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Abstract

We consider a Landau-de Gennes model for a suspension of small colloidal inclusions
in a nematic host. We impose suitable anchoring conditions at the boundary of the
inclusions, and we work in the dilute regime — i.e., the size of the inclusions is much
smaller than the typical separation distance between them, so that the total volume
occupied by the inclusions is small. By studying the homogenised limit, and proving
rigorous convergence results for local minimisers, we compute the effective free energy
for the doped material. In particular, we show that not only the phase transition
temperature, but any coefficient of the quartic Landau-de Gennes bulk potential can be
tuned, by suitably choosing the surface anchoring energy density.

1 Introduction

Colloids are mixtures in which microscopic-size particles are suspended in an ambient fluid.
The host fluid can be a standard, Newtonian, fluid, or a complex fluid, for instance a liquid
crystal. Colloids provide an impressive and fascinating number of applications, offering the
possibility to use directed self-assembly to realize unusual composite materials with apriori
given properties, designable photonic crystals and nanoparticles transport, to count just a
number of recent, exciting applications.

Some of the most striking applications are those in which the ambient fluid is a liquid
crystal, because this allows the colloidal particles to take advantage of the unusual long-
range elastic properties of the liquid crystals. The field of liquid crystal colloids is a fast
emerging area of research in condensed matter physics, despite being only about two decades
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old, see [12, 21]. The mathematical studies are few [1, 2, 22, 6, 7, 5] and the most recent
ones are generally focused on the defect patterns generated by the presence of the colloids.

Our study in this article is focused on the bulk properties generated in the ambient
material by the presence of the colloidal inclusions. Related mathematical studies in this
directions are those of [6, 7, 5]. The mentioned works show that in a dilute regime the
mixture of colloids and liquid crystal behave like a “homogeneous”, new material, with
properties that can be quantitatively parametrised. On the other hand, let us note that in
the physics literature there are a number of works [19, 13] showing that in such a dilute
regime the mixture behaves like a pure liquid crystal, but with enhanced properties. The aim
of this article is to recover in the simplest mathematical setting this observation from the
physics literature, namely to determine under what conditions the homogenised colloidal
material can behave as an improved standard liquid crystal material. We will also study
this issue from a design perspective, trying to determine what kind of colloidal particles
are necessary in order to obtain from a given ambient liquid crystal material an apriori
prescribed enhanced liquid crystal.

Our matematical setting will be the the simplest Landau-de Gennes variational theory
of liquid crystals. We denote

S0 := {Q ∈ R
3×3, Q = QT, tr(Q) = 0}

and refer to its elements as Q-tensors. The elements in this set describe the characteristic
feature of the material, namely the local orientational ordering (for more details see [15, 4]).
We take Ω ⊆ R

3 to be a bounded, Lipschitz domain that models the ambient fluid, and
let g ∈ H1/2(∂Ω, S0) be a boundary datum. The functions taking values into the set S0

will model the liquid crystal material.

We take P ⊆ R
3 to model a colloidal particle and aim to study the situation in which

the colloids are small (in a suitable sense, to be clarified) and distributed throughout the
ambient material, within Ω. To this end we take the set of inclusions to be

Pε :=

Nε⋃

i=1

P
i
ε and P

i
ε := xiε + εαRi

εP, (1.1)

where the xiε’s are points in Ω, α > 0 is a fixed (ε-independent) parameter, the Ri
ε’s are

rotation matrices.
The liquid crystal material will then be located only outside the colloidal particles, that

is within the set
Ωε := Ω \ Pε

The material is described through functions Q : Ωε → S0 that minimise the following
Landau-de Gennes free energy functional:

Fε[Q] :=

ˆ

Ωε

(fe(∇Q) + fb(Q)) dx+ ε3−2α

ˆ

∂Pε

fs(Q, ν) dσ. (1.2)
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(where ν(x) denotes as usually the exterior normal at the point x on the boundary).
In the above and the following we work in a non-dimensional setting (see for a general

discussion on non-dimensionalisation within liquid crystal context [9, 16] and specifically
for liquid crystal colloids [1]).

The above energy functional has several terms. The most significant one, is the bulk

potential fb(Q) that models the phase transition from the liquid phase to the nematic
phase. Physical invariances require the symmetry assumption fb(Q) = fb(RQRT) for any
Q ∈ S0 and R ∈ O(3), and the most commonly used form is the Landau-de Gennes
potential, up to fourth order, given as:

fLDG(Q) := a tr(Q2)− b tr(Q3) + c
(
tr(Q2)

)2
(1.3)

Here a, b, c ∈ R are material constants, with a being proportional with the temperature.
For a large enough the global minimizer of such a potential is the zero matrix (which models
the isotropic state) while for a small enough the global minimizers are matrices of the form
{s+(n⊗ n− 1

3 Id), n ∈ S
2} with s+ an explicitly computable constant, depending on a, b, c

(see for instance [15] for more details).

The term fe(∇Q) models the spatial variations of the material. Physical invariances

require the symmetry fe(D) = fe(D
∗) where we denote the third order tensor Dijk :=

∂Qij

∂xk

and we have D∗
ijk = RilRjmRkpDlmp. Some terms satisfying these invariances are (where

we denote Qij,k :=
∂Qij

∂xk
and assume summation over repeated indices):

f1
e := Qij,kQij,k, f2

e := Qij,kQik,j, f3
e = Qij,jQik,k

The most commonly used one is the first one above, that provides a reasonably good ap-
proximation in many cases of interest.

Finally, the effects induced by the particles are modeled through the surface energy term
that encodes the effect produced by the interaction between the boundary of the colloidal
particles and the ambient fluid. The physical invariances require the following

fs(UQUT, Uu) = fs(Q, u) for any (Q, u) ∈ S0 × R
3, U ∈ O(3). (1.4)

The most commonly used surface energy is the so-called Rapini-Papoular type energy
(see for instance [17]), of the form:

fs(Q, ν) = W tr

(
Q− s+

(
ν ⊗ ν −

1

3
Id

))2

(1.5)

with W > 0 a coefficient measuring the strength of the anchoring and the overall term
measuring the deviation from the homeotropic (perpendicular) anchoring on the boundary.

Taking the above into account, we will show that in the limit of ε → 0 the homogenized
material will behave as if described by a limiting, homogenized, energy functional of the
form
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F0[Q] :=

ˆ

Ωε

(fe(∇Q) + fb(Q) + fhom(Q, x)) dx. (1.6)

As previously mentioned, our aim is to understand to what extent fb(Q) + fhom(Q, x)
can be designed to be an improvement of the original fb(Q). The control that we will allow
is in suitably modifying the surface energy term, that models the effect of the colloids. We
will develop a rather general machinery, that in particular will allow to show that given an
arbitrary bulk term fLDG as above, characterized by the constants a, b, c we will be able
to obtain the homogenized fLDG(Q) + fhom(Q, x) to be of the Landau-de Gennes type,
with constants a′, b′ and c′, for arbitrary parameters (a, b, c), respectively (a′, b′, c′). The
homogenised bulk potential will be obtained by suitably adjusting our “design parameter”,
the surface energy term fs, depending on a, b, c, a′, b′, c′.

The paper is organised as follows: in Section 2 we will present the technical assumptions
and the main results. The proofs of the main results are divided between Section 3, where
we study the properties of the functionals Fε for fixed ε, and Section 4 where we provide
the convergence of minimisers results. The applications to the standard types of Landau-de
Gennes potentials, mentioned above, are presented at the end, in Section 5.

2 Technical assumptions and the main results

Throughout the paper, we will denote by C a generic constant, whose value may change
from line to line, depending only on the domain, the boundary datum and the free energy
functional (1.2), but not on ε. We will also write A . B as a short-hand for A ≤ CB.

The target space of our maps is the set of Q-tensors, that is, the set of symmetric, trace-
free, real (3 × 3)-matrices, which we denote S0. For Q ∈ S0, we let |Q| := (tr(Q2))1/2 =
(
∑

i,j Qij)
1/2; this defines a norm on the linear space S0, and this norm is induced by a

scalar product.

Assumptions. Let Ω ⊆ R
3 be a bounded, smooth domain. Let us consider a closed set

Pε ⊆ Ω of the form (1.1), where P, α, xiε and Ri
ε satisfy the assumptions below.

(H1) 1 < α < 3/2.

(H2) There exists a constant λΩ > 0 such that

dist(xiε, ∂Ω) +
1

2
inf
j 6=i

|xjε − xiε| ≥ λΩε

for any ε > 0 and any i = 1, . . . , Nε.

(H3) As ε → 0, the measures µε := ε3
∑Nε

i=1 δxi
ε
converge weakly∗ (as measures in R

3) to
dx Ω, where dx Ω denotes the Lebesgue measure restricted to Ω.
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(H4) There exists a continuous map R∗ : Ω → SO(3) such that Ri
ε = R∗(x

i
ε) for any ε > 0

and any i = 1, . . . , Nε.

(H5) P ⊆ R
3 is a compact, convex set that contains the origin. Moreover, there exists a

bijective, Lipschitz map φ : B1 ⊆ R
3 → P, with Lipschitz inverse, such that φ(0) = 0.

Thanks to (H1) and (H2), the Pi
ε’s are pairwise disjoint when ε is small enough. Under

the assumption (H2), the balls B(xiε, λΩε) are contained in Ω and pairwise disjoint; there-
fore, the number of the inclusions is Nε . ε−3. Moreover, the total volume of the inclusions
converges to zero as ε → 0, because |Pε| . Nεε

3α . ε3(α−1) and α > 1 by assumption (H1).
Thus, we are in the diluted regime, as in [7]. The assumption (H3) guarantees that the
inclusions are uniformly distributed, at least for small values of ε. Both the conditions (H2)
and (H3) are satisfied if, for instance, the points xiε are periodically distributed, that is, if
we choose

{xiε : i = 1, . . . , Nε} = {y ∈ Ω: dist(y, ∂Ω) ≥ ε and yk/ε ∈ Z for k = 1, 2, 3}.

