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We survey the proof of the Nash conjecture for surfaces and show how
geometric and topological ideas developed in previous articles by the
authors influenced it. Later, we summarize the main ideas in the higher
dimensional statement and proof by de Fernex and Docampo. We end
the paper by explaining later developments on generalized Nash problem
and on Kollár and Nemethi holomorphic arcs.

1. Introduction
The Nash problem [19] was formulated in the 1960s (but published later)
in an attempt to understand the relation between the structure of resolu-
tion of singularities of an algebraic variety X over a field of characteristic
0 and the space of arcs (germs of parameterized curves) in the variety.
He proved that the space of arcs centered at the singular locus (endowed
with an infinite-dimensional algebraic variety structure) has finitely many
irreducible components and proposed to study the relation of these compo-
nents with the essential irreducible components of the exceptional set of a
resolution of singularities.

An irreducible component Ei of the exceptional divisor of a resolution
of singularities is called essential, if given any other resolution, the bira-
tional transform of Ei to the second resolution is an irreducible component
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of the exceptional divisor. Nash defined a mapping from the set of irre-
ducible components of the space of arcs centered at the singular locus to
the set of essential components of a resolution as follows: he assigns to each
component W of the space of arcs centered at the singular locus the unique
component of the exceptional set which meets the lifting of a generic arc of
W to the resolution. Nash established the injectivity of this mapping. For
the case of surfaces, it seemed plausible for him that the mapping is also
surjective and posed the problem as an open question. He also proposed to
study the mapping in the higher dimensional case. Nash resolved the ques-
tion positively for the surface Ak singularities and in analyzing the higher
dimensional Ak singularities, he could not prove the bijectivity for A4.

As a general reference for the Nash problem, the reader may look at
[19, 9].

Bijectivity of the Nash mapping was shown for many classes of sur-
faces (see [6, 9–11, 14, 15, 18–20, 22–24, 26, 28, 29]). The techniques
leading to the proof of each of these cases are different in nature, and the
proofs are often complicated. It is worthwhile to note that even for the
case of the rational double points not solved by Nash a complete proof
had to be awaited until 2011: see [20], where the problem is solved for
any quotient surface singularity and also [23, 26] for the cases of Dn and
E6. In [3], it is shown that the Nash problem for surfaces only depends
on the topological type of the singularity. In 2012, the authors established
in the affirmative the Nash question for the general surface case [4]. The
proof we found was of a topological nature, and it is essential to work
with convergent arcs and their convergent deformations. This motivated
Kollár and Nemethi to pursue the study of convergent arcs and deforma-
tions in [13]. The topological ideas of [3, 20] also had an impact on the
generalized Nash problem; in [5], Popescu-Pampu and the authors show
that the generalized Nash problem is of topological nature and explore the
relation and applications of this problem to Arnol’d classical adjacency
problem.

It is well known that birational geometry of surfaces is much simpler
than in higher dimension. This fact reflects on the Nash problem: Ishii
and Kollár showed in [9] a four-dimensional example with a non-bijective
Nash mapping. In the same paper, they showed the bijectivity of the Nash
mapping for toric singularities of arbitrary dimension. Other advances in the
higher dimensional case include [25, 6, 16]. In 2013, de Fernex [1] found
the first counterexamples to the Nash question; further counterexamples
and a deeper understanding of how they appear were provided by Johnson
and Kollár in [7]. There it was proved that the threefold A4

x2 + y2 + z2 + w5 = 0,
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the example that Nash left unfinished, was indeed a counterexample! In
2016, de Fernex and Docampo [2] proved that terminal divisors are at the
image of the Nash map. Since at the surface case, terminal and essential
divisors are precisely the same, this seems to be the correct higher dimen-
sional generalization. It would, however, remain to be characterized which
essential non-terminal divisors are at the image of the Nash map.

For other modern review articles concerning the Nash problem, the
reader may consult [27, 12, 8].

In this chapter, we explain how geometric and topological techniques
contributed to the development of the proof of the Nash conjecture and
how they relate with other viewpoints and further developments.

Sections 2–5 explain our proof of the two-dimensional case in a non-
technical way, pointing to the main new ideas appearing in it. We present
a proof for the case in which the minimal resolution has a strict normal
crossings exceptional divisor. In this case, all new essential ideas already
appear, but the amount of technicalities can be reduced drastically. We in-
clude enough pictures so that the reader can grasp what is going on in an
easy and intuitive way.

In Section 6, we emphasize the notion of returns, which was discov-
ered in [20] and was crucial for the development of the general proof. We
also take the opportunity to comment on deformation techniques that were
useful to establish the hard cases of E6, E7 and E8.

In Section 7, we explain the relation of our proof with the higher di-
mensional one of [2]. We do it by giving a short exposition of their proof
that we believe condense all main ideas.

In Section 8, we summarize our contribution with Popescu-Pampu on
the generalized Nash problem [5] and its impact on Arnol’d classical adja-
cency problem. Here, we use the techniques of [3] to show that the gener-
alized Nash problem is of topological nature.

Finally, in Section 9, we explain the relation of our ideas with further
developments of more geometric–topological nature by Kollár and Neme-
thi [13].

