed components are isomorphic to each other;

(v) h1(OZ) = h1(OZ|V\I ).

Let us define S ′pt as {−l′ ∈ S ′ : im(cl
′
) is a point} ⊂ S ′, this is the set of Chern classes satisfying

the above equivalent conditions. Using (6.1.2) we obtain that S ′pt is a semigroup.

Part (v) via Proposition 5.5.1 reads as follows:

(6.3.1) S ′pt = Z≥0⟨E∗v | Ev ̸⊂ |Zcoh(Z,OZ)| ⟩.

Note that (in contrast with S ′dom) S ′pt is not topological. Indeed, take e.g. the graph from Example

3.4.1, −l′ := Zmin = E∗v (where v is the (−2)–vertex adjacent with the (−7) vertex), and set

Z = ZK . Then, if pg(X, o) = 2 (that is, (X, o) is Gorenstein) then Zcoh(Z,OZ) = Z, and S ′pt = {0}.
If pg(X, o) = 1, then Zcoh(Z,OZ) is the minimally elliptic cycle, and S ′pt = Z⟨E∗v ⟩.

In [OWY14, OWY15a, OWY15b] a cycle l ∈ S ′ ∩L is called pg–cycle if OX̃(−l) ∈ Pic(X̃) has no

fixed components, and h1(X̃,OX̃(−l)) = pg. Note that this in our language means that −l ∈ S ′pt
for Z ≫ 0. Our results generalizes several statements of [loc.cit.] for arbitrary bundles L without

fixed components (replacing OX̃(−l)) and arbitrary dim im(cl
′
).
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This particular case and several similar classical results valid for bundles of type O(l′) motivate

to investigate the position of the natural line bundles with respect to im(cl
′
) (i.e., whether O(l′) has

fixed components or no). This is the subject of section 9.

7. The Abel map via differential forms

7.1. Review of Laufer Duality [La72], [La77, p. 1281]. Following Laufer, we identify the dual

space H1(X̃,OX̃)∗ with the space of global holomorphic 2-forms on X̃ \ E up to the subspace of

those forms which can be extended holomorphically over X̃.

For this, use first Serre duality H1(X̃,OX̃)∗ ≃ H1
c (X̃,Ω2

X̃
). Then, in the exact sequence

0 → H0
c (X̃,Ω2

X̃
) → H0(X̃,Ω2

X̃
) → H0(X̃ \ E,Ω2

X̃
) → H1

c (X̃,Ω2
X̃
) → H1(X̃,Ω2

X̃
)

H0
c (X̃,Ω2

X̃
) = H2(X̃,OX̃)∗ = 0 by dimension argument, while H1(X̃,Ω2

X̃
) = 0 by the Grauert–

Riemenschneider vanishing. Hence,

(7.1.1) H1(X̃,OX̃)∗ ≃ H1
c (X̃,Ω2

X̃
) ≃ H0(X̃ \ E,Ω2

X̃
)/H0(X̃,Ω2

X̃
).

The second isomorphism can be realized as follows. Fix a small tubular neighbourhood N ⊂ X̃

of E such that its closure is compact in X̃. Take any ω ∈ H0(X̃ \E,Ω2
X̃
), and extend the restriction

ω|X̃\N to a C∞(2, 0)–form ω̃ on X̃. Then ∂̄ω̃ is a compactly supported C∞(2, 1)–form, ∂̄∂̄ω̃ = 0,

hence ∂̄ω̃ determines a class in H1
c (X̃,Ω2). If ω̃ is a holomorphic extension then ∂̄ω̃ = 0. Next, let

λ be a C∞(0, 1) form in X̃. Then the duality H1(X̃,OX̃)⊗H1
c (X̃,Ω2) → C is the perfect pairing

⟨[λ], [∂̄ω̃]⟩ =
∫
X̃

λ ∧ ∂̄ω̃.

Assume that the class [λ] ∈ H1(X̃,OX̃) is realized by a Čech cocyle λij ∈ O(Ui ∩ Uj), where

{Ui}i is an open cover of E, Ui ∩ Uj ∩ Uk = ∅, and each connected component of the intersections

Ui ∩ Uj is either a coordinate bidisc B = {|u| < 2ϵ, |v| < 2ϵ} with coordinates (u, v), such that

E∩B ⊂ {uv = 0}, or a punctured coordinate bidisc B = {ϵ/2 < |v| < 2ϵ, |u| < 2ϵ} with coordinates

(u, v), such that E ∩B = {u = 0}. Then λ is obtained as follows: one finds C∞ functions λi on Ui

such that λi − λj = λij on Ui ∩ Uj , and one sets λ as ∂̄λi on Ui. Then, by Stokes theorem

(7.1.2) ⟨[λ], [∂̄ω̃]⟩ =
∑
B

∫
|u|=ϵ, |v|=ϵ

λijω.

By Stokes theorem, if ω has no pole along E in B, then the B–contribution in the above sum is zero.

7.1.3. Above H0(X̃ \ E,Ω2
X̃
) can be replaced by H0(X̃,Ω2

X̃
(Z)) for a large cycle Z (e.g. for

Z ≥ ⌊ZK⌋). Indeed, for any cycle Z > 0 from the exacts sequence of sheaves 0 → Ω2
X̃

→ Ω2
X̃
(Z) →

OZ(Z +KX̃) → 0 and from the vanishing h1(Ω2
X̃
) = 0 and Serre duality one has

(7.1.4) H0(Ω2
X̃
(Z))/H0(Ω2

X̃
) = H0(OZ(Z +K)) ≃ H1(OZ)

∗.

Since H1(OZ) ≃ H1(OX̃) for Z ≥ ⌊ZK⌋, the natural inclusion

(7.1.5) H0(Ω2
X̃
(Z))/H0(Ω2

X̃
) ↪→ H0(X̃ \ E,Ω2

X̃
)/H0(Ω2

X̃
)

is an isomorphism.

7.1.6. The above duality, via the isomorphism exp : H1(X̃,OX̃) → c−1(0) ⊂ H1(X̃,O∗
X̃
) = Pic(X̃),

can be transported as follows. Consider the following situation. We fix a smooth point p on E, a

local bidisc B ∋ p with local coordinates (u, v) such that B ∩ E = {u = 0}. We assume that a

certain form ω ∈ H0(X̃,Ω2
X̃
(Z)) has local equation ω =

∑
i∈Z,j≥0 ai,ju

ivjdu ∧ dv in B.



Abel maps 27

In the same time, we fix a divisor D̃ on X̃, whose local equation in B is vn, n ≥ 1. Let D̃t

be another divisor, which is the same as D̃ in the complement of B and in B its local equation is

(v + tuo−1)n, where o ≥ 1 and t ∈ C (with |t| ≪ 1 whenever o = 1).

Next we will provide three type of formulae.

The first one is the composition of several maps. Note that the pairing ⟨·, [∂̄ω̃]⟩ (abridged as ⟨·, ω⟩)
produces a map H1(X̃,OX̃) → C. Then we identify H1(X̃,OX̃) with Pic0(X̃) by the exponential

map. Then we consider the composition t 7→ D̃t − D̃ 7→ OX̃(D̃t − D̃) 7→ exp−1 OX̃(D̃t − D̃) 7→
⟨exp−1 OX̃(D̃t − D̃), ω⟩. The first formula makes this composition explicit. This restricted to

any cycle Z ≫ 0 can be reinterpreted as ω–coordinate of the Abel map restricted to the path

t 7→ Dt := D̃t|Z (and shifted by the image of D := D̃|Z).
The second formula determines the tangent application of the above composition (in this way it

determines the ω–coordinate of the tangent application of the Abel map restricted to Dt).

In the third formula we replace the path Dt by a complete neighborhood of D in ECa(Z).

Note that if we consider — instead of a single form ω — a complete set of representatives of a

basis of H0(X̃,Ω2
X̃
(Z))/H0(X̃,Ω2

X̃
), then we get by the above three constructions the restriction of

the Abel map to the path Dt, the tangent map of this restriction, and in the third case the ‘complete’

Abel map defined in some neighbourhood of D.

7.2. The Abel map restricted to Dt. The first two cases start with the explicit computation of

⟨exp−1 OX̃(D̃t − D̃), ω⟩, as follows. D̃t − D̃ is the divisor D̃′ = div((v + tuo−1)/v)n, supported in

B = {|u|, |v| < ϵ}. We can fix ϵ such that the support of D̃′ is in {|v| < ϵ/2}, and set B∗ := {ϵ/2 <

|v| < ϵ, |u| < ϵ}. Using the trivialization of O(D̃′) in X̃ \ {|v| ≤ ϵ/2} and the realization O(D̃′) on

B, we get that O(D̃′) can be represented by the cocycle g = ((v+ tuo−1)/v)n ∈ O∗(B∗). Therefore,
log((v + tuo−1)/v)n = n log(1 + tuo−1/v) is a cocycle in B∗ representing its lifting into H1(X̃,OX̃).

This paired with ω gives:

(7.2.1) ⟨⟨D̃t, ω⟩⟩ := ⟨exp−1 OX̃(D̃t − D̃), ω⟩ = n

∫
|u|=ϵ, |v|=ϵ

log(1+ t
uo−1

v
) ·

∑
i∈Z,j≥0

ai,ju
ivjdu∧ dv.

If ω1, . . . , ωpg are representatives of a basis for H0(X̃,Ω2
X̃
(Z))/H0(X̃,Ω2

X̃
), and Z ≫ 0, then

(7.2.2) D̃t 7→ (⟨⟨D̃t, ω1⟩⟩, . . . , ⟨⟨D̃t, ωpg ⟩⟩)

is the restriction of the Abel map to D̃t (associated with Z, and shifter by the image of D̃).

At the level of tangent application on has the formula for (Tc̃(D)ω) ◦ TD c̃)( d
dtDt|t=0):

(7.2.3)
d

dt

∣∣∣
t=0

[
n

∫
|u|=ϵ, |v|=ϵ

log(1 + t
uo−1

v
) ·

∑
i∈Z,j≥0

ai,ju
ivjdu ∧ dv

]
= λ · a−o,0 (λ ∈ C∗).

If ω has no pole along the divisor {u = 0} then ⟨exp−1 OX̃(D̃t − D̃), ω⟩ = 0 for any path D̃t.

Definition 7.2.4. Consider the above situation in the bidisc B: B ∩ E = {u = 0}, D̃ has local

equation v (i.e. n = 1), and ω =
∑

i∈Z,j≥0 ai,ju
ivjdu ∧ dv. Then we introduce the Leray residue of

ω/du along {v = 0} as the 1–form (with possible poles at D̃∩E) defined by (ω/dv)|v=0 =
∑

i ai,0u
idu.

We denote it by ResD(ω).