The condition (H4) guarantees that the orientation of the inclusions is varying continuously
across Ω. Finally, (H5) is compatible with a large class of shapes for the inclusions; for
instance, (H5) is satisfied if P is a sphere, an ellipsoid, a cube (or more generally, a convex
polyhedron) or a cylinder, with barycentre at the origin. Under the assumption (H5), the
domain Ωε := Ω \ Pε has Lipschitz boundary.

We consider the functional Fε, defined by (1.2). We assume the following conditions on
the energy densities fe, fb, fs. We say that a function f : S0 ⊗ R

3 → R is strongly convex
if there exists θ > 0 such that the function S0 ⊗ R

3 ∋ D 7→ f(D)− θ|D|2 is convex.

(H6) fe : S0 ⊗ R
3 → [0, +∞) is differentiable and strongly convex. Moreover, there exists

a constant λe > 0 such that

λ−1
e |D|2 ≤ fe(D) ≤ λe|D|2, |(∇fe)(D)| ≤ λe (|D|+ 1)

for any D ∈ S0 ⊗R
3.

(H7) fb : S0 → R is continuous, bounded from below and there exists a positive constant λb

such that |fb(Q)| ≤ λb(|Q|6 + 1) for any Q ∈ S0.

(H8) fs : S0 × S
2 → R is continuous and there exists a constant λs > 0 such that, for any

Q1, Q2 ∈ S0 and ν ∈ S
2, there holds

|fs(Q1, ν)− fs(Q2, ν)| ≤ λs(|Q1|
3 + |Q2|

3 + 1)|Q1 −Q2|.

As a consequence of (H8), the surface energy density fs has quartic growth in Q. There-
fore, under the assumptions (H6)–(H8), the functional Fε is well-defined and finite on
H1(Ωε,S0), thanks to the Sobolev embeddings H1(Ωε) →֒ L6(Ωε), H

1/2(∂Ωε) →֒ L4(∂Ωε).
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The homogenised functional. Let us define the function fhom : S0 × Ω → R by

fhom(Q, x) :=

ˆ

∂P

fs(Q, R∗(x)νP) dσ (2.1)

for any (Q, x) ∈ S0 × Ω, where νP denotes the inward-pointing unit normal to ∂P,
and R∗ : Ω → SO(3) is the map given by (H4). Under the assumptions (H4) and (H8), it
is easily checked that fhom is continuous on S0 × Ω and has quartic growth in Q. Our
candidate homogenised functional is defined for any Q ∈ H1(Ω,S0) as

F0[Q] :=

ˆ

Ωε

(fe(∇Q) + fb(Q) + fhom(Q, x)) dx. (2.2)

Main results. The main result of these notes concerns the asymptotic behaviour, as ε →
0, of local minimisers of the functional Fε.

Let g ∈ H1/2(∂Ω, S0) be a boundary datum. By a slight abuse of notation, we denote
by H1

g (Ωε,S0) — respectively, H1
g (Ω, S0) — the set of maps Q ∈ H1(Ωε,S0) — respec-

tively, Q ∈ H1(Ω,S0) — that satisfy Q = g on ∂Ω, in the sense of traces. (We do not
prescribe a boundary value for Q on ∂Ωε\∂Ω = ∂Pε.) We let Eε : H

1
g (Ωε,S0) → H1

g (Ω,S0)
denote the harmonic extension operator, defined in the following way: for Q ∈ H1(Ωε,S0),
EεQ := Q on Ωε and, for each i, EεQ on Pi

ε is the unique solution of the problem
{
−∆(EεQ) = 0 in Pi

ε

EεQ = Q on ∂Pi
ε.

Theorem 2.1. Suppose that the assumptions (H1)–(H8) are satisfied. Suppose, moreover,
that Q0 ∈ H1

g (Ω,S0) is an isolated H1-local minimiser for F0 — that is, there exists δ0 > 0
such that

F0[Q0] < F0[Q]

for any Q ∈ H1
g (Ω,S0) such that Q 6= Q0 and ‖Q − Q0‖H1(Ω) ≤ δ0. Then, for any ε

small enough, there exists an H1-local minimiser Qε for Fε such that EεQε → Q0 strongly
in H1(Ω) as ε → 0.

Remark 2.2. Theorem 2.1 applies, in particular, to any critical point Q0 of F0 that is
locally (strictly) stable, that is, satisfies

d2

dt2 |t=0
F0[Q0 + tP ] > 0

for any P ∈ H1
0 (Ω,S0) with P 6≡ 0.

Remark 2.3. There is a trade-off between the growth of the surface energy density, fs, and
the parameter α. If fs is allowed to be a function of quartic growth in Q, as in Assump-
tion (H8), then Theorem 2.1 cannot hold when α > 3/2 (see Lemma 3.6 below). Other
regimes for the parameter α can be considered, if we impose different growth conditions
on fs; an example where fs is a quadratic function and 1 < α < 3 was studied in [7].
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We cannot study the asymptotic behaviour of global minimisers of Fε because, under the
assumptions (H1)–(H8), the functional Fε might be unbounded from below (see Lemma 3.5
below). However, we can provide a statement about global minimisers of Fε under stronger
assumptions.

Theorem 2.4. Suppose that the assumptions (H1)–(H8) are satisfied. In addition, suppose
that there exist positive constants µ and C such that

fb(Q) ≥ µ|Q|6 − C for any Q ∈ S0.

Then, for ε small enough, there exists a global minimiser Qε for Fε in H1
g (Ωε,S0). More-

over, up to a (non-relabelled) subsequence, EεQε converges strongly in H1(Ω) to a global
minimiser for F0 in H1

g (Ω,S0).

Remark 2.5. The bulk potential should satisfy the symmetry requirement fb(Q) = fb(RQRT)
for any Q ∈ S0 and R ∈ O(3) and as such it can be shown that it is a function of tr(Q2)
and tr(Q3). The most commonly used potential, the one we mentioned before, the quartic
Landau-de Gennes potential (1.3) is the simplest Taylor expansion type of bulk potential that
does satisfy the symmetry and it is cut at fourth order, because this is the lowest order term
that predicts as a global minimizer a uniaxial phase (i.e. the global minimizer has two equal
eigenvalues). However, it does not satisfy the assumptions of Theorem 2.4. Nevertheless,
Theorem 2.4 does apply to the sextic Landau-de Gennes potential that can be relevant for
the so-called biaxial minimizers (i.e. all eigenvalues are distinct), see [8], Sec. 2.3.3:

fb(Q) = a2 tr(Q
2)− a3 tr(Q

3) + a4
(
tr(Q2)

)2

+ a5 tr(Q
2)tr(Q3) + a6

(
tr(Q2)

)3
+ a′6

(
tr(Q3)

)2
,

so long as a6 > 0 and 6a6 + a′6 > 0.

Additional notation. We define

Jε[Q] := ε3−2α

ˆ

∂Pε

fs(Q, ν) dσ for Q ∈ H1
g (Ωε,S0) (2.3)

and

J0[Q] :=

ˆ

Ω
fhom(Q, x) dx for Q ∈ H1

g (Ω,S0). (2.4)

The functional J0 is the candidate limit of the surface integrals, Jε.

3 Properties of the functional Fε

3.1 Analytical tools: Trace and extension

One of the main tools we will use in the sequel is the following Lp-trace inequality, which
is adapted from [7, Lemma 4.1]. Given a set P ⊆ R

3 that contains the origin and a
number a > 0, we set aP := {ax : x ∈ P}.
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Lemma 3.1. Let P ⊆ R
3 be a closed, convex set that satisfies (H5). Let p ∈ [2, 4]. Then,

there exists C = C(P, φ, p) > 0 such that, for any a > 0, b ≥ 2a and any u ∈ H1(bP\aP),
there holds

ˆ

∂(aP)
|u|p dσ ≤ C

ˆ

bP\aP

(
|∇u|2 + |u|2p−2

)
dx+

Ca2

b3

ˆ

bP\aP

|u|p dx.

Proof. Let φ : B1 ⊆ R
3 → P be a bijective, Lipschitz map, with Lipschitz inverse, such

that φ(0) = 0; such a map exists by the assumption (H5). The map φ∗(x) := |x|φ(x/|x|),
defined for x ∈ R

3 \ {0}, is Lipschitz and maps B̄b \ B̄a onto bP \ aP. If t1, t2 are positive
numbers and y1 ∈ ∂P, y2 ∈ ∂P are such that t1y1 = t2y2, then y1 = y2 because P is
convex and the origin lies in the interior of P; as a consequence, φ∗ is injective. Finally,
‖∇φ∗‖L∞ and ‖∇(φ−1

∗ )‖L∞ are bounded by a constant that depends on φ and P, but not
on a, b. Therefore, up to composition with φ−1

∗ , we can assume without loss of generality
that P = B̄1.

Having reduced to the case P is a ball, we can use spherical coordinates:

x1 = ρ cos θ sinϕ, x2 = ρ sin θ sinϕ, x3 = ρ cosϕ

where ρ ∈ [a, b], θ ∈ [0, 2π], ϕ ∈ [0, π]. For u ∈ H1(bP \ aP) and a.e. (ρ, θ, ϕ), there
holds

|u|p (a, θ, ϕ) = |u|p (ρ, θ, ϕ)−

ˆ ρ

a
∂ρ (|u|

p) (s, θ, ϕ) ds

≤ |u|p (ρ, θ, ϕ) + p

ˆ ρ

a
|u|p−1 |∂ρu| (s, θ, ϕ) ds

≤ |u|p (ρ, θ, ϕ) +
p

2

ˆ ρ

a

(
|∂ρu|

2 + |u|2p−2
)
ds

≤ |u|p (ρ, θ, ϕ) +
p

2a2

ˆ ρ

a

(
|∂ρu|

2 + |u|2p−2
)
s2ds.