2. The Idea of the Proof for Surfaces
Let (X,O) be a surface singularity defined over an algebraically closed field
of 0 characteristic. Let

π : (X̃, E)→ (X,O)
be the minimal resolution of singularities, which is an isomorphism outside
the exceptional divisor E := π−1(O). Consider the decomposition E =∪r
i=0 Ei of E into irreducible components. These irreducible components

are the essential components of (X,O).
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Given any irreducible component Ei, we denote by NEi the Zariski
closure in the arc space of X of the set of non-constant arcs whose lifting
to the resolution is centered at Ei. These Zariski closed subsets are irre-
ducible and each irreducible component of the space of arcs is equal to some
NEi

for a certain component Ei. The Nash mapping is the map assigning
to each irreducible component NEi the exceptional divisor Ei. Injectivity
is immediate. The Nash problem is about determining whether the Nash
mapping is bijective.

The Nash mapping is not bijective if and only if there exist two different
irreducible components Ei and Ej of the exceptional divisor of the minimal
resolution, such that we have the inclusion NEi

⊂ NEj
(see [19]). Such

inclusions were called adjacencies in [3].
An application of the Lefschetz principle allows one to reduce to the

case in which the base field is C. Details are provided in [4]. We make this
assumption for the rest of the paper. Moreover, the case of a non-normal
surface follows from the normal surface case easily (see [4, Section 6]). Then,
we assume (X,O) to be a complex normal surface singularity.

The idea of the proof is as follows. We reason by contradiction. Let
(X,O) be a normal surface singularity and

π : X̃ → (X,O)

be the minimal resolution of singularities. Assume that the Nash mapping
is not bijective. Then, by a theorem of [3], there exists a convergent wedge

α : (C2, O)→ (X,O)

with certain precise properties (see Definition 3.1). As in [20], taking a suit-
able representative, we may view α as a uniparameteric family of mappings

αs : Us → (X,O)

from a family of domains Us to X with the property that each Us is diffeo-
morphic to a disk. For any s, we consider the lifting

α̃s : Us → X̃

to the resolution. Note that α̃s is the normalization mapping of the image
curve.

On the other hand, if we denote by Ys the image of α̃s for s ̸= 0, then
we may consider the limit divisor Y0 in X̃ when s approaches 0. This limit
divisor consists of the union of the image of α̃0 and certain components
of the exceptional divisor of the resolution whose multiplicities are easy
to compute. We prove an upper bound for the Euler characteristic of the
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normalization of any reduced deformation of Y0 in terms of the following
data: the topology of Y0, the multiplicities of its components and the set of
intersection points of Y0 with the generic member Ys of the deformation.
Using this bound, we show that the Euler characteristic of the normaliza-
tion of Ys is strictly smaller than one. This contradicts the fact that the
normalization is a disk.

In the following three sections, we fill the details of the above sketch.

3. Turning the Problem into a Problem
of Convergent Wedges

The germ (X,O) is embedded in an ambient space CN . Denote by Bϵ the
closed ball of radius ϵ centered at the origin and by Sϵ its boundary sphere.
Take a Milnor radius ϵ0 for (X,O) in CN , i.e., we choose ϵ0 > 0, such that
for a certain representative X and any radius 0 < ϵ ≤ ϵ0, we have that
all the spheres Sϵ are transverse to X and X ∩ Sϵ is a closed subset of Sϵ
(see [17] for a proof of its existence). In particular, X ∩ Bϵ0 has conical
structure. From now on, we will denote by Xϵ0 the Milnor representative
X ∩Bϵ0 and by X̃ϵ0 the resolution of singularities π−1(Xϵ0) (see Figure 1).

We recall some terminology and results from [3]. Consider coordinates
(t, s) in the germ (C2, O). A convergent wedge is a complex analytic germ

α : (C2, O)→ (X,O),

which sends the line V (t) to the origin O. Given a wedge α and a parameter
value s, the arc

αs : (C, 0)→ (X,O)
is defined by αs(t) = α(t, s). The arc α0 is called the special arc of the
wedge. For small enough s ̸= 0, the arcs αs are called generic arcs.

Any non-constant arc

γ : (C, 0)→ (X,O)

admits a unique lifting to (X̃, O) that we denote by γ̃.

Definition 3.1 ([3]). A convergent wedge α realizes an adjacency
NEi ⊂ NEj (with j ̸= i) if and only if the lifting α̃0 of the special arc

Cx{0} Cx{s}

0 s Λ
0 s

(α, s)

Figure 1. A wedge representative α : U → X ×Λ and the representatives α0|U0

and αs|Us .
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meets Ei transversely at a non-singular point of E and the lifting α̃s of a
generic arc satisfies α̃s(0) ∈ Ej .

Our proof is based on the following theorem, which is the implication
“(1)⇒(a)” of Corollary B of [3].

Theorem 3.2 ([3]). An essential divisor Ei is in the image of the Nash
mapping if there is no other essential divisor Ej ̸= Ei, such that there exists
a convergent wedge realizing the adjacency NEi

⊂ NEj
.

The proof in [3] of this theorem has two parts. The first consists of
proving that if there is an adjacency, then there exists a formal wedge:

α : Spec(C[[t, s]])→ (X,O),

realizing the adjacency. For this, first, we use a theorem of Reguera [30],
which produces wedges defined over large fields. Then, a specialization ar-
gument is performed to produce a wedge defined over the base field C. This
was done independently in [16]. The second part is an argument based on
Popescu’s Approximation Theorem, which produces the convergent wedge
from the formal one.

Then, to prove the Nash Conjecture, we reason by contradiction and by
Theorem 3.2, we assume that there exists a convergent wedge α : (C2, O)→
(X,O) that realizes some adjacency NE0 ⊂ NEj

.

4. Reduction to an Euler Characteristic Estimate
Following [20], we shall work with representatives rather than germs in
order to get richer information about the geometry of the possible wedges.

