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Abstract

We generalize to multi–commutators the usual Lieb–Robinson bounds
for commutators. In the spirit of constructive QFT, this is done so as to
allow the use of combinatorics of minimally connected graphs (tree expan-
sions) in order to estimate time–dependent multi–commutators for interact-
ing fermions. Lieb–Robinson bounds for multi–commutators are effective
mathematical tools to handle analytic aspects of the dynamics of quantum
particles with interactions which are non–vanishing in the whole space and
possibly time–dependent. To illustrate this, we prove that the bounds for
multi–commutators of order three yield existence of fundamental solutions
for the corresponding non–autonomous initial value problems for observ-
ables of interacting fermions on lattices. We further show how bounds for
multi–commutators of an order higher than two can be used to study linear
and non–linear responses of interacting fermions to external perturbations.
All results also apply to quantum spin systems, with obvious modifications.
However, we only explain the fermionic case in detail, in view of applica-
tions to microscopic quantum theory of electrical conduction discussed here
and because this case is technically more involved.
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1 Introduction
Lieb–Robinson bounds are upper–bounds on time–dependent commutators and
were originally used to estimate propagation velocities of information in quantum
spin systems. They have first been derived in 1972 by Lieb and Robinson [LR].
Nowadays, they are widely used in quantum information and condensed matter
physics. Phenomenological consequences of Lieb–Robinson bounds have been
experimentally observed in recent years, see [Ch]. For an historical overview on
Lieb–Robinson bounds, see [VL] and references therein.

For the reader’s convenience and completeness, we start by deriving such
bounds for fermions on the lattice with (possibly non–autonomous) interactions.
As explained in [NS] in the context of quantum spin systems, Lieb–Robinson
bounds are only expected to hold true for systems with short–range interactions.
We thus define Banach spaces W of short–range interactions and prove Lieb–
Robinson bounds for the corresponding fermion systems. The spaces W include
density–density interactions resulting from the second quantization of two–body
interactions defined via a real–valued and integrable interaction kernel v (r) :
[0,∞) → R. Considering fermions with spin 1/2, our setting includes, for in-
stance, the celebrated Hubbard model (and any other system with finite–range
interactions) or models with Yukawa–type potentials. Two–body interactions de-
caying polynomially fast in space with sufficiently large degree are also allowed,
but the Coulomb potential is excluded because it is not summable at large dis-
tances. The method of proof we use to get Lieb–Robinson bounds for non–
autonomous C∗–dynamical systems related to lattice fermions is, up to simple
adaptations, the one used in [NS] for (autonomous) quantum spin systems. Com-
pare Theorem 4.3, Lemma 4.4, Theorem 5.1 and Corollary 5.2 with [NS, Theo-
rems 2.3. and 3.1.]. See also [BMNS] where (usual) Lieb–Robinson bounds for
non–autonomous quantum spin systems have already been derived [BMNS, The-
orems 4.6].

Once the Lieb–Robinson bounds for commutators are established, we combine
them with results of the theory of strongly continuous semigroups to derive prop-
erties of the infinite–volume dynamics. These allow us to extend Lieb–Robinson
bounds to time–dependent multi–commutators, see Theorems 4.10–4.11 and 5.4.
The new bounds on multi–commutators make possible rigorous studies of dy-
namical properties that are relevant for response theory of interacting fermion
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systems. For instance, they yield tree–decay bounds in the sense of [BPH1,
Section 4] if interactions decay sufficiently fast in space (typically some poly-
nomial decay with large enough degree is needed). In fact, by using the Lieb–
Robinson bounds for multi–commutators, we extend in [BP5, BP6] our results
[BPH1, BPH2, BPH3, BPH4] on free fermions to interacting particles with short–
range interactions. This is an important application of such new bounds: The rig-
orous microscopic derivation of Ohm and Joule’s laws for interacting fermions,
in the AC–regime. See Section 6 and [BP4] for a historical perspective on this
subject.

Via Theorems 6.1 and 6.5, we show, for example, how Lieb–Robinson bounds
for multi–commutators can be applied to derive decay properties of the so–called
AC–conductivity measure at high frequencies. This result is new and is obtained
in Section 6. Cf. [BP5, BP6]. Lieb–Robinson bounds for multi–commutators
have, moreover, further applications which go beyond the use on linear response
theory presented in Section 6. For instance, as explained in Sections 4.5 and 5.3,
they also make possible the study of non–linear corrections to linear responses to
external perturbations.

The new bounds can also be applied to non–autonomous systems. Indeed, the
existence of a fundamental solution for the non–autonomous initial value prob-
lem related to infinite systems of fermions with time–dependent interactions is
usually a non–trivial problem because the corresponding generators are time–
dependent unbounded operators. The time–dependency cannot, in general, be
isolated into a bounded perturbation around some unbounded time–constant gen-
erator and usual perturbation theory cannot be applied. In many important cases,
the time–dependent part of the generator is not even relatively bounded with re-
spect to (w.r.t.) the constant part. In fact, no unified theory of non–autonomous
evolution equations that gives a complete characterization of the existence of
fundamental solutions in terms of properties of generators, analogously to the
Hille–Yosida generation theorems for the autonomous case, is available. See,
e.g., [K4, C, S, P, BB] and references therein. Note that the existence of a funda-
mental solution implies the well–posedness of the initial value problem related to
states or observables of interacting lattice fermions, provided the corresponding
evolution equation has a unique solution for any initial condition.

The Lieb–Robinson bounds on multi–commutators we derive here yield the
existence of fundamental solutions as well as other general results on non–auto-
nomous initial value problems related to fermion systems on lattices with inter-
actions which are non–vanishing in the whole space and time–dependent. This is
done in a rather constructive way, by considering the large volume limit of finite–
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volume dynamics, without using standard sufficient conditions for existence of
fundamental solutions of non–autonomous linear evolution equations. If interac-
tions decay exponentially fast in space, then we moreover show, also by using
Lieb–Robinson bounds on multi–commutators, that the non–autonomous dynam-
ics is smooth w.r.t. its generator on the dense set of local observables. See The-
orem 5.6. Note that the generator of the (non–autonomous) dynamics generally
has, in our case, a time–dependent domain, and the existence of a dense set of
smooth vectors is a priori not at all clear.

Observe that the evolution equations for lattice fermions are not of parabolic
type, in the precise sense formulated in [AT], because the corresponding genera-
tors do not generate analytic semigroups. They seem to be rather related to Kato’s
hyperbolic case [K2, K3, K4]. Indeed, by structural reasons – more precisely,
the fact that the generators are derivations on a C∗–algebra – the time–dependent
generator defines a stable family of operators in the sense of Kato. Moreover,
this family always possesses a common core. In some specific situations one
can directly show that the completion of this core w.r.t. a conveniently chosen
norm defines a so–called admissible Banach space Y of the generator at any time,
which satisfies further technical conditions leading to Kato’s hyperbolic condi-
tions [K2, K3, K4]. See also [P, Sect. 5.3.] and [BB, Sect. VII.1]. Nevertheless,
the existence of such a Banach space Y is a priori unclear in the general case
treated here (Theorem 5.5).

Our central results are Theorems 4.10–4.11 and 5.4. Other important asser-
tions are Corollary 4.12 and Theorems 5.5–5.6, 5.8–5.9, 6.1, 6.5. The manuscript
is organized as follows:

• In order to make our results accessible to a wide audience, in particular to
students in Mathematics with little Physics background, Section 2 presents
basics of Quantum Mechanics, keeping in mind its algebraic formulation.

• Section 3 introduces the algebraic setting for fermions, in particular the
CAR C∗–algebra. Other standard objects (like fermions, bosons, Fock
space, CAR, etc.) of quantum theory are also presented, for pedagogical
reasons.

• Section 4 is devoted to Lieb–Robinson bounds, which are generalized to
multi–commutators. We also give a proof of the existence of the infinite–
volume dynamics as well as some applications of such bounds. The tree–
decay bounds on time–dependent multi–commutators (Corollary 4.12) are

5



proven here. However, only the autonomous dynamics is considered in this
section.

• Section 5 extends results of Section 4 to the non–autonomous case. We
prove, in particular, the existence of a fundamental solution for the non–
autonomous initial value problems related to infinite interacting systems
of fermions on lattices with time–dependent interactions (Theorem 5.5).
This implies well–posedness of the corresponding initial value problems
for states and observables, provided their solutions are unique for any initial
condition. Applications in (possibly non–linear) response theory (Theorems
5.8–5.9) are discussed as well.

• Finally, Section 6 explains how Lieb–Robinson bounds for multi–commu-
tators can be applied to study (quantum) charged transport properties within
the AC–regime. This analysis yields, in particular, the asymptotics at high
frequencies of the so–called AC–conductivity measure. See Theorems 6.1
and 6.5.

Notation 1.1
(i) We denote by D any positive and finite generic constant. These constants do
not need to be the same from one statement to another.
(ii) A norm on the generic vector space X is denoted by ∥ · ∥X and the identity
map of X by 1X . The C∗–algebra of all bounded linear operators on (X , ∥·∥X ) is
denoted by B(X ). The scalar product on a Hilbert space X is denoted by ⟨·, ·⟩X .
(iii) If O is an operator, ∥ · ∥O stands for the graph norm on its domain.
(iv) By a slight abuse of notation, we denote in the sequel elements Xi ∈ Y
depending on the index i ∈ I by expressions of the form {Xi}i∈I ⊂ Y (instead of
(Xi)i∈I ⊂ I × Y ).

2 Algebraic Quantum Mechanics

2.1 Emergence of Quantum Mechanics
The main principles of physics were considered as well–founded by the end of
the nineteenth century, even with, for instance, no satisfactory explanation of the
phenomenon of thermal radiation, first discovered in 1860 by G. Kirchhoff. In
contrast to classical physics, which deals with continuous quantities, Planck’s in-

6



tuition was to introduce an intrinsic discontinuity of energy and a unsual1 statistics
(without any conceptual foundation, in a ad hoc way) to explain thermal radiation
in 1900. Assuming the existence of a quantum of action h, the celebrated Planck’s
constant, and this pivotal statistics he derived the well–known Planck’s law of
thermal radiation. Inspired by Planck’s ideas, Einstein presented his famous dis-
crete (corpuscular) theory of light to explain the photoelectric effect.

Emission spectra of chemical elements had also been known since the nine-
teenth century and no theoretical explanation was available at that time. It became
clear that electrons play a key role in this phenomenon. However, the classical so-
lar system model of the atom failed to explain the emitted or absorbed radiation.
Following again Planck’s ideas, N. Bohr proposed in 1913 an atomic model based
on discrete energies that characterize electron orbits. It became clear that the main
principles of classical physics are unable to describe atomic physics.

Planck’s quantum of action, Einstein’s quanta of light (photons), and Bohr’s
atomic model could not be a simple extension of classical physics, which, in turn,
could also not be questioned in its field of validity. N. Bohr tried during almost a
decade to conciliate the paradoxical–looking microscopic phenomena by defining
a radically different kind of logic. Bohr’s concept of complementarity gave in
1928 a conceptual solution to that problem and revolutionized the usual vision of
nature. See, e.g., [B]. For more details on the emergence of quantum mechanics,
see also [R]. Classical logic should be replaced by quantum logic as claimed
[BvN] by G. Birkhoff and J. von Neumann in 1936. See also [F].

On the level of theoretical physics, until 1925, quantum corrections were sys-
tematically included, in a rather ad hoc manner, into classical theories to allow
explicit discontinuous properties. Then, two apparently complementary directions
were taken by W.K. Heisenberg and E. Shrödinger, respectively, to establish basic
principles of the new quantum physics, in contrast with the “old quantum theory”
starting in 1900. Indeed, even with the so–called correspondence principle of N.
Bohr, “many problems, even quite central ones like the spectrum of helium atom,
proved inaccessible to any solution, no matter how elaborate the conversion”, see
[R, p. 18].

These parallel theories elaborated almost at the same time were in competi-
tion to be the new quantum theory until their equivalence became clear, thanks
to J. von Neumann who strongly contributed to the mathematical foundations of
Quantum Mechanics in the years following 1926. They are nowadays known in

1in regards to Boltzmann’s studies, which meanwhile have strongly influenced Planck’s work.
In modern terms M.K.E.L. Planck used the celebrated Bose–Einstein statistics.
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any textbook on Quantum Mechanics as the Schrödinger and Heisenberg pictures
of Quantum Mechanics. Schrödinger’s view point is generally the most known
and refers to the approach we first explain.

2.2 Schrödinger Picture of Quantum Mechanics (S1)
Following de Broglie’s studies on (Rutherford–) Bohr’s model and Einstein’s the-
ory of gases, E. Schrödinger took into account the wave theory of matter in 1925.
Indeed, by learning from wave optics in Classical Physics as well as from de
Broglie’s hypothesis on the wave property of matter, he derived the celebrated
Schrödinger equation, which describes the time evolution of the wave behavior of
all quantum objects. In mathematical words, this time–dependent behavior is de-
scribed by some family {ψ (t)}t∈R of wave functions within some Hilbert space
H, which depends on the quantum system under consideration. This evolution
is fixed by a (possibly unbounded) self–adjoint operator H = H∗ acting on H:
Indeed, for any initial wave function ψ (0) ∈ H at t = 0, the wave function at
arbitrary time t ∈ R is uniquely determined by the Schrödinger equation

i∂tψ (t) = Hψ (t) , t ∈ R . (1)

This implies in particular that the time evolution is unitary:

ψ (t) = e−itHψ (0) , t ∈ R . (2)

A typical example is given by H = L2(R3) with ψ (0) being taken to be a normal-
ized vector of H. In this case, |ψ (t, x) |2 is interpreted as the probability density
to detect the quantum particle at time t ∈ R and space position x ∈ R3.

2.3 Heisenberg Picture of Quantum Mechanics (H2)
Quantities like position, momentum, energy, etc., are represented by self–adjoint
operators acting on H and are called observables. They refer to all properties of
the physical system that can be measured. An important one is of course the en-
ergy observable, also named Hamiltonian, in reference to the celebrated Hamilto-
nian mechanics. It is, by definition, the self–adjoint operator H in the Schrödinger
equation (1).

In this context, the outcomes of measurements of the physical quantity as-
sociated with an arbitrary observable B have a random character, the statistical
distribution of which is completely described by the family {ψ (t)}t∈R of wave
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functions solving (1). At time t ∈ R, its expectation value is given by the real
number

⟨ψ (t) , Bψ (t)⟩H = ⟨ψ (0) , eitHBe−itHψ (0)⟩H . (3)

See (2). Here, ⟨·, ·⟩H denotes the scalar product of H. Viewing the state as time–
dependent and the observable fixed, like in Schrödinger’s picture of Quantum
Mechanics, is equivalent to viewing the state as being fixed and the observable
evolving as follows:

B 7→ τ t (B)
.
= eitHBe−itH , t ∈ R . (4)

The latter refers to Heisenberg’s view point: For every bounded Hamiltonians
H ∈ B(H), the map (4) defines a one–parameter continuous group {τ t}t∈R act-
ing on B(H), the Banach space B(H) of all bounded linear operators on H, and
satisfying the (autonomous) evolution equation

∀t ∈ R : ∂tτ t = τ t ◦ δ = δ ◦ τ t , τ 0 = 1B(H) , (5)

where δ is the generator defined by

δ (B)
.
= i [H, B]

.
= HB −BH , B ∈ B(H) . (6)

Note that {τ t}t∈R is a family of isomorphims of the Banach space B(H) and, for
all B1, B2 ∈ B(H),

δ(B∗
1) = δ(B1)

∗ and δ(B1B2) = δ(B1)B2 +B1δ(B2) . (7)

A linear operator δ acting on any algebra with involution (like B(H), see Section
2.5) that satisfies such properties is called symmetric derivation. (The symmetry
property refers to the first equality.) Indeed, generators of groups of automorphims
of C∗–algebras (Section 2.5) are necessarily symmetric derivations.

In this approach the wave function is then fixed for all times. This view
point took its origin in Heisenberg’s study of the dispersion relation done in 1925.
Schrödinger’s wave mechanics dovetailed with Heisenberg’s matrix mechanics.

Remark 2.1 (Unbounded Hamiltonians)
If H = H∗ is unbounded then it is not clear whether (4) defines aC0–group (that is,
a strongly continuous group) {τ t}t∈R of automorphisms of B(H) or not. This fact
is, however, not important here. Indeed, one starts (S1) either with Schrödinger’s
equation and (4) is well–defined, (H1) or with a C0–group {τ t}t∈R of automor-
phisms generated by a (possibly unbounded) symmetric derivation δ, see (5) and
(7). The latter uses the semigroup theory [BR1, EN] and refers to the algebraic
formulation of Quantum Mechanics explained in Section 2.5.
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2.4 Non–Autonomous Quantum Dynamics
If Ht = H∗

t is now a time–dependent self–adjoint operator acting on some Hilbert
space H for any time t ∈ R, the Schrödinger equation

i∂tψ (t) = Htψ (t) , t ∈ R ,

formally leads to a solution

ψ (t) = Ut,0ψ (0) , t ∈ R , (8)

with {Ut,s}s,t∈R being, a priori, the two–parameter group of unitary operators on
H generated by the (anti–self–adjoint) operator −iHt:

∀s, t ∈ R : ∂tUt,s = −iHtUt,s , Us,s
.
= 1H . (9)

This two–parameter family satisfies the cocycle (Chapman–Kolmogorov) prop-
erty

∀s, r, t ∈ R : Ut,s = Ut,rUr,s . (10)

Equation (9) is a non–autonomous evolution equation. The well–posedness
of such non–autonomous initial value problems requires some regularity proper-
ties of the family {Ht}t∈R of self–adjoint operators. For instance, if {Ht}t∈R ∈
C (R;B(H)) is a continuous family of bounded operators, the existence, unique-
ness and even an explicit form of the solution of (9) on the space B(H) (that is, in
the norm/uniform topology) is given by the Dyson–Phillips series:

Ut,s
.
= 1H +

∑
k∈N

(−i)k
∫ t

s

ds1 · · ·
∫ sk−1

s

dsk Hs1 · · ·Hsk , s, t ∈ R . (11)

In this case, {Ut,s}s,t∈R is a norm–continuous two–parameter group of unitary op-
erators. In particular, the norm ∥ψ (t) ∥H of (8) is constant for all times t ∈ R and
the statistical interpretation of this wave function is still meaningful. Moreover,
since the map B 7→ B∗ from B(H) to B(H) is continuous (in the norm/uniform
topology, see [RS1, Theorem VI.3 (e)]),

∀s, t ∈ R : ∂tU
∗
t,s = iU∗

t,sHt , U∗
s,s

.
= 1H . (12)

(This property is not that clear in the strong topology since the map B 7→ B∗

is not continuous anymore, but it could still be proven. See as an example [BB,
Lemma 68].)

10



However, the well–posedness of non–autonomous evolution equations like
(9) is much more delicate for unbounded generators. It has been studied, after
the first result of Kato in 1953 [K1], for decades by many authors (Kato again
[K2, K3] but also Yosida, Tanabe, Kisynski, Hackman, Kobayasi, Ishii, Gold-
stein, Acquistapace, Terreni, Nickel, Schnaubelt, Caps, Tanaka, Zagrebnov, Nei-
dhardt, etc.), see, e.g., [BB, K4, C, S, P, NZ] and the corresponding references
cited therein. Yet, no unified theory of such linear evolution equations that gives
a complete characterization analogously to the Hille–Yosida generation theorems
[EN] is known.

Assuming the well–posedness of the non–autonomous evolution equation (9),
the expectation value of any observable B (i.e., a self–adjoint operator acting on
H) is given, similarly to (3), by the real number

⟨ψ (t) , Bψ (t)⟩H = ⟨ψ (s) ,U∗
t,sBUt,sψ (s)⟩H , s, t ∈ R . (13)

By (9) and (12), in the Heisenberg picture of Quantum Mechanics (H2), we ob-
serve for any family {Ht}t∈R ∈ C (R;B(H)) that

B 7→ τ t,s (B)
.
= U∗

t,sBUt,s , s, t ∈ R ,

defines a two–parameter family {τ t,s}s,t∈R of automorphisms of B(H) satisfying
the (reverse) cocycle property

∀s, r, t ∈ R : τ t,s = τ r,sτ t,r , (14)

(cf. (10)) as well as the evolution equation

∀s, t ∈ R : ∂tτ t,s = τ t,s ◦ δt , τ s,s = 1B(H) . (15)

Here, δt is the time–dependent generator defined by

δt (B)
.
= i [Ht, B]

.
= HtB −BHt , B ∈ B(H) . (16)

Compare with Equations (5) and (6). Equation (15) is another type of non–
autonomous evolution equation on the Banach space B(H), the well–posedness of
which is much more easier to prove than the one of (9) for unbounded generators.

Indeed, non–autonomous evolution equations in mathematics usually refer to
non–autonomous initial value problems

∀t ≥ s : ∂tUt,s = −GtUt,s , Us,s
.
= 1X , (17)
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with generators Gt acting on some Banach space X for times t ≥ s. One impor-
tant mathematical issue of (9) or (17) for unbounded generators is to find sufficient
conditions to ensure that HtUt,s or GtUt,s are always well–defined on some (pos-
sibly time–dependent) dense subset D of H or X .

This problem does not appear in the non–autonomous initial value problem
(15). In particular, if the non–autonomous evolution equation

∀s, t ∈ R : ∂sτ t,s = −δs ◦ τ t,s , τ t,t = 1B(H) ,

is well–posed for some possibly unbounded family {δt}t∈R of generators, then
(15) is also well–posed, see for instance [BB, Lemma 93]. The converse does not
hold true, in general. Indeed, in contrast with (9) and (17), there is no domain
conservation in (15) to take care even if {δt}t∈R is a family of unbounded gener-
ators. An example is given in Section 5, compare in particular Corollary 5.2 (iii)
with Theorem 5.5.

As a consequence, for non–autonomous dynamics the Heisenberg picture of
Quantum Mechanics is mathematically more natural or technically advantageous
as compared to the Schrödinger picture. This gives a first argument to start the
quantum formalism with the Heisenberg picture, instead of the Schrödinger one
as it is done in many elementary textbooks on quantum physics. This approach
refers to the so–called algebraic formulation of Quantum Mechanics widely used
in Quantum Statistical Mechanics and Quantum Field Theory.

2.5 Algebraic Formulation of Quantum Mechanics (H1–S2)
Algebraic Quantum Mechanics is an approach, starting in the forties (cf. GNS
construction), which reverses the view point presented in Sections 2.2–2.4 by tak-
ing the Heisenberg picture of Quantum Mechanics (H1) as the more fundamental
one. Therefore, instead of starting with Hilbert spaces and the Schrödinger equa-
tion, one uses C∗–dynamical systems, that is, a pair constituted of a C∗–algebra
and a group of ∗–automorphisms. The first generalizes the Banach space B(H) of
all bounded linear operators acting on some Hilbert space H and the second, the
map (4). They are defined as follows:

(i): Let X ≡ (X ,+, ·C) be a complex vector space with a product map defined on
the Cartesian product X × X by

(B1, B2) 7→ B1B2 .
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X is an associative and distributive algebra, when, for any B1, B2, B3 ∈ X and all
complex numbers α1, α2 ∈ C,

(B1 +B2)B3 = B1B3 +B2B3 , (B1B2)B3 = B1(B2B3) ,

B3(B1 +B2) = B3B1 +B3B2 , α1α2(B1B2) = (α1B1)(α2B2) .

In the sequel, an algebra carries, by definition, an associative and distributive prod-
uct. X is a commutative algebra if B1B2 = B2B1 for any B1, B2 ∈ X . 1 ∈ X is
the unit (or identity) of X when B1 = 1B = B for all B ∈ X . If 1 ∈ X exists
then it is unique and X is named a unital algebra.

(ii): An involution is a map B 7→ B∗ from an algebra X to X that, by definition,
satisfies, for any B1, B2 ∈ X and α1, α2 ∈ C,

(B∗
1)

∗ = B1 , (B1B2)
∗ = B∗

2B
∗
1 , (α1B1 + α2B2)

∗ = α1B
∗
1 + α2B

∗
2 .

An algebra X equipped with an involution is a ∗–algebra and B ∈ X is self–
adjoint when B = B∗. In this case, by uniqueness of the unit, one checks that a
unit 1 has to be self–adjoint.

(iii): Let ∥ · ∥X be a norm on a vector space X . Then, X ≡ (X , ∥ · ∥X ) is a normed
algebra whenever X is an algebra and

∥B1B2∥X ≤ ∥B1∥X ∥B2∥X , B1, B2 ∈ X .

A normed algebra X is a Banach algebra if X is complete with respect to (w.r.t.)
the norm ∥ · ∥X . A Banach algebra X equipped with an involution such that

∥B∥X = ∥B∗∥X , B ∈ X ,

is a Banach ∗–algebra. Then, a Banach ∗–algebra X is a C∗–algebra whenever

∥B∗B∥X = ∥B∥2X , B ∈ X . (18)

If X is a Banach ∗–algebra, then there is a unique norm ∥ · ∥X on X such that
(X , ∥ ·∥X ) is a C∗–algebra. Note also that in C∗–algebras there is a natural notion
of spectrum, which is a real subset for any self–adjoint element.

(iv): Let X and Y be two C∗–algebras. A linear map π : X → Y is a ∗–
homomorphism when it preserves the product and involution of the C∗–algebras,
i.e., if, for all B1, B2 ∈ X ,

π (B1B2) = π (B1)π (B2) and π (B∗
1) = π (B1)

∗ .
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Such maps π are automatically contractive [BR1, Proposition 2.3.1] and even iso-
metric when π is injective [BR1, Proposition 2.3.3]. Bijective ∗–homomorphisms
are called ∗–isomorphisms. C∗–algebras X and Y are said to be ∗–isomorphic
whenever there exists a ∗–isomorphism π : X → Y . ∗–isomorphisms from X to
X are named ∗–automorphisms of the C∗–algebra X .

For more details on the theory of C∗–algebras, see, e.g., [BR1, KR1, KR2].
A well–known example of unital C∗–algebra is given by the Banach space

B(H) of all bounded linear operators acting on some Hilbert space H. The norm
on B(H) is of course the operator norm, as before, and the involution is defined
by taking the adjoint of operators. The complex vector space of complex–valued,
measurable, bounded functions on some set equipped with the sup–norm and the
point–wise product can also be seen as a unital commutative C∗–algebra.

We are now in position to explain the algebraic approach of Quantum Me-
chanics, which starts as follows.

Heisenberg Picture of Quantum Mechanics (H1). A physical system is de-
scribed by its physical properties, i.e., by a non–empty set O ̸= ∅ of all physical
quantifies that can be measured in this system, as well as by the relations between
them. Elements B ∈ O are called observables and are taken as self–adjoint ele-
ments of a unital2 C∗–algebra X . Each self–adjoint element B represents some
apparatus (or measuring device) and its spectrum corresponds to all values that
can come up by measuring the corresponding physical quantity. The quantum dy-
namics is given by a C0–group (that is, a strongly continuous group) τ .

= {τ t}t∈R
of ∗–automorphisms generated [EN, 1.2 Definition, 1.4 Theorem] by a symmetric
derivation δ acting on the C∗–algebra X . In particular, by [EN, 1.3 Lemma (ii)],
it satisfies the (autonomous) evolution equation

∀t ∈ R : ∂tτ t = τ t ◦ δ = δ ◦ τ t , τ 0 = 1X ,

with δ being a possibly unbounded operator acting on X . Compare with Equa-
tions (5)–(7). Recall also that symmetric derivations refer to (linear) operators
satisfying properties (7) on X . The pair (X , τ) is known as a (autonomous)
C∗–dynamical system. A similar automorphism family can be defined for non–
autonomous dynamics by using (14) and (15) on the domain Dom(δt) ⊆ X of a
time–dependent symmetric derivation δt for t ∈ R. See for instance Corollary 5.2
(iii). In this case, one speaks about non–autonomous C∗–dynamical systems.

2The existence of a unit 1 ∈ X is assumed to simplify discussions.
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Schrödinger Picture of Quantum Mechanics (S2). States are not anymore de-
fined from a wave function within some Hilbert space, like in Section 2.2. States
on the C∗–algebra X are, by definition, continuous linear functionals ρ ∈ X ∗

which are normalized and positive, i.e., ρ(1) = 1 and ρ(B∗B) ≥ 0 for all
B ∈ X . They represent the state of the physical system. Observe for instance
that Equation (3), or (13) in the non–autonomous situation, defines a continuous
linear functional on the C∗–algebra B(H) that is positive and normalized, pro-
vided ∥ψ (0) ∥H = 1. Thus, a state ρ represents the statistical distribution of all
measures of any observableB ∈ X . For commutativeC∗–algebras, it corresponds
to a probability distribution. If {τ t}t∈R is a C0–group of ∗–automorphism of X ,
then, for any time t ∈ R and state ρ ∈ X ∗,

ρt
.
= ρ ◦ τ t ∈ X ∗

is also a state. The same holds true if the dynamics would have been non–
autonomous. In the Schrödinger picture, the dynamics is consequently given by
the family {ρt}t∈R of states.

Therefore, in the algebraic formulation of Quantum Mechanics (H1–S2), there
is no a priori Hilbert space structure appearing in the mathematical framework, in
contrast with the approach S1–H2 presented in Sections 2.2–2.4. In fact, by S1–
H2 one fixes a unique Hilbert space right from the beginning, whereas the use of
H1–S2 can lead to a (not necessarily unique) Hilbert space that depends on the
choice of the state.

By [H2, p. 274], I.E. Segal was the first who proposed to leave the Hilbert
space approach to consider quantum observables as elements of certain involu-
tive Banach algebras, now known as C∗–algebras. The relation between the al-
gebraic formulation and the usual Hilbert space based formulation of Quantum
Mechanics has been established via one important result obtained in the forties:
The celebrated GNS (Gel’fand–Naimark–Segal) representation of states.

Indeed, by [BR1, Lemma 2.3.10], a positive linear functional ρ over a ∗–
algebra X satisfies

ρ(B∗
1B2) = ρ(B∗

2B1) , B1, B2 ∈ X ,

and the Cauchy–Schwarz inequality:

|ρ(B∗
1B2)|2 ≤ ρ(B∗

1B1)ρ(B
∗
2B2) , B1, B2 ∈ X .
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Therefore, if X is a unital C∗–algebra and ρ ∈ X ∗ is a state then

Lρ
.
= {B ∈ X : ρ(B∗B) = 0} (19)

is a closed left–ideal of X , i.e., Lρ is a closed subspace such that XLρ ⊂ Lρ, and
one can define a scalar product on the quotient X/Lρ, which can be completed
to get a Hilbert space Hρ. For more details on the GNS construction, see [BR1,
KR1].

The GNS representation has led to very important applications of the Tomita–
Takesaki theory (see, e.g., [BR1, KR2]), developed in seventies, to Quantum Field
Theory and Statistical Mechanics. These developments mark the beginning of the
algebraic approach to Quantum Mechanics and Quantum Field Theory. For more
details, see, e.g., [E]. In fact, the algebraic formulation turned out to be extremely
important and fruitful for the mathematical foundations of Quantum Statistical
Mechanics. See for instance discussions of Section 3.5, in particular Lemmata 3.3
and 3.4. In particular, it has been an important branch of research during decades
with lots of works on quantum spin and Fermi systems. See, e.g., [BR2, I] (spin)
and [AM, BP2, BP3] (Fermi).

2.6 Representation Theory – The importance of the Algebraic
Approach for Infinite Systems

We discuss here how C∗–algebras can be represented by spaces of bounded op-
erators acting Hilbert spaces. A representation on the Hilbert space H of a C∗–
algebra X is, by definition [BR1, Definition 2.3.2], a ∗–homomorphism π from X
to the unital C∗–algebra B(H) of all bounded linear operators acting on H. In this
case, H is named the representation (Hilbert) space and if it is finite (resp. infi-
nite) dimensional then we have a finite (resp. infinite) dimensional representation
of X . Injective representations are called faithful.