We divide both sides of this inequality by ρ2 sinϕ (i.e. the Jacobian of the change of
coordinates) and integrate with respect to (ρ, θ, ϕ) ∈ (a, b)× (0, 2π)× (0, π). We obtain

b3 − a3

3

ˆ 2π

0

ˆ π

0
|u|p (a, θ, ϕ) sinϕdθ dϕ ≤

ˆ

Bb\Ba

|u|p dx

+
p(b3 − a3)

6a2

ˆ

Bb\Ba

(
|∂ρu|

2 + |u|2p−2
)
dx.

Since the surface element on the sphere ∂Ba is dσ = a2 sinϕdθ dϕ, the previous inequality
may be rewritten as

b3 − a3

3a2

ˆ

∂Ba

|u|p dσ ≤

ˆ

Bb\Ba

|u|p dx+
p(b3 − a3)

6a2

ˆ

Bb\Ba

(
|∂ρu|

2 + |u|2p−2
)
dx.

We multiply both sides of this inequality by (b3 − a3)/(3a2). By taking into account that
b3 − a3 & b3, because we have assumed that b ≥ 2a, the lemma follows.
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Lemma 3.2. For any Q ∈ H1(Ωε,S0) and any p ∈ [2, 4], there holds

ε3−2α

ˆ

∂Pε

|Q|p dσ . ε3−2α

ˆ

Ωε

(
|∇Q|2 + |Q|2p−2

)
dx+

ˆ

Ωε

|Q|p dx.

Proof. For each i, consider the inclusion Pi
ε = xiε+ εαRi

εP and P̂i
ε := xiε+µεRi

εP, where

µ > 0 does not depend on i, ε. For ε small enough we have Pi
ε ⊂⊂ P̂i

ε and, thanks to

assumption (H2), by taking µ small enough we can make sure that the P̂i
ε’s are pairwise

disjoint. Therefore, we can apply Lemma 3.1 on each P̂i
ε \ Pi

ε (with a = εα, b = µε) and
sum the corresponding inequalities. This proves the lemma.

It will be useful to consider maps defined on the fixed domain Ω instead of Ωε. To this
end, we consider the harmonic extension operator Eε : H

1
g (Ωε,S0) → H1

g (Ω,S0). GivenQ ∈
H1

g (Ωε,S0) we let EεQ := Q on Ωε and, inside each inclusion Pi
ε, we define EεQ as the

unique solution of {
−∆(EεQ) = 0 in Pi

ε

EεQ = Q on ∂Pi
ε.

The operator Eε is linear and uniformly bounded with respect to ε > 0, as demonstrated
by the following

Lemma 3.3. There exists a constant C > 0 such that ‖∇(EεQ)‖L2(Ω) ≤ C‖∇Q‖L2(Ωε) for
any ε > 0 and any Q ∈ H1

g (Ωε,S0).

Proof. Consider a single inclusion Pi
ε = xiε+ εαRi

εP and let P̃i
ε := xiε+2εαRi

εP. Thanks
to (H2), we know that the P̃i

ε’s are pairwise disjoint for ε small enough. Therefore, it
suffices to prove that

‖∇(EεQ)‖2L2(Pi
ε)
≤ C‖∇Q‖2

L2(P̃i
ε\P

i
ε)
. (3.1)

This inequality is scale-invariant and hence, by a scaling argument, we can assume without
loss of generality that ε = 1, Pi

ε = P, P̃i
ε = 2P. Then, elementary properties of Lapace’s

equation and the trace inequality yield

‖∇(EεQ)‖2L2(P) . [Q]2
H1/2(∂P)

. ‖∇Q‖2L2(2P\P).

3.2 Equicoercivity of the Fε’s

As we will see below, the assumptions (H1)–(H8) are not enough to guarantee coercivity
of Fε. However, it is possible to restore coercivity under an additional assumption on fb,
namely, if there exist positive constants µ, C such that

fb(Q) ≥ µ|Q|6 − C for any Q ∈ S0. (3.2)
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Proposition 3.4. Suppose that the assumptions (H1)–(H8) and (3.2) are satisfied. Let Q ∈
H1

g (Ωε,S0) satisfy Fε[Q] ≤ M , for some (ε-independent) constant M . Then, there holds

ˆ

Ωε

|∇Q|2 dx ≤ M ′

for ε > 0 small enough and for some M ′ > 0 depending only on M , fe, fb, fs, Ω, P.

Proof. Recall that, due to the Assumption (H8), there holds |fs(Q)| . |Q|4+1. By applying
Lemma 3.2 (with the choice p = 4) and the Hölder inequality, we obtain that

Jε[Q] ≥ −C1ε
3−2α

ˆ

Ωε

(
|∇Q|2 + |Q|6

)
dx− C1

ˆ

Ωε

|Q|4 dx− C

≥ −C1ε
3−2α

ˆ

Ωε

(
|∇Q|2 + |Q|6

)
dx− C2

(
ˆ

Ωε

|Q|6 dx

)2/3

−C

for some positive constants C1, C2, C. On the other hand, the assumptions (H6) and (3.2)
give

ˆ

Ωε

(fe(∇Q) + fb(Q)) ≥ C3

ˆ

Ωε

(
|∇Q|2 + |Q|6

)
dx− C.

Therefore, the energy bound Fε[Q] ≤ M implies

(C3 − C1ε
3−2α)

ˆ

Ωε

(
|∇Q|2 + |Q|6

)
dx ≤ C2

(
ˆ

Ωε

|Q|6 dx

)2/3

+ C.

Since α < 3/2, the coefficient C3 − C1ε
3−2α is strictly positive for ε small enough. The

proposition follows by observing that the left-hand side has linear growth in
´

Ωε
(|∇Q|2 +

|Q|6) dx while the right-hand side has sublinear growth, hence the integral must be bounded.

In the rest of this section, we illustrate some patologies that may lead to the loss of
equicoercivity. If the assumption (3.2) is not satisfied, the functional Fε might be un-
bounded from below. To illustrate this phenomenon, we consider an example that involves
scalar functions. For simplicity, we assume that the inclusions are balls, i.e. P = B1 and
Pε = ∪Nε

i=1B(xiε, ε
α). For u ∈ H1(Ωε, R), define the functional

Gε(u) :=

ˆ

Ωε

(
|∇u|2 + k|u|q

)
dx− δε3−2α

ˆ

∂Pε

|u|p dσ, (3.3)

where k, δ, p, q are positive parameters.

Lemma 3.5. For any k > 0, δ > 0, p > 2, q < 2p − 2, α > 1 and for ε > 0 small enough,
we have inf{Gε(u) : u ∈ H1(Ωε), u = 0 on ∂Ω} = −∞.
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Proof. Let U := B2 \B1 be a spherical shell of inner radius 1 and outer radius 2. Consider
the function

v(x) := M(2− |x|)γ for x ∈ U,

where M ≥ 1, γ ≥ 1 are parameters to be specified later on. We can explicitely compute
the energy of v:

ˆ

U
|∇v|2 dx = 4πγ2M2

ˆ 2

1
(2− ρ)2γ−2ρ2 dρ ≤

16πγ2M2

2γ − 1
ˆ

U
|v|q dx = 4πM q

ˆ 2

1
(2− ρ)qγρ2 dρ ≤

16πM q

qγ + 1
,

ˆ

∂B1

|v|p dσ = 4πMp.

Now, choose one of the inclusions, say B(x1ε, ε
α). Thanks to (H2), for ε small enough we have

B(x1ε, 2ε
α)\ B̄(x1ε, ε

α) ⊆ Ωε. We define uε(x) := v(ε−α(x−x1ε)) if x ∈ B(x1ε, 2ε
α)\ B̄(x1ε, ε

α)
and uε(x) := 0 otherwise. By scaling, we have

Gε(uε) = εα
ˆ

U
|∇v|2 dx+ kε3α

ˆ

U
|v|q dx− δε3

ˆ

∂B1

|v|p dσ

≤ Cε,1

(
γ2M2

2γ − 1
+

M q

qγ + 1

)
− Cε,2M

p,

(3.4)

where Cε,1, Cε,2 are positive numbers depending on ε, α, k, δ, q. (Actually we have
Cε,2 ≪ Cε,1 as ε → 0, but this is irrelevant because, for the purposes of this lemma, ε is
fixed.) We take γ = Mβ , with β > 0. If we can choose β > 0 in such a way that

max{2 + β, q − β} < p (3.5)

then, by letting M → +∞ in (3.4), we see that Gε is unbounded from below. Now, (3.5) is
equivalent to q − p < β < p − 2 and, because we have assumed that p > 2, q < 2p − 2, we
can find β > 0 satisfying (3.5).

If Condition (3.2) is met, but α > 3/2 so that the exponent in ε3−2α becomes negative,
the energy bounds from below may degenerate as ε → 0 and equicoercivity may be lost. As
an example, we consider the same functional as in (3.3) with q = 2p− 2, namely:

Gε(u) :=

ˆ

Ωε

(
|∇u|2 + k|u|2p−2

)
dx− δε3−2α

ˆ

∂Pε

|u|p dσ

for u ∈ H1(Ωε, R).

Lemma 3.6. For any 2 < p < 4, 3/2 < α < 6/p, k > 0, δ > 0, there holds inf{Gε(u) : u ∈
H1(Ωε), u = 0 on ∂Ω} → −∞ as ε → 0.

