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Abstract. Solving inverse problems is a crucial task in several applica-
tions that strongly affect our daily lives, including multiple engineering
fields, military operations, and/or energy production. There exist dif-
ferent methods for solving inverse problems, including gradient based
methods, statistics based methods, and Deep Learning (DL) methods.
In this work, we focus on the latest. Specifically, we study the design
of proper loss functions for dealing with inverse problems using DL. To
do this, we introduce a simple benchmark problem with known ana-
lytical solution. Then, we propose multiple loss functions and compare
their performance when applied to our benchmark example problem. In
addition, we analyze how to improve the approximation of the forward
function by: (a) considering a Hermite-type interpolation loss function,
and (b) reducing the number of samples for the forward training in the
Encoder-Decoder method. Results indicate that a correct design of the
loss function is crucial to obtain accurate inversion results.

Keywords: Deep Learning · Inverse Problems · Neural Network.

1 Introduction

Solving inverse problems [17] is of paramount importance to our society. It is
essential in, among others, most areas of engineering (see, e.g., [3, 5]), health (see,
e.g. [1]), military operations (see, e.g, [4]) and energy production (see, e.g. [11]).
In multiple applications, it is necessary to perform this inversion in real-time.
This is the case, for example, of geosteering operations for enhanced hydrocarbon
extraction [2, 10].

Traditional methods for solving inverse problems include gradient based
methods [13, 14] and statistics based methods (e.g., Bayesian methods [16]).
The main limitation of these kind of methods is that they lack an explicit con-
struction of the pseudo-inverse operator. Instead, they only evaluate the inverse
function for a given set of measurements. Thus, for each set of measurements,
we need to perform a new inversion process. This may be time consuming.

Deep Learning (DL) seems to be a proper alternative to overcome the afore-
mentioned problem. With DL methods, we explicitly build the pseudo-inverse
operator rather than only evaluating it. Recently, the interest on performing
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inversion using DL techniques has grown exponentially (see, e.g., [9, 15, 18, 19]).
However, the design of these methods is still somehow ad hoc and it is often dif-
ficult to encounter a comprehensive road map to construct robust Deep Neural
Networks (DNNs) for solving inverse problems.

One major problem when designing DNNs is the error control. Several fac-
tors may lead to deficient results. Such factors include: poor loss function design,
inadequate architecture, lack of convergence of the optimizer employed for train-
ing, and unsatisfactory database selection. Moreover, it is sometimes elusive to
identify the specific cause of poor results. Even more, it is often difficult to asses
the quality of the results and, in particular, determine if they can be improved.

In this work, we take a simple but enlightening approach to elucidate and
design certain components of a DL algorithm when solving inverse problems.
Our approach consists of selecting a simple inverse benchmark example with
known analytical solution. By doing so, we are able to evaluate and quantify the
effect of different DL design considerations on the inversion results. Specifically,
we focus on analyzing a proper selection of the loss function and how it affects
to the results. While more complex problems may face additional difficulties,
those observed with the considered simple example are common to all inverse
problems.

The remainder of this article is as follows. Section 2 describes our simple
model inverse benchmark problem. Section 3 introduces several possible loss
functions. Section 4 shows numerical results. Finally, Section 5 summarizes the
main findings.

2 Simple inverse benchmark problem

We consider a benchmark problem with known analytical solution. Let F be the
forward function and F† the pseudo-inverse operator. We want our benchmark
problem to have more than one solution since this is one of the typical features
exhibited by inverse problems. For that, we need F to be non-injective. We select
the non-injective function y = F(x) = x2, whose pseudo-inverse has two possible
solutions: x = F†(y) = ±√y. (See Figure 1). The objective is to design a NN
that approximates one of the solutions of the inverse problem.

2.1 Database and data rescaling

We consider the domain Ω = [−33, 33]. In there, we select a set of 1000 equidis-
tant numbers. The corresponding dataset of input-output pairs {(xi,F(xi))}1000i=1

is computed analytically.
In some cases, we perform a change of coordinates in our output dataset.

Let’s name R the linear mapping that goes from the output of the original
dataset into the interval [0,1]. Instead of approximating function F , our NN will
approximate function FR given by

FR := R ◦ F . (1)
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Fig. 1: Benchmark problem.

In the cases we perform no rescaling, we select R = I, where I is the identity
mapping.