By the Gelfand–Naimark theorem [Dix], each C∗–algebra has, at least, one
faithful representation. In particular, since faithful representations are isomet-
ric [BR1, Proposition 2.3.3], any C∗–algebra can be identified with some C∗–
subalgebra of theC∗–algebra B(H) of all bounded linear operators acting on some
Hilbert space H. In fact, as mentioned in Section 2.5, the algebraic formulation
of Quantum Mechanics (H1–S2) leads to a Hilbert space Hρ for any state ρ, via
its GNS representation. A faithful representation can be derived in this way if
there exists a state ρ for which Lρ = {0} (19), i.e., if a faithful state exists for the
algebra under consideration.
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Uniqueness of representations of C∗–algebras is clearly wrong. Indeed, for
any representation π :X → B(H), we can construct another one by doubling the
Hilbert space H and the map π, via a direct sum H1 ⊕H2 with H1,H2 being two
copies of H. Therefore, one uses a notion of “minimal” representations of C∗–
algebras: If π : X → B(H) is a representation of a C∗–algebra X on the Hilbert
space H, we say that it is irreducible, whenever {0} and H are the only closed
subspaces of H which are invariant w.r.t. to any operator of π(X ) ⊂ B(H).

Now, it is well–known [Na] that if a C∗–algebra X is isomorphic to the C∗–
algebra K(H) ⊂ B(H) of all compact operators on some Hilbert space H , then,
up to unitary equivalence, X has only one irreducible representation (the canonical
one on H). The converse is true for separable Hilbert spaces: If X is a C∗–
algebra with a faithful representation on a separable Hilbert space H and if all
irreducible representations of X are unitarily equivalent, then X is isomorphic to
the C∗–algebra K(H) of compact operators on some Hilbert space H. This result
is known as the Rosenberg theorem [Ros]. In other words, one gets the following
theorem:

Theorem 2.2 (Uniqueness of irreducible representations – I)
If a C∗–algebra X has a faithful representation on a separable Hilbert space,
then its irreducible representation is unique (up to unitary equivalence) iff X is
isomorphic to some C∗–algebra of compact operators on some Hilbert space.

The question whether all C∗–algebras with a unique (up to unitary equiva-
lence) irreducible representation is isomorphic to an algebra of compact operators
on a non–separable Hilbert space is known as “Naimark’s problem”. Indeed, this
question is highly non–trivial. It depends on the continuum hypothesis and not
only on the axioms of the Zermelo–Fraenkel set theory with the axiom of choice
(ZFC) [Wea, Chapter 19].

In the finite dimensional situation, the C∗–algebra of compact operators is of
course equal to the whole C∗–algebra of bounded operators. Therefore, Theorem
2.2 implies the following assertion:

Corollary 2.3 (Uniqueness of irreducible representations – II)
If the C∗–algebra X is isomorphic to B(H) for some finite dimensional Hilbert
space H, then its irreducible representation is unique, up to unitary equivalence.
Any isomorphism X → B(H) ofC∗–algebras is such a irreducible representation.

As a consequence, in the finite dimensional situation, the algebraic and Hilbert
space based approaches turns out to be equivalent to each other. However, this is

17



not anymore the case in the infinite dimensional situation for unital C∗–algebras
because the C∗–algebra of all compact operators cannot have a unit:

Corollary 2.4 (Non–uniqueness of irreducible representations)
Any unital C∗–algebra X with an infinite dimensional faithful representation on
a separable Hilbert space has more than one unitarily non–equivalent irreducible
representation.

Because of Corollary 2.4, the algebraic approach is more general than the
Hilbert space based approach, in the case of infinite dimensional unital underlying
C∗–algebras. In condensed matter physics the non–uniqueness of irreducible rep-
resentations is intimately related to the existence of various thermodynamically
stable phases of the same material. Because of this, no reasonable microscopic
theory of first order phase transitions is possible within the Hilbert space based
approach, and the use of the algebraic setting is imperative.

This fact was first observed by Haag in 1962 [H1], who established that the
non–uniqueness of the ground state of the BCS model in infinite volume is related
to the existence of several inequivalent irreducible representations [BR1, Defini-
tion 2.3.2] of the Hamiltonian, see also [TW, E].

3 Algebraic Setting for Interacting Fermions on the
Lattice

3.1 Single Quantum Particle on Lattices
All quantum particles carry an intrinsic form of angular momentum, the so–called
spin, first introduced by W. Pauli in the twenties. It is reflected by a spin quantum
number s ∈ N/2 which gives rise to the finite spin set

S
.
= {−s,−s+ 1, . . . s− 1, s} ⊂ N . (20)

In fact, S is the spectrum of the spin observable associated with the quantum
particle.

If s /∈ N is half–integer then the corresponding particles are named fermions
while s ∈ N means by definition that we have bosons. For instance, among all
elementary particles of the standard model in Particle Physics, quarks and leptons
(like electrons, s = 1/2) are fermions while all the other ones – the gluon, pho-
ton, Z– and W– bosons as well as the Higgs bosons – are bosons. Many known
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composite particles like protons (s = 1/2) are fermions. Others are bosons, like
for instance Helium 4.

By the celebrated spin–statistics theorem, fermionic wave functions are anti-
symmetric with respect to (w.r.t.) permutations of particles, whereas the bosonic
ones are symmetric. In the sequel, we consider the fermionic case which is only
defined here via the antisymmetry of many–body wave functions (Section 3.2),
or equivalently by the Canonical Anti–commutation Relations (CAR) in the alge-
braic formulation (Section 3.5). Therefore, in order to simplify notation, we omit
the spin property of quantum particles because it is completely irrelevant in all our
proofs, up to obvious modifications. So, we consider the case s = 0, i.e., S .

= {0},
even if this is not coherent with the definition explained just above of fermions in
Physics.

Additionally, the host material for the quantum particle is a cubic crystal, i.e.,
a lattice

L
.
= Zd × S ≡ Zd , d ∈ N .

This special choice is again not essential in our proofs. In fact, we could take
instead of Zd any countable metric space L as soon as it is regular, as defined in
[NS, Section 3.1]. See also Section 4.2 for more details. (If s ̸= 0 then it would
suffice to equip the set L .

= Zd × S ̸= Zd with the metric of Zd while omitting the
spin variable.)

Therefore, the one–particle Hilbert space representing the set of all wave func-
tions of any quantum particle on the lattice is given by the space

ℓ2 (L)
.
=

{
ψ : L → C such that

∑
x∈L

|ψ (x)|2 <∞

}

of square–summable functions on the lattice L. Here, the scalar product of ℓ2(L)
is defined by

⟨ψ, φ⟩ℓ2(L)
.
=
∑
x∈L

ψ (x)φ (x) , ψ, φ ∈ ℓ2 (L) .

The canonical orthonormal basis of ℓ2(L) is given by the family {ex}x∈L defined
by

ex(y)
.
= δx,y , x, y ∈ L . (21)

Here, δk,l is the Kronecker delta, that is, the function of two variables defined by
δk,l = 1 if k = l and δk,l = 0 otherwise.
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In real systems, the quantum particle is contained in an arbitrary large but
finite region. Therefore, we use the notation Pf (L) ⊂ 2L for the set of all finite
subsets of L and we meanwhile denote by

ℓ2 (Λ)
.
=
{
ψ ∈ ℓ2 (L) : ψ|Λc = 0

}
⊆ ℓ2 (L) (22)

the Hilbert subspace of square–summable functions on any possibly infinite subset
Λ ⊆ L with complement Λc .

= L\Λ. Clearly, the Hilbert subspace ℓ2 (Λ) has
{ex}x∈Λ as canonical orthonormal basis and, for any Λ ∈ Pf (L), its dimension
thus equals the volume |Λ| of Λ.

Then, as explained in Section 2.2, the quantum dynamics is defined by the
Schrödinger equation (1) for some one–particle Hamiltonian H1 acting on H =
ℓ2 (Λ) for any (possibly infinite) subset Λ ⊆ L. A standard example of such
self–adjoint operators is given by

[H1(ψ)](x) =
∑
y∈L

h (|x− y|)ψ(y) , x ∈ Λ, ψ ∈ ℓ2 (Λ) , (23)

for any function h : [0,∞) → R, the absolute value of which decreases suffi-
ciently fast at infinity. This example includes d–dimensional discrete Laplacians,
see Section 6.2.

3.2 Quantum Many–Body Systems on Lattices
Assume that quantum particles are within some (possibly infinite) subset Λ ⊆ L.
A priori, the Hilbert space representing the set of all wave functions of n ∈ N
identical particles is given by the Hilbert space

ℓ2(Λ)⊗n .
= ℓ2(Λ)⊗ · · · ⊗ ℓ2(Λ) ,

the n–fold tensor product of ℓ2(Λ) with scalar product defined by

⟨ψ1 ⊗ · · · ⊗ ψn, φ1 ⊗ · · · ⊗ φn⟩ℓ2(Λ)⊗n

.
= ⟨ψ1, φ1⟩ℓ2(Λ) · · · ⟨ψn, φn⟩ℓ2(Λ) ,

for anyψ1, . . . , ψn, φ1, . . . , φ1 ∈ ℓ2 (Λ). A canonical orthonormal basis of ℓ2(Λ)⊗n

is given by the family

{ex1 ⊗ · · · ⊗ exn}x1,...,xn∈Λ , (24)
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where we recall that {ex}x∈Λ is the (canonical) orthonormal basis of ℓ2(Λ) defined
by (21). Because of (22), note that

ℓ2(Λ)⊗n ⊆ ℓ2(L)⊗n

for any Λ ⊆ L and n ∈ N.
In Quantum Mechanics, however, quantum particles are indistinguishable (or

indiscernible), i.e., we cannot distinguish them, even in principle. Indistinguisha-
bility is a concept already used in Classical Mechanics, for instance in Botlz-
mann’s ‘Combinatorial Approach’ to derive the so–called Maxwell–Boltzmann
statistics. Two classical objects are indeed indistinguishable when they share the
same properties, up to their spatio–temporal location. In particular, by some form
of impenetrability assumption, their indistinguishability does not prevent them
from being two different individuals and so, a spatio–temporal permutation of the
two objects yields another physical state.

This property is no longer true in Quantum Mechanics. Quoting E. Schrödinger
[Sh]: “You cannot mark an electron, you cannot paint it red. Indeed, you must not
even think of it as marked.” This has an important mathematical consequence on
the modelling of composite quantum objects, the individuality of which becomes
philosophically questionable. This was implicitly used by M.K.E.L. Planck in his
famous study of thermal radiation law, but rather in ad hoc way3, without concep-
tual foundations. For more details on that issue, including references, we strongly
recommend [FK].

In fact, the expectation value (3) of any observable must not depend on the ar-
bitrary numbering of particles. In other words, the wave function ψ(n) ∈ ℓ2(Λ)⊗n

have to satisfy the equality

⟨ψ(n), Bψ(n)⟩ℓ2(Λ)⊗n = ⟨Sπψ
(n), BSπψ

(n)⟩ℓ2(Λ)⊗n (25)

for all B = B∗ ∈ B(ℓ2(Λ)⊗n), where Sπ ∈ B(ℓ2(L)⊗n) is the unitary operator
defined for any permutation π of n ∈ N elements by the conditions

Sπ (ψ1 ⊗ · · · ⊗ ψn) = ψπ(1) ⊗ · · · ⊗ ψπ(n) , ψ1, . . . , ψn ∈ ℓ2 (L) . (26)

This yields two drastically different situations:

(b) For any permutation π of n ∈ N elements, Sπψ
(n) = ψ(n), i.e., ψ(n) is a

symmetric n–particle wave function. It corresponds to the boson case.
3He may have discovered it by working backwards from the thermal radiation law, see [FK, p.

86].
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(f) For any permutation π of n ∈ N elements with sign (−1)π, Sπψ
(n) =

(−1)πψ(n), i.e., ψ(n) is an antisymmetric n–particle wave function. Quan-
tum particles are fermions.

Indeed, in contrast with particles with integer spins (boson case), physical par-
ticles with half–integer spins (fermion case), obey the Pauli exclusion principle,
which says that two identical fermions cannot occupy the same quantum state
simultaneously. The latter is reflected in the antisymmetry property of many–
fermion wave functions.

Therefore, we mathematically distinguish fermions and bosons only with sym-
metry properties of wave functions w.r.t. to permutations. In fact, as already men-
tioned in Section 3.1, the spin dependence is, from the technical point of view of
proofs, irrelevant here (up to obvious modifications) and without loss of gener-
ality (w.l.o.g.) we consider fermions without taking into account its spin in our
notation.

Remark 3.1 (Anyons)
By implementing the permutation symmetry property in the configuration space
before the “quantization”, in the two dimensional space R2, one has a continuum
of (fractional) statistics ranging from the fermionic to the bosonic cases. This
refers to the existence of anyons [G, LM, Wi], which has been observed in the
context of the fractional quantum Hall effect. Anyons (like bosons as well) do not
play any role in the sequel.

Remark 3.2 (Parastatistics)
If [B, Sπ] = 0 then Equation (25) trivially holds true for all states ψ(n) ∈ ℓ2(Λ)⊗n.
One could thus assume that, for any permutation π of n ∈ N elements, the states
ψ(n) and Sπψ

(n) cannot be distinguished by any experiment. This view point re-
stricts the set of possible observables to those commuting with all permutation
operators Sπ. Different statistics, again ranging from the fermionic to the bosonic
cases, can then be found from a mathematical perspective. This refers to the so–
called parastatistics (which is invariant under the quantum dynamics). Philosoph-
ically, this view point has the advantage to restore the individuality of quantum
particles, in the classical sense. A historical overview on this approach is given
in [FK, Section 3.8].

Therefore, for any fixed n ∈ N, we define the orthogonal projection Pn ∈
B(ℓ2(L)⊗n) onto the subspace of antisymmetric n–particle wave functions in ℓ2(L)⊗n
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by

Pn
.
=

1

n!

∑
π∈Pn

(−1)πSπ (27)

with Sπ being the operator defined via (26) and where

Pn
.
= {π : {1, . . . , n} → {1, . . . , n} bijective} (28)

denotes the set of all permutations π of n ∈ N elements. Then, for n ∈ N, the
Hilbert space representing the set of all n–fermion wave functions is given by the
Hilbert subspace

Pnℓ
2(Λ)⊗n ⊆ ℓ2(Λ)⊗n

for any (possibly infinite) subset Λ ⊆ L.
As explained in Section 2.2, the quantum dynamics is defined by the Schrö-

dinger equation (1) for some Hamiltonian H⊗n acting on H = Pnℓ
2(Λ)⊗n at fixed

n ∈ N and Λ ⊆ L. A standard example of such self–adjoint operators is given by

[H⊗n(ψ)](x) = H1⊗1ℓ2(Λ) · · ·⊗1ℓ2(Λ)+· · ·+1ℓ2(Λ)⊗· · ·⊗1ℓ2(Λ)⊗H1+I⊗n , (29)

with the one–particle Hamiltonian H1 defined by (23) while I⊗n is defined by the
conditions

I⊗nPn (ex1 ⊗ · · · ⊗ exn) =
∑

1≤j<k≤n

v (|xj − xk|)Pn (ex1 ⊗ · · · ⊗ exn)

for any x1, . . . , xn ∈ Λ ⊆ L. I⊗n represents some interparticle forces which are
characterized by a function v : [0,∞) → R, the absolute value of which decreases
sufficiently fast at infinity.

3.3 Fermion Fock Spaces
In Quantum Statistical Mechanics we are interested in understanding the physi-
cal behavior of macroscopic systems from the laws of Quantum Mechanics. This
means here that one studies physical properties in the limit n→ ∞ of infinite par-
ticles. However, the quantum dynamics and even the mathematical framework,
that is, the Hilbert space Pnℓ

2(Λ)⊗n of antisymmetric n–particle wave functions,
strongly depend on the particle number n, which may additionally be unknown.
Moreover, one is often interested in time–dependent particle numbers, as in Quan-
tum Field Theory.
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To this end, in 1932 V.A. Fock introduced a space now known as the Fock
space defined for Fermi systems by (a priori infinite) direct sums:

FΛ
.
=
⊕
n∈N0

Pnℓ
2(Λ)⊗n , with ℓ2(Λ)⊗0 .

= C and P0
.
= 1C ,

for any (possibly infinite) subset Λ of L. It is an Hilbert space with scalar product
defined on FΛ ×FΛ by

⟨ψ, φ⟩FΛ

.
=
∑
n∈N0

⟨ψ(n), φ(n)⟩ℓ2(L)⊗n , φ = (φ(n))n∈N0 , ψ = (ψ(n))n∈N0 ∈ FΛ .

The element (1, 0, 0, . . .) ∈ FΛ is the zero–particle state, i.e., the so–called vac-
uum vector of the Fock space.

For any finite subset Λ ∈ Pf (L), recall that ℓ2 (Λ) (cf. (22)) has dimension
equal to the volume |Λ| of Λ. Therefore, because of the antisymmetry of the
n–particle wave function in FΛ,

FΛ =

|Λ|⊕
n=0

Pnℓ
2(Λ)⊗n , Λ ∈ Pf (L) . (30)

Using some elementary combinatorics, one checks in this case that the fermion
Fock space FΛ is a finite dimensional Hilbert space with dimension equal to 2|Λ|

for any Λ ∈ Pf (L).
For any possibly infinite subset Λ ⊆ L, the particle number becomes a self–

adjoint (possibly unbounded) operator NΛ defined by

(NΛψ)
(n) .= nψ(n) , n ∈ N0 , (31)

on the domain

Dom(NΛ)
.
=

{
ψ = (ψ(n))n∈N0 ∈ FΛ :

∑
n∈N0

n2⟨ψ(n), ψ(n)⟩ℓ2(L)⊗n <∞

}
. (32)

Any family {H⊗n}n∈N0 of Hamiltonians acting on Pnℓ
2(Λ)⊗n, like those de-

fined by (29) for n ∈ N, gives rise to an operator HΛ defined for any n ∈ N0

by
HΛψ

(n) .= H⊗nψ(n) , ψ(n) ∈ Pnℓ
2(Λ)⊗n ⊂ FΛ . (33)
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It is clearly a symmetric operator on the subspace of FΛ constituted of sequences
that eventually vanish. If Λ ∈ Pf (L), it means that HΛ is self–adjoint, by finite
dimensionality of FΛ.

If Λ ⊆ L is an infinite subset of L, then HΛ is closable because it is in any
case symmetric, see [RS1, Theorem VIII.1, Section VIII.2]. By self–adjointness
of H⊗n, there is additionally a dense set of analytic vectors [RS2, Section X.6]
on the subspace of FΛ constituted of sequences that eventually vanish. Therefore,
by Nelson’s analytic vector theorem [RS2, Theorem X.39], HΛ has a self–adjoint
closure, again denoted by HΛ.

Therefore, in any case, we obtain from (33) a Hamiltonian HΛ that again
defines a quantum dynamics on the Hilbert space H = FΛ via the Schrödinger
equation (1). Typically, such kind of Hamiltonian conserves the particle number
in the sense that

eitHΛNΛe
−itHΛ = NΛ , t ∈ R .

In this case, the expectation value of the particle number observable NΛ w.r.t. any
solution of the Schrödinger equation equals

⟨ψ (0) , eitHΛNΛe
−itHΛψ (0)⟩FΛ

= ⟨ψ (0) ,NΛψ (0)⟩FΛ
, ψ (0) ∈ FΛ .

See Equations (1), (2) and (3).
Compared to the first approach described in Section 3.2 it is still not clear

why the use of the Fock space can be advantageous when the particle number
is conserved. The utility of Fock spaces comes from the use of so–called cre-
ation/annihilation operators explained below.

For more details on Fock spaces, see for instance [BR2, Section 5.2.1].

3.4 Creation/Annihilation Operators
Apart from the fact that the Hilbert spaces of Section 3.2 depend on the particle
number n, one has always to care about combinatorial issues because of the an-
tisymmetry of wave functions. This property of the wave function is encoded in
the Fock space in algebraic properties of the so–called creation and annihilation
operators a∗x, ax ∈ B(FL) of a fermion at lattice site x ∈ L:

(i): The annihilation operator ax ∈ B(FL) of a fermion at lattice site x ∈ L is the
(linear) operator uniquely defined by the conditions ax(1, 0, 0, . . .) = 0 and

ax (Pn (ψ1 ⊗ · · · ⊗ ψn))
.
=

√
n

n!

∑
π∈Pn

(−1)π
⟨
ex, ψπ(1)

⟩
ℓ2(L)

ψπ(2) ⊗ · · · ⊗ ψπ(n)

(34)
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for any n ∈ N and ψ1, . . . , ψn ∈ ℓ2 (L), where we recall that Pn is the orthogonal
projection (27) onto the subspace of antisymmetric n–particle wave functions and
Pn is the set of all permutations π of n elements, see (28).

(ii): The creation operator a∗x ∈ B(FL) of a fermion at lattice site x ∈ L, which
turns out to be the adjoint of ax, is defined by

(a∗xψ)
(0) .= 0 and (a∗xψ)

(n) .=
√
nPn

(
ψ(n−1) ⊗ ex

)
(35)

for n ∈ N, with ψ = (ψ(n))n∈N0 ∈ FL.

Because of the antisymmetry property, note that, for any x ∈ L, a∗xa
∗
x = 0,

which reflects the Pauli exclusion principle. In fact, straightforward computa-
tions show that the family {ax, a∗x}x∈L ⊂ B(FL) satisfies the celebrated Canonical
Anti–commutation Relations (CAR): For any x, y ∈ L,

axay + ayax = 0 , axa
∗
y + a∗yax = δx,y1FL

. (36)

They are pivotal relations coming from the antisymmetry property of wave func-
tions in the fermion Fock space. For instance, one deduces from (18) and (36) that
in the C∗–algebra B(FL), for any x ∈ L,

∥ax∥4B(FL)
= ∥(a∗xax)2∥B(FL) = ∥a∗xax∥B(FL) = ∥ax∥2B(FL)

and since ax ̸= 0, we obtain that

∥ax∥B(FL)
= ∥a∗x∥B(FL)

= 1 , x ∈ L . (37)

For more details on creation/annihilation operators, see [BR2, Section 5.2.1].
Meanwhile, the particle number operator (31)–(32) in the (possibly infinite)

subset Λ ⊆ L can be formally written on the subspace of antisymmetric n–particle
wave functions (n ∈ N) as

NΛψ
(n) =

(∑
x∈Λ

nx

)
ψ(n), ψ(n) ∈ Pnℓ

2(Λ)⊗n ,

with
nx

.
= a∗xax ∈ B(FL) (38)

being the so–called particle number operator at lattice site x ∈ L. Because of the
CAR (36), note that nx is a projection operator.
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For any finite subset Λ ∈ Pf (L), NΛ ∈ B(FΛ), by finite dimensionality of
the local fermion Fock space FΛ (see (30)) and we can see this particle number
operator as

NΛ ≡
∑
x∈Λ

nx ∈ B(FL) . (39)

In the same way, the operator HΛ (33) can be written in terms of creation and
annihilation operators. For instance, if HΛ is defined from the Hamiltonian (29)
for any n ∈ N, then it can be formally written on the subspace of antisymmetric
n–particle wave functions (n ∈ N) as

HΛψ
(n) =

(∑
x,y∈Λ

h (|x− y|) a∗xay +
∑
x,y∈Λ

v(|x− y|)nxny

)
ψ(n)

for all ψ(n) ∈ Pnℓ
2(Λ)⊗n and any (possibly infinite) subset Λ ⊆ L.

If Λ ∈ Pf (L) is a finite subset then HΛ ∈ B(FΛ) ⊂ B(FL) can be seen as the
operator

HΛ ≡
∑
x,y∈Λ

h (|x− y|) a∗xay +
∑
x,y∈Λ

v(|x− y|)nxny , (40)

again by finite dimensionality of FΛ. This formulation of HΛ can easily be in-
terpreted: The term a∗xay destroy a fermion at lattice site y to create another one
at lattice site x. It thus gives rise to fermion transport properties in the physical
system and it is related to the (usual) kinetic terms. The second term depends on
the occupation number (0 or 1) at lattice sites x and y, and yields the interaction
energy. It is a so–called density–density interaction.

3.5 The Lattice CAR C∗–Algebra
Sections 3.1–3.4 was preliminary sections presenting many–fermion systems on
lattices in the usual context of Quantum Mechanics, as explained in Sections 2.2–
2.4. In the sequel, however, we avoid to speak about Hilbert space structures,
Fock spaces, etc., by using the algebraic formulation of Quantum Mechanics as
explained in Section 2.5. To this end, we have to define a C∗–algebra, named the
lattice CAR C∗–algebra, defined as follows:

(i): Recall that a∗x, ax are the so–called creation and annihilation operators of a
fermion at lattice site x ∈ L. In Section 3.4 we explicitly define them by using
the fermion Fock space. In the algebraic approach, however, we only assume
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the existence of a unit 1 and a family {ax, a∗x}x∈L satisfying the CAR: For any
x, y ∈ L,

axay + ayax = 0 , axa
∗
y + a∗yax = δx,y1 . (41)

Compare with (36), by observing that the unit 1 refers to the identity map 1FL

of FL. Such commutation relations are indeed sufficient to characterize fermion
systems via the Pauli exclusion principle.

(ii): Every physical system of fermions on the lattice is associated with some finite
region Λ of lattice space. The set of all finite subsets of the lattice L is denoted
by Pf (L) ⊂ 2L. Observables one can then measure on many–fermion systems
within any Λ ∈ Pf (L) are finite sums of monomials of {a∗x, ax}x∈Λ and 1. See
(38), (39) and (40) for explicit examples in the Fock space representation.

For Λ ∈ Pf (L), this yields to the local CAR C∗–algebra UΛ as the set of
all finite sums of monomials constructed from {a∗x, ax}x∈Λ and the unit 1. See
Section 2.5 for the definition of C∗–algebras. In particular, the particle number
operators nx

.
= a∗xax, x ∈ Λ, and the Hamiltonian of the fermion system are

self–adjoint elements of UΛ. See again (40) for an example of Hamiltonians in the
Fock space representation.

Note that one can define annihilation and creation operators of fermions with
wave functions ψ ∈ ℓ2(Λ) ⊂ ℓ2(L) for any Λ ∈ Pf (L) by

a(ψ)
.
=
∑
x∈Λ

ψ(x)ax ∈ UΛ , a∗(ψ)
.
=
∑
x∈Λ

ψ(x)a∗x ∈ UΛ . (42)

Clearly, a∗(ψ) = a(ψ)∗ for all ψ ∈ ℓ2(Λ) and on the canonical orthonormal basis
{ex}x∈L (21), a(ex) = ax at all x ∈ Λ. The map ψ 7→ a(ψ) (resp. ψ 7→ a∗(ψ))
from ℓ2(Λ) to UΛ is anti–linear (resp. linear) and because of (41),

a(ψ)a(φ) + a(φ)a(ψ) = 0 , a(ψ)a(φ)∗ + a(φ)∗a(ψ) = ⟨ψ, φ⟩ℓ2(L)1 (43)

for any φ, ψ ∈ ℓ2(Λ) ⊂ ℓ2(L). These CAR are a generalization of (41).
The relation with the local fermion Fock space FΛ (30) is now clear:

Lemma 3.3 (CAR algebras and fermion Fock spaces for finite systems)
For any Λ ∈ Pf (L), the local CAR C∗–algebra UΛ is ∗–isomorphic to the C∗–
algebra B(FΛ) of bounded operators acting on FΛ. In particular, its dimension
equals 22|Λ|.

Proof: On the one hand, since ℓ2 (Λ) has dimension |Λ|, for any Λ ∈ Pf (L),
we infer from (42)–(43) and [BR2, Theorem 5.2.5] that UΛ is isomorphic to the
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C∗–algebra of 2|Λ| × 2|Λ| complex matrices. UΛ has in particular dimension equal
to 22|Λ|. On the other hand, as explained below Equation (30), for any Λ ∈ Pf (L),
the dimension of the Fock space FΛ is equal to 2|Λ|. Therefore, UΛ is ∗–isomorphic
to B(FΛ).

Lemma 3.3 yields a faithful representation

πΛ : UΛ → B(FΛ) (44)

of the local CAR C∗–algebra UΛ on the representation (Hilbert) space FΛ for ev-
ery Λ ∈ Pf (L). This representation is said to be canonical when it maps a∗x, ax to
creation and annihilation operators defined by (34) and (35) on FΛ for any x ∈ L.
The (canonical) representation is irreducible and named the Fock representation.
For more details on the representation theory of C∗–algebras, see Section 2.6.

Because of Corollary 2.3, one can equivalently use the Fock space formula-
tion within the usual context of Quantum Mechanics or the algebraic approach,
provided Λ ∈ Pf (L). Compare indeed Lemma 3.3 with the Heisenberg picture of
Quantum Mechanics described in Section 2.3. This fact is not anymore true in the
infinite–volume situation, i.e., for infinite subsets Λ ⊆ L, since the corresponding
Fock space FΛ has then infinite dimension. See Corollary 2.4.

(iii): Physical systems become macroscopic when they belong to finite regions Λ
of lattice that become arbitrarily large. Therefore, we consider a family of cubic
boxes4 defined, for all L ∈ R+

0 , by

ΛL
.
= {(x1, . . . , xd) ∈ L : |x1|, . . . , |xd| ≤ L} ∈ Pf (L) . (45)

Hence, {UΛL
}L∈R+

0
is an increasing net of C∗–algebras and the set

U0
.
=
∪

L∈R+
0

UΛL
(46)

of local elements is a normed ∗–algebra with ∥A∥U0
= ∥A∥UΛL

for all A ∈ UΛL

and L ∈ R+
0 .

(iv): For physical macroscopic systems one considers the limit “Λ → L”. This is
named the thermodynamic limit and one gets an infinite fermion system. This ap-
proach yields the CAR C∗–algebra U of the infinite system, which is by definition

4It is a technically convenient choice to define the thermodynamic limit, but one could also
take other Van Hove nets. See for instance [BP2, Remark 1.3].
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the completion of the normed ∗–algebra U0. It is separable, by finite dimensional-
ity of UΛ for any Λ ∈ Pf (L). In other words, U is the inductive limit of the finite
dimensional C∗–algebras {UΛ}Λ∈Pf (L). In this construction, U0 ⊂ U can be seen
as the smallest normed ∗–algebra containing all generators {ax}x∈L.

By replacing Λ with L in Equation (42) one can again define annihilation and
creation operators a(ψ), a∗(ψ) of fermions with wave functions ψ ∈ ℓ2(L). These
operators are still well–defined. Indeed, because of the CAR (41),

∥a(ψ)∥2U = ∥a∗(ψ)∥2U = ⟨ψ, ψ⟩ℓ2(L) , ψ ∈ ℓ2(L) .

Compare with (37). Hence, the anti–linear (resp. linear) map ψ 7→ a(ψ) (resp.
ψ 7→ a∗(ψ)) from ℓ2(L) to U is norm–continuous. Again, a∗(ψ) = a(ψ)∗ for all
ψ ∈ ℓ2(L) and the CAR (43) can be extended to all φ, ψ ∈ ℓ2(L).

The faithful and irreducible canonical representation πΛ defined by (44) gives
rise in the infinite volume limit to a unique faithful and irreducible (canonical)
representation πL of the CAR C∗–algebra U such that

πL(UΛ) = πΛ(UΛ) = B(FΛ) , Λ ∈ Pf (L) . (47)

This representation is in fact defined via the unique ∗–isomorphisms π{x}, x ∈ L,
mapping ax ∈ U to the operator π{x}(ax) ≡ ax ∈ B(FL) defined by (34). It is
again named the Fock representation.