Proof. Let ϕ ∈ C∞
c (B2) be a non-negative function such that ϕ = 1 on B1, and let β > 0

be a parameter to be chosen later. Choose one of the inclusions, say B(x1ε, ε
α), and define

uε ∈ H1(Ω) by

uε(x) := ε−α/2−βϕ(ε−α(x− x1ε)) if x ∈ B(x1ε, 2ε
α) \B(x1ε, ε

α)
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and uε(x) := 0 otherwise. By means of a change of variables, we compute that

Gε(uε) = ε−2β

ˆ

B2\B1

|∇ϕ|2 dx+ kε−β(2p−2)+α(4−p)

ˆ

B2\B1

|ϕ|2p−2 dx− 4πδε3−αp/2−βp

Now, if we are able to choose β > 0 in such a way that

αp/2 + βp− 3 > max {2β, β(2p− 2)− α(4 − p)},

then the lemma follows. This condition can be equivalently rewritten as

6− αp

2p− 4
< β <

−αp + 8α − 6

2p− 4
(3.6)

It can be checked the system (3.6) admits a positive solution, because p > 2 and 3/2 < α <
6/p.

For larger values of the parameter α, even on bounded subsets of H1(Ω) the minimal en-
ergy may be unbounded in the limit as ε → 0. Again, we suppose that Pε = ∪Nε

i=1B(xiε, ε
α),

and we consider the functional

Gε(u) :=

ˆ

Ωε

(
|∇u|2 + k|u|6

)
dx− δε3−2α

ˆ

∂Pε

|u|p dσ

for u ∈ H1(Ωε, R).

Lemma 3.7. Suppose that 2 < p ≤ 4 and α > 6/p. Then, for any M > 0, there holds

inf
{
Gε(u) : u ∈ H1(Ωε), u = 0 on ∂Ω, ‖Eεu‖H1(Ω) ≤ M

}
→ −∞ as ε → 0.

Lemma 3.7 shows, in particular, that the assumption α < 3/2 is sharp if the surface
energy term has quartic growth.

Proof. We consider a variant of the example given in Lemma 3.6. Let uε be defined by

uε(x) := ηε−α/2ϕ(ε−α(x− xiε)) if x ∈ B(x1ε, 2ε
α) \B(x1ε, ε

α)

and uε(x) := 0 otherwise. Here, ϕ is as in Lemma 3.6 and η is a positive parameter. By
a change of variables, we see that ‖∇uε‖L2(Ωε) = η‖∇ϕ‖L2(B2\B1) < +∞ and hence, by
taking η small enough and applying Lemma 3.3, we can make sure that ‖Eεuε‖H1(Ω) ≤ M .
On the other hand, we have

Gε(uε) =

ˆ

B2\B1

(
η2 |∇ϕ|2 + kη6ϕ6

)
dx− 4πδηpε3−αp/2

and the right-hand side tends to −∞ as ε → 0, because α < 6/p.
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3.3 Lower semi-continuity of the Fε’s

As we will see in Lemma 3.9 below, the assumptions (H1)–(H8) do not guarantee that Fε is
sequentially lower semi-continuous with respect to the weak topology in H1(Ωε). However,
we can prove weak sequential lower semi-continuity on bounded subsets of H1(Ωε), for
small ε.

Proposition 3.8. Suppose that the assumptions (H1)–(H8) are satisfied. For any posi-
tive M there exists ε0(M) > 0 with the following property: if 0 < ε ≤ ε0(M) and if (Qj)j∈N
is a sequence in H1(Ωε,S0) that converges H1-weakly to Q ∈ H1(Ωε,S0) and satisfies

‖∇Qj‖L2(Ωε) ≤ M, (3.7)

then
Fε[Q] ≤ lim inf

j→+∞
Fε[Qj ].

Proof. We analyse separately the terms in Fε, starting by the gradient term fe. Let us
define

µ := lim inf
j→+∞

ˆ

Ωε

|∇Qj|
2 dx−

ˆ

Ωε

|∇Q|2 dx.

By the H1-weak convergence Qj ⇀ Q, we know that µ ≥ 0. Moreover, up to extracting a
subsequence, we can assume that

ˆ

Ωε

|∇Qj |
2 dx →

ˆ

Ωε

|∇Q|2 dx+ µ as j → +∞. (3.8)

Since fe is assumed to be strongly convex (H6), for θ > 0 small enough the function f̃e
defined by f̃e(D) := fe(D) − θ|D|2 for D ∈ S0 ⊗ R

3 is convex. Therefore, using (3.8), we
obtain

lim inf
j→+∞

ˆ

Ωε

fe(∇Qj) dx−

ˆ

Ωε

fe(∇Q) dx

= lim inf
j→+∞

ˆ

Ωε

f̃e(∇Qj) dx−

ˆ

Ωε

f̃e(∇Q) dx+ θµ ≥ θµ.

(3.9)

We consider now the bulk term fb. Due to the compact Sobolev embedding H1(Ωε) →֒
L2(Ωε), by extracting a subsequence we can assume that Qj → Q a.e. in Ωε. Then, since fb
is assumed to be continuous and bounded from below (H7), we can apply Fatou’s lemma to
obtain

lim inf
j→+∞

ˆ

Ωε

fb(Qj) dx−

ˆ

Ωε

fb(Q) dx ≥ 0. (3.10)

Finally, we deal with the surface integral, Jε. For any j ∈ N, we define two sets:

Aj := {x ∈ ∂Pε : |Qj(x)−Q(x)| ≤ |Q(x)|+ 1},

Bj := ∂Pε \Aj = {x ∈ ∂Pε : |Qj(x)−Q(x)| > |Q(x)|+ 1}.

13



We first consider the set Aj , where the inequality |Qj −Q| ≤ |Q|+ 1 holds. We apply the
assumption (H8) and deduce that, a.e. on Aj , there holds

|fs(Qj , ν)− fs(Q, ν)| .
(
|Qj |

3 + |Q|3 + 1
)
|Qj −Q|

.
(
|Qj −Q|3 + 2|Q|3 + 1

)
|Qj −Q|

.
(
|Q|3 + 1

)
(|Q|+ 1) . |Q|4 + 1 ∈ L1(∂Pε).

Thanks to the continuity of the trace operator H1(Ωε) → H1/2(∂Pε) and to the compact
Sobolev embedding H1/2(∂Pε) →֒ L2(∂Pε), we have Qj → Q a.e. on ∂Pε as j → +∞,
at least along a subsequence. Therefore, we can apply Lebesgue’s dominated convergence
theorem to deduce that

ˆ

Aj

|fs(Qj , ν)− fs(Q, ν)| dσ → 0 as j → +∞. (3.11)

Finally, we consider the set Bj, where the oppositive inequality |Q| + 1 ≤ |Qj −Q| holds.
We apply (H8) again and deduce that, a.e. on Bj, there holds

|fs(Qj , ν)− fs(Q, ν)| .
(
|Qj |

3 + |Q|3 + 1
)
|Qj −Q|

.
(
|Qj −Q|3 + 2|Q|3 + 1

)
|Qj −Q|

. |Qj −Q|4 + (|Q|+ 1)3 |Qj −Q|

. |Qj −Q|4 .

With the help of Lemma 3.2, we obtain
ˆ

Bj

|fs(Qj , ν)− fs(Q, ν)| dσ .

ˆ

∂Pε

|Qj −Q|4 dσ

.

ˆ

Ωε

(
|∇Qj −∇Q|2 + |Qj −Q|6

)
dx+ ε2α−3

ˆ

Ωε

|Qj −Q|4 dx.

The last term in the right-hand side converges to zero as j → +∞, due to the compact
Sobolev embedding H1(Ωε) →֒ L4(Ωε). To estimate the integral of |Qj − Q|6, we apply
the Sobolev embedding H1

0 (Ω) →֒ L6(Ω) to the harmonic extension Eε(Qj − Q), and use
Lemma 3.3. (We have Eε(Qj −Q) ∈ H1

0 (Ω) because both Qj and Q are equal to g on ∂Ω.)
This yields

ˆ

Bj

|fs(Qj , ν)− fs(Q, ν)| dσ

.

ˆ

Ωε

|∇Qj −∇Q|2 dx+

(
ˆ

Ωε

|∇Qj −∇Q|2 dx

)3

+ o(1).

We use the bound (3.7) to further estimate the right-hand side:
ˆ

Bj

|fs(Qj, ν)− fs(Q, ν)| dσ .
(
1 + 16M4

) ˆ

Ωε

|∇Qj −∇Q|2 dx+ o(1).
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By combining this inequality with (3.11), we obtain that

lim inf
j→+∞

Jε[Qj]− Jε[Q] ≥ −CMε3−2α lim sup
j→+∞

ˆ

Ωε

|∇Qj −∇Q|2 dx (3.12)

for some constant CM > 0 that depends on M , but not on ε. The weak convergence Qj ⇀ Q
and (3.8) imply that

ˆ

Ωε

|∇Qj −∇Q|2 dx =

ˆ

Ωε

(
|∇Qj|

2 − 2∇Qj : ∇Q+ |∇Q|2
)
dx → µ

as j → +∞. Therefore, by combining (3.9), (3.10) and (3.12), we obtain

lim inf
j→+∞

Fε[Qj ]− Fε[Q] ≥
(
θ − CMε3−2α

)
µ

and the right-hand side is non-negative when ε is sufficiently small, because α < 3/2.

We conclude this section with an example of a scalar functional that fails to be sequen-
tially weakly lower semi-continuous in H1(Ωε). We assume this time that the inclusions are
cubes, i.e. Pε = ∪Nε

i=1[x
i
ε − εα, xiε + εα]3. For u ∈ H1(Ωε, R), let

Gε(u) :=

ˆ

Ωε

(
|∇u|2 + k|u|q

)
dx− δε3−2α

ˆ

∂Pε

|u|4 dσ,

where k, δ, α, q are positive parameters.

Lemma 3.9. For any k > 0, δ > 0, q < 6, α > 1 and ε > 0, Gε is not sequentially weakly
lower semi-continuous on {u ∈ H1(Ωε) : u = 0 on ∂Ω}.

