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Abstract. Different types of training data have led to numerous

schemes for supervised classification. Current learning techniques

are tailored to one specific scheme and cannot handle general ensem-

bles of training samples. This paper presents a unifying framework

for supervised classification with general ensembles of training sam-

ples, and proposes the learning methodology of generalized robust

risk minimization (GRRM). The paper shows how current and novel

supervision schemes can be addressed under the proposed frame-

work by representing the relationship between examples at predic-

tion and training via probabilistic transformations. The results show

that GRRM can handle different types of training samples in a unified

manner, and enable new supervision schemes that aggregate general

ensembles of training samples.

1 Introduction

Supervised classification uses training samples to choose a classi-

fication rule with small expected loss over variables at prediction

(instance and label). Since the actual probability distribution of pre-

diction variables is unknown, expected losses are evaluated with re-

spect to a probability distribution obtained from training samples.

Approaches based on empirical risk minimization (ERM) use the

empirical distribution of training samples [25, 8] while approaches

based on robust risk minimization (RRM) use a distribution with

maximum entropy near the empirical distribution [9, 20, 2, 13].

In standard supervision, examples at training follow the same dis-

tribution as examples at prediction, while numerous non-standard su-

pervision schemes have been proposed to exploit more general types

of training samples. Current non-standard schemes consider: i) labels

at training that are less precise than those at prediction; ii) instances

at training that are more informative than those at prediction; iii) in-

stances at training that are less informative than those at prediction;

iv) examples at training that are from a different domain; v) exam-

ples at training with missing components; and vi) examples at train-

ing with multiple qualities and domains. Those schemes have been

developed under different paradigms such as weak supervision, semi-

supervision, privileged information, and domain adaptation (see spe-

cific current approaches and associated references in Sections 3 and

4).

The diverse range of supervision schemes described above can be

particularly useful in practice. Schemes that use training examples

from different domains or less precise than prediction examples can

reduce training costs, while those that use training examples more

precise than prediction examples can increase classification accu-

racies. Current techniques are tailored to one specific supervision
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scheme and there is a lack of a common methodology for supervised

classification with general training data. As a consequence, it is cur-

rently not possible to adequately deal with cost/accuracy trade-offs

and to seamlessly develop versatile algorithms. For instance, existing

techniques can only handle scenarios with training samples in accor-

dance with one of the specific cases described above, and cannot ex-

ploit general ensembles of training samples with assorted types and

qualities. This paper presents a unifying framework for supervised

classification with general ensembles of training samples, and pro-

poses the learning methodology of generalized RRM (GRRM). Such

framework is enabled by representing the relationship between ex-

amples at prediction and training stages via probabilistic transforma-

tions. The paper shows how current and novel supervision schemes

can be addressed under the proposed framework. In particular, we

show that GRRM can enable learning algorithms that aggregate gen-

eral ensembles of training samples with different types.

2 Preliminaries

This section provides an overview of the supervised classification

problem, recalls the notion of probabilistic transformation, and de-

scribes notations used in the rest of the paper. In particular, in the fol-

lowing, upright letters denote random variables (RVs); calligraphic

upper case letters denote sets; I{·} denotes the indicator function;

Ea∼p{f(a)} or just Ep{f(a)} denotes the expectation of function

f over instantiations a that follow probability distribution p; and I
denotes the identity transformation.

2.1 Supervised classification

A problem of supervised classification can be described by four

objects (Z,D,H, L) representing variables at prediction, training

data, classification rules, and miss-classification losses. Specifically,

Z = (X,Y) is an RV representing examples at prediction, X is

called instance or attribute, and Y has finite support and is called

label or class. D is an RV describing training data formed by the

concatenation of training samples. For instance, in standard supervi-

sion each instantiation of D is d = (z(1), z(2), . . . , z(n)) where z(i)

for i = 1, 2, . . . , n are independent instantiations of Z. The classi-

fication rules H are mappings from instances to labels, i.e., h ∈ H,

h : X → Y . Finally, L is a function L : Y × Y → R, where

L(ŷ, y) quantifies the loss of predicting the label y by label ŷ, e.g.,

L(ŷ, y) = I{y 6= ŷ}.

The goal of a learning algorithm for classification is to determine

a rule h ∈ H with small expected loss (risk) under the probability

distribution of Z, p, that is, to solve the optimization problem

min
h∈H

Ep

{
L(h(x), y)

}
. (1)



Training data aids the learning problem in that it provides informa-

tion regarding the probability distribution p.