Note that the right hand side of (7.2.3) tests exactly the pole part of the Leray residue ResD(ω).
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7.3. The Abel map. Assume as above that in the ball B the divisor D̃ is given by v = 0 (i.e.

n = 1), and its ‘perturbation’ D̃(c) is given by v = c0+ c1u+ c2u
2+ · · · with |c0| ≪ ϵ. Furthermore,

assume that the form ω in B has the form (f(v)/uℓ+1)du ∧ dv, where f ∈ O(B) and ℓ ≥ 0. (Note

that the Laurent expansion in variable u of any differential form is a sum of such terms.)

Our aim is the computation of ⟨⟨D̃(c), ω⟩⟩.
If {pi}≥1 (resp. {hi}i≥1 ) denote the power sum (resp. complete) symmetric polynomials (func-

tions) then (cf. [Mac95, p. 23])

(7.3.1) p1u+ p2u
2/2 + p3u

3/3 + · · · = log(1 + h1u+ h2u
2 + · · · ).

Furthermore, by [Mac95, p. 28], for n ≥ 1,

(7.3.2) (−1)n+1pn =


h1 1 0 . . . 0

2h2 h1 1 . . . 0
...

...
...

...

nhn hn−1 hn−2 . . . h1


We rewrite (7.3.1) as log(A) + p1u+ p2u

2/2 + · · · = log(A+ h1Au+ h2Au2 + · · · ) and we make the

substitution A = (v − c0)/v, h1A = −c1/v, h2A = −c2/v, etc., and we obtain

(7.3.3) log
(
1− c0 + c1u+ c2u

2 + · · ·
v

)
= log

(
1− c0

v

)
+ δ1(c)u+ δ2(c)u

2 + · · · ,

where for n ≥ 1

(7.3.4) δn(c) =
n∑

i=1

δn,i(c)

(v − c0)i
=

−1

n


c1

v−c0 −1 0 . . . 0
2c2
v−c0

c1
v−c0 −1 . . . 0

...
...

...
...

ncn
v−c0

cn−1

v−c0
cn−2

v−c0 . . . c1
v−c0

 .

Note that δn,i are certain universal polynomials in variables c1, . . . , cn. Then ⟨⟨D̃(c), ω⟩⟩ equals

(7.3.5)

∫
|u|=ϵ, |v|=ϵ

log
(
1− c0 + c1u+ · · ·

v

)
· f(v)
uℓ+1

du ∧ dv =

ℓ∑
i=1

δℓ,i(c)

(i− 1)!
· d

i−1f

dvi−1
(c0).

7.4. Reduction to an arbitrary Z > 0. Consider the above perfect pairing H1(X̃,OX̃)⊗H0(X̃ \
E,Ω2

X̃
)/H0(Ω2

X̃
) → C given via integration of class representatives. In H1(X̃,OX̃) let A be the

image of the H1(X̃,OX̃(−Z)), hence H1(X̃,OX̃)/A = H1(OZ). On the other hand, in H0(X̃ \
E,Ω2

X̃
)/H0(Ω2

X̃
) consider the subspace B := H0(Ω2

X̃
(Z))/H0(Ω2

X̃
) of dimension h1(OZ) (cf. (7.1.4).

Since ⟨A,B⟩ = 0, the pairing factorizes to a perfect pairing H1(OZ) ⊗H0(Ω2
X̃
(Z))/H0(Ω2

X̃
) → C.

It can be described by the very same integral form of the corresponding class representatives.

Moreover, if D̃t is an 1–parameter family of divisors as in 7.1.6, representing an element in

H1(OZ) (via the surjection H1(OX̃) → H1(OZ)), and ω is a representative of a class [ω] ∈
H0(Ω2

X̃
(Z))/H0(Ω2

X̃
), then the expression of the pairing H1(OZ) ⊗ H0(Ω2

X̃
(Z))/H0(Ω2

X̃
) → C,

⟨exp−1 OZ(D̃t−D̃), [ω]⟩, can be represented by the very same formula (7.2.1) (as in the case Z ≫ 0).

Furthermore, all other formulae of subsections 7.2 and 7.3 also have their extended versions. E.g.,

(7.2.3) gives Tc̃(D)(ω) ◦ TD c̃l
′
(Z))( d

dtDt|t=0), and (7.3.5) is the [ω]–coordinate of the Abel map

ECal
′
(Z) → H1(OZ).
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8. The ‘stable’ arrangement {VX̃(I)}I⊂V and differential forms

8.1. The arrangement {ΩX̃(I)}I of forms and its duality with {VX̃(I)}I .

Definition 8.1.1. Let ΩX̃(I) (or, Ω(I)) be the subspace of H0(X̃ \ E,Ω2
X̃
)/H0(X̃,Ω2

X̃
) generated

by differential forms ω ∈ H0(X̃ \ E,Ω2
X̃
), which have no poles along EI \ ∪v ̸∈IEv.

As in Theorem 6.1.9(c), let (X̃/EV\I , oV\I) denote the multi–germ obtained by contracting the

connected components of EV\I in X̃. Let X̃(V \ I) be a small neighbourhood of EV\I in X̃, which

is the inverse image by ϕ of a small Stein neighbourhood of (X̃/EV\I , oV\I).

Proposition 8.1.2. (a) dimΩ(I) = pg(X̃/EV\I , oV\I).

(b) Set Ω(∅) := H0(X̃(V\I)\EV\I ,Ω2
X̃(V\I)

)/H0(X̃(V\I),Ω2
X̃(V\I)

). Then linear map ρ : Ω(I) →
Ω(∅), induced by restriction, is an isomorphism.

(c) Fix I ⊂ V as above and set J ⊂ V with J ∩ I = ∅. Let Ω(J) be the subspace of Ω(∅) generated
by forms from H0(X̃(V \ I) \ EV\I ,Ω

2
X̃(V\I)

) without pole along EJ . Then the restriction of ρ to

Ω(J) ∩ Ω(I) induces an isomorphism Ω(J) ∩ Ω(I) → Ω(J).

In particular, for any I, the subspace arrangement {Ω(J)}J∩I=∅ of the multigerm (X̃/EV\I , oV\I)

and resolution X̃(V \ I) can be recovered from the arrangement {Ω(M)}M via {Ω(I) ∩Ω(J)}J∩I=∅.

Proof. (a) Fix Z =
∑

v∈V\I nvEv with all nv ≫ 0. By (7.1.4) dimΩ(I) = dim H0(Ω2
X̃
(Z))/H0(Ω2

X̃
) =

h1(OZ), which equals pg(X̃/EV\I , oV\I) by formal function theorem.

(b) If [ω] ∈ ker(ρ), then ω has no pole along EI (since [ω] ∈ Ω(I)), and has no pole along EV\I

either (since ρ[ω] = 0). Hence [ω] = 0, and ρ is injective. Since by (a) the dimension of the source

and the target is the same, ρ is an isomorphism.

(c) By (b), for any ω̄ ∈ Ω(J) there exists ω ∈ Ω(I) with ρ(ω) = ω̄. Note that ω is necessarily in

Ω(I ∩ J), hence Ω(J) ∩ Ω(I) → Ω(J) is onto. �

The next result shows that the linear subspace arrangement {VX̃(I)}I of H1(X̃,OX̃) (cf. 6.1.7)

is dual to the linear subspace arrangement {ΩX̃(I)}I of ΩX̃(∅) = H0(X̃ \ E,Ω2
X̃
)/H0(X̃,Ω2

X̃
).

Theorem 8.1.3. Via duality (7.1.1) one has VX̃(I)∗ = ΩX̃(I).

Proof. We fix a cycle Z ≫ 0 for which VZ(I) = VX̃(I). Choose l′ = −
∑

v∈I avE
∗
v such that each av

is so large that im(cl
′
) is an affine space, cf. Theorem 6.1.9. Then, any element L of VZ(I) has the

form OZ(D1 −D2), with both D1, D2 ∈ ECal
′
(Z). Lift {Di}i=1,2 to effective divisors {D′1}i=1,2 in

X̃. Since they do not intersect EV\I , the class [λ] of OX̃(D′1−D′2) in Pic0(X̃) can be represented by

a Čech cocycles {λij}, which in a neighbourhood of EV\I are all zero. Therefore, if ω is a form which

has no pole along EI , ⟨[λ], [ω]⟩ = 0 by (7.1.2). That is, ⟨VX̃(I),Ω(I)⟩ = 0, or VX̃(I) ⊂ Ω(I)∗. Since

by (6.1.12) and Proposition 8.1.2(a) one has dimVX̃(I) = pg −dimΩ(I), we get VX̃(I) = Ω(I)∗. �

Example 8.1.4. (Continuation of Example 6.3) Fix l′ ∈ −S ′ with E∗–support I ⊂ V as in 6.3, and

choose Z ≫ 0. Then

im(cl
′
) is a point ⇔ VX̃(I) = 0 ⇔ ΩX̃(I) = ΩX̃(∅).

8.2. Convexity property of Ω({v})’s. Clearly, the subspace arrangement has the properties

Ω(∅) ≃ Cpg , and Ω(I ∪ J) = Ω(I) ∩ Ω(J). In this subsection we establish an interesting additional

structure property of the arrangement. It is the analytical analogue of topological convexity property

[LNN14, Prop. 4.4.1].
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For simplicity write Ωv := Ω({v}) for v ∈ V, and define

Π(I) :=

{
∅ if I = ∅∑

v∈I Ωv if I ̸= ∅.

Proposition 8.2.1. For any I ⊂ V let ΓI be the smallest connected subtree of Γ whose set of vertices

I contains I. Then Π(J) = Π(I) for any I ⊂ J ⊂ I.

Proof. By induction, it is enough to consider the case J = I ∪ {u}, such that u is on the geodesic

path connecting v, w with v, w ∈ I. Moreover, it is enough to show that Ωu ⊂ Ωv + Ωw. Write the

connected components of Γ \ u as ∪s
k=0Γk, and set Ik := V(Γk). Assume that w ∈ I0.

Choose an arbitrary ω ∈ Ωu and consider its restriction ω|X̃(I0)
in Ω(∅) := H0(Ω2(X̃(I0) \

EI0))/H
0(Ω2(X̃(I0))). By Proposition 8.1.2(b) Ω(V \ I0) → Ω(∅) is bijective, hence there exists

ωv ∈ Ω(V \ I0) such that ωv|X̃(I0)
= ω|X̃(I0)

. But Ωv ⊃ Ω(V \ I0), hence ωv ∈ Ωv. On the other

hand, (ω − ωv)|X̃(I0)
= 0, hence ωw := ω − ωv ∈ Ωw. Thus ω = ωv + ωw ∈ Ωv +Ωw. �

Example 8.2.2. Consider the weighted homogeneous isolated hypersurface singularity (X, o) =

{x4 + y4 + z5 = 0} ⊂ (C3, 0). One verifies that pg = 4 (use either [Pi77], or section 12 from here).