Proof. Let ϕ ∈ C∞
c (B1) be a non-negative function such that ϕ(0) = 1. Let yε := x1ε +

(εα, 0, 0). The point yε is the centre of one of the faces of the cube [x1ε − εα, x1ε + εα]3.
For j ∈ N and for a fixed M > 0, we define

uj(x) := Mj1/2ϕ(j(x − yε)) if x ∈ B(yε, 1/j)

and uj(x) := 0 otherwise. For j large enough we have uj = 0 on ∂Ω and, by a change of
variable, we compute that

ˆ

Ωε

|∇uj|
2 dx = M2

ˆ

B+

1

|∇ϕ|2 dx,

ˆ

Ωε

|uj|
q dx = M qjq/2−3

ˆ

B+

1

|ϕ|q dx → 0

as j → +∞. Here B+
1 := B1 ∩ ([0, +∞) × R

2). In particular, uj ⇀ 0 weakly in H1(Ωε).
However, we have

ˆ

∂Pε

|uj |
4 dσ = M4

ˆ

B0
1

|ϕ|4 dσ
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where B0
1 := B1 ∩ ({0} × R

2), and hence

lim inf
j→+∞

Gε(uj) ≤ M2

ˆ

B+

1

|∇ϕ|2 dx− δε3−2αM4

ˆ

B0
1

|ϕ|4 dσ.

Now, for any positive value of δ and ε, the right-hand side can be made strictly negative by
taking M large enough.

Remark 3.10 (the subcritical case). The lack of lower semi-continuity for the surface energy
only arise when the surface energy density fs has quartic growth. If fs has subcritical growth,
that is, if there exist 2 ≤ p < 4 and a constant C > 0 such that

|fs(Q, ν)| ≤ C (|Q|p + 1) for any (Q, ν) ∈ S0 × S
2, (3.13)

then the compact Sobolev embedding H1/2(∂Pε) →֒ Lp(∂Pε) immediately implies the se-
quential lower semi-continuity of Fε with respect to the weak topology of H1(Ωε), for any ε
and α. Under the assumption (3.13), equicoercivity for the family of functionals (Fε)ε>0

(i.e., a statement analogous to that of Proposition 3.4) can be deduced from Lemma 3.1,
provided that 1 < α < 3/2 and that

fb(Q) ≥ µ|Q|2p−2 − C

for some positive constants µ, C and any Q ∈ S0. The exponent 2p − 2 is sharp, as
demonstrated by Lemma 3.5; Lemma 3.6 shows that equicoercivity may also be lost when α >
3/2.

4 Convergence of local minimisers

4.1 Pointwise convergence of the surface integral

The aim of this section is to prove the following result.

Proposition 4.1. Suppose that the assumptions (H1)–(H8) are satisfied. Then, for any
bounded, Lipschitz map Q : Ω → S0, there holds Jε[Q] → J0[Q] as ε → 0.

Before we give the proof of this result, we set some notation. Let Ψ: S0 × SO(3) → R

be the function defined by

Ψ(Q, R) :=

ˆ

∂P

fs(Q, R νP) dσ (4.1)

for any (Q, R) ∈ S0 × SO(3), where νP denotes the inward-pointing unit normal to ∂P.
Since fs is continuous and satisfies |fs(Q, ν)| . |Q|4 + 1 as a consequence of (H8), it is
readily checked that

Ψ is continuous and |Ψ(Q, R)| . |Q|4 + 1 for any (Q, R) ∈ S0 × SO(3). (4.2)
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Let us also consider the sequence of measures

µε := ε3
Nε∑

i=1

δxi
ε
. (4.3)

By assumption (H3), µε ⇀
∗ dx Ω as ε → 0, in the sense of measures on R

3. (Here dx Ω
denotes the restriction of the Lebesgue measure to Ω.)

In terms of Ψ, the function fhom : S0 × Ω → R defined by (2.1) can be equivalently
expressed as

fhom(Q, x) = Ψ(Q, R∗(x)) for any (Q, x) ∈ S0 × Ω, (4.4)

where R∗ : Ω → SO(3) is the continuous map given by (H4). Thanks to (4.2) and the
continuity of R∗, we deduce that

fhom is continuous and |fhom(Q, x)| . |Q|4 + 1 for any (Q, x) ∈ S0 × Ω. (4.5)

Proof of Proposition 4.1. Let us fix a bounded, Lipschitz map Q : Ω → S0. In order to
avoid problems at the boundary, we extend Q to a map R

3 → S0, still denoted Q, which
is compactly supported, bounded and Lipschitz. Likewise, we extend R∗ to a continuous
map R

3 → SO(3), still denoted R∗. Now, let us consider the quantity

J̃ε[Q] := ε3−2α
Nε∑

i=1

ˆ

∂Pi
ε

fs(Q(xiε), ν) dσ.

Since ν(x) = Ri
ε νP(ε−α(Ri

ε)
T(x− xiε)) for any x ∈ ∂Pi

ε, by a change of variable we obtain

J̃ε[Q] = ε3
Nε∑

i=1

ˆ

∂P

fs(Q(xiε), R
i
ενP) dσ

(H4)
= ε3

Nε∑

i=1

ˆ

∂P

fs(Q(xiε), R∗(x
i
ε)νP) dσ

(4.1)
= ε3

Nε∑

i=1

Ψ(Q(xiε), R∗(x
i
ε))

(4.3)
=

ˆ

R3

Ψ(Q(x), R∗(x)) dµε(x).

We have µε ⇀∗ dx Ω by (H3); moreover, Q is continuous by assumption, and the func-
tions Ψ, R∗ are continuous by (4.2), (H4) respectively. Therefore, as ε → 0 we deduce
that

J̃ε[Q] →

ˆ

Ω
Ψ(Q(x), R∗(x)) dx

(4.4)
=

ˆ

Ω
fhom(Q(x), x) dx = J0[Q]. (4.6)

Thus, it suffices to show that J̃ε[Q]−Jε[Q] → 0 as ε → 0. By applying the assumption (H8)
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we obtain

∣∣∣J̃ε[Q]− Jε[Q]
∣∣∣ . ε3−2α

Nε∑

i=1

ˆ

∂Pi
ε

∣∣fs(Q(x), ν)− fs(Q(xiε), ν)
∣∣dσ(x)

. ε3−2α
Nε∑

i=1

ˆ

∂Pi
ε

(
|Q(x)|3 +

∣∣Q(xiε)
∣∣3 + 1

) ∣∣Q(x)−Q(xiε)
∣∣ dσ(x)

. ε3−2α
(
‖Q‖3L∞(R3) + 1

)
Lip(Q)

Nε∑

i=1

diam(Pi
ε)σ(∂P

i
ε).

We have denoted by Lip(Q) the Lipschitz constant of Q, and by diam(Pi
ε) the diameter

of Pi
ε. Finally, we remark that diam(Pi

ε) . εα, σ(Pi
ε) . ε2α for any i, and that Nε . ε−3;

therefore, we deduce that
∣∣∣J̃ε[Q]− Jε[Q]

∣∣∣ .
(
‖Q‖3L∞(R3) + 1

)
Lip(Q) εα.

By combining this inequality with (4.6), the proposition follows.

4.2 Compactness and lower bounds

The aim of this section is to prove the following

Proposition 4.2. Suppose that the assumptions (H1)–(H8) are satisfied. Let Qε ∈ H1
g (Ωε, S0)

be such that EεQε ⇀ Q weakly in H1(Ω) as ε → 0. Then, there holds

lim inf
ε→0

Fε[Qε] ≥ F0[Q], lim
ε→0

Jε[Qε] = J0[Q].

Remark 4.3. The result above implies that Fε Γ-converges to F0 as ε → 0, with respect to
the weak H1-topology. Indeed, Proposition 4.2 immediately gives that F0 ≤ Γ- lim infε→0 Fε.
To show that F0 ≥ Γ- lim supε→0 Fε, take Q ∈ H1

g (Ω, S0) and observe that, since |Pε| → 0,
Lebesgue’s dominated convergence theorem implies Fε[Q] − Jε[Q] → F0[Q] − J0[Q], while
Jε[Q] → J0[Q] by Proposition 4.2. Therefore, the constant sequence Qε := Q is a recovery
sequence.

We start by proving an “approximate continuity” property of Jε. Note that, thanks to
the extension operator Eε, we can assume without loss of generality that the maps we are
working with are defined over the whole of Ω.

Lemma 4.4. Suppose that the assumption (H8) is satisfied. Let Q1, Q2 ∈ H1
g (Ω,S0) be such

that
max

{
‖∇Q1‖L2(Ω), ‖∇Q2‖L2(Ω)

}
≤ M (4.7)

for some (ε-independent) constant M . Then, there holds

|Jε[Q2]− Jε[Q1]| ≤ C
(
ε3/4−α/2 + ‖Q2 −Q1‖L4(Ω)

)

for some C > 0 depending only on M , fs, Ω, P and g.
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Proof. By applying the assumption (H8) and Hölder inequality, we obtain

|Jε[Q2]− Jε[Q1]| ≤ ε3−2α

ˆ

∂Pε

(
|Q1|

3 + |Q2|
3 + 1

)
|Q2 −Q1|dσ

.

(
ε3−2α

ˆ

∂Pε

(
|Q1|

4 + |Q2|
4 + 1

)
dσ

)3/4

︸ ︷︷ ︸
=:I1

(
ε3−2α

ˆ

∂Pε

|Q2 −Q1|
4 dσ

)1/4

︸ ︷︷ ︸
=:I2

We first consider I1. We apply Lemma 3.2, and use the fact that the total surface area
of Pε is of order ε2α−3:

I
4/3
1 . ε3−2α

ˆ

Ωε

(
|∇Q1|

2 + |∇Q2|
2 + |Q1|

6 + |Q2|
6
)
dx+

ˆ

Ωε

(
|Q1|

4 + |Q2|
4
)
dx+ 1.

The right-hand side is bounded in terms of M , due to the H1-bound (4.7) and the Sobolev
embedding H1

g (Ω) →֒ L6(Ω); therefore, I1 is bounded. Now, we apply Lemma 3.2 to I2:

I42 . ε3−2α

ˆ

Ωε

(
|∇Q2 −∇Q1|

2 + |Q2 −Q1|
6
)
dx+

ˆ

Ωε

|Q2 −Q1|
4 dx.