The Fock space FL has infinite dimension and is separable. Thus, by Corollary
2.4, we emphasize again that the Fock space formulation within the usual context
of Quantum Mechanics and the algebraic approach are not equivalent to each
other. Again by Corollary 2.4, the C∗–algebra B(FL) has more than one unitarily
non–equivalent irreducible representation as well. Moreover, U is in some sense
strictly smaller than B(FL):

Lemma 3.4 (CAR algebras and fermion Fock spaces for infinite systems)

πL(U) =
∪

L∈R+
0

B(FΛL
)  B(FL) .

Proof: For any non–vanishing θ ∈ R/(2πZ), eiθNL ∈ B(FL) but π−1
L (eiθNL) =

∅, with the particle number operator NL being the self–adjoint operator defined
by (31)–(32) for Λ = L. Indeed, for all Λ ∈ Pf (L) with complement Λc .

= L\Λ
and any function ψ ∈ ℓ2(L) ⊂ FL, a direct computation shows that∥∥(eiθNL − eiθNΛ

)
ψ
∥∥2
FL

=
∣∣eiθ − 1

∣∣2 ∑
x∈Λc

|ψ (x)|2 . (48)
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Here, NΛ ∈ B(FL) is the particle number operator defined by (39) for Λ ∈ Pf (L).
Therefore, eiθNΛ does not converge in B(FL) (norm topology) to eiθNL for θ ̸= 0.

Assume now that π−1
L (eiθNL) ̸= ∅. Then, by Lemma 3.3 and density of U0

in U , there are two families {Λn}n∈N ⊂ Pf (L) and {UΛn}n∈N such that UΛn ∈
B(FΛn) ⊂ B(FL) converges in B(FL) to eiθNL , as n → ∞. From this and (48),
one deduces that

(
UΛn − eiθNΛn

)
must converge, as n → ∞, to zero in B(FL).

The latter is not possible, otherwise eiθNΛ would then converge in B(FL) to eiθNL .
Therefore, for any non–vanishing θ ∈ R/(2πZ), π−1

L (eiθNL) = ∅. The asser-
tion then follows, by Equations (46) and (47).

(v): For any non–vanishing θ ∈ R/(2πZ), the unitary operator eiθNL /∈ πL(U)
(see proof of Lemma 3.4) gives rise to a ∗–automorphism

B 7→ eiθNL B e−iθNL

of B(FL) defined via (31)–(32). One says that the unitary operator eiθNL ∈ B(FL)
implements a global gauge transformation, see for instance [BP1, Eq. (A.4)]. A
similar ∗–automorphism exists on the CAR C∗–algebra U : For any θ ∈ R/(2πZ),
it is the unique ∗–automorphism σθ of U satisfying the conditions

σθ(ax) = e−iθax , x ∈ L . (49)

Note indeed that, using the Fock representation, one verifies that

πL (σθ(B)) = eiθNL πL (B) e−iθNL , B ∈ U ,

for any θ ∈ R/(2πZ).
A special role is played by σπ: Elements B1, B2 ∈ U satisfying σπ(B1) = B1

and σπ(B2) = −B2 are respectively called even and odd, while elements B ∈ U
satisfying σθ(B) = B for any θ ∈ R/(2πZ) are called gauge invariant. The set

U+ .
= {B ∈ U : B = σπ(B)} ⊂ U (50)

of all even elements and the set

U◦ .
=

∩
θ∈R/(2πZ)

{B ∈ U : B = σθ(B)} ⊂ U+ (51)

of all gauge invariant elements are ∗–algebras. By continuity of σθ, it follows
that U+ and U◦ are closed and hence C∗–algebras. U◦ is known as the fermion
observable algebra because it equals the C∗–algebra of all self–adjoint elements
of U .
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3.6 Lattice Fermi versus Quantum Spin Systems
Quantum spin systems are models used to describe quantum phenomena appear-
ing at low temperatures in condensed matter physics. They are nowadays particu-
larly important in Quantum Information Theory. This subject appeared right from
the beginning, with the emergence of Quantum Mechanics in the twenties. A con-
cise introduction on its history is given in the paper [N], see also the corresponding
references therein.

For completeness, we shortly recall that quantum spin systems are infinite
systems composed of elementary finite dimensional spaces, originally referring
to a spin variable (see (20)). Therefore, they are constructed in a similar way as
lattice Fermi systems. Mathematically speaking, they are defined via the algebraic
formulation of Quantum Mechanics from the so–called spin C∗–algebra Q:

(i): With any lattice site x ∈ L we associate a finite dimensional Hilbert space
Hx ≡ CN for some N ∈ N. Typically, the parameter N is the cardinal |S| of
the spin set S (20). Then, the algebra of local observables over Λ ∈ Pf (L) is the
subset of self–adjoint elements of the C∗–algebra

QΛ
.
=
⊗
x∈Λ

B (Hx) ≡ B

(⊗
x∈Λ

Hx

)
.

Recall that B (Hx) denotes the C∗–algebra of bounded linear operators on Hx for
x ∈ L. The dimension of QΛ is equal to N2|Λ| for any Λ ∈ Pf (L). Compare with
the local CAR C∗–algebra UΛ, see in particular Lemma 3.3.

(ii): For all Λ(1),Λ(2) ∈ Pf (L) with Λ(1) ⊂ Λ(2), there is a (canonical) isometric
inclusion QΛ(1) ↪→ QΛ(2) defined by

A 7→ A⊗
⊗

x∈Λ(2)\Λ(1)

1Hx .

In particular, using the sequence of cubic boxes defined by (45) we observe that
{QΛL

}L∈R+
0

is also an increasing net of C∗–algebras. Compare with the family
{UΛL

}L∈R+
0

.

(iii): Hence, the set

Q0
.
=
∪

L∈R+
0

QΛL
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of local elements is a normed ∗–algebra with ∥A∥Q0
= ∥A∥QΛL

for all A ∈ QΛL

and L ∈ R+
0 . Compare with the normed ∗–algebra U0 of local elements defined

by (46).
For any finite subsets Λ(1),Λ(2) ∈ Pf (L) with Λ(1) ∩Λ(2) = ∅ we observe that

[B1, B2]
.
= B1B2 −B2B1 = 0 , B1 ∈ QΛ(1) , B2 ∈ QΛ(2) .

Because of the CAR (41), such a property is also satisfied for all even local ele-
mentsB1 ∈ UΛ(1)∩U+ andB2 ∈ UΛ(2)∩U+, see (50). However, it is wrong in gen-
eral for Fermi systems. For instance, the CAR (41) trivially yield [ax, ay] = 2axay
for any x, y ∈ L.

(iv): The spin C∗–algebra Q of the lattice L is by definition the completion of
the normed ∗–algebra Q0. It is separable, by finite dimensionality of QΛ for
Λ ∈ Pf (L). In other words, Q is the inductive limit of the finite dimensional
C∗–algebras {QΛ}Λ∈Pf (L). Compare with the CAR C∗–algebra U .

Infinite–volume dynamics is then constructed via Lieb–Robinson bounds, as
done in Sections 4–5 for CAR C∗–algebras. Here, we focus on lattice Fermi
systems which are, from a technical point of view, slightly more difficult because
of the non–commutativity of their elements on different lattice sites, as explained
above. However, all the results presented in Sections 4–5 hold true for quantum
spin systems, by restricting them on the C∗–algebra U+ ⊂ U (50) of all even
elements and then by replacing U+ with the spin C∗–algebras Q.

4 Lieb–Robinson Bounds for Multi–Commutators
Lieb–Robinson bounds for multi–commutators are studied here for fermion sys-
tems, only. In the case of quantum spin systems, U has to be replaced by the in-
finite tensor product Q of copies of some finite dimensional C∗–algebra attached
to each site x ∈ L. See Section 3.6. All results of this section also hold in this sit-
uation. We concentrate our attention on fermion algebras in view of applications
to microscopic foundations of the theory of electrical conduction [BP4, BP5].
Moreover, as explained in Section 3.6, the fermionic case is, technically speaking,
more involved, because of the non–commutativity of elements of the CAR algebra
U sitting on different lattice sites.
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4.1 Interactions and Finite–Volume Dynamics
Following the algebraic formulation of Quantum Mechanics (Section 2.5), we
have to define a C0–group (that is, a strongly continuous group) {τ t}t∈R of ∗–
automorphisms of the CAR C∗–algebra U . On the other hand, as explained in
Section 3.5, every physical system of particles belongs to some finite region ΛL

(45) of lattice space, and they become macroscopic when L→ ∞. Therefore, we
define the C0–group {τ t}t∈R as a limit L→ ∞ of finite–volume dynamics.

We thus need to define a family of Hamiltonians HL ∈ UΛL
for L ∈ R+

0 . This
is done by using the notions of interactions and potentials defined as follows:

• Interactions are by definition families Ψ = {ΨΛ}Λ∈Pf (L) of even (cf. (50))
and self–adjoint local elements ΨΛ = Ψ∗

Λ ∈ U+ ∩ UΛ with Ψ∅ = 0. Ob-
viously, the set of all interactions can be endowed with a real vector space
structure:

(α1Φ + α2Ψ)Λ
.
= α1ΦΛ + α2ΨΛ

for any interactions Φ, Ψ, and any real numbers α1, α2 ∈ R.

• By potential, we mean here a collection V
.
= {V{x}}x∈L of even (cf. (50))

and self–adjoint elements such that V{x} = V∗
{x} ∈ U+ ∩ U{x} for all

x ∈ L. Such objects are sometimes called on–site interactions. Indeed,
strictly speaking, a potential is nothing but a special case of interaction. But,
the use of this special notion allows us to treat latter the cases for which (61)
holds true.

Take now any interaction Ψ and potential V. With such objects we associate
the (internal) energy observable or Hamiltonian

HL
.
=
∑
Λ⊆ΛL

ΨΛ +
∑
x∈ΛL

V{x} , L ∈ R+
0 , (52)

of the cubic box ΛL defined by (45).
Then, similar to Equations (4)–(6), the finite–volume dynamics corresponds

to the continuous group {τ (L)t }t∈R of ∗–automorphisms of U defined by

τ
(L)
t (B) = eitHLBe−itHL , B ∈ U , (53)

for any L ∈ R+
0 , interaction Ψ and potential V. Obviously, its generator is the

bounded linear operator δ(L) defined on U by

δ(L)(B)
.
= i

∑
Λ⊆ΛL

[ΨΛ, B] + i
∑
x∈ΛL

[
V{x}, B

]
, B ∈ U . (54)
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It is a symmetric derivation on U because, for all B1, B2 ∈ U ,

δ(L)(B∗
1) = δ(L)(B1)

∗ and δ(L)(B1B2) = δ(L)(B1)B2 +B1δ
(L)(B2) .

Compare with Equation (7).
Using two functions h, v : [0,∞) → R, note that the finite–volume Hamilto-

nian (52) associated with the interaction Ψ(h,v) defined by

Ψ
(h,v)
Λ

.
= h (|x− y|) a∗xay + (1− δx,y)h (|x− y|) a∗yax (55)

+v (|x− y|)
(
a∗yaya

∗
xax + (1− δx,y) a

∗
xaxa

∗
yay
)

whenever Λ = {x, y} for x, y ∈ L, and Ψ
(h,v)
Λ

.
= 0 otherwise, is equal in this case

to

HL =
∑

x,y∈ΛL

h (|x− y|) a∗xay +
∑

x,y∈ΛL

v(|x− y|)nxny , L ∈ R+
0 .

Compare with (40) for Λ = ΛL. This gives a very important – albeit very specific
– example of a Fermi model on the lattice. For instance, it includes the celebrated
Hubbard model widely used in Physics. Other examples are given in Section 6.2.

4.2 Banach Spaces of Short–Range Interactions
The finite–volume dynamics we define in Section 4.1 should converge to an infinite–
volume one to be able to understand macroscopic systems. In other words, the
limit L → ∞ of the continuous group {τ (L)t }t∈R of ∗–automorphisms defined by
(53) has to converge to a C0–group {τ t}t∈R of ∗–automorphisms of the CAR C∗–
algebra U . In order to ensure that property (cf. Section 4.3), we define Banach
spaces of short–range interactions by introducing specific norms for interactions,
taking into account space decay.

Following [NOS, Eqs. (1.3)–(1.4)], we consider positive–valued and non–
increasing decay functions F : R+

0 → R+ satisfying the following properties:

• Summability on L.

∥F∥1,L
.
= sup

y∈L

∑
x∈L

F (|x− y|) =
∑
x∈L

F (|x|) <∞ . (56)

• Bounded convolution constant.

D
.
= sup

x,y∈L

∑
z∈L

F (|x− z|)F (|z − y|)
F (|x− y|)

<∞ . (57)
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Note that the idea of a bounded convolution constant is also used in [HK, cf.
Assumption 2.1.].

In the case L would be a general countable set with infinite cardinality and
some metric d, the existence of such a function F satisfying (56)–(57) with d(·, ·)
instead of |· − ·| refers to the so–called regular property of L. For any d ∈ N,
L
.
= Zd is in this sense regular with the metric d(·, ·) = |· − ·|. Indeed, a typical

example of such a F for L = Zd, d ∈ N, and the metric induced by |·| is the
function

F (r)
.
= (1 + r)−(d+ϵ) , r ∈ R+

0 , (58)

which has convolution constant D ≤ 2d+1+ϵ ∥F∥1,L for ϵ ∈ R+. See [NOS, Eq.
(1.6)] or [Si, Example 3.1]. Note that the exponential function F (r) = e−ςr, ς ∈
R+, satisfies (56) but not (57). Nevertheless, for every function F with bounded
convolution constant (57) and any strictly positive parameter ς ∈ R+, the function

F̃ (r) = e−ςrF (r) , r ∈ R+
0 ,

clearly satisfies Assumption (57) with a convolution constant that is no bigger
than the one of F. In fact, as observed in [Si, Section 3.1], the multiplication
of such a function F with a non–increasing weight f : R+

0 → R+ satisfying
f (r + s) ≥ f (r) f (s) (logarithmically superadditive function) does not increase
the convolution constant D. In the sequel, (56)–(57) are assumed to be satisfied.

The function F encodes the short–range property of interactions. Indeed, an
interaction Ψ is said to be short–range if

∥Ψ∥W
.
= sup

x,y∈L

∑
Λ∈Pf (L), Λ⊃{x,y}

∥ΨΛ∥U
F (|x− y|)

<∞ . (59)

Since the map Ψ 7→ ∥Ψ∥W defines a norm on interactions, the space of short–
range interactions w.r.t. to the decay function F is the real separable Banach
space W ≡ (W , ∥ · ∥W) of all interactions Ψ with ∥Ψ∥W < ∞. Note that a
short–range interaction Ψ ∈ W is not necessarily weak away from the origin
of L: Generally, the element Ψx+Λ, x ∈ L, does not vanish when |x| → ∞.
It turns out that all short–range interactions Ψ ∈ W define, in a natural way,
infinite–volume quantum dynamics, i.e., they define C∗–dynamical systems on
U . For more details, see Section 4.3, in particular Theorem 4.8. (Recall that
C∗–dynamical systems are defined in Section 2.5.)

Remark 4.1 (Lattice Fermi models)
The interaction Ψ(h,v) defined in Section 4.1 (see (55)) belongs to W as soon as
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h, v : [0,∞) → R are real–valued and summable functions satisfying

sup
r∈R+

0

{
|h (r)|
F (r)

}
<∞ and sup

r∈R+
0

{
|v (r)|
F (r)

}
<∞ . (60)

Remark 4.2 (Quantum spin models)
All important spin models with no mean field term can be constructed from short–
range interactions, as defined above. As examples, we can mention the Ising
model, the (quantum) Heisenberg model, the XXZ model, the XY model, the XXZ
model, the model [AKLT], etc. See for instance [N] and references therein.

4.3 Existence of Dynamics and Lieb–Robinson Bounds
In Section 4.2, we define a Banach space W of short–range interactions by using a
convenient norm ∥ · ∥W for interactions, see (59). Ψ ∈ W ensures the existence of
an infinite–volume derivation δ associated with Ψ by taking the thermodynamic
limit L → ∞ of commutators involving ΨΛ, Λ ∈ Pf (L), see (54). This also
holds true for all potentials V

.
= {V{x}}x∈L, as defined in Section 4.1. Every

generator of a C∗–dynamical system is a derivation, but the converse does not
generally hold. We show here that δ is the generator of a C∗–dynamical system in
U when Ψ ∈ W and for all potentials V .

= {V{x}}x∈L. Note that the interaction
representing V can possibly be outside W because we allow V to be unbounded,
i.e., the case

sup
x∈L

∥∥V{x}
∥∥
U = ∞ (61)

is included in the discussion below.
The key ingredient in this analysis are the so–called Lieb–Robinson bounds.

Indeed, they lead, among other things, to the existence of the infinite–volume dy-
namics for interacting particles. By using this, we define a C∗–dynamical system
in U for any short–range interaction Ψ ∈ W . These bounds are, moreover, a piv-
otal ingredient to study transport properties of interacting fermion systems later
on. Thus, for the reader’s convenience, below we review this topic in detail.

It is convenient to introduce at this point the notation

SΛ(Λ̃)
.
=
{
Z ⊂ Λ : Z ∩ Λ̃ ̸= 0 and Z ∩ Λ̃c ̸= 0

}
(62)

for any set Λ̃ ⊂ Λ ⊂ L with complement Λ̃c .= L\Λ̃, as well as

∂ΨΛ
.
= {x ∈ Λ : ∃Z ∈ SL(Λ) with x ∈ Z and ΨZ ̸= 0}
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for any interaction Ψ
.
= {ΨZ}Z∈Pf (L) and any finite subset Λ ∈ Pf (L) of L. We

are now in position to prove Lieb–Robinson bounds for finite–volume fermion
systems with short–range interactions and in presence of potentials:

Theorem 4.3 (Lieb–Robinson bounds)
Let Ψ ∈ W and V be any potential. Then, for any t ∈ R, L ∈ R+

0 , and elements
B1 ∈ U+ ∩ UΛ(1) , B2 ∈ UΛ(2) with Λ(1),Λ(2) ∈ Pf (L) and Λ(1) ∩ Λ(2) = ∅,∥∥∥[τ (L)t (B1) , B2]

∥∥∥
U

≤ 2D−1 ∥B1∥U ∥B2∥U
(
e2D|t|∥Ψ∥W − 1

)
(63)

×
∑

x∈∂ΨΛ(1)

∑
y∈Λ(2)

F (|x− y|) .

The constant D ∈ R+ is defined by (57).

Proof: The arguments are essentially the same as those proving [NS, Theorem
2.3.] for quantum spin systems. Here, we consider fermion systems and we give
the detailed proof for completeness and to prepare its extension to time–dependent
interactions and potentials, in Theorem 5.1 (i). We fix L ∈ R+

0 , B1 ∈ U+ ∩ UΛ(1)

and B2 ∈ UΛ(2) with disjoint sets Λ(1),Λ(2) ( ΛL. [Note that Λ(1) ∩ Λ(2) = ∅
yields L ≥ 1.]

Let

CB2 (Λ; t)
.
= sup

B∈U+∩UΛ,B ̸=0

∥∥∥[τ (L)t (B) , B2]
∥∥∥
U

∥B∥U
, t ∈ R , Λ ∈ Pf (L) .

At time t = 0, we observe that

|CB2 (Λ; 0)| ≤ 2 ∥B2∥U 1
[
Λ ∩ Λ(2) ̸= ∅

]
,

while, for any t ∈ R,

CB2 (Λ; t) = sup
B∈U+∩UΛ,B ̸=0

∥∥∥[τ (L)t ◦ τ (Λ)−t (B) , B2]
∥∥∥
U

∥B∥U
.

Here, {τ (Λ)t }t∈R is the continuous group of ∗–automorphisms defined like {τ (L)t }t∈R
by replacing the box ΛL with the (finite) set Λ ∈ Pf (L).

Consider the function

f (t)
.
=
[
τ
(L)
t ◦ τ (Λ

(1))
−t (B1) , B2

]
, t ∈ R . (64)
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Then, using B1 ∈ U+ ∩ UΛ(1) and Λ(1) ⊂ ΛL, we deduce from (54) and explicit
computations that

∂tf (t) = i
∑

Z∈SΛL
(Λ(1))

[
τ
(L)
t (ΨZ) , f (t)

]
(65)

−i
∑

Z∈SΛL
(Λ(1))

[
τ
(L)
t ◦ τ (Λ

(1))
−t (B1) ,

[
τ
(L)
t (ΨZ) , B2

]]
.

Let gt (B) be the solution of

∀t ≥ 0 : ∂tgt (B) = i
∑

Z∈SΛL
(Λ(1))

[τ
(L)
t (ΨZ) , gt (B)] , g0 (B) = B ∈ U .

Since ∥gt (B) ∥U = ∥B∥U for any B ∈ U , it follows from (65), by variation of
constants, that

∥f (t)∥U ≤ ∥f (0)∥U + 2 ∥B1∥U
∑

Z∈SΛL
(Λ(1))

∫ |t|

0

∥∥∥[τ (L)±s (ΨZ) , B2

]∥∥∥
U
ds . (66)

[The sign of s in ±s depends whether t is positive or negative.] Hence, as
Λ(1),Λ(2) are disjoint, for any t ∈ R,

CB2

(
Λ(1); t

)
≤ 2

∑
Z∈SΛL

(Λ(1))

∥ΨZ∥U
∫ |t|

0

CB2 (Z;±s) ds . (67)

By estimating CB2 (Z; s) in a similar manner and iterating this procedure, we
show that, for every L ∈ R+

0 , t ∈ R and all B1 ∈ U+ ∩ UΛ(1) , B2 ∈ UΛ(2) with
disjoint Λ(1),Λ(2) ⊂ ΛL,

CB2

(
Λ(1); t

)
≤ 2 ∥B2∥U

∑
k∈N

|2t|k

k!
uk , (68)

where, for any k ∈ N,

uk
.
=

∑
Z1∈SΛL

(Λ(1))

∑
Z2∈SΛL

(Z1)

· · ·
∑

Zk∈SΛL
(Zk−1)

1
[
Zk ∩ Λ(2) ̸= ∅

] k∏
j=1

∥∥ΨZj

∥∥
U .
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The above series is absolutely and uniformly convergent for L ∈ R+
0 (with fixed

Λ(1),Λ(2) ( ΛL). Indeed, from straightforward estimates,

uk ≤ Dk−1 ∥Ψ∥kW
∑

x∈∂ΨΛ(1)

∑
y∈Λ(2)

F (|x− y|) , (69)

by Equations (57) and (59).
Note that (68)–(69) yield (63), provided Λ(1),Λ(2) ( ΛL. This last condition

can easily be removed by taking, at any fixed L ∈ R+
0 , an interaction Ψ̃(L) ∈ W

defined by Ψ̃
(L)
Z

.
= ΨZ for any Z ⊆ ΛL, while Ψ̃

(L)
Z

.
= 0 when Z * ΛL. Indeed,

for all L ∈ R+
0 , we obviously have ∥Ψ̃(L)∥W ≤ ∥Ψ∥W . Furthermore, for all

L, L̃ ∈ R+
0 with L̃ > L, τ̃ (L̃)t = τ

(L)
t , where {τ̃ (L̃)t }t∈R is the (finite–volume) group

of ∗–automorphisms of U defined by (53) with L = L̃ and Ψ = Ψ̃(L). Therefore,
it suffices to apply (68)–(69) to the interaction Ψ̃(L) for sufficiently large L̃ ∈ R+

0

in order to get the assertion without the condition Λ(1),Λ(2) ( ΛL.

As explained in [NS, Theorem 3.1] for quantum spin systems, Lieb–Robinson
bounds lead to the existence of the infinite–volume dynamics:

Lemma 4.4 (Finite–volume dynamics as a Cauchy sequence)
Let Ψ ∈ W and V be any potential. Then, for any t ∈ R, Λ ∈ Pf (L), B ∈ UΛ

and L1, L2 ∈ R+
0 with Λ ⊂ ΛL1 ( ΛL2 ,∥∥∥τ (L2)

t (B)− τ
(L1)
t (B)

∥∥∥
U

≤ 2 ∥B∥U ∥Ψ∥W |t| e4D|t|∥Ψ∥W

×
∑

y∈ΛL2
\ΛL1

∑
x∈Λ

F (|x− y|) .

Proof: Again, the arguments are those proving [NS, Theorem 3.1.] for quantum
spin systems. We give them for completeness, having also in mind the extension
of the lemma to time–dependent interactions and potentials, in Theorem 5.1 (ii).
We fix in all the proof Λ ∈ Pf (L) and B ∈ UΛ.

For any L ∈ R+
0 and s, t ∈ R, define the unitary element

UL (t, s)
.
= eitVΛLe−i(t−s)HLe−isVΛL ∈ UΛL

(70)

with
VZ

.
=
∑
x∈Z

V{x} ∈ U+ ∩ UZ , Z ∈ Pf (L) .
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Clearly, UL (t, t) = 1U for all t ∈ R while

∂tUL (t, s) = −iGL (t)UL (t, s) and ∂sUL (t, s) = iUL (t, s)GL (s)

with
GL (t)

.
=
∑
Z⊆ΛL

eitVΛLΨZe
−itVΛL .

Let
τ̃
(L)
t (B)

.
= UL (0, t)BUL (t, 0) , B ∈ UΛ .

For any t ∈ R and L ∈ R+
0 such that Λ ⊂ ΛL,

τ
(L)
t (B) = τ̃

(L)
t

(
eitVΛLBe−itVΛL

)
= τ̃

(L)
t

(
eitVΛBe−itVΛ

)
and it suffices to study the net {τ̃ (L)t (B)}L∈R+

0
in U . The equality above is related

to the so–called “interaction picture” (w.r.t. potentials) of the time–evolution de-
fined by the ∗–automorphism τ

(L)
t .

Fix L1, L2 ∈ R+
0 with Λ ⊂ ΛL1  ΛL2 . Note that, for any t ∈ R,

τ̃
(L2)
t (B)− τ̃

(L1)
t (B) =

∫ t

0

∂s {UL2 (0, s)UL1 (s, t)BUL1 (t, s)UL2 (s, 0)} ds .
(71)

Straightforward computations yield

∂s {UL2 (0, s)UL1 (s, t)BUL1 (t, s)UL2 (s, 0)}

= iUL2 (0, s)
[
GL2 (s)−GL1 (s) ,UL1 (s, t)BUL1 (t, s)

]
UL2 (s, 0)

= iUL2 (0, s) e
isVΛL1

[
Bs, τ

(L1)
t−s (B̃t)

]
e
−isVΛL1UL2 (s, 0) , (72)

where, for any s, t ∈ R, we define

Bs
.
= e

−isVΛL1 (GL2 (s)−GL1 (s)) e
isVΛL1 and B̃t

.
= e−itVΛBeitVΛ . (73)

Thus, we infer from Equations (71)–(73) that∥∥∥τ̃ (L2)
t (B)− τ̃

(L1)
t (B)

∥∥∥
U
≤
∫ |t|

0

∥∥∥[τ (L1)
±s−t (B±s) , B̃t

]∥∥∥
U
ds . (74)

[The sign of s in ±s depends whether t is positive or negative.] Note that B̃t ∈ UΛ

and

Bs =
∑

Z⊆ΛL2
, Z∩(ΛL2

\ΛL1
)̸=∅

e
isVΛL2

\ΛL1ΨZe
−isVΛL2

\ΛL1 ∈ U+ ∩ UΛL2
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where, for any Z ⊆ ΛL2 ,

e
isVΛL2

\ΛL1ΨZe
−isVΛL2

\ΛL1 ∈ UZ .

Now, we apply the Lieb–Robinson bounds given by Theorem 4.3 to deduce that,
for any Λ ∈ Pf (L), s, t ∈ R, B ∈ UΛ and L1, L2 ∈ R+

0 with Λ ⊂ ΛL1  ΛL2 ,∥∥∥[τ (L1)
s−t (Bs) , B̃t

]∥∥∥
U

2 ∥B∥U
≤ D−1

(
e2D|s−t|∥Ψ∥W − 1

)
(75)

×
∑

Z⊆ΛL2
,

Z∩(ΛL2
\ΛL1

)̸=∅, Z∩Λ=∅

∥ΨZ∥U
∑

z∈∂ΨZ

∑
x∈Λ

F (|x− z|)

+
∑

Z⊆ΛL2
,

Z∩(ΛL2
\ΛL1

)̸=∅, Z∩Λ̸=∅

∥ΨZ∥U .

Direct estimates using (57) and (59) show that∑
Z⊆ΛL2

, Z∩(ΛL2
\ΛL1

) ̸=∅

∥ΨZ∥U
∑

z∈∂ΨZ

∑
x∈Λ

F (|x− z|)

≤
∑

y∈ΛL2
\ΛL1

∑
Z⊆ΛL2

, Z⊃{y}

∥ΨZ∥U
∑
z∈Z

∑
x∈Λ

F (|x− z|)

≤
∑

y∈ΛL2
\ΛL1

∑
z∈ΛL2

∑
Z⊆ΛL2

, Z⊃{y,z}

∥ΨZ∥U
∑
x∈Λ

F (|x− z|)

≤ ∥Ψ∥W
∑

y∈ΛL2
\ΛL1

∑
x∈Λ

∑
z∈ΛL2

F (|y − z|)F (|x− z|)

≤ D∥Ψ∥W
∑

y∈ΛL2
\ΛL1

∑
x∈Λ

F (|x− y|) , (76)

while, by using (59) only, ∑
Z⊆ΛL2

, Z∩(ΛL2
\ΛL1

)̸=∅, Z∩Λ̸=∅

∥ΨZ∥U

≤
∑

y∈ΛL2
\ΛL1

∑
x∈Λ

∑
Z⊆ΛL2

, Z⊃{x,y}

∥ΨZ∥U

≤ ∥Ψ∥W
∑

y∈ΛL2
\ΛL1

∑
x∈Λ

F (|x− y|) . (77)
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The lemma is then a direct consequence of (74)–(75) combined with the upper
bounds (76)–(77).

The infinite–volume dynamics is obtained from Lemma 4.4 and the complete-
ness of U . Indeed, from the above lemma, for all t ∈ R, τ (L)t converges strongly
on U0 to τ t, as L → ∞. By density of U0 in the Banach space U and the fact that
τ
(L)
t are isometries for all L ∈ R+

0 and t ∈ R, the limit τ t, t ∈ R, uniquely defines
a ∗–automorphism, also denoted by τ t, of the C∗–algebra U . {τ t}t∈R is clearly a
group of ∗–automorphisms on U . Again by the above lemma, for any element B
in the dense subset U0 ⊂ U , the convergence of τ (L)t (B), as L → ∞, is uniform
for t on compacta and {τ t}t∈R thus defines a C0–group on U , that is, a strongly
continuous group on U .

We need in the sequel an explicit characterization of the infinitesimal generator
of this C0–group. Since the generator equals (54) at finite–volume, one expects
that the infinitesimal generator equals on U0 the linear map δ from U0 to U defined
by

δ(B)
.
= i

∑
Λ∈Pf (L)

[ΨΛ, B] + i
∑
x∈L

[
V{x}, B

]
, B ∈ U0 , (78)

for any Ψ ∈ W and potential V. Indeed, for any Λ ∈ Pf (L) and local element
B ∈ UΛ, ∑

Z∈Pf (L)

∥[ΨZ , B]∥U +
∑
x∈L

∥∥[V{x}, B
]∥∥

U (79)

≤ 2 ∥B∥U

(
|Λ|F (0) ∥Ψ∥W +

∑
x∈Λ

∥∥V{x}
∥∥
U

)

and the series (78) is absolutely convergent for all B ∈ U0. Moreover, by (54), we
obviously have

δ(B) = lim
L→∞

δ(L)(B) , B ∈ U0 . (80)

To prove that the closure of the linear map δ : U0 → U is the generator of the
C0–group {τ t}t∈R of ∗–automorphisms we use the second Trotter–Kato approxi-
mation theorem [EN, Chap. III, Sect. 4.9].

