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Abstract

We present a displacement-based and a mixed isogeometric collocation (IGA-C) formulation

for free-form, three-dimensional, shear-deformable beams with high and rapidly-varying cur-

vature and torsion. When such complex shapes are concerned, the approach used to build

the IGA geometric model becomes relevant. Although IGA-C has been so far successfully

applied to a wide range of problems, the effects that different parameterization and knot

placement techniques may have on the accuracy of collocation-based formulations is still

an unexplored field. To fill this gap, primal and mixed formulations are used combining

two parameterization methods (chord-length and equally spaced) with two knot placement

techniques (uniformly spaced and De Boor). With respect to the space-varying Frenet local

frame, we derive the strong form of the governing equations in a compact form through the

definition of two matrix operators conveniently used to perform first and second order deriva-

tives of the vector fields involved in the formulations. This approach is very efficient and easy

to implement within a collocation-based scheme. Several challenging numerical experiments

allow to test the different considered parameterizations and knot placement techniques, re-

vealing in particular that with the primal formulation an equally spaced parameterization

is definitively the most recommended choice and it should always be used with an approx-

imation degree of, at least, p = 6, although some caution must be adopted when very high
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Jacobians and small curvatures occur. The same holds for the mixed formulation, with the

difference that p = 4 is enough to yield accurate results.

Keywords: Isogeometric collocation, shear-deformable free-form beams, primal and mixed

beam formulations, parameterization and knot placement

1. Introduction1

The isogeometric collocation (IGA-C) method was proposed in [1] with the aim of com-2

bining the attributes of isogeometric analysis (IGA) [2] with the low computational cost3

of collocation. The primary goal of IGA is to represent accurately the model geometry4

even with extremely coarse discretizations. Moreover, in contrast to standard finite element5

analysis (FEA), in IGA mesh refinement is significantly simplified since there is no need6

for communication with the Computer Aided Design (CAD) model once the initial mesh7

is constructed. IGA makes use of functions commonly adopted in CAD, such as B-splines8

and NURBS [3], both for the geometry representation and the spatial discretization of the9

differential equations. The use of such basis functions, characterized by high and adjustable10

smoothness, has proven to achieve increased accuracy and robustness on a per degree-of-11

freedom basis compared with standard FEA [4–7]. An exhaustive presentation of IGA is12

found in [8]. The application of IGA is growing fast in many branches of science and en-13

gineering, such as, e.g., solid mechanics [9–13], fluid mechanics [14–16], electromagnetics14

[17, 18], and eigenvalue problems [19, 20].15

A side-effect of using high-order basis functions is the fast growth of the computational16

cost due to the larger number of quadrature points. Moreover, the high smoothness degree17

that B-splines or NURBS typically possess across the elements makes Gauss integration rules18

suboptimal [21, 22]. The development of more efficient integration schemes is currently an19

open problem, although significant progress has been made in [23–28]. IGA-C represents an20

interesting solution for this problem since the need for numerical quadrature is completely21

removed due to the discretization of the strong form of the governing equations. IGA-C22

requires only one evaluation point per degree of freedom, regardless of the approximation23

degree, resulting in a much faster method compared to standard Galerkin-based IGA based24

on Gauss quadrature [29].25
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IGA-C has been successfully applied to linear problems [1, 29, 30], phase-field modeling26

of immiscible fluids [31] and ferroelastic materials [32], contact problems [33, 34], and hyper-27

elasticity [34]. New connections between Galerkin and collocation methods were established28

in [35]. Timoshenko beam formulations were proposed in [36–40]. Bernoulli-Euler beams29

and Kirchhoff plates were addressed in [41], and Reissner-Mindlin plate and shell problems30

in [42] and [43], respectively. Kirchhoff-Love plate and shell problems were studied in [44].31

Laminated composite plates have been recently addressed in [45]. Nonlinear planar Kirchhoff32

rods were formulated in [46]. In linear dynamics, an explicit IGA-C formulation was intro-33

duced in [30] and more recently an explicit higher-order space- and time-accurate method for34

elastodynamics was proposed in [47]. In [48–50] IGA-C was extended to the static problem35

of geometrically nonlinear three-dimensional shear-deformable beams, whereas the method36

was extended to the dynamic problem using an implicit quaternion-based formulation in37

[51], an explicit formulation based on the spatial incremental rotation vector in [52], and an38

implicit formulation based on the material incremental rotation vector in [53].39

The simulations of highly curved three-dimensional rods involves the concept of “analysis-40

aware modeling”, firstly proposed by Cohen et al. [54], which is aimed at constructing41

geometries suitable for isogeometric analysis. In some other researches related to this topic,42

Xu et al. [55, 56] employed the optimization methods to rearrange the position of middle43

control points in 2D and 3D cases to reach a better parameterization for computational44

domains. Casquero et al. [57] employed analysis suitable T-splines for solving second and45

fourth order boundary value problems using the isogeometric collocation method. The effect46

of perturbing control points in different computational domains have been investigated by47

Lipton et al. [58]. They showed that changing the position of middle control points will48

affect the parameterization and therefore IGA results while keeping the geometry visually49

unchanged.50

Free-form curved beam geometries with any desired shape can be generated for isogeo-51

metric analysis in two ways—by direct input from a CAD environment (e.g., Rhino) or by52

fitting a curve to a set of data points (obtained by, e.g., an implicit algebraic equation or a53

point cloud). In the first case, all spline geometry information such as the position of control54

points and the knot vector are imported from the CAD system. In this regard, a practical55
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method in order to modify the geometry in accordance with IGA requirements (while keeping56

the exact shape) is the curve reparameterization technique presented by Hosseini et al. [59].57