Again, the first integral in the right hand-side is bounded due to (4.7) and Sobolev embed-
dings, so the lemma follows.

Lemma 4.5. For any Q ∈ H1
g (Ω,S0), there holds Jε[Q] → J0[Q] as ε → 0.

Proof. Let (Qj)j∈N be a sequence of smooth maps that converge H1-strongly to Q. By the
triangle inequality, we have

|Jε[Q]− J0[Q]| ≤ |Jε[Q]− Jε[Qj]|+ |Jε[Qj ]− J0[Qj ]|+ |J0[Qj]− J0[Q]| (4.8)

To deal with the first term, we apply Lemma 4.4 and deduce that

|Jε[Q]− Jε[Qj ]| . ε3/4−α/2 + ‖Qj −Q‖L4(Ω) .

The second term in the right-hand side of (4.8) tends to zero as ε → 0, by Proposition 4.1.
We consider now the third term. By the Sobolev embedding H1(Ω) →֒ L4(Ω), and up
to extraction of a subsequence, we can assume that Qj → Q a.e. and there exists a
function ϕ ∈ L1(Ω) such that |Qj|

4 ≤ ϕ for any j. Since fhom is continuous and |fhom(Q)| .
|Q|4 + 1 (see (4.5)), we can apply Lebesgue’s dominated convergence theorem to conclude
that J0[Qj] → J0[Q] as j → +∞. Putting all this together, we obtain

lim sup
ε→0

|Jε[Q]− J0[Q]| ≤ ‖Qj −Q‖L4(Ω) + |J0[Qj]− J0[Q]| → 0 as j → +∞,

so the lemma follows.
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Proof of Proposition 4.2. LetQε ∈ H1
g (Ωε,S0) be such that EεQε ⇀ Q weakly inH1(Ω, S0).

In particular, (EεQε)ε>0 is a bounded sequence in H1(Ω). By the compact Sobolev embed-
ding H1(Ω) →֒ L4(Ω), we can also assume that EεQε → Q strongly in L4 and a.e. (possibly
by taking a non-relabelled subsequence).

We first consider the elastic contribution. The convexity of fe, together with Hölder
inequality, implies
ˆ

Ωε

(fe(∇Qε)− fe(∇Q)) dx ≥

ˆ

Ωε

(∇fe)(∇Q) : (∇Qε −∇Q) dx

≥

ˆ

Ω
(∇fe)(∇Q) :(∇(EεQε)−∇Q) dx− ‖(∇fe)(∇Q)‖L2(Pε)

‖∇(EεQε)−∇Q‖L2(Pε)

Since |(∇fe)(∇Q)| . |∇Q| + 1 by assumption (H6), (∇fe)(∇Q) ∈ L2(Ω) indeed. The first
term in the right-hand side tends to zero as ε → 0, because of the H1-weak convergence
EεQε ⇀ Q. The second term tends to zero as well, because (∇fe)(∇Q) ∈ L2(Ω) and
|Pε| → 0. Then, we deduce

lim inf
ε→0

ˆ

Ωε

fe(∇Qε) dx ≥ lim
ε→0

ˆ

Ωε

fe(∇Q) dx =

ˆ

Ω
fe(∇Q) dx. (4.9)

Now, we consider the integral of the bulk potential fb. By assumption (H7), fb is
bounded from below; let C be a constant such that fb + C ≥ 0. Since |Pε| → 0, the
indicator function χΩε of Ωε converges to 1 strongly in L1(Ω) and hence, up to non-relabelled
subsequences, a.e. This fact, together with the continuity of fb, implies that (fb(EεQε) +
C)χΩε → fb(Q) + C a.e. on Ω. Thus, we can apply Fatou’s lemma:

lim inf
ε→0

ˆ

Ωε

fb(Qε) dx = lim inf
ε→0

(
ˆ

Ω
(fb(EεQε) + C)χΩεdx− C|Ωε|

)

≥

ˆ

Ω
(fb(Q) + C) dx−C|Ω| =

ˆ

Ω
fb(Q) dx.

(4.10)

Finally, it remains to consider the surface integral, Jε. Thanks to Lemma 4.4, we have

|Jε[Qε]− J0[Q]| ≤ |Jε[EεQε]− Jε[Q]|+ |Jε[Q]− J0[Q]|

. ε3/4−α/4 + ‖EεQε −Q‖L4(Ω) + |Jε[Q]− J0[Q]| .

All the terms in the right-hand side converge to zero as ε → 0, due to the strong L4-
convergence EεQε → Q and to Lemma 4.5. Therefore, we have Jε[Qε] → J0[Q]. This fact,
combined with (4.9) and (4.10), concludes the proof of the proposition.

4.3 Proof of Theorems 2.1 and 2.4

The aim of this section is to complete the proof of the main results, Theorems 2.1 and 2.4.
Let Q0 ∈ H1

g (Ω,S0) be an isolated H1-local minimiser for F0 — that is, suppose that there
exists δ0 > 0 such that

F0[Q0] < F0[Q] for all Q ∈ H1
g (Ω,S0) such that 0 < ‖Q−Q0‖H1(Ω) ≤ δ0. (4.11)
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Let
Bε := {Q ∈ H1

g (Ωε,S0) : ‖EεQ−Q0‖H1(Ω) ≤ δ0}.

Thanks to Proposition 3.8, there exists ε0 > 0 such that, for any 0 < ε ≤ ε0, the func-
tional Fε is sequentially lower semi-continuous on Bε, with respect to the weakH1-topology.
Therefore, Fε admits a minimiser Qε on Bε.

Proposition 4.6. There holds EεQε → Q0 strongly in H1
g (Ω, S0) as ε → 0.

Because the convergence is strong in H1, for small ε the map Qε lies in the interior
of Bε and, in particular, it is an H1-local minimiser of Fε. Therefore, Theorem 2.1 follows
immediately from Proposition 4.6.

Proof of Proposition 4.6. Let B0 be the set of maps Q ∈ H1
g (Ω,S0) such that ‖Q −

Q0‖H1(Ω) ≤ δ0. Because Qε ∈ Bε, we can extract a (non-relabelled) subsequence so that

EεQε converges H
1-weakly to Q ∈ B0. Proposition 4.2 implies that Q is a minimiser of F0

in B0. Indeed, we certainly have Q0|Ωε
∈ Bε for ε small enough, and the minimality of Qε

implies that Fε[Qε] ≤ Fε[Q0]. Therefore, by applying Proposition 4.2, we have

F0[Q] ≤ lim inf
ε→0

Fε[Qε] ≤ lim sup
ε→0

Fε[Qε] ≤ lim
ε→0

Fε[Q0] = F0[Q0]. (4.12)

Due to (4.11), we must have Q = Q0. The uniqueness of the limit (and the fact that
weak convergence on bounded subsets of H1 is metrisable) implies that the whole sequence
(Qε)0<ε≤ε0 converges weakly to Q0.

Now, it only remains to show that the convergence is actually strong. By Assump-
tion (H6), there exists θ > 0 such that the function f̃e(D) := fe(D) − θ|D|2 is convex.
Therefore, we can repeat the arguments for (4.9)–(4.10) in the proof of Proposition 4.2 and
prove that

lim inf
ε→0

ˆ

Ωε

f̃e(∇Qε) dx ≥

ˆ

Ω
f̃e(∇Q0) dx, θ lim inf

ε→0

ˆ

Ωε

|∇Qε|
2 dx ≥ θ

ˆ

Ω
|∇Q0|

2 dx

lim inf
ε→0

ˆ

Ωε

fb(Qε) dx ≥

ˆ

Ω
fb(Q0) dx

We know that Jε[Qε] → J0[Q0] by Proposition 4.2. At the same time, as a byproduct
of (4.12), we see that Fε[Qε] → F0[Q]. Therefore, there must hold

θ lim
ε→0

ˆ

Ωε

|∇Qε|
2 dx = θ

ˆ

Ω
|∇Q0|

2 dx.

This implies that ∇(EεQε)χΩε → ∇Q strongly in L2(Ω), where χΩε is the characteristic
function of Ωε. On the other hand, in the proof of Lemma 3.3 (see Eq. (3.1)) we have shown
that

‖∇(EεQε)‖L2(Pε)
. ‖∇Qε‖L2(P̃ε\Pε)

,
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where P̃ε := ∪i(x
i
ε + 2εαRi

εP). The right-hand side tends to zero as ε → 0, because
the sequence (|∇(EεQε)|

2χΩε)ε>0 is strongly compact in L1 (hence equi-integrable) and

|P̃ε \ Pε| → 0. Therefore, we conclude that ∇(EεQε) → ∇Q strongly in L2(Ω), and the
proposition follows.

Proof of Theorem 2.4. Take a map Q ∈ H1
g (Ω, S0). By Proposition 4.2 and Remark 4.3,

we see that
lim sup

ε→0
inf

H1
g (Ωε,S0)

Fε ≤ lim sup
ε→0

Fε[Q] = F0[Q].

By applying Proposition 3.4 we deduce that, at least for ε small enough, any minimising
sequence for Fε in H1

g (Ω,Fε) is bounded in H1 (uniformly with respect to ε). Then,
thanks to the lower semi-continuity provided by Proposition 3.8, for ε small enough the
functional Fε admits a global minimiser in H1

g (Ω,S0). The theorem now follows by the
same arguments used in the proof of Proposition 4.6.

5 Applications to the Landau-de Gennes model

In this section, we consider the Landau-de Gennes model for nematic liquid crystals. In
this model, the elastic energy density is given by

fLdG
e (∇Q) := L1 ∂kQij ∂kQij + L2 ∂jQij ∂kQik + L3 ∂jQik ∂kQij

(Einstein’s summation convention is assumed). We impose the inequalities

L1 > 0, −L1 < L3 < 2L1, −
3

5
L1 −

1

10
L3 < L2, (5.1)

which guarantee the strong convexity of fLdG
e [14]. The bulk energy density is a quartic

polynomial in the scalar invariants of Q:

fLdG
b (Q) := a tr(Q2)− b tr(Q3) + c

(
tr(Q2)

)2
.

