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Abstract

Laboratory and process measurements from spectroscopic instruments are ubiqui-

tous in pharma processes, and directly using the data can pose a number of challenges

for kinetic model building. Moreover, scaling up from laboratory to industrial level

requires predictive models with accurate parameter values. This means that process

identification does not only imply kinetic parameter estimation, but also the identifi-

cation of the absorbing species and estimation of variances for both the data and pa-

rameters. A recently developed, open-source toolkit KIPET 1,2 addresses these topics

and provides an alternative to standard parameter estimation packages, in particular

for spectroscopic data problems. Moreover, batch processes commonly used in the
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chemical and pharmaceutical industry involve multiple stages to carry out synthesis

operations in a step by step manner, often dealing with heterogeneous mixtures, wide

operating temperatures, and constant additions and removals of product and waste.

For such cases novel modeling approaches are required, as the structure of the kinetic

model may vary with time, with model switches that are state dependent. This study

presents a new modeling approach and methodology that deals with these practical

issues. In developing kinetic models, it approximates the solid dissolution process and

deals with multiple stages with different reactor temperatures. Moreover, variances,

parameters, concentration and absorbance profiles are estimated for the process stages

using the approach presented by Chen et al. 3 . The application of these developed

concepts results in realistic profiles as well as reliable kinetic parameter values. The

outcomes of this work show that KIPET is a useful toolkit for dealing with phar-

maceutical processes with capabilities for dealing with challenging kinetic modeling

problems.

1 Introduction

For chemical and pharmaceutical industries, it is crucial to guarantee controllability,

safety and scalability of manufacturing processes. Usually in the early development phase,

the reactions are not completely understood, and the underlying reaction network, chemical

species and kinetic parameters involved are unclear. Typical data collected during these

experiments include spectroscopic data and high-performance or ultra-performance liquid

chromatography data. For the pharma example presented in this paper, parameter esti-

mation based on infrared (IR) spectroscopic data is considered. Several approaches are

described in the literature that deal with spectroscopic data, such as spectroscopic multi-

variate curve resolution (MCR) techniques4,5 connected through Beer-Lambert’s law. MCR’s

use is widespread in industry for a variety of applications. Its goal is the decomposition of

the data matrix into its bilinear components. Beer-Lambert’s law describes the relationship
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Acronyms
CI Confidence Interval
DAE Differential Algebraic

Equation
IPOPT Interior Point OPTimizer
IR Infrared
KIPET Kinetic Parameter Esti-

mation Toolkit
LoF Lack of Fit
MCR Multivariate Curve Reso-

lution
MCR-ALS MCR-Alternating Least

Squares

NLP Nonlinear Programming

PCA Principal Component
Analysis

PCD Pure Component Decom-
position

Pyomo Python optimization
modeling objects

sIPOPT Sensitivity Based on
IPOPT

SVD Singular Value Decompo-
sition

of the absorbance profiles with the pure components, i.e.

D = CST + E, (1)

where D is the measured spectroscopic data given in matrix form of dimension ntp × nwp

with time points ti, i = 1, . . . , ntp and wavelengths λl, l = 1, . . . , nwp. Moreover C rep-

resents the molar concentration profile in matrix form of dimension ntp × nc with species

ck, k = 1, . . . , nc. The nc × nwp-dimensional matrix S represents the absorbance profiles.

The remaining ntp × nwp-dimensional matrix E describes the measurement error. Lawton

and Sylvestre 4,5 aimed to estimate C and S simultaneously using a soft-modeling approach,

where the addition of non-negativity constraints for C and S yields physical meaning and also

reduces rotational ambiguity. Nevertheless, these problems are known to result in permuta-

tion, intensity and rotational ambiguity which may result in non-unique solutions. Another

way to estimate kinetic parameters from spectroscopic data is based on a hard-modeling

approach that also includes information from the kinetic model. For this method, this
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model based on differential equations is integrated for fixed parameters. Then the concen-

tration profiles are used to identify the absorbance profiles via least squares regression. The

Gauss-Newton-Levenberg-Marquardt method is then used to update the values of the kinetic

parameters based on the sensitivities with respect to the kinetic parameters and with respect

to the improvement of the fit.

Apart from using soft- or hard-modeling techniques, hybrid techniques can be used, e.g.

where MCR-ALS (MCR-Alternating Least Squares) is combined with a kinetic model de-

scription6. This methodology is widely used in academia but due to its challenges related to

large datasets it is not widely used for industrial applications7.

Moreover, Alsmeyer et al. 8 introduced an indirect spectral hard modeling approach which

uses parameters for the descriptive models describing the individual spectra. This approach

requires that all the individual absorbance profiles are known in advance and thus, can-

not describe the behavior of intermediates or non-absorbing species. An alternative to the

latter approach is proposed by Neymeyr et al. 9 . This approach is called pure component

decomposition (PCD). It first uses singular value decomposition (SVD) to derive a low-rank

approximation of the spectroscopic data matrix and then introduces a rotation matrix. As

an objective the difference between the data matrix D and its model prediction is minimized.