We consider the minimal good resolution, whose graphs is

−5 −1s s s
−5

−5

−5

�
� ss @

@

If ω is the Gorenstein form, then ω, zω, xω and yω generate H0(X̃ \E,Ω2
X̃
)/H0(Ω2

X̃
). The pole

orders along the central curve E0 are 7, 3, 2, 2. Let vi (1 ≤ i ≤ 4) be the end–vertices. Then for fixed

i, V \{vi} represents a minimally elliptic singularity. Hence Ωvi ≃ C by (6.1.12) and Theorem 8.1.3.

If ξi are the roots of ξ4 + 1 = 0, then (x+ ξiy)ω generates Ωvi , hence
∑4

i=1 Ωvi ≃ C2 = ⟨xω, yω⟩.
In particular, the linear subspace arrangement {Ωv}v in Cpg = C4 is not generic at all. Further-

more, Ωv0 = 0 hence 8.2.1 can also be exemplified on this concrete example.

8.3. Reduction to an arbitrary Z > 0. The duality from Theorem 8.1.3, valid for X̃ (or,

for any Z ≫ 0) can be generalized for any Z ≥ E as follows. For the definition of VZ(I) see

Definitions 6.1.3 and 6.1.7. In parallel, define ΩZ(I) as the subspace H0(Ω2
X̃
(Z|V\I))/H0(Ω2

X̃
) in

H0(Ω2
X̃
(Z))/H0(Ω2

X̃
). By (7.1.4) dimH0(Ω2

X̃
(Z))/H0(Ω2

X̃
) = h1(OZ), while dimΩZ(I) = h1(OZ|V\I ).

But, by pairing (similarly as in the proof of Theorem 8.1.3) VZ(I) ⊂ ΩZ(I)
∗. Furthermore, by

(6.1.12), dimVZ(I) = dimΩZ(I)
∗. Hence

(8.3.1) VZ(I) = ΩZ(I)
∗.

9. The ‘stable’ dimensions {dim(VZ(I))}I and natural line bundles

9.1. Recall that the saturation in S ′ of a submonoid M ⊂ S ′ is the submonoid M := {l′ ∈ S ′ :

∃ n ≥ 1 with nl′ ∈ M}.
Let us fix some cycle Z ≥ E. Regarding the mutual position of the natural line bundle OZ(l

′)

with respect to the image of cl
′
: ECal

′
(Z) → Picl

′
(Z) we can consider three cases.

(a) OZ(l
′) ∈ im(cl

′
), or, equivalently, 0 ∈ im(c̃l

′
). The set of cycles l′ satisfying this property is

denoted by S ′im. Clearly 0 ∈ S ′im and by the first paragraphs of 6.1 it is a sub-monoids of S ′. (In

the literature, this monoid — defined for bundles over Z ≫ 0, or over X̃ —, is called the analytic

monoid of (X, o), in contrast with the topological monoid S ′, since it indexes the restrictions to
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E of the divisors of different holomorhic sections of the natural line bundles of X̃, or divisors of

fuctions of the universal abelian covering of (X, o), cf. [N99b].)

(b) OZ(nl
′) ∈ im(cnl

′
), or 0 ∈ im(c̃nl

′
), for n ≫ 1. The cycles l′ satisfying this property are

indexed by S ′im.

(c) l′ ∈ S ′ \ S ′im.

Example 9.1.1. In general, S ′im  S ′im. E.g. in Example 3.4.3, OZ(−Zmin) ̸∈ im(c), however

OZ(−2Zmin) ∈ im(c). Furthermore, in general, S ′im  S ′ either. Indeed, take e.g. a situation when

im(cl
′
) is a point different than OZ(l

′). Then OZ(nl
′) ̸∈ im(cnl

′
) for n ≥ 1, hence nl′ ̸∈ S ′im for

n ≥ 1. In such cases S ′ \ S ′im is even infinite. For a concrete example see the last case of 3.4.1.

Lemma 9.1.2. Let Z ≥ E be an arbitrary cycle as above.

(a) Fix l′ ∈ −S ′ as above, and assume that n ≥ 1 satisfies the next assumptions:

(i) im(c̃nl
′
) = A(nl′) (automatically satisfied if n is sufficiently large, cf. Theorem 6.1.9),

(ii) 0 ∈ im(c̃nl
′
).

Then 0 ∈ A(l′) and im(c̃ml′) = A(l′) for any m ≥ n.

(b) S ′im = S ′ if and only if S ′ \ S ′im is finite.

Proof. (a) Since 0 ∈ A(nl′), by Theorem 6.1.9(a) necessarily A(kl′) = A(l′) = V (l′) for any k ≥ 1.

Fix L ∈ im(c̃kl
′
). Then, L ∈ A(kl′) and by (6.1.2) and Lemma 6.1.6, A(l′) = A(l′) +L ⊂ im(c̃nl

′
) +

im(c̃kl
′
) ⊂ im(c̃(n+k)l′) ⊂ A((n+ k)l′) = A(l′). Part (b) follows from (a). �

9.2. In the remaining part of this subsection we will work with line bundles defined over Z ≫ 0.

Definition 9.2.1. (a) Following Neumann and Wahl [NW10], we say that (X, o) and its resolution

ϕ satisfy the End Curve Condition (ECC) if E∗v ∈ S ′im for any end vertex v ∈ V (i.e. for δv = 1).

(b) We say that (X, o) and its resolution ϕ satisfies the Weak End Curve Condition (WECC) if

E∗v ∈ S ′im for any end vertex v ∈ V.

If we restrict ourselves to singularities with rational homology sphere links, by End Curve Theorem

[NW10] (see also [O10]) singularities which satisfy ECC are exactly the splice quotient singularities of

Neumann and Wahl [NW05]. The WECC terminology is new in the literature, however its necessity

and importance appeared in many private discussions of the second author with T. Okuma in the

last decade. The main question regarding singularities satisfying WECC is how can one generalize

the results valid for splice quotient singularities to this larger family. The present article shows that

e.g. the pg–additivity formula of Okuma extends. Indeed, the general additivity formula (6.1.12)

provides an additivity with correction term dimVX̃(I). Furthermore, as we will see in the next

discussions, the correction term dimVX̃(I) has different reinterpretations in terms of certain Hilbert

polynomials or Poincaré series (similarly as in the splice quotient case) whenever WECC is satisfied.

Proposition 9.2.2. (a) (Convexity property of S ′im) Fix u, v ∈ V, u ̸= v. If E∗u, E
∗
v ∈ S ′im

then for any vertex w on the geodesic path in the graph connecting u and v one has E∗w ∈ S ′im too.

(b) (X, o) satisfies WECC if and only if S ′im = S ′.

Proof. Fix integers nu, nv, nw sufficiently large such that (i) nuE
∗
u, nvE

∗
v , nwE

∗
w belong to L, (ii)

the Ew–multiplicities of these three cycles are equal, and (iii) nuE
∗
u and nvE

∗
v belong to S ′im. Set

l := nuE
∗
u − nwE

∗
w, and let the connected components of Γ \ w be ∪iΓi. We distinguish Γi0 , which

contains u. Then l is supported on ∪iΓi. Since (l, Ez) = 0 for any z ∈ V(∪i̸=i0Γi), l|Γi = 0 for

all i ̸= i0. Since (l, Ez) ≤ 0 for any z ∈ V(Γi0), and (l, Eu) < 0, all the entries of l|Γi0 are strict

positive. We have similar property for nvE
∗
v −nwE

∗
w too. Hence min{nuE

∗
u, nvE

∗
v} = nwE

∗
w. Since,
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by assumption there exist functions fu and fv, which can be regarded as sections of O(−nuE
∗
u)

and O(−nvE
∗
v ) without fixed components, the generic linear combination afu + bfv is a section of

O(−nwE
∗
w) without fixed components. For (b) use part (a) and the fact that Γ is a tree. �

9.3. Different reinterpretations of dim(VX̃(l′)) when l′ ∈ S ′im. In the sequel we apply the

results of the previous section (e.g. Theorem 6.1.9) for natural line bundles. This will also include

the ‘classical’ cases L = OX̃(−l), where l is an effective integral cycle. In order to do this we will

need additional assumptions of type L ∈ im(cnl
′
).

We fix the following setup. We consider line bundles over X̃, or over Z ≫ 0. We write VX̃(l′) for

the stabilized VZ(l
′) with Z ≫ 0. We fix l′ ∈ S ′ from S ′im, this means that there exists n ≫ 1 such

that O(−nl′) admits sections without fixed components. Let o ∈ Z>0 be the order of [l′] in L′/L.

We also write ol′ = l ∈ L. Note that VX̃(l′) = VX̃(ol′), cf. Lemma 6.1.6.

9.4. dim(VX̃(l′)) as the last coefficient of a Hilbert polynomial. Consider the situation of

subsection 9.3. For n ≫ 1 from the exact sequence of sheaves 0 → OX̃(−nl) → OX̃ → Onl → 0, we

get

dimH0(O)/H0(O(−nl)) = χ(nl)− h1(O(−nl)) + pg(X, o),

which combined with Theorem 6.1.9 gives

(9.4.1) dimH0(O)/H0(O(−nl)) = χ(nl) + dim VX̃(l).

This already shows that VX̃(l) is the free term of the Hilbert polynomial associated with n 7→
dimH0(O)/H0(O(−nl)). This fact can be reorganized even more. Note that by Theorem 6.1.9(d)

O(−nl) is generated by global sections for all n ≥ n0 for some n0. Therefore, if we denote

the ideal H0(X̃,O(−n0l)) ⊂ OX,o by J , then the integral closure of its powers satisfy Jm =

H0(X̃,O(−mn0l)) [Li69, ????]. In particular, dim(OX,o/Jm) = χ(mn0l) + dim VX̃(l).

Recall that there exist integral coefficients ei(J ) (where i = 1, 2, 3) such that dim(OX,o/Jm) =

e0(J )
(
m+1
2

)
− e1(J )

(
m
1

)
+ e2(J ) for m ≫ 1. Here, the polynomial from the right hand side is called

the normal Hilbert polynomial of J . One verifies that e2(J ) is independent of the choice of n0.

Then, the two identities combined provide dim VX̃(l) = e2(J ).

If in our general identities from Theorem 6.1.9 we insert e2(J ) for dim VX̃(l), then we recover

e.g. the results from [OWY15a, §3]; or the additivity statement from [O08, Cor. 4.5].

9.5. dim(VX̃(l′)) in terms of the multivariable series Ph=0(t). Assume again that l′ ∈ S ′im,

and let I be the E∗v–support of l
′, that is, l′ =

∑
v∈I avE

∗
v with av ∈ Z>0. Then with the notations of

9.3, for n sufficiently large O(−nol′) has no fixed components and h1(X̃,O(−nl)) = pg −dimVX̃(I).