To this end, we first show that the (generally unbounded) operator δ on U with
dense domain Dom(δ) = U0 is closable. Observe that both ±δ are symmetric
derivations and δ is thus conservative [BR1, Definition 3.1.13.], by structure of
the set U0 of local elements:

43



Lemma 4.5 (Conservative infinite–volume derivation)
Let Ψ ∈ W and V be any potential. Then, the derivation δ defined on U0 by (78)
is a conservative symmetric derivation.

Proof: Let B ∈ U0 satisfying B ≥ 0. By definition of U0, B ∈ UΛ for some
Λ ∈ Pf (L). Since UΛ is a unital C∗–algebra, there is B1/2 ∈ UΛ ⊂ U0 such
that B1/2 ≥ 0 and (B1/2)2 = B. Therefore, the lemma follows from [BR1,
Proposition 3.2.22].

It follows that the symmetric derivation δ is (norm–) closable:

Lemma 4.6 (Closure of the infinite–volume derivation)
Let Ψ ∈ W and V be any potential. Then, the derivations ±δ defined on U0

by (78) are closable and their closures, again denoted for simplicity by ±δ, are
conservative.

Proof: ±δ are densely defined dissipative operators on the Banach space U .
Therefore, the lemma is an obvious application of [BR1, Proposition 3.1.15.].

In order to apply the second Trotter–Kato approximation theorem [EN, Chap.
III, Sect. 4.9], we also prove that the range Ran{(x1U∓δ)} of the closed operators
x1U ∓ δ are dense in the Banach space U for x > 0. This is done in the following
lemma:

Lemma 4.7 (Range of the infinite–volume derivation)
Let Ψ ∈ W and V be any potential. Then, for any x ∈ R+,

U0 ⊆ Ran{(x1U ∓ δ)} ⊆ U

with 1U being the identity on U . In particular, Ran{(x1U ∓ δ)} is dense in U .

Proof: We only give the proof for the range of the operator x1U−δ, since the
other case uses similar arguments.

Note that ∥τ (L)t ∥B(U) = 1 for any L ∈ R+
0 and t ∈ R. Here, B(U) is the

Banach space of bounded linear operators acting on U . Thus, for any L ∈ R+
0 ,

x ∈ R+, and B ∈ U , the improper Riemann integral∫ ∞

0

e−xsτ (L)s (B) ds
.
= lim

t→∞

∫ t

0

e−xsτ (L)s (B) ds
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exists. By [EN, Chap. II, Sect. 1.10], it follows that, for any L ∈ R+
0 and x ∈ R+,

the resolvent (x1U − δ(L))−1 of the generator δ(L) of the group {τ (L)t }t∈R also
exists and satisfies

(x1U−δ(L))−1(B) =

∫ ∞

0

e−xsτ (L)s (B) ds (81)

for all B ∈ U . Now, take B ∈ U0, x ∈ R+, and consider the element

BL
.
= (x1U−δ(L))−1(B) ∈ U (82)

for some sufficiently large parameter L ∈ R+
0 such that B ∈ UΛL

. Note that
τ
(L)
s (UΛL

) ⊂ UΛL
and BL ∈ UΛL

⊂ U0 because of (81). Then, we observe that

(x1U−δ)(BL) = B + (δ(L)−δ)(BL) ,

where we recall that L ∈ R+
0 , x ∈ R+, and B ∈ U0. Now, by the Lumer–Phillips

theorem [BR1, Theorem 3.1.16] (see also its proof), if there is x ∈ R+ such that

lim
L→∞

∥∥∥(δ−δ(L))(BL)
∥∥∥
U
= 0 (83)

for all B ∈ U0 then we obtain the assertion. Indeed, by using Lemma 4.4 together
with ∥τ (L)t ∥B(U) = 1 and (81), one verifies that {BL}L∈R+

0
is a Cauchy net, thus a

convergent one in U , while x1U − δ is a closed operator, by Lemma 4.6.
To prove (83) we use Lieb–Robinson bounds (Theorem 4.3) as follows: Since

BL ∈ UΛL
for sufficiently large L ∈ R+

0 , we can combine (54) and (78) with
(81)–(82) to compute that

(δ−δ(L))(BL) = i
∑

Z∈Pf (L), Z∩Λc
L ̸=∅

∫ ∞

0

e−xs
[
ΨZ , τ

(L)
s (B)

]
ds (84)

for any x ∈ R+, sufficiently large L ∈ R+
0 , and B ∈ U0. Here, Λc

L
.
= L\ΛL. It

suffices to consider the case B ̸= 0. Using now Theorem 4.3, similar to (75), one
gets that, for all s ∈ R+ and any sufficiently large L ∈ R+

0 such that B ∈ UΛ ⊂
UΛL

with Λ ∈ Pf (L),

∑
Z∈Pf (L), Z∩Λc

L ̸=∅

∥∥∥[ΨZ , τ
(L)
s (B)

]∥∥∥
U

2 ∥B∥U
(85)

≤ D−1
(
e2D|s|∥Ψ∥W − 1

) ∑
Z∈Pf (L), Z∩Λc

L ̸=∅, Z∩Λ=∅

∥ΨZ∥U
∑

x∈∂ΨZ

∑
y∈Λ

F (|x− y|)

+
∑

Z∈Pf (L), Z∩Λc
L ̸=∅, Z∩Λ ̸=∅

∥ΨZ∥U .
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Similar to Inequalities (76)–(77), we thus infer from (57) and (59) that

∑
Z∈Pf (L), Z∩Λc

L ̸=∅

∥∥∥[ΨZ , τ
(L)
s (B)

]∥∥∥
U

2 ∥B∥U
≤ ∥Ψ∥W e2D|s|∥Ψ∥W

∑
y∈Λc

L

∑
x∈Λ

F (|x− y|) ,

(86)
while

lim
L→∞

∑
y∈Λc

L

∑
x∈Λ

F (|x− y|) = 0 , (87)

because of (56). Therefore, by (84)–(87), we deduce (83) for all x > 2D∥Ψ∥W
and B ∈ U0.

We now apply the second Trotter–Kato approximation theorem [EN, Chap.
III, Sect. 4.9] to deduce that δ is the generator of the group {τ t}t∈R of ∗–auto-
morphisms and resume all the main results, so far, in the following theorem:

Theorem 4.8 (Infinite–volume dynamics and its generator)
Let Ψ ∈ W , V be any potential, and D ∈ R+ be defined by (57).
(i) Infinite–volume dynamics. The continuous groups {τ (L)t }t∈R, L ∈ R+

0 , defined
by (53) converge strongly to a C0–group {τ t}t∈R of ∗–automorphisms with gener-
ator δ.
(ii) Infinitesimal generator. δ is a conservative closed symmetric derivation which
is equal on its core U0 to

δ(B) = i
∑

Λ∈Pf (L)

[ΨΛ, B] + i
∑
x∈L

[
V{x}, B

]
, B ∈ U0 .

(iii) Rate of convergence. For any Λ ∈ Pf (L), B ∈ UΛ and L ∈ R+
0 such that

Λ ⊂ ΛL,∥∥∥τ t (B)− τ
(L)
t (B)

∥∥∥
U
≤ 2 ∥B∥U ∥Ψ∥W |t| e4D|t|∥Ψ∥W

∑
y∈L\ΛL

∑
x∈Λ

F (|x− y|) .

(iv) Lieb–Robinson bounds. For any t ∈ R and B1 ∈ U+ ∩UΛ(1) , B2 ∈ UΛ(2) with
disjoint sets Λ(1),Λ(2) ∈ Pf (L),

∥[τ t (B1) , B2]∥U ≤ 2D−1 ∥B1∥U ∥B2∥U
(
e2D|t|∥Ψ∥W − 1

)
×

∑
x∈∂ΨΛ(1)

∑
y∈Λ(2)

F (|x− y|) .
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Proof: By Lemma 4.6, the set U0 of local elements is a core of the dissipative
derivation δ and one obtains (ii), see (78). Moreover, δ(L) (B) → δ (B) for all
B ∈ U0, see (80). Recall that δ(L) is the generator of the group {τ (L)t }t∈R for any
L ∈ R+

0 . Therefore, since one also has Lemma 4.7, (i) is a direct consequence of
[EN, Chap. III, Sect. 4.9]. The third statement (iii) thus follows from Lemma 4.4.
(iv) is an obvious consequence of Theorem 4.3 and the first assertion (i).

4.4 Lieb–Robinson Bounds for Multi–Commutators
Recall that multi–commutators are defined by induction as follows:

[B1, B0]
(2) .= [B1, B0]

.
= B1B0 −B0B1 , B0, B1 ∈ U , (88)

and, for all integers k ≥ 2,

[Bk, Bk−1, . . . , B0]
(k+1) .= [Bk, [Bk−1, . . . , B0]

(k)] , B0, . . . , Bk ∈ U . (89)

The aim of this subsection is to extend Theorem 4.8 (iv) to multi–commutators.
The arguments we use below to prove Lieb–Robinson bounds for multi–com-
mutators are not a generalization of the proof of Theorem 4.3 or Theorem 4.8 (iv).
Instead, we use a pivotal lemma deduced from Theorem 4.8 (iii), which in turn
results from finite–volume Lieb–Robinson bounds of Theorem 4.3. This lemma
expresses the C0–group {τ t}t∈R of Theorem 4.8 (i) as telescoping series.

To this end, it is convenient to introduce the family {χx}x∈L of ∗–automor-
phisms of U , which implements the action of the group of lattice translations on
the CAR C∗–algebra U . This family is uniquely defined by the conditions

χx(ay) = ay+x , x, y ∈ L . (90)

We also define, for any n ∈ N0, x ∈ L, Ψ ∈ W and potential V, a space
translated finite–volume dynamics which is the continuous group {τ (n,x)t }t∈R of
∗–automorphisms of U generated by the symmetric and bounded derivation

δ(n,x)(B)
.
= i

∑
Λ⊆x+Λn

[ΨΛ, B] + i
∑

y∈x+Λn

[
V{y}, B

]
, B ∈ U .

Note that the fermion system is generally not translation invariant and, in general,

τ
(n,x)
t ◦ χx ̸= χx ◦ τ

(n)
t , x ∈ L, n ∈ N0 , t ∈ R .
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For m ∈ N0, x ∈ L, B ∈ UΛm and t ∈ R, we finally introduce the local elements

BB,t,x (m) ≡ B
(m)
B,t,x (m)

.
= τ

(m,x)
t ◦ χx (B) ∈ UΛm+x (91)

and

BB,t,x (n) ≡ B
(m)
B,t,x (n)

.
= (τ

(n,x)
t − τ

(n−1,x)
t ) ◦χx(B) ∈ UΛn+x , n ≥ m+1 .

(92)
The family {BB,t,x (n)}n≥m ⊂ U0 is used to define telescoping series:

Lemma 4.9 (Infinite–volume dynamics as telescoping series)
Let Ψ ∈ W and V be any potential. Then, for any m ∈ N0, x ∈ L, B ∈ UΛm and
t ∈ R:

∞∑
n=m

BB,t,x (n) = τ t ◦ χx (B) . (93)

The above telescoping series is absolutely convergent in U with

∥BB,t,x (n)∥U ≤ 2 ∥B∥U ∥Ψ∥W |t| e4D|t|∥Ψ∥W
∑

y∈Λn\Λn−1

∑
z∈Λm

F (|z − y|) (94)

for any n ≥ m+ 1, while ∥BB,t,x (m)∥U = ∥B∥U .

Proof: Since, for any N ∈ N0 so that N ≥ m,

N∑
n=m

BB,t,x (n) = τ
(N,x)
t ◦ χx (B) , (95)

it suffices to study the limit N → ∞ of the group {τ (N,x)
t }t∈R at any fixed x ∈ L.

Similar to the proof of Theorem 4.8 (i), δ(N,x) (B) → δ (B) for all B ∈ U0, as
N → ∞. By Lemma 4.7 and [EN, Chap. III, Sect. 4.9], the translated groups
{τ (N,x)

t }t∈R, N ∈ N0, converge strongly to the C0–group {τ t}t∈R for any x ∈
L. In other words, we deduce Equation (93) from (95) in the limit N → ∞.
Moreover, one easily checks that Theorem 4.3 and thus Lemma 4.4 also hold for
the (space translated) groups {τ (n,x)t }t∈R, n ∈ N0, at any fixed x ∈ L. This yields
Inequality (94) for n > m, while ∥BB,t,x (m)∥U = ∥B∥U , because τ (m,x)

t is a
∗–automorphism on UΛm . It follows that

∞∑
n=m+1

∥BB,t,x (n)∥U ≤ 2 ∥B∥U ∥Ψ∥W |t| e4D|t|∥Ψ∥W
∑
z∈Λm

∑
n∈N

∑
y∈Λn\Λn−1

F (|z − y|) .
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Finally, by Assumption (56),∑
z∈Λm

∑
n∈N

∑
y∈Λn\Λn−1

F (|z − y|) ≤
∑
z∈Λm

∑
y∈L

F (|z − y|) = |Λm| ∥F∥1,L <∞ .

To extend Lieb–Robinson bounds to multi–commutators we combine Lemma
4.9 with tree decompositions of sequences of clustering subsets of L (cf. (104)):
Let T2 be the set of all (non–oriented) trees with exactly two vertices. This set
contains a unique tree T = {{0, 1}} which, in turn, contains the unique bond
{0, 1}, i.e., T2

.
= {{{0, 1}}}. Then, for each integer k ≥ 2, we recursively define

a set Tk+1 of trees with k + 1 vertices by

Tk+1
.
=
{
{{j, k}} ∪ T : j = 0, . . . , k − 1, T ∈ Tk

}
. (96)

Therefore, for k ∈ N and any tree T ∈ Tk+1, there is a map

PT : {1, . . . , k} → {0, . . . , k − 1} (97)

such that PT (j) < j, PT (1) = 0, and

T =
k∪

j=1

{{PT (j), j}} . (98)

For any k ∈ N, T ∈ Tk+1, and every sequence {(nj, xj)}kj=0 in N0×L with length
k + 1, we define

κT

(
{(nj, xj)}kj=0

)
.
=

k∏
j=1

1
[
(Λnj

+ xj) ∩ (ΛnPT (j)
+ xPT (j)) ̸= ∅

]
∈ {0, 1} ,

(99)
while, for all ℓ ∈ {1, . . . , k},

Sℓ,k
.
= {π | π : {ℓ, . . . , k} → {1, . . . , k} such that π (i) < π (j) when i < j} .

(100)
Then, one gets the following bound on multi–commutators:

Theorem 4.10 (Lieb–Robinson bounds for multi–commutators – Part I)
Let Ψ ∈ W and V be any potential. Then, for any integer k ∈ N, {mj}kj=0 ⊂ N0,
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times {sj}kj=1 ⊂ R, lattice sites {xj}kj=0 ⊂ L, and local elements B0 ∈ U0,
{Bj}kj=1 ⊂ U0 ∩ U+ such that Bj ∈ UΛmj

for j ∈ {0, . . . , k},∥∥∥[τ sk ◦ χxk
(Bk), . . . , τ s1 ◦ χx1

(B1), χx0
(B0)

](k+1)
∥∥∥
U

≤ 2k
k∏

j=0

∥Bj∥U
∑

T∈Tk+1

(
κT

(
{(mj, xj)}kj=0

)
+ ℜT,∥Ψ∥W

)
with, for any α ∈ R+

0 ,

ℜT,α
.
=

k∑
ℓ=1

(2α)k−ℓ+1
∑

π∈Sℓ,k

 ∏
j∈{π(ℓ),...,π(k)}

|sj| e4Dα|sj |

 (101)

∞∑
nπ(ℓ)=mπ(ℓ)+1

∑
zπ(ℓ)∈Λmπ(ℓ)

∑
yπ(ℓ)∈Λnπ(ℓ)

\Λnπ(ℓ)−1

· · ·

· · ·
∞∑

nπ(k)=mπ(k)+1

∑
zπ(k)∈Λmπ(k)

∑
yπ(k)∈Λnπ(k)

\Λnπ(k)−1

κT

(
{(nj, xj)}kj=0

) ∏
j∈{π(ℓ),...,π(k)}

F (|zj − yj|) .

In the right–hand side (r.h.s.) of (101), we set nj
.
= mj if

j ∈ {0, . . . , k} \ {π (ℓ) , . . . , π (k)} .

The constant D ∈ R+ is defined by (57).

Proof: Fix k ∈ N, {mj}kj=0 ⊂ N0, {sj}kj=1 ⊂ R, {xj}kj=0 ⊂ L and elements
{Bj}kj=0 ⊂ U0 such that the conditions of the theorem are satisfied. From Lemma
4.9, [

τ sk ◦ χxk
(Bk), . . . , τ s1 ◦ χx1

(B1), χx0
(B0)

](k+1) (102)

=
∞∑

n1=m1

· · ·
∞∑

nk=mk

[
BBk,sk,xk

(nk) , . . . ,BB1,s1,x1 (n1) , χx0
(B0)

](k+1)
.
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Since Bj ∈ UΛmj
∩ U+ for j ∈ {1, . . . , k}, we infer from (91)–(92) that[
BBk,sk,xk

(nk) , . . . ,BB1,s1,x1 (n1) , χx0
(B0)

](k+1)

=
k∏

j=1

1

[
j−1∪
i=0

(
Λnj

+ xj
)
∩ (Λni

+ xi) ̸= ∅

]
(103)

[
BBk,sk,xk

(nk) , . . . ,BB1,s1,x1 (n1) , χx0
(B0)

](k+1)

for all integers {nj}kj=0 ⊂ N0 with n0
.
= m0 and nj ≥ mj when j ∈ {1, . . . , k}.

The conditions inside characteristic functions in (103) refer to the fact that the se-
quence of sets {Λnj

}kj=0 has to be a cluster to have a non–zero multi–commutator.
Note further that

k∏
j=1

1

[
j−1∪
i=0

(
Λnj

+ xj
)
∩ (Λni

+ xi) ̸= ∅

]
≤

∑
T∈Tk+1

κT

(
{(nj, xj)}kj=0

)
. (104)

Using (102)–(104) one then shows that∥∥∥[τ sk ◦ χxk
(Bk), . . . , τ s1 ◦ χx1

(B1), χx0
(B0)

](k+1)
∥∥∥
U

≤ 2k ∥B0∥U
∑

T∈Tk+1

∞∑
n1=m1

· · ·
∞∑

nk=mk

κT

(
{(nj, xj)}kj=0

)

×
k∏

j=1

∥∥BBj ,sj ,xj
(nj)

∥∥
U . (105)

This inequality combined with (94) yields the assertion.

The above theorem extends Lieb–Robinson bounds to multi–commutators. In-
deed, if F(r) decays fast enough as r → ∞, then Theorem 4.10 and Lebesgue’s
dominated convergence theorem imply that, for any j ∈ {0, . . . , k},

lim
|xj |→∞

∥∥∥[τ sk ◦ χxk
(Bk), . . . , τ s1 ◦ χx1

(B1), χx0
(B0)

](k+1)
∥∥∥
U
= 0 . (106)

The rate of convergence if this multi–commutator towards zero is, however, a
priori unclear. Hence, to obtain bounds on the space decay of the above multi–
commutator, more in the spirit of the original Lieb–Robinson bounds for commu-
tators, we consider two situations w.r.t. the behavior of the function F : R+

0 → R+

at large arguments:
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• Polynomial decay. There is a constant ς ∈ R+ and, for all m ∈ N0, an
absolutely summable sequence {un,m}n∈N ∈ ℓ1(N) such that, for all n ∈ N
with n > m,

|Λn\Λn−1|
∑
z∈Λm

max
y∈Λn\Λn−1

F (|z − y|) ≤ un,m

(1 + n)ς
. (107)

• Exponential decay. There is ς ∈ R+ and, for m ∈ N0, a constant Cm ∈ R+

such that, for all n ∈ N with n > m,

|Λn\Λn−1|
∑
z∈Λm

max
y∈Λn\Λn−1

F (|z − y|) ≤ Cme
−2ςn . (108)

For sufficiently large ϵ ∈ R+, the function (58) clearly satisfies Condition (107),
while (107)–(108) hold for the choice

F (r) = e−2ςr(1 + r)−(d+ϵ) , r ∈ R+
0 , (109)

with arbitrary ς, ϵ ∈ R+. Under one of these both very general assumptions, one
can put the upper bound of Theorem 4.10 in a much more convenient form. In fact,
one obtains an estimate on the norm of the multi–commutator (106) as a function
of the distances between the points {x0, . . . , xk}, like in the usual Lieb–Robinson
bounds (i.e., the special case k = 2). To formulate such bounds, we need some
preliminary definitions related to properties of trees.

For any k ∈ N and T ∈ Tk+1, we define the sequence dT ≡ {dT (j)}kj=0 in
{1, . . . , k} by

dT (j)
.
= |{b ∈ T : j ∈ b}| , j ∈ {0, . . . , k} ,

i.e., dT (j) is the degree of the j–th vertex of the tree T . For k ∈ N and T ∈ Tk+1,
observe that

dT (0) + · · ·+ dT (k) = 2k . (110)

We also introduce the following notation:

dT !
.
= dT (0)! · · · dT (k)!

for any tree T ∈ Tk+1, k ∈ N. The degree of any vertex of a tree is at least 1, by
connectedness of such a graph, and (110) yields

dT ! ≤ k! , k ∈ N , T ∈ Tk+1 . (111)
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For any k ∈ N, T ∈ Tk+1, and any sequence f : N0 → R+, note that

k∏
j=0

{f (j)}dT (j) =
k∏

j=1

f (j) f (PT (j)) . (112)

This property is elementary but pivotal to estimate the remainder ℜT,α, defined by
(101), of Theorem 4.10.

Theorem 4.11 (Lieb–Robinson bounds for multi–commutators – Part II)
Let α ∈ R+

0 , k ∈ N, {mj}kj=0 ⊂ N0, {sj}kj=1 ⊂ R, {xj}kj=0 ⊂ L, and T ∈ Tk+1.
Depending on decay properties of the function F : R+

0 → R+, the coefficient
ℜT,α ∈ R+

0 defined by (101) satisfies the following bounds:
(i) Polynomial decay: Assume (107). Then,

ℜT,α ≤ d
ςk
2

k∑
ℓ=1

(2α)k−ℓ+1
∑

π∈Sℓ,k

 ∏
j∈{π(ℓ),...,π(k)}

∥∥u·,mj

∥∥
ℓ1(N) |sj| e

4D|sj |α


 ∏

j∈{0,...,k}\{π(ℓ),...,π(k)}

(1 +mj)
ς

 ∏
{j,l}∈T

1

(1 + |xj − xl|)ς(max{dT (j),dT (l)})−1 .

(ii) Exponential decay: Assume (108). Then,

ℜT,α ≤
k∑

ℓ=1

(
2α

eς − 1

)k−ℓ+1 ∑
π∈Sℓ,k

 ∏
j∈{π(ℓ),...,π(k)}

Cmj
|sj| e4D|sj |α−ςmj


 ∏

j∈{0,...,k}\{π(ℓ),...,π(k)}

eςmj

 ∏
{j,l}∈T

exp

(
− ς |xj − xl|√

dmax{dT (j), dT (l)}

)
.

Proof: (i) Fix all parameters of the theorem. We infer from (101) and (107) that

ℜT,α ≤
k∑

ℓ=1

(2α)k−ℓ+1
∑

π∈Sℓ,k

 ∏
j∈{π(ℓ),...,π(k)}

|sj| e4D|sj |α

 ∞∑
nπ(ℓ)=mπ(ℓ)+1

· · ·
∞∑

nπ(k)=mπ(k)+1

κT

(
{(nj, xj)}kj=0

) ∏
j∈{π(ℓ),...,π(k)}

unj ,mj

(1 + nj)
ς .
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Recall that nj
.
= mj when j ∈ {0, . . . , k} \ {π (ℓ) , . . . , π (k)}. By Hölder’s

inequality, it follows that

ℜT,α ≤
k∑

ℓ=1

(2α)k−ℓ+1
∑

π∈Sℓ,k

 ∏
j∈{π(ℓ),...,π(k)}

∥∥u·,mj

∥∥
ℓ1(N) |sj| e

4D|sj |α

 (113)

× max
nπ(ℓ),...,nπ(k)∈N

κT

(
{(nj, xj)}kj=0

) ∏
j∈{π(ℓ),...,π(k)}

1

(1 + nj)
ς

 .

Therefore, it suffices to bound the above maximum in an appropriate way. Using
(112), note that

k∏
j=0

1

(1 + nj)
ς =

k∏
j=0

(
1

(1 + nj)
ς

dT (j)

)dT (j)

=
k∏

j=1

1

(1 + nj)
ς

dT (j)
(
1 + nPT (j)

) ς
dT (PT (j))

≤
k∏

j=1

1(
1 + nj + nPT (j)

) ς
mT (j)

, (114)

where, for k ∈ N, any tree T ∈ Tk+1, and j ∈ {1, . . . , k},

mT (j)
.
= max{dT (j), dT (PT (j))} .

Meanwhile, the condition

(Λnj
+ xj) ∩ (ΛnPT (j)

+ xPT (j)) ̸= ∅

implies √
d(nj + nPT (j)) ≥ |xj − xPT (j)| . (115)

Therefore, we infer from (114)–(115) that

max
nπ(ℓ),...,nπ(k)∈N

κT

(
{(nj, xj)}kj=0

) ∏
j∈{π(ℓ),...,π(k)}

1

(1 + nj)
ς


≤

 ∏
j∈{0,...,k}\{π(ℓ),...,π(k)}

(1 + nj)
ς

 k∏
j=1

d
ς
2

(1 + |xj − xPT (j)|)
ς

mT (j)

.
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Combined with (113), this last inequality yields Assertion (i).
(ii) The second assertion is proven exactly in the same way. We omit the

details.

We defined in [BPH1, Section 4] the concept of tree–decay bounds for pairs
(ρ, τ), where ρ ∈ U∗ and τ ≡ {τ t}t∈R are respectively any state and any one–
parameter group of ∗–automorphisms on the C∗–algebra U . They are a useful tool
to control multi–commutators of products of annihilation and creation operators.
Such bounds are related to cluster or graph expansions in statistical physics. For
more details see the preliminary discussions of [BPH1, Section 4]. As a straight-
forward corollary of Theorems 4.10–4.11 we give below an extension of the tree–
decay bounds [BPH1, Section 4] to the case of interacting fermions on lattices:

Corollary 4.12 (Tree–decay bounds)
Let Ψ ∈ W , V be any potential, k ∈ N, m0 ∈ N0, t ∈ R+

0 , {sj}kj=1 ⊂ [−t, t],
B0 ⊂ UΛm0

, and {xj}kj=0, {zj}kj=1 ⊂ L such that |zj| = 1 for j ∈ {1, . . . , k}.
(i) Polynomial decay: Assume (107) for m = 1. Then,∥∥∥[τ sk(a∗xk

axk+zk), . . . , τ s1(a
∗
x1
ax1+z1), χx0

(B0)
](k+1)

∥∥∥
U

≤ ∥B0∥U (1 +m0)
ςKk

0

∑
T∈Tk+1

∏
{j,l}∈T

1

(1 + |xj − xl|)ς(max{dT (j),dT (l)})−1

with
K0

.
= 2d

ς
2

(
2ς + 2 ∥u·,1∥ℓ1(N) ∥Ψ∥W |t| e4D|t|∥Ψ∥W

)
.

(ii) Exponential decay: Assume (108) for m = 1. Then,∥∥∥[τ sk(a∗xk
axk+zk), . . . , τ s1(a

∗
x1
ax1+z1), χx0

(B0)
](k+1)

∥∥∥
U

≤ ∥B0∥U em0ςKk
1

∑
T∈Tk+1

∏
{j,l}∈T

exp

(
− ς |xj − xl|√

dmax{dT (j), dT (l)}

)
with

K1
.
= 2

(
eς +

2C1∥Ψ∥W |t| e4D|t|∥Ψ∥W

e2ς − eς

)
.

Proof: For all k ∈ N, T ∈ Tk+1, and any sequence {(mj, xj)}kj=0 in N0 × L of
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length k + 1, the following upper bounds hold for κT (see (99)):

κT

(
{(mj, xj)}kj=0

)
≤ d

kς
2

k∏
j=0

(1 +mj)
ς
∏

{j,l}∈T

1

(1 + |xj − xl|)
ς

max{dT (j),dT (l)}

(116)
while

κT

(
{(mj, xj)}kj=0

)
≤ e(m0+···+mk)ς

∏
{j,l}∈T

exp

(
− ς |xj − xl|√

dmax{dT (j), dT (l)}

)
.

(117)
Cf. proof of Theorem 4.11. Therefore, the corollary is a direct consequence of
Theorems 4.10 and 4.11 together with the two previous inequalities.

Up to the powers 1/max{dT (j), dT (l)}, Corollary 4.12 gives for interacting sys-
tems upper bounds for multi–commutators like [BPH1, Eq. (4.14)] for the free
case. We show in the next subsection how to use these bounds to obtain results
similar to [BPH1, Theorem 3.4] on the dynamics perturbed by the presence of
external electromagnetic fields.

Remark 4.13
All results of this subsection depend on Theorem 4.8 (iii), i.e., the rate of conver-
gence, as n → ∞, of the family {τ (n,x)}n∈N0 of finite–volume groups introduced
in the preliminary discussions before Lemma 4.9. It is the only information on the
Fermi system we needed here.

Remark 4.14
The Lieb–Robinson bound for multi–commutators given by Theorems 4.10–4.11
at k = 1 is not as good as the previous Lieb–Robinson bound of Theorem 4.8
(iv). Nevertheless, they are qualitatively equivalent in the following sense: For
interactions with polynomial decay, the first bound also has polynomial decay,
even if with lower degree than the second one. For interactions with exponential
decay, both bounds are exponentially decaying, even if the first one has a worse
prefactor and exponential rate than the second one.

4.5 Application to Perturbed Autonomous Dynamics
Let Ψ ∈ W and V be a potential. For any l ∈ R+

0 , we consider a map η 7→ W(l,η)

from R to the subspace of self–adjoint elements of UΛl
. In the case that interests
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us, the following property holds:∥∥W(l,η)
∥∥
U = O(η |Λl|) . (118)

More precisely, we consider elements W(l,η) of the form

W(l,η) .=
∑
x∈Λl

∑
z∈L,|z|≤1

wx,x+z(η)a
∗
xax+z , l ∈ R+

0 , (119)

where {wx,y}x,y∈L are complex–valued functions of η ∈ R with

wx,y = wy,x and wx,y(0) = 0 (120)

for all x, y ∈ L.
Equation (119) has the form

W(l,η) =
∑
x∈Λl

Wx(η) (121)

where, for some fixed radius R ∈ R+ and any x ∈ L, Wx(η) is a self–adjoint even
element of Ux+ΛR

that depends on the real parameter η. All results below in this
subsection hold for the more general case (121) as well, with obvious modifica-
tions. Indeed, we could even consider more general perturbations with R = ∞,
see proofs of Inequality (179) and Theorem 5.6.

We refrain from treating cases more general than (119) to keep technical as-
pects as simple as possible. Observe that perturbations due to the presence of
external electromagnetic fields are included in the class of perturbations defined
by (119). In fact, as discussed in the introduction, our final aim is the micro-
scopic quantum theory of electrical conduction [BP4, BP5, BP6]. Indeed, at fixed
l ∈ R+

0 , W(l,η) defined by (119) is related to perturbations of dynamics caused by
constant external electromagnetic fields that vanish outside the box Λl.

We assume that {wx,y}x,y∈L are uniformly bounded and Lipschitz continuous:
There is a constant K1 ∈ R+ such that, for all η, η0 ∈ R,

sup
x,y∈L

|wx,y(η)−wx,y(η0)| ≤ K1 |η − η0| and sup
x,y∈L

sup
η∈R

|wx,y(η)| ≤ K1 .