Non-negativity is ensured by adding penalty terms in the objective function. Sawall et al. 10

extended the PCD approach by combining it with a physical model that describes the re-

action network and by adding a regularization term related to the concentration profiles to

the objective function. This method obtains kinetic parameter estimates and the rotation

matrix simultaneously but it is a multi-objective problem where many weighting factors have

to be determined.

All of these sequential approaches can perform poorly for instable or ill-conditioned systems

due to linearly dependent columns in the concentration matrix. Moreover, these methods

do not include model noise and do not guarantee convergence to a solution.

To address these shortcomings, Chen et al. 3 developed a new methodology that proposes

Page 4 of 29



a better alternative. This approach formulates a simultaneous optimization problem that

results in kinetic parameter estimates and pure component spectra estimates simultane-

ously. The approach is introduced in more detail in Section 2. It has been tested on several

case studies with simulated and real data from chemical and pharmaceutical industrial pro-

cesses. To make the methodology accessible for industrial and academic researchers it has

been implemented in a toolkit called KIPET (Kinetic Parameter Estimation Toolkit, Short

et al. 1 , Schenk et al. 2) which we will employ for the investigations of the specific drug man-

ufacturing process case study in this paper.

Drug manufacturing processes can be complex with multi-components and multiple sequence

of operations, all of which can pose challenges for modeling. They frequently involve species

of varying phases (liquid, solid, gas) reacting at different temperatures and often combined

with several unit operations (reactions, extractions, additions, distillations etc.). For pro-

cesses involving liquids and solids, certain assumptions need to be made to include the

behavior of the solid in the reaction model. Some approaches have been made to relate the

change in surface area to the reactant conversion, e.g. Grénman et al. 11 , Salmi et al. 12 .

However, this requires the particle behavior to be modeled, and most of these approaches

cannot be implemented easily with complex reaction networks. An overview of some models

and examples for their application can be found in Grénman et al. 11 . Gao 13 proposed a

dissolution rate model describing the dissolution process by including the diffusion process

at the solid-liquid interface. This approach includes the solid-liquid interface kinetics and

mass transport kinetics in a flexible manner which makes it more applicable for data fit-

ting purposes. Other modeling approaches have been made to model the dissolution process

in a stochastic fashion. Lánský and Weiss 14 studied a heterogeneous tube model where

the authors modeled the fractional dissolution via a deterministic model on the macro-

scopic level using stochastic modeling techniques at the microscopic level. Later Lánský and

Weiss 15 applied this approach to general drug dissolution processes with homogeneous and

heterogeneous particles using probabilistic concepts as well as random effects in dissolution.
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Lánský and Weiss 16 studied a variety of empirical and semi-empirical models including ho-

mogeneous dissolution models especially with respect to the role of heterogeneity in drug

dissolution models. Kalampokis et al. 17 modeled the fraction of dose absorbed and monitor

it as a function of time using Monte Carlo methods. All these approaches bring along a set

of additional probabilistic parameters that have to be estimated as well or additional Monte

Carlo Sampling, which may be computationally expensive. Finally, Wang et al. 18 proposed

a batch process model including a shrinking particle model for parameter estimation from

concentration data using Bayesian estimation in order to investigate model discrimination.

However, all of the approaches described above have not been used for parameter estimation

from spectroscopic data so far. Here, we present a simpler, equilibrium-based macroscopic

modeling approach that can also be used for parameter estimation from spectroscopic data.

In the next section we present the kinetic model for the pharma case study, and describe

the underlying kinetic parameter estimation problem and solution procedure. In section 3,

the introduced methods are applied to the case study and results are discussed. The results

for the first stage of the multi-stage process are presented. Subsequently, those results are

used to initialize the second stage and the corresponding results for the second stage are

described in detail. Both first and second stage results are then compared and discussed.

Finally, section 4 concludes the study and presents directions for future work.

2 Model Formulation and Methodology

2.1 Process Background

In this pharmaceutical process case study, the synthesis of an unsymmetrical urea compound

using carbonyldiimidazole (CDI) is investigated. The chemical reaction network is illustrated

in fig. 1. The reaction is divided into two steps, [1] reacting CDI, the primary amine (S1), and

an activating species (for simplicity referred to as compound X) in tetrahydrofuran (THF) to

generate the acyl intermediate at low temperature, followed by [2] reaction with the second
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primary amine (S2) to form the desired product (P) at higher temperature. During the first

step, a symmetric urea dimer (D̃) can form through an isocyanate species, which is of concern

because of a difficult purge in the crystallization. To aid process design and optimization, a

kinetic model of this reaction sequence is highly desired.