This combined with (2.3.8) gives that for cycles of type nl (n ≫ 1)

(9.5.1)
∑

l̃∈L, l̃ ̸≥nl

pO(−l̃) = χ(nl) + dimVX̃(I);

that is, the counting function nl 7→
∑

l̃∈L, l̃ ̸≥nl pO(−l̃) of the coefficients of Ph=0(t) is (for n ≫ 1) the

multivariable quadratic polynomial χ(nl) + dimVX̃(I) in nl, whose free term is exactly dimVX̃(I).

The above counting function can be simplified even more: we will reduce the variables of P0

to the variables indexed by I. For this we define the projection (along the E–coordinates) πI :

R⟨Ev⟩v∈V → R⟨Ev⟩v∈I , denoted also as x 7→ x|I , by
∑

v∈V lvEv 7→
∑

v∈I lvEv.

For further motivations and topological analogues of the next statements see also [LNN14] (where

Z(t) plays the role of P (t)).
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Lemma 9.5.2. Assume that l′ =
∑

v∈I avE
∗
v with av > 0, and l′′ ∈ S ′ too. Then l′′ ≥ l′ if and only

if l′′|I ≥ l′|I .

Proof. We prove the ⇐ part. Write l′′ − l′ as x+ y, where x (resp y) is supported on EI (resp. on

EV\I). By assumption, x ≥ 0. For any u ∈ V \ I one has 0 ≥ (l′′, Eu) = (l′, Eu) + (x,Eu) + (y,Eu).

But (l′, Eu) = 0 and (x,Eu) ≥ 0. Hence (y,Eu) ≤ 0 for any u in the support of y. Since ( , ) is

negative definite, y ≥ 0. �

According to the πI projection, we also define the series PI,h(tI) (for any h ∈ H), in variables

{tv}v∈I by PI,h(tI) := Ph(t)|tv=1,v ̸∈I .

Note that the series PI,0(tI) has the form
∑

lI∈πI(S′∩L) pI(lI)t
lI
I . By Lemma 9.5.2 one has∑

l̃∈L, l̃ ̸≥nl

pO(−l̃) =
∑

lI∈πI(L), lI ̸≥nl|I

pI(lI).

Therefore, for n ≫ 1, one also has that the counting function of the coefficients of the reduced series

PI,0 provides the same expression

(9.5.3)
∑

lI∈πI(L), lI ̸≥nl|I

pI(lI) = χ(nl) + dimVX̃(I).

(Note that if the E∗–support of nl is I, then nl|I determines uniquely nl.)

E.g., if I = {v} (under the assumption E∗v ∈ S ′im), PI,0 =
∑

m≥0 pv(m)tmv has only one variable,

and
∑

m≥nl|v pv(m) = χ(nl) + dimVX̃(I) for n ≫ 1.

Theorem 9.5.4. Assume that (X, o) is a splice quotient singularity associated with the graph Γ (or,

equivalently, ϕ : X̃ → X satisfies the ECC, cf. Definition 9.2.1). Then for any I the dimension

dimVX̃(I) is topological, computable from Γ.

Proof. For splice quotient singularities P (t) equals the topological series Z(t), cf. [N12]. Hence, in

(9.5.1) the left hand side can be replaced by the corresponding sum of the coefficients of Z(t). �

Remark 9.5.5. Let us denote the Seiberg–Witten invariant of the link M(Γ), associate with the

canonical spinc–structure of M(Γ) with swcan(M(Γ)), and the corresponding normalized Seiberg–

Witten invariant by swcan(M(Γ)) := swcan(M(Γ))+ (Z2
K + |V(Γ)|)/8, see e.g. [LNN14]. Recall also

that in the splice quotient case P (t) = Z(t) (cf. [N12]). Therefore, if we replace in (9.5.3) P (t)

by Z(t), in the terminology of [LNN14] (9.5.3) reads as follows: dimVX̃(I) is the periodic constant

of the I–reduction ZI,0(tI) of Z0(t), and by Theorem 3.1.1 of [LNN14] it equals −swcan(M(Γ)) +

swcan(M(Γ \ I)).

9.6. The equivariant version of 9.5. Note that the identity (†) h1(X̃,O(−nl′)) = pg−dimVX̃(I)

holds uniformly for any n ≫ 1, though [nl′] ∈ H might have different H–classes. Such stability

usually cannot be proved via cohomology exact sequence of type 0 → L(−l) → L → L|l → 0,

l ∈ L>0 (since in this situation c1(L(−l)) − c1(L) ∈ L), or by eigenspace decomposition of some

sheaf associated with the universal abelian cover (Xab, o). Maybe one should emphasize that in the

above identity (†) the contribution pg comes from the dimension of Picl
′
, which is independent of

the class [l′] ∈ H, and not from the pg(Xab, o)h for h = 0.

Now, if we apply (2.3.8) for (†) for different classes we obtain the following fact. Let us fix, as

above l′ ∈ S ′im with E∗–support I, and let us fix also some k ∈ Z≥0, h := [kl′] ∈ H, and write

kl′ = rh + lk for some lk ∈ L. Let o be the order of [l′] in H as above. Then from (2.3.8) one has

h1(O(−rh − lk − nol′) = −
∑

a∈L, a ̸≥0

pO(−rh−lk−nol′) + pg(Xab, o)h + χ(lk + nol′)− (lk + nol′, rh).
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or, for any k and any n ≫ 1,∑
a∈L, a ̸≥0

pO(−rh−lk−nol′) = χ(lk + nol′)− (lk + nol′, rh) + pg(Xab, o)h − pg + dimVX̃(I).

Hence dimVX̃(I) connects the asymptotic behaviour of different h–components of P (t) of the form

h = [kl′], k ∈ Z.

10. The ‘non–stable’ dim im(cl
′
) and differential forms.

10.1. The first theorem of this section is a generalization of that statement of section 8, which says

that for Z ≥ E the dual of the vector subspace VZ(nl
′) ⊂ H1(OZ), the ‘stable image affine subspace’

im(c̃nl
′
) = AZ(nl

′) (n ≫ 1) shifted to the origin, agrees with the subspace of forms ΩZ(I), where I

is the E∗–support of l′ (see Theorem 8.1.3 and subsection 8.3). VZ(nl
′) can also be interpreted (up

to a shift) as the tangent space at any L ∈ AZ(nl
′) of AZ(nl

′). Hence, L+VZ(nl
′) is the intersection

of all the kernels of linear maps TLω, where ω ∈ ΩZ(I) (that is, for all ω without pole along those

Ev’s which support the divisors from ECanl
′
(Z)). For the explicit description of the duality see 7.1.

The new setup is the following. Consider a divisor D ∈ ECal
′
(Z), which is a union of (l′, E)

disjoint divisors {Di}i, each of them OZ–reduction of divisors {D̃i}i from ECal
′
(X̃) intersecting E

transversally. Set D̃ = ∪iD̃i and L := c̃l
′
(D) ∈ H1(Z,OZ). Set also Z =

∑
v mvEv.

We introduce a subsheaf Ω2
X̃
(Z)regRes

D̃ of Ω2
X̃
(Z) consisting of those forms ω which have the

property that the residue ResD̃i
(ω) has no poles along D̃i for all i. This means that the restrictions

of Ω2
X̃
(Z)regRes

D̃ and Ω2
X̃
(Z) on the complement of the support of D̃ coincide, however along D̃

is satisfies the following requirement. If p = E ∩ D̃i = Evi ∩ D̃i has local coordinates (u, v) with

{u = 0} = E and D̃i with local equation v, then a local section of Ω2
X̃
(Z) near p has the form

ω =
∑

i≥−mvi
,j≥0 ai,ju

ivjdu ∧ dv. Then the residue ResD̃i
(ω) is (ω/dv)|v=0 =

∑
i ai,0u

idu, hence

the pole–vanishing reads as ai,0 = 0 for all i < 0. Note that Ω2
X̃
(Z − D̃) and the sheaf of regular

forms Ω2
X̃

are subsheaves of Ω2
X̃
(Z)regRes

D̃ .

Theorem 10.1.1. In the above situation one has the following facts.

(a) The sheaves Ω2
X̃
(Z)regRes

D̃/Ω2
X̃

and OZ(KX̃ + Z −D) are isomorphic.

(b) H0(X̃,Ω2
X̃
(Z)regRes

D̃)/H0(X̃,Ω2
X̃
) ≃ H1(Z,L)∗. (The left hand side can be regarded as a

subspace of H0(X̃,Ω2
X̃
(Z))/H0(X̃,Ω2

X̃
) ≃ H1(Z,OZ)

∗.)

(c) The image TD c̃l
′
(TDECal

′
(Z)) of the tangent map TD c̃l

′
at D of c̃l

′
: ECal

′
(Z) → H1(Z,OZ) =

H1(X̃,OX̃) is the intersection of kernels of linear maps TLω : TLH
1(X̃,OX̃) → C, where ω ∈

H0(X̃,Ω2
X̃
(Z)regRes

D̃ ).

Proof. (a) Consider the following diagram:

0 → Ω2
X̃
(−D̃) −→ Ω2

X̃
(Z − D̃) −→ OZ(KX̃ + Z −D) → 0yα yβ yγ

0 → Ω2
X̃

−→ Ω2
X̃
(Z)regRes

D̃ −→ Ω2
X̃
(Z)regRes

D̃/Ω2
X̃

→ 0

Above α and β are the natural inclusions. We claim that their cokernels are isomorphic. Indeed,

with the notation Mi,j = uivjdu ∧ dv one has coker(α) = {
∑

j≥0,i≥0 ai,jMi,j}/{
∑

j≥1,i≥0 ai,jMi,j}
and coker(β) = {

∑
j≥0,i≥−mvi

ai,jMi,j | ai<0,0 = 0}/{
∑

j≥1,i∈Z ai,jMi,j}. Hence γ is an isomor-

phism.

(b) SinceH1(X̃,Ω2
X̃
) = 0, by part (a) we haveH0(X̃,Ω2

X̃
(Z)regRes

D̃ )/H0(X̃,Ω2
X̃
) = H0(OZ(KX̃+

Z −D)). But, this last one equals H1(Z,OZ(D))∗ by Serre duality.
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(c) We prove the statement in the case (l′, E) = 1, the general case follows similarly. Hence, set

l′ = −E∗v for some vertex v ∈ V, that is, D̃ is a transversal cut at the point p of the exceptional

divisor Ev. Consider local coordinates (u, v) around p as above. Recall that the local equation of D

is v. Let {D̃t}t∈C, |t|≪1 be a path in ECal
′
at D whose local equation is v + tuo−1 for some o ≥ 1.