Shrinking ϵ is necessary, we can choose a Milnor representative of α0,
say α0|U , with U diffeomorphic to a disk, such that α0|−1

U (∂Xϵ) = ∂U and
the mapping α0|U is transverse to any sphere Sϵ′ for any 0 < ϵ′ ≤ ϵ.

Moreover, we can consider U , such that for a positive and small enough
δ, the mapping α is defined in U ×Dδ. Note also that we can assume α0|U
injective and consequently αs|U generically one to one for s small enough
(see [4] for details).

We consider the mapping

β : (C2, (0, 0))→ (CN × C, (O, 0))

given by β(t, s) := (α(t, s), s) and its restriction

β|U×Dδ
: U ×Dδ → X ×Dδ.

We denote by pr the projection of U ×Dδ onto the second factor.
The following lemma is proved using transversality arguments, together

with Ehresmann Fibration Theorem, and the method is nowadays classical
in Singularity Theory. Details are provided in [4].
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Lemma 4.1. After possibly shrinking δ, we have that there exists ϵ > 0,
such that, defining

U := β|−1
U×Dδ

(Xϵ ×Dδ),
we have the following:

(a) the restriction β|U : U → Xϵ×Dδ is a proper and finite morphism
of analytic spaces;

(b) the set β(U) is a two-dimensional closed analytic subset of Xϵ×Dδ;
(c) for any s ∈ Dδ, the restriction β|U×{s} is transverse to Sϵ × Ḋδ;
(d) the set U is a smooth manifold with boundary β|−1

U (∂Xϵ ×Dδ);
(e) for any s ∈ Dδ, the intersection U ∩ (C×{s}) is diffeomorphic to

a disk.

We will denote by Us the fiber pr|−1
U (s). The fact that every Us is a

disk is a key in the proof as it was in the final step of the proof of the main
result of [20].

Now, we consider the image H := β(U). For every s ∈ Dδ, the fiber
Hs, by the natural projection onto Dδ, is the image of the representative

αs|Us : Us → Xϵ.

Given the minimal resolution of singularities

π : X̃ϵ → Xϵ,

we consider the mapping

σ : X̃ϵ ×Dδ → Xϵ ×Dδ

defined by σ(x, s) = (π(x), s). Note that the mapping σ is an isomorphism
outside E×Dδ. We denote by Y the strict transform of H by σ in X̃ϵ×Dδ

that is the analytic Zariski closure in X̃ϵ ×Dδ of

(4.2) σ−1(H \ ({O} ×Dδ)).

The space (4.2) is an irreducible surface, thus so is its closure Y . Since
X̃ϵ ×Dδ is a smooth threefold, the surface Y considered with its reduced
structure is a Cartier divisor (that is, a codimension 1 analytic subset whose
sheaf of ideals is locally principal). We denote by Ys the intersection Y ∩
(X̃ × {s}).

The indeterminacy locus of the mapping σ−1◦β|U has codimension 2,
hence reducing ϵ and δ if necessary, we can assume that the origin (0, 0) ∈ U
is the only indeterminacy point. Denote by

β̃ : U \ {(0, 0)} → X̃ϵ ×Dδ

the restriction of σ−1◦β|U to its domain of definition U \ {(0, 0)}. Observe
that we have the equality

β̃(U \ β−1({O} ×Dδ)) = σ−1(H \ ({O} ×Dδ)).
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Consequently, Y is the analytic Zariski closure of β̃(U \ {(0, 0)}) and more-
over, we have the equality

(4.3) Y ∩ (X̃ϵ × (Dδ \ {0})) = β̃(U \ U0).

For any s ∈ Dδ, there exists a unique lifting

α̃s : Us → X̃ϵ,

such that αs = π◦α̃s. Obviously, for s ̸= 0, we have the equality β̃(t) =
(α̃s(t), s) for any t ∈ Us. This, together with equality (4.3), implies the
equality

(4.4) Ys = α̃s(Us).

Since Y is reduced, perhaps shrinking δ, we can assume that Ys is
reduced. Since αs is proper and generically one to one, and Us is smooth,
we have that the mapping

α̃s : Us → Ys

is the normalization of Ys.
Now, we describe the divisor Y0. It is clear that all the components

except α̃0(U0) live above the origin that is the only indeterminacy point of
β̃, i.e., the divisor Y0 decomposes as a sum

(4.5) Y0 = Z0 +
r∑
i=0

aiEi,

where we have denoted Z0 := α̃0(U0). This divisor Y0 has the following
properties (Figure 2):

Xx{0}

0α

0(   )U

Xx{0}

π

E
E Ei

0

j

0α

0(   )U

Xx{s}

Xx{s}

π

E
E Ei

0

j

αs

αs s(   )U

s(   )U

Figure 2. The lifting to the resolution of the special and generic arc of a wedge.
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(i) it is reduced at Z0 \E since σ is an isomorphism outside E ×Dδ

and H0 is reduced out of the origin;
(ii) Z0 intersects transversely E0 in a smooth point;
(iii) all the ai’s are non-negative since the divisor Y0 is effective;
(iv) some ai are strictly non-zero, in particular a0, since α realizes an

adjacency and then β̃|U has indeterminacy.
Assuming the existence of a wedge realizing an adjacency, we have

found a deformation Ys of some Y0 (as in (4.5) and satisfying (i)–(iv)) that
has the following properties:

(a) Ys is reduced for s ̸= 0 small enough;
(b) its normalization, i.e., Us, is diffeomorphic to a disk;
(c) its boundary, i.e., α̃s(∂Us), is an S1 that degenerates to the bound-

ary of Y0, i.e., α̃0(U) ∩ ∂X̃ϵ;
(d) Ys meets Ej ̸= 0.