(122)
These two uniformity conditions could hold for parameters η, η0 on compact sets
only, but we refrain again from considering this more general case, for simplicity.

The perturbed dynamics is defined via the symmetric derivation

δ(l,η)
.
= δ + i

[
W(l,η), ·

]
, l ∈ R+

0 , η ∈ R . (123)

57



Recall that δ is the symmetric derivation of Theorem 4.8 which generates the
C0–group {τ t}t∈R on U . The second term in the r.h.s. of (123) is a bounded
perturbation of δ. Hence, δ(l,η) generates a C0–group {τ̃ (l,η)t }t∈R on U , see [EN,
Chap. III, Sect. 1.3]. By Lemma 4.6, the (generally unbounded) closed operator
δ(l,η) is a conservative symmetric derivation and τ̃ (l,η)t is a ∗–automorphism of U
for all t ∈ R.

Let Φ be any interaction with energy observables

UΦ
ΛL

.
=
∑
Λ⊆ΛL

ΦΛ , L ∈ R+
0 . (124)

The main aim of this subsection is to study the energy increment

T
(l,η,L)
t,s

.
= τ̃

(l,η)
t−s (U

Φ
ΛL
)− τ t−s(U

Φ
ΛL
) , l, L ∈ R+

0 , s, t, η ∈ R , (125)

in the limit L→ ∞ to obtain similar results as [BPH1, Theorem 3.4]. This can be
done by using the (partial) Dyson–Phillips series:

T
(l,η,L)
t,s −T

(l,η0,L)
t,s (126)

=
m∑
k=1

ik
∫ t

s

ds1 · · ·
∫ sk−1

s

dsk

[
X(l,η0,η)

sk,s
, . . . ,X(l,η0,η)

s1,s
, τ̃

(l,η0)
t−s (UΦ

ΛL
)
](k+1)

+im+1

∫ t

s

ds1 · · ·
∫ sm

s

dsm+1

τ̃
(l,η)
sm+1−s

([
W(l,η) −W(l,η0),X(l,η0,η)

sm,sm+1
, . . . ,X(l,η0,η)

s1,sm+1
, τ̃

(l,η0)
t−sm+1

(UΦ
ΛL
)
](m+2)

)
for any m ∈ N, where

X
(l,η0,η)
t,s

.
= τ̃

(l,η0)
t−s (W(l,η) −W(l,η0)) , l ∈ R+

0 , s, t, η0, η ∈ R . (127)

By (120), note that T(l,0,L)
t,s = 0.

By (118), naive bounds on the r.h.s. of (126) predict that[
X(l,η0,η)

sk,s
, . . . ,X(l,η0,η)

s1,s
, τ̃

(l,η0)
t−s (UΦ

ΛL
)
](k+1)

= O(|Λl|k |ΛL|) .

To obtain more accurate estimates, we use the tree–decay bounds on multi–commutators
of Corollary 4.12.
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To this end, for any x ∈ L and m ∈ N, we define

D (x,m)
.
= {Λ ∈ Pf (L) : x ∈ Λ, Λ ⊆ Λm + x, Λ * Λm−1 + x} ⊂ 2L . (128)

All elements of D(x,m) are finite subsets of the lattice L that contain at least two
sites which are separated by a distance greater or equal than m. Using, for any
x ∈ L and m = 0, the convention

D (x, 0)
.
= {{x}} , (129)

we obviously have that

Pf (L) =
∪

x∈L, m∈N0

D (x,m) . (130)

We now consider the following assumption on interactions Φ:

sup
x∈L

∑
m∈N0

vm

∑
Λ∈D(x,m)

∥ΦΛ∥U <∞ (131)

for some (generally diverging) sequence {vm}m∈N0 ⊂ R+
0 . For instance, if Φ ∈

W and Condition (107) holds true, then one easily verifies (131) with vm =
(1 +m)ς . In the case (108) holds and Φ ∈ W , then (131) is also satisfied even
with vm = emς .

We are now in position to state the first main result of this section, which is an
extension of [BPH1, Theorem 3.4 (i)] to interacting fermions:

Theorem 4.15 (Taylor’s theorem for increments)
Let l,T ∈ R+

0 , s, t ∈ [−T,T], η, η0 ∈ R, Ψ ∈ W , and V be any potential.
Assume (107) with ς > d, (120) and (122). Take an interaction Φ satisfying (131)
with vm = (1 +m)ς . Then:
(i) The map η 7→ T

(l,η,L)
t,s converges uniformly on R, as L → ∞, to a continuous

function T
(l,η)
t,s of η and

T
(l,η)
t,s −T

(l,η0)
t,s =

∑
Λ∈Pf (L)

i

∫ t

s

ds1τ̃
(l,η)
s1−s

([
W(l,η) −W(l,η0), τ̃

(l,η0)
t−s1 (ΦΛ)

])
.
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(ii) For any m ∈ N satisfying d(m+ 1) < ς ,

T
(l,η)
t,s −T

(l,η0)
t,s = (132)

m∑
k=1

∑
Λ∈Pf (L)

ik
∫ t

s

ds1 · · ·
∫ sk−1

s

dsk

[
X(l,η0,η)

sk,s
, . . . ,X(l,η0,η)

s1,s
, τ̃

(l,η0)
t−s (ΦΛ)

](k+1)

+
∑

Λ∈Pf (L)

im+1

∫ t

s

ds1 · · ·
∫ sm

s

dsm+1

τ̃
(l,η)
sm+1−s

([
W(l,η) −W(l,η0),X(l,η0,η)

sm,sm+1
, . . . ,X(l,η0,η)

s1,sm+1
, τ̃

(l,η0)
t−sm+1

(ΦΛ)
](m+2)

)
.

(iii) All the above series in Λ absolutely converge: For any m ∈ N satisfying
d(m+ 1) < ς , k ∈ {1, . . . ,m}, and {sj}m+1

j=1 ⊂ [−T,T],∑
Λ∈Pf (L)

∥∥∥∥[X(l,η0,η)
sk,s

, . . . ,X(l,η0,η)
s1,s

, τ̃
(l,η0)
t−s (ΦΛ)

](k+1)
∥∥∥∥
U
≤ D |Λl| |η − η0|

k

and∑
Λ∈Pf (L)

∥∥∥∥τ̃ (l,η)sm+1−s

([
W(l,η) −W(l,η0),X(l,η0,η)

sm,sm+1
, . . . ,X(l,η0,η)

s1,sm+1
, τ̃

(l,η0)
t−sm+1

(ΦΛ)
](m+2)

)∥∥∥∥
U

≤ D |Λl| |η − η0|
m+1 ,

for some constant D ∈ R+ depending only on m, d,T,Ψ, K1,Φ,F. The last
assertion also holds for m = 0.

Proof: We only prove (ii)–(iii), Assertion (i) being easier to prove by very
similar arguments. For simplicity, we assume w.l.o.g. η0 = s = 0 and m ∈ N.
Because of Equations (119), (126), (127) and (130), we first control the multi–
commutator sum

zk,L
.
=

∑
x0∈L\ΛL

∑
m0∈N0

∑
Λ∈D(x0,m0)

∑
x1∈Λl

∑
z1∈L,|z1|≤1

· · ·
∑
xk∈Λl

∑
zk∈L,|zk|≤1∥∥∥ξx1,z1,...,xk,zk

[
τ sk(a

∗
xk
axk+zk), . . . , τ s1(a

∗
x1
ax1+z1), τ t(ΦΛ)

](k+1)
∥∥∥
U

for any fixed k ∈ {1, . . . ,m}, T ∈ R+
0 , {sj}kj=1 ⊂ [−T,T] and L ∈ R+

0 ∪ {−1},
where we use the convention Λ−1

.
= ∅ and

ξx1,z1,...,xk,zk

.
=

k∏
j=1

wxj ,xj+zj(η) . (133)
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By (120)–(122), there is a constant D ∈ R+ (depending on K1) such that

sup
x1,z1,...,xk,zk∈L

sup
η∈R

∣∣ξx1,z1,...,xk,zk

∣∣ ≤ D and sup
x1,z1,...,xk,zk∈L

∣∣ξx1,z1,...,xk,zk

∣∣ ≤ D|η|k .

(134)
At fixed k ∈ {1, . . . ,m} observe further that the condition ς > dk yields

max
x∈L

∑
y∈L

1

(1 + |y − x|)ς(max{dT (j),dT (l)})−1 ≤
∑
y∈L

1

(1 + |y|)
ς
k

<∞ (135)

for any tree T ∈ Tk+1 and all j, l ∈ {0, . . . , k}. Using (131) with vm = (1 +m)ς ,
(134)–(135) and the equality∥∥∥[τ sk(a∗xk

axk+zk), . . . , τ s1(a
∗
x1
ax1+z1), τ t(ΦΛ)

](k+1)
∥∥∥
U

=
∥∥∥[τ sk−t(a

∗
xk
axk+zk), . . . , τ s1−t(a

∗
x1
ax1+z1),ΦΛ

](k+1)
∥∥∥
U
, (136)

we obtain from Corollary 4.12 that, for any m ∈ N and k ∈ {1, . . . ,m} with
ς > dk, zk,−1 ≤ D|Λl||η|k for some constant D ∈ R+ depending only on
m, d,T,Ψ, K1,Φ,F.

Hence, by Lebesgue’s dominated convergence theorem, for any k ∈ N sat-
isfying ς > dk, there is R ∈ R+ such that zk,L < ε for any L ≥ R. This
ensures the convergence of the first k multi–commutators of (126) to the first k
multi–commutators of (132) as well as the corresponding absolute summability.
Cf. Assertions (ii)–(iii). The convergence is even uniform for η ∈ R because of
the first assertion of (134).

Because τ̃ (l,η)t is an isometry for any time t ∈ R, the same arguments are used
to control the multi–commutator

τ̃
(l,η)
sm+1−s

([
W(l,η) −W(l,η0),X(l,η0,η)

sm,sm+1
, . . . ,X(l,η0,η)

s1,sm+1
, τ̃

(l,η0)
t−sm+1

(ΦΛ)
](m+2)

)
(137)

in (126). By (122), notice additionally that there is a constant D ∈ R+ and a
family {Ψ(l,η)}l∈R+

0 ,η∈R ⊂ W such that

sup
η∈R

sup
l∈R+

0

∥∥Ψ(l,η)
∥∥
W ≤ D <∞

and, for all l ∈ R+
0 and η ∈ R, {τ̃ (l,η)t }t∈R is the C0–group of ∗–automorphisms

on U associated with the interaction Ψ(l,η) and the potential V. The norm ∥·∥W in

61



the last inequality, which defines the space W of interactions, is of course defined
w.r.t. the same function F to which the conditions of the theorem are imposed.
This property justifies the simplifying assumption η0 = 0 at the beginning of the
proof. This concludes the proof of Assertions (ii)–(iii).

Assertion (i) is proven in the same way and we omit the details. Note only
that the convergence of z1,L as L → ∞ is uniform for η ∈ R because of the first
assertion of (134). The latter implies the continuity of the map η 7→ T

(l,η)
t,s for

η ∈ R.

A direct consequence of Theorem 4.15 is that T(l,η)
t,s = O(|Λl|). Note furthermore

that Theorem 4.15 also holds when the cubic box Λl is replaced by any finite sub-
set Λ ∈ Pf (L). The assumptions of this theorem are fulfilled for any interactions
Ψ,Φ ∈ W with the decay function (58), provided the parameter ϵ ∈ R+ is suf-
ficiently large. Theorem 4.15 is thus a significant extension of [BPH1, Theorem
3.4 (i)] in the sense that very general inter–particle interactions and the full range
of parameters η ∈ R are now allowed.

In the case of exponentially decaying interactions we can bound the derivatives
|Λl|−1∂mη T

(l,η)
t,s for all m ∈ N, uniformly w.r.t. l ∈ R+

0 . We thus extend [BPH1,
Theorem 3.4 (ii)] for interactions Φ satisfying (131).

Under these conditions, we show below that the map η 7→ |Λl|−1T
(l,η)
t,s from R

to U is bounded in the sense of Gevrey norms, uniformly w.r.t. l ∈ R+
0 . Note that

real analytic functions (cf. [BPH1, Theorem 3.4 (ii)]) are a special case of Gevrey
functions.

Theorem 4.16 (Increments as Gevrey maps)
Let l,T ∈ R+

0 , s, t ∈ [−T,T], Ψ ∈ W , and V be any potential. Assume (108)
and take an interaction Φ satisfying (131) with vm = emς . Assume further the
real analyticity of the maps η 7→ wx,y(η), x, y ∈ L, from R to C as well as the
existence of r ∈ R+ such that

K2
.
= sup

x,y∈L
sup
m∈N

sup
η∈R

rm∂mη wx,y(η)

m!
<∞ . (138)

(i) Smoothness. As a function of η ∈ R, T(l,η)
t,s ∈ C∞(R;U) and for any m ∈ N,

∂mη T
(l,η)
t,s =

m∑
k=1

∑
Λ∈Pf (L)

ik
∫ t

s

ds1 · · ·
∫ sk−1

s

dsk

∂mε

[
X(l,η,η+ε)

sk,s
, . . . ,X(l,η,η+ε)

s1,s
, τ̃

(l,η)
t,s (ΦΛ)

](k+1)
∣∣∣∣
ε=0

.
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The above series in Λ are absolutely convergent.
(ii) Uniform boundedness of the Gevrey norm of density of increments. There exist
r̃ ≡ r̃d,T,Ψ,K2,F ∈ R+ and D ≡ DT,Ψ,K2,Φ ∈ R+ such that, for all l ∈ R+

0 , η ∈ R
and s, t ∈ [−T,T], ∑

m∈N

r̃m

(m!)d
sup
l∈R+

0

∥∥∥|Λl|−1 ∂mη T
(l,η)
t,s

∥∥∥
U
≤ D .

Before giving the proof, note first that the assumptions of Theorem 4.16 are
satisfied for any interactions Ψ,Φ ∈ W with the decay function (109). Moreover,
under conditions of Theorem 4.16, the family {|Λl|−1T

(l,η)
t,s }l∈R+

0
of functions of

the variable η at dimension d = 1 is uniformly bounded w.r.t. analytic norms.
In particular, for d = 1 and any state ϱ ∈ U∗, the limit of the increment density
|Λl|−1ϱ(T

(l,η)
t,s ), as l → ∞ (possibly along subsequences), is either identically

vanishing for all η ∈ R, or is different from zero for η outside a discrete subset
of R. Note that, by contrast, general non–vanishing Gevrey functions can have
arbitrarily small support. We discuss this with more details at the end of Section
5.3.

We now conclude this subsection by proving Theorem 4.16. To this end, we
need the following estimate:

Proposition 4.17
There is a constant D ∈ R+ such that, for all k ∈ N,∑

T∈Tk+1

max
j∈{0,...,k}

max
xj∈L

∑
x0,..., /xj ,...,xk∈L

∏
{p,l}∈T

e
− ς|xp−xl|√

dmax{dT (p),dT (l)} ≤ Dk(k!)d .

The proof of this upper bound uses the fact that trees with vertices of large degree
are “rare” in a way that summing up the numbers (dT !)α for T ∈ Tk+1 and any α ∈
R+ gives factors behaving, at worse, like Dk(k!)α. The arguments are standard
results of finite mathematics. We prove them below for completeness, in two
simple lemmata.

Let k ∈ N. For any fixed sequence d = (d(0), . . . , d(k)) ∈ Nk+1 define the set
Tk+1(d) ⊂ Tk+1 by

Tk+1(d)
.
= {T ∈ Tk+1 : dT ≡ (dT (0), . . . , dT (k)) = d} .

In other words, Tk+1(d) is the set of all trees of Tk+1 with vertices having their
degree fixed by the sequence d. The cardinality of this set is bounded as follows:
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Lemma 4.18 (Number of trees with vertices of fixed degrees)
For all k ∈ N and d ∈ Nk+1,

|Tk+1(d)| ≤
(k − 1)!

(d(0)− 1)! · · · (d(k)− 1)!
.

Proof: The bound can be proven, for instance, by using so–called “Prüfer
codes”. We give here a proof based on a simplified version of such codes, well
adapted to the particular sets of trees Tk+1. At fixed k ∈ N, define the map
C : Tk+1 → {0, . . . , k − 1}k−1 by

C(T )
.
= (PT (2), . . . ,PT (k)) .

See (96)–(98). This map is clearly injective and if j ∈ {0, . . . , k} is a vertex of
degree dT (j), then it appears exactly (dT (j)−1) times in the sequence C(T ). Note
that dT (k) = 1 for all T ∈ Tk+1. To finish the proof, fix d = (d(0), . . . , d(k)) ∈
Nk+1 and observe that if d(0) + · · ·+ d(k) = 2k then there are exactly

(k − 1)!

(d(0)− 1)! · · · (d(k)− 1)!

sequences in {0, . . . , k − 1}k−1 with j ∈ {0, . . . , k} appearing exactly (d(j)− 1)
times in such sequences. If d(0)+ · · ·+ d(k) ̸= 2k then such a sequence does not
exist.

Lemma 4.19
For all k ∈ N, ∑

d(0),...,d(k)∈N

1[d(0) + · · ·+ d(k) = 2k] ≤ 4k .

Proof: For k ∈ N, the coefficient c2k of the analytic function

z 7→ zk+1

(1− z)k+1
=

∞∑
m=1

cmz
m

on the complex disc {z ∈ C : |z| < 1} is exactly the finite sum∑
d(0),...,d(k)∈N

1[d(0) + · · ·+ d(k) = 2k] .
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In particular,∑
d(0),...,d(k)∈N

1[d(0) + · · ·+ d(k) = 2k] =
1

2πi

∮
|z|=1/2

1

zk(1− z)k+1
dz ,

which combined with the inequality∣∣∣∣∣∣∣
1

2πi

∮
|z|=1/2

1

zk(1− z)k+1
dz

∣∣∣∣∣∣∣ ≤ 4k

yields the assertion.

By using the two above lemmata, we now prove Proposition 4.17:

Proof: Fix α ∈ R+ and note first that, for all d ∈ N,

lim
g→∞

1

gd

∑
x∈L

e
−α|x|

g
√
d =

∫
Rd

e
−α|x|√

d ddx <∞ .

Hence, for d ∈ N, there is a constant Sd ∈ R+ such that∑
x∈L

e
−α|x|

g
√
d ≤ Sdg

d , g ∈ N .

From this estimate and by using the Stirling–type bounds [Ro]

gge−ge
1

12g+1

√
2πg ≤ g! ≤ gge−ge

1
12g

√
2πg , g ∈ N , (139)

we obtain

max
j∈{0,...,k}

max
xj∈L

∑
x0,..., /xj ,...,xk∈L

∏
{p,l}∈T

exp

(
− ς |xp − xl|√

dmax{dT (p), dT (l)}

)

≤ Sk
d

k∏
j=0

dT (j)
dT (j)d ≤ Sk

de
dT (j)d(dT !)

d (140)

for all d, k ∈ N and T ∈ Tk+1. We infer from (111) that∑
T∈Tk+1

(dT !)
d ≤ (k!)d−1

∑
T∈Tk+1

(dT !) . (141)
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We use now Lemma 4.18 to get∑
T∈Tk+1

(dT !) =
∑

d(0),...,d(k)∈N

1[d(0) + · · ·+ d(k) = 2k]
∑

T∈Tk+1((d(0),...,d(k)))

(dT !)

≤ k!
∑

d(0),...,d(k)∈N

1[d(0) + · · ·+ d(k) = 2k] d(0) · · · d(k)

≤ k!
∑

d(0),...,d(k)∈N

1[d(0) + · · ·+ d(k) = 2k] ed(0) · · · ed(k) .

We invoke (110) and Lemma 4.19 to arrive at∑
T∈Tk+1

(dT !) ≤ (k!)e2k
∑

d(0),...,d(k)∈N

1[d(0)+· · ·+d(k) = 2k] ≤ (k!)(4e2)k . (142)

Proposition 4.17 is then a consequence of (140), (141) and (142).

We are now in position to prove Theorem 4.16:
Proof: (i) Observe that

∂mη T
(l,η,L)
t,s = ∂mε (T

(l,η+ε,L)
t,s −T

(l,η,L)
t,s )

∣∣∣
ε=0

. (143)

The difference T
(l,η+ε,L)
t,s − T

(l,η,L)
t,s is explicitly given by a Dyson–Phillips series

involving multi–commutators (88)–(89): Use (126) to produce an infinite series.
As the function η 7→ W(l,η) is, by assumption, real analytic, it follows that

∂mε (T
(l,η+ε,L)
t,s −T

(l,η,L)
t,s )

∣∣∣
ε=0

= (144)
m∑
k=1

ik
∫ t

s

ds1 · · ·
∫ sk−1

s

dsk∂
m
ε

[
X(l,η,η+ε)

sk,s
, . . . ,X(l,η,η+ε)

s1,s
, τ̃

(l,η)
t,s (UΦ

ΛL
)
](k+1)

∣∣∣∣
ε=0

for any m ∈ N, l ∈ R+
0 , and s, t, η ∈ R. Set

ξx1,z1,...,xk,zk

.
= ∂mε

{
k∏

j=1

(
wxj ,xj+zj(η + ε)−wxj ,xj+zj(η)

)}∣∣∣∣∣
ε=0

.

By (138), these coefficients are uniformly bounded w.r.t. x1, z1, . . . , xk, zk and η:

sup
x1,z1,...,xk,zk∈L

sup
η∈R

|ξx1,z1,...,xk,zk
| ≤ Dmm! (145)
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for some constant D ∈ R+ depending on K2 but not on m ≥ k. Bounding the
above multi–commutators exactly as done for the proof of Theorem 4.15 and by
taking the limit L → ∞, we deduce from (143)–(144) that, for any m ∈ N and
s, t, η ∈ R,

lim
L→∞

∂mη T
(l,η,L)
t,s =

m∑
k=1

∑
Λ∈Pf (L)

ik
∫ t

s

ds1 · · ·
∫ sk−1

s

dsk (146)

∂mε

[
X(l,η,η+ε)

sk,s
, . . . ,X(l,η,η+ε)

s1,s
, τ̃

(l,η)
t,s (ΦΛ)

](k+1)
∣∣∣∣
ε=0

.

This limit is uniform for η ∈ R because of (145). As in Theorem 4.15 (ii), the
above series in Λ are absolutely convergent. Moreover, the uniform convergence
of ∂mη T

(l,η,L)
t,s , m ∈ N, together with Theorem 4.15 (i) implies that the energy

increment limit T(l,η)
t,s is a smooth function of η with m–derivatives

∂mη T
(l,η)
t,s = lim

L→∞
∂mη T

(l,η,L)
t,s

for all m ∈ N and s, t, η ∈ R. Because of (146), Assertion (i) thus follows.
(ii) is a direct consequence of (i), Corollary 4.12, and Proposition 4.17 together
with (145) and ∫ t

s

ds1 · · ·
∫ sk−1

s

dsk ≤
(2T)k

k!
.

5 Lieb–Robinson Bounds for Non–Autonomous Dy-
namics

Like in Section 4, we only consider fermion systems, but all results can easily be
extended to quantum spin systems (Section 3.6). For quantum spin systems, note
that Lieb–Robinson bounds for non–autonomous dynamics have already been
considered in [BMNS]. However, [BMNS] only proves Lieb–Robinson bounds
for commutators, while the multi–commutator case was not considered, in con-
trast with results of this section. Observe also that some aspects of the non–
autonomous case can be treated in a similar way to the autonomous case. How-
ever, several important arguments cannot be directly extended to the non–autonomous
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situation. Here, we only address in detail the technical issues which are specific
to the non–autonomous problem. See for instance Corollary 5.2 (iii), Lemma 5.3,
Theorem 5.5, and Theorem 5.7.

5.1 Existence of Non–Autonomous Dynamics
We now consider time–dependent models. So, let Ψ .

= {Ψ(t)}t∈R be a map from
R to W such that

∥Ψ∥∞
.
= sup

t∈R

∥∥Ψ(t)
∥∥
W <∞ .

I.e., {Ψ(t)}t∈R is a bounded family in W . We could easily extend the study of
this section to families {Ψ(t)}t∈R which are only bounded for t on compacta. We
refrain from considering this more general case, for simplicity. Take, furthermore,
any collection {V(t)}t∈R of potentials. Note that (61) is allowed for any t ∈ R.

For all x ∈ L and Λ ∈ Pf (L), assume the continuity of the two maps t 7→ Ψ
(t)
Λ ,

t 7→ V
(t)
{x} from R to U , i.e., ΨΛ,V{x} ∈ C (R;U). For any L ∈ R+

0 , this yields
the existence, uniqueness and an explicit expression, as a Dyson–Phillips series
(cf. (11)), of the solution {τ (L)t,s }s,t∈R of the (finite–volume) non–autonomous evo-
lutions equations

∀s, t ∈ R : ∂sτ
(L)
t,s = −δ(L)s ◦ τ (L)t,s , τ

(L)
t,t = 1U , (147)

and
∀s, t ∈ R : ∂tτ

(L)
t,s = τ

(L)
t,s ◦ δ(L)t , τ (L)s,s = 1U . (148)

Here, for any t ∈ R and L ∈ R+
0 , the bounded linear operator δ(L)t is defined on U

by
δ
(L)
t (B)

.
= i

∑
Λ⊆ΛL

[
Ψ

(t)
Λ , B

]
+ i

∑
x∈ΛL

[
V

(t)
{x}, B

]
, B ∈ U .

Compare this definition with (54). As explained in Section 2.4 (see in particular
Equations (15)–(16)), recall that the natural non–autonomous evolution equation
in Quantum Mechanics is (148), but, by boundedness of δ(L)t for all times, (147)
and (148) are both satisfied.

Similar to the autonomous case, for any L ∈ R+
0 , {τ (L)t,s }s,t∈R is a continuous

two–parameter family of bounded operators that satisfies the (reverse) cocycle
property

∀s, r, t ∈ R : τ
(L)
t,s = τ (L)r,s τ

(L)
t,r . (149)
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Its time–dependent generator δ(L)t is clearly a symmetric derivation and τ
(L)
t,s is

thus a ∗–automorphism on U for all L ∈ R+
0 and s, t ∈ R. Moreover, similar

to the autonomous case (cf. Theorem 4.3 and Lemma 4.4), for all L ∈ R+
0 and

s, t ∈ R, τ (L)t,s satisfies Lieb–Robinson bounds and thus converges in the strong
sense on U0, as L→ ∞:

Theorem 5.1 (Properties of non–autonomous finite–volume dynamics)
Let Ψ .

= {Ψ(t)}t∈R be a bounded family on W (i.e., ∥Ψ∥∞ < ∞ ) and {V(t)}t∈R
a collection of potentials. For any x ∈ L and Λ ∈ Pf (L), assume ΨΛ,V{x} ∈
C (R;U). Fix s, t ∈ R.
(i) Lieb–Robinson bounds. For any L ∈ R+

0 , B1 ∈ U+ ∩ UΛ(1) , and B2 ∈ UΛ(2)

with Λ(1),Λ(2) ( ΛL and Λ(1) ∩ Λ(2) = ∅,∥∥∥[τ (L)t,s (B1) , B2]
∥∥∥
U

≤ 2D−1 ∥B1∥U ∥B2∥U
(
e2D|t−s|∥Ψ∥∞ − 1

) ∑
x∈∂ΨΛ(1)

∑
y∈Λ(2)

F (|x− y|) .

(ii) Convergence of the finite–volume dynamics. For any Λ ∈ Pf (L), B ∈ UΛ,
and L1, L2 ∈ R+

0 with Λ ⊂ ΛL1  ΛL2 ,∥∥∥τ (L2)
t,s (B)− τ

(L1)
t,s (B)

∥∥∥
U

≤ 2 ∥B∥U ∥Ψ∥∞ |t− s| e4D|t−s|∥Ψ∥∞
∑

y∈ΛL2
\ΛL1

∑
x∈Λ

F (|x− y|) .

Proof: (i) The arguments are a straightforward extension of those proving The-
orem 4.3 to non–autonomous dynamics: Fix L ∈ R+

0 , B1 ∈ U+ ∩ UΛ(1) and
B2 ∈ UΛ(2) with disjoint sets Λ(1),Λ(2) ( ΛL. Similar to (64)–(65), we infer from
(147)–(148) that the derivative w.r.t. to t of the function

f (s, t)
.
=
[
τ
(L)
t,s ◦ τ (Λ

(1))
s,t (B1) , B2

]
, s, t ∈ R ,

equals

∂tf (s, t) = i
∑

Z∈SΛL
(Λ(1))

[
τ
(L)
t,s (Ψ

(t)
Z ), f (s, t)

]
(150)

−i
∑

Z∈SΛL
(Λ(1))

[
τ
(L)
t,s ◦ τ (Λ

(1))
s,t (B1) ,

[
τ
(L)
t,s (Ψ

(t)
Z ), B2

]]
.
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Exactly like (66), it follows that

∥f (s, t)∥U ≤ ∥f (s, s)∥U+2 ∥B1∥U
∑

Z∈SΛL
(Λ(1))

∫ max{s,t}

min{s,t}

∥∥∥[τ (L)α,s(Ψ
(α)
Z ), B2

]∥∥∥
U
dα

for any s, t ∈ R. Therefore, by using estimates that are similar to (67)–(69), we
deduce Assertion (i).
(ii) The arguments are extensions to the non–autonomous case of those proving
Lemma 4.4: Since ΨΛ,V{x} ∈ C (R;U) for any x ∈ L and Λ ∈ Pf (L), the
time–dependent energy observables

H
(t)
L

.
=
∑
Λ⊆ΛL

Ψ
(t)
Λ +

∑
x∈ΛL

V
(t)
{x} , L ∈ R+

0 , t ∈ R ,

and potentials

V
(t)
Z

.
=
∑
x∈Z

V
(t)
{x} ∈ U+ ∩ UZ , Z ∈ Pf (L) , t ∈ R ,

generate two solutions {Vs,t(HL)}s,t∈R and {Vs,t(VZ)}s,t∈R, respectively, of the
non–autonomous evolution equations

∂t (Vs,t(X)) = iVs,t(X)X(t) and ∂s (Vs,t(X)) = −iX(s)Vs,t(X) (151)

withX(t) = H
(t)
L or V(t)

Z . These evolution families satisfy Vt,t(X) = 1U for t ∈ R
as well as the (usual) cocycle (Chapman–Kolmogorov) property

∀t, r, s ∈ R : Vs,t(X) = Vs,r(X)Vr,t(X) . (152)

For any L ∈ R+
0 and s, t, α ∈ R, we then replace (70) in the proof of Lemma 4.4

with
UL (t, α)

.
= Vs,t(VΛL

)Vt,α(HL)Vα,s(VΛL
) . (153)

By (152), UL (t, t) = 1U for all t ∈ R while

∂tUL (t, α) = −iGL (t)UL (t, α) and ∂αUL (t, α) = iUL (t, α)GL (α)
(154)

with
GL (t)

.
=
∑
Z⊆ΛL

Vs,t(VΛL
) ΨZ Vt,s(VΛL

) . (155)
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Using the notation

τ̃
(L)
t,s (B)

.
= UL (s, t)BUL (t, s) , B ∈ UΛ , (156)

for any s, t ∈ R and L ∈ R+
0 such that Λ ⊂ ΛL, observe that

τ
(L)
t,s (B) = Vs,t(HL)BVt,s(HL) = τ̃

(L)
t,s (Vs,t(VΛ)BVt,s(VΛ)) . (157)

Note that, for any s, t ∈ R, Λ,Z ∈ Pf (L) and B ∈ UΛ,

Vs,t(VZ)BVt,s(VZ) ∈ UΛ and ∥Vs,t(VZ)BVt,s(VZ)∥U = ∥B∥U . (158)

Hence, it suffices to study the net {τ̃ (L)t,s (B)}L∈R+
0

with B ∈ UΛ. Up to straight-
forward modifications taking into account the initial time s ∈ R, the remaining
part of the proof is now identical to the arguments starting from Equation (71) in
the proof of Lemma 4.4.