Supervised learning based on ERM corresponds to solving (1) us-

ing the empirical distribution pe of the training data d instead of p.

The main drawback of ERM approach is over-fitting that is often ad-

dressed using regularization methods. Most techniques for regular-

ization are based on structural ERM that considers subsets of classi-

fication rules with reduced complexity [25, 8]. Other complementary

regularization techniques are based on RRM that considers uncer-

tainty (ambiguity) sets U of probability distributions [9, 20, 2, 13].

Specifically, the classification rule in such techniques is obtained by

minimizing the maximum expected loss over the uncertainty set, i.e.,

solving

min
h∈H

max
q∈U

Eq

{
L(h(x), y)

}
. (2)

The uncertainty set U is formed by distributions close to the empir-

ical distribution, where the closeness between distributions in Z is

quantified by a discrepancy function ψ, hence

U = {q ∈ ∆(Z) : ψ(q, pe) < ε}
with ∆(Z) the set of probability distributions supported in Z. For

instance, the uncertainty sets used in [20, 13] correspond to consider

asψ(q1, q2) the Wasserstein (transportation) distance between q1 and

q2, while those used in [9] correspond to

ψ(q1, q2) = ‖Eq1{t(z)} − Eq2{t(z)}‖2 (3)

for q1 and q2 distributions with the same marginal over X , and t(·) a

statistic over Z.

For each distribution q ∈ ∆(Z), the minimum expected loss de-

fines an entropy function asH(q) = minh∈H Eq

{
L(h(x), y)

}
[11].

For instance, if L(ŷ, y) = I(y 6= ŷ) and H contains the posterior

Bayes rule, the entropy is given by

H(q) = Eq

{
1−max

y∈Y
q(y|x)

}
= 1−

∫
max
y∈Y

q(x, y)dx (4)

where q(y|x) denotes the conditional distribution of Y given X for

q. Under mild regularity conditions [9, 11], the minimax solution of

(2) coincides with its maximin solution. Therefore, RRM methods

solve (2) using as surrogate of q the distribution q∗ that maximizes

the associated entropy near the empirical distribution, i.e.,

q∗ = argmin
q
ψ(q, pe)− λH(q) (5)

for a regularization parameter λ. Both ERM and RRM strategies

are often equivalent [3]. However, the empirical distribution of non-

standard training samples is often not adequate to assess the uncer-

tainty about prediction variables (see Section 3.2 below), and in this

paper we extend the RRM approach for non-standard supervision.

2.2 Probability distributions and probabilistic
transformations

Probabilistic transformations, also known as Markov transitions or

just transitions [1, 24], are a generalization of the concept of deter-

ministic transformation and allow to represent random and uncertain

processes. In the following, for each support set V , a probability dis-

tribution q ∈ ∆(V) is given by a function on V , e.g., density function

or probability mass function.3

3 We consider RVs with probability measures dominated by a base measure.
More general scenarios can be analogously treated by requiring certain
measure-theoretic regularity conditions such as Borel probability measures
and Polish spaces, see for instance [1, 11].

Definition 1. A probabilistic transformation is a linear map that

transforms probability distributions into probability distributions.

For support sets V and W , we denote by ∆(V,W) the set of proba-

bilistic transformations T with T (q) ∈ ∆(W) for q ∈ ∆(V).

If V and W have n and m elements, respectively, a proba-

bilistic transformation in ∆(V,W) is given by a m × n column-

stochastic Markov transition matrix K; then T (q) = r given by

r(w) =
∑

v∈V K(w, v)q(v), with K(w, v) the matrix component

in row w ∈ W and column v ∈ V . Analogously, for infinite sets,

a probabilistic transformation in ∆(V,W) is given by a function

K(w, v) called Markov transition kernel, then T (q) = r given by

r(w) =
∫
V
K(w, v)q(v)dv. Simple examples of probabilistic trans-

formations are deterministic and set-valued functions f : V → W
in which the image of a distribution supported in a single point v
is a uniform probability distribution with support f(v). In addition,

the conditional distribution of an RV W conditioned on an RV V
provides a probabilistic transformation denoted TW|V that maps the

probability distribution of V to that of W.