The remaining part of the proof consists in proving that the Euler charac-
teristic of the normalization of such a deformation Ys of Y0 is less than or
equal to 0, which contradicts (b).

5. The Euler Characteristic Estimates
To simplify the computation of the Euler characteristic estimates, we as-
sume the minimal resolution of (X,O) has as exceptional divisor a simple
normal crossings divisor. This is the first case that we discovered. The gen-
eral case is technically more elaborate, but follows essentially the same
ideas. It may be checked in [4].

Let Y0 be a Cartier divisor as in (4.5) that satisfies (i)–(iv). Con-
sider a deformation Ys of Y0 satisfying (a)–(d). Let n : Us → Ys be its
normalization.

We consider a tubular neighborhood of Y0 inside X̃ as a union of the
following sets (Figures 3 and 4):

[h!]

0α
0

1B

B

B2

T

T

T
Y0

i

0

E
E Ei

0

j

j

0(   )U

Figure 3. Adapted tubular neighborhood of Y0.



September 16, 2019 14:20 Arc Schemes and Singularities – 9in x 6in b3525-main FA7 page 182

182 J. Fernández de Bobadilla & M. Pe Pereira

Figure 4. The normalization Us of Ys inside the tubular neighborhood of Y0
is a disk. In the picture, we see the result of cutting Ys along the boundary
of the Milnor balls Bi around the normal crossings of Y0. Each piece is either
n−1(Bi) or n−1(Tj). The exterior piece that we call A satisfies that n(A) is
contained in B0.

• a Milnor ball B0 := B(Z0∩E, ϵ0) for Y0 around the meeting point
of Z0 and E;
• Milnor balls B1, . . . , Bk centered at each of the singular points of
Ered;
• tubular neighborhoods T1, . . . , Tr contained in X̃\

∪k
j=0 Bj around

each Ei \
∪
j=0,...,k Bj such that there exist strong deformation

retracts
ζi : Ti → Ei\ ∪

j=0,...,k

Bj

(see [4] for technical details).
For s small enough, we have

Ys ⊂ B0 ∪
k∪
j=1

Bj ∪
r∪
i=0

Ti

By the choice of the Milnor balls, we have that for s small enough, we have
transversality of Ys and the boundaries of the Bj ’s and Tj ’s (see [4] for
technical details).

We are going to give an estimate for χ(Us) splitting Us as the union of
n−1(Bj) and n−1(Ti). Note that n−1(Bj) and n−1(Tj) are respectively the
normalization of Ys∩Bj and Ys∩Tj . In particular, they are disjoint unions
of Riemann surfaces with boundary. Since we know that Us is a disk and
Bi has transversal boundary with Ys, we have a decomposition of Us as in
Figure 4. Furthermore,

(5.1a) χ(Us) = χ(n−1(B0)) +
k∑
j=1

χ(n−1(Bj)) +
r∑
i=0

χ(n−1(Tj)).

We will separately give estimates for each of the summands on the right-
hand side of the equality (Figure 6).
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Y : xy   =00
a0

E0

0α (    ) U 0

Figure 5. Counting the maximal number of disk images in Ys ∩B0 as a reduced
deformation of Y0 ∩ B0 of equation xya0 = 0.

Ek

Y : x   y   =00
akaj

Ej

Figure 6. Counting the maximal number of disk images in Ys ∩Bi as a reduced
deformation of Y0 ∩ Bi of equation xaj yak = 0.

5.1. Bound in B0

The set Y0 ∩ B0 is defined by f0(x, y) = xya0 = 0, where x and y are
the coordinates of B0. The divisor Ys ∩B0 is defined by some deformation
fs(x, y) = 0, where fs is a 1-parameter holomorphic deformation of f0, such
that fs is reduced for s ̸= 0.

We observe that n−1(B0) is a disjoint union of Riemann surfaces with
boundary. The only connected orientable surface with boundary which has
positive Euler characteristic is the disk. Hence, χ(Us) is bounded above by
the number of connected components of n−1(B0) that are disks.

There are at the most as many disks in n−1(B0) as boundary compo-
nents in n−1(B0) which are at the most a0 + 1 since they degenerate to the
boundary components of {xya0 = 0} ∩ B0. But by (c) the component of
n−1(B0) whose boundary degenerates to the boundary of x = 0 in B0, say
A, is in fact the exterior component of Us (see Figure 4) which cannot be
a disk, unless it is the whole disk (and this is not possible because Ys goes
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outside B0 and meets Ej by (d)). Then, A has more than one boundary
component. Then, n−1(B0) has at the most a0 − 1 disks and we have

χ(n−1(B0)) ≤ #disks ≤ a0 − 1.(5.1b)

5.2. Bound in the balls Bi , i ̸= 0

We have Y0 ∩ Bi defined by f0(x, y) = xajyak = 0, where x and y are the
coordinates in Bi.

Again, the Euler characteristic of n−1(Bj) which is a disjoint union of
Riemann surfaces with boundary is bounded from above by the number of
disks. Whenever there is a disk D in n−1(Bi), since its boundary degener-
ates either to the boundary of xaj = 0 or yak = 0 in Bi, we have that n(D)
will meet at least once either y = 0 or x = 0 in B0. Then,

χ(n−1(Bi)) ≤ #Ys ∩ Y0 ∩Bi ≤
∑
p∈Bi

Ip(Ys, E).