Consider also an arbitrary form ω ∈ H0(X̃,Ω2
X̃
(Z)) (with local equation as above). Then (the

class of) ω is in the dual space of the image TD c̃l
′
(TDECal

′
(Z)) if and only if (TLω)(TD c̃l

′
(δ)) = 0

for all tangent vectors δ, the tangent vectors of paths of type Dt at D. But TLω(TD c̃l
′
(δ)) =

λ · a−o,0 (λ ̸= 0) by 7.2.3. Therefore, the dual space of forms is exactly the class of forms from

H0(X̃,Ω2
X̃
(Z)regRes

D̃ ).

In fact, one also sees that the dimensions of these two spaces im(TD c̃) and ∩ω TLω agree. Indeed,

dim im(TD c̃) = h1(OZ)− h1(Z,L) by (3.1.8). But, dim∩ω TLω is the same by (b). �

Corollary 10.1.2. Assume that {ω1, . . . , ωh} is a basis of H0(X̃,Ω2
X̃
(Z))/H0(X̃,Ω2

X̃
). Then

H0(X̃,Ω2
X̃
(Z)regRes

D̃ )/H0(X̃,Ω2
X̃
) =

{(a1, . . . , ah) ∈ Ch : ResD̃i
(
∑

αaαωα) has no pole along D̃i for all i}.

Hence, by Theorem 10.1.1, the dimension of the right hand side is h1(Z,L), and the number of inde-

pendent relations between (a1, . . . , ah), h
1(OZ)−h1(Z,L), is the dimension of imTDcl

′
(TDECal

′
(Z)).

In particular, dim(im(cl
′
(Z))) is the number of independent relations for {D̃i}i generic.

10.2. The above theorem can be applied rather directly in several situations, when we can provide

a bases for H1(Z,OZ)
∗ = H0(X̃,Ω2

X̃
(Z))/H0(X̃,Ω2

X̃
), and verify directly for certain (or for all)

divisors D the above pole–vanishing property. In the next subsections we provide such applications.

10.3. The Gorenstein case. Assume that (X, o) is Gorenstein, fix a resolution X̃ → X as above,

and let ω0 ∈ H0(X̃,Ω2
X̃
(ZK)) be the pullback of the Gorenstein form, well defined up to a non–zero

constant. Its pole is ZK , the (anti)canonical cycle. Since Ω2
X̃

= OX̃(−ZK),H0(X̃,Ω2
X̃
(ZK))/H0(X̃,Ω2

X̃
)

is isomorphic withH0(X̃,OX̃)/H0(X̃,OX̃(−ZK)), hence if we fix a basis ofH0(X̃,OX̃)/H0(X̃,OX̃(−ZK))

consisting of classes of functions {f1, . . . , fpg} ⊂ H0(X̃,OX̃) with divisors divEfα ̸≥ ZK then in

H0(X̃,Ω2
X̃
(Z))/H0(X̃,Ω2

X̃
) the classes of forms {f1ω0, . . . , fpgω0} form a basis.

Therefore, for any fixed I ⊂ V,

(10.3.1) Ω(I) = {(a1, . . . , apg ) ∈ Cpg : mEv (
∑

αaαfα) ≥ mEv (ZK) for any v ∈ I,

where mEv (·) denotes the coefficient of a cycle along Ev.

By Theorem 6.1.9 dimΩ(I) = h1(X̃,L) for any L with c1(L) = nl′ with n ≫ 1 and where

I := {E∗–support of l′}. Furthermore, the number of independent relations between (a1, . . . , apg ),

pg − dimΩ(I), is the dimension of the stable im(cnl
′
) (n ≫ 1).

According to Theorem 10.1.1, these facts have the following generalizations. Set D̃ = ∪iD̃i be a

divisor as in 10: each D̃i is a transversal cut intersecting Ev(i). Let γi : (C, 0) → (D̃i, D̃i ∩ Ev(i)),

t 7→ γi(t), be a parametrization (local diffeomorphism). Set L = OX̃(D) and c1(L) = l′.

Theorem 10.3.2. With the above notations one has

H0(X̃,Ω2
X̃
(Z)regRes

D̃ )/H0(X̃,Ω2
X̃
) = {(a1, . . . , apg ) ∈ Cpg : ordt(

∑
αaαfα◦γi) ≥ mEv(i)

(ZK) for all i}.

Similarly as in Corollary 10.1.2, the dimension of the right hand side is h1(X̃,L), and the number of

independent relations between (a1, . . . , apg ), pg−h1(X̃,L), is the dimension of imTDcl
′
(TDECal

′
(Z))

(Z ≫ 0), and dim(im(cl
′
)) is the number of independent relations for {D̃i}i generic.
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We will apply this theorem in section 11 for superisolated (hypersurface, hence Gorenstein) germs.

The general non–Gorenstein case (that is, Corollary 10.1.2) will be exemplified in section 12 on

the case of weighted homogeneous germs, in which case we construct a concrete basis {ω1, . . . , ωpg}.

11. Superisolated singularities

11.1. The setup. We will exemplify the Gorenstein case on a special family of isolated hypersur-

face singularities. The family of superisolated singularities creates a bridge between the theory of

projective plane curves and the theory of surface singularities. This bridge will be present in the

next discussions as well. For details and results regarding such germs see e.g. [Lu87, LNM05].

Assume that (X, o) is a hypersurface superisolated singularity. This means that (X, o) is a

hypersurface singularity {F (x1, x2, x3) = 0}, where the homogeneous terms Fd + Fd+1 + · · · of

F satisfy the following properties: {Fd = 0} is reduced and it defines in CP2 an irreducible rational

cuspidal curve C; furthermore, the intersection {Fd+1 = 0} ∩ Sing{Fd = 0} in CP2 is empty.

The restrictions regarding Fd implies that the link of (X, o) is a rational homology sphere (this fact

motivates partly the presence of these restrictions). With Fd fixed, all the possible choices for {Fi}i>d

define an equisingular family of singularities with fixed topology and fixed pg = d(d − 1)(d − 2)/6.

For simplicity, here we will take for Fd+1 the (d + 1)th–power of some linear function and Fi = 0

for i > d + 1. Moreover, by linear change of variables, we can assume Fd+1 = −xd+1
3 . (Note

that in our treatment the analytic type of the singularity plays a crucial role, hence, by the choice

Fd+1 = −xd+1
3 we restrict ourselves to a special analytic family. We do this since in this case the

presentation of the next subsections are more transparent. However, it would be interesting to

analyse the stability/non-stability of the Abel map in the whole equisingular family when we vary

Fi, i ≥ d+ 1.)

If we blow up the origin of C3 then the strict transform X ′ of X is already smooth (this property

is responsible for the name ‘superisolated’), the exceptional curve C ′ ⊂ X ′ is irreducible and it can

be identified with C [Lu87]. Hence, resolving the plane curve singularities of C ′ we get a minimal

resolution of X; for the precise resolution graph see e.g. [Lu87, LNM05]. In the minimal (or, in

the partial) resolution the exceptional curve corresponding to C ′ will be denoted by E0. In the

chart x1 = uw, x2 = vw, x3 = w the total transform has equation wd(w − Fd(u, v, 1)) = 0,

X ′ = {w = Fd(u, v, 1)}, C ′ = {w = Fd(u, v, 1) = 0}.
We wish to discuss the Abel map associated with several choices of l′ and Z.

11.2. The case l′ = −kE∗0 (k ≥ 1), Z = ZK (and generic divisor on ECal
′
(Z)).

In this case a generic point D of ECal
′
(Z) consists of k transversal cuts of E0 at generic points.

In order to determine dim im(cl
′
), which equals dim imTD c̃l

′
(TDECal

′
(Z)), we will apply Theorem

10.3.2. Hence, we need to analyse the restriction of forms on the components of the divisor D.

Note that Theorem 10.3.2 automatically provides h1(ZK ,O(D)) too. Furthermore, by Grauert–

Riemenschneider vanishing h1(X̃,O(D̃ − ZK)) = 0, one also has h1(ZK ,O(D)) = h1(X̃,O(D̃)).

Since the first blow up already creates the exceptional divisor C ′ = E0, all the computation

can be done in this partial resolution ϕ : X ′ → X, and we can even assume that D is in the

chart considered above. First, we find {fα}
pg

α=1 such that {f1ω0, · · · , fpgω0} induces a basis in

H0(X̃,Ω2
X̃
(Z))/H0(X̃,Ω2

X̃
). Notice that the pullback of any monomial xm = xm1

1 xm2
2 xm3

3 has

vanishing order deg(xm) =
∑

i mi = |m| along E0. Moreover, the multiplicity of ZK along C ′ is

d− 2. Since the number of monomials of degree strict less than d− 2 is pg = d(d− 1)d− 2)/6, the

set {xm : deg(xm) ≤ d− 3} serve as a bases for H0(X̃,OX̃)/H0(X̃,OX̃(−ZK)).
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Next, we consider parametrizations of each component {D̃i}ki=1 (the liftings of the divisors {Di}i),
t 7→ γi(t) = (ui(t), vi(t), wi(t)) ⊂ X ′. In fact, we can start with a parametrization t 7→ (ui(t), vi(t))

of a transversal cut of {Fd(u, v, 1) = 0} ⊂ C2 at some smooth point. Then we lift it to X ′ by setting

wi(t) := f(ui(t), vi(t), 1). The tranversality implies that wi(t) has the form c1t + c2t
2 + · · · with

c1 ̸= 0, hence after a reparametrization with t′ := wi(t), we can assume that wi(t) = t.

We denote the point (ui(0), vi(0)) ∈ {Fd(u, v, 1) = 0} ⊂ C2 by pi. We abridge (u, v)m(pi) :=

ui(0)
m1vi(0)

m2 . Then, the restriction of a monomial xm to D̃i is

u(t)m1v(t)m2t|m| = t|m|
(
(u, v)m(pi) +Hm(t)

)
,

where Hm(t) denotes the ‘higher order terms’ with Hm(0) = 0. Hence, by Theorem 10.3.2,

h1(ZK ,O(D)) = dim
{
(am)m ∈ Cpg :

∑
m

am · (u, v)
m(pi) +Hm

td−2−|m|
has no pole for all i

}
.

Expanding the sum into its Laurent series in t, and separating the coefficients of {t−d+2+j}0≤j≤d−3,
we get for each Di a linear system with d−2 equations for the variable (am)m. We need to determine

the rank of the corresponding matrix. This matrix has a natural block decomposition, a block is

indexed by j and the set m with fixed |m|. We prefer to order the rows by t−d+2, t−d+3, . . . , t−1.