The positive coefficients b, c depend on the material but not on the temperature. The
coefficient a ∈ R does depend on the temperature T and is given by a = a∗(T − T∗),
where a∗ is a material parameter and T∗ is a characteristic temperature of the material (it
is the temperature where the isotropic state loses stability).

Suppose that we are given a nematic host with Landau-de Gennes coefficients (a, b, c).
We aim to obtain a colloidal suspension with pre-assigned effective Landau-de Gennes co-
efficients (a′, b′, c′). We assume that the inclusions are spherical, that is, P = B1 and

Pε =

Nε⋃

i=1

Bεα(x
i
ε).

The centers of the inclusions, xiε, are chosen in such a way that (H2) and (H3) are satisfied
(for instance, we may take the xiε’s to be periodically distributed). We wish to choose
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the surface elastic energy fs in such a way that local minimisers of the Landau-de Gennes
functional

Fε[Q] =

ˆ

Ωε

(
fLdG
e (∇Q) + a tr(Q2)− b tr(Q3) + c

(
tr(Q2)

)2)
dx

+ ε3−2α

ˆ

∂Pε

fs(Q, ν) dσ

(5.2)

converge to local minimisers of the homogenised functional

F0[Q] =

ˆ

Ω

(
fLdG
e (∇Q) + a′ tr(Q2)− b′ tr(Q3) + c′

(
tr(Q2)

)2)
dx. (5.3)

Our choice of fs must be consistent with the physical symmetries of the system. We impose
that fs is invariant with respect to orthogonal transformations, that is,

fs(UQUT, Uν) = fs(Q, ν) for any (Q, ν) ∈ S0 × S
2, U ∈ O(3). (5.4)

This condition combines invariance with respect to rotations (i.e. frame-indifference) and
invariance with respect to the orientation of the surface.

Proposition 5.1. A function fs : S0 × S
2 → R satisfies (5.4) if and only if there exists a

function f̃s : R
4 → R such that

fs(Q, ν) = f̃s(tr(Q
2), tr(Q3), ν ·Qν, ν ·Q2ν)

for all (Q, ν) ∈ S0 × S
2.

We postpone the proof of this result to the Appendix A.1. We define the surface energy
density

fs(Q, ν) =
3

4π
(a′ − a)(ν ·Q2ν) +

15

8π
(b′ − b)(ν ·Qν)(ν ·Q2ν)

+
15

8π
(c′ − c)(ν ·Q2ν)2.

(5.5)

This choice is consistent with the physical invariance (5.4). An expression of this type has
been proposed by Sluckin and Poniewierski [20], based on an idea of Goossens [10] (see
also [3, Eq. (5)], [18, Eq. (9.b)] and the references therein).

Theorem 5.2. Let (a, b, c) and (a′, b′, c′) be two set of parameters with c > 0, c′ > 0. Sup-
pose that the inequalities (5.1) are satisfied. Then, for any isolated local minimiser Q0 of the
functional F0 defined by (5.3), and for ε > 0 small enough, there exists a local minimiser Qε

of the functional Fε, defined by (5.2), such that EεQε → Q0 strongly in H1(Ω, S0).

Proof. This is a particular case of our main result, Theorem 2.1. Indeed, if (5.1) holds
and c > 0, c′ > 0, then all the conditions (H1)–(H8) are satisfied. All we need to do is to
compute the homogenised potential, fhom, defined by (2.1). Since the inclusions are spheres,
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we can take the rotation field R∗ (see (H4)) to be the identity. Then, for any Q ∈ S0 we
have

fhom(Q) =

ˆ

∂B1

fs(Q, −ν) dσ(ν)

=
3

4π
(a′ − a)

ˆ

∂B1

(ν ·Q2ν) dν +
15

8π
(b′ − b)

ˆ

∂B1

(ν ·Qν)(ν ·Q2ν) dν

+
15

8π
(c′ − c)

ˆ

∂B1

(ν ·Q2ν)2 dν.

We claim that
ˆ

∂B1

(ν ·Q2ν) dν =
4π

3
tr(Q2),

ˆ

∂B1

(ν ·Qν)(ν ·Q2ν) dν =
8π

15
tr(Q3)

ˆ

∂B1

(ν ·Q2ν)2 dν =
8π

15
(tr(Q2))2.

The proof of this claim is given in Lemma A.3, in the appendix. Then, we obtain

fhom(Q) = (a′ − a) tr(Q2) + (b′ − b) tr(Q3) + (c′ − c) (tr(Q2))2

and the theorem follows.

Remark 5.3. An alternative choice of fs is

fs(Q, ν) =
15

8π
(a′ − a)(ν ·Qν)2 +

15

8π
(b′ − b)(ν ·Qν)(ν ·Q2ν)

+
15

8π
(c′ − c)(ν ·Q2ν)2.

The same argument as above, combined with Lemma A.3 in the appendix, shows that The-
orem 5.2 holds for this choice of fs also.

Remark 5.4. In case b′ = b, c′ = c and a′ > a, Theorem 5.2 holds also if we take the
Rapini-Papoular-type surface energy density defined by

fs(Q, ν) :=
1

4π
(a′ − a) tr(Q−Qν)

2, (5.6)

where Qν := ν ⊗ ν − Id/3. This energy favours homeotropic anchoring at the boundary of
the inclusions. We remark that, for any constant Q ∈ S0, there holds

ˆ

∂B1

tr(Q−Qν)
2 dσ = 4π tr(Q2)− 2tr

(
Q

ˆ

∂B1

Qν dσ

)
+

ˆ

∂B1

tr(Qν)
2 dσ.

The last term in the right-hand side integrates to a constant that does not depend on Q, and
hence, it can be dropped from the energy. The second term in the right-hand side vanishes,
because

´

∂B1
Qν dσ is, by symmetry reasons, a multiple of the identity (see Lemma A.3)

and trQ = 0. Therefore, in case of spherical inclusions, a surface anchoring energy density
such as (5.6) produces the same effect as an additional term (a′ − a) tr(Q2) in the bulk
energy density.
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A Technical results

A.1 Physical symmetries of the surface energy density

The aim of this section is to prove Proposition 5.1, that is, to characterise the surface
energies densities that are invariant by orthogonal transformations. More precisely, we will
prove the following

Proposition A.1. Let f : S0 ×R
3 → R be a function that satisfies

f(UQUT, Uu) = f(Q, u) for any (Q, u) ∈ S0 × R
3, U ∈ O(3). (A.1)

Then, there exists a function f̃ : R5 → R such that

f(Q, u) = f̃(tr(Q2), tr(Q3), |u|2, u ·Qu, u ·Q2u)

for all (Q, u) ∈ S0 × R
3.

It is straightforward to check that the converse also holds, so Proposition A.1 implies
Proposition 5.1.

Lemma A.2. Let Q ∈ S0 and u, v ∈ R
3 be such that

|u| = |v|, u ·Qu = v ·Qv, u ·Q2u = v ·Q2v. (A.2)

Then, there exists U ∈ O(3) such that UQ = QU and v = Uu.

Proof. Let λ1, λ2, λ3 denote the eigenvalues of Q, ordered in such a way that |λ1| ≤ |λ2| ≤
|λ3|. If two of the eigenvalues are equal to zero, then Q = 0 (because trQ = 0). On the
other hand, the assumption |u| = |v| implies that we can write v = Uu for some U ∈ SO(3),
so if Q = 0 there is nothing to prove. Therefore, we can assume that λ2 6= 0, λ3 6= 0.

Let R ∈ O(3) be such that RQRT = diag(λ1, λ2, λ3). We define ū := Ru, v̄ := Rv.
By Cayley-Hamilton theorem, we know that Q3 = α1Q + α0Id for some numbers α0, α1

depending on the eigenvalues of Q. Therefore, by induction, from the assumption (A.2) we
deduce that

RTū ·QjRTū = RTv̄ ·QjRTv̄ for any j ∈ N
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or, equivalently,

λj
1 ū

2
1 + λj

2 ū
2
2 + λj

3 ū
2
3 = λj

1 v̄
2
1 + λj

2 v̄
2
2 + λj

3 v̄
2
3 for any j ∈ N. (A.3)

Now, we distinguish four cases, depending on the eigenvalues of Q.

Case 1: |λ1| < |λ2| < |λ3|. In this case, we have λ1 6= 0 because otherwise, due to the
constraint trQ = 0, we would have λ2 = −λ3. Let us divide both sides of (A.3) by λj

3 and
let j → +∞. We have (λ1/λ3)

j → 0, (λ2/λ3)
j → 0 and so we conclude that ū23 = v̄23 . This

argument can be iterated to show that ū22 = v̄22 , ū
2
1 = v̄21 . Therefore, we can write v̄ = Ū ū

where Ū is diagonal matrix that satisfies Ūii ∈ {1, −1} for i ∈ {1, 2, 3} (no summation
on i is implied). Clearly, Ū ∈ O(3) and Ū commutes with RQRT because both matrices
are diagonal. Then, the matrix U := RTŪR has all the desired properties.

Case 2: |λ1| = |λ2| < |λ3|. Also in this case, λ1 6= 0 because we have assumed that λ2 6= 0.
If we had λ1 = −λ2 then we would get λ3 = 0 because trQ = 0; but we assumed that
λ3 6= 0, so we must have λ1 = λ2. Now, as in Case 1, we divide both sides of (A.3) by λj

3

and let j → +∞, thus obtaining that ū23 = v̄23 and ū21 + ū22 = v̄21 + v̄22 . Then, we can write
v̄ = Ū ū, where the matrix Ū has the form

Ū =

(
S 0
0 ±1

)
for some S ∈ SO(2).