Summing up the estimates of all the balls Bi with i ̸= 0, we have
k∑
i=1

χ(n−1(Bi)) ≤ Ys · E =
∑
k

Ys · Ek.

Note that Ys · E counts the returns (see Section 6) with multiplicity.
Now, we can use that the intersection multiplicity is stable by defor-

mation, i.e., Ys · E = Y0 · E to get
k∑
i=1

χ(n−1(Bi)) ≤ Ys · E = Y0 · E =

(
Z0 +

r∑
i=0

aiEi

)
· E

= 1 +
∑

i,k=0,...,r

aiEi · Ek.(5.1c)

iY : y  =00
a

Figure 7. Bounding the Euler characteristic of the normalization of Ys ∩ Ti as
a reduced deformation of Y0 ∩ Ti of equation yai = 0.
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5.3. Bound in every Ti

To estimate χ(n−1(Ys ∩ Ti)), we consider the composition

ζi◦n : n−1(Ys ∩ Ti)→ Ei \
∪
j

Bj .

Although there are some technicalities to be taken into account, for
Euler characteristic computations, one may think that it is a holomor-
phic branched cover of Riemann surfaces of degree ai (the reader may find
in [4] a completely detailed proof of this). Then, by the Riemann–Hurwitz
formula, we get

(5.1d) χ(n−1(Ti)) ≤ aiχ

Ei \∪
j

Bj

.
We denote by gi the genus of Ei. For i ̸= 0, it is clear that

∑
k ̸=j Ei ·Ek

counts the number of boundary components of Ei \
∪
j Bj . The number of

boundary components of E0 \
∪
Bi is 1 +

∑
k ̸=0 E0 ·Ek since E0 meets also

B0.
Then, summing up the estimates (5.2) for all i = 0, . . . , r, we have

r∑
i=0

χ(n−1(Ti)) ≤ a0

2− 2g0 − 1−
∑
k ̸=0

E0 · Ek


+
∑
j ̸=0

ai

2− 2gi −
∑
k ̸=i

Ei · Ek

.(5.2)

5.4. Final estimate

Putting in (5.1a) the estimates (5.1b), (5.1c and (5.2), we get that

χ(Us) ≤
∑
i

ai(2− 2gi + Ei · Ei).(5.1e)

By negative definiteness, for any 0 ≤ i ≤ r, the self-intersection Ei ·Ei is
a negative integer. Observe that, since π : X̃ → X is the minimal resolution,
for any 0 ≤ i ≤ r, if Ei · Ei is equal to −1, then either the divisor Ei is
singular or it has positive genus (otherwise, it is a smooth rational divisor
with self-intersection equal to −1 and the resolution is non-minimal by the
Castelnuovo contractibility Criterion). Since we are assuming that every Ei
is smooth, we get that 2− 2gi + Ei · Ei ≤ 0 for all i = 0, . . . , r.

Remark 5.2. Note that the right-hand side is the adjunction formula in
the surface case, which computes the degree of the relative canonical sheaf
at each irreducible component of the exceptional divisor. This serves as an
inspiration for the higher dimensional proof of de Fernex and Docampo [2].
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Suppose that α is a wedge that does not lift to the minimal resolution.
This is equivalent to the existence of indeterminacy of the mapping π−1 ◦α.
This implies the inequality a0 > 0 (which is fact is equivalent) and bound
(5.1b).

On the other hand, the reader may observe that if the wedge α lifts to
the minimal resolution, then the arguments leading to the estimate (5.1b)
break down.

The rest of the estimates appearing in our proof are valid in complete
generality. So, we conclude the following.

Remark 5.3. Our proof shows that if α is a wedge such that the lifting
to the minimal resolution of the special arc meets the exceptional divisor
in a transverse way, then there is a lifting of α to the minimal resolution.

6. The Returns of a Wedge and Deformation
Theoretic Ideas

Before the proof of the Nash conjecture in [4], the second author proved
in her PhD the conjecture for the quotient surface singularities [21, 20].
In that proof, it is shown that, despite the local nature of arcs, at least
semi-local techniques were needed in order to study the arc space and the
existence of certain families of arcs or wedges.

In particular, it was observed that for a representative α|U of a wedge,
returns might be non-avoidable. We recall that a return is a point in α−1

s (0)
different from the origin for s ̸= 0. A return p ∈ α−1

s (0) is identified with the
associated arc that consists in viewing αs|Us

as a germ at p. If one thinks of
an arc as the image of a parameterization “starting at the singular point”,
the returns are the points where the parameterization passes again through
the singular point. The contribution of the returns is crucial in the Euler
characteristic estimates needed in our proof of the Nash conjecture (see
Section 5.2).

The study of returns had a direct impact in the application of the
valuative criterion to rule out adjacencies NE ⊂ NF in [20]. The valua-
tive criterion was first studied in [28, 22].Given an exceptional prime di-
visor D over (X, 0), we denote by ordD the associated divisorial valuation.
The valuative criterion says that if there exists a germ g ∈ OX , such that
ordE(g) < ordF (g) where E and F are exceptional prime divisors, then the
adjacency NE ⊂ NF is not possible. Now, taking into account the returns,
we can say that if we have an inequality ordE(g) < ordF (g) + ordF ′(g),
then there is no wedge realizing the adjacency NE ⊂ NF with a return
with lifting by F ′ (nor a wedge realizing the adjacency NE ⊂ NF ′ with a
return by F ).