Probabilistic transformations can be composed in series and in par-

allel. For instance, if T1 ∈ ∆(V1,W1) and T2 ∈ ∆(V2,W2) are

given by Markov transitions kernelsK1(w1, v1) andK2(w2, v2), re-

spectively, the parallel composition of T1 and T2 denoted T1 ⊗T2 ∈
∆(V1 × V2,W1 × W2) is given by the Markov transition kernel

K1(w1, v1)K2(w2, v2). For finite support sets, composition in se-

ries and parallel corresponds to matrix multiplication and Kronecker

product, respectively.

3 Supervision with non-standard training samples

In this section we consider non-standard supervision cases in which

examples at prediction and training are instantiations of two pos-

sibly different RVs Z and Z̃, that is, training samples are d =
(z̃(1), z̃(2), . . . , z̃(n)) where z̃(i) for i = 1, 2, . . . , n are indepen-

dent instantiations of Z̃. Several current supervision schemes use

non-standard training data such as:

• Noisy labels [16, 14]: labels at prediction and training take the

same categorical values, but training labels are affected by errors.

• Multiple labels [12]: labels at prediction are single categorical val-

ues and labels at training are sets of categorical values.

• Weak multi-labels [23]: labels at prediction are sets of categorical

values and labels at training are partial sets of categorical values.

• Privileged information [18]: instances at training stage have more

components than those at prediction.

• Prediction stage (PS) corrupted instances [7]: instances at predic-

tion are corrupted by noise.

• Training stage (TS) corrupted instances [21]: instances at training

are corrupted by noise.

• Representation based (RB) domain adaptation [5]: examples at

prediction and training belong to different domains that share a

common representation.

• Covariate shift [22]: variables at prediction and training share the

same conditional distribution of labels given instances, but in-

stances at prediction and training have different marginal distri-

butions.

In the following we present a unifying framework for non-standard

supervision, and describe how current and novel schemes can be ad-

dressed under such framework.
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Figure 1. The relationship between prediction and training variables imposes structural constraints for feasible distributions (red polyhedra), and enables to
use information from training samples as uncertainty sets (orange ellipsoids).

3.1 Unifying framework for non-standard
supervision

Let B be a support set, and T ∈ ∆(Z,B) and T̃ ∈ ∆(Z̃,B) be

probabilistic transformations such that T (p) = T̃ (p̃) for p and p̃ the

distributions of Z and Z̃, respectively. T (p) = T̃ (p̃) is the proba-

bility distribution of an RV B that we call bridge since it serves to

extract information for Z from training samples in Z̃. For instance,

if prediction examples are affected by noisy instances and training

examples are affected by noisy labels, a variable composed by noisy

instances and noisy labels can serve as a bridge to extract the infor-

mation in training samples (see third case study in Section 5). Prob-

abilistic transformations T and T̃ represent the relationship between

prediction and training variables, impose structural constrains into

the distributions considered, and allow to extract the information in

non-standard training data as follows (see Fig. 1). Feasible distribu-

tions F ⊂ ∆(Z) and F̃ ⊂ ∆(Z̃) are

F = {q ∈ ∆(Z) : ∃ q̃ ∈ ∆(Z̃), T (q) = T̃ (q̃)}

F̃ = {q̃ ∈ ∆(Z̃) : ∃ q ∈ ∆(Z), T̃ (q̃) = T (q)}
Note that feasibility is a necessary condition to be the actual distribu-

tion of Z or Z̃. One consequence of the above is that ERM approach is

inadequate in these settings since the empirical distribution of train-

ing samples is often not feasible (see discussion for Equation (8) in

Section 3.2 below).

The above probabilistic transformations also allow to define un-

certainty sets U ⊂ ∆(Z) as

U = {q ∈ ∆(Z) : ψ(T (q), T̃ (p̃e)) < ε}

where ψ is a discrepancy function in ∆(B) and p̃e is the empirical

distribution in ∆(Z̃) of training samples. Therefore, learning from

non-standard training data can be approached analogously to RRM,

substituting optimization in (5) by

min
q∈F

ψ
(
T (q), T̃ (p̃e)

)
− λH(q) (6)

where λ > 0 is a regularization parameter. We call GRRM the ap-

proach given by using (6) above instead of (5). Note that it reduces

to RRM in the case of standard supervision, i.e., Z = Z̃, but allows

also to use non-standard training data via the structural constraints

and uncertainty sets given by the probabilistic transformations T and

T̃ .