Curve reparameterization can change the (probably) unsuitable initial parameterization of58

the imported geometry modifying its Jacobian. In the case that the beam geometry is given59

by a series of input data points, generally a curve approximation is used to construct the60

required IGA suitable geometry. Two main steps may be identified in a general B-spline fit-61

ting process, namely, parameter selection and knot vector generation [3]. Parameterization62

directly affects the geometric factors related to derivatives (such as the Jacobian). On the63

other hand, the knot sequence determines the position of nodes in the physical geometry and64

collocation points. Therefore, an inappropriate combination of parameterization and knot65

placement methods directly influences the accuracy of IGA-C (and, more in general, IGA)66

results. These issues are also the topics of interest in other engineering applications, e.g.,67

trajectory planning in robotics [60, 61] and machining processes [62, 63]. The importance of68

parameterization in IGA is studied in different researches. For example, Kolman et al. [64] in-69

vestigated the effect of nonlinear and linear parameterizations obtained by uniformly-spaced70

control points and Greville abscissa formula, respectively. The comparison between typical71

parameter selection strategies (namely uniformly-spaced, chord-length, and centripetal pa-72

rameterizations) in constructing free-form curved beam structures are addressed by Hosseini73

et al. [65], which show the effectiveness of chord-length parameterization when non-uniform74

input data points are given. Parameterization is also briefly discussed in other researches75

such as [66–69]. Very recently, the effect of knot placement techniques in IGA of free-form76

Euler-Bernoulli curved beams is investigated in [70] where the superiority of De Boor knot77

placement technique is shown.78

While the concept of analysis-aware modeling has already received attentions and some79

key results have been obtained in the Galerkin-based IGA, to the best of our knowledge,80

there is no existing study addressing the effects that parameterization and knot placement81

techniques have on the accuracy of collocation-based formulations. Moreover, in all the82

above mentioned papers on collocation, the problem of spatial rods with varying curvature83

and torsion has not been deeply investigated. Therefore, in this paper we present primal84

and mixed IGA-C formulations for rods with strongly varying curvature and torsion and85
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systematically discuss the effects that different combinations of parameterization and knot86

placement techniques have on the accuracy of the methods. The main objective of the87

current research is to contribute to the development of efficient analysis-aware modeling of88

structures with complex free-form geometry.89

The remainder of this paper is organized as follows. Section 2 reviews the notations of90

differential geometry of 3D curves in space, followed by the governing equations of spatial91

free-form curved beams in Section 3. In Section 4, the definition of B-spline curves (including92

the curve approximation procedure) is presented. The different parameter selection and knot93

vector generation approaches are presented in this section as well. Then, in Section 5, the94

displacement-based and mixed formulations of isogeometric collocation are introduced and95

in Section 6, different case studies and numerical examples are presented. Finally, Section 796

draws the conclusions of this work.97

2. Brief review of differential geometry of spatial curves98

Let s 7→ c(s) ∈ IR3, with s ∈ Is = [0, L] ⊂ IR, be a smooth curve parameterized by the

arc length s. The Frenet frame {t,n, b} is defined as follows [71]

t = c,s , (1)

n =
c,ss
‖c,ss ‖

, (2)

b = t× n , (3)

where with (·),s we indicate the partial derivative with respect to the coordinate s. In the99

above equations, t is the unit length tangent vector to the curve at s, n is the unit length100

normal vector at s, and b is the unit length binormal vector at s (see Figure 1). It is noted101

that c,ss ·c,s = 0, thus {t,n, b} represents an orthonormal basis which is used to formulate102

the classical problem of three-dimensional shear-deformable curved rods.103

The curvature κ and torsion τ of the curve c at s are defined as follows

κ = ‖c,ss ‖ , (4)

τ = −c,ss
κ2
· (c,s×c,sss ) . (5)

5



x

y

z

s

t

n

b

Figure 1: The orthonormal Frenet frame on a spatial free-form curved beam.

Classical Galerkin-based formulations of curved spatial rods (see, e.g., [72–75]) require

only curvature and torsion as defined in Eqs. (4) and (5). In the present context, since we

are concerned with the discretization of the strong form of the differential equations, the

derivatives of curvature κ′ and torsion τ ′ are also needed (see details in Section 3). These

derivatives are given as follows

κ′ =
c,ss ·c,sss

κ
, (6)

τ ′ =
(
−c,sss

κ2
+ 2

c,ss κ,s
κ3

)
· (c,s×c,sss )− c,ss

κ2
· (c,ss×c,sss +cs × c,ssss ) . (7)

Note that here and in the following with (·)′ we denote the derivative with respect to s of104

matrix (or vector) components only.105

To avoid the presentation of the governing equations (see Section 3) in components, which106

would be lengthy and less efficient for the following numerical formulations (see Section 5),107

we rearrange curvature and torsion, as well as their derivatives, in a matrix form. To this108

end, we rename the Frenet frame as {t1, t2, t3} = {t,n, b}. The Frenet-Serret formula [71]109

leads to110

ti,s = κ̃ijtj for i = 1, 2, 3 , (8)

where κ̃ij are the components of a skew-symmetric matrix defined as follows111

κ̃ =


0 κ 0

−κ 0 τ

0 −τ 0

 . (9)

Note that in the present work a repeated index implies the summation over that index.112
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In a similar way we define the matrix κ̃′ as follows113

κ̃′ =


0 κ′ 0

−κ′ 0 τ ′

0 −τ ′ 0

 , (10)

where κ′ and τ ′ are obtained through Eqs. (6) and (7).114

We remark that the Frenet frame is not the only possible choice. Other approaches115

employing rotation-minimizing frames, such as the Bishop frame [76, 77], would be possible.116

In this paper we stick to the most widely used approach, leaving the investigation of other117

frames to future studies.118

Let s 7→ r(s) ∈ IR3 be a generic vector field which, in the local basis {t1, t2, t3}, reads as119

r = riti. The spatial derivative of r is given by120

r,s = ri,sti+riti,s = ri,sti+ κ̃ijritj = (rj,s + κ̃ijri) tj = r′+κ̃Tr = r′−κ̃r = r′−κ×r , (11)

where Eq. (8) and the skew-symmetry of κ̃ have been exploited. We have also defined the121

axial vector of κ̃ as κ = −[τ, 0, κ]T1.122

3. Governing equations in strong form123

We start this section by recalling the strong form of the balance equations which, for any

s ∈ (0, L), are given as follows

n,s +n̄ = 0 , (12)

m,s +t1 × n + m̄ = 0 , (13)

where we have used t1 = t = c,s. In the above equation, n and m are the internal forces124

and moment vectors, respectively (see Figure 2); and n̄ and m̄ are the distributed external125

force and moment vectors, respectively.126

1With the symbol ∼ we denote elements of so(3), that is the set of 3 × 3 skew-symmetric matrices.