 

-X 

Activating agent 
CDI 

Substrate 2 

(S2) 

𝐼 

r1 

r2 

𝐼′ 
r4 H2O 

Desired product (P) Substrate 1 

(S1) 
 

MeOH r5 

𝐼′′ 

𝑰′ (derivatized) 

Dimer impurity 

(𝑫 ) 

r6 

r3 

Figure 1: Reaction sequence used in the synthesis of the unsymmetrical urea product (P).

2.2 Model Derivation

The considered drug manufacturing process is described by the following chemical reaction

network, where reaction 5 is an equilibrium reaction.

1. CDI + X k1 I

2. I + S1
k2 I′

3. I′ + H2O k3 S1

4. I′ + S2
k4 P

5. I′
k+

5

k−5
I′′+X−
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6. I′′ + S1
k6 D̃

The full model based on differential algebraic equations (DAE) derived from the reaction

network is given by:

d

dt
cX = −r1 + (r+

5 − r−5 )
(

1
1 +Kaβ

)
, cX(0) = cX0

d

dt
cI = r1 − r2, cI(0) = cI0

d

dt
cI′ = r2 − r3 − r+

5 + r−5 − ν3(t)r4, cI′(0) = cI′0

d

dt
cH2O = −r3, cH2O(0) = cH2O0

d

dt
cI′′ = −r6 + r+

5 − r−5 , c′′I (0) = cI′′0

d

dt
cD̃ = r6, cD̃(0) = cD̃0

d

dt
c̄CDI = −ν1(t)r1, c̄CDI(0) = c̄CDI0

d

dt
c̄S1 = ν2(t)(−r2 + r3 − r6), c̄S1(0) = c̄S10

d

dt
cS2 = −ν3(t)r4, cS2(0) = cS2 0

d

dt
cP = ν3(t)r4, cP (0) = cP 0

with the rate laws
r1 = k1cCDIcX

r2 = k2cIcS1

r3 = k3cI′cH2O

r4 = k4cI′cS2

r+
5 = k+

5 cI′

r−5 = ( k−5 Kaβ )cI′′cX

r6 = k6cI′′cS1 .
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where ki, i = 1, . . . , 6 are rate constants and Kaβ is an aggregated equilibrium constant,

which comes from the weak acid base equilibria, i.e.

Ka = cH+cX−

cX
(2)

for a weak acid cH+ with conjugate base cX− , such that

Kaβ := Ka

β
= cX−

cX
(3)

and with this

β = cXKa

cX−
. (4)

The main challenge with this particular process is that it is a heterogeneous process with

liquids and solids involved. Two solids are added at the start of the manufacturing process

but there is no information available on which species is depleted first and at which point in

time they are depleted. The dissolution or switching behavior from solid to liquid is modeled

by the introduction of two switching functions ν1(t) and ν2(t) with ν1 : R+ → {0, 1} and

ν2 : R+ → {0, 1}, such that

Switching for CDI:



cCDI(t) = csatCDI(1− ν1(t)) + ν1(t)c̄CDI(t)

if mCDI = m0
CDI − η1 ≥ 0 : ν1(t) = 0,

else ν1(t) = 1,

Switching for S1:



cS1(t) = csatS1 (1− ν2(t)) + ν2(t)c̄S1(t)

if mS1 = m0
S1 − η2 + η3 − η6 ≥ 0 : ν2(t) = 0,

else ν2(t) = 1.

(5)

The reaction extent η1 describes how much CDI has been consumed in reaction 1. In the

same fashion the reaction extents η2, η6 and η3 describe how much S1 has been consumed in

Page 9 of 29



reactions 2 and 6 and generated in reaction 3. The constants csatCDI and csatS1 are the satura-

tion concentrations for CDI and S1 which are assumed to be at the solubility value. The

differential variables c̄CDI and c̄S1 describe the behavior of CDI and S1 in the liquid state

when no solid CDI or S1 remains. Note that IR spectroscopic data can only be obtained

for measurements in the liquid phase. So we have to model the solid/liquid equilibrium in

an appropriate manner.

This system is a multi-stage process where the first stage considers all the named reactions

apart from reaction 4. Reaction 4 requires the addition of S2, which is added at the begin-

ning of the second stage, and leads to the product formation. This reaction is switched on

or off with the function ν3(t) with ν3 : R+ → {0, 1}.

The switching functions ν1(t), ν2(t) and ν3(t) introduce binary variables at every time point

and turn this problem into a mixed-integer optimization problem. To avoid the large num-

ber of binary decisions, we consider a continuous representation of the switching functions

instead. We still separate the two reaction stages so that ν3(t) remains as a (fixed) switching

decision, but we approximate ν1(t) and ν2(t) by the following sigmoidal functions, which we

call smoothing functions. These sigmoidal functions come from the smoothed derivative of

a step function.