E.g., for fixed Di, the first row has its first entry 1 (corresponding to the block t−d+2 and

|m| = 0) and all other entries zero. The second raw has some entry in the first place, the second

block corresponding to t−d+3 and |m| = 1) has three entries, namely u(pi), v(pi), 1 (which are the

evaluations of the degree ≤ 1 (u, v)–monomials at pi), and the blocks corresponding to |m| > 1

are zero. More generally, above the diagonal all the blocks are zero, the diagonal block indexed by

t−d+2+j and |m| = j contains the evaluation of the (u, v)–monomials of degree ≤ j at pi.

E.g., if k = 1, then the matrix has d− 2 rows and pg columns, and each diagonal block contains

one entry 1, hence its rank of the linear system is d− 2. In particular, dim im(c−E
∗
0 ) = d− 2.

For k ≥ 2, we have to put together all the linear equation corresponding to all Di. A block

indexed by t−d+2+j and |m| = j′ will have k rows. Again, all the blocks above the diagonal are

zero. On the other hand, the rank of the diagonal block indexed by t−d+2+j and |m| = j is as large

as possible, it is min{k,
(
j+2
2

)
}. Indeed, its rows consists of the evaluation of (u, v)–monomials of

degree ≤ j at points pi: since the points pi are generic they impose independent conditions on the

corresponding (homogeneous) linear system (in variable (x1, x2, x3)) of degree j. Hence, the rank of

the matrix is
∑d−3

j=0 min{k,
(
j+2
2

)
}.

Theorem 11.2.1. For any k ≥ 1 the dimension of im(c−kE
∗
0 ) is

∑d−3
j=0 min{k,

(
j+2
2

)
}. The first k

when c−kE
∗
0 is dominant is k =

(
d−1
2

)
. im(c−kE

∗
0 ) has codimension 1 for k =

(
d−1
2

)
− 1.

Accordingly, for a generic L ∈ im(c−kE
∗
0 ), h1(ZK ,L) = pg − dim(im(c−kE

∗
0 )).

11.3. The case l′ = −kE∗0 (k ≥ 1), Z = ZK (and special divisor on ECal
′
(Z)).

In the previous subsection we considered generic points P := {p1, . . . , pk} on C, in particular,

for all j (0 ≤ j ≤ d − 3) they imposed independent conditions on the linear system OP2(j) (or,

on the (u, v)–monomials of degree ≤ j). However, taking special points they might fail to impose

independent conditions on some OP2(j). The discussion will show that im(cl
′
) has several (rather

complicated) h1–stratification, (some of them) imposed by special divisors.

Here we will indicate such possibilities; nevertheless, for simplicity we will restrict ourselves only

to certain cases when only one block degenerates and the rang of the total linear system is determined

again by the diagonal blocks. Even under this restriction we find the situation extremely rich, since

it accumulates the classical plane curve geometry. However, the reader is invited to work out cases
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when the global rank depends on certain entries from the sub–diagonal blocks as well, covering even

more sophisticated h1–strata.

Recall that in the diagonal block of (t−d+2+j , |m| = j) we test if P impose independent conditions

on OP2(j) or not. In the sequel we will assume that there exits exactly on j, say j0, when P
fails to impose independent conditions. Clearly j0 > 0. Furthermore, we will also assume that(
j0+1
2

)
≤ k ≤

(
j0+3
2

)
. This means that in all the diagonal blocks with j < j0 the number k of rows

is ≥ than the number
(
j+2
2

)
of columns, hence the j–blocks has rank

(
j+2
2

)
. Symmetrically, in all

the j–diagonal blocks with j > j0 the number k or rows is ≤ than the number
(
j+2
2

)
of columns,

hence the rank is k. Therefore, if the j0–block is degenerated with rank min{k,
(
j0+2
2

)
} − ∆ for

some ∆ > 0, then independently of the sub–diagonal entries, the rank of the matrix of the system

is
∑d−3

j=0 min{k,
(
j+2
2

)
} −∆. In particular, h1(ZK ,O(D)) increases by ∆ compared with the generic

situation of 11.2.

Let us list some cases when such a degeneration can occur. Take e.g. j0 = 1 and k = 3 and

{p1, p2, p3} are collinear. For j0 = 2 we give two possibilities: either k = 4 and the four points are

collinear, or k = 6 and the six points are contained in a conic.

We recall here two classical theorems of plane curve geometry, which can be used to produce

similar examples; for more see the article [EGH96] and the citations therein.

(a) [EGH96, Prop. 1] For j0 ≥ 1 and k ≤ 2j0 + 2 the points P fail to impose independent

conditions on OP2(j0) if and only if either j0 + 2 points of P are collinear or k = 2j0 + 2 and P is

contained in a conic.

(b) [EGH96, Th. Cayley-Bacharach4] Assume that P consists of k = e · f poinst which are the

intersection points of two curves of degree e and f . Then if a plane curve of degree j0 = e + f − 3

contains all but one point of P then it contains all of P.

12. Weighted homogeneous singularities.

12.1. Preliminaries. Assume that (X, o) is a weighted homogeneous normal surface singularity,

that is, there exists a a normal affine variety Xa, which admits a good C∗–action and singular point

o ∈ Xa such that (X, o) is analytically isomorphic with (Xa, o). This implies that the minimal good

resolution graph Γ is star shaped. As above, we assume that the link is a rational homology sphere,

hence all the vertex–genera are zero. We write v0 for the central vertex, hence Γ \ v0 consists of ν

strings. We assume that ν ≥ 3 (otherwise pg = 0, an uninteresting situation for the Abel map). Let

−b0 be the Euler number of v0. The Euler numbers of the vertices vji of the jth string (1 ≤ j ≤ ν)

are −bj1, . . . ,−bjsj , with bji ≥ 2, determined by the continued fraction αj/ωj = [bj1, . . . , bjsj ], where

gcd(αj , ωj) = 1, 0 < ωj < αj . For each j, v0 is connected with vj1 by one edge. The link is a

Seifert fibered 3–manifold with Seifert invariants (b0, g = 0; {(αj , ωj)}j). In particular, the Seifert

invariants characterize the topological type uniquely, see e.g. [Neu81].

We denote by Eji the irreducible exceptional curves indexed by vertices vji. Let Pj (1 ≤ j ≤ ν)

be Ev0 ∩ Ej1. One has the following result:

Theorem 12.1.1. (Analytic Classification Theorem) [CR73, Do75, Do77, OrWa77, Pi77,

Neu81b] The analytic isomorphism type of a normal surface weighted homogeneous singularity

(with rational homology sphere link) with fixed Seifert invariants is determined by the analytic type

of (Ev0 , {Pj}j) modulo an action of Aut(Ev0 , {Pj}j). (This is the same as the analytic classification

of Seifert line bundles over the projective line.)
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Next we show that the minimal resolution of any weighted homogeneous singularity can be con-

structed by a special ‘analytic plumbing’.

First we construct an analytic space X̃a (the candidate for the resolution of Xa). Basically

we mimic the analytic plumbing construction of the resolution of cyclic quotient singularities from

e.g. [BPV84, La71]. Corresponding to the legs we fix distinct complex numbers pj ∈ C; the affine

coordinates of the points Pj . Each leg, with divisors {Eji}
sj
i=1, 1 ≤ j ≤ ν, will be covered by open sets

{Uj,i}
sj
i=0, copies of C2 with coordinates (uj,i, vj,i). For each 1 ≤ i ≤ sj we glue Uj,i−1 \ {uj,i−1 = 0}

with Uj,i \ {vj,i = 0}. The gluing maps are vj,i = u−1j,i−1 (1 ≤ i ≤ sj) and uj,i equals u
bji
j,i−1vj,i−1 for

2 ≤ i ≤ sj and u
bj1
j,0 (vj,0 − pj) for i = 1.

Furthermore, all Uj,0 charts will be identified to each other: uj,0 = uk,0, vj,0 = vk,0; denoted

simply by U0, with coordinates (u0, v0). Till now, the curve Ev0
appears only in U0, it has equation

u0 = 0. To cover Ev0 completely we need another copy U−1 of C2 with coordinates (u−1, v−1) as

well; the gluing of U0 \ {v0 = 0} with U−1 \ {u−1 = 0} is v0 = u−1−1, u0 = ub0
−1v−1.
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We call the output space X̃a. If we contract (analytically) E = Ev0 ∪ (∪j,iEji) we get a space Xa

whose germ at its singular point is a normal surface singularity (Xpl, o). In this context, a resolution

X̃pl of (Xpl, o) (as a subset of X̃a) is the pullback of a small Stein neighbourhood of o. The following

statement is proved in [N]; basically it follows from the Analytic Classification Theorem 12.1.1 and

from the fact that if we blow down the legs the obtained space carries naturally a Seifert line bundle

structure over the projective line.

Proposition 12.1.2. The analytic structure on (Xpl, o) carries a weighted homogeneous structure.

Moreover, the minimal good resolution of any weighted homogeneous singularity with Seifert invari-

ants (b0, g = 0; {(αj , ωj)}j) admits such an analytic plumbing representation for certain constants

{pj}j (that is, it can be embedded in some X̃a constructed above via plumbing). By Theorem 12.1.1

we can even assume that each pj is non–zero (what we will assume below).

The C∗ orbits lifted to X̃a and closed are as follows: the generic ones, which intersect Ev0 sit in

U0 ∪ U−1 and are given by {v0 = c}, c ∈ (C \ {∪j{pj}}) ∪∞. The special Seifert orbit for each j in

Uj,sj is given by {vj,sj = 0}.
In the sequel we will identify our weighted homogeneosu germ (X, o) with such (Xpl, 0).

For each j we also introduce 0 < ω′j < αj such that ωjω
′
j − 1 = αjτj for some τj .

12.2. A basis for H0(X̃\E,Ω2
X̃
)/H0(X̃,Ω2

X̃
). For ℓ, {mj}j ∈ Z, n ∈ Z≥0, let ω0

ℓ,n := u−ℓ−10

∏
j(v0−

pj)
−mjvn0 dv0 ∧ du0 be a section of Ω2

X̃
over U0, with possible poles over E ∩ U0. This under the

transformation v0 = u−1−1, u0 = ub0
−1v−1 transforms into the following form on U−1:

±u
−b0ℓ+

∑
mj−n−2

−1 v−ℓ−1−1
∏

j(1− u−1pj)
−mjdu−1 ∧ dv−1.
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The regularity over X̃ \ E requires that the exponent of u−1 should be non-negative:

(12.2.1) n ≤ −b0ℓ− 2 +
∑

jmj .

Let is fix one of the legs, say j. By induction using substrings of the legs and the corresponding

continued fraction identities (facts used intensively in cyclic quotient invariants computations) one

gets that the transformation between chart U0 and Uj,sj is u0 = u
−τj
j,sj

v
−ωj

j,sj
, v0 = u

ω′
j

j,sj
v
αj

j,sj
. Then,CITE

ω0
ℓ,n in the chart Uj,sj under this transformation becomes

u
τjℓ−ω′

jmj+ω′
j−1

j,sj
v
ωjℓ−αjmj+αj−1
j,sj

(u
ω′

j

j,sj
v
αj

j,sj
+ pj)

n ·
∏

j′ ̸=j(u
ω′

j

j,sj
v
αj

j,rj
+ pj′ − pj)

−mj dvj,sj ∧ duj,sj .