This idea is applied in [20] more conveniently for the pullback of the
wedges by the quotient map q : (C2, 0) → (X, 0) for a quotient surface
singularity.
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In [4], this criterion is completely understood in Section 3.2 as follows.
Consider a wedge realizing an adjacency NE0 ⊂ NEj

as in Section 4. Since
the divisor Ys defined in (4.3)–(4.4) is a deformation of the divisor Y0, we
have the equality

(6.1) Y0 � Ei = Ys � Ei
for any i. Recall notation Y0 = Z0 +

∑
i aiEi . Denote by bi the intersec-

tion product of Ys � Ei and by M the matrix of the intersection form in
H2(X̃ϵ,Z) with respect to the basis {[E0], . . . , [Er]}. Then, (6.1) can be
expressed as follows:

(6.2) M(a0, . . . , ar)t = (1− b0, b1, . . . , br)t.

The number bi is the number of returns of the wedge through the divisor
Ei counted with appropriate multiplicity.

An important observation is that all the entries of the inverse matrix
M−1 are non-positive (see [4, Lemma 10]).

The equality (6.2) can be used to prove that wedges realizing certain
adjacencies with certain prescribed returns bi do not exist: the existence of
such a wedge is impossible if the solution a0, . . . , an of (6.2) has either a
negative or a non-integral entry.

Moreover, to finish the proof in [20] for the E8 singularities, further
arguments using deformation theory were needed. There, wedges realizing
an adjacency NE0 ⊂ NEj with a given special arc are seen as δ-constant
deformations of the curve parameterized by the special arc. Then, the versal
deformation of the curve parameterized by the special arc is computed. The
codimensions of the δ-constant stratum and the codimension of the stratum
of curves with the topological type of the generic curve of a family param-
eterized by a wedge representative with prescribed returns are computed.
The inequality that these codimensions satisfy is not compatible with the
existence of such a wedge (see [20, Proposition 4.5]).

7. The Proof by de Fernex and Docampo for the
Higher Dimensional Case

De Fernex and Docampo figured out an algebro-geometric proof of the Nash
conjecture based on bounds of coefficients of suitable relative canonical
sheaves [2]. This enabled them to formulate and prove a correct statement
of the Nash correspondence in higher dimension.

A terminal valuation is a divisorial valuation on X, such that there
exists a terminal minimal model π : Y → X of X, such that the center of the
valuation is a divisor in Y . The centers of terminal valuations are essential
divisors. The main theorem of de Fernex and Docampo is as follows.

Theorem 7.1 (de Fernex, Docampo). Terminal valuations are at the
image of the Nash map.
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The beginning of the proof is similar to the surface case: assuming that
the result is false, they derive the existence of a wedge, such that its special
arc lifts to Y in a transverse way to the center of a terminal valuation, but
that cannot be lifted to Y . Afterwards, assuming the existence of such a
wedge, they bound a coefficient for a relative canonical sheaf in two different
ways and produce a contradiction. So, in fact, they prove the following.

Theorem 7.2 (de Fernex, Docampo). Let π : Y → X be a terminal
model of X. Any wedge α, such that its special arc lifts to Y in a transverse
way to the center of a terminal valuation, admits a lifting to Y .

We refer to the original paper for a complete explanation of their proof.
Here, instead, we explain the main ideas of the proof in the context of
surfaces. In this case, Y = X̃ where X̃ is the unique terminal model which
is the minimal resolution π : X̃ → X.

On the one hand, it is easier to digest, and all main ideas appear in
this case. On the other hand, by doing it, we derive a precise set of nu-
merical equalities (see (7.5)) that are satisfied for any non-constant wedge
α : (C2, O) → X not lifting to the minimal resolution and such that
π−1◦α is a meromorphic map with an only indeterminacy point, regard-
less of whether this wedge has special arc lifting transversely or not (this
means any wedge that is used in practice). This set of equalities have not
been observed before. If one assumes that the special arc of the wedge lifts
transversely, one may derive a chain of inequalities giving the contradiction
in a straightforward way from this set of equalities.

Let α : (C2, O)→ X be any wedge so that π−1◦α is a rational map from
(C2, O) to X̃ and such that the special arc of the wedge. Let σ : Z → (C2, O)
be the minimal sequence of blow-ups at points resolving the indetermination
of π−1◦α. Let β : Z → X̃ be the map, such that π◦β = α◦σ. De Fernex
and Docampo shift the computation from X̃ to Z.

Let F =
∑m
i=1 Fi and E =

∑n
i=1 Ei be the decomposition in irreducible

components of σ and π, respectively. In (C2, O), we consider coordinates
(t, s) so that t is the arc variable and s is the deformation parameter. The
special arc of the wedge is then α(t, 0). We order the components so that
F1 is the unique component where the strict transform of V (s) meets.

Denote by KZ =
∑
i aiFi the canonical divisor of Z. It is the only

representative of the canonical class KZ supported at the exceptional di-
visor. Each ai is positive, and a simple observation on the behavior of the
canonical divisor under blow-up shows the following important remark.

Remark 7.3. The number a1 is the number of blowing-up centers
touching the strict transform of V (s).

Since β is a morphism between smooth spaces, the relative canonical
class KZ/X̃ := KZ − β∗KX̃ may be represented by the divisor associated
with the Jacobian of β. This is an effective divisor. When we write KZ/X̃ ,
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we mean such a divisor. We decompose it as

KZ/X̃ = Kexc
Z/X̃

+Khor
Z/X̃

,

where Kexc
Z/X̃

is the part with support on the exceptional divisor of π and
Khor
Z/X̃

the complement. We have the equality

(7.4) KZ −Kexc
Z/X̃

= Khor
Z/X̃

+ β∗KX̃ .