Furthermore, for any skew-symmetric matrix ã ∈ so(3), a = axial(ã) indicates the axial vector of ã such

that ãh = a× h, for any h ∈ IR3.
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According to the fundamental assumption for the shear-deformable beam model, the127

beam kinematics is completely described by two vector fields u and ϑ expressing the dis-128

placement of the centroid line of the beam and the rotation of the cross section at each129

point of the centroid line of the beam, respectively (see Figure 2). The components of the130

kinematic fields are given with respect to the local basis, namely u = uiti and ϑ = ϑiti.131

u1

u2

u3

ϑ1

ϑ2

ϑ3

(a) Displacement and rotation fields.

n1

n2

n3

m1

m2

m3

(b) Internal forces and couples.

Figure 2: Components in the local frame {t1, t2, t3} of (a) displacement u and rotation ϑ fields and (b)

internal force n and moment m.

The strain measures are defined as follows [72, 73]

ε = u,s +t1 × ϑ , (14)

χ = ϑ,s , (15)

where ε is the vector of axial and shear strains, and χ is the vector of bending and torsional

strains. Under the assumption of an isotropic, homogeneous, linear elastic material, the

constitutive equations are given as follows

n = Cε , (16)

m = Dχ , (17)

where C = diag(EA,GA2, GA3) and D = diag(GJ,EJ2, EJ3). Herein, GA2 and GA3 are132

the shear stiffnesses along the cross section principal axes, EA is the axial stiffness, GJ is133

the torsional stiffness, and EJ2 and EJ3 are the principal bending stiffnesses. Note that134

since the strain measures and the elastic matrices C and D are expressed in the local frame,135

8



the internal forces obtained through Eqs. (16) and (17) are also expressed in the local frame136

{ti}, i = 1, 2, 3.137

Finally, we observe that the governing equations (12) and (13) must be completed by

suitable boundary conditions. Neumann boundary conditions at s ∈ {0, L} are given as

n = n̄c , (18)

m = m̄c , (19)

where n̄c and m̄c are the external concentrated force and moment vectors, respectively.

Dirichlet boundary conditions at s ∈ {0, L} are, instead, given as

u = ūc , (20)

ϑ = ϑ̄c , (21)

where ūc and ϑ̄c are the translation and rotation vectors expressing the prescribed kinematic138

conditions.139

3.1. Displacement-based formulation in strong form140

By using the derivation rule given in Eq. (11) and the constitutive equations (16) and

(17), the governing equations (12) and (13) can be expressed in terms of the two independent

kinematic fields u and ϑ as follows

Ct̃1ϑ
′ − κ̃Ct̃1ϑ+ Cu′′ − (κ̃C + Cκ̃)u′ − (Cκ̃′ − κ̃Cκ̃)u+ n̄ = 0 , (22)

Dϑ′′ − (Dκ̃+ κ̃D)ϑ′ + (κ̃Dκ̃− Dκ̃′ + t̃1Ct̃1)ϑ+ t̃1Cu′ − t̃1Cκ̃u+ m̄ = 0 . (23)

In a similar way, the Neumann boundary conditions given in Eqs. (18) and (19) can be

expressed as

C
(
u′ − κ̃u+ t̃1ϑ

)
= n̄c , (24)

D (ϑ′ − κ̃ϑ) = m̄c . (25)

3.2. Mixed formulation in strong form141

For the mixed formulation we follow the approach used in [50], where internal forces n

and couples m are both considered as two additional independent variables. The system
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of differential equations is obtained by coupling Eqs. (12) and (13) with the constitutive

equations (16) and (17), which, by using the strain measures Eqs. (14) and (15), lead to the

following system

n′ − κ̃n + n̄ = 0 , (26)

m′ − κ̃m + t̃1n + m̄ = 0 , (27)

Cu′ − Cκ̃u+ Ct̃1ϑ− n = 0 , (28)

Dϑ′ − Dκ̃ϑ−m = 0 , (29)

where the differentiation rule given in Eq. (11) has been used. In the present mixed differ-

ential problem we have ϑ, u, m, n as unknown fields. Neumann boundary conditions valid

in s ∈ {0, L} are

n− n̄c = 0 , (30)

m− m̄c = 0 , (31)

Cu′ − Cκ̃u+ Ct̃1ϑ− n = 0 , (32)

Dϑ′ − Dκ̃ϑ−m = 0 , (33)

while Dirichlet boundary conditions are

u− ūc = 0 , (34)

ϑ− ϑ̄c = 0 , (35)

Cu′ − Cκ̃u+ Ct̃1ϑ− n = 0 , (36)

Dϑ′ − Dκ̃ϑ−m = 0 . (37)

4. Geometry construction by B-spline curves142

4.1. Definition of B-spline curves143

Following the IGA paradigm, herein, B-splines are employed for both representing the144

beam geometry and expressing the solution fields. Let Iu = [0, 1] be the normalized univariate145

domain of the spline space, a B-spline curve u 7→ c(u) ∈ IR3 of degree p with n+ 1 control146
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points p̌0, p̌1, ..., p̌n is defined as147

c(u) =
n∑
j=0

Rj,p(u) p̌j , (38)

where the parameter space is characterized by the open knot vector U given by148

U = [0, 0, ..., 0︸ ︷︷ ︸
p+1

, up+1, up+2, ..., un, 1, 1, ..., 1︸ ︷︷ ︸
p+1

] , (39)

and the B-spline basis functions Rj,p(u) are expressed by the Cox–De Boor recursion formula149

[3] as150

Rj,0(u) =

 1 uj ≤ u < uj+1 ,

0 otherwise ,

Rj,p(u) =
u− uj

uj+p − uj
Rj,p−1(u) +

uj+p+1 − u
uj+p+1 − uj+1

Rj+1,p−1(u) .