We have Ū ∈ O(3) and Ū commutes with RQRT = diag(λ1, λ2, λ3) because λ1 = λ2. Also
in this case, the lemma is proved because U := RTŪR has all the desired properties.

Case 3: λ2 = λ3 and |λ1| < |λ2|. Again, the constraint trQ = 0 implies λ1 = −2λ2 6= 0. By
dividing both sides of (A.3) by λj

3 and letting j → +∞, we obtain that ū22 + ū23 = v̄22 + v̄23 ,
then ū21 = v̄21 . We conclude the proof as in Case 2.

Case 4: λ2 = −λ3 6= 0 and λ1 = 0. By writing (A.3) with the choices j = 1, j = 2, we
obtain the system {

ū22 − ū23 = v̄22 − v̄23
ū22 + ū23 = v̄22 + v̄23

whence ū22 = v̄22 , ū
2
3 = v̄23. Then, using the assumption |u| = |v|, we also obtain that ū21 = v̄21

and we conclude the proof arguing as in Case 1.

In principle, we still need to consider the case |λ1| = |λ2| = |λ3|. However, if we had
|λ1| = |λ2| = |λ3| then the constraint trQ = 0 would imply Q = 0, so there is nothing left
to prove.

Proof of Proposition A.1. Let (Q, u), (P, v) ∈ S0 × R
3 be such that tr(Q2) = tr(P 2),

tr(Q3) = tr(P 3) and u · Qju = v · P jv for j ∈ {0, 1, 2}. In particular, Q and P have
the same scalar invariants, hence the same eigenvalues, and we can write P = RQRT for
some R ∈ O(3). Then, we have

u ·Qju = v ·RQjRTv = RTv ·QjRTv for j ∈ {0, 1, 2}.
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By applying Lemma A.2, we find U ∈ O(3) such that QU = UQ and RTv = Uu. Therefore,
there holds

f(Q, u)
(A.1)
= f(UQUT, Uu) = f(Q, RTv)

(A.1)
= f(RQRT, v) = f(P, v).

Thus, we can define unambigously a function f̃ with the required property.

A.2 Integrated energy densities

We will use the notation |Q|2 := tr(Q2).

Lemma A.3. For Q ∈ S0 we have:
ˆ

S2

(ν ·Q2ν) dν =
4π

3
|Q|2 (A.4)

ˆ

S2

(ν ·Qν)(ν ·Q2ν) dν =
8π

15
tr(Q3) (A.5)

ˆ

S2

(ν ·Q2ν)2 dν =
8π

15
|Q|4 (A.6)

ˆ

S2

(ν ·Qν)2 dν =
8π

15
|Q|2. (A.7)

More generally, let f : S0 × R
3 → R be a function that satisfies

f(UQUT, Uu) = f(Q, u) for any (Q, u) ∈ S0 × R
3, U ∈ O(3). (A.8)

Then, there exists a function h : R2 → R such that
ˆ

S2

f(Q, ν) dν = h(|Q|2, tr(Q3)).

Proof. For any Q in S0 there exists a diagonal matrix D = diag(λ1, λ2, λ3) with λ1, λ2, λ3

the eigenvalues of Q, hence

λ1 + λ2 + λ3 = 0, (A.9)

and a rotation matrix R ∈ SO(3) such that RQRT = D.

1. Proof of (A.4). There holds
ˆ

S2

(ν ·Q2ν) dν =

ˆ

S2

(RTν ·Q2RTν) dν

=

ˆ

S2

ν · RQ2RTν dν

=

ˆ

S2

ν · RQRT

︸ ︷︷ ︸
=D

RQRT

︸ ︷︷ ︸
=D

ν dν

=

ˆ

S2

(λ2
1x

2
1 + λ2

2x
2
2 + λ2

3x
2
3) dx1 dx2 dx3 (A.10)
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By symmetry considerations we have:
ˆ

S2

x21 dx1 dx2 dx3 =

ˆ

S2

x22 dx1 dx2 dx3 =

ˆ

S2

x23 dx1 dx2 dx3

and since x21 + x22 + x23 = 1 we have
´

S2
x21 dx1 dx2 dx3 =

1
3 |S

2| = 4
3π and

ˆ

S2

(ν ·Q2ν) dν =
4π

3
|Q|2. (A.11)

2. Proof of (A.5). Arguing as before we have:
ˆ

S2

(ν ·Qν)(ν ·Q2ν) dν =

ˆ

S2

(λ1x
2
1 + λ2x

2
2 + λ3x

2
3)(λ

2
1x

2
1 + λ2

2x
2
2 + λ2

3x
2
3) dx

=

ˆ

S2

(λ3
1x

4
1 + λ3

2x
4
2 + λ3

3x
4
3) dx

+

ˆ

S2

λ1λ2(λ1 + λ2)x
2
1x

2
2 + λ1λ3(λ1 + λ3)x

2
1x

2
3 + λ2λ3(λ2 + λ3)x

2
2x

2
3 dx

= c31tr(Q
3) + c32

(
λ1λ2(λ1 + λ2) + λ1λ3(λ1 + λ3) + λ2λ3(λ2 + λ3)

)

where we denote c31 :=
´

S2
x41 dx =

´

S2
x42 dx =

´

S2
x43 dx and c32 :=

´

S2
x21x

2
3dx =

´

S2
x22x

2
3 dx =

´

S2
x21x

2
2 dx. Taking into account that λ3 = −λ1 − λ2 we have:

λ1λ2(λ1 + λ2) + λ1λ3(λ1 + λ3) + λ2λ3(λ2 + λ3)

= 3λ1λ2(λ1 + λ3) = −(λ3
1 + λ3

2 + λ3
3) = −tr(Q3).

The proportionality constant c31 − c32 can be computed explicitely, using spherical
coordinates. We have

c31 =

ˆ

S2

x41 dx =

(
ˆ π

0
sin5 θ dθ

)(
ˆ 2π

0
cos4 φdφ

)
=

16

15
·
3

4
π =

4

5
π,

c32 =

ˆ

S2

x21x
2
2 dx =

(
ˆ π

0
sin5 θ dθ

)(
ˆ 2π

0
cos2 φ sin2 φdφ

)
=

16

15
·
1

4
π =

4

15
π,

and (A.5) follows.

3. Proof of (A.6). Similarly as in part 1 we get:
ˆ

S2

(ν ·Q2ν)2 dν =

ˆ

S2

(λ2
1x

2
1 + λ2

2x
2
2 + λ2

3x
2
3)

2 dx

=

ˆ

S2

λ4
1x

4
1 + λ4

2x
4
2 + λ4

3x
4
3 + 2(λ2

1λ
2
2x

2
1x

2
2 + λ2

1λ
2
3x

2
1x

2
3 + λ2

2λ
2
3x

2
2x

2
3)dx

= (λ4
1 + λ4

2 + λ4
3)

ˆ

S2

x41 dx

︸ ︷︷ ︸
=c31

+2(λ2
1λ

2
2 + λ2

1λ
2
3 + λ2

2λ
2
3)

ˆ

S2

x21x
2
2dx

︸ ︷︷ ︸
=c32

(A.12)
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On the other hand, taking into account that λ1 + λ2 + λ3 = 0 one can check through
a straightforward calculation that

tr(Q4) = λ4
1 + λ4

2 + λ4
3 =

1

2
(λ2

1 + λ2
2 + λ2

3)
2 =

1

2
(|Q|2)2

which in particular implies:

λ4
1 + λ4

2 + λ4
3 = 2(λ2

1λ
2
2 + λ2

1λ
2
3 + λ2

2λ
2
3)

and thus, taking into account the previous calculations:

ˆ

S2

(ν ·Q2ν)2 dν = (λ4
1 + λ4

2 + λ4
3)(c31 + c32) =

c31 + c32
2

|Q|4.

4. Proof of (A.7). The proof is completely analougous to that of (A.6). We have

ˆ

S2

(ν ·Qν)2 dν =

ˆ

S2

(λ1x
2
1 + λ2x

2
2 + λ3x

2
3)

2 dx

= (λ2
1 + λ2

2 + λ2
3)

ˆ

S2

x41 dx

︸ ︷︷ ︸
=c31

+2(λ1λ2 + λ1λ3 + λ2λ3)

ˆ

S2

x21x
2
2dx

︸ ︷︷ ︸
=c32

and, due to λ1 + λ2 + λ3 = 0, we obtain

|Q|2 = λ2
1 + λ2

2 + λ2
3 = −2(λ1λ2 + λ1λ3 + λ2λ3),

so that
ˆ

S2

(ν ·Qν)2 dν = (c31 − c32)|Q|2.

Finally we consider a function f : S0×R
3 → R satisfying the invariance condition (A.8).

Then, from Proposition A.1 we know that there exists f̃ : R5 → R such that

f(Q, u) = f̃(trQ2, trQ3, |u|2, u ·Qu, u ·Q2u)

for all Q ∈ S0 and u ∈ R
3.

In order to prove the existence of the claimed h function it suffices to show that

ˆ

S2

f(Q, ν) dν =

ˆ

S2

f(RQRT, ν) dν (A.13)

for any R ∈ SO(3). To this end we use the function f̃ above and note that we have:
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ˆ

S2

f(Q, ν) dν =

ˆ

S2

f̃(trQ2, trQ3, 1, ν ·Qν, ν ·Q2ν)dν

=

ˆ

S2

f̃(trQ2, trQ3, 1, RTν ·QRTν, RTν ·Q2RTν)dν

=

ˆ

S2

f̃(trQ2, trQ3, 1, ν · RQRTν, ν · RQ2RTν)dν

=

ˆ

S2

f̃(tr(RQRT)2, tr(RQRT)3, 1, ν · RQRTν, ν · (RQRT)2ν)dν

=

ˆ

S2

f(RQRT, ν) dν (A.14)
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