The left-hand side is a divisor concentrated in the exceptional set of σ.
In order to express the right-hand side as a divisor concentrated in

the exceptional set, we let M be the intersection matrix of the collection
of divisors {Fi} in Z. Since σ is a sequence of blow-ups, we have that M
is unimodular and that its inverse M−1 is the matrix whose ith column
(m1,i, . . . ,mn,i)t is obtained as follows: let the Ci be the curve in (C2, O)
given by the image of σ of a cuvette transverse to Fi. Then, its total trans-
form to Z is

σ∗Ci =
∑
j

−mj,iFj .

As a consequence, we obtain that all the entries of M−1 are strictly nega-
tive (this is a general phenomenon which is well known, see, for example,
[4, Lemma 10] for the proof for general normal surface singularities).

If we express Kexc
Z/X̃

=
∑
i biFi, and define the intersection numbers,

ci := Khor
Z/X̃

� Fi,

di := β∗KX̃ � Fi,
Equality (7.4) becomes the following system of numerical equalities:

(7.5) (a1 − b1, . . . , an − bn)t = M−1(c1 + d1, . . . , cn + dn).

This numerical equality works for any resolution π : X̃ → X (non-
necessarily minimal) and any wedge α, so it may have applications in other
problems. One instance could be the generalized Nash problem explained
in Section 8.

Observe that, since Khor
Z/X̃

has no component included in the exceptional
divisor, each ci is non-negative.

If we assume now that π is the minimal resolution, we have

di = β∗KX̃ � Fi = KX̃ � β∗(Fi),

which is non-negative by adjunction formula, using the fact that π : X̃ → X
is the minimal resolution.

This means that the right-hand side in equation (7.5) is non-positive.
In order to prove Theorem 7.2 for the surface case, we assume that the

wedge has the special arc lifting transversely to the exceptional divisor and
estimate the coefficient a1 − b1 on the left-hand side of equation (7.5).
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By Remark 7.3, if the wedge α does not lift to X̃, then a1 is strictly posi-
tive and integral. Since the right-hand side of equation (7.5) is non-positive,
in order to finish the proof, it is enough to prove the strict inequality

b1 < 1.

Let ρ : Z → Z ′ and β′ : Z ′ → X̃ be such that the factorization β = β′◦ρ
consists in collapsing all non-dicritical components of the exceptional divisor
in Z (a component Fi is non-dicritical if β(Fi) is a point). The surface Z ′
has sandwiched singularities, which are rational and Q-Gorenstein. Then,
the canonical divisor KZ′ is Q-Cartier. Therefore, we may define the relative
canonical class KZ/Z′ . This class has a unique representative as a Q-divisor
supported in the exceptional set of ρ, such that all its coefficients are non-
positive.

We have the equality KZ/X̃ = KZ/Z′ +ρ∗KZ′/X̃ . By the non-positivity
of the coefficients of KZ/Z′ we get

b1 = ordF1(KZ/X̃) = ordF1(KZ/Z′ + ρ∗KZ′/X̃) ≤ ordF1(ρ∗KZ′/X̃).

We make an abuse of language and denote the components of the ex-
ceptional divisor of Z ′ by the same name that they have in Z. In order to
estimate b1, we enumerate {Fi1 , . . . , Fil} the components of the exceptional
set of Z ′, which contain the image by ρ of F1. This is a subset of the com-
ponents of F not collapsed by ρ. Observe that if F1 is dicritical, then this
set of components has F1 as a unique element, and the estimate that we
will prove right away becomes much easier.

The special arc of the wedge α lifts transversely through an irreducible
component of E. We enumerate the components so that this component is
E1. Then, for each of the components Fij , we have that β(Fij ) = E1.

Before proving our final estimate, we need the following observation:

The following equality holds : ordFij
(KZ′/X̃) = ordFij

((β′)∗E1)− 1.

This holds because KZ′/X̃ is given at smooth points by the divisor asso-
ciated with the jacobian of β′, and at a generic point of Fij , the map-
ping β can be expressed in local coordinates as β(u, v) = (ua, v), where
a = ordFij

((β′)∗E1).
The last estimate we need is

ordF1(ρ∗KZ′/Y ) = ordF1

 l∑
j=1

ordFij
(KZ′/X̃)ρ∗Fij )


=

l∑
j=1

ordF1(ordFij
((β′)∗E1)− 1)ρ∗Fij )
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<

l∑
j=1

ordF1(ordFij
((β′)∗E1))ρ∗Fij )

= ordF1ρ
∗(β′)∗E1 = ordF1β

∗E1 = 1.

The last equality holds because the special arc lifts transversely by E1.
This concludes the proof.

8. The Generalized Nash Problem and the Classical Adjacency
Problem

Let X be a normal surface singularity. The Generalized Nash Problem con-
sists in characterizing the pair of divisors E, F appearing in resolutions of
X, such that the adjacency NF ⊂ NE holds.

For our proof of the Nash conjecture, it is essential to construct a
holomorphic wedge α, as we have explained before. This was achieved in [3].
The technique developed to achieve this gave, as a byproduct, a proof of the
fact that the validity of the Nash conjecture only depends on the topology
of the link of the surface singularity, or equivalently, in the combinatorics
of the minimal good resolution. The same technique could be adapted to
prove that the generalized Nash problem is a topological problem in the
following sense.

