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Abstract

Inverse problems appear in multiple industrial applications. Solving such in-
verse problems require the repeated solution of the forward problem. This is
the most time-consuming stage when employing inversion techniques, and it
constitutes a severe limitation when the inversion needs to be performed in
real-time. In here, we focus on the real-time inversion of resistivity measure-
ments for geosteering. We investigate the use of a deep neural network (DNN)
to approximate the forward function arising from Maxwell’s equations, which
govern the electromagnetic wave propagation through a media. By doing so, the
evaluation of the forward problems is performed offline, allowing for the online
real-time evaluation (inversion) of the DNN.

Keywords: Deep Learning, geosteering, forward problem, inverse problem,
resistivity measurement

1. Introduction

Oil companies have been vastly using geosteering technology to: (a) ex-
plore specific oil reservoirs, and (b) maximize the production from the existing
reservoirs [1, 6, 9]. In geosteering, it is common to use a so-called logging-while-
drilling (LWD) instrument for drilling through the Earth’s subsurface. LWD
instruments contain multiple transmitters and receivers that record some mea-
surements while drilling. Using the aforementioned recorded measurements, it
is necessary to solve an inverse problem in real-time to produce a map of the
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Earth’s subsurface, which allows to adjust the well trajectory and reach a spe-
cific subsurface location. This act of adjusting the well trajectory during drilling
to achieve specific targets is called geosteering.

Due to the real-time decision-making required during geosteering, rapid
solvers are needed to interpret the measurements recorded in the field. Math-
ematically speaking, in geosteering we consider two different problems: (a) a
forward problem F(T,P) = M, in which for a given subsurface properties P
and trajectory T, we compute the measurements M by solving a partial dif-
ferential equation (PDE) [2, 7], and (b) an inverse problem I(T,M) = P, in
which the measurements M and the trajectory T are known, and we predict
the subsurface properties P [3, 6, 9]. The inverse problem typically consists of
minimizing a given loss function.

There exists multiple approaches to solve an inverse problem. One of them
is a gradient-based technique. However, it may lead to a local minimum of
the loss function. The second family of methods is statistic-based ones. They
require multiple solutions of the forward problem [10]. In all the aforementioned
traditional methods, the forward solver needs to be solved multiple times. This
is the most time-consuming task, which often limits real-time decision-making.

In the recent decade, the use of DNNs has been increased for a variety of
applications in industry such as computer vision [11], speech recognition [12],
and biometrics [13], to mention a few, due to their high performance when
facing complicated engineering problems. This new popularity of DNNs has also
inspired researchers in the fields of computational geophysics and computational
mechanics to apply these techniques for their applications [3, 5, 14–16]. In [3],
we propose a novel technique to approximate the inverse operator I using a
deep neural network (DNN) [5]. However, since the inverse operator is not well-
defined, i.e., for one input it may have multiple outputs, results exhibit some
deficiencies. It is possible to improve such an approximation using the following
loss function:

Iθ∗ := arg min
θ∈Θ
‖F ◦ Iθ(M)−M‖, (1)

where θ is the set of weights corresponding to the DNN. Using this DNN ap-
proach and Equation (1) as its loss function, we need to solve the forward prob-
lem during training until we arrive at the minimizer of the loss function, which
imposes a tremendous computational time to this stage. Moreover, calling a
function F to solve the forward problem during training enforces implementa-
tion complexities.

In this work, to overcome the above limitations, we propose the use of a DNN
to approximate the forward function F . Then, the problem of solving the for-
ward function reduces to the evaluation of a trained DNN, which is considerably
faster than any of the existing numeric or semi-analytic methods. Moreover, it
becomes more convenient to impose Equation (1) for the deep learning (DL)
approach. Then, we use this approximation of the forward function in the in-
version of the resistivity measurement in geosteering to achieve a faster inversion
method compare to the traditional ones.

The rest of this work is organized as follows: Section 2 introduces the forward
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problem. Section 3 provides the details of the dataset we use to train our DNN.
Section 4 shows some numerical results to illustrate the performance of our
DNN. Section 5 is dedicated to conclusions and future work.