(40)

As an example, Figure 3 depicts a cubic spatial B-spline curve with eight control points151

(n = 7) where the basis functions are spanned over a uniformly-spaced knot vector with152

single multiplicities of internal knots.

 B-spline curve

 Knots on the curve

 Control points

x

y

z

p̌0 p̌1

p̌2 p̌3

p̌4
p̌5

p̌6
p̌7

B-spline curve

Knots on the curve

Control points

0 0.2 0.4 0.6 0.8 1
u

0

0.2

0.4

0.6

0.8

1

R
j,
p
(u

)

Figure 3: Top: a cubic B-spline curve in 3D space with eight control points. Bottom: cubic basis functions

and respective knots on the knot vector.

153
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4.2. B-spline curve fitting: parameterization and knot placement154

If a set of h + 1 data points d0,d1, ...,dh representing the beam geometry is available155

(obtained by, e.g., an algebraic equation or a point cloud), the B-spline expression of the beam156

can be found by a data fitting technique that is generally performed by a curve approximation157

(there are also other alternatives like, e.g., interpolation, mixed interpolation/approximation,158

and optimization-based fitting [60, 78, 79]).159

Focusing on curve approximation in this paper, the curved beam geometry is to be

constructed in such a way that the control points p̌j are the output of a global curve fitting

problem. In order for the geometry to be appropriately approximated by a B-spline curve,

the first step is to associate the parameter ūk to the k-th data point dk by applying the

equally spaced or chord-length parameterization schemes [3] described, respectively, by

ūk =
k

h
(k = 0, 1, ..., h) , (41)

ū0 = 0 , ūk =

∑k
i=1 ‖di − di−1‖∑h
i=1 ‖di − di−1‖

(k = 1, 2, ..., h) , (42)

where ‖·‖ indicates the Euclidean norm. It is remarked that in an earlier phase of our160

investigation, the centripetal parameterization scheme [3] was also considered. However, the161

results were never of particular relevance with respect to the other parameterizations.162

In the next step, an appropriate knot vector should be generated to characterize the163

spline space of the geometry. Considering that collocation points in the IGA-C framework164

are normally directly obtained by the knot values, the constructed geometry will affect the165

solution output as well. There are different knot vector generation methods for curve/surface166

approximation in the literature (see, e.g., [80–82]) and the two most used techniques, namely167

uniform and De Boor knot placement algorithms, are presented in the following. Referring to168

the knot sequence of Eq. (39), in the uniform knot placement technique, which is the simplest169

and typical knot sequence generation algorithm in geometry construction, the internal knots170

are equally spaced in Iu as171

up+i =
i

n− p+ 1
, (i = 1, 2, ..., n− p) . (43)

On the other hand, in the De Boor’s algorithm, which generally yields a stable and172

appropriate curve fitting, every knot span is guaranteed to contain at least one parameter173
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ūk. For this purpose, the internal knots should be defined as follows [3]174

up+i = (1− α)ūm−1 + αūm , (i = 1, 2, ..., n− p) , (44)

where, by defining int(·) as the floor function, the values of α and m can be found as175

α = i · d− 1 , (i = 1, 2, ..., n− p) ,

m = int(i · d) ,

d =
h+ 1

n− p+ 1
.

(45)

Finally, the input data points can be approximated by a B-spline curve with n+1 control176

points (n ≤ h) where the first and last control points are simply determined as p̌0 = d0 and177

p̌n = dh. The remaining control points P̌ = [p̌1, p̌2, ..., p̌n−1]
T are to be computed in the178

least-squares sense through the minimization of the following fitting function179

f =
h−1∑
k=1

‖dk − c(ūk)‖2 . (46)

In this case, the number of control points is to be determined such that a desirable fitting180

error and/or accuracy in the IGA-C results are achieved. By setting the derivatives ∂f/∂p̌j181

equal to zero, and employing standard matrix algebra, one obtains the control points as [3]182

P̌ = (BTB)−1BTQ , (47)

where B is the matrix of the basis functions at parameter values183

B =


R1,p(ū1) R2,p(ū1) ... Rn−1,p(ū1)

R1,p(ū2) R2,p(ū2) ... Rn−1,p(ū2)
...

...
. . .

...

R1,p(ūh−1) R2,p(ūh−1) ... Rn−1,p(ūh−1)

 , (48)

and Q = [q1, q2, ...qh−1]
T with184

qk = dk −R0,p(ūk)d0 −Rn,p(ūk)dh . (49)

By employing different combinations of parameterizations (Eqs. (41) and (42)) and knot185

placements (Eqs. (43) and (44)), different curve fits can be obtained for a set of input data186
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points and, therefore, different IGA-C results are achieved. Figure 4 illustrates the effect187

of different parameterizations and knot placement techniques on fitting a cubic curve to a188

planar dataset noting that the quality of the fitted curve would increase by employing more189

control points. The figure shows that in addition to the quality of the fitting process, the190

positions of control points and the values of their respective basis functions also depend on191

the combination adopted for the geometry construction.192

Data points
Fitted curve
Control points
Knots

0

1

0

1

u u
0 0.143 0.286 0.429 0.571 0.714 0.857 1 0 0.134 0.279 0.423 0.567 0.711 0.856 1

R
j,
p
(u

)

R
j,
p
(u

)

(a) Uniform parameters, uniform knots. (b) Uniform parameters, De Boor’s knots.