Since the generalized Nash problem is wide open even in the case in
whichX is smooth, we concentrate on this case. To any two exceptional divi-
sors E and F of a sequence of blow-ups at the origin of X, we may associate
a decorated graph as follows: consider the minimal sequence of blow-ups of
π : Y → X, where both E and F appear. Decorate the dual graph of the
exceptional divisor of π attaching to each vertex the weight given by the
self-intersection of the corresponding divisor. Finally, add labels E and F
to the vertices corresponding to the divisors E and F , respectively. In [5],
we proved the following.

Theorem 8.1. Let (E1, F1) and (E2, F2) be two pairs of divisors having
the same associated graph. Then, the adjacency NF1 ⊂ NE1 is satisfied if
and only if the adjacency, NF2 ⊂ NE2 is satisfied.

As a consequence, we could improve the discrepancy obstruction for
adjacencies, see [5, Corollary 4.17 and 4.19]. Furthermore, we get a nice
structure of nested Nash sets in the arc space of C2 and we made some
conjectures about it, see [5, Conjectures 1 and 2].

For the sake of completeness, we summarize very briefly the other main
result of [5].

Given a prime divisor E over the origin of X, we consider its associated
valuation νE . It is easy to see that if we have the adjacency NF ⊂ NE , then
the inequality νE ≤ νF holds. However, this criterion is not enough to
characterize the Nash adjacencies (see Section 6). Our second main result
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is a characterization of the previous inequality in terms of deformations of
plane curves.

We say that a plane curve germ C is associated with E in a model π :
Y → C2, where E appears if its strict transform by π meets E transversely
at a point which does not meet the singular set of the exceptional divisor of
π. A deformation gs of function germs is a holomorphic function depending
holomorphically on a parameter s. It is linear if it is of the form g0 + sh for
g0 and h holomorphic.

Theorem 8.2. Let E and F be prime divisors over the origin of C2

and let S be the minimal model containing both divisors. The following
conditions are equivalent:

(1) νE ≤ νF .
(2) There exists a deformation gs with g0 associated with F in S and

gs associated with E in S, for s ̸= 0 small enough.
(3) There exists a linear deformation gs with g0 associated with F in

S and gs associated with E in S, for s ̸= 0 small enough.

In fact, in [5], we prove a more general version which allows non-prime
divisors E and F .

This theorem provides a very easy way of producing adjacencies of
plane curve singularities. Using this, we were able to recover most Arnol’d
adjacencies, see [5, Section 3.4] for detailed explanations.

9. Holomorphic Arcs
In the proof of the Nash conjecture for surfaces, we study arcs and wedges
from a convergent viewpoint and take representatives. In this sense, a wedge
is for us a deformation of holomorphic maps from a disc to a representative
of the singularity. At a generic parameter, the preimage of the singular point
in general contains more points in the disc than just the origin. These points
are unavoidable and we call them returns following [20] (see Section 6).

Kollár and Nemethi started in [13] the systematic study of convergent
arc spaces as opposed to the classical formal arc spaces. We briefly summa-
rize their main results and questions.

Let D denote the closed unit disk. A holomorphic map defined on D is
the restriction to D of a holomorphic map in an open neighborhood of D.
Let X be a singularity.

Definition 9.1. A complex analytic arc is a holomorphic map γ :
D → X, such that the preimage of the singular set does not intersect the
boundary ∂D. A short complex analytic arc is a complex analytic arc, such
that the preimage of the singular set is just 1 point. A deformation of a
complex analytic arc parameterized by an analytic space Λ is a holomorphic
map

α : D × Λ→ X,
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such that for any s ∈ Λ, the restriction αs := α|D×{s} is a complex analytic
arc. If all the arcs appearing are short complex analytic arcs, we say that
α is a deformation of short complex analytic arcs.

Remark 9.2. What we do in Section 4 is to derive from a convergent
wedge a deformation of a complex analytic arc parameterized by a disk Λ.
The special arc at this deformation is a short arc, but the generic arcs αs are
not short arcs, in general, due to the existence of returns. The topological
analysis of that deformation of complex analytic arcs yields the proof of the
Nash conjecture.

Denote by Arc(X) and ShArc(X) the sets of convergent analytic arcs in
X. Kollár and Nemethi give natural metrics on these spaces, which endow
them with a topology. Given an arc γ : D → X, since the preimage of
the singular set Sing(X) is disjoint from the circle ∂D, the restriction γ|∂D
defines an element of the fundamental group modulo conjugation π1(X \
Sing(X))/(conjugation). Since this element does not change by continuous
deformation of the arc γ, we have defined “winding number maps”:

π0(Arc(X))→ π1(X \ Sing(X))/(conjugation),

π0(ShArc(X))→ π1(X \ Sing(X))/(conjugation).
The main result in [13] concerns short arcs:

Theorem 9.3 (Kollár, Nemethi). The winding number map

π0(ShArc(X))→ π1(X \ Sing(X))/(conjugation)

is injective for any normal surface singularity X. It is bijective for quotient
surface singularities.

For general normal surface singularities, the winding number map is
far from being surjective, but its image is described in [13] in terms of the
combinatorics of the resolution, or what is the same, the topology of the
link.

On the other hand, the winding number map for long arcs, which is
the one that is more related with the original Nash question, is not well
understood.

Problem 9.4 (Kollár, Nemethi). Is the winding number map

π0(Arc(X))→ π1(X \ Sing(X))/(conjugation)

injective?

In [13], many other open problems are proposed. Some interesting ones
are concerned with the definition of a “finite type” holomorphic atlas in
Arc(X) (see [13, Conjecture 72]) and with the existence of a curve selection
lemma in Arc(X).
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