The implementation complexity of GRRM is also similar to that

of RRM since both can be enabled by solving a convex optimization

problem and their main difference lies on how the uncertainty set U
is defined (by means of ψ(T (q), T̃ (p̃e)) instead of ψ(q, pe)). There-

fore, efficient implementations of GRRM can be devised similarly as

for RRM, for instance by exploiting equivalent reformulations based

on convex duality [9, 20, 2]. The determination of transformations

T and T̃ in practice requires certain knowledge about the relation-

ship between prediction and training variables, and possibly to es-

timate certain parameters similarly to current techniques, e.g., label

noise probabilities [16, 14]. This requirement is to be expected and

unavoidable since non-standard supervision uses information from

training variables that is used for prediction variables. Note that in

most scenarios, such as those described in Tables 1 and 2 below, the

knowledge required to determine transformations T and T̃ is quite

modest since the same transformations can be used with indepen-

dence of the actual probability distributions of prediction and train-

ing variables.

3.2 Different non-standard supervision schemes
under the proposed framework

Table 1 shows how different current supervision schemes can be ad-

dressed under the proposed framework, and how the probabilistic

transformations T and T̃ represent the relationship between predic-

tion and training variables. In certain supervision schemes, such as

noisy labels, multiple lables, and TS corrupted intances, examples

at training stage are less precise than those at prediction. Then, we

can take B = Z̃ and T ∈ ∆(Z, Z̃) the probabilistic transforma-

tion corresponding to the conditional distribution of training vari-

ables given prediction variables. In other schemes, such as privileged

information and PS corrupted instances, examples at training stage

are more precise than those at prediction. Then, we can take B = Z
and T̃ ∈ ∆(Z̃,Z) the probabilistic transformation corresponding

to the conditional distribution of prediction variables given train-

ing variables. Yet in other schemes, such as RB domain adaptation,

examples at prediction and training stages are not related by being

more or less precise but can be related through an instances’ repre-

sentation. Then, we can take B as such common representation and



Table 1. Current non-standard supervision schemes.

Supervision scheme

Prediction Z = (X,Y)
vs

training Z̃ = (X̃, Ỹ)
Bridge B

Prob.

transformations

Noisy labels

X = X̃
ỹ noisy

ỹ set, y ∈ ỹ
y, ỹ sets, ỹ ⊂ y

Z̃
T = I ⊗ TỸ|Y

T̃ = I
Multiple labels

Weak multi-labels

Privileged information X̃ = (X,Xpriv)
Z

T = I

T̃ = TX|X̃ ⊗ IPS corrupted instances x noisy

TS corrupted instances x̃ noisy X̃
T = TX̃|X ⊗ I

T̃ = I

RB domain adaptation Y = Ỹ, Y 6= Ỹ General T = T̃ = TB|Z

T̃ = T ∈ ∆(Z,B) the probabilistic transformation corresponding

to the function mapping instances to their representation.

The proposed framework can offer a common methodology for

learning using non-standard training data based on GRRM that uses

distribution q∗ solving (6) instead of p in (1). In addition, such frame-

work can bring new insights for the design of algorithms for su-

pervised classification. For instance, certain existing approaches for

noisy labels [16, 24] first transform loss functions in Z into loss func-

tions in Z̃ and then use the ERM approach in Z̃. However, the empir-

ical distribution of the training samples p̃e cannot correspond in this

case with a feasible distribution in ∆(Z), because T (q) = T̃ (p̃e)
with T̃ = I requires that q takes both positive and negative values.

Specifically, if Z = {−1,+1},

T = I ⊗
[

1− ρ− ρ+

ρ− 1− ρ+

]
(7)

with ρ− and ρ+ the probabilities of erroneous labelling in training

when the actual label is −1 and +1, respectively. The methods pre-

sented in [16, 24] transform original loss function L(ŷ, y) as L̃(ŷ, y)
with
[
L̃(ŷ,−1)

L̃(ŷ,−1)

]
=

[
1− ρ− ρ+

ρ− 1− ρ+

]−1 [
L(ŷ,−1)
L(ŷ,−1)

]
=

1

1− ρ− − ρ+

[
1− ρ+ −ρ−
−ρ+ 1− ρ−

] [
L(ŷ,−1)
L(ŷ,−1)

]

and then obtain classification rules by minimizing the expected loss

with respect to empirical distributions p̃e. However, if T (q) = p̃e
and x(i) is an instance incorrectly labelled in training as ỹ = −1,

then (7) implies that

q(x(i), y = 1) = − ρ+

n(1− ρ− − ρ+)
(8)

that can be significantly smaller than zero for moderate training sizes.