(c) Chord-length parameters, uniform knots. (d) Chord-length parameters, De Boor’s knots.

Data points
Fitted curve
Control points
Knots

0

1

0

1

u u
0 0.143 0.286 0.429 0.571 0.714 0.857 1 0 0.207 0.333 0.433 0.578 0.687 0.796 1

R
j,
p
(u

)

R
j,
p
(u

)

Figure 4: Effect of different parameterizations and knot placement algorithms on curve fitting results and

corresponding basis functions.
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5. Isogeometric discretization and collocation193

By using the B-spline basis functions introduced in the previous section, the approxima-

tion of the variables of our problem discussed in Section 3 reads

ϑ(u) =
n∑
j=0

Rj,p(u)ϑ̌j with u ∈ Iu , (50)

u(u) =
n∑
j=0

Rj,p(u)ǔj with u ∈ Iu , (51)

m(u) =
n∑
j=0

Rj,p(u)m̌j with u ∈ Iu , (52)

n(u) =
n∑
j=0

Rj,p(u)ňj with u ∈ Iu , (53)

where ϑ̌j and ǔj are the jth control variables of the kinematic fields and ňj and m̌j are194

the internal force and moment control variables. We stress that the above fields might be195

discretized independently of each other, namely the discretization spaces for displacements,196

rotations, and stresses might not necessarily be the same [37]. However, this would imply197

to use different sets of collocation points with an increased computational effort. In this198

work we opt for the simplest solution of considering the same basis functions and collocation199

points for all variables. This choice is supported by the results shown in [37], where excellent200

convergence rates were observed also using this approach.201

The derivatives with respect to the physical coordinate s ∈ Is = [0, L] need to be cal-202

culated taking into account that a change of parameterization is required since the basis203

functions are defined on the normalized domain Iu = [0, 1]. Namely, for any vector quan-204

tity g : Iu → IR3, we have g,s = g,u /, where  = ds/du = ‖c,u ‖ is the Jacobian. Higher205

order derivatives, see for example Eqs. (4)-(7), are calculated using the same derivation rule.206

For example, the second derivative is given by g,ss = g,uu /
2 − g,u (c,u ·c,uu )/ 4, where ( · )207

indicates the scalar product.208

Recent studies proposed alternative choices for collocation points that, in specific situa-209

tions, can achieve improved convergence rates [35, 83–85]; however, in the present study we210

collocate at the images of standard Greville points [1] defined as211

uci =
ui+1 + . . .+ ui+p

p
for i = 0, . . . , n . (54)
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5.1. Collocation of displacement-based formulation212

The 2 × 3 × (n − 1) discretized and collocated equations (see Eqs. (22) and (23)) take

the following form

n∑
j=0

[
Ct̃1R

′
j,p − κ̃Ct̃1Rj,p

]
u=uci

ϑ̌j+

n∑
j=0

[
CR′′j,p − (κ̃C + Cκ̃)R′j,p − (Cκ̃′ − κ̃Cκ̃)R′j,p

]
u=uci

ǔj + n̄ = 0 , (55)

n∑
j=0

[
DR′′j,p − (Dκ̃+ κ̃D)R′j,p + (κ̃Dκ̃− Dκ̃′ + t̃1Ct̃1)Rj,p

]
u=uci

ϑ̌j+

n∑
j=0

[
t̃1CR′′j,p − t̃1Cκ̃Rj,p

]
u=uci

ǔj + m̄ = 0 , (56)

with i = 1, . . . n − 1. Eqs. (55) and (56) form a linear system of 2 × 3 × (n − 1) equations

with 2× 3× (n+ 1) unknowns. The 12 missing equations (6 per beam ends) are provided by

the boundary conditions. For example, in the case of clamped end at s = 0 (or equivalently

u = uc0 = 0), the six discretized and collocated boundary equations are

n∑
j=0

Rj,p(u
c
0)ǔj = 0 , (57)

n∑
j=0

Rj,p(u
c
0)ϑ̌j = 0 . (58)

The discretized and collocated form of the Neumann boundary conditions, e.g., consid-

ering a free end at s = L (or equivalently u = ucn = 1), reads as

n∑
j=0

[
C
(
R′j,p − κ̃Rj,p

)]
u=ucn

ǔj +
n∑
j=0

[
t̃1Rj,p

]
u=ucn

ϑ̌j = n̄c , (59)

n∑
j=0

[
D
(
R′j,p − κ̃Rj,p

)]
u=ucn

ϑ̌j = m̄c . (60)

Eqs. (55) and (56) together with Eqs. (57)–(60) form a square linear system [6× (n + 1)]2213

which is solved for the unknowns ϑ̌j, ǔj with j = 0, . . . , n.214
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5.2. Collocation of mixed formulation215

The 4 × 3 × (n − 1) discretized and collocated equations (see Eqs. (26)-(29)) take the

following form
n∑
j=0

[
R′j,p − κ̃Rj,p

]
u=uci

ňj + n̄ = 0 , (61)

n∑
j=0

[
R′j,p − κ̃Rj,p

]
u=uci

m̌j +
n∑
j=0

[
t̃1Rj,p

]
u=uci

ňj + m̄ = 0 , (62)

n∑
j=0

[
CR′j,p − Cκ̃Rj,p

]
u=uci

ǔj +
n∑
j=0

[
t̃1Rj,p

]
u=uci

ϑ̌j −
n∑
j=0

Rj,p(u
c
i)ňj = 0 , (63)

n∑
j=0

[
DR′j,p − Dκ̃Rj,p

]
u=uci

ϑ̌j −
n∑
j=0

Rj,p(u
c
i)m̌j = 0 , (64)

with i = 1, . . . n− 1. Eqs. (61)–(64) form a linear system of 4× 3× (n− 1) equations with216