Again, by the regularity along X̃ \ E, the exponent of vj,sj should be non-negative, hence ωjℓ −
αjmj + αj − 1 ≥ 0. The largest solution for mj is

(12.2.2) mj = ⌈ωjℓ/αj⌉ .

Hence, the form ω0
ℓ,n extends to a form ωℓ,n on X̃, regular on X̃ \ E, if for mj := ⌈ωjℓ/αj⌉ as in

(12.2.2) (for all j) the inequality (12.2.1) holds. If ℓ < 0 then mj = ⌈ωjℓ/αj⌉ ≤ 0, hence the form

ωℓ,n is regular on X̃, and in H0(X̃ \E,Ω2
X̃
)/H0(X̃,Ω2

X̃
) it is zero. Hence, we can consider only the

values ℓ ≥ 0. For them we set as a combination of the right hand side of (12.2.1) and (12.2.2)

nℓ := −b0ℓ− 2 +
∑

j ⌈ωjℓ/αj⌉ .

If nℓ < 0 then there is no such form with pole ℓ+1 along Ev0 , cf. (12.2.1). SetW := {ℓ ≥ 0 : nℓ ≥ 0}.

Lemma 12.2.3. [N] The forms ωℓ,n (ℓ ∈ W, 0 ≤ n ≤ nℓ) form a basis of H0(X̃\E,Ω2
X̃
)/H0(X̃,Ω2

X̃
).

Proof. By their construction, the forms generateH0(X̃\E,Ω2
X̃
)/H0(X̃,Ω2

X̃
). But, by the pg–formula

of Pinkham [Pi77], namely pg =
∑

ℓ∈W(nℓ + 1), their number is exactly pg, the dimension of this

quotient space. �

Remark 12.2.4. n0 = −2, hence the Ev0–pole of any ωℓ,n is ≥ 2.

12.3. Natural line bundles. Let X̃a be as above, let Oa be the closure of a lifted C∗ orbit into
X̃a, and set O := Oa ∩ X̃ ⊂ X̃.

Theorem 12.3.1. OX̃(O) is a natural line bundle in Pic(X̃).

Proof. For each O = Oa ∩ X̃ we find a local analytic function fO : (X, o) → (C, 0) such that the

divisor in X̃ of fO ◦ ϕ has the form nOO +
∑

v nvEv for some nO, nv ∈ Z>0. This implies that

OX̃(nOO) ≃ OX̃(−
∑

v nvEv). In order to find fO we use the fact that a weighted homogeneous

germ is splice quotient [NW05b, NW05]. In fact, by [Neu83], the universal abelian cover (UAC) of

(X, o) is a Brieskorn complete intersection and certain powers of the coordinate functions of this

complete intersection are the end curve functions of (X, o) which have the wished properties for the

orbits supported by the end vertices.

A similar argument clarifies the case of the other (generic) orbits as well. Let the UAC complete

intersection equations be
∑

i,j ai,jz
αj = 0, 1 ≤ j ≤ ν, and 1 ≤ i ≤ ν − 2, and where {ai,j}i,j has

full rank, cf. [Neu83]. Then we add one more equation of type
∑

i biz
αi + w = 0, such that the

new larger matrix has again full rank. The new system corresponds to a splice quotient equations

of the graph Γ′ obtained from Γ by blowing up the central vertex. The point is that the resolution

with dual graph Γ′ of this splice quotient singularity associated with Γ′ can be obtained from X̃

by blowing up a certain point P ∈ Ev0 \ ∪jPj . P is determined by the choice of the coefficients

{bi}i, and modification of the {bi}i’s provides different points P . By the theory of splice quotient
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singularities, the end curve function w = 0 cuts out an end curve in the UAC, which projected on

(X, o) is irreducible. Hence
∑

i biz
αi is a weighted homogeneous function on the UAC of (X, o), one

of its powers is a homogeneous function on (X, o) whose reduced zero set is irreducible. Its strict

transform is some O, where O ∩ Ev0 depends on the choice of {bi}i. In particular all such orbits

define the same line bundle, the natural line bundle. �

12.4. The Abel maps, h1(Z,L) and dim im(cl
′
) for different line bundles and l′.

In the sequel we fix a cycle Z: for simplicity we assume that Z ≫ 0, e.g. in the numerical

Gorenstein case we can take Z = ZK , or, in general, Z ∈ ZK+S ′ (in which cases for any L ∈ Pic(X̃)

with c1(L) ∈ −S ′ one has h1(X̃,L) = h1(Z,L|Z)). In this case we will use all the differential forms

ωℓ,n constructed above. The interested reader might rewrite the statements and proofs below for

smaller cycles (using forms a similar system of forms with poles ≤ Z).

12.5. The value h1(Z,OZ(−kE∗v0)), k ≥ 1. Consider the natural line bundle OZ(−E∗v0). If Oq

denotes the intersection of the generic C∗–orbit with X̃, Oq ∩ Ev0 = {q} (where the intersection

point q can be identified with the v0– affine coordinate in U0), then by Theorem 12.3.1 OZ(−E∗v0) =

OZ(Oq) for any q ∈ Ev0 \∪jEj,1. Recall that Oq in the chart U0 is given by {v0 = q}. For k distinct

orbits Oq1 , . . . , Oqk we apply Corollary 10.1.2. The restrictions are of type

nℓ∑
n=0

aℓ,nq
n
i = 0, for all ℓ ∈ W and 1 ≤ i ≤ k.

Proposition 12.5.1. With the above notations, the number of independent relations (or, pg −
h1(Z,O(−kE∗v0)), cf. Corollary 10.1.2) is

∑
ℓ∈W min{nℓ + 1, k}. Hence

h1(Z,O(−kE∗v0
)) =

∑
ℓ∈W

max{0, nℓ + 1− k}.

Proof. Use the previous discussion and pg =
∑

ℓ∈W nℓ + 1. �

E.g., for k = 1 the number of independent relations is #W and h1(Z,O(−E∗v0
)) = pg −#W.

12.6. The Zariski tangent space of im(cl
′
) at OZ(l

′), for l′ = −kE∗v0
, k ≥ 1.

Take first k = 1, L = OZ(l
′) = OZ(−E∗v0

), and let TLim(cl
′
) be the Zariski tangent space of

im(cl
′
) at L. By Theorem 12.3.1 Oq ∈ (cl

′
)−1(L) for any q ∈ Ev0 \ ∪jPj , and (cf. Corollary 10.1.2

and 12.5) imTOq (c
l′) is the kernel of forms

∑
aℓ,nωℓ,n with

∑
n aℓ,nq

n = 0 for all ℓ ∈ W. We

wish to describe the space generated by all subspaces imTOq
(cl

′
) ⊂ TLim(cl

′
) when we move q. By

taking (nℓ + 1) different values qr we get that the vectors (q0r , q
1
r , . . . , q

nℓ) (dual to the hyperplane∑
n aℓ,nq

n
r = 0) are linearly independent (since their Vandermonde determinant is non–zero), hence∑

q imTOq (c
l′) = TLPic

l′(Z), the whole tangent space of Picl
′
(Z) at L. Hence we proved the following

statement for k = 1.

Theorem 12.6.1. TLim(cl
′
) = TLPic

l′(Z) for any l′ = −kE∗v0
, k ≥ 1.

The general case k ≥ 1 follows from the case k = 1 and (6.1.2).

12.7. The value h1(Z,OZ(−E∗j,sj )). Fix some leg j and consider the corresponding end–vertex

Ej,sj and the natural line bundle OZ(−E∗j,sj ). If Oj denotes the intersection of the special C∗–orbit
with X̃, then in Uj,sj it is given by {vj,sj = 0} and by Theorem 12.3.1 OZ(−E∗j,sj ) = OZ(Oj). We

apply again Corollary 10.1.2 for the forms ωℓ,n in Uj,sj (cf. 12.2)

u
τjℓ−ω′

jmj+ω′
j−1

j,sj
v
ωjℓ−αjmj+αj−1
j,sj

(u
ω′

j

j,sj
v
αj

j,sj
+ pj)

n ·
∏

j′ ̸=j(u
ω′

j

j,sj
v
αj

j,rj
+ pj′ − pj)

−mj dvj,sj ∧ duj,sj .
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Some of the forms have no poles along {uj,sj = 0}, hence they determine no restrictions. That is,

any restriction appears only if τjℓ− ω′jmj + ω′j − 1 < 0.

We recall that the vj,sj exponent ωjℓ−αjmj +αj − 1 is non–negative. However, if this exponent

is strict positive, then the restriction to {vj,sj = 0} is zero. Hence, restriction appears only if this

exponent is exactly zero. Note that ωjℓ− αjmj + αj − 1 = 0 if and only if αj |ωjℓ− 1.

Proposition 12.7.1. The number of independent relations, pg − h1(Z,OZ(−E∗j,sj )), is∑
ℓ∈Wnℓ ·#{ℓ : τjℓ− ω′j ⌈ℓωj/αj⌉+ ω′j − 1 < 0, αj |ωjℓ− 1}.

12.8. The dimension of im(cl
′
) for l′ = −E∗v0 . Let d := (Z, l′), this is the dimension of ECal

′
(Z)

(cf. Theorem 3.1.10). In fact, ECal
′
(Z) projects onto Ev0 \ ∪jPj with fibers ≃ Cd−1. We are again

in chart U0, and we simplify the coordinate notations (u0, v0) into (u, v). We have to restrict the

forms ωℓ,n to the generic transversal cut D̃gen given by {v = c0 + c1u + · · · + cd−1u
d−1}. In this

generic case the linear system is more complicated, the rank is much harder to compute.

Recall pg =
∑

ℓ∈W(nℓ+1). We define the function s : Z≥0 → Z≥0 by decreasing induction. First,

set s(ℓ) = 0 for any ℓ ≫ 0 (e.g. for any ℓ larger than any element of W). Then define

(12.8.1) s(ℓ) :=

{
max{0, s(ℓ+ 1)− 1} if ℓ ̸∈ W,

s(ℓ+ 1) + nℓ if ℓ ∈ W.

Lemma 12.8.2. (a) s(0) ≤ pg −#W.

(b) The following facts are equivalent: (i) s(0) = pg−#W, (ii) s(ℓ) = 0 for all ℓ ≥ 0, (iii) nℓ = 0

for all ℓ ∈ W, (iv) pg = #W and s(0) = 0.