This example illustrates that ERM can be inadequate for noisy labels,

since it determines an optimal classification rule with respect to a

measure that is not a probability measure.

The presented framework can also enable the development of

novel supervision schemes of practical interest. For instance, super-

vision schemes in which labels at training are more precise than la-

bels at prediction (e.g., multi-option classification with precise train-

ing labels) can be seen as examples of the proposed framework with

B = Z and T̃ = I ⊗ TY|Ỹ ∈ ∆(Z̃,Z). Additionally, note that the

proposed framework can encompass combinations of the schemes

described above. For instance, supervision schemes in which in-

stances at prediction and labels at training are less precise than those

at training and prediction, respectively, can be seen as examples of

the proposed framework with B = (X, Ỹ), T = I ⊗ TỸ|Y ∈
∆(Z,B), and T̃ = TX|X̃ ⊗ I ∈ ∆(Z̃,B).

Other current techniques such as those developed under the

paradigm of “covariate shift” exploit a specific relationship between

the probability distributions of examples at prediction and training

[22]. Those techniques assume that variables at prediction and train-

ing share the same conditional distribution of labels given instances,

but instances at prediction and training have different marginal dis-

tributions p(x) and p̃(x), i.e., X = X̃ , Y = Ỹ , and

p(x, y) = p̃(x, y)
p(x)

p̃(x)
. (9)

Such techniques use samples of instances at prediction and training

to estimate the function p(x)/p̃(x), and determine the classification

rule using a ERM that weights training samples according to the esti-

mated function. Note that (9) can be thought of as a mapping of p̃ to

p. However, unlike the proposed probabilistic transformations T and

T̃ , such mapping depends on the specific probability distributions

followed by prediction and training instances so its usage requires to

estimate such mapping for each specific probability distributions.

4 Supervision with heterogeneous training samples

In this section we consider supervision cases in which train-

ing data is an ensemble of samples with m different types,

i.e., d = (d1, d2, . . . , dm), and, for i = 1, 2, . . . ,m, di =

(z̃
(1)
i , z̃

(2)
i , . . . , z̃

(ni)
i ) where z̃

(j)
i for j = 1, 2, . . . , ni are indepen-

dent instantiations of Z̃i. Several current supervision schemes use the

following ensembles of training samples:

• Semi-supervised classification [4, 19]: a subset of training exam-

ples miss labels.

• TS missing instances [21]: some training examples miss different

instance’ components.

• Variable quality data [6, 24]: different subsets of training examples

are affected by different noise intensities.
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Figure 2. The relationships between prediction and each type of training variables impose structural constraints for feasible distributions (red polygons), and
enable to use information from heterogeneous training samples as uncertainty sets (orange ellipses).

• Domain adaptation with multiple sources [15]: different subsets

of training examples belong to different but similar domains.

The following shows how heterogenous training samples can be

aggregated by further extending the framework presented in pre-

vious section. Let, for i = 1, 2 . . . , m, Bi be a support set, and

Ti ∈ ∆(Z,Bi) and T̃i ∈ ∆(Z̃i,Bi) be probabilistic transformations

such that Ti(p) = T̃i(p̃i) for p and p̃i the distributions of Z and Z̃i,

respectively. Analogously to the case described in previous section

for only one type of training samples, i.e., m = 1, such probabilis-

tic transformations allow to extract the information in heterogeneous

and non-standard training data (see Fig. 2). Specifically, feasible dis-

tributions and uncertainty sets in ∆(Z) can be defined as

F = {q ∈ ∆(Z) : ∃ q̃i ∈ ∆(Z̃i), Ti(q) = T̃i(q̃i)

∀ i = 1, 2, . . . , m}

U = {q ∈ ∆(Z) :
m∑

i=1

wiψ(Ti(q), T̃i(p̃ei)) < ε}

with wi > 0 a parameter weighting the discrepancy in each ∆(Bi),
e.g., wi ∝ √

ni. Therefore, learning from non-standard heteroge-

neous training data d1, d2, . . . , dm can be approached by GRRM

generalizing equation (6) as

min
q∈F

m∑

i=1

wiψ
(
Ti(q), T̃i(p̃ei)

)
− λH(q) (10)

where λ > 0 is a regularization parameter.