2. Forward Problem

In this work, we consider borehole resistivity measurements. Therefore, the
forward function F corresponds to Maxwell’s equations, which govern the elec-
tromagnetic wave propagation through a media [7]. The subsurface proper-
ties represent the electrical properties of the formation. In this application, it
is a common practice to approximate the media using a sequence of 1D lay-
ered formations since it is sufficient to recover the material properties of the
aforementioned 1D layered formation at each logging position [6–8] (see Figure
1). Therefore, we consider P = (ρu, ρl, ρh, a, du, dl) to represent the subsurface
properties, where: (a) ρu and ρl are the resistivity values of the upper and lower
isotropic layer with respect to the current LWD tool position, respectively, (b)
ρh and a = ρh

ρv
are horizontal resistivity and anisotropy factor of the host layer,

respectively, and (c) du and dl are the distance from the center of the instrument
to the upper and lower bed boundary positions, respectively.

Trajectory

du

dl

ρl

ρh

ρv

ρu

Figure 1: 1D media and a trajectory at its last position.

In this work, we consider almost horizontal trajectories, which correspond
to the most challenging and commonly used situations in this problem. To pa-
rameterize the trajectory, we consider the step size between each two sequential
logging positions to be one foot, and each trajectory consists of 65 logging posi-
tions. Therefore, each trajectory section is almost 20m long, which corresponds
to the depth of investigation of the logging instrument. Moreover, we consider
T = (tf , tv), where tf is the trajectory dip angle of the final logging position
and tv is the variation of the trajectory dip angle at each step. Hence, we have
83◦ ≤ tf ≤ 97◦. Furthermore, the logging instrument is capable of rotating and
changing its dip angle for at most 3◦ in a 20m long trajectory. Therefore, at
each logging position, we have −0.046◦ ≤ tv ≤ 0.046◦.

The recorded measurements are post-processed values of the magnetic field
acquired at the receivers. As the first logging instrument, we consider a co-
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axial symmetric tool that incorporates two receivers and two transmitters and
operates at the frequency of 500kHz. The distance between the two receivers
is 40cm and between the two transmitters is 180cm. The transmitters and
receivers are symmetrically distributed along the tool with respect to its center
[3]. For this instrument, we record the attenuation and phase difference at each
logging position. Let H1

zz and H2
zz to be the zz coupling of the magnetic field

at the first and the second receivers, respectively, where the first and the second
subscripts show the orientation of the transmitter and the receiver, respectively.
Then, we compute our measurements as follows:

ln
H1
zz

H2
zz

= ln
| H1

zz |
| H2

zz |︸ ︷︷ ︸
×20 log(e)=attenuation (dB)

+i
(
ph(H1

zz)− ph(H2
zz)
)︸ ︷︷ ︸

×
180

π
=phase difference (degree)

,
(2)

where ph evaluates the phase of a complex number.
As the second instrument, we consider a short-spacing azimuthal tool which

contains one receiver and one transmitter whose operating frequency is 10kHz.
The distance between the transmitter and the receiver is 12m. Analogous to
the recorded measurements of the previous tool, we evaluate the attenuation
and the phase difference at the receiver using Equation (2), where H2

zz = 1.
There exist semi-analytic methods [2] and numerical methods [7, 8] to solve

the aforementioned forward problem. In this work, we use a DNN to approxi-
mate the forward operator and obtain the magnetic field at the receivers. The
time-consuming stage of this approach is the training that we perform offline.
Then, the online problem of solving the forward problem reduces to the eval-
uation of a trained DNN. Using this DNN approach, we obtain a faster and
consequently more convenient technique for real-time decision making for solv-
ing the forward problem. Considering all the assumptions above, in our forward
problem F(T,P) = M, the input is a vector of dimension 8, and the output is
a matrix of dimension 65× 4.

3. Ground Truth

To produce our training dataset, we consider all the subsurface properties
P in the logarithmic scale. Then, we consider some physical features of the
geological targets to produce physically meaningful data and to avoid generating
large useless datasets. Specifically, we consider 0 ≤ log(ρu), log(ρl), log(ρh) ≤ 3,
0 ≤ log(a) ≤ 1, and −2 ≤ log(du), log(dl) ≤ 1.