3 Loss functions

We consider different loss functions. The objective here is to discern between
adequate and poor loss functions for solving the proposed inverse benchmark
problem.

We denote as Fϕ and F†θ the NN approximations of the forward function and
the pseudo-inverse operator, respectively. Weights ϕ and θ are the parameters
to be trained (optimized) in the NN. Each value within the set of weights is a
real number.

In a NN, we try to find the weights ϕ∗ and θ∗ that minimize a given loss
function L. We express our problem mathematically as

(ϕ∗, θ∗) = arg min
ϕ,θ

L(ϕ, θ). (2)

Loss based on the missfit of the inverse data: We first consider the tra-
ditional loss function:

L1(θ) =
∥∥∥F†θR(y)− x

∥∥∥ . (3)

Theorem 1. Solution of minimization problem (2) with the loss function given
by Eq. (3) has analytical solution for our benchmark problem in both the l1 norm

||x||1 =

n∑
i=1

|xi| (4)

and the l2 norm

||x||2 =

n∑
i=1

(xi)
2. (5)
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These solutions are such that:

– For l1, F†θ∗
R

(y) = x, where x is any value in the interval [−√y,√y].

– For l2, F†θ∗
R

(y) = 0.

Proof. We first focus on norm ‖·‖1. We minimize the loss function:∑
i∈I
|F†θ
R

(yi)− xi|, (6)

where I = {1, ..., N} denotes the training dataset. For the exact pseudo-inverse

operator F†θ
R

, we can express each addend of (6) as follows:

|F†θ
R

(yi)− xi| =

−2xi, if xi ≤ −
√
yi,

0, if −√yi ≤ xi ≤
√
yi,

2xi, if xi ≥
√
yi.

(7)

Taking the derivative of Eq. (6) with respect to xi, we see in view of Eq. (7)
that the loss function for the exact solution attains its minimum at every point
xi ∈ [−√yi,

√
yi].

In the case of norm ‖·‖2, for each value of y we want to minimize:∑
i∈I

(
F†θ
R

(yi)− xi
)2
. (8)

Again, for the exact pseudo-inverse operator F†θ
R

, we can express each addend
of Eq. (8) as:

(−√yi − xi)2 + (
√
yi − xi)2 . (9)

Taking the derivative of Eq. (8) with respect to xi and equaling it to zero, we
obtain:

2xi +
√
yi −

√
yi = 0⇒ xi =

√
yi −

√
yi

2
= 0. (10)

Thus, the function is minimized when the approximated value is 0. �

Observation: Problem of Theorem 1 has infinite solutions in the l1 norm.
In the l2 norm, the solution is unique; however, it differs from the two desired
exact inverse solutions.

Loss based on the missfit of the effect of the inverse data: As seen with
the previous loss function, it is inadequate to look at the misfit in the inverted
space. Rather, it is desirable to search for an inverse solution such that after
applying the forward operator, we recover our original input. Thus, we consider
the following modified loss function, where FR1 corresponds to the analytic
forward function:

L2(θ) =
∥∥∥FR1(FR2

θ

†
(y))− y

∥∥∥ . (11)
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Unfortunately, computation of FR1 required in L2 involves either (a) imple-
menting FR1 in a GPU, which may be challenging in more complex examples,
or (b) calling FR1 as a CPU function multiple times during the training process.
Both options may considerably slow down the training process up to the point
of making it impractical.

Encoder-Decoder loss: To overcome the computational problems associated
with Eq. (11), we introduce an additional NN, named FR1

ϕ , to approximate the
forward function. Then, we propose the following loss function:

L3(ϕ, θ) =
∥∥FR1

ϕ (x)− y
∥∥+

∥∥∥FR1
ϕ (F†θ

R2
(y))− y

∥∥∥ . (12)

Two NNs of this type that are being simultaneously trained are often referred
to as Encoder-Decoder [6, 12].

Two-steps loss: It is also possible to train FR1
ϕ and F†θ

R2
separately. By doing

so, we diminish the training cost. At the same time, it allows us to separate the
analysis of both NNs, which may simplify the detection of specific errors in one
of the networks. Our loss functions are:

L4.1(ϕ) =
∥∥FR1

ϕ (x)− y
∥∥ (13)

and

L4.2(θ) =
∥∥∥FR1

ϕ∗ (F†θ
R2

(y))− y
∥∥∥ . (14)

We first train FR1
ϕ using L4.1. Once FR1

ϕ is fixed (with weights ϕ∗), we train

F†θ
R2

using L4.2.