Figure 2: Smoothing νi vs. mj with i ∈ {1, 2} and j ∈ {CDI, S1}, for ε = 5×10−6, δ = 10−3

and M = 10−8 (generated by Wolfram|Alpha19)

ν1(t) := 1
2 + (δ −mCDI)

2((δ −mCDI)2 + ε2

M
)1/2

ν2(t) := 1
2 + (δ −mS1)

2((δ −mS1)2 + ε2

M
)1/2

(6)
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where we choose constants ε and δ with ε = 5× 10−6, δ = 1× 10−3 and M is the sigmoidal

tuning parameter with M ∈ [10−8, 10−7]. For M = 10−8, this function is illustrated for

mj ∈ [−0.3, 0.3] and j ∈ {CDI, S1} in fig. 2. These smoothing functions depend on mj with

j ∈ {CDI, S1}, to determine how much solid remains. We calculate this through the mass

balances, and we add the following algebraic equations to our model

X = X0 − η1 + η5

(
1

1 +Kaβ

)

I = I0 + η1 − η2

H = H0 − η3

I
′′ = I ′′0 + η5 − η6

D̃ = D̃0 + η6,

where ηi with i ∈ {1, 2, 3, 5, 6} denote our additional algebraic variables. Since we deal with

the two stages separately, we specify the input ν3(t), such that

ν3(t) =


0, t ∈ T1 = [0.51667, 4.55]

1, t ∈ T2 = [4.55, 9],

where T1 and T2 represent the first and second stages that are determined by the experimental

times, respectively, of the process (in hours). That means ν3 turns off the right hand side of

the differential equations for cS2 and cP .

2.3 Kinetic Parameter Estimation Problem

All the examples in this study were performed using KIPET 1,2, where several contributions

to the development of KIPET were also made. KIPET is an open-source toolkit written

in Python with the algebraic modeling package Pyomo 20. The software package makes use

of the model formulations and concepts developed in Chen et al. 3 . The effectiveness of
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the mathematical formulations and concepts has been shown for several problems, including

many components and reactions and large real and simulated datasets. In this section we

review the most important features of the underlying optimization problem but for the algo-

rithms and methods implemented in the toolkit we refer to the original work by Chen et al. 3

or the KIPET related work by Short et al. 1 and Schenk et al. 2 . For the implementation

within KIPET the spectral data has to follow Beer-Lambert’s law eq. (1), and the reaction

system here is a well-mixed fed-batch reaction system. Beer-Lambert’s law describes the

relationship between the pure components and their absorbance. Rewriting Beer-Lambert’s

law introduced in eq. (1) in scalar form results in

di,l =
nc∑
k=1

ck(ti)sk(λl) + ζi,l, i = 1, .., ntp, l = 1, .., nwp (7)

where di,l is the spectroscopic data obtained at a sampling time ti and wavelength λj, ck(ti)

is the concentration of species k at sampling time ti and sk(λl) is the absorbance of species

k at wavelength λj. ntp and nwp denote the total number of time points and wavelengths,

and ζi,l is the measurement error.

To address the limitations of multivariate curve resolution techniques, Chen et al. 3 pro-

posed a simultaneous approach that solves the full parameter estimation problem within an

optimization framework, which includes eq. (7) along with a kinetic model of the form

dz(t)
dt

= f(zzz(t),y(t),θ),

g(z(t),y(t)) = 0,

z(t0) = z0.

(8)

Here z(t) ∈ Rnc
+ is the vector of concentrations coming from the kinetic model with nc

as the total number of components and y(t) ∈ Rna is the vector of algebraic variables

with na as the total number of algebraic variables. Moreover, z0 ∈ Rnc
+ is the vector of

initial concentrations, and θ ∈ Rnθ are nθ estimated kinetic parameters. The kinetic model
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functions f : Rnc+ny+nθ → Rnf with nf as the number of right hand sides of the differential

equations and g : Rnc+ny+nθ → Rng with ng as the number of algebraic equations, are

assumed to be twice continuously differentiable with respect to the optimization variables

(z,y,θ)T . As the predictions of eq. (8) are subject to model error, Chen et al. 3 proposed

the following relationship between the predicted concentration z(t) and the concentration

observed experimentally

ck(ti) = zk(ti) + ωk(ti), i = 1, . . . ntp, k = 1, . . . , nc, (9)

where ωk denotes the model error. Combining eq. (7), eq. (8) and eq. (9) yields the following

DAE-constrained optimization problem

min 1
δ2

ntp∑
i=1

nwp∑
l=1

(
di,l −

nc∑
k=1

ck(ti)sk(λl)
)2

+
ntp∑
i=1

nc∑
k=1

1
σ2
k

(ck(ti)− zk(ti))2

s.t. dz(t)
dt

= f(z(t),y(t),θ)

g(z(t),y(t)) = 0

z(t0) = z0

c(ti) ≥ 0 i = 1, .., ntp

s(λl) ≥ 0 (optional) l = 1, .., nwp.