Table 2 shows how different current supervision schemes with

heterogeneous training samples can be addressed under the pro-

posed framework. In semi-supervision and TS missing instances,

samples in one subset of the training samples follow the same dis-

tribution as those at prediction stage, i.e., B1 = Z̃1 = Z, while

the remaining training samples are less precise than those at pre-

diction, i.e., Bi = Z̃i and Ti = TZ̃i|Z
∈ ∆(Z, Z̃i) for i > 1.

In particular, for TS missing instances, training samples can be

categorized in terms of the instance component that is missing

with x̄i = (x1, x2, . . . , xi−1, xi+1, . . . , xr). In other supervision

schemes, such as variable quality data or domain adaptation with

multiple sources, the training samples subsets are affected by dif-

ferent label noises (Ti = I ⊗ TỸi|Y
) or belong to different domains

with a common representation (Ti = T̃i = TB|Zi
), respectively.

The proposed framework can also enable the development of novel

supervision schemes that aggregate general ensembles of training

samples, such as those described in fourth case study in Section 5.

These new supervision schemes could be specially suitable for envi-

ronments of open collaboration where each participant in the annota-

tion process could choose a type of contribution based on resources,

commitment, remuneration, etc. For instance, different groups of par-

ticipants could choose to use high- or low-resolution instances, to

annotate examples quickly or meticulously, etc.

5 Experiments

This section shows the feasibility of the general framework proposed

to encompass multiple existing schemes as well as to enable novel

types of supervision. Specifically, we consider four experimentation

case studies: two well-studied non-standard supervision schemes,

and two novel non-standard supervision schemes. We solved the con-

vex optimization problems (6) and (10) using CVX package [10]

with entropy given by (4). As in [9], the distributions considered have

instances support that coincides with that of the empirical distribu-

tion, and we use the discrepancy given by (3).

Table 4 shows the estimated accuracy of proposed GRRM for two

existing supervision schemes (noisy labels and semi-supervision) in

comparison with several representative methods using the 3 UCI

datasets that are used in both [14] and [19] (see details in Table 3). In

these two case studies we used (3) with statistic

t(z) = (θ−(y), θ−(y)x, θ+(y), θ+(y)x)

where θ = (θ−, θ+) is the one-hot encoding [9] of the class y and the

step (1) is solved by a support vector machine (SVM) with weights

given by the solutions of (6) and (10). For noisy labels we compare



Table 2. Current heterogeneous supervision schemes

Supervision scheme
Training samples

types Z̃i

Bridges Bi
Prob.

transformations

Semi-supervision
Z̃1 = Z = (X,Y)

Z̃2 = X

B1 = Z = Z̃1

B2 = Z̃2

T1 = T̃1 = I

T2 = TX|Z, T̃2 = I

TS missing instances
Z̃1 = Z = (X,Y)

Z̃i+1 = (X̄i,Y)

B1 = Z = Z̃1

Bi+1 = Z̃i+1

T1 = T̃1 = I
Ti+1 = TX̄i|X

⊗ I

T̃i+1 = I

Variable quality data
Z̃i = (X,Yi), yi noisy

Yi 6= Yj , i 6= j
Bi = X̃i

Ti = I ⊗ TỸi|Y

T̃i = I

Domain adaptation with

multiple sources
X̃i = X , X̃i 6= X General Ti = T̃i = TB|Z

Table 3. Data sets

Name dim. instances num. samples

Diabetes 8 768 (268+,500-)
German 20 1000 (300+,700-)
Heart 13 270 (120+,150-)
Tic-tac-toe 9 958 (626+,332-)

the accuracy of GRRM with that of 4 methods, as reported in [14]

(case ρ− = 0.1 and ρ+ = 0.3). For semi-supervision we compare

the accuracy of GRRM with that of 3 methods, as reported in [19],

as well as method SMIR4 proposed in [17] (we used 5% and 30% la-

beled and unlabeled samples, resp.). The results in Table 4 show that

GRRM can obtain state-of-the-art accuracies in well-studied non-

standard supervision schemes.

Table 4. Accuracy of proposed GRRM for existing supervision schemes.