Proof. (a) By a decreasing induction one gets

s(ℓ) =
∑

ℓ′≥ℓ, ℓ∈W

nℓ′ −#{ℓ′ : ℓ′ ≥ ℓ, ℓ′ ̸∈ W, s(ℓ′ + 1) > 0}.

In particular,

(12.8.3) s(0) = pg −#W −#{ℓ : ℓ ≥ 0, ℓ ̸∈ W, s(ℓ+ 1) > 0} ≤ pg −#W.

(b) (ii)⇒(iii)⇒(iv)⇒(i) are easy, we prove (i)⇒(ii). We use from (12.8.3) that (†) {ℓ ≥ 0, ℓ ̸∈
W, s(ℓ + 1) > 0} = ∅. Recall that 0 ̸∈ W (cf. 12.2.4). Hence s(1) = 0 (and necessarily s(0) = 0

too). If 1 ∈ W then s(2) = 0 from the definition of s(1), if 1 ̸∈ W then s(2) = 0 from (†). Repeating
the argument, we get (ii). �

Theorem 12.8.4. h1(Z,OZ(D̃gen)) = s(0), hence

number of independent relations = dim im(cl
′
) = pg − s(0).

Recall that if Ogen is the intersection of the generic C∗–orbit with X̃, then the natural line bundle

OZ(−E∗v0
) is OZ(Ogen) and h1(Z,OZ(Ogen)) = pg −#W. This identity and the one from Theorem

12.8.4 show that the inequality from (12.8.3) is compatible with the semicontinuity of h1, cf. 5.2.1.

Corollary 12.8.5. h1(Z,OZ(D̃gen)) = h1(Z,OZ(Ogen)) if and only if nℓ = 0 for all ℓ ∈ W, and in

this case in fact h1(Z,OZ(Ogen)) = 0 and c−E
∗
v0 is dominant.

In the next proof we write W = {ℓ1, . . . , ℓmax} with ℓ1 < · · · < ℓmax.

12.8.6. Proof of Theorem 12.8.4. According to Corollary 10.1.2 we have to find the dimension

{{aℓ,n}ℓ∈W, 0≤n≤nℓ
: ResD̃gen

(
∑

ℓ,naℓ,nωℓ,n) has no pole along D̃gen}.
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Recall that D̃gen = {v = c0 + c1u + · · · + cd−1u
d−1} with ci generic. In fact, what we will need is

c1 ̸= 0. If we set v′ := v − (c0 + c1u + · · · + cd−1u
d−1) then dv ∧ du = dv′ ∧ du, hence in the form

dv ∧ du can be replaced by dv′ ∧ du, and ResD̃gen
(
∑

ℓ,naℓ,nωℓ,n) = (
∑

ℓ,naℓ,nωℓ,n/dv)|D̃gen
.

The vanishing of poles provides a linear system whose matrix will be labelled as follows. The

columns are indexed by {ℓ, n}ℓ∈W,n. We subdivide this in vertical blocks. The first one, B(ℓ1),

contains nℓ1 + 1 columns, the second one, B(ℓ2), contains nℓ2 + 1 columns, etc. Their columns are

indexed by the corresponding n’s. The rows are indexed by the pole orders: the first row corresponds

to u−ℓmax−1, the last one to u−1.

We define also the sub–block B′(ℓi) (ℓi ∈ W) of B(ℓi), it is obtained from B(ℓi) by deleting the

rows corresponding to pole orders strict higher than ℓi + 1 (rows u−ℓ−1, l > li). In fact, all the

entries of the deleted part are zero, and the highest row kept in B′(ℓi) contains non–zero entries.

We proceed by induction: we fix some ℓ, 0 ≤ ℓ ≤ ℓmax, and assume that ℓi−1 < ℓ ≤ ℓi for some

ℓi ∈ W. Then we consider the submatrix M(ℓ) (in the up–right corner) containing all the entries

from the columns contained in the vertical blocks B(ℓj) with ℓj ≥ ℓi, and from the rows u−l
′−1 with

l ≤ l′ ≤ lmax. It is the matrix of a linear system with lmax − ℓ + 1 equations and with variables

{{aℓj ,n}ℓj∈W, ℓj≥ℓi, 0≤n≤nℓj
, what we formulate next. By decreasing induction we prove that s(ℓ) is

exactly the dimension dim(ℓ) of

{{aℓj ,n}ℓj≥ℓi, 0≤n≤nℓj
: (

∑
ℓj≥ℓi,naℓj ,nωℓj ,n/dv)|D̃gen

has no pole of order ≥ ℓ+ 1}.

If ℓ = ℓmax, then the system contains nℓmax +1 variables and a nontrivial equation (one checks that

at least one entry of the system is non–zero), hence dim(ℓmax) = nℓmax = s(ℓmax).

When we step from ℓ+ 1 to ℓ (0 ≤ ℓ < ℓmax), we have to consider two cases.

First assume that ℓ ∈ W (say ℓ = ℓi). Then we add nℓ+1 new variables and one new equation. In

the columns corresponding to the new variables only the last row contains non–zero entries, but this

part indeed contains at least one non–zero entry. Hence the new equation is linearly independent

from the old ones, and dim(l) = dim(l + 1) + nℓ + 1− 1; this is the inductive step for s(ℓ) too.

If ℓ ̸∈ W, say ℓi−1 < ℓ < ℓi, then in the new system one has the same number of variables, but

there is one more equation corresponding to the new row ℓ. We divide this case into two subcases.

First, assume that the rank of M(ℓ + 1) equals the number of columns
∑

ℓj≥ℓi(nℓj + 1). Hence,

adding a new row we cannot increase the rank, hence dim(ℓ+ 1) = dim(ℓ). In fact, dim(ℓ+ 1) = 0,

and the new equation (even if it is ‘generic’) cannot decrease the dimension of the system.

In the second case we assume that the rank ofM(ℓ+1) is strict smaller than the number of columns∑
ℓj≥ℓi(nℓj+1). In this case we claim rank(M(ℓ)) = rank(M(ℓ+1)+1), hence dim(ℓ) = dim(ℓ+1)−1.

This again agrees with (12.8.1). The claim follows from the next lemma via standard linear algebra.

Lemma 12.8.7. Fix ℓi ∈ W. Assume that the hight ℓi+1 of the sub–block B′(ℓi) is not smaller then

its width nℓi + 1. Then the top (nℓi + 1)× (nℓi + 1) minor M ′ of B′(ℓi) has non–zero determinant.

Furthermore, if the hight ℓi + 1 of the sub–block B′(ℓi) is smaller then its width nℓi + 1 then the

ℓi + 1 rows of B′(ℓi) are linearly independent.

We prove this lemma in two steps. The first step is the next statement.

Lemma 12.8.8. For any m ∈ Z>0 we construct the m×m–matrix M(c) as follows. Its nth–column

consists of the first m coefficients of the series (
∑

k≥0 cku
k)n−1. E.g., the first column has entries

(1, 0, . . . ), the second one (c0, c1, . . .), the third one (c20, 2c0c1, . . . ). Then det M(c) = c
m(m−1)/2
1 .

Proof. Assume that {Cn}1≤n≤m are the columns of M(c). Consider the matrix M(c)′ consisting of

columns {C ′n}1≤n≤m, C ′1 = C1, C
′
2 = C2 − c0C1, C

′
3 = C3 − 2c0C2 + c20C1, etc. Then detM(c) =
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det M(c)′. But C ′n consists of the coefficients of (−c0 +
∑

k≥0 cku
k)n−1, hence the entries of M(c)′

above the diagonal are zero, and on the diagonal one has the entries 1, c1, c
2
1, . . .. �

Finally we prove Lemma 12.8.8. We apply Lemma 12.8.7 for m = ℓi + 1. Note that we can

consider only the first situation (when the height is sufficiently large, since in the other case the

matrix can be completed to a square matrix of size nℓi + 1 with non–zero determinant.

For fixed ℓi the forms have the form ωℓi,n = u−ℓi−1fℓi(v0)v
n
0 dv0 ∧ du0, 0 ≤ n ≤ nℓi , where

fℓi(v0) :=
∏

j(v0 − pj)
−mj . Let us we substitute v0 7→

∑
k≥0 cku

k in this function, and consider its

Taylor expansion P (u) = b0 + b1u + · · · . Then the columns of the top minor M ′ of B′(ℓi) are the

coefficients of the product (
∑

k≥0 cku
k)n · P (u). Since b0 ̸= 0, this means that M ′ is obtained from

M(c) by multiplication with an invertible matrix. Hence det M ′ ̸= 0.

This ends the proof of Theorem 12.8.4.

12.9. The Abel map cl
′
in a neighborhood of some 0q supported by Ev0 . Since we have a

basis of differential forms, using the results and the notations of subsection 7.3 we are able to give

the ‘complete Abel map’. Indeed, assume that O is the intersection of a generic C∗–orbit with X̃,

and in some local chart it is given by v = 0. Consider the parametrization of its neighbourhood

in ECal
′
(Z) in the form D(c) = {v = c0 + c1u + · · · + cd−1u

d−1} (|c0| ≪ 1), where d = (Z, l′)

is the dimension of ECal
′
(Z). Above we constructed pg differential forms having in this chart the

expressions ω0
ℓ,n = u−ℓ−1fℓ,nv

ndv ∧ du, where fℓ,n :=
∏

j(v − pj)
−mj , ℓ ∈ W and 0 ≤ n ≤ nℓ. Then

the Abel map restricted to this chart is c 7→ (⟨⟨D(c), ωℓ,n⟩⟩)ℓ,n, where each coordinate ⟨⟨D(c), ωℓ,n⟩⟩
is determined explicitly in (7.3.5).

The reader is invited to take his/her favorite star–shaped graph, determine explicitly the forms

and the corresponding Abel map. Here we will exemplify the general description by an example

when the image of the Abel map is a singular hypersurface.

Example 12.9.1. Consider the star–shaped graph with b0 = 4, ν = 8, (αj , ωj) = (8, 1) for all j.

Then pg = 3. By a computation W = {1}, and the three forms are u−2f(v)vn, where n = 0, 1, 2,

and f(v) =
∏

j(v − pj)
−1. By a computation (using Laufer’s algorithm) Zmin = E + Ev0 , and

h1(OZmin) = 3. In fact, ⌊ZK⌋ = Zmin. We determine the Abel map cl
′
for Z = Zmin and l′ = −E∗v0

.

Hence d = (Z, l′) = 2, and D(c) = {v = c0 + c1u}. By (7.3.5) the Abel map is

(c0, c1) 7→ (−c1f(c0),−c1c0f(c0),−c1c
2
0f(c0)).

If (A,B,C) are the coordinates in the target, then im(c) = {AC = B2}. It is surprising that im(c)

is independent of the choice of the points {pj}j (that is, of the analytic structure of (X, o)).
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