(P)

Throughout this study this optimization problem is referred to as Problem (P) and it is

highlighted as the main formulation solved for this case study and solved within KIPET.

In more detail, Problem (P) incorporates the kinetic model eq. (8) in the constraints while

optimizing measurement and model error in its objective function. The first term in the

objective minimizes deviations from Beer-Lambert’s law and the second term minimizes

deviations from the kinetic model. That means that ζi,l and ωk are minimized implicitly.

The variables in this optimization problem are the kinetic parameters θ, the species’ unnoised

and noised concentrations, z(t) and c(ti) respectively, the species’ absorbance profiles s(λl),
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and the algebraic variables y(t). The degrees of freedom of Problem (P) are determined

by the kinetic parameters. The spectral data, the di,l values, are our input data considered

in Problem (P). Furthermore, the variances δ2 and σ2
k have to be known in order to solve

Problem (P). The spectra data are available as measurements from experiments, although

in general the variances are not. Therefore, to solve Problem (P), we first have to estimate

these variances. This is realized using an iterative optimization-based heuristic according to

Chen et al. 3 .

2.4 Variance Estimation Procedure

Before solving Problem (P) the variances δ2 and σ2 need to be estimated. Within KIPET

two methodologies for their estimation exist. The first was introduced in Chen et al. 3

and its functionality within KIPET demonstrated in Schenk et al. 2 . Recently Short et al. 21

proposed an alternative to the Chen et al. 3 approach, and this alternative is used to estimate

the variances in this study. We summarize the procedure within the following lines and start

with unknown covariances from two sample populations, i.e. instrumental measurement and

modeling error. Then the joint probability distribution and likelihood function as well as log

likelihood functions are derived. First we determine the upper bound v2 for δ by setting σk =

0. Then we guess σk, solve problem (P) to determine δ2 = ∑
i ε
T
i εi/(nwp ntp), and continue

to update σk until the joint variance relation f(σk,p) = v2 − δ2 − (∑nwp
l=1

∑nc
k=1 σ

2
k,pskl/nwp) is

satisfied.

This variance estimation procedure has been shown to perform well, i.e. it is better behaved

than the previous appoach and provides us with better data fits and kinetic parameter

estimates. More details on this procedure including its performance for other case studies in

comparison to the Chen et al. 3 approach can be found in Short et al. 21 .
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2.5 Estimation of Parameters and Determination of Confidence

Regions

Now that we have a methodology to estimate the variances, we can investigate the solution

of the main Problem (P). KIPET provides different ways for initialization of this problem

and makes use of robust discretization methods based on orthogonal collocation on finite

elements. It uses IPOPT 22 as the nonlinear programming (NLP) solver to compute a solution

to this large-scale NLP. Within the KIPET framework the confidence regions of the estimated

parameters can be determined using sIPOPT 23 or k_aug 24. More details on the methodology

behind KIPET and the general capabilities of the package can be found in Short et al. 1 and

Schenk et al. 2 .

2.6 Tuned Parameter Estimation Initialization Procedure

Due to the smoothing structure in eq. (6), the parameters have to be estimated step by step

while refining the sigmoidal tuning parameter, in order to get a good initialization for the

simultaneous parameter estimation problem and reveal the dependencies of the estimated

parameter values on the considered tuning parameter value.

This initialization procedure is illustrated in fig. 3.
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Simulation Step by step parameter estimation

Kaβ

k1

k2

k3

k+
5

k−5

k6

Estimate together

Best LoF and non-
zero eigenvalues

of reduced hessian

STOP if no better
LoF with refined
tuning parameter
and reduced set
of parameters

REPEAT for better
LoF and reduced
set of parame-
ters with refined
tuning parameter

Best LoF solution
as initialization
with refined tun-
ing parameter

Initialization

Figure 3: Tuned parameter estimation initialization procedure

We start with a simulation and an initial guess for the parameter vector θ, where

θ = (Kaβ, k1, k2, k3, k
+
5 , k

−
5 , k6)T . Then we initialize our first parameter estimation problem

with this solution and estimate every parameter, one at a time. Our parameter estimation

problem is of the form of Problem (P) with additional tight bounds for the parameters as

1.0 ≥ Kaβ ≥ 0.9,

and

k1, k2, k3, k
+
5 , k

−
5 , k6 ≥ 0.