4 × 3 × (n + 1) unknowns. The 24 missing equations (12 per beam ends) are provided by217

the boundary conditions. For example, in the case of clamped end at s = 0 (or equivalently218

u = uc0 = 0), the 12 discretized and collocated boundary equations are Eqs. (57) and (58)219

together with the constitutive equations (63) and (64) collocated in uc0 instead of uci . For220

example, assumed a free end at s = L (or equivalently u = ucn = 1), the boundary conditions221

are given by Eqs. (59) and (60) complemented with Eqs. (63) and (64) collocated in ucn222

instead of uci . These boundary conditions, together with Eqs. (61)–(64), form a square linear223

system with dimension [12× (n+ 1)]2 which is solved for the unknowns ϑ̌j, ǔj, m̌j, ňj with224

j = 0, . . . , n.225

Note that the primal and mixed formulations discussed above are different from those226

proposed in [48, 50] not only because their validity is restricted to geometrically linear227

problems, but also because they are formulated in the local (Frenet) frame. Here, the228

rotation operator (an element of SO(3) used to describe the rotation of the beam cross229

section) is only used in the post-process phase to transform the vector components of the230

solution from the local to the global frame.231

6. Numerical experiments232

Before proceeding with results, we first provide some general information that are com-233

mon to all test cases.234
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In all examples, a circular cross-section of 0.1 m radius is assumed. In addition, the235

Young modulus and the Poisson ratio of all curved beams are assumed to be E = 200 GPa236

and ν = 0.3, respectively, while the shear modulus is calculated as G = E/2(1 + ν). To re-237

construct the geometry of all case studies, a set of 1000 input data points are considered,238

obtained by the respective analytical equations. Since an analytical solution does not ex-239

ist for the considered curved beam examples, the IGA-C computations are compared with240

“overkill” finite element results, obtained with the commercial software ABAQUS by gen-241

erating appropriate meshes of quadratic beam elements and requiring a convergence up to242

six decimal places. The tip loads and reference tip displacements are reported in Table 1.243

Note that for all the analyzed problems, the displacements are small enough to allow geo-244

metrically linear formulations to be adopted. Finally, in all examples, we used a code in the245

form of “APK” to indicate different combinations of parameterization and knot placement246

techniques discussed in Section 4. In this coding system, P refers to the parameterization247

and takes values 1 or 2 for chord-length or equally spaced methods, respectively; whereas K248

refers to the knot placement and takes values 1 or 2 for the uniformly spaced or De Boor’s249

methods, respectively. Note that when the equally spaced parameterization is used, there is250

no difference between uniform and De Boor knot placement techniques. Therefore, in total251

we will analyze three different cases: A11, A12, and A2 (=A21=A22).252

Table 1: The tip loads and reference tip displacements of the studied examples computed by overkill FEA

in ABAQUS environment.

Tip Force (N) Tip displacement (mm)

Tschirnhausen beam −[0, 200, 0]T [0.902449, −4.083810, 0]T

Lissajous beam [0, 0, 200]T [0.131965, −0.104978, 0.433117]T

Viviani beam [0, 0, 200]T [0.227786, −0.117027, 0.238018]T

Logarithmic spiral beam [0, 200, 0]T [1.879695, 9.436861, −0.188030]T

6.1. The Tschirnhausen planar beam253

The Tschirnhausen beam is a well-known planar structure with variable curvature that254

is studied frequently in the literature (see, e.g., [86, 87]). The geometry of the beam is255
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defined analytically by Eq. (65). The beam model is depicted in Figure 5 assuming that it256

is clamped at the right end and is subject to an in-plane tip load of [0, −200, 0]TN at the257

left end.258

 x = 3(3− ζ2)

y = ζ(3− ζ2)
0 ≤ ζ ≤

√
3 , (65)

 

 
9 m

2 m

Figure 5: Tschirnhausen free-form curved beam.

Figure 6 illustrates the convergence curves of the relative error versus the number of259

collocation points for the Tschirnhausen beam obtained by both displacement-based and260

mixed formulations.261

We observe that case A2, corresponding to the equally spaced parameterization method262

with either uniform or De Boor knot placements, outperforms the other combinations. High263

accuracy is already obtained even with the primal formulation with a pretty coarse mesh264

(n = 20). Both degree elevation in the displacement-based formulation and the use of a265

mixed formulation significantly improve the convergence quality.266

The poorer performances of cases A11 and A12, namely chord-length parameterization267

combined with either uniform or De Boor knot placements, especially for p = 4, is related to268

the parameterization. Although A11 and A12 are expected to have a constant Jacobian, a269

deeper examination reveals that chord-length parameterization introduces small instabilities270

in the Jacobian which affect the quality of the convergence of the error. More details are given271

in Appendix A, in particular see Figure A.13. Another reason for the poorer convergence272

behavior of A11 and A12 with respect to A2 is the much higher error in the geometry273
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(d) Mixed.

Figure 6: Error in % versus number of collocation points for the Tschirnhausen beam: displacement-based

((a) and (c)), and mixed ((b) and (d)) formulations with B-spline basis functions with degree p = 4 upper

and p = 6 lower plots.

approximation. While A2 guarantees a least-square error (see Eq. (46)) smaller than 10−10,274

A11 and A12 approximate the geometry with an error several orders of magnitude larger275
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(see Figure B.20 in Appendix B).276

6.2. The Lissajous spatial curved beam277

The Lissajous curved beam is a complex harmonic function in space that is described by278

the following analytical equations279 
x = cos 3ζ

y = sin 2ζ

z = sin 7ζ

− π/3 ≤ ζ ≤ π/3 . (66)