Corollary 5.2 (Infinite–volume dynamics)
Under the conditions of Theorem 5.1, finite–volume families {τ (L)t,s }s,t∈R, L ∈ R+

0 ,
converge strongly and uniformly for s, t on compact sets to a strongly continuous
two–parameter family {τ t,s}s,t∈R of ∗–automorphisms on U satisfying the follow-
ing properties:
(i) Reverse cocycle property.

∀s, r, t ∈ R : τ t,s = τ r,sτ t,r .

(ii) Lieb–Robinson bounds. For any s, t ∈ R, B1 ∈ U+ ∩ UΛ(1) , and B2 ∈ UΛ(2)

with disjoint sets Λ(1),Λ(2) ∈ Pf (L),

∥[τ t,s (B1) , B2]∥U
≤ 2D−1 ∥B1∥U ∥B2∥U

(
e2D|t−s|∥Ψ∥∞ − 1

) ∑
x∈∂ΨΛ(1)

∑
y∈Λ(2)

F (|x− y|) .

(iii) Non–autonomous evolution equation. If Ψ ∈ C(R;W) then {τ t,s}s,t∈R is the
unique family of bounded operators on U satisfying, in the strong sense on the
dense domain U0 ⊂ U ,

∀s, t ∈ R : ∂tτ t,s = τ t,s ◦ δt , τ s,s = 1U . (159)

Here, δt, t ∈ R, are the conservative closed symmetric derivations, with common
core U0, associated with the interactions Ψ(t) ∈ W and the potentials V(t). See
Theorem 4.8.
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Proof: The existence of a strongly continuous two–parameter family {τ t,s}s,t∈R
of ∗–automorphisms satisfying Lieb–Robinson bounds (ii) is a direct consequence
of Theorem 5.1 together with the density of U0 ⊂ U and completeness of U . This
limiting family also satisfies the reverse cocycle property (i) because of (149).
(iii) For any B ∈ U0 ⊂ Dom(δt), the map t 7→ τ t,s ◦ δt(B) from R to U is
continuous. Indeed, for any B ∈ U0 and α, t ∈ R,

∥τα,s ◦ δα (B)− τ t,s ◦ δt (B)∥U ≤ ∥(τα,s − τ t,s) ◦ δt (B)∥U+∥δα (B)− δt (B)∥U .

By applying (79) to the interaction Ψ(t) − Ψ(α) and the potential V(t) − V(α)

together with the strong continuity of {τ t,s}s,t∈R, one sees that, in the limit α → t,
the r.h.s of the above inequality vanishes when B ∈ U0 and Ψ ∈ C(R;W). Now,
because of (148), for any L ∈ R+

0 , B ∈ U0, and s, t ∈ R,∥∥∥∥τ t,s (B)−B −
∫ t

s

τα,s ◦ δα (B) dα

∥∥∥∥
U

≤
∥∥∥τ t,s (B)− τ

(L)
t,s (B)

∥∥∥
U

(160)

+

∫ t

s

∥∥(τ (L)α,s − τα,s
)
◦ δα (B)

∥∥
U dα

+

∫ t

s

∥∥∥δ(L)α (B)− δα (B)
∥∥∥
U
dα .

By using the strong convergence of τ (L)t,s towards τ t,s as well as (79) and (80)
together with Lebesgue’s dominated convergence theorem, one checks that the
r.h.s. of (160) vanishes when B ∈ U0 and L → ∞. Because of the continuity of
the map t 7→ τ t,s ◦ δt(B), (159) is verified on the dense set U0 ⊂ Dom(δt).

To prove uniqueness, assume that {τ̂ t,s}s,t∈R is any family of bounded oper-
ators on U satisfying (159) on U0. By (147) and because τ (L)t,s (B) ∈ U0 for any
B ∈ U0,

τ̂ t,s (B)− τ
(L)
t,s (B) =

∫ t

s

τ̂α,s ◦
(
δα − δ(L)α

)
◦ τ (L)t,α (B) dα (161)

for any B ∈ U0, L ∈ R+
0 and s, t ∈ R. Similar to (84)–(86), we infer from

Theorem 5.1 (i) that, for any Λ ∈ Pf (L), B ∈ UΛ, α, t ∈ R and sufficiently large
L ∈ R+

0 ,∥∥∥(δα − δ(L)α

)
◦ τ (L)t,α (B)

∥∥∥
U
≤ ∥Ψ∥∞ e2D|t−α|∥Ψ∥∞

∑
y∈Λc

L

∑
x∈Λ

F (|x− y|) .
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In particular, by (87), for any B ∈ U0 and α, t ∈ R,

lim
L→∞

∥∥∥(δα − δ(L)α

)
◦ τ (L)t,α (B)

∥∥∥
U
= 0 (162)

uniformly for α on compacta. Because of (161) and {τ̂ t,s}s,t∈R ⊂ B(U), we then
conclude from (162) that, for every s, t ∈ R, τ̂ t,s coincides on the dense set U0

with the limit τ t,s of τ (L)t,s , as L → ∞. By continuity, τ t,s = τ̂ t,s on U for any
s, t ∈ R.

The solution of (159) exists under very weak conditions on interactions and po-
tentials, i.e., their continuity, like in the finite–volume case. It yields a fundamen-
tal solution for the states of the interacting lattice fermions driven by the time–
dependent interaction {Ψ(t)}t∈R. More precisely, for any fixed ρs ∈ U∗ at time
s ∈ R, the family {ρs ◦ τ t,s}t∈R solves the following ordinary differential equa-
tions, for each B ∈ U0:

∀t ∈ R : ∂tρt(B) = ρt ◦ δt(B) . (163)

By Corollary 5.2, the initial value problem on U∗ associated with the above infinite
system of ordinary differential equations is well–posed. Indeed, the solution of
(163) is unique: Take any solution {ρt}t∈R of (163) and, similar to (161), use the
equality

ρt (B)− ρs ◦ τ
(L)
t,s (B) =

∫ t

s

ρα

((
δα − δ(L)α

)
◦ τ (L)t,α (B)

)
dα

for any ρs ∈ U∗, B ∈ U0, L ∈ R+
0 and s, t ∈ R together with (162) and the

weak∗–convergence of ρs ◦ τ
(L)
t,s to ρs ◦ τ t,s, as L→ ∞, by Corollary 5.2.

Note again that (159) is the non–autonomous evolution equation one formally
obtains from the Schrödinger equation for automorphisms of the algebra of ob-
servables. See Section 2.4, in particular Equations (15)–(16). A similar remark
can be done for the infinite system (163) of ordinary differential equations.

It is a priori unclear whether {τ t,s}s,t∈R solves the non–autonomous Cauchy
initial value problem

∀s, t ∈ R : ∂sτ t,s = −δs ◦ τ t,s , τ t,t = 1U , (164)

on some dense domain. The generators {δt}t∈R are generally unbounded operators
acting on U and their domains can additionally depend on time. As explained in
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Section 2.4, no unified theory of such linear evolution equations, similar to the
Hille–Yosida generation theorems in the autonomous case, is available. See, e.g.,
[K4, C, S, P, BB] and the corresponding references therein.

By using Lieb–Robinson bounds for multi–commutators, we show below in
Theorem 5.5 that the evolution equation (164) also holds on the dense set U0, un-
der conditions like polynomial decays of interactions and boundedness of the ex-
ternal potential. Another example – more restrictive in which concerns the time–
dependency of the generator of dynamics, but less restrictive w.r.t. the behavior
at large distances of the potential V – for which (164) holds is given by Theorem
5.7 (i) in Section 5.3.

5.2 Lieb–Robinson Bounds for Multi–Commutators
As explained in Remark 4.13, all results of Section 4.4 depend on Theorem 4.8
(iii). It is the crucial ingredient we need in order to prove Lemma 4.9, from which
we derive Lieb–Robinson bounds for multi–commutators. Theorem 5.1 (ii) to-
gether with Corollary 5.2 extend Theorem 4.8 (iii) to time–dependent interactions
and potentials. This allows us to prove Lemma 4.9 in the non–autonomous case
as well. It is then straightforward to extend Lieb–Robinson bounds for multi–
commutators to time–dependent interactions and potentials.

Recall that the proof of Lemma 4.9 uses that the space translated finite–volume
groups {τ (n,x)t }t∈R, x ∈ L, have all the same limit {τ t}t∈R, as n → ∞. This also
holds in the non–autonomous case. Indeed, for any n ∈ N0, x ∈ L, every bounded
family Ψ

.
= {Ψ(t)}t∈R on W (i.e., ∥Ψ∥∞ <∞ ), and each collection {V(t)}t∈R of

potentials, consider the (space) translated family {τ (n,x)t,s }s,t∈R of finite–volume ∗–
automorphisms generated (cf. (147) and (148)) by the symmetric bounded deriva-
tion

δ
(n,x)
t (B)

.
= i

∑
Λ⊆Λn+x

[
Ψ

(t)
Λ , B

]
+ i

∑
y∈Λn+x

[
V

(t)
{y}, B

]
, B ∈ U .

In the autonomous case the strong convergence of these evolution families towards
{τ t,s}s,t∈R easily follows from the second Trotter–Kato approximation theorem
[EN, Chap. III, Sect. 4.9]. We use the Lieb–Robinson bound of Theorem 5.1 (i)
to prove it in the non–autonomous case:

Lemma 5.3 (Limit of translated dynamics)
Let Ψ .

= {Ψ(t)}t∈R be a bounded family on W (i.e., ∥Ψ∥∞ < ∞ ) and {V(t)}t∈R
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a collection of potentials. For any y ∈ L and Λ ∈ Pf (L), assume ΨΛ,V{y} ∈
C (R;U). Then

lim
n→∞

τ
(n,x)
t,s (B) = τ t,s (B) , B ∈ U , x ∈ L, s, t ∈ R .

Proof: For any n ∈ N0 and x ∈ L, the translated finite–volume family
{τ (n,x)s,t }s,t∈R solves non–autonomous evolution equations like (147)–(148). There-
fore, similar to (161), for any n ∈ N0, x ∈ L, Λ ∈ Pf (L), B ∈ UΛ and s, t ∈ R,

τ
(n,x)
t,s (B)− τ

(n,0)
t,s (B) =

∫ t

s

τ (n,x)α,s ◦
(
δ(n,x)α − δ(n,0)α

)
◦ τ (n,0)t,α (B) dα . (165)

For sufficiently large n ∈ N0 such that Λ ⊂ (Λn + x) ∩ Λn, note that∥∥∥(δ(n,x)α − δ(n,0)α

)
◦ τ (n,0)t,α (B)

∥∥∥
U
≤

∑
Z∈Pf (L), Z∩((Λn+x)c∪Λc

n )̸=∅

∥∥∥[Ψ(t)
Λ , τ

(n,0)
t,α (B)

]∥∥∥
U

with Zc .
= L\Z being the complement of any set Z ∈ Pf (L). Then, similar

to Inequality (86), by using Theorem 5.1 (i), one verifies that, for any x ∈ L,
Λ ∈ Pf (L), B ∈ UΛ, α, t ∈ R, and sufficiently large n ∈ N0,∥∥∥(δ(n,x)α − δ(n,0)α

)
◦ τ (n,0)t,α (B)

∥∥∥
U

(166)

≤ 2 ∥B∥U ∥Ψ∥∞ e2D|t−α|∥Ψ∥∞
∑

y∈(Λn+x)c∪Λc
n

∑
z∈Λ

F (|z − y|) ,

while
lim
n→∞

∑
y∈(Λn+x)c∪Λc

n

∑
z∈Λ

F (|z − y|) = 0 , (167)

because of (56). We thus deduce from (166)–(167) that

lim
n→∞

∥∥∥(δ(n,x)α − δ(n,0)α

)
◦ τ (n,0)t,α (B)

∥∥∥
U
= 0

uniformly for α on compacta. Combined with (165) and Corollary 5.2, this uni-
form limit implies the assertion.

With the above result and the introducing remarks of this subsection, it is now
straightforward to extend Theorem 4.10 to the non–autonomous case:
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Theorem 5.4 (Lieb–Robinson bounds for multi–commutators – Part I)
Let Ψ .

= {Ψ(t)}t∈R be a bounded family on W (i.e., ∥Ψ∥∞ < ∞ ), {V(t)}t∈R
a collection of potentials, and s ∈ R. For any y ∈ L and Λ ∈ Pf (L), as-
sume ΨΛ,V{y} ∈ C (R;U). Then, for any integer k ∈ N, {mj}kj=0 ⊂ N0, times
{sj}kj=1 ⊂ R, lattice sites {xj}kj=0 ⊂ L, and elements B0 ∈ U0, {Bj}kj=1 ⊂
U0 ∩ U+ such that Bj ∈ UΛmj

for j ∈ {0, . . . , k},∥∥∥[τ sk,s ◦ χxk
(Bk), . . . , τ s1,s ◦ χx1

(B1), χx0
(B0)

](k+1)
∥∥∥
U

≤ 2k
k∏

j=0

∥Bj∥U
∑

T∈Tk+1

(
κT

(
{(mj, xj)}kj=0

)
+ ℜT,∥Ψ∥∞

)
,

where κT and ℜT,α are respectively defined by (99) and (101) for T ∈ Tk+1 and
α ∈ R+

0 , the times {sj}kj=1 in (101) being replaced with {(sj − s)}kj=1.

Proof: One easily checks that Theorem 5.1 (ii) holds for {τ (n,x)t,s }s,t∈R at any
fixed x ∈ L and n ∈ N0. By Lemma 5.3, Lemma 4.9 also holds in the non–auto-
nomous case and the assertion follows from (105) with the ∗–automorphism τ sj
being replaced by τ sj ,s for every j ∈ {1, . . . , k}.

By Theorems 4.11 and 5.4, we obtain Lieb–Robinson bounds for multi–com-
mutators as well as a version of Corollary 4.12 in the non–autonomous case. I.e.,
interacting and non–autonomous systems also satisfy the so–called tree–decay
bounds.

Another application of Theorems 4.11 and 5.4 is a proof of existence of a fun-
damental solution for the non–autonomous abstract Cauchy initial value problem
for observables

∀s ∈ R : ∂sBs = −δs(Bs) , Bt = B ∈ U0 , (168)

in the Banach space U , i.e., a proof of existence of a solution of the evolution
equation (164). The latter is a non–trivial statement, as previously discussed,
among other things because the domain of δs depends, in general, on the time
s ∈ R. [Here, t ∈ R is the “initial” time.]

To this end, like in (128)–(131), we add the following condition on interactions
Φ:

• Polynomial decay. Assume (107) and the existence of constants υ,D ∈ R+

such that

sup
x∈L

∑
Λ∈D(x,m)

∥ΦΛ∥U ≤ D (m+ 1)−υ , m ∈ N0 , (169)
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while the sequence {un,m}n∈N ∈ ℓ1(N) of (107) satisfies∑
m,n∈N

m−υ |un,m| <∞ . (170)

As F(|x|) > 0 for all x ∈ L, note that (107) implies∑
n∈N

|un,m| ≥ Dmς

for someD ∈ R+ and allm ∈ N0. Hence, the inequality (170) imposes υ > ς+1.
Then, one gets the following assertion:

Theorem 5.5 (Dynamics and non–autonomous evolution equations)
Let Ψ .

= {Ψ(t)}t∈R ∈ C(R;W) be a bounded family on W (i.e., ∥Ψ∥∞ < ∞)
and {V(t)

{x}}x∈L,t∈R a bounded family on U of potentials with V{x} ∈ C (R;U) for
any x ∈ L. Assume (107) with ς > 2d and that (169)–(170) with Φ = Ψ(t) and
ν > ς + 1 hold uniformly for t ∈ R. Then, for any s, t ∈ R, τ t,s (U0) ⊂ Dom(δs)
and {τ t,s}s,t∈R solves the non–autonomous evolution equation

∀s, t ∈ R : ∂sτ t,s = −δs ◦ τ t,s , τ t,t = 1U , (171)

in the strong sense on the dense set U0.

Proof: 1. Let s, t ∈ R, Λ ∈ Pf (L) and take any element B ∈ UΛ. As a
preliminary step, we prove that {δs ◦ τ (L)t,s (B)}L∈R+

0
converges to δs ◦ τ t,s (B), as

L→ ∞. In particular, τ t,s (U0) ⊂ Dom(δs). By using similar arguments as in the
proof of Theorem 5.1 (ii), it suffices to study the limit of {δs ◦ τ̃ (L)t,s (B)}L∈R+

0
, see

(156).
Similar to (74), from (152)–(157) and straightforward computations, for any

L1, L2 ∈ R+
0 with Λ ⊂ ΛL1  ΛL2 ,∥∥∥δs ◦ (τ̃ (L2)

t,s (B)− τ̃
(L1)
t,s (B)

)∥∥∥
U

(172)

≤
∫ max{s,t}

min{s,t}

∑
Z∈Pf (L)

∥∥∥∥[τ̂ (L1,L2)
s,α (Ψ

(s)
Z ), B(L1,L2)

α , τ
(L1)
t,α (B̃t)

](3)∥∥∥∥
U
dα ,

where B̃t
.
= Vt,s(VΛ)BVs,t(VΛ),

τ̂ (L1,L2)
s,α (B)

.
= Vs,α(VΛL2

\ΛL1
)τ (L2)

s,α (B)Vα,s(VΛL2
\ΛL1

) , B ∈ U , s, α ∈ R ,
(173)
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and

B(L1,L2)
α

.
=

∑
Z⊆ΛL2

, Z∩(ΛL2
\ΛL1

)̸=∅

Vα,s(VΛL2
\ΛL1

)ΨZVs,α(VΛL2
\ΛL1

) ∈ U+∩UΛL2
.

Using (158), observe that, for all Z ⊆ ΛL2 and α, s ∈ R,

Vα,s(VΛL2
\ΛL1

)ΨZVs,α(VΛL2
\ΛL1

) ∈ U+ ∩ UZ (174)

with ∥∥∥Vα,s(VΛL2
\ΛL1

)ΨZVs,α(VΛL2
\ΛL1

)
∥∥∥
U
= ∥ΨZ∥U . (175)

Similarly, for all t ∈ R,

B̃t ∈ UΛ and ∥B̃t∥U = ∥B∥U . (176)

In order to bound the sum∑
Z∈Pf (L)

[
τ̂ (L1,L2)
s,α (Ψ

(s)
Z ), B(L1,L2)

α , τ
(L1)
t,α (B̃t)

](3)
(177)

of multi–commutators of order three we represent it as a convenient series, whose
summability is uniform w.r.t. L1, L2 ∈ R+

0 (Λ ⊂ ΛL1  ΛL2). To this end, first
develop τ (L1)

t,α (B̃t) as a telescoping series: Let m0 ∈ N0 be the smallest integer
such that Λ ⊂ Λm0 . Then, similar to Lemma 4.9 (autonomous case) and as
explained in the proof of Theorem 5.4, for any α, t ∈ R and L1 ∈ R+

0 ,

τ
(L1)
t,α (B̃t) =

∞∑
n=m0

B̃t,α(n) .

Here, for all integers n ≥ m0, B̃t,α(n) ∈ UΛn where ∥B̃t,α(m0)∥U = ∥B∥U (see
(176)) and, for all n ∈ N with n > m0,

∥B̃t,α(n)∥U ≤ 2∥B∥U ∥Ψ∥∞ |t− α| e4D|t−α|∥Ψ∥∞
un,m0

(1 + n)ς
, (178)

by Theorem 5.1 (ii) and Assumption (107). Of course, B̃t,α(n) = 0 for any
integer n > L1 and α, t ∈ R because {τ (L1)

t,s }s,t∈R is a finite–volume dynamics.
Meanwhile, because of (158), Theorem 5.4 holds by replacing {τ t,s}s,t∈R with
{τ̂ (L1,L2)

t,s }s,t∈R at sufficiently large L1, L2 ∈ R+
0 (ΛL1 ( ΛL2). Using this together
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with (169)–(170) for Φ = Ψ(t), Equations (174)–(176), Theorem 4.11, as well as
the assumptions ν > ς + 1 and ς > 2d,

∞∑
n0=m0

∑
x2∈L

∑
m2∈N0

∑
Z2∈D(x2,m)

∑
x1∈L

∑
m1∈N0

∑
Z1∈D(x1,m)

(179)∥∥∥∥[τ̂ (L1,L2)
s,α (Ψ

(s)
Z2
),Vα,s(VΛL2

\ΛL1
)ΨZ1Vs,α(VΛL2

\ΛL1
), B̃t,α(n)

](3)∥∥∥∥
U

≤ D ∥B∥U ∥u·,m0∥ℓ1(N)

( ∑
m1∈N0

(m1 + 1)ς−υ

)

×
∑

m2∈N0

(m2 + 1)−υ

(∑
n2∈N

un2,m2 + (m2 + 1)ς
)
<∞ .

Similar to (178) and because (169)–(170) with Φ = Ψ(t) hold uniformly for t ∈ R,
the strictly positive constantD ∈ R+ is uniformly bounded for s, t, α on compacta
and L1, L2 ∈ R+

0 (Λ ⊂ ΛL1  ΛL2). The last sum is an upper bound of the
integrand of the r.h.s. of (172). Indeed, we deduce from (130) that

B(L1,L2)
α =

∑
x∈ΛL2

\ΛL1

∑
m∈N0

∑
Z⊆ΛL2

, Z∈D(x,m)

1

|Z ∩ ΛL2\ΛL1 |
Vα,s(VΛL2

\ΛL1
)ΨZVs,α(VΛL2

\ΛL1
)

and ∑
Z∈Pf (L), Z∩ΛL2

̸=∅

τ̂ (L1,L2)
s,α (Ψ

(s)
Z ) =

∑
x∈ΛL2

∑
m∈N0

∑
Z∈D(x,m)

1

|Z ∩ ΛL2|
τ̂ (L1,L2)
s,α (Ψ

(s)
Z ) .

[Compare this last sum with (177) by using (174) and (176) to restrict the whole
sum over Z ∈ Pf (L) to finite sets Z so that Z ∩ ΛL2 ̸= ∅.]

As a consequence, for any s, t ∈ R and B ∈ U0, we infer from (172), (179),
and Lebesgue’s dominated convergence theorem that {δs ◦ τ̃ (L)t,s (B)}L∈R+

0
, and

hence {δs ◦ τ (L)t,s (B)}L∈R+
0

, are Cauchy nets within the complete space U . By

Corollary 5.2, {τ (L)t,s }L∈R+
0

converges strongly to τ t,s for every s, t ∈ R. Recall
meanwhile that the operator δs is the closed operator described in Theorem 4.8
for the interaction Ψ(s) ∈ W and the potential V(s) at fixed s ∈ R. Therefore,
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τ t,s (B) ∈ Dom(δs) and the family {δs ◦ τ (L)t,s (B)}L∈R+
0

converges to δs ◦ τ t,s (B),
i.e.,

lim
L→∞

∥∥∥δs ◦ (τ t,s (B)− τ
(L)
t,s (B)

)∥∥∥
U
= 0 . (180)

In particular, τ t,s (U0) ⊂ Dom(δs).
Now, by using (147) one gets that, for L ∈ R+

0 , s, t, h ∈ R, h ̸= 0, and
B ∈ U0, ∥∥|h|−1 (τ t,s+h (B)− τ t,s (B)) + δs ◦ τ t,s (B)

∥∥
U

≤
∥∥∥δs ◦ (τ t,s (B)− τ

(L)
t,s (B)

)∥∥∥
U

(181)

+ sup
α∈[s−|h|,s+|h|]

∥∥∥δ(L)s ◦ τ (L)t,s (B)− δ(L)α ◦ τ (L)t,α (B)
∥∥∥
U

+
∥∥∥(δ(L)s − δs

)
◦ τ (L)t,s (B)

∥∥∥
U

+2 |h|−1 sup
α∈[s−|h|,s+|h|]

∥∥∥τ t,α (B)− τ
(L)
t,α (B)

∥∥∥
U
.

We proceed by estimating the four terms in the upper bound of (181). The first one
is already analyzed, see (180). So, we start with the second. If nothing is explicitly
mentioned, the parameters L ∈ R+

0 , s, t, h ∈ R, Λ ∈ Pf (L) andB ∈ UΛ are fixed.
2. For any α ∈ R, observe that∥∥∥δ(L)s ◦ τ (L)t,s (B)− δ(L)α ◦ τ (L)t,α (B)

∥∥∥
U

≤
∥∥∥(δ(L)s − δ(L)α

)
◦ τ (L)t,α (B)

∥∥∥
U

(182)

+
∥∥∥δ(L)s ◦

(
τ
(L)
t,s − τ

(L)
t,α

)
(B)
∥∥∥
U
.

By using first (78) for the interaction Ψ(s) and potential V(s) and then Lieb–
Robinson bounds (Theorem 5.1 (i)) in the same way as (86), one verifies that,
for any α ∈ R and B ̸= 0,∥∥∥(δ(L)s − δ(L)α

)
◦ τ (L)t,α (B)

∥∥∥
U

2 ∥B∥U
(183)

≤
∥∥Ψ(s) −Ψ(α)

∥∥
W e2D|t−α|∥Ψ∥∞|Λ| ∥F∥1,L +

∑
x∈Λ

∥V(α)
{x} −V

(s)
{x}∥U

+D−1
(
e2D|t−α|∥Ψ∥∞ − 1

) ∑
x∈L\Λ

∥V(α)
{x} −V

(s)
{x}∥U

∑
y∈Λ

F (|x− y|) .
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By assumption, Ψ ∈ C(R;W), {V(t)
{x}}x∈L,t∈R is a bounded family in U , and

V{x} ∈ C (R;U) for any x ∈ L. So, by Lebesgue’s dominated convergence
theorem, it follows from (183) that

lim
h→0

sup
α∈[s−|h|,s+|h|]

∥∥∥(δ(L)s − δ(L)α

)
◦ τ (L)t,α (B)

∥∥∥
U
= 0 . (184)

On the other hand, by (147),

sup
α∈[s−|h|,s+|h|]

∥∥∥δ(L)s ◦
(
τ
(L)
t,s − τ

(L)
t,α

)
(B)
∥∥∥
U
≤
∫ s+|h|

s−|h|

∥∥∥δ(L)s ◦ δ(L)α ◦ τ (L)t,α (B)
∥∥∥
U
dα ,

(185)
where∥∥∥δ(L)s ◦ δ(L)α ◦ τ (L)t,α (B)

∥∥∥
U

≤
∑

Z1,Z2∈Pf (L)

∥∥∥∥[Ψ(s)
Z1
,Ψ

(α)
Z2
, τ

(L)
t,α (B)

](3)∥∥∥∥
U

(186)

+
∑

Z∈Pf (L)

∑
x∈L

∥∥∥∥[Ψ(s)
Z ,V

(α)
{x}, τ

(L)
t,α (B)

](3)∥∥∥∥
U

+
∑

Z∈Pf (L)

∑
x∈L

∥∥∥∥[V(s)
{x},Ψ

(α)
Z , τ

(L)
t,α (B)

](3)∥∥∥∥
U

+
∑
x,y∈L

∥∥∥∥[V(s)
{x},V

(α)
{y}, τ

(L)
t,α (B)

](3)∥∥∥∥
U
.

Similar to (179), we use Theorems 4.11 (i) and 5.4 for k = 2 to derive an upper
bound for the r.h.s. of (186), uniformly w.r.t. large L ∈ R+

0 and α ∈ [s− 1, s+ 1].
By (185), it follows that

lim
h→0

sup
α∈[s−|h|,s+|h|]

∥∥∥δ(L)s ◦
(
τ
(L)
t,s − τ

(L)
t,α

)
(B)
∥∥∥
U
= 0 .

Combined with (182) and (184) this yields

lim
h→0

sup
α∈[s−|h|,s+|h|]

∥∥∥δ(L)s ◦ τ (L)t,s (B)− δ(L)α ◦ τ (L)t,α (B)
∥∥∥
U
= 0 . (187)

3. Similar to (86), one gets from Lieb–Robinson bounds (Theorem 5.1 (i)) that∥∥∥(δ(L)s − δs

)
◦ τ (L)t,s (B)

∥∥∥
U
≤ ∥Ψ∥∞ e2D|t−s|∥Ψ∥∞

∑
y∈Λc

L

∑
x∈Λ

F (|x− y|) ,
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which combined with (87) gives

lim
L→∞

∥∥∥(δ(L)s − δs

)
◦ τ (L)t,s (B)

∥∥∥
U
= 0 . (188)

4. In the limit h→ 0, we take Lh → ∞ such that

lim
h→0

|h|−1 sup
α∈[s−|h|,s+|h|]

∥∥∥τ t,α (B)− τ
(Lh)
t,α (B)

∥∥∥
U
= 0 . (189)

This is possible because τ (L)t,s (B) converges to τ t,s (B), uniformly for t, s on com-
pacta, by Corollary 5.2. We eventually combine (180), (187), (188), and (189)
with Inequality (181) to arrive at the assertion.

Note that uniqueness of the solution of the non–autonomous evolution equation
(171) cannot be proven as done for the proof of uniqueness in Corollary 5.2 (iii).
Indeed, take any family {τ̂ t,s}s,t∈R of bounded operators on U satisfying (171) on
U0. Then, as before in the proof of Corollary 5.2 (iii), for any B ∈ U0, L ∈ R+

0

and s, t ∈ R,

τ
(L)
t,s (B)− τ̂ t,s (B) =

∫ t

s

τ (L)α,s ◦
(
δ(L)α − δα

)
◦ τ̂ t,α (B) dα , (190)

by using (148). However, it is not clear this time whether the norm∥∥∥τ (L)α,s ◦
(
δ(L)α − δα

)
◦ τ̂ t,α (B)

∥∥∥
U
=
∥∥∥(δα − δ(L)α

)
◦ τ̂ t,α (B)

∥∥∥
U

vanishes, as L → ∞, even if (80) for δα and δ(L)α holds true, because τ̂ t,α (B) ∈
Dom(δα) can be outside U0. The strong convergence of δ(L)α to δα on some core
of δα does not imply, in general, the strong convergence on any core of δα. The
equality (190) with τ t,s, δs replacing τ (L)t,s , δ

(L)
s is also not clear because (159) is

only known to hold true on U0 and a priori not on the whole domain Dom(δα) of
δα.

The non–autonomous evolution equation (168) of Theorem 5.5 is not parabolic
because the symmetric derivation δt, t ∈ R, is generally not the generator of an
analytic semigroup. Note also that no Hölder continuity condition is imposed
on {δt}t∈R, like in the class of parabolic evolution equations introduced in [AT,
Hypotheses I–II]. See also [S] or [P, Sect. 5.6.] for more simplified studies.

In fact, (168) is rather related to Kato’s hyperbolic evolution equations [K2,
K3, K4]. The so–called Kato quasi–stability is satisfied by the family of genera-
tors {δt}t∈R because they are always dissipative operators, by Lemma 4.5. {δt}t∈R

82



is also strongly continuous on the dense set U0, which is a common core of all δt,
t ∈ R. However, in general, even for finite range interactions Ψ ∈ W , the strongly
continuous two–parameter family {τ t,s}s,t∈R does not conserve the dense set U0,
i.e., τ t,s (U0) * U0 for any s ̸= t. In some specific situations one can directly
show that the completion of the core U0 w.r.t. a conveniently chosen norm de-
fines a so–called admissible Banach space Y ⊃ U0 of the generator at any time,
which satisfies further technical conditions leading to Kato’s hyperbolic condi-
tions [K2, K3, K4]. See also [P, Sect. 5.3.] and [BB, Sect. VII.1], which is used
in the proof of Theorem 5.7 (i). Nevertheless, the existence of such a Banach
space Y is a priori unclear in the general case treated in Theorem 5.5. See for
instance the uniqueness problem explained just above.

