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ABSTRACT

According to the No-Free-Lunch theorem, an algorithm that per-
forms efficiently on any type of problem does not exist. In this
sense, algorithms that exploit problem-specific knowledge usually
outperform more generic approaches, at the cost of a more com-
plex design and parameter tuning process. Trying to combine the
best of both worlds, the field of hyperheuristics investigates the
automatized generation and hybridization of heuristic algorithms.
In this paper, we propose a neuroevolution-based hyperheuristic
approach. Particularly, we develop a population-based hyperheuris-
tic algorithm that first trains a neural network on an instance of
a problem and then uses the trained neural network to control
how and which low-level operators are applied to each of the so-
lutions when optimizing different problem instances. The trained
neural network maps the state of the optimization process to the
operations to be applied to the solutions in the population at each
generation.
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1 INTRODUCTION

Due to the challenge that many optimization problems represent,
a wide range of heuristics have been proposed. These are usually
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designed by hand, which requires not only problem-specific knowl-
edge but also time to finely tune the parameters to the problem
at hand. Much like the design of heuristics, hybridizing different
heuristics by trying different heuristic combinations can also be
very time consuming if done by hand. As an alternative, some
parameter control approaches have been able to effectively select
suitable parameters of an algorithm, obtaining a better performance
than with the default parameters [2].

In the same trend, hyperheuristics were proposed as a step fur-
ther in the development of automatized algorithm design. The field
of hyperheuristics [1] studies the automatized generation and hy-
bridization of heuristics. Recently, a new research area has emerged
in this framework: neural combinatorial optimization (NCO) [3].
NCO studies the use of fixed topology neural networks (NN) de-
signed for sequence-to-sequence learning to define a hyperheuristic
for combinatorial optimization problems. Specifically, solutions are
constructed from the ground up by iteratively selecting solution
components with a previously trained NN heuristic. However, NCO
has its own limitations, such as the requirement of a NN structure
to be defined by the user before training.

In this paper, we introduce NNs to the field of population-based
hyperheuristics. Particularly, we propose a two-stage, population-
based, hyperheuristic algorithm. In the first stage, a NN is trained
with neuroevolution, which will later guide the hyperheuristic.
Then, in the second stage, the hyperheuristic uses the trained NN to
select which and how operators are applied to the solutions during
the optimization of an instance of a problem. It is worth noting
that the operators are chosen on a per solution basis. Once the
NN is trained, the hyperheuristic can be applied to other instances
without any additional training.

To validate the proposed idea, some preliminary experiments were
carried out on a set of Quadratic Assignment Problem [4] (QAP)
instances. Specifically, we have focused on analyzing the transfer-
ability of the hyperheuristic by showing that the proposed approach
adapts to the properties of the instances. The results point out that
the NN adapts the behavior of the hyperheuristic algorithm to take
advantage of the properties of the problem instances.

2 A NEUROEVOLUTION-BASED
HYPERHEURISTIC
The hyperheuristic presented in this paper is a population-based

optimization algorithm that uses a NN (called controller) to select
the operators to be applied to the solutions in the population. This
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network, based on the state of the optimization, decides which and
how operators are applied to each solution during the optimization
of a problem instance. Prior to using the hyperheuristic, the NN
needs to be trained. In this context, training a NN involves running
a neuroevolution algorithm, with the average performance of the
hyperheuristic with that NN as the only reward. More specifically,
neuroevolution of augmenting topologies (NEAT) has been used!.
Introduced by Stanley et al., NEAT is a widely used neuroevolution
technique able to evolve not only the parameters (weights) of a
neural network but also its structure [5].

Once the NN has been trained, the hyperheuristic can be applied
to any other problem instance without additional training. Given a
trained NN and a problem instance, in the following, we explain
how the hyperheuristic optimizes a problem instance. First, a pop-
ulation of g solutions? is initialized at random and their objective
function values are computed. Next, for each solution ¢; in the
population, the information regarding this solution and the state of
the optimization process, Xj, is collected by the encoder. Among
other relevant features, X; includes information about the relative
objective value of o; with respect to the rest of the solutions, the
variability in the population, the distance of ¢; to the close solutions
and whether o; is a local optimum or not (for further details we re-
fer the reader to the online repository). This information X; is a real
valued vector with values in the interval (-1, 1). Once X; has been
obtained, it is fed into the NN that processes this input into another
real-valued vector Y; in the interval (-1, 1). Then, the decoder inter-
prets Y; by applying the operators specified by Y; to solution o;. It
is noteworthy that Y; also contains information about how to apply
the specified operators. Some of the information contained in Y;
includes whether to apply a local search procedure or not, moving
towards or away from neighbour solutions or the best solution in
the population and the choice of neighborhood system. Once all
the solutions o; for i € {1, ..., q} have been modified, the objective
values of the new solutions are updated. This process is repeated
until a stopping criterion is reached, and, upon termination, the
best-found solution is reported.

3 EXPERIMENTAL STUDY

The goal of this experimentation is to validate the proposed ap-
proach by analyzing the adaptability of the hyperheuristics algo-
rithm to the properties of the instances. Specifically, a study on the
transferability® of the hyperheuristic is presented. To that end, we
trained and tested the hyperheuristic approach in some instances of
the Quadratic Assignment Problem (QAP) [4] with different prop-
erties. Nine QAP [4] instances of same size (n = 60), from three
source benchmarks (Taixxa, Taixxb and Sko) where chosen (called
A, B and C in this paper).

A sample of the results of this experiment are shown in Figure 1. A
lighter color indicates a higher normalized objective function value
and, thus, better performance. NNs trained on instances of type A
perform well on other instances of the same type, but are unable

1Our implementation, available in our GitHub repo github.com/EtorArza/GECC02020,
is based on accneat. Accneat is a fork of Stanley et al’s implementation [5] with
some improvements, such as delete mutations and speed improvements, available at
github.com/sean-dougherty/accneat.

2In this work, the QAP is used as a case study, and thus the solutions are permutations.
3We refer to “transferability” as the difference in the performance of a hyperheuristic
trained in a certain type of instance and tested in another type of instance.
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Figure 1: Normalized average objective value for NN trained
and tested in QAP instances. Lighter is better.

to perform well on other kinds of instances. In addition, NNs that
perform best in each instance class are the ones that were trained in
that instance class. The results point out that the best performance
is obtained when NNs are trained and tested in instances with the
same properties. This suggests that the hyperheuristic is adapting
to the properties of the instances to obtain a better performance.

4 CONCLUSION AND FUTURE WORK

In this paper, a NN-based hyperheuristic is proposed. Specifically,
a population-based hyperheuristic is proposed that uses a NN to
guide the optimization process. The NN allows the hyperheuristic
to adapt the use of operators to the particularities of the problem
instances during training. Using the QAP as a case study, the experi-
mentation revealed that this new hyperheuristic trains optimization
strategies tailored to the properties of the training instances. Future
work will be focused on i) extending the number of combinatorial
optimization problems, ii) adaptation to continuous problems and
iii) studying how differently the hyperheuristic behaves depending
on the type of instance that was used to train it.
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