Technique
Data set

German Heart Diabetes

N
o
is

y
la

b
el

s GRRM 72.6% 78.3% 73.2%
IW 69.6% 72.1% 71.5%
LD 70.8% 72.2% 73.2%
eIW 68.8% 70.1% 74.3%
StPMKL 67.2% 54.7% 66.5%

S
em

i-
su

p
er

v
is

io
n

GRRM 70.0% 77.8% 70.0%
Lap-TSVM 63.5% 75.8% 63.4%
Lap-SVM 64.6% 74.3% 63.0%
TSVM 61.2% 73.7% 60.0%
SMIR 70.0% 75.1% 68.6%

Fig. 3 and Fig. 4 show the accuracy of proposed GRRM in novel

non-standard supervision schemes using the UCI tic-tac-toe dataset.

In particular, the board configurations in the 2x2 upper-left block are

used as instances to predict the game end, and classification is done

by computing labels’ conditional probabilities.

4 Implemented using code in https://github.com/wittawatj/smir
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Figure 3. Supervision with noisy labels (training) and noisy instances
(prediction).
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Figure 4. Learning curves using training samples with 4 different types.



The first novel supervision scheme considers noisy labels at train-

ing and noisy instances at prediction. We compare classification ac-

curacy with varying probabilities of errors for 3 implementations:

benchmark bound obtained by using ERM with noiseless instances

and labels, naive ERM that does not account for the noises, and pro-

posed GRRM using (3) with indicator functions of each board case

as statistics. The probabilities of incorrectly labeling a “win for x”

and a “not win for x” are ρ+ and ρ−, respectively, while the proba-

bility of an error in reading each board’s cell is η. Fig. 3 compares

the accuracies obtained varying ρ+ and η from 0 to 0.5 with ρ+ = η
and ρ− = ρ+/2. It can be observed that proposed GRRM can en-

able the usage of both noisy labels at training and noisy instances at

prediction even when they are severely affected by noise.

The second novel supervision scheme aggregates training samples

with 4 different types: standard supervision, noisy labels (ρ− = 0.1,

ρ+ = 0.3), domain adaptation with the middle vertical 3x1 block

as instances, and privileged information with all cells except the up-

right and low-left corners as instances. Fig. 4 compares the accura-

cies obtained by proposed GRRM using different amounts of train-

ing samples for each type. The leftmost points in the curves show the

accuracy obtained aggregating 80 samples of each type, and the re-

maining points show how accuracy increases by increasing the num-

ber of training samples of different types while keeping the others

fixed. It can be observed that the proposed GRRM can aggregate

training samples with different types. As expected, the accuracy in-

creases faster by adding more informative training samples (standard

and privileged information) than by adding less informative train-

ing samples (noisy labels and domain adaptation). These heteroge-

nous supervision schemes can improve the accuracy vs cost trade-off

in training stages by enabling the aggregation of multiple samples’

types with different acquisition costs and information contents.

6 Conclusion

The paper presents a unifying framework and learning techniques for

supervised classification with non-standard and heterogenous train-

ing data. The introduced methodology of generalized robust risk min-

imization (GRRM) can enable to develop learning algorithms for cur-

rent and novel supervision schemes in a unified manner. The results

presented can lead to new learning scenarios able to balance cost vs

accuracy trade-offs of training stages, and seamlessly aggregate en-

sembles of training samples with assorted types and qualities.

Acknowledgements

We thank the Spanish Ministry of Science through Ramon y Cajal

under Grant RYC-2016-19383 and TIN2017-82626-R, the BCAM’s

Severo Ochoa Excellence Accreditation SEV-2017-0718, the Basque

Government through the ELKARTEK and BERC 2018-2021 pro-

grammes, and the 2018 Leonardo Grant for Researchers and Cultural

Creators, BBVA Foundation.

REFERENCES

[1] Charalambos D. Aliprantis and Kim C. Border, Infinite dimensional

analysis, Springer-Verlag, Berlin, 1994.
[2] Kaiser Asif, Wei Xing, Sima Behpour, and Brian D. Ziebart, ‘Adversar-

ial cost-sensitive classification’, in Conference on Uncertainty in Arti-

ficial Intelligence, pp. 92–101, (2015).
[3] Dimitris Bertsimas and Martin S. Copenhaver, ‘Characterization of the

equivalence of robustification and regularization in linear and matrix
regression’, European Journal of Operational Research, 270(3), 931–
942, (2017).