Note that we only assume in Theorem 5.5 some polynomial decay for the
interaction with (107) and (169)–(170) (uniformly in time). Recall that these as-
sumptions are fulfilled for any interaction Ψ ∈ W with (58), provided the pa-
rameter ϵ ∈ R+ is sufficiently large. In the case of exponential decays, stronger
results can be deduced from Lieb–Robinson bounds for multi–commutators. For
the interested reader, we give below one example, which is based on interactions
Φ satisfying the following condition:

• Exponential decay. Assume (108) and the existence of constants υ > ς and
D ∈ R+ such that

sup
x∈L

∑
Λ∈D(x,m)

∥ΦΛ∥U ≤ De−υm , m ∈ N0 , (191)

while ∑
m∈N

Cme
−(ς+υ)m <∞ . (192)

Theorem 5.6 (Graph norm convergence and Gevrey vectors)
Let Ψ .

= {Ψ(t)}t∈R be a bounded family on W (i.e., ∥Ψ∥∞ < ∞ ), {V(t)}t∈R a
collection of potentials, and B ∈ U0. For any x ∈ L and Λ ∈ Pf (L), ΨΛ,V{x} ∈
C (R;U). Assume that (108) and (191)–(192) hold for Φ = Ψ(t), uniformly in
time.
(i) Graph norm convergence. As L → ∞, τ (L)t,s (B) converges, uniformly for s, t
on compacta, to τ t,s(B) within the normed space (Dom(δms ), ∥·∥δms ), where, for
all m ∈ N0, ∥·∥δms stands for the graph norm of the densely defined operator δms .

(ii) Gevrey vectors. If {V(t)
{x}}x∈L,t∈R is a bounded family on U then, for any
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T ∈ R+
0 , there exist r ≡ rd,T,Ψ,V,F ∈ R+ and D ≡ DT,Ψ,V ∈ R+ such that, for

all s, t ∈ [−T,T], m0 ∈ N0 and B ∈ UΛm0
,∑

m∈N

rm

(m!)d
∥δms ◦ τ t,s(B)∥U ≤ Dem0ς ∥B∥U .

Proof: (i) The case m = 0 follows from Corollary 5.2. Let m ∈ N and B ∈ U0.
Similar to (172), for any sufficiently large L1, L2 ∈ R+

0 , ΛL1 ( ΛL2 ,∥∥∥δms ◦
(
τ̃
(L2)
t,s (B)− τ̃

(L1)
t,s (B)

)∥∥∥
U

≤
∫ max{s,t}

min{s,t}

∑
Z1,...,Zm∈Pf (L)

∥∥∥[τ̂ (L1,L2)
s,α (Ψ

(s)
Zm

), . . . , τ̂ (L1,L2)
s,α (Ψ

(s)
Z1
),

, B(L1,L2)
α , τ

(L1)
t,α (B̃t)

](m+2)
∥∥∥∥
U
dα , (193)

see (173). From a straightforward generalization of (179) for multi–commutators
of degree m + 2 and the same kind of arguments used in point 1. of the proof of
Theorem 5.5, the r.h.s. of the above inequality tends to zero in the limit of large
L1, L2 ∈ R+

0 (ΛL1 ( ΛL2). This holds for every m ∈ N because the interaction
has, by assumption, exponential decay, see (108) and (191)–(192).

Consequently, {δms ◦τ̃
(L)
t,s (B)}L∈R+

0
, and hence {δms ◦τ

(L)
t,s (B)}L∈R+

0
, are Cauchy

nets in U for any fixed s, t ∈ R and m ∈ N. At m = 0, the limit is τ t,s(B). As
the operator δs is closed, by induction, for any m ∈ N and s, t ∈ R, τ t,s(B) ∈
Dom(δms ) and δms ◦ τ (L)t,s (B) converges to δms ◦ τ t,s (B), as L→ ∞.
(ii) For any m ∈ N, B ∈ U0, and sufficiently large L ∈ R+

0 ,∥∥∥δms ◦ τ (L)t,s (B)
∥∥∥
U

≤
m∑
ℓ=0

∑
π∈Sℓ,m

∑
xπ(ℓ)∈L

· · ·
∑

xπ(m)∈L

∑
Z1∈Pf (L)

· · ·
∑

Zπ(ℓ)−1∈Pf (L)

∑
Zπ(ℓ)+1∈Pf (L)

· · ·

· · ·
∑

Zπ(m)−1∈Pf (L)

∑
Zπ(m)+1∈Pf (L)

· · ·
∑

Zm∈Pf (L)∥∥∥[Ψ(s)
Z1
, . . . ,Ψ

(s)
Zπ(ℓ)−1

,V
(s)
{xπ(ℓ)}

,Ψ
(s)
Zπ(ℓ)+1

,

. . . ,Ψ
(s)
Zπ(m)−1

,V
(s)
{xπ(m)}

,Ψ
(s)
Zπ(m)+1

, . . . ,Ψ
(s)
Zm
, τ

(L)
t,s (B)

](m+1)
∥∥∥∥
U
,
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with Sℓ,m being defined by (100) for ℓ ∈ {1, . . . ,m}. For ℓ = 0, we use here
the convention S0,m

.
= ∅ and all sums involving the maps π in the r.h.s. of the

above inequality disappear in this case. Similar to (193), Lieb–Robinson bounds
for multi–commutators imply that, if B ∈ UΛm0

, m0 ∈ N0, then the r.h.s. of
the above inequality is bounded by D(m!)drmem0ς∥B∥U , uniformly for s, t on
compacta, where r ≡ rd,T,Ψ,V,F ∈ R+ and D ≡ DT,Ψ,V ∈ R+. We omit the
details. By Assertion (i), the same bound thus holds for the norm ∥δms ◦ τ t,s(B)∥U
of the limiting vector.

The assumptions of Theorem 5.6 are satisfied for interactions Ψ(t) ∈ W with
(109). Note additionally that Theorem 5.6 for s = t shows that

U0 ⊆
∩

s∈R,m∈N

Dom (δms ) ⊂ U .

In fact, U0 is a common core for {δs}s∈R and thus the intersection of domains∩
s∈R,m∈N

Dom (δms ) ⊂ U

is also a common core of {δs}s∈R. Observe that, at fixed s ∈ R, the dense space

Dom (δ∞s )
.
=
∩
m∈N

Dom (δms ) ⊂ U

is always a core of δs. See, e.g., [EN, Chap. II, 1.8 Proposition].

5.3 Application to Response Theory
In the present subsection we extend to the time–dependent case the assertions of
Section 4.5. As previously discussed, these results can be proven, also in the non–
autonomous case, for more general (time–dependent) perturbations of the form
(121). See also proofs of Inequality (179) and Theorem 5.6. Similar to Section
4.5, the case of perturbations considered below is the relevant one to study lin-
ear and non–linear responses of interacting fermions to time–dependent external
electromagnetic fields.

Let Ψ ∈ W and V be a potential. [So, these objects do not depend on time.]
For any l ∈ R+

0 , we consider a map (η, t) 7→ W
(l,η)
t from R2 to the subspace of

self–adjoint elements of UΛl
. Like (119), we consider elements of the form

W
(l,η)
t

.
=
∑
x∈Λl

∑
z∈L,|z|≤1

wx,x+z(η, t)a
∗
xax+z , (η, t) ∈ R2, l ∈ R+

0 , (194)
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where {wx,y}x,y∈L are complex–valued functions of (η, t) ∈ R2 with

wx,y (η, t) = wy,x (η, t) and wx,y(0, t) = 0 (195)

for all x, y ∈ L and (η, t) ∈ R2. We assume that {wx,y(η, ·)}x,y∈L,η∈R is a family
of continuous and uniformly bounded functions (of time): There is K1 ∈ R+ such
that

sup
x,y∈L

sup
η,t∈R

|wx,y(η, t)| ≤ K1 . (196)

The self–adjoint elements W
(l,η)
t of U are related to perturbations of dynamics

caused by time–dependent external electromagnetic fields that vanish outside the
box Λl. By the above conditions on wx,y, for all l, η ∈ R, t 7→ W

(l,η)
t is a

continuous map from R to B(U).
We now denote the perturbed dynamics by the family {τ̃ (l,η)t,s }s,t∈R of ∗–automor-

phisms generated by the symmetric derivation

δ
(l,η)
t

.
= δ + i

[
W

(l,η)
t , ·

]
, l ∈ R+

0 , η ∈ R , (197)

in the sense of Corollary 5.2. [This family of ∗–automorphisms has nothing to do
with (156).] Recall that δ is the symmetric derivation of Theorem 4.8. The last
term in the r.h.s. of (197) is clearly a perturbation of δ which depends continuously
on time, in the sense of the operator norm on B(U). It is easy to prove in this
case that {τ̃ (l,η)t,s }s,t∈R is the unique fundamental solution of (164). It means that
{τ̃ (l,η)t,s }s,t∈R is strongly continuous, conserves the domain

Dom(δ
(l,η)
t ) = Dom(δ) ,

satisfies

τ̃
(l,η)
t,· (B) ∈ C1(R; (Dom(δ), ∥·∥U)) , τ̃ (l,η)·,s (B) ∈ C1(R; (Dom(δ), ∥·∥U))

for all B ∈ Dom(δ), and solves the abstract Cauchy initial value problem (164)
on Dom(δ).

To explicitly verify this, define the family {Vt,s}s,t∈R ⊂ U of unitary elements
by the absolutely summable series

Vt,s
.
= 1U+

∑
k∈N

ik
∫ t

s

ds1 · · ·
∫ sk−1

s

dskW
(l,η)
sk,sk

· · ·W(l,η)
s1,s1

, (198)
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where
W

(l,η)
t,s

.
= τ t(W

(l,η)
s ) ∈ Dom(δ) , l ∈ R+

0 , η, s, t ∈ R .
By using this unitary family, we obtain the following additional properties of the
perturbed dynamics:

Theorem 5.7 (Properties of the perturbed dynamics)
Let Ψ ∈ W , l ∈ R+

0 , η, η0 ∈ R, and V be a potential. Assume Conditions (195)–
(196) with {wx,y(η, ·)}x,y∈L,η∈R being a family of continuous functions (of time).
Then, the family {τ̃ (l,η)t,s }s,t∈R of ∗–automorphisms has the following properties:
(i) Non–autonomous evolution equation. It is the unique fundamental solution of

∀s, t ∈ R : ∂sτ̃
(l,η)
t,s = −δ(l,η)s ◦ τ̃ (l,η)t,s , τ̃

(l,η)
t,t = 1U .

(ii) Interaction picture. For any s, t ∈ R,

τ̃
(l,η)
t,s (B) = τ−s

(
Vt,sτ t(B)V∗

t,s

)
, B ∈ U .

(iii) Dyson–Phillips series. For any s, t ∈ R and B ∈ U ,

τ̃
(l,η)
t,s (B) = τ̃

(l,η0)
t,s (B) +

∑
k∈N

ik
∫ t

s

ds1 · · ·
∫ sk−1

s

dsk (199)

[
X(l,η0,η)

sk,s,sk
, . . . ,X(l,η0,η)

s1,s,s1
, τ̃

(l,η0)
t,s (B)

](k+1)

.

Here, the series absolutely converges and

X
(l,η0,η)
t,s,α

.
= τ̃

(l,η0)
t,s

(
W(l,η)

α −W(l,η0)
α

)
, l ∈ R+

0 , α, s, t, η0, η ∈ R . (200)

Proof: Before starting, note that Assertion (i) cannot be deduced from Theorem
5.5 because the cases for which (61) holds for some time t ∈ R is excluded by
assumptions of that theorem.
1. Assertion (i) could be deduced from [K2, Theorem 6.1]. Here, we use [BB,
Theorem 88] because it is proven from three conditions (B1–B3) that are elemen-
tary to verify:

B1 (Kato quasi–stability). For any t ∈ R, the generator δ(l,η)t is conservative, by
Lemma 4.5, and Condition B1 of [BB, Section VII.1] is clearly satisfied for
λ1, . . . , λn ∈ R+, even with non–ordered and all real times t1, . . . , tn ∈ R.
Indeed, {δ(l,η)t }t∈R, l ∈ R+

0 , generate strongly continuous groups, and not
only C0–semigroups.
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B2 (Domains and continuity). {wx,y(η, ·)}x,y∈L,η∈R is by assumption a family
of continuous functions (of time) and thus, the map t 7→ [W

(l,η)
t , ·] from

R to B(U) is continuous in operator norm. It follows that Condition B2 of
[BB, Section VII.1] holds with the Banach space

Y .
= (Dom(δ), ∥ · ∥δ) , (201)

∥ · ∥δ being the graph norm of the closed operator δ.

B3 (Intertwining condition). Since δ is a symmetric derivation with core U0

(Theorem 4.8 (ii)) and W
(l,η)
t ∈ UΛl

, for any l ∈ R+
0 , η ∈ R, t ∈ R and

B ∈ Dom(δ),

δ
([

W
(l,η)
t , B

])
−
[
W

(l,η)
t , δ (B)

]
=
[
δ
(
W

(l,η)
t

)
, B
]
∈ U

while, by using (79), one verifies that∥∥∥[δ (W(l,η)
t

)
, B
]∥∥∥

U
≤ 4∥B∥U∥W(l,η)

t ∥U

×

(
|Λl|F (0) ∥Ψ∥W +

∑
x∈Λl

∥∥V{x}
∥∥
U

)
.

In particular, Condition B3 of [BB, Section VII.1] holds true with Θ = δ.

Therefore, similar to [BB, Theorem 70 (v)], we infer from an extension of [BB,
Theorem 88], which takes into account the fact that B1 holds with non–ordered
real times (see, e.g., the proof of [BB, Lemma 89]), the existence of a unique
solution {Ws,t}s,t∈R of the non–autonomous evolution equation

∀s, t ∈ R : ∂sWs,t = −δ(l,η)s ◦Ws,t , Wt,t = 1U , (202)

in the strong sense on Dom(δ) ⊂ U . Here, {Ws,t}s,t∈R is an evolution family of
B (U), that is, a strongly continuous two–parameter family of bounded operators
acting on U that satisfies the cocycle (Chapman–Kolmogorov) property

∀t, r, s ∈ R : Ws,t = Ws,rWr,t .
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2. Note now that the family {Vt,s}s,t∈R was already studied in the proof of [BPH1,
Theorem 5.3] for general closed symmetric derivations δ on U : The series (198)
absolutely converges in the Banach space Y (201). Additionally, for any s, t ∈ R,

∂tVt,s = iVt,sW
(l,η)
t,t and ∂sVt,s = −iW(l,η)

s,s Vt,s

hold in the sense of the Banach space Y , and thus also in the sense of U . Therefore,
for any s, t ∈ R,

Ws,t (B) = τ−s

(
Vt,sτ t(B)V∗

t,s

)
, B ∈ U . (203)

To show this equality, use the fact that the r.h.s. of this equation defines an evo-
lution family that is a fundamental solution of (202), see [BPH1, Eqs. (5.24)–
(5.26)].
3. Since {τ t}t∈R is a group of ∗–automorphisms and {Vt,s}s,t∈R is a family of
unitary elements of U , we deduce from (203) that {Ws,t}s,t∈R is a collection of
∗–automorphisms of the C∗–algebra U . We also infer from (203) that the two–
parameter evolution family {Ws,t}s,t∈R solves on Dom(δ) the abstract Cauchy
initial value problem

∀s, t ∈ R : ∂tWs,t = Ws,t ◦ δ(l,η)t , Ws,s = 1U . (204)

The solution of (204) is unique in B(U), by Corollary 5.2 (iii). We thus arrive at
Assertions (i)–(ii) with the equality

τ̃
(l,η)
t,s = Ws,t , l ∈ R+

0 , η, s, t ∈ R . (205)

4. For any l ∈ R+
0 , s, t ∈ R, η, η0 ∈ R, and B ∈ U , define

τ̂
(l,η,η0)
t,s (B)

.
= τ̃

(l,η0)
t,s (B) +

∑
k∈N

ik
∫ t

s

ds1 · · ·
∫ sk−1

s

dsk (206)

[
X(l,η0,η)

sk,s,sk
, . . . ,X(l,η0,η)

s1,s,s1
, τ̃

(l,η0)
t,s (B)

](k+1)

.

This series is well–defined and absolutely convergent. Indeed, because of (196),
there is a constant D ∈ R+ such that, for all l ∈ R+

0 and η, η0 ∈ R,

sup
t∈R

∥∥δ(l,η)t − δ
(l,η0)
t

∥∥
B(U)

< D .
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It follows that∥∥τ̂ (l,η,η0)t,s

∥∥
B(U)

≤ eD(t−s) , l ∈ R+
0 , s, t ∈ R, η, η0 ∈ R . (207)

See, e.g., [P, Chap. 5, Theorems 2.3 and 3.1]. Now, for any l ∈ R+
0 , s, t ∈ R,

η, η0 ∈ R, and B ∈ U , note that (206) yields

τ̂
(l,η,η0)
t,s (B) = τ̃

(l,η0)
t,s (B) + i

∫ t

s

ds1τ̂
(l,η,η0)
s1,s

([
W(l,η)

s1
−W(l,η0)

s1
, τ̃

(l,η0)
t,s1 (B)

])
from which we deduce that {τ̂ (l,η)t,s }s,t∈R solves (159), by (204)–(205), (207) and
continuity of the maps t 7→ W

(l,η)
t and t 7→ τ̃

(l,η0)
t,s (B) from R to U . Hence, by

Corollary 5.2 (iii), τ̂ (l,η,η0)t,s = τ̃
(l,η)
t,s for any l ∈ R+

0 , s, t ∈ R and η, η0 ∈ R.

Now, by assuming the uniform Lipschitz continuity of the family

{wx,y(·, t)}x,y∈L,t∈R

of functions (of η), i.e., for all parameters η, η0 ∈ R,

sup
x,y∈L

sup
t∈R

|wx,y(η, t)−wx,y(η0, t)| ≤ K1 |η − η0| , (208)

we can extend Theorem 4.15 to the non–autonomous case.
To this end, for some interaction Φ with energy observables UΦ

ΛL
defined by

(124) we study the increment (125), which now equals

T
(l,η,L)
t,s

.
= τ̃

(l,η)
t,s (UΦ

ΛL
)− τ t,s(U

Φ
ΛL
) , l, L ∈ R+

0 , s, t, η ∈ R . (209)

By (195), note again that T(l,0,L)
t,s = 0. Exactly like in the proof of Theorem 4.15,

we prove a version of Taylor’s theorem for increments in the non–autonomous
case:

Theorem 5.8 (Taylor’s theorem for increments)
Let l,T ∈ R+

0 , s, t ∈ [−T,T], η, η0 ∈ R, Ψ ∈ W , and V be any potential.
Assume (107) with ς > d, (195)–(196) and (208), with {wx,y(η, ·)}x,y∈L,η∈R being
a family of continuous functions (of time). Take an interaction Φ satisfying (131)
with vm = (1 +m)ς . Then:
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(i) The map η 7→ T
(l,η,L)
t,s converges uniformly on R, as L → ∞, to a continuous

function T
(l,η)
t,s of η and

T
(l,η)
t,s −T

(l,η0)
t,s =

∑
Λ∈Pf (L)

i

∫ t

s

ds1τ̃
(l,η)
s1,s

([
W(l,η)

s1
−W(l,η0)

s1
, τ̃

(l,η0)
t,s1 (ΦΛ)

])
.

(ii) For any m ∈ N satisfying d(m+ 1) < ς ,

T
(l,η)
t,s −T

(l,η0)
t,s

=
m∑
k=1

∑
Λ∈Pf (L)

ik
∫ t

s

ds1 · · ·
∫ sk−1

s

dsk

[
X(l,η0,η)

sk,s,sk
, . . . ,X(l,η0,η)

s1,s,s1
, τ̃

(l,η0)
t,s (ΦΛ)

](k+1)

+
∑

Λ∈Pf (L)

im+1

∫ t

s

ds1 · · ·
∫ sm

s

dsm+1

τ̃ (l,η)sm+1,s

([
W(l,η)

sm+1
−W(l,η0)

sm+1
,X(l,η0,η)

sm,sm+1,sm
, . . . ,X(l,η0,η)

s1,sm+1,s1
, τ̃

(l,η0)
t,sm+1

(ΦΛ)
](m+2)

)
.

(iii) All the above series in Λ absolutely converge: For any m ∈ N satisfying
d(m+ 1) < ς , k ∈ {1, . . . ,m}, and {sj}m+1

j=1 ⊂ [−T,T],∑
Λ∈Pf (L)

∥∥∥∥[X(l,η0,η)
sk,s,sk

, . . . ,X(l,η0,η)
s1,s,s1

, τ̃
(l,η0)
t,s (ΦΛ)

](k+1)
∥∥∥∥
U
≤ D |Λl| |η − η0|

k

and∑
Λ∈Pf (L)

∥∥∥∥τ̃ (l,η)sm+1,s

([
W(l,η)

sm+1
−W(l,η0)

sm+1
,X(l,η0,η)

sm,sm+1,sm
, . . . ,X(l,η0,η)

s1,sm+1,s1
, τ̃

(l,η0)
t,sm+1

(ΦΛ)
](m+2)

)∥∥∥∥
U

≤ D |Λl| |η − η0|
m+1

for some constant D ∈ R+ depending only on m, d,T,Ψ, K1,Φ,F. The last
assertion also holds for m = 0.

Proof: By Theorems 4.11 and 5.4, Corollary 4.12 holds in the non–autonomous
case. Moreover, by Lemma 5.3, Lemma 4.9 is also satisfied in the non–auto-
nomous case. Therefore, the proof is an easy extension of the proof of Theorem
4.15.

If the interaction has exponential decay, we show that the map η 7→ |Λl|−1T
(l,η)
t,s

from R to U is bounded in the sense of Gevrey classes, uniformly w.r.t. l ∈ R+
0 .

This corresponds to Theorem 4.16 in the non–autonomous case:
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Theorem 5.9 (Increments as Gevrey maps)
Let l,T ∈ R+

0 , s, t ∈ [−T,T], Ψ ∈ W , and V be any potential. Assume (108) and
take an interaction Φ satisfying (131) with vm = emς . For all x, y ∈ L, assume
further the real analyticity of the map η 7→ wx,y(η, ·) from R to the Banach space
C(R;C), which is equipped with the supremum norm, as well as the existence of
r ∈ R+ such that

K2
.
= sup

x,y∈L
sup
m∈N

sup
η,t∈R

rm∂mη wx,y(η, t)

m!
<∞ .

(i) Smoothness. As a function of η ∈ R, T(l,η)
t,s ∈ C∞(R;U) and for any m ∈ N,

∂mη T
(l,η)
t,s =

m∑
k=1

∑
Λ∈Pf (L)

ik
∫ t

s

ds1 · · ·
∫ sk−1

s

dsk

∂mε

[
X(l,η,η+ε)

sk,s,sk
, . . . ,X(l,η,η+ε)

s1,s,s1
, τ̃

(l,η)
t,s (ΦΛ)

](k+1)
∣∣∣∣
ε=0

.

The above series in Λ are absolutely convergent.
(ii) Uniform boundedness of the Gevrey norm of density of increments. There exist
r̃ ≡ r̃d,T,Ψ,K2,F ∈ R+ and D ≡ DT,Ψ,K2,Φ ∈ R+ such that, for all l ∈ R+

0 , η ∈ R
and s, t ∈ [−T,T], ∑

m∈N

r̃m

(m!)d
sup
l∈R+

0

∥∥∥|Λl|−1 ∂mη T
(l,η)
t,s

∥∥∥
U
≤ D .

Proof: Like for Theorem 5.8, the assertions are easily proven by extending the
proof of Theorem 4.16 to the non–autonomous case.

This theorem has important consequences in terms of increment density limit

lim
l→∞

|Λl|−1ρ(T
(l,η)
t,s )

at any fixed s, t ∈ R and state ρ ∈ U∗. This limit is to be understood as an
accumulation point of the bounded net {|Λl|−1ρ(T

(l,η)
t,s )}l>0:

Corollary 5.10 (Increment density limit)
Let ρ ∈ U∗. Under the conditions of Theorem 5.9, there is a subsequence {ln}n∈N ⊂
R+

0 such that, for all s, t ∈ [−T,T], the following limit exists

η 7→ gt,s (η)
.
= lim

n→∞
|Λln|−1ρ(T

(ln,η)
t,s )
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and defines a smooth function gt,s ∈ C∞(R). Furthermore, there exist r̃ ≡
r̃d,T,Ψ,K2,F ∈ R+ and D ≡ DT,Ψ,K2,Φ ∈ R+ such that, for all η ∈ R and
s, t ∈ [−T,T], ∑

m∈N

r̃m

(m!)d
∣∣∂mη gt,s (η)

∣∣ ≤ D .

Proof: Let T ∈ R+
0 . By Theorem 5.8 (i) for η0 = 0 together with (195) and

Corollary 5.2 (ii),

sup
l∈R+

0

sup
η∈R

sup
s,t∈[−T,T]

{
|Λl|−1ρ(T

(l,η)
t,s )

}
<∞ . (210)

Furthermore, we infer from Theorem 5.9 that, for any m ∈ N,

sup
l∈R+

0

sup
η∈R

sup
s,t∈[−T,T]

{
|Λl|−1ρ(∂mη T

(l,η)
t,s )

}
<∞ . (211)

By (210) and (211), the assertions are consequences of Theorem 5.9 combined
with the mean value theorem and the (Arzelà–) Ascoli theorem [Ru, Theorem
A5]. Indeed, {ln}n∈N ⊂ R+

0 is taken as a so–called diagonal sequence ln = l
(n)
n

of a family {l(m)
n }n∈N, m ∈ N0, of sequences in R+

0 such that, for all m ∈ N0,

the m–th derivative |Λln|−1∂mη T
(l
(m)
n ,η)

t,s uniformly converges as n→ ∞. With this
choice,

∂mη gt,s (η) = lim
n→∞

|Λln|−1ρ(∂mη T
(ln,η)
t,s ) .

From the above corollary, at dimension d = 1 and for s, t on compacta, the
increment density limit gt,s ∈ C∞(R) defines a real analytic function. As a con-
sequence, the increment density limit is never zero for η outside a discrete subset
of R, unless gt,s is identically vanishing for all η ∈ R.

This mathematical property refers to a physical one. It reflects a generic
alternative between either strictly positive or identically vanishing heat produc-
tion density, at macroscopic scale, in presence of non–vanishing external electric
fields. Indeed, by taking Φ = Ψ in Theorem 5.9, T(l,η)

t,s is related to the heat pro-
duced by the presence of an electromagnetic field, encoded in W

(l,η)
t . If we use

cyclic processes, which means here that W(l,η)
t = 0 outside some compact set

[t0, t1] ⊂ R, then the KMS state ϱ ∈ U∗ applied on the energy increment T(l,η)
t1,t0

is the total heat production (1st law of Thermodynamics) with increment density
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limit equal to gt1,t0(η). It is non–negative, by the 2nd law of Thermodynamics.
See [BP5] for more details on the 1st and 2nd laws for the quantum systems con-
sidered here. Now, if gt1,t0(η) is identically vanishing for all η ∈ R then it means
that the external perturbation never produces heat in the system, which is a very
strong property. The latter is expected to be the case, for instance, for supercon-
ductors driven by electric perturbations. This kind of behavior should highlight
major features of the system (like possibly broken symmetry). Hence, if the heat
production density is not identically vanishing, generically, it is strictly positive,
at least at dimension d = 1, because of properties of real analytic functions men-
tioned above.

For higher dimensions d > 1 and s, t on compacta, Corollary 5.10 implies that
the increment density limit gt,s ∈ C∞(R) belongs to the Gevrey class

Cω
d (R)

.
=

{
f ∈ C∞(R) : sup

η∈R

∣∣∂mη f (η)∣∣ ≤ Dm (m!)d for any m ∈ N
}
.

If d > 1, the elements of Cω
d (R) are usually neither analytic nor quasi–analytic. In

particular, functions of Cω
d (R) can have arbitrarily small support, while Cω

d (R)  
Cω

d′(R) whenever d < d′. Thus, the alternative above, which is related to the
heat production density in presence of external electric fields, does not follow
from Corollary 5.10 for higher dimensions d ≥ 2. However, note that, at least
for the quasi–free dynamics (also in the presence of a random potential), the heat
production density is a real analytic function of η at any dimension d ∈ N, at
least for η near zero. This follows from [BPH1, Theorem 3.4]. Therefore, the
above alternative for the heat production density may be true at any dimension,
provided the interaction decays fast enough in space (or is finite–range, in the
extreme case).

Observe finally that if a Gevrey function f : R→ R is invertible on some open
interval I ⊂ R then the inverse f−1 : f(I)→ R is again a Gevrey function. So,
the above theorem implies that, if the relation between applied field strength η and
the density of increment at l → ∞ is injective for some range of field strengths η,
then the applied field strength in that range is a Gevrey function of the density of
increment. For more details on Gevrey classes, see, e.g., [H].
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6 Applications to Conductivity Measures

6.1 Charged Transport Properties in Mathematics
Altogether, the classical theory of linear conductivity (including the theory of
(Landau) Fermi liquids, see, e.g., [BP4] for a historical perspective) is more like
a makeshift theoretical construction than a smooth and complete theory. It is
unsatisfactory to use the Drude (or the Drude–Lorentz) model – which does not
take into account quantum mechanics – together with certain ad hoc hypotheses
as a proper microscopic explanation of conductivity. For instance, in [NS1, NS2,
SE, YRMK], the (normally fixed) relaxation time of the Drude model has to be
taken as an effective frequency–dependent parameter to fit with experimental data
[T] on usual metals like gold. In fact, as claimed in the famous paper [So, p.
505], “it must be admitted that there is no entirely rigorous quantum theory of
conductivity.”

Concerning AC–conductivity, however, in the last years significant mathemat-
ical progress has been made. See, e.g., [KLM, KM1, KM2, BC, BPH1, BPH2,
BPH3, BPH4, BP5, BP6, W, DG] for examples of mathematically rigorous deriva-
tions of linear conductivity from first principles of quantum mechanics in the AC–
regime. In particular, the notion of conductivity measure has been introduced for
the first time in [KLM], albeit only for non–interacting systems. These results in-
dicate a physical picture of the microscopic origin of Ohm and Joule’s laws which
differs from usual explanations coming from the Drude (Lorentz–Sommerfeld)
model.

As electrical resistance of conductors may result from the presence of inter-
actions between charge carriers, an important issue is to tackle the interacting
case. This is first5 done in [BP5, BP6] for very general systems of interacting
quantum particles on lattices, including many important models of condensed
matter physics like the celebrated Hubbard model. This was out of scope of
[KLM, KM1, KM2, DG, BPH1, BPH2, BPH3, BPH4, W] which strongly rely
on properties of quasi–free dynamics and states.

The central issue in [BP5, BP6] is to get estimates on transport coefficients re-
lated to electric conduction, which are uniform w.r.t. the random parameters and
the volume |Λl| of the box Λl where the electromagnetic field lives. This is crucial

5With regard to interacting systems, explicit constructions of KMS states are obtained in the
Ph.D. thesis [W] for a one–dimensional model of interacting fermions with a finite range pair
interaction. But, the author studies in [W, Chap. 9] the linear response theory only for non–
interacting fermions, keeping in mind possible generalizations to interacting systems.
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to get valuable information on conductivity in the macroscopic limit l → ∞ and
otherwise the results presented in [BP5, BP6] would loose almost all their interest.
To get such estimates in the non–interacting case [BPH1, BPH2, BPH3, BPH4],
we applied tree–decay bounds on multi–commutators in the sense of [BPH1, Sec-
tion 4]. The latter are based on combinatorial results [BPH1, Theorem 4.1] already
used before, for instance in [FMU], and require the dynamics to be implemented
by Bogoliubov automorphisms. A solution to the issue for the interacting case
is made possible by the results of Sections 4.5 and 5.3, which are direct con-
sequences of the Lieb–Robinson bounds for multi–commutators. Detailed dis-
cussions on the estimates for the interacting case are found in [BP5]. See also
Corollary 4.12, which is an extension of the tree–decay bounds [BPH1, Section
4] to the interacting case.