4 Numerical Results

We consider two different NNs. The one approximating the forward function
has 5 fully connected layers [8] with ReLU activation function [7]. The one
approximating the inverse operator has 11 fully connected layers with ReLU
activation function. ReLU activation function is defined as

ReLu(x) =

{
x, x ≥ 0
0, x < 0.

(15)

These NN architectures are “overkilling” for approximating the simple bench-
mark problem studied in this work. Moreover, we also obtain results for different
NN architectures, leading to identical conclusions that we omit here for brevity.

4.1 Loss function analysis

Loss based on the missfit of the inverse data: We produce two models
using norms l1 and l2, respectively. Figure 2 shows the expected disappointing
results (see Theorem 1). The approximated NN values (green circles) are far from
the true solution (blue line). From an engineering point of view, the recovered
solution is worthless. The problem resides on the selection of the loss function.
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Fig. 2: Predicted (FIθ
†
, green circles) vs exact (FI†, blue line) inverse solutions

evaluated over the testing dataset.

Loss based on the missfit of the effect of the inverse data: Figure 3 shows
the real values of y (ground truth) vs their predicted pseudo-inverse values. The
closer the predicted values are to the blue line, the better the result from the
NN. We now observe an excellent match between the exact and approximated
solutions. However, as mention in Section 3, this loss function entails essential
limitations when considering complex problems.
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Fig. 3: Solution of the pseudo-inverse operator approximated by the NN.
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Encoder-Decoder loss: Figure 4 shows the results for norm l1 and Figure 5
for norm l2. We again recover excellent results, without the limitations provided
by loss function L2. Coincidentally, different norms recover different solution
branches of the inverse problem. Note that in this problem, it is possible to prove
that the probability of recovering either of the solution branches is identical.
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Fig. 4: Exact vs NN solutions using loss function L3 and norm l1.
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Fig. 5: Exact vs NN solutions using loss function L3 and norm l2.
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Two-steps loss: Figures 6 and 7 show the results for norms l1 and l2, respec-
tively. The approximations of forward function and pseudo-inverse operator are
accurate in both cases.
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Fig. 6: Exact vs NN solutions using loss functions L4.1 and L4.2 and norm l1.
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Fig. 7: Exact vs NN solutions using loss functions L4.1 and L4.2 and norm l2.

4.2 Hermite-type loss functions

We now consider the two-steps loss function and we focus only on the forward
function approximation given by Eq. (13). This is frequently the most time
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consuming part when solving an inverse problem with NNs. In this section,
we analyze different strategies to work with a reduced dataset, which entails a
dramatic reduction of the computational cost. We consider a dataset of three
input-outputs pairs (x, y) = {(−33, 1089), (1, 1), (33, 1089)}.

Figure 8 shows the results for norms l1 and l2. Training data points are
accurately approximated. Other points are poorly approximated.
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Fig. 8: Results of the NN that approximates the forward function. Red points
correspond to the evaluation of the training dataset x and to x+1. Green points
correspond to the evaluation of a testing dataset.

To improve the approximation, we introduce another term to the loss func-
tion. We force the NN to approximate the derivatives at each training point.
This new loss is:

||FIϕ (x)− y||+

∣∣∣∣∣
∣∣∣∣∣FIϕ (x+ ε)−FIϕ (x)

ε
− ∂FI(x)

∂x

∣∣∣∣∣
∣∣∣∣∣ . (16)

From a numerical point of view, the term that approximates the first derivatives
could be very useful. If we think about x as a parameter of a Partial Differential
Equation (PDE), we can efficiently evaluate derivatives via the adjoint problem.

Figure 9 shows the results when we use norms l1 and l2 for the training. For
this benchmark problem, we select ε = 1. Thus, to approximate derivatives, we
evaluate the NN at the points x+ 1.