The beam is clamped at one end (see Figure 7) and is subject to a tip load [0, 0, 200]TN280

in the z-direction at the free end. Figure 8 shows the convergence curves of the relative error281

versus the number of collocation points. The complexity of the Lissajous geometry requires a282

high approximation degree to properly represent the fourth-order derivative terms appearing283

in the displacement-based formulation (see Eq. (7)). Figure 8a indeed reveals that degree284

p = 4 is not suitable for this geometry. With the primal formulation, p = 6 offers a significant285

improvement in the case A2 (see Figure 8c) still with a residual error of ∼2% for the finest286

mesh. In the mixed formulation, where only third-order derivatives are needed (see Eq. (5)),287

p = 4 becomes appropriate for the problem. Chord-length parameterization, especially when288

combined with uniform knots (see case A11), exhibits the worst performance even with p = 6.289

As in the previous test case, such a poor and nonuniform convergence quality is caused by the290

instabilities appearing in the Jacobian (even more evident in this test case, see Figures A.14291

and A.15 in Appendix A for more details) together with orders of magnitude higher error in292

the geometry reconstruction (see Figure B.21 in Appendix B). For p = 6 and n = 120 the293

instabilities are more severe than p = 4 and this might explain why in the mixed formulation294

the case with p = 6 behaves poorer than the case with p = 4 (compare Figures 8b and295

8d). Instead, the better performance of A2 with p = 4 versus A2 with p = 6 is not fully296

understood at this stage and would require further investigations.297

Moreover, it is noted that, as opposed to A12 and A2, which result to have a larger298

number of collocation points over the regions of the physical domain Is where strong and299

localized variations of curvature and torsion occur, combination A11 is characterized by a300
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uniform distribution of collocation points, which is particularly unfavorable when complex301

geometries are concerned.302
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Figure 7: The Lissajous free-form curved beam.

6.3. The Viviani curved beam303

The structural behavior of the Viviani curved beam [88] under a tip load is investigated304

in this section. The geometry of this spatial curved beam is built from the intersection curve305

of a sphere of radius 2a centered at the origin with a cylinder of radius a centered at (a, 0, 0).306

The analytical formulation of the geometry and the clamped–free configuration of the beam307

is represented by Eq. (67) and Figure 9, respectively, considering a = 1 m. The beam is308

subject to a tip load [0, 0, 200]TN in the z-direction at the free end.309


x = a(1 + cos ζ)

y = a sin ζ

z = 2a sin(ζ/2)

− π ≤ ζ ≤ π . (67)

Figure 10 shows the convergence curves for the Viviani beam. In the primal formulation,310

p = 4 is again unsuitable to properly describe the variations of curvature and torsion.311

With p = 6, a significant improvement is obtained (see Figure 10c) for all combinations of312

parameterization and knot insertion techniques. Once more A2 yields the the best result.313
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Figure 8: Error in % versus number of collocation points for the Lissajous beam: displacement-based ((a)

and (c)), and mixed ((b) and (d)) formulations with basis functions of degree p = 4 upper and p = 6 lower

plots.

The same trend is observed also in the mixed formulation for both degrees. With p = 6, A2314

reaches and error of ∼0.2% with only 30 collocation points, wheres with p = 4 the same error315
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Figure 9: The clamped–free Viviani curved beam in 3D space.

is reached with 60 collocation points. Finally we observe that A11 and A12 do not perform316

as bad as in the Lissajous case. This is due to three main reasons: a slower and weaker317

variation of curvature and torsion; the presence of no (for p = 6) or negligible (for p = 4)318

instabilities in the Jacobian (see Figures A.16 and A.17 in Appendix A); a much similar319

behavior of the error in the geometry approximation for all three cases (see Figure B.22 in320

Appendix B).321

6.4. The logarithmic spiral curved beam322

In the final test case of this paper we investigate the IGA-C results of an out-of-plane323

logarithmic spiral beam subjected to a tip load of [0, 200, 0]TN. The centroid line of this324

cantilever beam (see Figure 11) is a curve with the following analytical expression:325


x = 2 cos ζ e ζ/2

y = 2 sin ζ e ζ/2

z = ζ/10

− 2.35π ≤ ζ ≤ 0.85π . (68)

Figure 12 shows the convergence curves of the relative error versus the number of collo-326

cation points. It is remarked that in this case curvature and torsion vary very strongly and327

rapidly nearby the clamped end and rather slowly nearby the free end, where they tend to328

zero.329

In the primal formulation A2 blows up. This happens because the system becomes330
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Figure 10: Error in % versus number of collocation points for the Viviani beam: displacement-based ((a)

and (c)), and mixed ((b) and (d)) formulations with basis functions of degree p = 4 upper and p = 6 lower

plots.
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Figure 11: The out-of-plane logarithmic spiral free-form curve beam.

ill-conditioned. This is possibly caused by the fact that with A2 the Jacobian grows very331

rapidly in the same regions where curvature and torsion become very small, see Figure A.18a.332

We recall that in the displacement-based formulation the Jacobian raised to the power of333

eight appears in the calculation of fourth-order derivatives. The poor performance of A11334

and A12, similarly to the previous cases, are caused by the instabilities appearing in the335

Jacobians (see Figure A.18 in Appendix A) and, as the number of control points increases,336

by the instability in the geometry fitting error: the system to reconstruct the geometry (see337

Eq. (47)) becomes ill-conditioned in case A11 (see Figure B.23 in Appendix B). A higher338

degree (p = 6, see Figure 12c) produces a significant improvement on A2 that does not crash339

anymore and performs very well.340

In the mixed formulation, for p = 4, A2 is the best-preforming parameterization reaching341

an error level of ∼0.4% with n = 60. Also A12 exhibits a good convergence curve, while342

A11 is again the worst case. The same trend is observed with p = 6 (see Figure 12d). A2343

reaches an error of 0.007% already with 60 collocation points, while A12 requires 140 points344

to reach the same error. A11 crashes for the same reasons of the primal formulation.345
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Figure 12: Error in % versus number of collocation points for the spiral beam: displacement-based ((a) and

(c)), and mixed ((b) and (d)) formulations with basis functions of degree p = 4 upper and p = 6 lower plots.
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7. Conclusions346