[4] Olivier Chapelle and Alexander Zien, ‘Semi-supervised classification
by low density separation’, in Proceedings of the Tenth International

Workshop on Artificial Intelligence and Statistics, pp. 57–64, (2005).
[5] Minmin Chen, Kilian Q. Weinberger, and John C. Blitzer, ‘Co-training

for domain adaptation’, in Advances in Neural Information Processing

Systems, pp. 2456–2464, (2011).
[6] Koby Crammer, Michael Kearns, and Jennifer Wortman, ‘Learning

from data of variable quality’, in Advances in Neural Information Pro-

cessing Systems, pp. 219–226, (2006).
[7] Ofer Dekel, Ohad Shamir, and Lin Xiao, ‘Learning to classify with

missing and corrupted features’, Machine Learning, 81(2), 149–178,
(2010).

[8] Theodoros Evgeniou, Massimiliano Pontil, and Tomaso Poggio, ‘Reg-
ularization networks and support vector machines’, Advances in com-

putational mathematics, 13(1), 1–50, (2000).
[9] Farzan Farnia and David Tse, ‘A minimax approach to supervised learn-

ing’, in Advances in Neural Information Processing Systems, pp. 4240–
4248, (2016).

[10] Michael Grant, Stephen Boyd, and Yinyu Ye, ‘Disciplined convex pro-
gramming’, in Global Optimization: From Theory to Implementation,
eds., L. Liberti and N. Maculan, Nonconvex Optimization and its Ap-
plications, 155–210, Springer, (2006).

[11] Peter D. Grünwald and A. Philip Dawid, ‘Game theory, maximum en-
tropy, minimum discrepancy and robust Bayesian decision theory’, An-

nals of Statistics, 32(4), 1367–1433, (2004).
[12] Rong Jin and Zoubin Ghahramani, ‘Learning with multiple labels’,

in Advances in Neural Information Processing Systems, pp. 921–928,
(2003).

[13] Jaeho Lee and Maxim Raginsky, ‘Minimax statistical learning with
Wasserstein distances’, in Advances in Neural Information Processing

Systems, pp. 2692–2701, (2018).
[14] Tongliang Liu and Dacheng Tao, ‘Classification with noisy labels by

importance reweighting’, IEEE Transactions on pattern analysis and

machine intelligence, 38(3), 447–461, (2016).
[15] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh, ‘Domain

adaptation with multiple sources’, in Advances in Neural Information

Processing Systems, pp. 1041–1048, (2009).
[16] Nagarajan Natarajan, Inderjit S. Dhillon, Pradeep Ravikumar, and Am-

buj Tewari, ‘Learning with noisy labels’, in Advances in Neural Infor-

mation Processing Systems, pp. 1196–1204, (2013).
[17] Gang Niu, Wittawat Jitkrittum, Bo Dai, Hirotaka Hachiya, and Masashi

Sugiyama, ‘Squared-loss mutual information regularization: A novel
information-theoretic approach to semi-supervised learning’, in Inter-

national Conference on Machine Learning, pp. 10–18, (2013).
[18] Dmitry Pechyony and Vladimir Vapnik, ‘On the theory of learnining

with privileged information’, in Advances in Neural Information Pro-

cessing Systems, pp. 1894–1902, (2010).
[19] Zhiquan Qi, Yingjie Tian, and Yong Shi, ‘Laplacian twin support vector

machine for semi-supervised classification’, Neural Networks, 35, 46–
53, (2012).

[20] Soroosh Shafieezadeh-Abadeh, Daniel Kuhn, and Peyman Mohajerin
Esfahani, ‘Regularization via mass transportation’, arXiv preprint,
arXiv:1710.10016, (2017).

[21] Pannagadatta K. Shivaswamy, Chiranjib Bhattacharyya, and Alexan-
der J. Smola, ‘Second order cone programming approaches for handling
missing and uncertain data’, Journal of Machine Learning Research, 7,
1283–1314, (2006).

[22] Masashi Sugiyama and Motoaki Kawanabe, Machine learning in non-

stationary environments: Introduction to covariate shift adaptation,
MIT press, Cambridge, US, 2012.

[23] Yu-Yin Sun, Yin Zhang, and Zhi-Hua Zhou, ‘Multi-label learning with
weak label’, in Proceedings of the Twenty-Fourth AAAI Conference on

Artificial Intelligence, pp. 593–598, (2010).
[24] Brendan van Rooyen and Robert C. Williamson, ‘A theory of learning

with corrupted labels’, Journal of Machine Learning Research, 18, 1–
50, (July 2018).

[25] Vapnik Vladimir, Statistical learning theory, Wiley, New York, 1998.