We observe that points nearby the training points are better approximated
via Hermite interpolation, as expected. However, the entire approximation still
lacks accuracy and exhibits undesired artifacts due to an insufficient number of
training points. Thus, while the use of Hermite interpolation may be highly ben-
eficial, especially in the context of certain PDE problems or when the derivatives
are easily accessible, there is still a need to have a sufficiently dense database of
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Fig. 9: Results of the NN that approximates the forward function. Red points
correspond to the evaluation of the training dataset x and to x+1. Green points
correspond to the evaluation of a testing dataset.

sampling points. Figure 10 shows the evolution of the terms composing the loss
function.
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Fig. 10: Evolution of the loss value when we train the NN that approximates FIϕ
using as loss Eq. (16). “Loss F” corresponds to the loss of the first term of Eq.
(16). “Loss DER” corresponds to the loss of the second term of Eq. (16). “Total
Loss” corresponds to the total value of Eq.(16).
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4.3 Loss function with a reduced number of samples for the forward
training

We now consider an Encoder-Decoder loss function, as described in Eq. (12). The
objective is to minimize the number of samples employed to approximate the
forward function since producing such database is often the most time-consuming
part in a large class of inverse problems governed by PDEs.

We employ a dataset of three input-output pairs {(−33, 1089), (1, 1), (33, 1089)}
for the first term of Eq. (12) and a dataset of 1000 values of y obtained with an
equidistant distribution on the interval [0, 1089] for the second term of Eq. (12).

Figure 11 shows the results of the NNs trained with norm l1. Results are
disappointing. The forward function is far from the blue line (real forward func-
tion), specially nearby zero. The forward function leaves excessive freedom for
the training of the inverse function. This allows the inverse function to be poorly
approximated (with respect the to real inverse function).
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Fig. 11: Exact vs NN solutions using loss function L3, norm l1, and a reduced
number of samples for the forward evaluation.

In order to improve the results, we train the NNs adding a regularization term
to Eq. (12). We add the following regularization term maximizing smoothness
on FRϕ :

L3.1(ϕ, θ) = ||FRϕ (x)−y||+ ||FRϕ (FIθ
†
(y))−y||+

∣∣∣∣∣
∣∣∣∣∣FRϕ (x+ ε)−FRϕ (x)

ε

∣∣∣∣∣
∣∣∣∣∣ . (17)

We evaluate this regularization term over a dataset of 1000 samples obtained
with an equidistant distribution on the interval [−33, 33] and we select ε = 1.

Figure 12 shows the results of the NN. Now, the forward function is better
approximated around zero. Unfortunately, the approximation is still inaccurate,
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indicating the need for additional points on the approximation. Figure 13 shows
the evolution of the terms composing the loss function. The loss values associated
with the first and the second terms are minimized. The loss corresponding to
the regularization term remains as the largest one.
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Fig. 12: Exact vs NN solutions using loss function L3, norm l1, and a reduced
number of samples for the forward evaluation.

5 Conclusions

We analyze different loss functions for solving inverse problems. We demonstrate
via a simple numerical benchmark problem that some traditional loss functions
are inadequate. Moreover, we propose the use of an Encoder-Decoder loss func-
tion, which can also be divided into two loss functions with a one-way coupling.
This enables to decompose the original DL problem into two simpler problems.

In addition, we propose to add a Hermite-type interpolation to the loss func-
tion when needed. This may be especially useful in problems governed by PDEs
where the derivative is easily accessible via the adjoint operator. Results in-
dicate that Hermite interpolation provides enhanced accuracy at the training
points and in the surroundings. However, we still need a sufficient density of
points in our database to obtain acceptable results.

Finally, we evaluate the performance of the Encoder-Decoder loss function
with a reduced number of samples for the forward function approximation. We
observe that the forward function leaves excessive freedom for the training of
the inverse function. To partially alleviate that problem, we incorporate a regu-
larization term. The corresponding results improve, but they still show the need
for additional training samples.



Design of Loss Functions for Solving Inverse Problems using Deep Learning 13

0 500 1,000
10−3

10−2

10−1

100

Iteration number

L
o
ss

va
lu
e

Loss F

Loss FI

Loss REG

Total Loss

Fig. 13: Evolution of the loss value for Encoder-Decoder method trained with
loss function L3.1 and norm l1. “Loss F” corresponds to the loss of the first term
of Eq.(17). “Loss FI” corresponds to the loss of the second term of Eq. (17).
“Loss REG” corresponds to the loss of the third term of Eq. (17). “Total Loss”
corresponds to the total value of Eq. (17).
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