The bounds for Kaβ result from the fact that we believe that cX and cX− are almost the

same. After the initial estimation from finding one parameter at a time, we check how

many parameters we can estimate simultaneously, by initializing with the best Lack of Fit
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(LoF) solution. The parameter Kaβ always goes to its upper bound, such that it has to be

fixed with Kaβ = 1. The simultaneous solution that results in the best LoF and low

parameter variances for this tuning parameter is taken to initialize the new problem with

increasing the value of the sigmoidal tuning parameter, M in eq. (6). We repeat this

procedure until there is no improvement in LoF. If the estimated parameters are not at the

bounds, we check the eigenvalues of the reduced Hessian. If they are close to zero, we fix

the corresponding parameter at its current value. In this way we ensure tight parameter

confidence intervals (CIs).

2.7 Lack of Fit as Estimation Quality Measure

The LoF is used as a relative metric of the quality of the parameters and model to fit the

data to evaluate the performance25, i.e.

LoF =

√√√√∑ntp
i=1

∑nwp
l=1 e

2
i,l∑ntp

i=1
∑nwp
l=1 d

2
i,l

× 100%, (10)

where ei,l is the residual error corresponding to the corrected spectra element di,l.

2.8 Penalty Term Formulation

In some cases it can be useful to ensure that the estimated parameter values stay close to

their nominal values. For this we introduce quadratic penalty terms to penalize values

deviating from the previous estimates. This is added as a term in the objective of Problem

(P), leading to Problem (Ppen).
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min 1
δ2

ntp∑
i=1

nwp∑
l=1

(
di,l −

nc∑
k=1

ck(ti)sk(λl)
)2

+
ntp∑
i=1

nc∑
k=1

1
σ2
k

(ck(ti)− zk(ti))2 +
npen∑
m=1

ωpen(θm − θ?m)2

s.t. dz(t)
dt

= f(z(t),y(t),θ)

g(z(t),y(t)) = 0

z(t0) = z0

c(ti) ≥ 0 i = 1, .., ntp

s(λl) ≥ 0 (optional) l = 1, .., nwp,
(Ppen)

where ωm is the penalty weighting parameter, θ?m denotes the nominal value with

m = 1, . . . , npen, and npen is the number of parameters that should be ensured to stay close

to the nominal value.

3 Results and Discussion

In this section the techniques introduced in the previous section are applied to the

investigated drug manufacturing case study. We first investigate the first stage of the

process and then initialize the second stage with those results and have a closer look at the

second stage. All the numerical results presented in the following are generated on a 64bit

Desktop PC with Ubuntu 16.04, with Intel(R) Core(TM) i7-7700 CPU at 3.60GHz with

16.3 GB of RAM.

3.1 First Stage Results

Typically, a data treatment step is advised to reduce the data to its most informative

subset before using KIPET. For the first stage this turns out to be a wavenumber range of

1599 to 1851 which resulted from testing the informative quality of several ranges of

wavenumbers. A principal component analysis (PCA) is performed on matrix D, which
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Figure 4: PCA results showing ranked singular values for 14 and 8 components

shows that only 6 out of 8 species should be assumed to be absorbing. The singular values

in relationship to the components, resulting from a PCA assuming 14 principal components

and 8 principal components, are illustrated in fig. 4. These figures show that the singular

values for the 7th to 14th components hardly differ. The PCA for 8 principal components

shows that there is a cut between the 6th and 7th component. That is why we assume 6

out of 8 species to be absorbing. As CDI and S1 are mostly present as a solid in the first

stage, we assume c̄CDI and c̄S1 to be non-absorbing.

The parameter estimation problem for this case study is the basic problem from Chen

et al. 3 introduced in the last section. The results are generated with the following initial

values obtained from the experimental conditions: cX = 0.344 mol L−1, cI = 0 mol L−1, cI′ =

0 mol L−1, cH2O = 0.0296 mol L−1(rounded to 4 digits), cI′′ = 0 mol L−1, cD̃ =

0 mol L−1, c̄CDI = 0.371 mol L−1, c̄S1 = 0.082 mol L−1.

As described in the previous section, before we can solve the parameter estimation problem

(P), we first estimate the variances. We assume that the system noise is the same for every

component, select the tuning in fig. 2 with M = 10−8 and then estimate the variances using

the alternative variance estimation method described in Short et al. 21 . The resulting

estimated variances are given in table 1. For the solution of the parameter estimation

problems, we fix the variances to these values and solve Problem (P).
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Table 1: Results for estimated variances using alternate variance estimation procedure

Error Source Estimated Variance

Model (σ) 1.1125e-11
Instrument (σ) 1.0622e-05

Due to the smoothing structure, the parameters are estimated step by step while refining

the tuning parameter as described in section 2.6 and illustrated in fig. 3. This procedure

provides a good initialization for the simultaneous parameter estimation problem and

reveals the dependencies of the estimated parameter values on the considered tuning

parameter value.