In [BP6] the existence of macroscopic AC–conductivity measures for interact-
ing systems is derived from the 2nd law of thermodynamics, explained in Section
6.4. The Lieb–Robinson bound for multi–commutators of order 3 implies that it is
always a Lévy measure, see [BP6, Theorems 7.1 and 5.2]. We also derive below
other properties of the AC–conductivity measures from Lieb–Robinson bounds
for multi–commutators of higher orders. See Sections 6.5–6.6. In particular, we
study their behavior at high frequencies (Theorems 6.1 and 6.5): in contrast to
the prediction of the Drude (Lorentz–Sommerfeld) model, widely used in physics
[So, LTW] to describe the phenomenon of electrical conductivity, the conductivity
measure stemming from short–range interparticle interactions has to decay rapidly
at high frequencies.

The proposed mathematical approach to the problem of deriving macroscopic
conductivity properties from the microscopic quantum dynamics of an infinite sys-
tem of particles also yield new physical insight, beyond classical theories of con-
duction: a notion of current viscosity related to the interplay of paramagnetic and
diamagnetic currents, heat/entropy production via different types of energy and
current increments, existence of (AC–) conductivity measures from the 2nd law
and (possibly) as a spectral (excitation) measure from current fluctuations are all
examples of new physical concepts derived in the course of the studies performed
in [BPH2, BPH4, BP5, BP6] and previously not discussed in the literature.

Note, however, that, by now, our results do not give explicit information on the
conductivity measure for concrete models (like the Hubbard model, for instance).
The latter belongs to “hard analysis”, by contrast with our results which are rather
on the side of the “soft analysis” (similar to the difference between knowing the
spectrum of a concrete self–adjoint operator and knowing the spectral theorem).
Moreover, our approach does not directly provide a mathematical understanding
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from first principles of Ohm’s laws as a bulk property in the DC–regime, which
is one of the most important and difficult problems in mathematical physics for
more than one century. We believe, however, that our results can support further
rigorous developments towards a solution of such a difficult problem: one could,
for instance, try to show, for some class of models, that the conductivity measure is
absolutely continuous w.r.t. to the Lebesgue measure and that its Radon–Nikodym
derivative is continuous at low frequencies, having a well-defined zero–frequency
limit.

We thus present in the following some central results of [BP5, BP6], with a
few complementary studies, as an example of an important application in mathe-
matical physics of Lieb–Robinson bounds for multi–commutators.

6.2 Interacting Fermions in Disordered Media
(i) Kinetic part: Let ∆d ∈ B(ℓ2(L)) be (up to a minus sign) the usual d–dimensional
discrete Laplacian defined by

[∆d(ψ)](x)
.
= 2dψ(x)−

∑
z∈L, |z|=1

ψ(x+ z) , x ∈ L, ψ ∈ ℓ2(L) .

To understand how such terms come about by starting from the usual Laplacian in
the continuum, see for instance [Ne, Section II B] which derives effective models
on lattices by using so–called Wannier functions in a band subspace. This defines
a short–range interaction Ψ(d) ∈ W by

Ψ
(d)
Λ

.
= ⟨ex,∆dey⟩ℓ2(L)a∗xay + (1− δx,y) ⟨ey,∆dex⟩ℓ2(L)a∗yax ∈ U+ ∩ UΛ

whenever Λ = {x, y} for x, y ∈ L, and Ψ
(d)
Λ

.
= 0 otherwise. Recall that {ex}x∈Λ

is the (canonical) orthonormal basis of ℓ2(Λ) defined by (21).

(ii) Disordered media: Disorder in the crystal is modeled by a random potential
associated with a probability space (Ω,AΩ, aΩ) defined as follows: Let Ω

.
=

[−1, 1]L. I.e., any element of Ω is a function on lattice sites with values in [−1, 1].
For x ∈ L, let Ωx be an arbitrary element of the Borel σ–algebra of the interval
[−1, 1] w.r.t. the usual metric topology. AΩ is the σ–algebra generated by the
cylinder sets

∏
x∈LΩx, where Ωx = [−1, 1] for all but finitely many x ∈ L. Then,

aΩ is an arbitrary ergodic probability measure on the measurable space (Ω,AΩ).
This means that the probability measure aΩ is invariant under the action

ω (y) 7→ χ(Ω)
x (ω) (y)

.
= ω (y + x) , x, y ∈ Zd , (212)
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of the group (Zd,+) of lattice translations on Ω and, for any X ∈ AΩ such that
χ
(Ω)
x (X ) = X for all x ∈ Zd, one has aΩ(X ) ∈ {0, 1}. We denote by E[ · ] the

expectation value associated with aΩ.
Then, any realization ω ∈ Ω and strength λ ∈ R+

0 of disorder is implemented
by the potential V(ω) defined by

V
(ω)
{x}

.
= λω (x) a∗xax , x ∈ L . (213)

(iii) Interparticle interactions: They are taken into account by choosing some short–
range interaction ΨIP ∈ W such that ΨIP

Λ = 0 whenever Λ = {x, y} for x, y ∈ L,
and ∑

Λ∈Pf (L)

[
ΨIP

Λ , a
∗
xax
]
= 0 , ΨIP

Λ+x = χx

(
ΨIP

Λ

)
, Λ ∈ Pf (L), x ∈ L .

(214)
Here, the family {χx}x∈L of ∗–automorphisms of U implements the action of the
group (Zd,+) of lattice translations on the CAR C∗–algebra U , see (90). Ob-
serve that this class of interparticle interactions includes all density–density inter-
actions resulting from the second quantization of two–body interactions defined
via a real–valued and summable function v : [0,∞) → R satisfying (60).

Then, by (i)–(iii), the full interaction

Ψ = Ψ(d) +ΨIP ∈ W (215)

and the potential V(ω) uniquely define an infinite–volume dynamics correspond-
ing to the C0–group τ (ω) .

= {τ (ω)t }t∈R of ∗–automorphisms with generator δ(ω).
See Theorem 4.8.

(iv) Space–homogeneous electromagnetic fields: Let l ∈ R+, η ∈ R, and the com-
pactly supported function A ∈ C∞

0 (R;Rd) with A(t)
.
= 0 for all t ≤ 0. Set

E (t)
.
= −∂tA(t) for all t ∈ R. Then, the electric field at time t ∈ R equals

ηE (t) inside the cubic box Λl and (0, 0, . . . , 0) outside. Up to negligible terms
of order O(ld−1), this leads to a perturbation (of the generator of dynamics) of
the form (194), (197) with complex–valued {wx,y}x,y∈L functions of (η, t) ∈ R2

defined by wx,x+z(η, t) = 0 for any x, z ∈ L with |z| > 1 while

wx,x±eq(η, t)
.
=

(
exp

(
∓iη

∫ t

0

Eq (s) ds

)
− 1

)
⟨ex,∆dex±eq⟩ℓ2(L) = wx±eq ,x(η, t)
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for any q ∈ {1, . . . , d}. Here, E(t) = (E1(t), . . . , Ed(t)) and {eq}dq=1 is the
canonical orthonormal basis of the Euclidian space Rd. These functions clearly
satisfy Conditions (195)–(196) and (208). Note that such terms can be derived
from the usual magnetic Laplacian (minimal coupling) in the continuum, as ex-
plained in [Ne, Section III, in particular Corollary 3.1].

Thus, the system of fermions in disordered medium, the interaction of which is
encoded by (215), is perturbed from t = 0 onwards by space–homogeneous elec-
tromagnetic fields, leading to a well–defined family {τ̃ (ω,l,η)t,s }s,t∈R of ∗–automor-
phisms, as explained in Theorem 5.7.

6.3 Paramagnetic Conductivity
(i) Paramagnetic currents: For any pair (x, y) ∈ L2, we define the current observ-
able by

I(x,y)
.
= i(a∗yax − a∗xay) = I∗(x,y) ∈ U0 . (216)

It is seen as a current because it satisfies a discrete continuity equation. See, e.g.,
[BP5, Section 3.2]. For any A ∈ C∞

0 (R;Rd), l ∈ R+, ω ∈ Ω, η ∈ R and
t ∈ R+

0 , these observables are used to define a paramagnetic current increment
density observable J(ω)p,l (t, η) ∈ Ud:{

J(ω)p,l (t, η)
}

k

.
= |Λl|−1

∑
x∈Λl

{
τ̃
(ω,l,η)
t,0

(
I(x+ek,x)

)
− τ

(ω)
t

(
I(x+ek,x)

)}
.

Compare with Equation (209).
Note that electric fields accelerate charged particles and induce so–called dia-

magnetic currents, which correspond to the ballistic movement of particles. In
fact, as explained in [BPH2, Sections III and IV], this component of the total cur-
rent creates a kind of “wave front” that destabilizes the whole system by changing
its state. The presence of diamagnetic currents leads then to the progressive ap-
pearance of paramagnetic currents which are responsible for heat production and
the in–phase AC–conductivity of the system. Diamagnetic currents are not rele-
vant for the present purpose and are thus not defined here. For more details, see
[BPH2, BP5, BP6].

(ii) Paramagnetic conductivity: We define the space–averaged paramagnetic trans-

port coefficient observable C(ω)
p,l ∈ C1(R;B(Rd;Ud)), w.r.t. the canonical or-

thonormal basis {eq}dq=1 of the Euclidian space Rd, by the corresponding matrix
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entries {
C(ω)
p,l (t)

}
k,q

.
=

1

|Λl|
∑

x,y∈Λl

∫ t

0

i[τ
(ω)
−s (I(y+eq ,y)), I(x+ek,x)]ds (217)

for any l ∈ R+, ω ∈ Ω, t ∈ R and k, q ∈ {1, . . . , d}.

By (i)–(ii), if ΨIP satisfies (107) with ς > 2d (polynomial decay) then we infer
from Theorem 5.8 that, for any A ∈ C∞

0 (R;Rd),

J(ω)p,l (t, η) = ηJ
(ω)
p,l (t) +O

(
η2
)
. (218)

The correction terms of order O(η2) are uniformly bounded in l ∈ R+, ω ∈ Ω and
λ, t ∈ R+

0 . By explicit computations, one checks that

J
(ω)
p,l (t) =

∫ t

0

τ
(ω)
t

(
C(ω)
p,l (t− s)

)
E (s) ds (219)

for any A ∈ C∞
0 (R;Rd), l ∈ R+, ω ∈ Ω and t ∈ R+

0 . The latter is the param-
agnetic linear response current. For more details, see also [BP5, Theorem 3.7].
Here, for any D ∈ B(Rd;Ud), τ (ω)t (D) ∈ B(Rd;Ud) is, by definition, the lin-
ear operator on Rd defined, w.r.t. the canonical orthonormal basis {eq}dq=1 of the
Euclidian space Rd, by the matrix entries{

τ
(ω)
t (D)

}
k,q

.
= τ

(ω)
t

(
{D}k,q

)
, k, q ∈ {1, . . . , d} .

6.4 2nd law of Thermodynamics and Equilibrium States
(i) States: ρ ∈ U∗ is a state if ρ ≥ 0, that is, ρ(B∗B) ≥ 0 for all B ∈ U ,
and ρ(1) = 1. States encode the statistical distribution of all physical quantities
associated with observables B = B∗ ∈ U . See Section 2.5.

For any D ∈ B(Rd;Ud), ρ (D) ∈ B(Rd) is, by definition, the linear operator
defined, w.r.t. the canonical orthonormal basis {eq}dq=1 of Rd, by

{ρ (D)}k,q
.
= ρ

(
{D}k,q

)
, k, q ∈ {1, . . . , d} .

(ii) 2nd law of thermodynamics: As explained in [LY1, LY2], different formula-

tions of the same principle have been stated by Clausius, Kelvin (and Planck), and
Carathéodory. Our study is based on the Kelvin–Planck statement while avoiding
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the concept of “cooling” [LY1, p. 49]. It can be expressed as follows [PW, p.
276]:

Systems in the equilibrium are unable to perform mechanical work in cyclic pro-
cesses.

(iii) Passive states: To define equilibrium states, the 2nd law, as expressed in [PW],
is pivotal because it leads to a clear mathematical formulation of the Kelvin–
Planck notion of equilibrium: For any strongly continuous one–parameter group
τ ≡ {τ t}t∈R of ∗–automorphisms of U , one obtains a well–defined strongly con-
tinuous two–parameter family {τ (W)

t,t0 }t≥t0 of ∗–automorphisms of U by perturbing
the generator of dynamics with bounded time–dependent symmetric derivations

B 7→ i [Wt, B] , B ∈ U , t ∈ R ,

for any arbitrary cyclic process {Wt}t≥t0 of time length T ≥ 0, that is, a differen-
tiable family {Wt}t≥t0 ⊂ U of self–adjoint elements of X such that Wt = 0 for
all real times t /∈ [t0, T + t0]. Then, a state ϱ ∈ U∗ is passive (cf. [PW, Definition
1.1]) iff the work ∫ t

t0

ϱ ◦ τ (W)
t,t0 (∂tWt) dt

performed on the system is non–negative for all cyclic processes {Wt}t≥t0 of any
time length T ≥ 0. By [PW, Theorem 1.1], such states are invariant w.r.t. the
unperturbed dynamics: ϱ = ϱ ◦ τ t for any t ∈ R.

If τ = τ (ω) with ω ∈ Ω then, as explained in [BP5, Section 2.6], at least
one passive state ϱ(ω) exists. It represents an equilibrium state of the system (in a
broad sense), the mathematical definition of which encodes the 2nd law.

(iv) Random invariant passive states: We impose two natural conditions on the
map ω 7→ ϱ(ω) from the set Ω to the dual space U∗:

• Translation invariance. Using definitions (90) and (212), we assume that

ϱ(χ
(Ω)
x (ω)) = ϱ(ω) ◦ χx , x ∈ L = Zd . (220)

• Measurability. The map ω 7→ ϱ(ω) is measurable w.r.t. to the σ–algebra AΩ

on Ω and the Borel σ–algebra AU∗ of U∗ generated by the weak∗–topology.
Note that a similar assumption is also used to define equilibrium for classi-
cal systems in disordered media, see, e.g., [Bo].
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A map satisfying such properties is named here a random invariant state [BP6,
Definition 3.1]. Such maps always exist in the one–dimension case if the norm∥∥ΨIP

∥∥
W of the interparticle interaction is finite. The same is true in any dimension

if the inverse temperature β ∈ R+ is small enough. This is a consequece of the
uniqueness of KMS, which is implied by the mentioned conditions. By using
methods of constructive quantum field theory, one can also verify the existence of
such random invariant passive states ϱ(ω), ω ∈ Ω, at arbitrary dimension and any
fixed β ∈ R+, if the interparticle interaction

∥∥ΨIP
∥∥
W is small enough and (214)

holds. See, for instance, [FU, Theorem 2.1] (together with [PW, Theorem 1.4])
for the small β case in quantum spin systems. See also [BP6, Section 3.3] for
further discussions on this topic.

6.5 Macroscopic Paramagnetic Conductivity
For any short–range interaction ΨIP ∈ W , the limit

Ξp (t)
.
= lim

l→∞
E
[
ϱ(ω)(C(ω)

p,l (t))
]
∈ B(Rd) (221)

exists and is uniform for t on compacta. To see this, use the usual Lieb–Robinson
bounds (Theorem 4.8 (iv)) to estimate (217) in the limit l → ∞. Here, for any
measurable D(ω) ∈ B(Rd), the expectation value E[D(ω)] ∈ B(Rd) (associated
with aΩ) is defined, w.r.t. the canonical orthonormal basis {eq}dq=1 of Rd, by the
matrix entries{

E
[
D(ω)

]}
k,q

.
= E

[
{D}k,q

]
, k, q ∈ {1, . . . , d} .

The function Ξp ∈ C1(R;B(Rd)) can be directly related to a linear response
current, as suggested by (218)–(219). See [BP6, Theorem 4.2 (p)] for more de-
tails. [If one does not take expectation values of currents, one can also show that
the limit l → ∞ of ϱ(ω)(J(ω)

p,l ) almost everywhere exists and equals the expecta-
tion value, in the same limit, by using the Akcoglu–Krengel ergodic theorem, see
[BPH3, BP6].]

[BP6, Theorem 7.1] asserts that

Ξp ∈ C2(R;B(Rd))

if ΨIP ∈ W and (107) holds with ς > 2d. Now, we give a stronger version
of this result which is an application of Lieb–Robinson bounds for multi–com-
mutators (Theorems 4.10–4.11) of high orders. This new result on the regularity

102



of the function Ξp of time has important consequences on the asymptotics of AC–
Conductivity measures at high frequencies, see Theorem 6.5.

Theorem 6.1 (Regularity of the paramagnetic conductivity)
Let λ ∈ R+

0 and assume that the map ω 7→ ϱ(ω) is a random invariant passive
state and ΨIP ∈ W satisfies (214).
(i) Polynomial decay: Assume ΨIP satisfies (107). Then, for any m ∈ N satisfying
d(m+ 1) < ς , Ξp ∈ Cm+1(R;B(Rd)) and, uniformly for t on compacta,

∂m+1
t Ξp (t) = lim

l→∞
∂m+1
t E

[
ϱ(ω)(C(ω)

p,l (t))
]
. (222)

(ii) Exponential decay: Assume ΨIP satisfies (108). Then, for all m ∈ N, Ξp ∈
C∞(R;B(Rd)) and (222) holds true with the limit being uniform for t on com-
pacta.

Remark 6.2 (Fermion systems with random Laplacians)
The same assertion holds for the random models treated in [BP6], i.e., for fermions
on the lattice with short–range and translation invariant (cf. (214)) interaction
ΨIP ∈ W , random potentials (cf. (213)) and, additionally, random next neigh-
bor hopping amplitudes. [So, ∆d is replaced in [BP6] with a random Laplacian
∆ω,ϑ.] Similar to what is done here, disorder is defined in [BP6] via ergodic
distributions of random potentials and hopping amplitudes.

The proof of this statement is a consequence of the following general lemma:

Lemma 6.3
Let Ψ ∈ W and V be any potential such that

sup
x∈L

∥∥V{x}
∥∥
U <∞ . (223)

Take T ∈ R+
0 and B0, B1 ∈ U0.

(i) Polynomial decay: Assume (107). Then, for any m ∈ N satisfying dm < ς ,
U0 ⊆ Dom(δm). Moreover, if d(m+ 1) < ς ,∑

y∈L

sup
t∈[−T,T ]

sup
x∈L

∥∥[τ t ◦ χx(B1), δ
m ◦ χy (B0))

]∥∥
U <∞ . (224)

(ii) Exponential decay: Assume (108). Then,

U0 ⊆
∩
m∈N

Dom (δm) ⊂ U

and (224) holds true for all m ∈ N.
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Proof: (i) Because of (223), assume w.l.o.g. that V = 0. Take t ∈ R, n0, n1 ∈ N
and local elements B0 ∈ UΛn0

and B1 ∈ UΛn1
. Then, we infer from Theorem 4.8

(ii) and (128)–(130) that, for any x, y ∈ L and n ∈ N,∥∥[τ t ◦ χx(B1), δ
n ◦ χy (B0))

]∥∥
U

≤
∑
xn∈L

∑
mn∈N0

∑
Zn∈D(xn,mn)

· · ·
∑
x1∈L

∑
m1∈N0

∑
Z1∈D(x1,m1)

(225)∥∥∥[τ t ◦ χx(B1),ΨZn , . . . ,ΨZ1 , χy (B0)
](n+2)

∥∥∥
U
.

Therefore, we can directly use Lieb–Robinson bounds for multi–commutators of
order n+2 to bound (225): We combine Theorems 4.10 and 4.11 (i) with Equation
(116) to deduce from (225) that, for any x, y ∈ L and n ∈ N,∥∥[τ t ◦ χx(B1), δ

n ◦ χy (B0))
]∥∥

U

≤ 2n+1d
ς(n+1)

2 (1 + n0)
ς ∥B1∥U ∥B0∥U (226)

×
(
2∥Ψ∥W |t| e4D|t|∥Ψ∥W ∥u·,n1∥ℓ1(N) + (1 + n1)

ς
)

×

sup
x∈L

∑
m∈N0

(1 +m)ς
∑

Z∈D(x,m)

∥ΨZ∥U

n

×
∑
xn∈L

· · ·
∑
x1∈L

 ∑
T∈Tn+2

∏
{j,l}∈T

1

(1 + |xj − xl|)ς(max{dT (j),dT (l)})−1


with x0

.
= y ∈ L and xn+1

.
= x ∈ L. If Ψ ∈ W and Condition (107) holds true,

then one easily verifies (131) with vm = (1 +m)ς . Recall also that the condition
ς > (n+ 1) d yields (135) with k = n+1. Using these observations, one directly
arrives at (224), starting from (226).

Remark that U0 ⊆ Dom(δn) is proven exactly in the same way. In fact, it is
easier to prove and only requires the condition ς > nd because we have in this
case multi–commutators of only order n+ 1.
(ii) The proof is very similar to the polynomial case. We omit the details. See
Theorem 4.11 (ii) and (117), and in the case (108) holds and Ψ ∈ W , note again
that Condition (131) is satisfied with vm = emς .

We are now in position to prove Theorem 6.1.

Proof: Fix k, q ∈ {1, . . . , d}, t ∈ R and m ∈ N. By Theorem 4.8 (i), τ (ω) .
=

{τ (ω)t }t∈R is a C0–group of ∗–automorphisms with generator δ(ω). It is, indeed,
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associated with the interaction (215) and the potential defined by (213). If ΨIP

satisfies (107), then Condition (107) also holds true for the full interaction (215).
A similar observation can be made when ΨIP satisfies (108).

Paramagnetic current observables (216) are local elements, i.e., I(x,y) ∈ U0 for
any (x, y) ∈ L2. Then, by Lemma 6.3, we thus compute from (217) that, for any
m ∈ N such that U0 ⊆ Dom(δm),

∂m+1
t

{
E
[
ϱ(ω)(C(ω)

p,l (t))
]}

k,q
(227)

= − 1

|Λl|
∑

x,y∈Λl

E
[
ϱ(ω)

(
i[τ

(ω)
−t ◦ (δ(ω))m(I(y+eq ,y)), I(x+ek,x)]

)]
.

The last function of ω ∈ Ω in the expectation value E[ · ] (associated with aΩ)
is measurable, because ω 7→ ϱ(ω) is, by definition, a random invariant state while
one can check that the map

ω 7→ i[τ
(ω)
−t ◦ (δ(ω))m(I(y+eq ,y)), I(x+ek,x)]

from Ω to U is continuous, using Theorem 4.8 and the second Trotter–Kato ap-
proximation theorem [EN, Chap. III, Sect. 4.9]. Additionally, if ϱ(ω) is a passive
state w.r.t. to τ (ω) for any ω ∈ Ω then ϱ(ω) = ϱ(ω) ◦ τ (ω)t , see [PW, Theorem 1.1].
Therefore, it follows from (227) that

∂m+1
t

{
ϱ̄
(
C(ω)
p,l (t)

)}
k,q

(228)

=
1

|Λl|
∑

x,y∈Λl

E
[
ϱ(ω)

(
i[τ

(ω)
t

(
I(x+ek,x)

)
, (δ(ω))m(I(y+eq ,y))]

)]
.

Now, if (214) and (220) hold true, then, by using the fact that aΩ is also a transla-
tion invariant probability measure (it is even ergodic), we obtain from (228) that,
for any m ∈ N such that U0 ⊆ Dom(δm),

∂m+1
t

{
ϱ̄
(
C(ω)
p,l (t)

)}
k,q

(229)

=
∑
y∈L

ξl (y)E
[
ϱ(ω)

(
i[τ

(ω)
t

(
I(ek,0)

)
, (δ(ω))m ◦ χy(I(eq ,0))]

)]
with

ξl (y)
.
=

1

|Λl|
∑
x∈Λl

1{y∈Λl−x} ∈ [0, 1] , y ∈ L , l ∈ R+ .
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For any l ∈ R+, the map y 7→ ξl (y) on L has finite support and, for any y ∈ L,

lim
l→∞

ξl (y) = 1 . (230)

As a consequence, if (i) ΨIP satisfies (107) and d(m+ 1) < ς or (ii) ΨIP satisfies
(108), then, by combining Lemma 6.3 with Lebesgue’s dominated convergence
theorem, one gets from (221) and (229)–(230) that the map

t 7→ ∂m+1
t

{
E
[
ϱ(ω)(C(ω)

p,l (t))
]}

= E
[
∂m+1
t ϱ(ω)(C(ω)

p,l (t))
]

converges uniformly on compacta, as l → ∞, to the continuous function ∂m+1
t Ξp ∈

C(R;B(Rd)).

6.6 AC–Conductivity Measure
By applying [BP6, Theorems 5.2 and 5.6 (p), Remark 5.3] to the interacting
fermion system under consideration we get a Lévy–Khintchine representation of
the paramagnetic (in–phase) conductivity Ξp: Assume ΨIP satisfies (107) with
ς > 2d (polynomial decay). Then, there is a unique finite and symmetric B+(Rd)–
valued measure µ on R such that, for any t ∈ R,

Ξp (t) = −t
2

2
µ ({0}) +

∫
R\{0}

(cos (tν)− 1) ν−2µ (dν) . (231)

Here, B+(Rd) ⊂ B(Rd) stands for the set of positive linear operators on Rd, i.e.,
symmetric operators w.r.t. to the canonical scalar product of Rd with positive
eigenvalues. The (in–phase) AC–conductivity measure is defined from the mea-
sure µ as follows:

Definition 6.4 (AC–conductivity measure)
We name the Lévy measure µAC, the restriction of ν−2µ (dν) to R\{0}, the (in–
phase) AC–conductivity measure.

Indeed, by [BP6, Theorems 5.1 and 5.6 (p)], one checks that µAC quantifies the
energy (or heat) production Q per unit volume due to the component of frequency
ν ∈ R\{0} of the electric field, in accordance with Joule’s law in the AC–regime:
Indeed, for any smooth electric field E (t) = E (t) w⃗ with w⃗ ∈ Rd, E .

= −∂tA(t)
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and A ∈ C∞
0 (R;R), the total heat per unit volume produced by the electric field

(after being switch off) is equal to

Q =
1

2

∫
R
ds1

∫
R
ds2Es2Es1⟨w⃗,Ξp (s1 − s2) w⃗⟩Rd .

If the Fourier transform Ê of E ∈ C∞
0 (R;R) has support away from ν = 0, then

Q =
1

2

∫
R\{0}

|Ê (ν) |2 ⟨w⃗, µAC (dν) w⃗⟩Rd .

Moreover, by using [BP6, Theorems 4.2 and 5.6 (p)] together with simple com-
putations, one checks that the in–phase linear response currents Jin, which is the
component of the total current producing heat, also called active current, is equal
in this case to

Jin(t) =

∫
R\{0}

Ê (ν) eiνt µAC (dν) w⃗ .

By (231) and Definition 6.4, observe that the AC–conductivity measure µAC

of the system under consideration is a Lévy measure. This is reminiscent of exper-
imental observations of other quantum phenomena like (subrecoil) laser cooling
[BBAC]. In fact, an alternative effective description of the phenomenon of lin-
ear conductivity by using Lévy processes in Fourier space is discussed in [BP6,
Section 6].

The explicit form of the conductivity measure for concrete models (like the
Hubbard model, for instance) is still an open problem. However, in [BP6, Sec-
tion 5.3], we were able to qualitatively compare the AC–conductivity measure
associated with the celebrated Drude model with the Lévy measure µAC given by
Definition 6.4. Indeed, the (in–phase) AC–conductivity measure obtained from
the Drude model is absolutely continuous w.r.t. the Lebesgue measure with the
function

ν 7→ ϑT (ν) ∼ T

1 + T2ν2
(232)

being the corresponding Radon–Nikodym derivative. Here, the relaxation time
T > 0 is related to the mean time interval between two collisions of a charged
carrier with defects in the crystal. See for instance [BPH4, Section 1] for more
discussions. This measure heavily overestimates µAC at high frequencies. Indeed,
as explained in [BP6, Section 5.3], by finiteness of the positive measure µ, the
AC–conductivity measure satisfies

µAC ([ν,∞)) ≤ ν−2µ ([ν,∞)) ≤ ν−2µ (R) , ν ∈ R+ , (233)
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provided ΨIP satisfies (107) with ς > 2d. The same property of course holds for
negative frequencies, by symmetry of µ (w.r.t. ν). Compare (233) with (232).
From Theorem 6.1, much stronger results on the frequency decay of µAC can be
obtained if the interaction ΨIP is fast decaying in space:

Theorem 6.5 (Moments of AC–conductivity measures)
Let λ ∈ R+

0 , ΨIP ∈ W satisfying (214), and assume that the map ω 7→ ϱ(ω) is a
random invariant passive state.
(i) Polynomial decay: Assume ΨIP satisfies (107) with ς > 2d. Then, for any
m ∈ N satisfying d(m+ 1) < ς ,∫

R\{0}
νm+1µAC (dν) ∈ B+(Rd) , (234)

i.e., the (m+ 1)-th moment of the measure µAC exists.
(ii) Exponential decay: Assume ΨIP satisfies (108). Then, (234) holds true for all
m ∈ N.

Proof: By (231) and Lebesgue’s dominated convergence theorem, for any t ∈
R,

∂2tΞp (t) = −
∫
R
cos (tν)µ (dν) = −

∫
R
eitνµ (dν) ,

provided ς > 2d in (107) (with Ψ = ΨIP). In other words, the finite and sym-
metric B+(Rd)–valued measure µ on R can be seen as the Fourier transform of
−∂2tΞp (t) or, that is, as the characteristic function of µ. Therefore, by well–
known properties of characteristic functions (see, e.g., [D, Theorem 3.3.9.] for
the special case n = 2 and [Kl, Theorem 15.34] for the general case n ∈ 2N0),
for any even n ∈ N0, ∂2tΞp ∈ Cn(R;B(Rd)) implies that∫

R
νnµ (dν) ∈ B+(Rd) .

If m ∈ N0 is odd, then, by the above assertion for n < m and the symmetry of the
measure µ (which follows from the symmetry of µAC), we conclude that∫

R
νmµ (dν) = 0 ∈ B+(Rd) .

This observation combined with Theorem 6.1 and Definition 6.4 yields Assertions
(i)–(ii).
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Remark 6.6 (Fermion systems with random Laplacians)
The same assertion holds for the random models treated in [BP6]. See also Re-
mark 6.2.

This last theorem is a significant improvement of the asymptotics (233) of [BP6]
and is a straightforward application of Lieb–Robinson bounds for multi–com-
mutators of high orders (Theorems 4.10–4.11), see Lemma 6.3.
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Lévy–Khintchine representation, 106
macroscopic, 102, 103

Paramagnetic current, 99
linear response, 100

Parastatistics, 22
Particle number operator, 24, 26
Passivity, 101
Pauli exclusion principle, 22, 26
Potential, 34

example, 98
finite–volume dynamics, 34, 40, 68
infinite–volume dynamics, 46, 71,

77
local Hamiltonian, 34
symmetric derivation, 34, 43, 46

Quantum spin systems, 32
models, 37

Representation, 16

Schrödinger equation, 8
non–autonomous, 10

Schrödinger picture
S1, 8, 9
S2, 15

Space of bounded operators, 6, 14
Spin algebra

local, 32
non–local, 33

Spin quantum number, 18
Spin set, 18, 32
States, 15, 100

GNS, 15, 16
passive, 101
random invariant passive, 101

118



Stirling–type bounds, 65
Symmetric derivation, 9, 35

Taylor’s theorem, 59, 90
Telescoping series, 48
Thermodynamic limit, 29, 37
Tree–decay bounds, 55, 76
Trees, 49, 64

degree of a vertex, 52

Unital algebra, 13

Wave functions, 8, 10

119