We have presented a displacement-based and a mixed IGA-C formulation for three-347

dimensional, shear-deformable beams with highly curved geometries. The strong form of348

the governing equations has been derived in a compact form through the definition of two349

matrix operators conveniently used to perform first and second order derivatives of the vec-350

tor fields involved in the formulations. Both primal and mixed formulations are derived in351

the space-varying Frenet local frame. Transformation of the results into the fixed global352

Cartesian frame is made at the end as a post-process. This approach turned out to be very353

efficient and easy to implement within a collocation-based scheme.354

The simulation of highly curved three-dimensional beams raises the issue of “analysis-355

aware modeling”, namely the construction of IGA-optimal data which have a direct effect on356

the accuracy (e.g., knots distribution). Although IGA-C has been so far successfully applied357

to a wide range of problems, no existing study has been devoted to understanding the effects358

that different parameterization and knot placement techniques may have on the accuracy of359

collocation-based formulations. To fill this gap, in this work the primal and mixed IGA-C360

formulations have been used combining two parameterization methods (referred to as chord-361

length and equally spaced, respectively) with two knot placement techniques (referred to362

as uniformly spaced and De Boor, respectively). Through the application of the IGA-C363

formulations to four test cases with challenging geometries, the following main observations364

have been made:365

• The chord-length parameterization exhibits the poorest behavior. Especially when366

combined with the uniformly spaced knot placement technique, it yields nonuniform367

convergence (or even no convergence) of the error. This is due to multiple factors,368

such as the numerical instabilities appearing in the Jacobian, the generally large error369

in the geometry approximation, the uniform distribution of collocation points (only370

when combined with uniform knots). With a basis functions degree appropriate to371

the considered geometry, chord-length parameterization delivers superior results when372

combined with De Boor knot placement technique.373

• The equally spaced parameterization is, in most of the cases, the optimal choice. The374
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geometry approximation error is always smaller compared to other combinations and375

no instabilities occur in the Jacobians. Only one exception has been found, namely376

when the Jacobian becomes extremely high and curvature and torsion tend to zero377

(spiral beam case). In these circumstances, equally spaced parameterization may be-378

come unstable. Nevertheless, we observed that degree elevation effectively fixed this379

deficiency. Since in collocation degree elevation comes almost at no additional compu-380

tational cost, this is a rather interesting attribute.381

The overall conclusion of this work, although further investigations will be needed, is that382

with the primal formulation an equally spaced parameterization is definitively the most rec-383

ommended choice and, due to the high-order derivatives involved in the governing equations,384

it must always be used with an approximation degree of, at least, p = 6. Some caution must385

be adopted when very high Jacobians and small curvatures occur. The same holds for the386

mixed formulation, with the difference that p = 4 is enough to yield accurate results since387

only third-order derivatives are involved in the formulation. This conclusion is in sharp388

contrast to the results obtained with Galerkin-based formulations. This is due to the much389

higher sensitivity of the collocation method to the local instability detected in the Jacobian390

and to the direct effect the different parameterizations and knot placements have on the391

distribution of the collocation points.392
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Appendix A. Jacobian, curvature and torsion399

In this appendix, we report, for each test case studied in Section 6, some figures showing400

the variation of the Jacobian over the parametric domain Iu. The numerical oscillations401
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occurring in the case of chord-length parameterization can be clearly observed. On the same402

figures, we add the variation of curvature, torsion, and their derivatives (to be read on the403

right-hand vertical axis).404

Tschirnhausen beam case405

Although they are extremely small, in the neighborhood of u = 0 some instabilities are406

observed for cases A11 and A12, whereas a smooth Jacobian is observed in case A2. See407

Figure A.13.408
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Figure A.13: Tschirnhausen beam. p = 4, n = 80.

Lissajous beam case409

For cases A11 and A12, the oscillations in the Jacobian are concentrated in correspon-410

dence of the maximum values of the curvature. Moreover, it is noted that for p = 6 and411

n = 120 the instabilities are more severe than for p = 4.412
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Figure A.14: Lissajous beam. p = 4, n = 120.
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Figure A.15: Lissajous beam. p = 6, n = 120.

Viviani beam case413

For p = 4, very small instabilities are observed at both ends of the parametric domain414

for A11 and A12. For p = 6 no jumps in the Jacobian are observed.
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Figure A.16: Viviani beam. p = 4, n = 200.
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Figure A.17: Viviani beam. p = 6, n = 200.
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Spiral beam case416

Also in this case we observe some instabilities in cases A11 and A12. No instabilities417

are observed in case A2 (see Figure A.19). For p = 6, the jumps of the Jacobian in case418

A11 become macroscopic since the system in Eq. (47) becomes ill-conditioned (see also419

Figures B.23) with catastrophic consequences on the convergence curves shown in Figures 12c420

and 12d.421
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Figure A.18: Viviani beam. p = 4, n = 180.
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Figure A.19: Spiral beam. p = 6, n = 180.

Appendix B. Geometry approximation errors422

In this appendix we report, for each test case studied in Section 6, some figures showing423

the convergence of the least-square (LSQ) geometry approximation error (see Eq. (46)) for424

combinations A11, A2, and A12, considering both p = 4 and p = 6.425
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Figure B.20: LSQ geometry approximation error for the Tschirnhausen beam.
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Figure B.21: LSQ geometry approximation error for the Lissajous beam.
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[22] F. Auricchio, F. Calabrò, T. Hughes, A. Reali, G. Sangalli, A simple algorithm for ob-486

taining nearly optimal quadrature rules for NURBS-based isogeometric analysis, Com-487

puter Methods in Applied Mechanics and Engineering 249-252 (2012) 15–27.488

[23] C. Adam, T. J. R. Hughes, S. Bouabdallah, M. Zarroug, H. Maitournam, Selective489

and reduced numerical integrations for NURBS-based isogeometric analysis, Computer490

Methods in Applied Mechanics and Engineering 284 (2015) 732–761.491
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