3.1.1 Tuning Values of M

The results of the application of the tuned parameter estimation initialization procedure

introduced in section 2.6 and highlighted in fig. 3 for this pharma process are now

considered in more detail. We solve Problem (P) sequentially using different values for the

sigmoidal tuning parameter M with M ∈ {10−8, 2× 10−8, 3× 10−8, 5× 10−8, 10−7}

according to fig. 3. Increasing M after this leads to a worse LoF, such that the solution for

M = 10−7 is the final solution for the first stage.

Table 2: Parameter values and quality of estimates for different tuning parameters (e: esti-
mated, f: fixed)

Tuning Parameter (M)/
Kinetic Parameters,
Quality of Estimates

10−8 2× 10−8 3× 10−8 5× 10−8 10−7

Kaβ 1.0 (f) 1.0 (f) 1.0 (f) 1.0 (f) 1.0 (f)
k1 35.3705 (e) 40.4007 (e) 40.3513 (e) 40.4449 (e) 56.3128 (e)
k2 7.6175 (e) 22.6608 (e) 24.3822 (e) 26.4930 (e) 66.1366 (e)
k3 2.1273 (e) 0.9874 (e) 1.0228 (e) 1.0516 (e) 1.2973 (e)
k−5 907.5592 (f) 2622.0349 (e) 1411.7254 (e) 503.4825 (e) 1904.6545 (e)
k+

5 0.0947 (e) 0.7473 (e) 0.5521 (e) 0.5264 (e) 0.4576 (e)
k6 8.7720 (f) 8.7720 (f) 9.4422 (e) 6.3916 (e) 17.6065 (e)
LoF 0.6647% 0.5818% 0.5746% 0.5692% 0.5381%

max. CI 6.2% 10.8% 10.9% 8.1% 11.9%

Table 2 shows a comparison of the resulting kinetic parameter values, the LoFs and the
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maximum percentile confidence intervals for the different tuning parameters. The

parameter that varies the most with the refinement of the tuning parameter is k−5 .

However, with the last refinement 4 out of 6 parameters vary significantly.

The results for the final tuning parameter M = 10−7 are presented below. The resulting
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Figure 5: Absorbance and concentration profiles for M = 10−7

absorbance and concentration profiles for this tuning parameter are illustrated in fig. 5. All

species show absorbance activity and components D̃ and H show the most absorbance

activity. The intermediates I, I ′ and I ′′ are formed, where I is almost immediately

consumed again. The substrate X is consumed within the first hour. Figure 6 shows the

depletion behavior and the smoothing function trajectories for M = 10−7. The first graphic

in fig. 6 shows the concentration profiles of the liquids and solids. Whenever the amounts

of CDI and S1 in solid phase are equal to zero the substrate just exists in liquid phase,

such that mCDI and mS1 are computed for the whole first stage but the negative values can

be neglected because they are dropped in the model formulation due to eq. (5). As for the

previous tuning parameter values, the substrate CDI only stays at its solubility value for a

very short amount of time. Then it is depleted and the differential formulation is used, as

it is consumed in its liquid form. The substrate S1 stays at its solubility value for the first

hour until it is depleted and then consumed in its liquid form. With M = 10−7 it is

depleted earlier than for the previous tuning parameter values. The second graphic in fig. 6

shows the smoothing function trajectories, where both smoothing functions are much
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Figure 6: Concentration profiles for liquid and solid components and corresponding smooth-
ing functions and mass balances for M = 10−7

steeper than for the previous tuning parameter values and already give us good

approximations for our switching functions. The third graphic in fig. 6 shows the mass

balances that are used to estimate the amount of solids present.

When the set of simultaneously estimated parameters is reduced to 6 out of 7 parameters,

the resulting LoF is 0.5381% and the estimated and fixed parameter values are

Kaβ = 1.0

k1 = 56.3128 ± 1.3905 2.5%

k2 = 66.1366 ± 1.5867 2.4%

k3 = 1.2973 ± 0.0232 1.8%

k−5 = 1904.6545 ± 226.969 11.9%

k+
5 = 0.4576 ± 0.0317 6.9%

k6 = 17.6065 ± 1.1883 6.7%

(11)
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The quality of these estimates is very good. The same number of parameters as for the

previous tuning parameter 5× 10−8 can be estimated with similar confidence regions. Some

parameters have larger confidence regions than in this previous case and others have

tighter confidence regions. All estimated parameters vary by less than 12%. However, the

smoothing functions give us much better approximations for this case than for the previous

case. That is why we use these results to initialize the second stage.

3.2 Second Stage Results

In the first stage the reactor temperature was set to 0◦C and raised to 50◦C in the second

stage. In a similar fashion as for the first stage, the IR dataset has to be reduced to a

subset for the second stage. For the second stage this turned out to be a higher

wavenumber range, i.e. 2442 to 2999.