Using the above considerations, we solve the forward problem using a rapid
semi-analytic solver [2] for 50,000 randomly selected synthetic model problems,
and we use this dataset for the training, validation, and testing of our DNN.
We use 80% of the data for training, 10% for validation, and 10% for testing
the trained DNN. For more details regarding the dataset, see [3].
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4. Numerical Results

We designed a DNN containing multiple convolution residual blocks to train
[4]. Figure 2 shows the results of our trained DNN for our test dataset. Each
Figure shows the ground truth vs. the predicted values for one type of measure-
ment. The blue line in the figures represents the equality between the ground
truth and the predicted value, which corresponds to a perfect approximation.
As evident in the figures, the cloud of points is concentrated around the blue
line. These results indicate a good approximation of the forward function using
our DNN approach. Moreover, the value of r2 parameter shows a well-trained
DNN.
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Figure 2: Comparison between ground truth and predicted values using a trained DNN. Blue
line indicates the equality of the predicted values and the ground truth.
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5. Conclusion

The results presented in this work show that it is possible to use a DNN as a
surrogate model to approximate a forward function arising from a PDE. Using
this approach, the time-consuming stage of performing the inversion, which
consists of solving the forward problem for a large number of times reduces to
training a DNN offline and evaluating it online while performing the inversion
in real-time in the field. Hence, it seems a good alternative for solving inverse
problems in real-time as it occurs, for example, during geosteering operations.

Although this method can be an adequate alternative for some applications,
it requires a large enough dataset to produce a reasonably accurate forward
function. Thus, it may be challenging to use in some applications.

As future work, we shall use this DNN approximation of the forward function
to invert resistivity measurements using existing traditional inversion methods.
Moreover, we shall employ this approximation to propose a fully implemented
DL approach to approximate the inverse operator for resistivity measurements.
Using the aforementioned approach, we expect to achieve a faster and conse-
quently more suitable technique than with traditional inversion methods for
real-time inversion. As the final stage, to use this approach to the oil industry,
we shall investigate the effect of noisy data, which is the case in the real-life
application.

6. Acknowledgment

This work has been supported by the Austrian Ministry for Transport, Inno-
vation and Technology, the Federal Ministry for Digital and Economic Affairs,
and the Province of Upper Austria in the frame of the COMET center SCCH.

David Pardo has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Sklodowska-Curie grant
agreement No 777778 (MATHROCKS), the Project of the Spanish Ministry of
Economy and Competitiveness with reference MTM2016-76329-R (AEI/FEDER,
EU), the BCAM “Severo Ochoa” accreditation of excellence (SEV-2017-0718),
and the Basque Government through the BERC 2018-2021 program, the two
Elkartek projects ArgIA (KK-2019-00068) and MATHEO (KK-2019-00085),
and the Consolidated Research Group MATHMODE (IT1294-19) given by the
Department of Education.

References

[1] R. Desbrandes, R. Clayton, 1994. Chapter 9 measurement while drilling,
Developments in Petroleum Science 38, 251–279.

[2] L. O. Loseth and B. Ursin, 2007. Electromagnetic fields in planarly layered
anisotropic media Developments, Geophysical Journal International 170,
44–80.

6



[3] M. Shahriari and D. Pardo and A. Picón and A. Galdran and J. del Ser
and C. Torres-Verd́ın, 2018. A Deep Learning approach to the inversion of
borehole resistivity measurements, arXiv:1810.04522.

[4] K. He and X. Zhang and S. Ren and J. Sun, 2015. Deep residual learning
for image recognition. Journal of Applied Physics, abs/1801.05894.

[5] C. F. Higham and D. J. Higham,2018. Deep learning: An introduction for
applied mathematicians, Computing Research Repository, Sept. 2009.

[6] D. Pardo and C. Torres-Verdin, 2014. Fast 1D inversion of logging-while-
drilling resistivity measurements for the improved estimation of formation
resistivity in high-angle and horizontal wells, Geophysics 80 (2), E111–
E124.

[7] M. Shahriari and S. Rojas and D. Pardo and A. Rodŕıguez-Rozas and S.
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