As initial values for the differential components in the second stage, the final values from

the first stage are taken, i.e.

cH2O = 0.0078 mol L−1, cD̃ = 0.0299 mol L−1, cI = 0.0328 mol L−1, cI′′ = 0.0923 mol L−1, cX =

0.0005 mol L−1, cI′ = 0.2278 mol L−1, c̄CDI = 0.2586 mol L−1 and c̄S1 = 0 mol L−1 (rounded

to 4 digits).

The initial conditions for the additional states S2 and P are set to cS2(4.55) = 68/250 and

cP (4.55) = 0.0, where the second stage starts at 4.55 hours. It is assumed that c̄S1 , cX ,

cH2O, cP are non-absorbing with respect to the IR data because c̄S1(4.55), cX(4.55),

cH2O(4.55) are close to zero or equal to zero and for P we assume that it immediately

crystallizes due to low solubility in the solvent mixture. This makes the estimation of the

kinetic parameter k4 a challenging task.

Before we solve the parameter estimation problem, we first estimate the variances, using

the new variance estimation method in Short et al. 21 also used for the first stage. The

resulting estimated variances are given in table 3.

For this case the switching functions (ν1, ν2, ν3) are equal to one, and there is no need to
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Table 3: Results for estimated variances using alternate variance estimation procedure

Error Source Estimated Variance

Model (σ) 5.2553× 10−13

Instrument (δ) 1.5918× 10−3

tune M and apply eq. (6) as in the first stage. The parameter vector θ, now also includes

k4, such that θ = (Kaβ, k1, k2, k3, k4, k
+
5 , k

−
5 , k6)T for the second stage. We assume that the

temperature change mostly affects the product formation. Thus, we assume that the kinetic

parameter estimates for all parameters apart from k4 are very close to the estimated values

in the first stage. This is why we introduce quadratic penalty terms to penalize values

deviating from the previous estimates as introduced in section 2.8 and Problem (Ppen).

However, some of the parameters have to be fixed as we obtain non-unique solutions and

estimated parameters at the bounds, i.e. we fix k2, k3 and k−5 to the previously estimated

values given in eq. (11). We start with penalty weights for k1, k+
5 , k6 set to 10, 1 and 1.

And then increase the weights to receive estimates closer to the previous ones. However,

that worsens the LoF. This may indicate that the temperature dependence is not only

reflected by the product formation parameter k4 but also other kinetic parameters which

are not included in the model, such that we keep the lower penalty weights. Modeling the

temperature change would require estimating even more parameters using, e.g., an

Arrhenius law formulation where also activation energies have to be estimated. However,

for the set of parameters estimated here the data are not informative enough.
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Figure 7: Absorbance and concentration profiles for IR data
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Solving Problem (Ppen) with the first named penalty weights, i.e. 10, 1 and 1, we receive

the absorbance and concentration profiles illustrated in fig. 7. We reduce the set of

simultaneously estimated parameters to 4 out of 7 parameters and a penalty term is added

for three of the four. The resulting LoF is 8.5300% for the IR data.

The estimated and fixed parameter values are

Kaβ = 1.0

k1 = 56.3564 ± 0.0074 0.01%

k2 = 66.1366

k3 = 1.2974

k4 = 0.2859 ± 0.0064 2.2%

k−5 = 1904.6545

k+
5 = 2.1971 ± 0.0202 0.9%

k6 = 24.6215 ± 0.0864 0.4%.

(12)

The LoF for the second stage is worse than for the first stage but it is still below 9%. The

estimates have good confidence regions; all are less than 3%.

4 Conclusions

This work addresses a number of challenges for kinetic model building in pharmaceutical

processes. These deal with kinetic parameter estimation from spectroscopic data, but also

include reactions with liquids and solids, where no measurement information is available

about the depletion process. Moreover, we address large reactor temperature differences as

well as multiple feeds during the process. This study develops a novel approach that

addresses these challenges from the modeling side. All implementations were made in the

open-source KIPET 1,2 package and the KIPET embedded concepts were further developed

and used in the context of a particular drug manufacturing process case study. A tuned
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parameter estimation initialization procedure was introduced that approximates the

depletion process of the substrates that are present as solids at the beginning of the

process. The variances, parameters, concentration and absorbance profiles were estimated

for the first stage and then used to initialize the second stage. Subsequently, the variances,

parameters, concentration and absorbance profiles for the second stage were estimated. In

the first stage we found reliable estimates for 6 out of 7 kinetic parameters with very good

confidence regions and small LoFs for both stages. Most parameter values for the second

stage apart from k4 use a quadratic penalty term in the objective to restrict deviations

from the first stage estimated kinetic parameter values. The second stage resulted in an

LoF that is less than 9% with confidence intervals less than 3%. This case study

demonstrates that KIPET is a useful toolkit that deals with the rising challenges in kinetic

model building. In particular, the outcomes of this work can be very useful for

mathematical modeling of other multi-stage heterogeneous pharma processes with

unknown solid depletion structure and multiple feeds.
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